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CHAPTER 1
INTRODUCTION

The objective of this thesis is to develop a system of statistical
inference for finite populations. This inference system is based on a
variation of the predictive approach utilized by Kalbfleisch and
Sprott [1]. They used the Fisher fiducial approach tovderive predictive

densities whereas we will use the Bayesian approach.
Predictive Distribution

Geisser [2] designates a predictive distribution as the
distribution of an observéble randem variable whose distribution is
completely specified as to form and constants. He also states that
distributions are not rendered predictive by substituting estimates for
the parameters, nor shall the posterior distribution of a vector
parameter 6 attain predictive status unless 6 is an observable
variable.

Since our interest in predictive distributions is within the
Bayesian frame work, we will formulate a definition of predictive
distributions in this sense. We should nete, however, that predictive
distributions exist within the classical framework. For example, if
X~ N(u,1l) and Y~ N(u,l), them X - Y~ N(0,2) would be a

predictive density although not -a particularly informative one. Also,



as previously indicated predictive densities may be derived by the
“Fisher-fiducial approach.

Suppose a set of N independent observations, summarized by D,

are available on Fx(- 6) where 6 is assumed to have the prior ~
“'distribution w(0). Also, assume the posterior distribution’ P(GID)-

®) 1is the distribution of a function,

‘exists and Gy('
y = f(xl, ceey Xk)’ of k future observations, XpsKgs e Ky The

predictive distribution of y dis defined by:

Fy('

D) = Ee[Gy("e)] =fcy(-]e).dp(e|D).

Hence, the predictive distribution is the average of all conditional-
distributions of vy given 0 with respect to the posterior

distribution of 8.
The Super Population Concept

Lét Ui be the variate value‘attached to the ith unit in the
finite population of N numbered and distinguishable - units. We will
consider the finite population (Ul,_..., UN)"as a vector in RN,

where R is the real numbers. This population may be sampled by

picking n randem integers from 1, ..., N and examining the variate

values, Ui ,Ui s ey Ui o For simplicity, we will call these values
1 "2 n

XysXgs coey Xoo " From -these values we wish toe make an inference about

some function of the finite population values. In particular, we are
N

interested in making an inference about the mean, U=z Ui/N’ of the
1

finite‘bopulation.



Cochran [3], [4] suggests that in many instances the value
attached to the ith population unit ‘is the realization from a super.
distribution. That is, the finite population can be considered as the
result of a random physical process described by a probability
distribution. For example, the finite populations of heights, weights,
or intelligence can be considered as large random samples from a normal-
distribution defined by genetical mechanisms giving rise to the finite
population.

Under this ceoncept, a simple random sample from the finite
population is also a simple random sample from the super population;
hence an inductive inference may first be made.teo the super population
and then a deductive inference may be made about the finite population
from which the sample was obtained. We propese the following procedure
to accomplish this.

The finite population is considered to be a simple random sample of
size N from a super population whose density is given by f(xle)~ The
prior density of 6 is given.by w(6). A simple random sample of size
n is drawn from the finite population and the corresponding values
attached to the sample units are summarized by Dn° . Let P(G]Dn) be
the posterior density of 6  and let vy betsome,function of the values
attached to. the rematning finite population units. Ifm,h(y[e) is the

density of y, the predictive density of y. 1is defined by

f(y|Dn)=jh(y]9)P(e|Dn)de

8

which is to be utilized in making inferences about the finite populatien

parameters.



Organization of Thesis

In Chapter II the predictive procedure will be used to make
inferences about the mean of the finite population assuming that the
super population density is (1) Bernoulli, (2) exponential and
(3) normal. In particular, we will use the mean of the predictive
density of the finite population mean as a point estimator for the mean
of the finite population. Also, if the super population density is
normal, we will use the mean of the predictive density of the finite
population variance as a point estimator for the variance of the finite
population.

Chapter III is an extension of Chapter 1I. In this chapter, we
assume that the super population density is normal with mean
ox® + Bxg+l and variance (oxg)z, where g =0 or 1 and the x's
are nonstochastic variables. In this case our finite population is a
vector in (RZ)N, where R 1is the real numbers. The value attached
to each unit then is an ordered pair (Ui,Vi), i=1, ..., N. On the
basis of a simple randog sample (yl,xl), ceey (yn,xn), we will make
énferen;es concerning i Ui/N if g =0 and concerning

by Ui / z Vi if g = 1. In either case we will assume that
1 1

are known.
We will apply the results of Chapters II and III to stratified
simple random sampling in Chapter IV. We assume that each strata is a

random sample from a super population and make inference for the



N.U where ﬁi is the mean of the'ith‘stratum,

e 1
overall mean, u = = .U, ,
N i1’

[

N, is the number of units in the ith

k
1 stratum, and I N, = N.
1

i

Chapter V is a study of optimum allocatién of sampling units among
k strata. Our criterion for optimality will be minimization of the -
"variance of the predictive density sﬁbject to a fixed cost function. If
there is no prior information concerning the within strata variance, we
will use a two-phase sampling procedure as utilized by Draper and
Guttman [5] for a Bayesian approach to allocation. We also consider

allocation for estimating r < k (k number»of strata) parametric linear

functions of the strata means. (Des Raj [6])



CHAPTER II
SIMPLE RANDOM SAMPLING

This chapter is devoted to a study of simple random sampling from
a finite population utilizing predictive densities. We assume the
finite population (Ul’UZ’ coey UN) is a simple random sample from
(1) a Bernoulli, (ii) an exponential, or (iii) a normal super population
distribution. In all three cases, we will let X i=1,2, ..., n,
denote the observed value attached to unit i in a simple random sample
without replacement of size n from the finite population and will let

y., jJ =1,2, ..., N-n, designate the unknown value attached to the jth

]
unsampled unit in the finite population. Also, we assume the prior

information can be expressed either by a Jeffrey's vague prior [7] or by

a conjugate prior distribution [8].
Bernoulli Super Population

We assume the finite population (Ul’UZ’ ceoey UN) is a simple
random sample from a Bernoulli distribution. We will let p be the
probability that Ui =1 (or that Ui is a success). The probability
that Ui = 0 (or that Ui is a failure) 1is 1 - p = q. Our interest
will be in estimating the number of successes in the finite population,

or equivalently,

N
U=2x1U (2.1)
1



on the basis of a simple random sample of size n < N from the finite
population.

If we define

n
X=1z X
1
and
N-n
Y= I vy,
1 i
then U can be expressed as
U=Y+ X, (2.2)

For a point estimate of U, we will use
E(U) = E(Y) + X

where E(Y) is determined from the predictive density of Y. As a

measure of the precision of our prediction, we use
V(U) = V(Y).

Theorem 2.1. Let X5 i=1,2, ..., n, be a simple random sample of
gsize n from a finite population and suppose the super population
distribution is a Bernoulli with unknown parameter p. Also, suppose

the prior density on p is a Jeffrey vague prior of the form

1

m(p) « A=)

5y ° 0<p<l1.

Then the predictive density of Y 1is



Y+x-1 ) ( N-X-Y~1 )
Y N-n-Y

f(YlX’N’n) = : 3 Y = ‘O,l’ s 0y N-n‘

=

Proof: Zellner [7] derives the posterior of p as

T'(n) X—l(l_P)n—X—l

T T (n-X) » O0<p<l

P(P]X3n) =
and X =0,1, ..., n. The distribution of Y given p and N-n is

N-n

g(Y|p,N-n) =-( v )pY(l—p)N_n_Y

, Y=20,1, ..., N-n. (2.3)

Hence, the predictive density of Y, E[G(Y[p,N—n)], is

1 A

- -1 ~X-Y-1

£(Y|X,N,n) =f ﬁ%@_ ( NYn )pX+Y (1op)NETLy
0

Integrating and simplifying, we obtain

Y+X-1 N-X-Y-1
Y N-n-Y

£(Y|X,N,n) = , Y=0,1, ..., N-n. (2.4)

(¥5)

Corollary 2.1. If the assumptions of Theorem 2.1 hold, then:

=l o]

(a) E(@U) =N

&) v - ERRE (X,



Proof:
(@) N;n v ( Y+X—l) ( N-X-Y-1 ) _
Y0 Y N-n-Y

N-n-1

x5 n-%+N-n-1-Y-1\ [ X+1+Y-1
[ N-n-1-Y Y :

From the equality,

[

+k-3~-1 b+j-1 +b+k-1
(E)T) - () e
3=0 J

given by Feller [9] on page 65, it follows that
N-n
i Y( Y+X—l) (N—X—Y-l) _ X( N-1 )
Y=0 Y N-n-Y N-n-1
Therefore, from (2.4)

E(y) = X8

I
Lo}

and from (2.2)

E(U)

[
=
B

. (2.6)

N-n
] Y+X-1 N-X-Y-1 -
o o) (3 -

N-n-2
- X s ( n—X;I-I:I;E;EYY 1 ) ( X+2;Y 1)
=0

x(x+1)( Nlj;fz > .
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The last equality follows by equation (2.5). Therefore, from (2.4)

X(X+1) (N-n) (N-n-1)

E[Y(Y-1)] = 0 (ot1) (2.7)

Now
2

V() = E[Y(¥-1)] + E(Y) - E"(Y).
Hence, substituting equations (2.6) and (2.7) in the above and
simplifying, yields

V(U)=V(Y)=_(_N—_n2_li.}_(. l—§

ntl n nj'

Theorem 2.2, Let X, i=1,2, ..., n, be a simple random sample of

size n from a finite population and suppose the super population
distribution is a Bernoulli with unknown parameter p. Also, suppose

the prior density on p 1is a Beta conjugate prior of the form

r + B -1 -1
m(p|a,B) = ?%%SFTE% pa (l-p)B », 0<p<1l, a,B>0.

Then the predictive density of Y 1is

Y+X+o-1 N+8-X~Y~1
Y N-n-Y
£(Y|X,0,B,N,n) = - , Y=0,1, ..., N-n.

N+o+R-1
N-n

Proof: The posterior distribution of p as given by LaValle [10] on

page 340 is

T (nt+a+8) X+a-1 n-X+g-1
T (X+a)T (n-X+8) P (1-p) ’

P(plX,OL,B,n) = 0 < P < 1.
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From above and equation (2.3), we can express the predictive density

of Y as

1

I (oot N-n | X+¥+a-1 N-X-Y+g-1

£(Y]X,a,8,N,n) =f F(X+SF°(‘£})(+B)( Yn)p “ @) o
0 .

which reduces to

Y+X+a-1 ) N+8~-X-Y-1 )
Y N-n-Y
£(Y|X,a,8,N,n) = , Y=0,1, ..., N-n. (2.8)
N+at+B-1
(")

Corollary 2.2. If the assumptions of Theorem 2.2 hold, then:

(N+a+8)X + (N-n)a

() B = n+a+B
(b) V(U) = (N'n)(N+a+B;(X+a)(n+3_X) .
(n+0L+B) (n+0f,+B+l)
Proof:

N-n - v
@) 3 Y(Y+X;0Ll)(N+BXYl)=
' yeo N-n-Y

(o) N_rz"l n+R-X+N-n-1-Y-1 Xto+1+Y-1
o0 N-n-1-Y Y

N+a+B-1
.(X+a)( N-n-1 )'

The last equality follows by equation (2.5). From the above result and

(2.8), we have
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E(Y) = (Xto) (N-n)

n+o+8
and
_ (Nto+B)X + (N-m)o
EQ) nto+B )
(b) In a manner similar to that used in (b) of Corollary 2.1, we
obtain

N-n
_ X+a+Y-1 N+R-X-Y-1
LY(Y l)( ¥ ) ( Nen~Y

Mro+8-1 )
Y=0

) = (X+a+l)(X+a)( Neno2

From (2.8) and the relation

V(Y) = E[Y(¥-1)] + ECY) - EX(Y),

we obtain

(N-n) (N+a+B) (X+a) (n+8-X)
(n+a+B)2(n+a+B+l)

V(@U) = V() =

It should be noted that (a) and (b) of Corollary 2.2 reduce to (a)

and (b) of Corollary 2.1 in the limit as o =+ 0 and B8 - 0.
Exponential Super Population

In this section we assume the finite population (Ul’UZ’ ooy UN)
is a simple random sample from an exponential distribution with unknown
parameter R. Our interest will be in estimating the finite population

mean,

(2.9)

]

]
2=
=™
c



on the basis of a simple random
population.

If we define

and

<

then U can be expressed as

T=3
U= N [

For a point estimate of U,

[

E(U) =

2

where is determined from

E(¥)

Theorem 2.3, Let X5 i=1,2,

13

sample of size n < N from the finite

(N-n)¥ + nx]. (2.10)

we will use

[(N-R)E(¥) + nX]

the predictive density of 7.

++ey N, be a simple random sample of

size n  from a finite population and suppose the super population

distribution is an exponential with unknown parameter

the prior density on B is a Je

m(B) =

Then the predictive density of

B. Also, suppose

ffrey vague prior of the form

%— g8 > 0.

-

(2.11)
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is a Beta distribution of the second type with parameters

(N-n)
and n.

Proof:

Since X5 i=1,2, ..., n, has an exponential distribution,
then
g(i]n,nB) - DB (nBi)nﬁl e—an’ x.> 0. (2.12)
. I'(n)
Also, ¥ is sufficient for B so the posterior for 8 is obtained
from
P(8|n,n%) = g(x|n,nB)(B)

as

nx . n=1 ~nxXB
??ET (n%R) e

P(8|n,nx) = , B> 0.

Since ¥ given. (N-n) -and B has a distribution of the form in (2.12),
then the predictive density of ¥ 1is

B

‘ « o N-n-1 n N-1
- — (N-n) [ (N-n)¥] (nX) .
f(YINsn’X) 'f F(N—n)F(n)
0

+ exp{-[(¥-n)y + nX]B8}dB.

The above gamma integral reduces to

£(¥|N,n,%) =

-1 N-n-1 -N
_ I'(N) N-n (N-n)¥ 7 2 Nen _
T T (N-n)T (n) ( nx ) [ nx :l {l T y} ’

Now, .if we let
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then the desired result,

A __ 0=l 1.9 (2.13)

E(T|N-0,0) = TR T

is obtained.

If the assumptions of Theorem 2.3 hold, then:

Corollary 2.3.

»i

(a) E@) = T2

=~

2
=y _ N-n N-1 nx
®) V@) = N N(n-2) ( n-1 ) )

Proof:

(a) From equation (2.10)

E) = [-)E@) + nxl,
but
ET) = g B(D) = =

follows by equations (2.11) and (2.13).

Hence, .

2
2

= _ N-1
E@) = N n-

=

(b) Also, from equation (2.10)
2
V(@) = (F“—“) V().

From equations (2.11) and (2.13), we have
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- \2 2
V(@ = (—33‘-) v(r) = {82 L
N-n N-n (n-l)z(n—Z)
Hence,
2
= N-n N-1 FnX
VO = F 3D (n—l ) '

Theorem 2.4. Let X:s i=1,2, ..., n, be a simple random sample of
size n from a finite population and suppose the super population
distribution is an exponential with unknown parameter R, Also, suppose

the prior density on B 1is a conjugate prior of the form

A
o A=l =-daB
T (0 8 e , B >0, a,A > 0.

m(Bla,A) =

Then the predictive density of

N-n
o+nx

(2.14)

<

is a Beta of the second type with parameters (N-n) and n+A.
Proof: The posterior demnsity of £ is

0t
P(8lo,%,0,0) = EIEL gL oo aanmed, 6> 0

which follows in a manner similar to that in proof of Theorem 2.3. Also,
the distribution of ¥ given (N-n) and B8 is of the form given in

(2.12). Hence, the predictive density of ¥ may be expressed as



® _.N-n-1. . _ oA N+A-=1
=l = - (N-n) [ (N-n)¥] [otnX] "B
0

. exp{-[(N-n)¥ + (o%+a)]1B}dB.

This integral reduces to

f(}?lnsf)a,k) =

otnX o+nx

_ _N-n ( (N—n)?‘)N_n—l

=]

)

i
!

T (N+)) 1 4 Nm - ()
I'(N-n)T (n+)) :

If we define T as in (2.14), we obtain

_ T (N+x N-n-1 - (N+ i
£(T|n,%,0,0) = P(N—é);(i+x) e N ]

(2.15)
the desired result.

Corollary 2.4. If the assumptions of Theorem 2.4 hold, then:

= N-n o N-1+) nX
@ EO =" m T TN ooim
2
= _ | otnxX N-n N-1+) 1
®) V@) = ( n-1+\ ) ( N )( N )( n—-2+X\ )'

Proof:

The proof follows from (2.10), (2.14), and (2.15) utilizing the

same general procedure as in the proof of Corollary 2.3.

Note that as o -0 and B - O,

(a) and (b) of Corollary 2.4
becomes identical to (a) and (b) of Corollary 2.3.

Normal Super Population

In this section we assume the finite population

(UgsUys vees U
is a simple random sample frem a normal distribution with mean u

and

17



2
variance o .

al

and

on the basis of a simple random
population.

We define

and

With this notation, U and g2

18

Our interest will be in estimating

Zjm
™2

=z
R~ 2

(v, -0

sample of size n < N from the finite

n

s” =73 (x.-ﬁ)z/(n—l)
1 4
N-n-1
2 2
y - i (v4-9)"/ (¥-n-1).

can be expressed as

U =3 [(v-n)y + nx] (2.16)
and
82 = %r [(N—n-l)si + igiﬁlﬁ (?—2)2 + (n—l)si ], (2.17)

. o 2
To determine point estimators for U and S,

derive the predictive densities

it will suffice to

of ¥ and si. We then utilize

equations (2.16) and (2.17) to obtain E(U) and E(Sz) with respect to

their predictive densities.

Also, we will use equatioms (2.16) and
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(2.17) to obtain V(U) and V(Sz) which are used as a measure of the

precision of our predictions of U and Sz, respectively.

Theorem 2.5. Let Xss i=1,2, ..., n, be a simple random sample of
size n from a finite population and suppose the super population
distribution is normal with unknown'mean yp  and known variance 02.
Also, suppose. the prior demsity on u 1is a Jeffrey vague prior of the
form

T(u)dp = dy, =—o <y < o,

Then:

(a) The predictive density of ¥ 1is normal with mean X and
variance NGZ/(N—n)n.
(b) The predictive density of si is a gamma with parameters

(N-n-1)/2 and (N—n—l)/Zcz.

Proof:

(a) As is well-known, the posterior density of u dis

P(u[%,0%/m) = [ == exp {— =5 (u—i)z}
2o 20

and the density of ¥ given - u and 02, is

2
— g N-n N-no ,_ .2
gl( YIU) N-n ) = 2 exp {_ 202 (}"U) }. (2.18)

Hence, the predictive density of ¥ is
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e 2 (N-n)n
£ (F|%,07) = O/P —a
1 | ] aned?

.+ exp {— ;% (0% + (n) -0 }du-.
o)

Completing the square with respect to u and integrating, we obtain

e 2 - ~ = a2 - .
£, §lwo%) = [ o {- e } = <Y < (2.19)
2mo 2No

the desired result.

(b) The distribution of si given 02 and N-n is

N-n-1 N-n-1
- 2 1
N-n-1 2
- (—z—) (sy)
20 y
. ( 62| Moo=l | Nen-l ) _
» = " " *
Wy 2 202 ( N-n-1 )
r
2
(N-n-1)s2 :
. exp« - ——+——75——X . (2.20)
207

Now 02 and (N-n) are known; hence, (2.20) is the predictive density

Corollary 2.5. 1If the assumptions of Theorem 2.5 hold, then:

(a) E()

b
X

2
®) V@) = =2

5|



() E(s%)

@ v

n
N
~~
=z
1
=}
S
~N
Zia
N
h
N

Proof:

(a) By equations (2.16) and (2.19), we have

D) =3 [(-n)% + nxl,
which reduces to
E(U) = %,
.
(b) From equation (2.16),
2
_ N- .
v = S Ve,
and by (2.19),
2
=y . N-n g

(¢) From equation (2.17),

E(s?) =

2=

N

But -
2 2
E(s = g
(y)

and

2

[ (N—n—l)E(si) L D pon? o (n—l)si ]

21
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follows from (2.20) and (2.19). Hence,

2, N-n 2, n-1 2
E(S7) = N ° + N Sx

.

(d) From equation (2.17), we have

2 2
v(s®) = ( Focl ) V(s)) + iEZQQE:} v,

N
But,
gD’ 2
V(S,—) ~ X (1)’
hence

vin? = 2 ).

From (2.20), we have

So, substituting and simplifying, we have

2
2 02
V(™) = 2(N-n)(-§ ) .

Theorem 2.6. Let X.s i=1,2, ..., n, be a simple random sample of
size un from a finite population and suppose the super population
distribution is normal with unknown mean u and known variance 02.

Also, suppose the prioer density on 1y ' is a cenjugate prior of the form

2 n n
o] 0 0 2
ﬂ( “]“0’ —no ) = 5 exp {- ——202 ‘(u—uo) }, —o <y < oo,

270
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Then:

(a) The predictive density of ¥ 1is normal with mean nOuO + nX

and variance (N+n0)02/(N—n)(n+n0).
(b) The predictive density of s§ is a gamma with parameters

(N-0-1)/2 and (N-n-1)/20°.

Proof:

(a) LaValle [10], page 347, gives the posterior distribution of

v by
2 T n
g : 1 2
P(ulu ,——)= expq = —5 (U-u,)" P, -—° < u <o (2.21)
1 o 2w02 262 1
where
wo= (o) T (% + nou)
1 0 00
and
nl = no + n.

From (2.18) and (2.21), we obtain the predictive density of ¥y as

2 02
fl(?l'}f,G ) = E[gl(?h% H )]

* expq- 21—2 [nl(u-ul)2 + (N-n) (S"-u)z] du.
[0}

Completing the square with respect to u and integrating, we obtain



(N-n) (n+n0)
%)= oy
2(N+n0)no

'T+n'_—) S At

(N-n)(n+n0) ('_ Dok + nxX
+ exp{ - ——————
0

2
2(N+n0)o

the desired result.

"(b) Follows exactly as in (b) of Theorem 2.5.

Corollary 2.6. If the assumptions of Theorem 2.6 hold, then:

_ nxX + nouo nn
@) ED =~ gy &)
0 0
N+n 2
=y N-n 0 o
(®) V@ = ‘N N n+nO
N+n
2, { N-n-1 n 0 n-1 2
(c) E(§87) = ( N nhmg ¥ ) 0" + s,
2 02 : N+n0 n ?
(d)  V(T) = 2(-1;1- ) (N-n-1) + [———N n'mo]
Proof:
(a) From equation (2.16),
=y _ N-n _ ,_ n
EQU) =5 E® + 5
and by (2.22), we obtain
nX + n.u
- N-n 0°0 ., n _
E(U) = S v + N X

24

(2.22)



Simplifying, yilelds

nxX + nouo nun
ED = ntn, + N(ntn,) (&Fuy) -

(b) The result follows from (2.16) and (2.22) as

2 N+n 2
— N- _ N- .
V(D) = (——Nn) V) = R

0
(c) From equation (2.17), we have

£(s%) = [ (N—n-l)E(sf,) + -(—N—';‘]-E‘- V() + (n—l)si:]

Z |-

which simplifies to

using (2.21) and (2.22).

(d) Again, from equation (2.17), we have
v(s?) =& | @-a-1)? vsd) + [———(N'n)“ T v<—-—>2'
= Nz n s;) N §-X .

From (d) of Corellary 2.5,

2

N+n 2
a2 2,
V(y-x)" = 2V (¥) = Z[N_no n_c:_n j] ,
0

the last equality follows from (2.22).

25
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By (2.20), we obtain

204

2
V(sy) = ?E:E:IT .

Substituting and simplifying, yields

2 02 ? N+nO n - ?
V(§7) = 2( N ) (N-n-1) + Y o .

Theorem 2.7. Let X5 i=1,2, ..., n, be a simple random sample of
size n from a finite population and suppose the super population

distribution is normal with unknown mean 1y and unknown variance 02.
Also, suppose the joint prior density on 1 and 02 is a Jeffrey vague

prior of the form

1,05 =L, —m <y <, oo
g

Then:

(a) The predictive density of ¥ is a t—distribution with
(n-1) degrees of freedom, location parameter X, and

precision n(N—n)/NSi.

(b) The predictive density of u = si/si is an F-distribution

with (N-n-1) and (n-1) degrees of freedom.

Proof:
(a) The joint distribution of X and si‘ given u and 02

is
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n-1
2\ 2
n (nfl)sx
2w02 202
_ 2 2
g(X,s. [u,07) = » .
S2 r n-1
X 2
cexp - L5 [ @ + (a-1)s? ]
20 x.

Since (i,si) is sufficient for (u,dz), the joint posterior of u

and o© can be expressed as

2, 2 . 2 2 2
P(uso”[%,8) = g(X,s. [1,07)m(n,0%).

Integration of g(i,si|u,02)ﬂ(u,02)dud02 yields si; hence,

. eXP‘{“ ;ig [ n(u—iﬁz + (n—l)si 17?. (2.23)
(o}

The predictive density of ¥ is obtained from (2.18) and (2.23) as
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n+1l
2 2
N-n n (n—l)sx
® ® 2ﬂ02 2ﬂ02 202
£ (F|%,82) = .
1 *Tx )
w0 r n-1 ‘(n-l)sx
2 2

: exp{' ;—% @+ (0) 07 + (a-1)s ]}dudoz.
o

Noting that

L ~ 2 N
n@? + @On) (-2 = N (u L m:A kA IgN‘n) ) » Q-nim 2)“ 5-x)°

and integrating over u, yields

n+2

© Kk ;
f (%) exp{- Z }dcz = (2" % Dr-1). (2.24)
o} (0]

Hence, we obtain
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)
£, F[%,8) =
r ( n-1 )

2

After some algebraic simplifications, we obtain

_n
®-n -0 | 2

— b
st n-1
X

1+

(2.25)

the desired result.

(b) The predictive density of s§ is obtained from (2.20) and

(2.23) as
29 20 2 2, 2 2
fz(sylx,sx) = Q/Q a/° gz(sylu,oz)P(u,c lx,sx)dudo .
w00 0

Integrating over u, we obtain

+exp{- L [ (n-Ds? + (a-1)s 1 pdo”
20 y x

By equation (2.24), this reduces to
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and after some algebraic simplification, we have

N-n-1
SZ 2
r ( N;Z ) N;EII _% _N=2
' Sy SZ 2
£ (s2]%,8%) = 1+ ol y . (2.26)
2y X n=1 2
2 ( n-1 ) ( N-n-1 ) s
s T —_ T _— pid
y 2 2

2

<’ then u ~ F(§-n-1,n-1).

et u = sz/s
y

Corollary 2.7. If the assumptions of Theorem 2.7 hold, then:

(a) E@ =%
S2
o - N— -

) V@) =ERBIELE 43

2. n-l N-3 2
@ B =22E32 . 453

22
@ v(sh) =E QR E (N-n-1) (N-4) + (@=2) », n > 5.
Proof: Let
e= /520 g



in (2.25), then t has a Student's t-distribution with (n-1)

of freedom. Since

n-1

E(t) = 0 and V(t) = 3 .
then -
E(¥) = X
and
2
V(—) =E-—_].".. N SX
¥ =873 (N-n)N °

i' in (2.26), . then

Also, if we let u = s;/s

2
E(u) = P’—-—% and V(u) = 2(n—l) (N—l;.) 5.
v (N-n-1) (n=5) (n-3)
Therefore,
2y _nzl 2
'E(Sy) " n-3 Sx
and
2 2 (n-1) 2 (N-4) 4
Visy) = = s .

(N-n-1) (n-5) (n-3)>

(2) The result follows immediately from (2.16) and (2.27).

(b) From ehuation,(2;16), we obtain

2
V(D) = (N—;I—‘l) v,

31

degrees

(2.27)

(2.28)

(2.29)

(2.30)
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and from (2.28) it follows that

2

S
v = NNn 2-,1 -n—x- *

(¢) Equation (2.17) yields

£(s?) =

Z =

[:(N—n—l)E(Si)‘+ LR y () + (n—l)Sii}s

Substituting results from (2.29), (2.28), and simplifying, yields

2. n-1 N-3 2
B(SD) = 155 °F Sy
(d)  We obtain-
v(s? ) - X (N—n—l)ZV(si) + ['iﬂiﬁlE-J v (5-%)° (2.31)
N .

from (2.17). Now

V-0’ = 2g-0" - V@

2 .
N 52 n-1 N 8}2‘ _
= "('ﬁ——n')—n' ] E(t ) - n——_'; (N—n)n ’
. J/[?ﬁ:asa-(yﬁijWV t(n=1).
N s ?

2
4, 3(n-1)
E(E) = o3y (aos) °

where

Since



we then have

2 2
2 N ®%x n-1 n-2-
VER" = 2 Wmya a3 (;r's‘)

Substituting the above and (2.30) into (2.31), we obtain

33

52 2
2y o2 )l x —n-1) (N- -
v(sh = £ D= o (N-n-1) (N-4) + (n-2)
Theorem 2.8, Let x;, 1= 1,2, ..., n, be a‘éimple random sample of

size n from a finite population and suppose the super populatien
distribution is normal with unknown mean u and unknown variance
Also, suppose the joint prior density of u and 02 is the

Normal-inverted gamma density defined by

2
“(Urc |u0’w0,n0’v0) =

Vo¥o
202k v
. : exp (-~ —5

() e(z) U
2 2
2

for =~ <y < ®, 0 < 0" < «, and zero otherwise, where

-0 < uo < o, no’wo’vo > 0.

Then:

2
g .
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(a) The predictive density of ¥. is a t—-distribution with
(n+u0) degrees of freedom, location parameter
(nx¥ + _nouo)/(n0 + n), and precision

(N-n)(n+n0)(n+v0)/(N+v0)vlw13

(b) The predictive density of u = si/wl is an F-distribution

with (N-n-1) and v, degrees of freedom, where

1

nn

-1 0 ,_ 2 2
lpl \)l n+no (X—UO) + (n_l)sx + \)Olpo
and
v, =n+ v

Proof: The proof follows the same general procedure as the proof of

Theorem 2.7.

Corollary 2.8. If the assumptions of Theorem 2.8 hold, then:

_ nX + nouo n no
(a) EQ) = n + n, + N(n + n,.) = - UO)
0
N +
(b) V(U‘)=N;In Nnon:iwl_ 5
1'1
VIR N+n
2 171 n. ‘ 0 n-1 2
(c) E(87) = 3 {(N—n—l) + — 5 + T Sk
1 0
2
vy
2 1
o v -2 ] () (z)
1 1 N
2

n 2 N+n0
. (N+n0—3) + (vl—l)( E;;—') ( -ﬁ—~'>

0



Proof: The results follew utilizing a procedure similar to the proef

of Corollary 2.7.
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CHAPTER III
REGRESSION AND RATIO ESTIMATORS

If there is an ordered pair, (Yi,Xi), of observable values
attached to the ith unit in the finite population of N wunits, we will
consider the finite population as a Qector.in (RZ)N, where R is the
real numbers. Also, we will represent the finite population by
((Yl,Xl),(Yz,XZ), cens (YN,XN)).

In addition, we assume the fiAite population is a simple random
sample from a joint probability distribution such that the conditional

distribution of Y. given X is

f(Y]X,u',B,cz) =
p (3.1)

2
= ———%—5+ exp < - —_%_7_ Y - a'Xg - BXg+l) , =® < Y < o,
/ 215°x°8 20°x°8

—o < g', B < o 02 >0, and g=0 or g = 1. Hence, a simple

tandom sample without replacement of size n < N from the finite
population is a simple random sample from the distribution (3.1). Based

on this sample, we derive predictive estimators of

=
]
Z
MM
<

for particular assumptions on the parameters in (3.1). For all of our
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derivations, we assume

>

B
=
= ™M=
[Tl N

X, and I X
i

are known, This knowledge does not imply that each individual Xi is
known.

The notation used in this chapter will be slightly different from
that used in the preceeding chapter. We will let (yi,xi),
i=1,2, ..., n, denote the observed values attached to the ith
sampled unit in the simple random sample of size n from the finite
population. Also, (ui,vi), i=1,2, +osy N-n, will denote the.
unknown values attached to the ith unsampled unit remaining in the

finite population.

The following terminology will be used in this chapter:

n n
1 1
n n
si = 3 (y1 - ?)2 si = 3 (xi - i)z
1 1
1 N-n N-n
R = Vi¥a 2 Vi
1 ' 1
and
I
sxy=§ (x; -B@G; -7

Since we can express Y by

Y = % [ (N-n)T + n¥], (3.2)
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it will suffice to derive predictive estimators of U, or equivalently,

of T = (N~n)T 4in order to predict Y.
Regression Estimators
If g=0 4in (3.1), then

E(Y|X) = o' + 8X
and

V(Y |X) = 2.

Hence, there is a linear regression of Y on X which we will utilize

in predicting Y.

Theorem 3.1.. Let ,(yi,xi),_ i=1,2, ..., n, be a:simple random sample
of size n fromvthe finite population ((Yl,Xl),(Yz,Xz), ""'(YN’XN))
and suppose the super population distribution is given by (3.1) with

g = 0. Also, suppose that - 02 is known and that the joint prier
density on & and B (a =o' + BX) is a Jeffrey vague prior of the
form

7(a,8)dadR = dadB, ~= < o, B < o,

Then the predictive density ef - U@ is normal with mean

N - sz
Vrim -0 =3
s
p.<
and variance
N g? 1+ nN (i—i)z
N-n n N-n 2
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Proof: Lindley [1l] on page 207 writes the joint posterior distribution

of o and B as

M N

ns

P(u,BI@,/@ = > exp{- —1—2- [n(m—&‘)2 + 2 g3 2

s (8-B) "]

2o 20

where

The distribution of U given o and A 1is normal with mean
a + B(¥-X) and variance 02/(N—n). Hence, the predictive density of

i is

£(T]a,B) = f f =
- . 2mo

=°_exp{;— —55 [n(a-a)% + si(s:ﬁ)z + (N-n) (T-0-B (T-%)) 2] }dads.

(3.3)

20

The equality

(-0 + s2(6-H7 + @) @-0-8 (1)’ =
= N(amu ) + <s§ + 2D (o2 >(B—u8)2

n(N-n) S2
N X

2 n(N-n)

Sx + N (

— @-a-8E-m)7,
73 2

+

i

where
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_ 0o + (N-n)@ - (N-n) (¥-%)8
Mo N

and

fe2 + 20, (g @-g)

X
Wy = =
8 si + ___n(g ) (gog)?

is obtained by expanding the left hand side and completing the square
with respect to o and B. Substituting into (3.3) and integrating

with respect to o and B8, we obtain

f(u]@;ﬁ) = 5 exp - 5 (G~a-B (V-%))

21Ko 2Ko
where

c o N @D’

' n(N-n) 2 *

s
X

Since

_ 1 = —

V=5 (X - nX%),

then

. — N —

V-X= o= X -3).
Therefore,

mm=@+&w@=y+§%@qﬁ (3.4)
and
2 2 = 2
N 2 N (7-%) _ N o aN  (X-%)
V(@ o n(N-n) + 2 " N-nn 1 N-n 2 * (3.5)
x ' x J
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Corollary 3.1. If the assumptions of Theorem 3.1 hold, then:

(a) E@) = 7+ BE-%)

o .2
oy - (N-n) o n(N-n) (X-%)
() Vv T T 2
X
Proof:

(a) From (3.2), we have

E(T) = -N;]—n E® +3T7

and by (3.4), we obtain
EX) = 7 + B(E-%).
(b) The result follows immediately from (3.2) and (3.5).

Theorem 3.2. Let. (yi,xi),_ i=1,2, ..., n, be a simple random sample
of size n . from the finite population ((Yl,Xl),(YZ,XZ), ey (YN,XN))
and suppose the super population distribution is given by (3.1) with

]

o' and g both zero. Also, suppose. 02 is known and the prior

density on B 1s a Jeffrey vague prior of the form
m(B)dB = dB, -» < B < =,

Then the predictive density of T is normal with mean £V and variance
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where
n
N3
° e nﬁz + si

Proof: The proof follows in same manner as the proof of Theorem 3.1.
Corollary 3.2. If the assumptions of Theorem 3.2 hold, then:
- 1l ., s
(a) EQX) = ﬁ'[ny + B(NX-nX) ]

N-n (NX - ni)2
N 2 2
N(nX + sx)

(b) V() =

_ =Zla

Proof: The proof is similar to the proof of Corollary 3.1.

Theprem 3.3. Let- (yi,xi), i=1,2, ..., n, be a simple random sample
of size n from the finite population ((Ylgxl),(Yz,Xz), e (YN,XN))
and suppose the super population distribution is given by (3.1) with

g = 0. Also, suppose the joint prior density on a,8, and 02

(o = a' + BX) is a Jeffrey vague prior of the form

TT(OL’B’GZ) « ']; sy —© < a, B <=, 02 > 0,

2
o

Then the predictive demsity of W is a t-distribution with (n-2)

degrees of freedom, location parameter 4 + ﬁ(ﬁ—i), and precision

v, o |2
n(N-n) 2
<

where
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and

2
5
Sz = s2 - 2L
y g2
X

by

Proof: Lindley [1ll] on page 205 writes the joint posterior distribution

of o, B, and 02 as

o
SZ 2
2 A A2 nsi‘ 202
P(a,B,07 |&,B,07) = ) .
(216”) = P(EZ-—?:-)
« exp { - ;if [82 + n(aéa)z + si(6~§)2]
o

The distribution of u 'given o, B, and 02 is normal with mean

o + B(¥-X) and variance 02/(N<n). Hence, the predictive density of

g is

(N-n)ns

(2ﬁ02).‘s r ( 2:2.)

* exp {-— —iz [82 + (NJn)(EFaeB(V—E))Z + n(a—a)z
20

+ si(ﬁ-@)z]}'dadsdoz. (3.6)
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Expanding and completing the square on o and then on R, it can be

shown that
(¥-0) (@a-BF-1)* + n(a-® + 26D =

= N(O.c--um)2 + (Si + B(NT—E)— (V-i')z ) (B-ue)z

20En) 2 (Go-pw)’

+ .
an) g’n) @0t + si

where
_ (N-n)T - (N-n)B(¥-%) + nd
Mo N '
and
. ~——n(§'r“) (¥-%) (T-Q) + si@
8 ) yn? 4 2

N

Hence, if we substitute inte (3.6) and integrate with respect to a

and B, we obtain an integral in the form of (2.24) which reduces to

(55 )
2 1

) = v 1+

_n-1
2

@F6-BT) >

£(1|2,8,8

ks (n-—Z ) (n-2)KS>
2
where
. 2
__X » (F-%)
k= n(N-n) + S2 :
X

Note that the abeve distribution reduces te a standardized

t-distribution with (n-2) degrees of freedom, if we let
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t = |2 @0-8E-0). (3.7)
KS

Corollary 3.3. If the assumptions of Theorem 3.3 hold, then:

(a) E@) =7+ BE=® (3.8)
2 2
) V@ =2 B2 IR gy, (3.9)
S
.

where B and S2 are as defined in Theorem 3.3.

Proof:

(a) From (3.2), we have

But, by (3.7)

E@ =70 + R(FD).
Hence, combining and simplifying, yields
EQX) = 7+ BE-R).

(b) From (3.2) and (3.7), we obtain

2 2
= N-n KS
v ( N ) n-4
which reduces to
2 = -2
s _ S N-n (X-%)
vQa) = (n-4) nN + 2 :
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We note that (3.8) is the usual least squares regression estimator

for Y. Also, we can write (3.9) as

2 +
s o o\ 2
7Y = Y (1_p2 N-n X-%)
v, n-4 (1-P%) nN + s2 ’
%
where
2
s
p? o XY
2 2"
s s
Xy

This result is similar to the variance of the least squares regression

estimator as given by Cochran [12] page 194.

Theorem 3.4. Let (yi,xi), i=11,2, ..., n, be a simple random sample
of size n from the finite population ((Yl’Xl)’(Yz’XZ)’ ey (YN,XN))
and suppose the super population distribution is given by (3.1) with

1

o', and g both zero. Also, suppose the joint prior density on R and

02 is a Jeffrey vague prior eof the form

1]-(6’0'2). o« -]-'-2 sy —® < B < oy 0'2 > 0.

g

Then the predictive density of T = (N-n)W is a t-distribution with

(n-1) degrees of freedom, location parameter 2(NX-n%), and precisien

(n-—l)(ni2 + si)
ns2 s 2
[(N—n)(n§2+sz) + Sz] S2 + —F 7 - X
v \ X 1 . 2 2
’ nXx +sx sx

where
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n
et
i niz + sX
and
N-n
Sl = i Ve

Proof: The proof follows in the same manner as the proof of Theorem 3.3.
Corollary 3.4. If the assumptiong of Theorem 3.4 hold, then:

(a) E@ =FX+% 7 -B®

2 2
, . 2 ns S_..
® v =2 ¢ Yo, (K- %) 8+ —Ely - x
2 )} n-3 =2, .2 g’ 2
N (n-3) (nx"+s) nx +s_ Sx

Proof: The proof is similar to the proof of Corollary 3.3.
Ratio Estimators

If g=1 in (3.1), then

2
d —_ T
E(Yiin) o'X; + BX]

and

2.2
VWiWQ-UXf

Now if Ri = Yi/Xi’ then there i1s a linear regression of %- on X
which will be utilized in predicting Y.

In order to simplify the notation we enceunter in this section, we

define the follewing additional terms:
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Yy - 1%y
Ry =% R=2Ig
% 1%
N-n N-n 2
S, = I wv,, S, = T vo,
1 1 i 2 1 i
n — —
Spx = i (R, - R)(Xix_ %) =.n(¥ - RX),
and
n
2 2
SR i (Ri‘— R)".

Theorem 3.5. Let (yi,xi), i=1,2, ..., ny be a simple random sample
of size n from the finite population ((Yl’Xl)’(YQ’XZ)’ ces (YN,XN))
and suppose the super population distribution is given b& (3.1) with

g = 1. Also, supposé that 02 is known and that the joint prior
density on o and B (o =o' + BX) is a Jeffrey vague prior of the

form

m(a,B)dadB « dadB, - < o, B < «.

Then the predictive density of T = (N-n)W is normal Witﬁ_mean

S,R - —= (S2 - iSl)

and variance
2

l) 2
O .

2, 2 —
(nS2 + Sl)sx + n(S2 - XS
= :

ns
X
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Proof: Since Ri = Yi/Xifv N(a + B(xi - i),cz), the joint posterior

density of o and B is

2
ns
P(0;8|8,8) = F—=exp - == [n(a-8)" + s> (3-B)°]
2 2 X
: 270 20
where
s
s
X
If we let
T = (N-n)T,

then the density of T given o and B is normal With mean

aSl + B(S2 - Esl) and variance 5202. Hence, the predictive density of
T is
£(T]8,8) = f f S —

2

~w0  Yew (2n02) 210 82

* exp< - 2 [nS (o~ a) + s, S (B B) (3.10)

20 S2

—_ 2,
+ (T—uSl—B(SZ—xSl)) 1 7 dadB.

The portion of the exponent of e in brackets may be rewritten by
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A2 2 2 e N2
ns, (a~8)" + sxsz(e-’s) + (T-08,-8(S,-%5))" =

2
- S.K nS,s
_ 2 2 _y2 2°X m_a A = 2
= w(a ua) +— (8 uB) +—= (T-S,0-B(S,-%5,))
where
2
w o= n52 + Sl R
2 e 2
K = ws + n(S2 - xSl) .
. nSzu + TSl - BSl(S2 - fSl)
o 2 ’
nS2 + Sl
and

N - A
_ WSZSXB + n82(82 - xSl)(T Sla)

2 _
wstX + n82(82 - xSl)

Now integrating (3.10) with respect to o and B, yields

~ ns}z{_ ~ ~ 9
£(T]a,8) - =% (T - 5,8 - B(S, - %))
2Ko
Hence,
PAN PAN _
E(T) = Sla + B(S2 - xSl) (3.11)
and
(ns2 + si)s2 + n(s2 - }—csl)2 9
V(T) = —= X oc. (3.12)

-2
ns
X



Corollary 3.5.

If the assumptions of Theorem 3.5 hold, then:

N
T X, - NxX
- S5 . I 1
() EM =X+ G - ) 5
SX
N 9 2
9 (in—N}?}_{)
Yy = O 1 ‘ 2 N(N-n) 32
() V() N2 52 Sx + n X s
%
where
N
s2=z(x -X)Z.
X i
1
Proof:
(a) Since
- _ 1 -
Y = ﬁ'[T + n¥],
then by (3.11), we have
; 1 7~ N — —
E(Y) N [Slu + B(S2 xSl) + n¥].
Note, that
o = R,
/g:—z—(? ii)s
s
X
Sl = NX - n%X,

and

51

(3.13)

(3.14)



—_ . n - . .
E(Y) = RX + N ¥ - Rx) 32 .
b4
(b) By (3.13) and (3.12), we have
= 02 1..2 2,2
VE) = F s2 + = sl + (s-2 - xSl) /sx .
Using the identities
N 2 ’
2 — _ ., . 2 ” 2 = 4
<.Z Xi - NXx¥ ) = (82 xSl) + 2SX(S2 xSl) + s,
i=1
and
N 2
i(z X) -l-sz+2is+n22,
n =1 i n 1 1

the Eqda1ity reduces to

N 2
9 L X, - NxX ‘ '
V) = g__ 1 Sz + N(N-n) XZ
2 2 n
N sx

We remark that to use these formulas, it is necessiary .teo know

Xi which we did net require for the regression estimators.

=~ 2

52

(3.15)

(3.16)
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Note that if

¥ =X
and
2 2
_Sl<_ 2 Zx_
N-1 n-1
then (3.15) reduces to
Ty - o n(N-1) .  _=
EQ) = XR + Fo=38 5 - 3,

the classical Hartley-Ross ratio estimator. Also, under these

conditions (3.16) reduces to

We now state two theorems and two corollaries whose prooefs are

similar teo the proofs of Theorem 3.5 and Corollary 3.5, respectively.

Theorem 3.6. Let (yi,xi), i=1,2, ..., n, be a simple random sample

of size n from the finite populétion ((Yl’Xl)’(YZ’XZ)’ ey (YN,XN))
and suppose the super population distribution is given by (3.1) with
a'=0 and g = 1l. Also, suppose 02 is known and the prior density

on B is a Jeffrey vague prior of the form
T(B)dR = dB, -~ < B < =,

Then the predictive density of T = (N-n)W 4is normal with mean ﬁsz

and variance
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N
2
S, 2 X
2 1 i 02
nﬁz + s
X

where

Corollary 3.6. If the assumptions of Theorem 3.6 hold, then:

N
(a) EM =x8: 5
N i
1
N 2 n N
(222 ) -52re
® VO -ttt
N" (nX + SX)

Theorem 3.7. Let (yi,xi), i=1,2, ..., n, be a simple random sample
of size n from the finite population ((Yl’xl)’(YZ’XZ)’ cees (YN,XN))

and suppose the super population distribution is given by (3.1) with

B =0 and g = 1. Also, suppose that 02 is known and that the prior

density on o'

is a Jeffrey vague prior of the form

m(a')da' « da', -» < o' < o,
Then the predictive density of T = (N-n)W is normal with mean
R(NX - nX)

and variance

n

{ ; — 2 } 02
n(N-n) + (NX - nX) -
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Corollary 3.7. If the assumptions of Theorem 3.7 hold, then:

(a) E@ =R+35 § - &

2

®) V@D = {n@n) + OF - 07} -
nN

We now consider the case when the variance of the super population

distribution is unknowm.

Theorem‘3.8. Let (yi,xi), i=1,2, ..., n, be a simple random sample
of size n from the finite population ((Yl,Xl),(Yz,Xz), cens (YN,XN))
and suppose the super population distribution is given by (3.1) with

2

g = 1. Also, suppose that the joint prior demsity on «a, B, and o©

(o = a' + BX) 1is a Jeffrey vague prior of the form

'”(0‘:6’02) * 1..2 sy —® < a, B <™, 02 > 0.

o

Then . the predictive density of T = (N-n)T is.a t-distribution with

(n-2) degrees of freedom, location parameter

SlR + B(S2 - iSl)

and precision

2
n(n-Z)stX

2 —a 32
)Sx + n52(82 - xSl) ]

2, 2
S [(n82 + Sl

where

s
2 e RX
B ==

S

X
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and
SZ
,32 - J2_ Rx
g T T2
s
X
Proof: Note that
y
i 3.
Ri—xi~N(a+B(Xi X),07)

and proceeding in a manner similar to that in the proof of Theorem 3.3,

we obtain the joint pesterior of a, B, and o as

- exp {_ -2-1_2_ [52 + n(a-&? + si(B-/B\)2]}-
O’ -

If we let

T = (N-n)4,

g(T]a,B,oz) = —~l5—— exp < - % (T-—ole—B(Sz—k"Sl))2 .
2no S2 20 82

Hence, the predictive demsity of T,

then

£(T]@,8,6%) = Elg(T]a,B,0%)],
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can be expressed as

¢ exp< - —*%—— [S 82 + nSz(u—a)2 + sti(84§)2

20%s. 2

+ (T—aSl—B(Sz—Esl))z] dadBdOZ.

By completing the square on o and B, the portion in brackets -of the

exponent of e can be written as

2 ~2 2, A2 — 2 _
SZS + nSz(a—u) + stx(s B)” + (T—aSl B(Sz—xsl)) =
_ 2 2 K .. 2
= 5,87 + W(a-u )"+ ¢ (8 “B)
22
nsS,.s
2°x ~, I . 2
+ | X (T—aSleB(Sz—xSl))
where
2
W= n82 + Sl s
2 e 82
K = WSZSX + n52(52 - xSl) ,

Y e
nSza + SlT BSl(S2 XS.)
o2

n82 + Sl-
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and

24 N
WSZSXB + n32(82 XSl)(T Sla)

Now integration with respect to o, B, and 02 yields

f(Tla,é\:ez) = g ¢
78 K ( n-2 ) (3.17)
1" ———
2
_n-1
n(n-2)S o2 (T-8S,-B(S,.-%S ))2 2
1 2°x 1" 0™
2 n-2
S°K
Corollary 3.8. If the assumptions of Theorem 3.8 hold, then:
N
z xi - NxX
(@ E@ =K+2§-m f—
SX
2 N 2 N N 2
(b) V(@) = —§§————- %-( b) xi ) -z Xi + ( ) Xi - Nii’) / s2 .
N“(n-4) 1 1 1 *
Proof:
(a) It follows from
S 1 -
Y =X [T + n¥] (3.18)

and (3.17), that
1 A~ ~ — —
EC(Y) =5 [aSl + 8(32 - xSl) + ny].

Recall that -
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% = R,
s
-~ Rx _ D o wmo
B ) (y EX):
s s
X be
Sl = NX - n%,
and
N n
82 = 7 Xi - xi
1 1 :
Hence,
- 1 n N
EX) =% NRX + n(¥-Rx) + ~5 (F-R) | I X, - NXX - s =
s 1
x (3.19)
N
z - NXX
= 7% + B (o ®=y L
= RX + N (7-RX) 7
x
(b) From (3.18) and (3.17), we obtain
2
va = i2 = 3
N n(n—4)stx
2 2
s? 51, (55 — %8
=3 52 + 'IT— + 5 .
N™ (n=-4) s
X
Using substitutions similar to that in part (a), we have
2 N 2 N N 2
V() = —> —i-(zxi) —zx§+%(zx§-m) . (3.20)
N"(n-4) 1 1 s, 1
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We note that if

|
N
>

and

2

1 - 1 _
N1 > & - X =5 (xy - ®)

|l e I~
-~ B

then (3.19) reduces to

= == , n{N-1) ,_ =_
E(Y) = RX+'N—G'1-_1—) (v - RX),

the well~known Hartley-Ross ratio estimator. Also, it is easy to

verify that (3.20) reduces to

32 . ) N-n
Nz(n—4) n-1

V(YD) =

=™ 2

X - NXZ} 4 Nm) g2
i n

We will now state two theorems and two corellaries whose proofs
are omitted, but note that the proofs are similar to the proof of

Theorem 3.8 and the proof of Corollary 3.8, respectively.

Theorem 3.9. Let (yi,xi), i=1,2, ..., n, be a simple random sample
of size n from the finite pepulation ((Yl’xl)’(YZ’XZ)’ ey (YN,XN))
and suppose the super population distribution is given by (3.1) with

a' =0 and g = 1. Also, suppese the joint prior demsity on B and

02 is a Jeffrey vague prior of the form

11-(8,0'2) o« -'1'-2 , = < B < o 02 > 0.
[0}

Then the predictive density of T = (N-n)W is a t-distribution with

(n-1) degrees of freedom, location parameter
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and precision

-1
ns
[(-n)w + S5] [ s+ == (7 - ﬁi)zj

(n-1)w ’

where
w=nxX + s ,
X
~ £va
B =T,
and
2
o2 .2 _ ‘mx
Sp >
s
X

Corollary 3.9. If the assumptions of Theorem 3.9 hold, then:

=

(a) E(D) =B1x

[

2 2
2 ) o DS

(N-n)w + S
S~+—W-’5(y-§i)2 .

® VO =
Theorem 3.10. Let (yi,xi), i=1,2, ..., n, be a simple random sample
of size n from the finite population ((Yl,Xl),(Yz,Xz), ey (YN,XN))
and suppose the super population distribution is given by (3.1) with
B =0 and g = 1. Also, suppose the joint prior demsity on o' and

02 is a Jeffrey vague prior of the form



,02)“%, —o < g' <o, ¢~ > 0,

Then the predictive density of T = (N-n)W 4is a t-distribution with

(n-1) degrees of freedom, location parameter

and precision

Corollary 3.10.

(a) EQ@) =

®) V@ =

R(NX - n%)

n{n-1)
. 55 -
(nS2 + Sl)sR

If the assumptions of Theorem 3.10 hold, then:

Tm‘c+§-(?—§§)

s2
R

‘ 2 2 1

n(n-3)N

62



CHAPTER IV
STRATIFIED RANDOM SAMPLING

In this chapter we introduce a stratification concept and some
notation associated with stratification which will be utilized in the
next chapter. Also, we will derive predictive estimators for some of

the more interesting cases of stratification.
Concept of Stratification

Suppose the finite population of interest can be partitiened into

k subsets or strata. Let: Nh be the number of units in stratum h

and Uhi be the variate value attached to the ith unit in stratum h,

i=1,2, .u., N

W h =12, ..., k. Each stratum of the finite

N
population may be considered as a vector in R h, where R 1is the real

numbers. A stratum may then be sampled by randomly obtaining n,

integers from the label set, {1,2, ...,'Nh} and observing the values,

Uhi ’Uhi , ""»Uhi s
1 n

2 h

attached to the units. For simplicity, we will denote the observed

values by X 10%p 00 ;..,-xhnh _and‘the unobserved values remaining in
the population by yhl’yh2’ }'.’lyhth’v where th = Nh - . Based on

a sample of size nh from each stratum, we wish to make an inference

not only about the stratum mean,

63
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— 1Nh
Y, == I U.,
h Nh 1 hi
but:.also about the overall mean,
k
- 1 —
Y = ﬁ'Z Nh Yh’
1
where
k
N=3%N.
1 h

As an extension of Cochran's [3], [4] suggestion, suppose that the

value, attached to the i'® unit in stratum h is the

Uhis
realization from a super distribution, say fh(Uhleh), h=1,2, ..., k.

That -is, the finite population, in stratum h

(Up12Upa? ""’UhNh)’

is the result of a random physical process described by .a probability
distribution. For example, suppose the finite populations of heights,
weights, or intelligence is stratified on the basis of race, then we
can consider each stratum as large random samples from a normal
distribution defined by genetical mechanisms»péculiar to that race.

Under  this concept, a simple random sample from a stratum is also
a simple fandom‘sample from the sﬁper distribqtion giving rise to that
h

stratum. Now theé hth stratum mean can be predicted from the_.ht

predictive density and the overall mean is predicted by

P

- L. -
E(Y) = N i Ny E(Yh)
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with precision

Three features of this concept should be noted. First, it is not
necessary for the super distributions to be members of the same general
class of distributions. Second, the prior distribution for stratum: i
and the prior distribution for stratum j, 1 # j, are not required to
be members of the same general class of distributions., Third, it is not
appropriate te group the k strata into one population and ebtain a
simple random sample from this one population in order to estimate the -
overall mean. Hence, we do not consider the problem of increased

' precision by stratification.
Stratified Sampling

In this section we assume the finite population can be stratified
as previously discussed, and we will derive a predictive estimator for

the overall mean,

|
]

- ]
=~
=
|

h "h’

for some of the more interesting super populations. Although it is

not ‘necessary, we will require the super distribution and the prior
distributien for each stratum to belong to the same general classes of
distributions, respectively. Also? we will omit defining notation which
is an obvious exﬁensioﬁ of the notation used in Chapters II and III to

stratificatien.
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First, suppose the super distribution for each stratum belongs to
the class of Bernoulli distributions.  If we assume a Jeffrey vague
prior distribution on the parameter, P> in each stratum, it follows
by Corollary 2.1 that the predictive estimator for the proportion .of

successes, Y, 1is

1 K ,
E(Y) == 3 N — (4.1)
Ny bmy
with precision
k N(N. -n ) x v/ X
v@ =L ;2 Bk —Ekl--—h-). (4.2)
N° 1 h h %h

Now assume the super distribution for each stratum belongs to the
class of normal distributions whose variance is known.for each stratum.
If we assume a Jeffrey vague prior distribution feor the parameter, B
in each stratum, then by Corollary 2.5 the predictive estimator for the -

overall mean, Y, is

J‘— lk_
E(Y) =-ﬁ i Nh ﬁh (4.3)
with precision
v(?)=l'1z<N(N - )i' (4. 4)
N2 1 B B " nh-. )

Also, if the prior distributien for the parameter, B in each stratum

belongs te the class of normal distributions, that is

2

Hd
Oh nOh
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then by Corollary 2.6 the predictive estimator for the overall mean, Y,

is

.1k % F Bopton . Pw Pon Lo ,
E(Y) = ﬁ'z Nh + n + n, +n (xh - uOh) (4.5)
1 "h " Pon h ~ “0h
with precision
1 K °§
VE) == T (N, -n )N +n.) (4.6)
N2 1 h h h Oh nh + nOh

Again, assume the super population for each stratum belongs te
the class of normal distributions but whose variance is unknown for
each stratum. Now if a Jeffrey vague prior distribution is assumed for

and 02

the parameters, h?

Hh in each stratum, then the predictive

estimator for the overall mean, Y, is obtained from Corollary 2.7 as

_ 1k
EY) =5 IN % 4.7)
1
with precision
2
k : n-1s
S 1. h hx
V(@) == I NN -n) —_— (4.8)
21 hoh "y n -3 n
Now, if it is appropriate -to assume a normal-inverted gamma
distribution as the prior distribution for the parameters, By and oﬁ,

in each stratum, then it follews by Corollary 2.8 that the predictive

estimator of the overall mean, Y, is

k X +n.u n v
E(D) "% S & E T gh R h+ gh (&, = Hop) (4.9)
1 h " oh B, T Pon



68

with precision

Vih Y1n
1Vt~

i

NZ

V() = (Nh - nh)(Nh + nOh) =

(4.10)

=R

2) °

Now suppose the super distribution for each stratum belengs to the

class of distributions defined by (3.1) with g, = 0 and oﬁ known for

all h. If we assume a Jeffrey vague prior distribution for the

parameters, o and Bh,- in each stratum, then by.Corollary 3.1 the

.

predictive estimator of the overall mean, Y, is

k

B =3IN {7, +% & - %)) (4.11)
1
with precision
o 1 K Oi m (% = o) (%, - ih)z
V) = ") by Nh(Nh - nh) ;g: 1+ 5 . (4.12)

N l' Nh shx

If _02 is unknown for all h and we assume a.Jeffrey vague prior

h

R . . 2
distribution for the parameters, and o©

h? in each stratum,

ah, Bh’

then by Corollary 3.3 the predictive estimator of the overall mean, Y,

is given by (4.11) with precision

2 2 = . 2
Np Sy )N, h X, - F)

h 4 nhANh 32
- hx

12 (4.13)
N

k

V) ==, &

1

Again, assume the super distribution for each stratum belengs to

the class of distributions defined by (3.1) but with &, =.1 and ci

known for all h. If we assume a.Jeffrey vague prior distribution for
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the parameters, a and Bh’ in each stratum, then by Corollary 3.5

the predictive estimator for the overall mean, Y, is

N, )
Kk __n S
EY) =52 Nhﬁ R ) 5 (4.14)
1 h ‘ Shx
with precision
N , ) 2
LoXs ~ NRp%y
V(@) =+ 1§ o2 h - 8%+ i i (4.15)
2 . °h 2 hX n, X,
N1 Sy« h
L

If we assume oﬁ is uﬁknown for.all h and rétain the other previous
assumptions, theﬁ,by-Cérqllary 3.8 the predictive estimator of the

overall meén, Y, is given by (4.14), but with precision

S2 Nh 2 h
il L. X -
nh -4 n, 1 i

J—
2

2

VQA) =

=~

%t

2
=~

(4.16)



CHAPTER V
OPTIMUM ALLOCATION

In this chapter we assume the finite population may be .stratified
into k strata as discussed in Chapter IV and that we are interested in

predicting a linear combination of the stratum mean, say

k
T=§Lth,

where Kh, h=1,2, ..., k, 1is a constant and Yh ~is the mean of
stratum h, "Also, we assume the total resources, C, for the sample .

survey 1is fixed and that

g>0 (5.1)

where ch is the cost associated with sampling one unit in stratum h

and t is the total number of units sampled in stratﬁm h.

h
The objective in this chapter is to allocate the rescurces, C,

among the k strata in order te achieve a minimum for the expected

precision of the predictive estimator. If the prior infermation for the

variance in each stratum is not informative, a complete solution for

the ‘allocation is not known. In this event wéxpropose'the fellewing

ad hoc procedure utilized by Draper and Guttman [13] in their Bayesian

apptoach to allocation in stratified sampling.

70
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The total sample will be selected in two phases. First, a sample
of size n, is obtained from stratum h, h = 1,2, ..., k. The value
attached to a unit in this sample will be represented by X0
i =»l,2,v...,‘nh; h=11,2, ..., k. Second, a sample of size. m, is
obtained from the remaining units in stratum h, h = 1,2, ..., k. The
value attached te a unit in this second sample will be represented by
Yhi® i=121,2, «.., m 3 h=1,2, ..., k. There are Nh—nh—mh units

remaining in stratum h, h = 1,2, ..., k, and we will let zhi

represent the unobserved value attached to ith remaining unit in

stratum h.

Assume that the first-phase sample has been obtained and that s

h=12, ..., k, were determined so that
k g

C>2Zn’ c.

1 h "h-

Our objective now is to determine m s h=1,2, ..., k, such that the

expected precision of the predictive estimator is a minimum subject to

k
C=1I (m +n )8 e .
lmhhh

Bernoulli Super Distribution

In this section we will assume the following:

(1). The super distribution in each stratum is a Bernoulli
distribution with parameter, P> ho= 1,2, ..., k.
(2) The prior distribution for the parameter, P

h=1,2, ..., ky, is a Jeffrey vague prior.
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We now state two lemmas whose proofs are omitted because the proof

of each is -analegous to the proof of Theorem 2.1.

Lemma 5.1. Suppose assumptions (1) and (2) hold. Let X 4

i=1,2, ..., o, be a simple random sample of size n, from stratum

h. Let: Yhi? i=1,2, cevs Ty be a future simple random sample of

size m frem stratum h. Let

®h "
X
1

xh = 3 xhi and yh'=

Yy 4
1 hi

.Then the predictive density of yh is

Yt~ [ myytny Xyl
h ™ h
1

™

Lemma 5.2. Suppose assumptions (1) and (2) hold. Let X g0

1=1,2y suuy n be a first-phase simple<réﬁdom sample of size n,

from stratum h -and let , Vit i=1,2, .., m s be a second-phase

simple randem sample of size my from stratum h. Let Z, 49

i=1,2, ""‘Nh-nh_mh’ represent the unoebserved value attached to the

ith remaining unit in stratum h. Also, let

"y Ty

X s V. =L Y. .
1 xhl h 1 hi

W, =X + M th =m + nh{
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and

Then the predictive density of 2 is

zh+wh—l Nh—zh—wh—l

N (zh]wh) = . oz =00, e, Nt (5.3)

If we utilize a two-phase sampling scheme as previously discussed,

then

k Mh
Y= ¥ U,
1 i=1 B2
can be written as -
k
Y = i [z, + vt xh]

where and x, are defined in Lemma 5.2. The predictive

'zh’ yh’

estimator of Y dis-

k
E(Y) = i.[E(zh) ty, t xh]
which will reduce to
k (N t)w
E(Y) = I - Y (5.4)
1 h

using (5.3).
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The precision of this estimator is

k
V(Y) = ¢ V(zh)
1

and obtaining V(zh) from (5.3), we have

k (Nh th)thh W
V(YY) z (. +1)t 1~ o . (5.5)
1 h h h

Also, the expected precision of the predictive estimator based on the

results of the first-phase sample can be derived utilizing Lemma 5.1 and

is
k N
h *h *h
E[V(¥Y)] = I N . -1 1 -— . (5.6)
1 h mh+nh nh+1 nh

Theorem 5.1. Suppose assumptions (1) and (2) hold. Let n s

h=1,2, cens k, be an allocation for the first-phase samplévsuch that

Then (5.6) is minimized subject to (5.1) if

1
-1
C(thh )@ &
R -m, h=12, .,k (5.7)
z (thh ) °y
1

where
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and

Proof:. Apply the method of Lagrange multipliers to minimize

V()] o -1
E[V(Y)] = ‘ - N " q
1 mh+nh h h

subject to

- g
c (m +n)%c., g>0.

=™ R

It is possible that formula (5.7) could produce values such that
m <0 or m > Nh - . If m < 0, then stratum h has been
oversampled. Hence, this stratum should be omitted from the second-

phase sample. If m > Nh - then -set m = Nh -n In either

nh, ha
case it is recommended that these strata be deleted in determining the
second-phase allocation and that the fixed cost be adjuste&

correspondingly. A new allocation is then calculated for the remaining

strata.
Normal Super Distribution

In this section we assume the super distribution in each stratum
. : . . , . 2
is a normal distribution with mean Wy and variance Oh’

h=1,2, ..., k. Formulas are derived for allocating the total
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resources, C, 1in order to minimize the expected precision of the

predictive estimator of

=™
—

hi®

= ™~

Suppose cﬁ is known for all h and assume a Jeffrey vague prior
distribution for Hps h=1,2, ..., k. The precision of the predictive

estimator of Y is given in (4.4) by

2

B 1 k Gh
V(Y) ==, Z N.(N - n ) —. (5.8)

N2 1 h*"'h h nh

Since V(Y) does not involve sample observations, it is not necessary
to resort to the two-phase sampling technique. Hence, we determine the
ng, h=1,2, ..., k, which minimizes (5.8) subject to (5.1) by the

Lagrange multiplier technique, and we obtain

1
(. 2 2 l)g+l
h “h’h
n, = T > h=1,2, ..., k
k B _ g
5 (w 2, 2 l)g+l
"1hohh “h
1
where Wy = Nh/N' This is the classical result of Neyman given in

.Cochran [12] page 97 with g = 1.

Now suppose cé is unknown for all h and assume a Jeffrey vague

prior distribution for and cﬁ, h=1,2, ..., ke If a one-phase

Yh

sample is used, then the precision of the predictive estimator as given
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by (4.8) invelves the sample observations. Hence, we will utilize the
two-phase sampling scheme.

In addition to the terminology given at the first of this chapter,

we will let
1 %y 1 ™
X == L X., ¥, == L ¥ .,
*h m, ] bi h - m ) “hi
L Ny th
by =M T oy n T Wt i (24>
o}
2ot -1/ @ -
hx ] *hi T~ *p /// n, -1
and

Oy = 7"/ my = D

for h=1,2, ..., k. Hence, we can express

Lk N .
Y==1:1 U,
N 11 hi
in the form
lk
Y= ﬁ-i @, -t)z +my +nx/!l. (5.9)

We new state three lemmas without proofs, but remark that the
proofs . of each follow in the sane manner as the proof of Theorem 2.7.

In each lemma we assume the super distribution is normal with mean Uh
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and variance cﬁ.

is a Jeffrey vague prior.

Also, we assume the prior distribution of Hy and

02
h

Lemma 5.3. Let X 4o i=1,2, ..., n be a simple random sample of

h"
size n, from stratum h. Let Vi 1i=1,2, o0, m s be a future

simple random sample of size m, from stratum h. Then the predictive

density of ¥, dis a t-distribution with (n,_-~1) degrees of freedom, -
h h

. ' - 2
location parameter I and precision nhmh/(nh + mh)shx.

Lemma 5.4. Let. x i=1,2, ..., hh’ be a simple random sample of

hi’ -

size n, from stratum h. Let Yhi® io= 1,2;‘...,_mh, be a future

simple random sample of size m from stratum h. Then the predictive
. 2,2 , i . . , i _

density of u = shy/shx is an F-distribution with (mh 1) and (nh 1

degrees of freedon.

Lemma 5.5. Let x i=1,2, ..., s be a first-phase simple.

random sample .of size n, from stratum h and let Vi

h

i =_l,2,1...,vmh, be a second-phase simple random sample of size m

from stratum h., Then the predictive density of Z, is a

h
t-distribution with (mh+nh—l) degrees of freedom, location parameter

AW * o
ty

and precision

(Nh—th)th(th—l)

N, 4

where
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"R (2 2 2
9 = 'th‘ (yh - Xh) + (mh —_l)shy + (nh - l)shx. (5.10)

From Lemma 5.5, we obtain

as the predictive estimator of (5.9). Also, we obtain .the precision as

N Y

1 k N
V(Y) = N X
1

where is defined in (5.10). Now V(Y) is a fuhction of unobserved

9y

sample values; hence, we consider E[V(Y)] where expectation is with

respect to the predictive densities of ?h and s2 h =12, ..., k.

hy’

From Lemma 5.3 and 5.4, we obtain

k n -1
_ 1 2 h . 2 1 1
E[VY)] = =, L N —= 8 - = . (5.11)
NZ 1 h ny, 3 "hx mh+nh Nh

Theorem 5.2. Subposé the super pepulation distribution in each stratum
is normal with méan_ By and variance cﬁ, h_f 1,2, ..., k. Also,

suppose  the prior distribution of 2N and 02 h=1,2, ..., k, 1is

B

a Jeffrey vague prier. Let n h=1,2, ..., k, be an allocation

h’
for ‘the first-phase sample such that .

Then (5.11) is minimized subject to (5.1) if
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1
-1 2 g
c(Wrzxphchl)
m =< — -m, h=12, ..., k (5.12)
b (wzp c_l) c
h*hh h
1
where
.
h N °?
a=-¢
g+ 1°
and
_ oyt o2
Py nh—3- hx °

Proof: The result is obtained by applying the method of Lagrange

multipliers to (5.11) and (5.1).

The discussion following Theorem 5.1 pertaining to formula (5.7)
also applies to formula (5.12). In addition, note that formula (5.11)

requires n_ > 4, h=1,2, ...; k.

h
Parametric Functiens in Stratified Sampling

Previously in this chapter, we were coencerned with estimating the
overall finite population mean. In this section, we will consider the

more general problem of estimating r < k 1linear functions .

k
L,= 2 £, %, 1=1,2, .., x
i h=1 ih "h

of the k stratum means where the coefficients, £ are known.

ih’
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Des Raj [6] considered this problem from the classical approach
with the stratum varlances known. We will assume the super population

distribution in each stratum is a normal with mean iy and variance

cﬁ. ~Also, we will assume that the joint prier distribution on Hy and
cﬁ, h=1,2, ..., k, 1s a Jeffrey vague prior. With these assumptions,

we will utilize the two-phase sampling scheme to determine the optimum
second-phase allocation for various restrictions. We will assume that

an allocation for the first-phase has been ‘determined such that

k
C > 1 ng ¢ 8 >0
1

We will first consider the minimization of cost plus total expected
loss based on the first-phase sample where the -loss function is of the

form

2 .
“i[Li - E(Ll)] s 1 =1,2, ..., 1y

and By is a constant. Hence, the function to be minimized is

k T ‘
G=13 (m + nh)g e, + I wEVE)I.
1 1

Using Lemma 5.3 and Lemma.5.4, we can express . G as

k . k 1 1
G=Z (m +n)%°c + I q p - =
R T U S A

where is defined in Theerem 5.2 and

Py
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It is easy to verify that

q, P
gtl - hh
(mh + nh) -257%: (5.13)

minimizes - G. Hence, the second-phase allocation formula ‘is

L
9Py, \&8FL
mlEe, | T

Now consider minimizing the expected loss basad on.the first-phase

sampleisubject to a fixed cost. That is, minimize

T
G =1 uiE[V(Li)]
1
subject to
. g .
I (m +m)
"] 'n
Expressing G as
o-fom (5 4)
h*h mh+n Nh

and using the method of Lagrange multipliers, we obtain.
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oo |

mo=N % e - ny (5.14)
Z (apPrcy ) oy
1

where qh and Py are as preyiously defined. We note that if

ZIZ

r=1, =1, and ﬂlh

]

then (5.14) is equivalent to (5.12).
Now suppose we wish to minimize the cost subject te a fixed

expected variance based on the first-phase sample. That 1s, minimize

?T‘

P @, + )% o
l
subjett'to_

E[V(L)) =a, i=1,2, ..., 71,

where ay are fixed constants., If we apply Lagrange multipliers, we

have the system of equations
g+l I 2 -1
(mh +,nh)-' = Py ( i’li.ﬂih )(gch) s, h=1,2, ..., k

ko2 -1 k
: L.pAm +mn) = a; + I K
p=y 1h°h Ty TPy el

-1

PNy e 1= 1.2, veey k



We note that these equations are not algebraic in ms

h=1,2, ..., k, and 2 i=1,2, ..., r. Hence, these equations

i’,

would have to be solved by an iterative process to determine the

second-phase allocation.
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CHAPTER VI
SUMMARY AND EXTENSIONS

Our study is devoted to the application of predictive densities to
sample surveys utilizing the super population concept as given by
Cochran [3], [4]. This approach is applied to three general areas of
sampling theory, namely, (i) estimation of the finite population mean
in simple random sampling, (ii) estimation of the finite pepulation
mean utilizing available auxiliary infermation, and (iii) alloecation
of sampling units among strata when estimating a linear function of the
stratum means is of interest.

Estimaters of the finite populatien mean are derived in Chapter II
assuming the super population is (i) a Bermoulli, (ii) an exponential,
and (iii) a normal distributioen. Also, a measure of the precision of
these predictors ‘is obtained. Auxiliary information is utilized in
Chapter III to derive regression and ratie type estimators of the
finite population mean..

The ,results of Chapters II and IIL are extended in Chapter IV to
obtain estimators of the overall finite population mean when it is
feasible to stratify the total finite population.. These results are
then used in Chapter V to derive formulas for allecating the sampling
units amoeng the strata. In particular, allocation formulas are derived

when estimating several linear combinations of stratum means and only

23N



vague prior infermation is available for the vector parameter 6 of
the super population.

Since only vague prior information is available, we allocated a
portion of the total resources to the first-phase sample and then,
based on the results of the first-phase sample, the remaining
resources were allocated among the strata. A problem for future
consideration would be to determine a best method of allocating the
total resources between the first-phase sample and the second-phase
sample. In addition, the allocation problem fer a stratified
population utilizing auxillary information would be of interest.

It would be of interest to apply the technique we have used to

other areas of sample surveys. For instance, our technique could be

86

adapted to cluster sampling. Also, it may be of interest to apply this

procedure to sampling with probability proportional to size.

Another area of interest for future study is to compare finite

population parameters utilizing predictive densities. Geisser [2] has

suggested how this could be dome.
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