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CHAPTER I 

INTRODUCTION 

The objective of this thesis is to develop a system of statistical 

inference for finite populations. This inference system is based on a 

variation of the predictive approach utilized by Kalbfleisch and 

Sprott [l]. They used the Fisher fiducial approach to derive predictive 

densities whereas we will use the Bayesian approach. 

Predictive Distribution 

Geisser [2] designates a predictive distribution as the 

distribution of an observable random variable whose distribution is 

completely specified as to form and constants. He also states that 

distributions are not rendered predictive by substituting estimates for 

the parameters, nor shall the posterior distribution of a vector 

parameter e attain predictive status unless e is an observable 

variable. 

Since our interest in predictive distributions is within the 

Bayesian frame work, we will formulate a definition of predictive 

distributions in this sense. We should note, however, that predictive 

distributions exist within the classical framework. For example, if 

X ~ N(µ ,1) and Y ~ N(µ ,1), then X - Y ~ N(O ,2) would be a 

predict,ive density although not a particularly informative one. Also, 



as previously indicated predictive densities may be derived by the 

Fisher~fiducial approach, 

Suppose a set of N independent observations, summarized by D, 

are available cm F ( • J 8) where 8 is as.sumed to have the prior x 

distributiop n(8). Also, assume the posterior distribution P(e!D) 

exists and G C· !e) is the distribution of a function, 
y 

y = f (x1 , ..• , xk), of k future observations, x1 ,x2 , ... , xk. The 

predictive distribution of y is defined by: 

F (. ID) y . = Ee[G (·je)] =f G(·je)dP(ejD). y y 

Hence, the predictive distribution is the average 0f all conditional· 

distributiops of y given 8 with respect to the p0sterior 

distributi0n of e. 

The Super Population Concept 

L U b h . 1 h d h :th . . h et . e t e variate va ue attac e to t. e i unit in t e 
i 

finite_ population of N numbered and distinguishable units. We will 

consider .the finite population as a vector in 

where R is the re.al numbers. This population may be sampled by 

picking n random integers fr0m 1, ..• , N and examining the variate 

values , . U. , U. , •.. , U. . 
il· i2 in 

Fd>r .simplicity, we will call these values 

x1 ,x2 ; ..• , xn. From. these values we wish tGl, rn.ake an inference about 

some function of the finite population values. In particular, we are 
N 

interested in making an inference about the tnean, IT= L Ui/N, of the 
1 

finite. population. 

2 



Cochran [3], [4] suggests that in many instances the value 

th attached to the i population unit is the realization from a super 

distribution. That. is, the finite population can be considered as the 

result af a .random physic~l process desc.ribed by a probability 

3 

distr.ibut.ion.. For .example, the finite populat:i,ons of heights, weights, 

or intelligence can be considered as large random samples from a normal· 

dis.tribution defined by genetical mechanisms giving rise to the finite 

population. 

Under this concept, a simple random sample from. the finite 

populati0n is also a simple random sample from the super population; 

hence an inductive infe.rence may first be made to the super population . 

and then a deductive inference may be made about.the finite population 

from which the sample was.obtained. We prop0se the foll0wing procedure 

to accomplish .this. 

The finite population is considered to be.a simple random sample of 

size N from a super population whose density is given by f(xie). The 

prior density of e is given by TI(6). A simple random sample o;f size 

n is drawn from the finite population and the corresponding values 

attached tc:> the sample units are summarized by D •. Let 
n P(eln) 

n 
be 

the posterior density of 8 . and let y be.some function of the values 

attached to the rema±ning finite population units, lf_ h(yie) is the 

density of y, the predictive density of y is defined by 

f(yiD ) 
n =f h(yie)PCelD)de 

n 
8 

which is to. be utilized in making inferences about the finite population 

parameters. 
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Organization of Thesis 

In Chapter II the predictive procedure will be used to make 

inferences about the mean of the finite population assuming that the 

super population density is (1) Bernoulli, (2) exponential and 

(3) normal. In particular, we will use the mean of the predictive 

density of the finite population mean as a point estimator for the mean 

of the finite population. Also, if the super population density is 

normal, we will use the mean of the predictive density of the finite 

population variance as a point estimator for the variance of the finite 

population. 

Chapter III is an extension of Chapter II. In this chapter, we 

assume that the super population density is normal with mean 

axg + Sxg+l and variance (axg) 2 , where g = 0 or 1 and the x's 

are nonstochastic variables. In this case our finite population is a 

vector in (R2 )N, where R is the real numbers. The value attached 

to each unit then is an ordered pair (U. , V.), 
l. l. 

i=l, •.. ,N. On the 

basis of a simple random sample (y1 ,x1), ..• , (yn,xn)' we will make 
N 

inferences concerning E U./N if g = 0 and concerning 
N N 1 l. 

EU. I EV. if g = 1. In either case we will assume that 
1 l. 1 l. 

are known. 

N 
EV. and 
1 l. 

N 
E v: 
1 l. 

We will apply the results of Chapters II and III to stratified 

simple random sampling in Chapter IV. We assume that each strata is a 

random sample from a super population and make inference for the 
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overall.mean, 
1 k 

u = N ~ NiUi, where 1\ is the mean of the ith stratum, 
k 

the ith stratum,· and l: N. ·= N~ 
1 J. 

Ni is the number of units in 

Chapter V is a stuc:ly of optimum allocation of sampling units.among 

k strata. Our criterion for optimality will be minimization of the 

variance of the predictive density subject to a fixed cost furicti6n; If 

there is no prior information concerning the within strata variance, we 

will use a two-phase sampling procedure as utilized by Draper and 

Guttman [5] for a Bayesian approach to allocation. We also consider 

allocation for estimating r < k (k number of strata) parametric linear 

fun.ct ions of the strata means. (Des Raj [ 6]) 



CHAPTER II 

SIMPLE RANDOM SAMPLING 

This chapter is devoted to a study of simple random sampling from 

a finite population utilizing predictive densities. We assume the 

finite population (U1 ,u2 , •.. ,UN) is a simple random sample from 

(i) a Bernoulli, (ii) an exponential, or (iii) a normal super population 

distribution. In all three cases, we will let xi, i = 1,2, ... , n, 

denote the observed value attached to unit i in a simple random sample 

without replacement of size n from the finite population and will let 

yj, j = 1,2, ... , N-n, designate the unknown value attached to the jth 

unsampled unit in the finite population. Also, we assume the prior 

information can be expressed either by a Jeffrey's vague prior [7] or by 

a conjugate prior distribution [8]. 

Bernoulli Super Population 

We assume the finite population (U1 ,u2 , •.. ,UN) is a simple 

random sample from a Bernoulli distribution. We will let p be the 

probability that u. 
1 

that U. = 0 
1 

(or that 

1 

u. 
1 

(or that u. 
1 

is a success). The probability 

is a failure) is 1 - p = q. Our interest 

will be in estim?ting the number of successes in the finite population, 

or equivalently, 

N 
U = E U. 

1 1 

6 

(2.1) 



on the basis of a simple random sample of size n < N from the finite 

population. 

If we define 

and 

then U can be expressed as 

y 

n 
X = 2: 

1 

N-n 
2: 
1 

x. 
l. 

7 

u = y + x. (2 0 2) 

For a point estimate of U, we will use 

E(U) = E(Y) + X 

where E(Y) is determined from the predictive density of Y. As a 

measure of the precision of our prediction, we use 

V(U) = V(Y). 

Theorem 2.1. Let i = 1,2, .,., n, be a simple random sample of 

size n from a finite population and suppose the super population 

distribution is a Bernoulli with unknown parameter p. Also, suppose 

the prior density on p is a Jeffrey vague prior of the form 

1 
rr(p) ~ 0 < p < 1 . . p(l - p) , 

Then the predictive density of Y is 
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( Y+X-1) ( N-X-Y-1 ) 
Y N-n-Y 

f(YJX,N,n) .. ---------

( :=!) 
Y = 0, 1, •.. , N-n. 

Proof: Zellner [7] derives the posterior of p as 

P(pJX,n) r(n) PX-l(l-p)n-x-1, 0 1 
r(x)r(n-X) < P < 

and X = 0,1, •.. , n. The distribution of Y given p and N-n is 

g(Yjp,N-n) ( N-n) Y N-n-Y 
y p (1-p) ' Y = 0 , 1 , ••• , N-n. 

Hence, the predictive density of Y, E[G(Y]p,N-n)], is 

1 . 

I J r (n) ( N-n ) X+Y-1 N-X-Y-1 
f(Y X,N,n) = r(x)r(n-X) Y p (1-p) dp. 

0 

Integrating and simplifying, we obtain 

( Y+X-1 ) ( N-X-Y-1 ) 
Y N-n-Y 

f(YJX,N,n) = ---------

( :=!) 
y 0,1, ... , N-n. 

Corollary 2.1. If the assumptions of Theorem 2,1 hold, then: 

(a) 
x: 

E(U) = N -
n 

(b) V (U) (N-n) N X ( 1 _ nx) . 
n+l n 

(2.3) 

(2. 4) 



Proof: 

(a) N~n y ( Y+YX-1) ( N-X-Y-1 ) = 
Y=O N-n-Y 

N-n-1 = X I: ( n-X+N-n-1-Y-l ) ( X+l+Y-1 ) 
Y=O N-n-1-Y Y ' 

From the equality, 

given by Feller [9] on page 65, it follows that 

N~n y( Y+X-1 ) ( N-X-Y-1 ) = X ( N-1 ) . 
Y N-n-Y N-n-1 y .. o 

Therefore, from (2.4) 

and from (2, 2) 

E(Y) = N-n X 
n 

E(U) = N ! 
n 

(b) N~n y (Y-l) ( Y+X-1 ) ( N-X-Y-1 ) = 
Y N-n-Y y .. o 

N-n-2 ·( ) ( ) = X(X+l) I: n-X+N-n-2-Y-l X+2+Y-l 
N-n-2-Y Y Y=O 

( N-1 ) 
= X(X+l) N-n-2 . 

9 

(2.5) 

(2.6) 
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The last equality follows by equation (2.5). Therefore, from (2.4) 

E[Y(Y-1)] = X(X+l)(N-n)(N-n-1) 
n(n+l) (2. 7) 

Now 

V(Y) = E[Y(Y-1)] + E(Y) - E2 (Y). 

Hence, substituting equations (2.6) and (2.7) in the above and 

simplifying, yields 

Theorem 2.2. Let 

V(U) = V(Y) = (N-n)N X 
n+l n 

i=l,2, ..• ,n, be a simple random sample of 

size n from a finite population and suppose the super population 

distribution is a Bernoulli with unknown parameter p. Also, suppose 

the prior density on p is a Beta conjugate prior of the form 

0 < p < 1, a,13 > O. 

Then the predictive density of Y is 

f(YjX,a,13,N,n) 

( Y+X+a-1 ) ( N+l3-X-Y-1) 
Y N-n-Y 

( N+a.+13-1) 
N-n 

y 0, 1, •.• , N-n. 

Proof: The posterior distribution of p as given by Lavalle [10] on 

page 340 is 

P(p!X,a,13,n) r(n+a.+13) PX+a-l(l-p)n-X+13-1, 0 1 
r(x+a)r(n-X+S) < P < • 
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From above and equation (2.3), we can express the predictive density 

of Y as 

f(YjX,a,S,N,n) ·11 

0 

r (n+a.+S) ( N-n ) X+Y+a.-1 N-X-Y+S-1 
r(X+a.)r(n-X+S) y P (l-p) dp 

which reduces to 

Y N-n-Y 
( Y+X+a.-1 ) ( N+S-X-Y-1 ) 

f(YJX,a.,S,N,n) = --------~-~ 
( N+a.+S-1 ) 

N-n 

Y 0 , 1 , ••• , N-n. 

Corollary 2.2. If the assumptions of Theorem 2.2 hold, then: 

(a) 

(b) 

Proof: 

(a) 

E(U) 

V(U) 

(N+a.+S)X + (N-n)a. = _,_ _ _;....:;_ _ _,__.:..-
n+a.+S 

= (N-n)(N+a.+S)(X+a.)(n+S-X) 
2 

(n+a.+S) (n+a.+S+l) 

N~n y ( Y+X+a.-1 ) ( N+S-X-Y-1 ) = 
Y N-n-Y Y=O 

N-n-l ( n+S-X+N-n-1 .. -Y-l ) ( X+a.+yl.+Y-1 ) 
(X+a.) E N-n-1-Y 

Y=O 

(X+a.) ( N+a.+S-1 ) • 
N-n-1 

(2. 8) 

The last equality follows by equation (2.5). From the above result and 

(2.8), we have 



and 

E(U) 

E(Y) = (X+a)(N-n) 
n+a+S 

= (N+a+S)X + (N-n)a 
n+a+S 

12 

(b) In a manner s~milar to that used in (b) of Corollary 2.1, we 

obtain 

N~n Y(Y-l) ( X+a+Y"".l ) ( N+S-X-Y-1 ) .,. (X+a+l) (X+a) ( N+a+S-1 ) • 
Y N-n-Y N-n-2 Y=O 

From (2.8) and the relation 

V(Y) = E[Y(Y-1)] + E(Y) - E2(Y), 

we obtain 

V(U) = V(Y) = (N-n}(N+a+S)(X+a)(n+S-X) 
. 2 
(n+a+S) (n+a+S+l) 

It should be noted that (a) and (b) of Corollary 2.2 reduce to (a) 

and (b) of Corollary 2.1 in the lim:i,t as a + 0 and S + O. 

Exponential Super Population 

In this section we assume the finite population. (u1 ,u2 , ••• ,UN) 

is a simple random sample from an exponential distribution with unknown 

parameter s. Our interest will be.in estimating ~he finite population 

mean, 

1 N 
U = N l: Ui' 

1 
(2. 9) 
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on the basis of a simple random sample of size n < N from the finite 

population. 

If we define 

and 

x=!~ xi. 
n 1 

N-n 1 
y=-· l: N-n 

1 

then U can be expressed as 

u = ~ [ (N-n)y + ~x]. 

For a point estimate of U, we will use 

E (U) = .!_ [ (N-n) E (-y) + nx] 
N 

where E(y) is determined from the predictive density of y. 

(2.10) 

The.or em 2. 3. Let i = 1,2, ... , n, be a simple random sample of 

size n from a finite population and suppose the super population 

distribution is an exponential with unknown parameter f3, Also, suppose 

the prior dehsity on S is a Jeffrey vague prior of the form 

1 
n(S)a:S' S>O, 

Then the predictive density of 

N-n 'Ji= -.-y 
nx 

(2 .11) 
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is a Beta distribution of the second type with parameters (N-n) 

and n. 

Proof: Since i = 1,2, •.. , n, has an exponential distribution, 

then 

g(xjn,nS) = re!) (nSx)n-l e-nSx x.> o. (2 .12) 

Also, x is sufficient for S so the posterior for S is obtained 

from 

P(Sjn,nx) ~ g(xjn,nS)TI(S) 

as 

Since y given. (N-n) 'and S has a distribution of the form in (2.12), 

then the. predictive density of y is 

f(YIN,n,x) -f" 
0 

N-n-1 n N-1 (N-n) [ (N-n)Y] (nX) (3 • 
r(N-n)r(n) 

• exp{-[(N-n)Y + nx]S}dS. 

The above gamma integral reduces to 

f(y]N,n,x) = 

f(N) ( ) [ J N-n-1 { }-N N-~ (N-n)Y l + N-:: -
rtx nx nx y ' y > o. r(N-n)r(n) 

Now, if we let 



then the desired result, 

f(TJN-n,n) = 

is obtained. 

r(N) TN-n-l(l+T)-N, 
T(N-n)r(n) T > 0 

Corollary 2.3. If the assumptions of Theorem 2.3 hold, then: 

(a) E(U) N-1 nx 
= 'Nn-1 

(b) N-n N-1 ( nx ) 2 
V(U) = -N N(n-2) -1 ' n-

Proof: 

(a) From equation (2.10) 

E(U) = ~ [(N-n)E(y) + nx], 

but 

E (y) = nx E (T) nx 
N-n = n-1 

follows by equations (2.11) and (2.13). 

Hence, . 

E(U) N-1 nx 
= 7 n-1 · 

(b) Also, from equation (2.10) 

V (ff) = ( N;n r V ( y) • 

From equations (2.11) and (2.13), we have 

15 

(2 .13) 



V(y) 

Hence, 

= ( nx )2 v (T) 
N-n 

(nx) 2 N-1 = ...._.......__ ------
N-n 2 • 

(n-1) (n-2) 

V(U) 
N-n N-1 

= -.-
N N(n-2) ( nx ) 2 

n-1 

16 

Theorem 2.4. Let i = 1,2, ••• , n, be a simple random sample of 

size n from a finite population and suppose the super population 

distribution is an exponential with unknown parameter s. Also, suppose 

the prior density on S is a conjugate prior of the form 

Then the predictive density of 

N-n -
T = a+nx y 

is a Beta of the second type with parameters (N-n) and n+A. 

Proof: The posterior density of S is 

P(S Jn,x,a,A) 
(a+nx)n+A n+A-1 -

= r(n+A) S exp{-(a+nx)S}, s > 0 

(2.14) 

which follows in a manner similar to that in proof of Theorem 2.3. Also, 

the distribution of y given (N-n) and S is of the form given in 

(2.12). Hence, the predictive density of y may be expressed as 



f (yfn,X;a,A) ·f" 
0 

(N-n)[(N-n)Y]N-n-l[a+nx]n+ASN+A-1. 
· r (N-n) r (n+A) 

• exp{-[(N-n)y + (nx+a)]S}dS. 

This integral reduces to 

f(yjn,xla,A) = 

= N-~ (N-n)y · ( )
N-n-1 

a+nx a+nx 
r(N+A) { N-n .-}-(N+A) 

r(N-n)r(n+A) l + a+nx y ' 

If we define T as in (2.14), we obtain 

f(Tjn,x,a,A) = r(N+A) TN-n-1 {l+T}-:-(N+A)' 
r(N-n)r(n+A) T > O, 

the desired result. 

Corollary 2.4. If the assumptions of Theorem 2.4 hold, then: 

(a) E(U) 
N".""n a + N-l+A nx =-- n..:.l+A N N n-l+A 

( - ) 2 ( N-n ) ( N~l +A ) ( 1 ) • (b) V(U) 
a+nx 

= n-l+A. N N n-2+A 

17 

(2.15) 

Proof: The proof follows from (2.10), (2.14), and (2.15) utilizing the 

same general procedure as in the proof of Corollary 2.3. 

Note that as a-+ .0 and S -+ O, (a) and (b) of Corollary 2.4' 

becomes identical to (a) and (b) ef Corollary 2.3. 

Normal Super Population 

In this section we assume the finite population (u1 ,u2 , ••• ,UN) 

is a simple random sample from a normal distribution with mean µ and 



variance 2 
CJ • 

and 

Our interest will be in estimating 

1 N 
U=-EU. 

N l 1 

82 = l ~ (U.-U)2 
N l 1 

18 

on the.basis of a simple random sample of size n < N from the finite 

population. 

We define 

and 

y= 
N-n 

E 
1 

n 
x = E x/n, 

1 

2 n 2 
s = E (x.-x) /(n-1) 

x 1 1 

2 
s 

y 

N-n-1 
E (yi-y) 2/(N-n-l). 
1 

With this notation, U and 82 can be expressed as 

- 1 
U = N [(N-n)y + nx] (2 .16) 

and 

82 = ~ [ (N-n-l)s~ + (N-~)n (y-x) 2 + (n-l)s;]. (2 .17) 

To determine point estimators for u and s2, it will suffice to 

derive the predictive densities of and 2 We then utilize y s . y 

equations (2 .16) and (2 .17) to obtain E(U) and E(8 2 ) with respect to 

their predictive densities. Also, we will use equations (2.16) and 
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(2.17) to obtain V(U) and V(S2) which are used as a measure of the 

precision of our predictions of U and s2 
' respectively. 

Theorem 2.5. Let i = _l, 2, ••• , n, be a simple random sample of 

size n from a finite population and suppose the super population 

distribution is normal with unknown meap. µ and known variance 2 CJ • 

Also, suppose.the prior density on µ is a Jeffrey vague prior of the 

form 

Then: 

w(µ)dµ ~ dµ, -oo < µ < oo, 

(a) The predictive density of y. is normal.with mean x and 

(b) 

variance 2 NCJ /(N-n)n. 

2 The predictive density of s is a: gamma with parameters 
y 

(N-n-1) /2. and (N-n-1) /2CJ2• 

Proof: 

(a) As is well-known, the posterior density of µ is 

P(µ lx,CJ2/n) = j n2 exp {- n2 (µ-5C)2} 
2wCJ 2CJ 

and the density of. y given µ and 2 CJ is 

2) { } CJ N-n N-n 2 
g ( yJµ, - =[!!exp - - (y-µ) • 1 · N-n 2 2 2wCJ 2CJ 

Hence, the predictive density of y is 

(2 .18) 



(N-n)n 

(2'1Tcr2) 2 

• exp {- _L [n(µ-x) 2 + (N-n) (y-µ) 2] }dµ. 
2a2 

20 

Completing the squal;"e with respect to µ and integrating, we obtain 

(N-n) n exp {- (N-n) n (-y-_x) 2 } , 
2Ticr2 2Ncr2 

-oo < y < oo'; 

the desired result. 

(b) The distribution of 

N-n-1 

20 2 

2 2 s given a and N-n is 
y 

{ 
(N-n-l.)s 2 } 

• exp - 2 Y , 
2cr 

(2 .19) 

(2.20) 

2 Now a and (N-n) are known; hence, (2,20) is the predictive density 

of 
2 

s . 
y 

Corollary 2.5. If the assumptions of Theorem 2.5 hold, then: 

(a) E(U) = x 

N-n a 
2 

(b) V(U) =---
N n 



(c) 

(d) 

E(s2) N-n 2 n-1 2 =-cr +-s N N x 

Proof: 

(a) By equations (2.16) and (2.19), we have 

E(U) = ft [ (N-n)x + n.x], 

which reduces to 

(b) From equation (2.16), 

V(U) 

E(U) = x. 

2 N-n 
N V(y)' 

and by (2 .19), 

But 

and 

2 
N-n cr 

V(U) =T~. 

(c) From equation (2.17), 

E(y-x) 2 Ncr 2 

(N-n)n 

21 



follows from (2.20) and (2.19). Hence, 

2 N-n 2 n-1 2 
E(S ) = N a + N sx. 

(d) From equation (2.17), we have 

But, 

(- _)2 2 _y-x 
v (y) ,...., x (1), 

hence 

V (y-:X) 2 = 2V2 (y) • 

From (2.20), we have 

2 204 
V(s) = --y N-n-1 . 

So, substituting and simplifying, we have 

2 

V(S 2) = 2(N-n)( ~2 ) . 

22 

Theorem 2.6. Let i = 1,2, ... , n, be a simple random sample of 

size n from a finite population and suppose the super population 

distribut.ion is normal with unknown mean µ and known variance 2 
a • 

Also, suppose the prior density on µ is a conjugate prior of the form 

= ts;exp {- n~ 
j 21Ta 2 2a 

-oo < µ < oo, 
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Then: 

(a) The predictive density of y is normal with mean n0µ 0 + nx 

(b) 

and variance 
2 

(N+n0)cr /(N-n)(n+n0). 

2 The predictive density of s is a gamma with parameters 
y 

(N-n-1)/2 and (N-n-l)/2cr2 • 

Proof: 

(a) LaValle [10], page 347, gives the posterior distribution of 

\J by 

P \J J \J , .Q_ = --"- exp - -- (µ-µ ) , ( 
2 ) ffSl { nl 2 } 

1 nl 2ncr 2 2cr2 1 
-oo < \J < 00 (2.21) 

where 

and 

From (2.18) and (2.21), we obtain the predictive density of y as 

(N-n)n1 

2 2 
(2ncr ) 

Completing the square with respect to \J and integrating, we obtain 



(N-n)(n+n0) 

2 2 (N+n0 )7ro 

. •xp{- (N-n)(n+n0) 

2(N+n0)o2 
-co < y < 00' 

the desired result. 

(b) Follows exactly as in (b) of Theorem 2.5. 

Corollary 2.6. If the assumptions of Theorem 2.6 hold, then: 

(a) E(U) 
nx + n0µ0 nn0 

(x-µo) = + n+n0 N(n+n,0) 

N+n 2 
(b) V(U) N-n O 0 

=~---'N N n+no 

(c) E(S2) ( N-n-1 n N+no ) 2 + n-1 2 = +---- 0 -s N n+n0 N N x 

(d) · V(S2) = 2 ( ~2 f { (N-n-1) + [ N-lno n J2 } N n+n0 

Proof: 

(a) From equation (2.16), 

E(U) = N;n E(y) + ~ x 

and by (2,22), we obtain 

24 

(2.22) 
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Simplifying, yields 

(b) The result follows from (2.16) and (2.22) as 

V(U) 
N-n N+no a2 =-----N N n+n0 

(c) From equation (2.17), we have 

E(S2) = ~ [ (N-n-l)E(s~) + (N-~)n V(y) + (n-l)s; J 

which simplifies to 

( N-n-1 n N+no ) 2 n-1 2 
= +---- cr +-s N n+n0 N N x 

using (2.21) and (2.22). 

(d) Again, from equation (2.17), we _have 

From (d) of Corollary 2.5, 

V (Yix) 2 = 2V2 (y) 

the last equality follows from (2.22). 



26 

By (2.20), we obtain 

2cr4 
= -,....--.,... 

(N-n-1) ' 

Substituting and simplifying, yields 

V(s2) = 2( ~2 ) 
2 

{ (N-n-1) + [ 7° ::no J}. 
Theorem 2.7. Let i = 1,2, ... , n, be a simple random sample of 

size n from a finite population and suppose the super population 

distribution is normal with unknown mean µ and unknown variance 

Also, suppose the joint prior density on and 2 is a Jeffrey µ a 

prior of the form 

Then: 

2 
rr(]..!,cr ) 1 

a: -
2 ' 

a 
-oo < µ < oo, 

2 a > O. 

(a) The predictive density of y is a t-distribution with 

(n-1) degrees of freedom, location parameter x, and 

precision 2 n(N-n)/Ns • 
x 

2 a . 
vague 

(b) The predictive density of 2 2 u = s /s 
y x 

is an F-distribution 

with (N-n-1) and (n-1) degrees of freedom. 

Proof: 

(a) The joint distribution of x and 

is 

2 s given µ 
x 

and a2 



Since 

and 

• exp {- 2~2 [ n(X-µ) 2 + (n-l)s~ ] } • 

(x,s2) is sufficie~t for 
x 

2 cr can be expressed as 

2 (µ,cr ), the joint posterior of 

Integration of - 21 2 2 2 g(x,s µ,cr )n(µ,cr )dµdcr 
x 

yields 2 s . 
x' henc.e, 

n+l 

( 
(n-l)s2 ) 2 f5 202 x 

P(µ,cr 2 Jx,s2) = ---------x 

• exp{- ..J:_ [ n(µ-x) 2 + (n-l)s2 ] }· 
2cr2 x 

27 

µ 

(2. 23) 

The predictiv(;l density of y is obtained from (2.18) and (2.23) as 
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n+l 

= Joo Joo ff5 f5 (---(n::---'-~ S~ ) 2 

-oo O r ( n;l ) ( (n-~)s! ) 

• exp {- 2~2 { n(X-µ) 2 + (N-n) (jf-µ) 2 + (n-l)s~ ) } dµdcr 2• 

Notip.g that 

n(x-µ)2 + (N-n) (y-µ)2 = N ( µ _ nx + ~N,.-n)y ) 2 + (N-~)n (y-x)2 

and integrating over µ, yields 

The integral is in the form 

(2. 24) 

Hence, we obtain 
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n-1 

~ ( (n-l~s; ) 
2 

( ) 

fl (yJx,s;) = ____ r_(_n_;_l_) ___ r __ ~-{ n;l •! + (N-n)n (- _)2 
2N y-x 

After some algebraic simplifications~ we obtain 

n(N-n) 
2 

r ( ~ ) { 

r ( n;l ) 

1 + (N-n)n (Y-x) 2 

Ns2 n-1 
(2. 25) 

s N(n-l)'ff 
x x 

the desired result. 

(b) 

(2.23) as 

The predictive density of 

21 2· f 2 (s x,s ) 
y x 

s 2 is obtained from (2.20) and 
y 

Integrating over µ, we obtain 

n-1 N 
2 2 2 2 

( (n-l)sx ) ( (N-n-
2
1)sy ) (-

0
12 ) 

:1·~-zr_(_n-;l_)_r_(_N--~--1)-s-~--

• exp {- 2> [ (N-n-l)s~ + (n-l)s; ] }dcr2• 

By equation (2.24), this reduces to 



• { N-~-1 

and after some algebraic simplification, .we have 

N-n-1 

( !!:l) ( N-n-1 ~ ) 2 
r 2 n-1 2 

s 
x 

} 
N-2 

2 + n~i 2 - --2-
s -s 

y 2 x 

N-2 

30 

21 2 . f 2 (s x,s ) = 
y x i N-:n-1 ~ 

1 + n-1 2 
s 

x 

r-2 (2.26) 

s~ r ( n;l ) r ( N-~-1 ) 

2 2 Let u = s Is then u - F(~-n-l,n-1). 
y x' 

Corollary 2.7. 

(a) E(U) 

(b) V(U) 

(c) E(S2) 

(d) 

Proof: Let 

If the assu111ptions of Theorem 2.7 hold, then: 

= x 
2 s N-n n-1 x 3 = --.-- --·-- --. n > 

N n-3 n 

n-1 N-3 2 
3 =--s ' 

n > 
n-3 N x 

{ 2}2{ } 
2 n-1 sx 

= - - - (N-n-1) (N-4) + (n-2) , n-5 n-3 N 

t = (N-n)n (y-x) 

Ns2 
x 

n > 5. 
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in (2.25), then t has a Student's t-distribution with (n-1) degrees 

of freedom. Since 

E(t) n-1 = 0 and V(t) = n-3 , 

then· 

E(y) = x (2. 27) 

and 

N s 2 
V(y) n-1 x 

= n-3 (N-n)N ' (2.28) 

Also, if we let u (2.26), . then 

2 
E(u) n,...l and V(u) = __ 2_(,_n_-_.l) __ ._.(,_N_.,.._.4) ___ _ 

= n"".'3 2 • 
(N-n-l)(n-S)(n-3) 

Therefore, 

2 n-1 2 &E(s ) = - s 
• y n-3 x 

(2.29) 

and 

2 2 (n-1) 2 (N-4) 4 
V (s ) = ----------------- s 

y (N-n-l)(n-S)(n-3) 2 x 
(2. 30) 

(a) The result follows irntnediately froin (2.16) and (2.27). 

(b) From equation (2.16), we obtain 

V (U) = ( N;n ) 2 V (y) ' 



and from (2.28) it follows that 

2 
s N-n n-1 x V(U) .,. __ . ---

N n-3 n ' 

(c) Equation (2.17) yields 

E(S2) = .!. [ (N-n-l)E(s2) .+ (N-n)n V(y) + (n-l)s2 J ·, 
N · · y . N . x 

Substituting results from (2.29), (2.28), and simplifying, yields 

n-1 N-3 2 =--s . n-3 N x 

(d) We obtain · 

2 l . ' { 
V(S ) = ; 2 

fr()ll1 (2 .17). Now 

where 

Since 

N sx 4 
[ 2 J 

= (N-n)n · E(t ) 
_ [ n-l. N s ~ J 2 

t = 

2 3(n-l) 

n-3 (N-n)n ' 

(n-3)(n-5) ' 

32 

(2.31) 



we then have 

N s v - - 2 2 x n-1 . n-2 { 2 }2 
(y-x) .. (N-n)n n-3 . ( n-5 ) • 

Substituting the aoove and (2.30) into (2.31}, we obtain 

2 
s n-1 x ----n-3 ·N 

2 

} { (N-n-1) (N-4) + (n-2) } • 

33 

Theorem 2.8. Let i = 1,2, ..• ,. n, be a simple random sample of · 

size n from a finite population and suppose the super population 

distribution is normal wit.h unknown mean µ 

Also, suppose the joint prior density of ]J 

Norma+-inverted gamma density defined by 

and unknown variance 

and 2 
a is the 

for -co .< ]J < 00 '. 0 < a2 < co' and zero otherwise, where 

-co < ]..l < co' 
0 

Then: 

2 a . 



(a) The predictive density of y is a t-ciistribution with 

(b) 

(n+~0 ) degrees of freedom, location parameter. 

(nx + n0µ0) I (n0 + n), . and precision 

(N-n) (n+n0) (n+v0) I (N+v0) v1 iµ1 •. 

The predictive density of u ... is an F-distribution 

with (N-n-1) and v1 degrees of freedom, where 

and 

Pr<:lof: The 'probf follows the same general procedure as the proof of 

Theorem 2.7. 

Corollary 2.8. If the assumptions of Theorem 2.8 hold, then: 

(a) E (U) 

(b) V(U) = 

(c) [ N + no ]· n - 1 2 (N-n-1) + n + s 
n + n0 N N x 

34 



Proof: The results follow utilizing a procedure similaJ;" to the proof 

of Corollary 2.7. 
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CHAPTER III 

REGRESSION AND RATIO ESTIMATORS 

If there is an ordered pair, (Y.,X.), of observable values 
1 1 

attached to the ith unit in the finite population of N units, we will 

·d th fi it 1 ti t · (R2)N, where R is the cons1 er e n e popu a on as a vec or in 

real numbers. Also, we will represent the finite population by 

In addition, we assume the finite population is a simple random 

sample from a joint probability distribution such that the conditional 

distribution of Y given X is 

f (Y I X , a ' , S , a 2 ) = 
(3.1) 

-oo < y < oo, 

-oo < a I , s < 00' 
2 

a > O, and g = 0 or g = 1. Hence, a simple 

random sample without replacement of size n < N from the finite 

population is a simple random sample from the.distribution (3.1). Based 

on this sample, we derive predictive estimators of 

1 N 
Y=-EY 

N l i 

for particular assumptions on the parameters in (3.1). For all of our 



derivations, we assume 

1 N 
x; = - l: x. 

N 1 i 
and 

N 
L: x2 
1 i 

are known. This knowledge does. not imply that each individual 

known. 

x. 
l. 

37 

is 

The notation used in this chapter will be slightly different from 

that used in the preceeding chapter. We will let (y.,x.), 
l. l. 

i = 1,2, ••• , n, denote the observed values attached to the ith 

sampled unit in the simple random sample of size n from the finite 

population. Also, (ui,vi), i = 1,2, •.• , N-n, will denote the 

th unknown values atta.ched to the i unsampled unit remaining in the 

finite population. 

The following terminology will be used in this chapter: 

and 

1 
n 

1 
n 

y = - l: Yi x = - l: xi n 
1 n 1 

2 
n 

y)2 2 n 
s = l: (yi - s = l: (x. y 

1 
x 

1 
l. 

1 
N-n 

1 
N-'"n 

u =- l: u. v =-- l: 
N-n 

1 
l. N-n 

1 

n 
s l: (x. - x)(y. - y). 

xy 1 l. i 

Since we can express Y by 

Y = l [ (N-n) iI + nY] , 
N 

_)2 - x 

v. 
l. 

(3.2) 
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it will suffice to derive predictive estimators of u, or equivalently, 

of T = (N ... n)u in orde.r to predict Y. 

Regression Estimators 

If g = 0 in (3.-1), then 

E(Ylx> =a.' + ax 

and 

V(Y Ix> 2 = a • 

Hence, there is a linear regression of Y 0n X · which we will utilize . 

in predicting Y. 

Theorell). 3 .1.. Let (y i ,xi), i = 1, 2, ••• , n, be a simple random sample 

of size n. froth the finit~ population ( (Y1 ,X1), (1i'2 ,x2), ••• , . (YN'~)) 

and suppose the super p0pulation _dist~ibution .is given by (3.l) -wit.h 

g = o. 2 Also, suppose that· a is known and. that the joint prior 

density on a. and a (a. = a.' + Sx) is a Jeff~ey vague prior of the 

form 

w(m,S)da.dS ~ da.dS, - 00 < a., a < 00 • 

Then the pr~dictive density ~f . u is normal with mean 

and var:J,ance 

s 
- + N (X - -x) ...1SX. y. -N 2 . -n 

2[ N a 
N"'"n; 

. s 

1 + nN 
N-n 

x 

- 2 J (X-X). 
2 • 

s 
X. 
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Proof: Lindley [11] on page 207 writes the joint posterior distribution 

of a and S as 

g ~ 1 2 2 2} P(a,S J~,]) = . ~ exp .., - 2 [n(a-'&') + sx(S-'S} ] 
27rcr 2cr 

where 

A -a = y and 
s 

13' = 21. 
2 

s 
x 

The distribution of u given a and S is normal with mean 

a + S(v-x) and variance 2 
cr /(N-n). Hence, the predictive density of 

ii is 

f (uJ'ii','$) J
OQJOQ g ns N..,.n x 

= R 2'TT0"2. 
-oo -oo (3. 3) 

The equality 

N(a-µa)2 + ( s; + n(:-n) (v-x)2 )<s-µ(3)2 

n(N-n) 2 
N sx + ~~~..,..-.-.,.~~~-

s 2 + n (N-'n) (v..-x)? 
x N 

( - A -Q' (- -) ) 2 u..-a-1-' v-x , 

where 
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µ = na- + (N-n)u - (N-n) (v-X)S 
a N 

and 

as; + n <:-n) (v-X) (u-cx) 
µ = ·. 

8 2 + n(N-n). c- _)2 s v-x x N 

is obtained by expanding the left hand sid,e and completiQ.g the square 

with respect .to a and 8. Substituting ~nto (3. 3) and integrating 

with respect to a and 8, we obta}n 

where 

Since 

.then 

Therefore, · 

and 

V(u) = cr 
2 

f(ujS,~) =.~exp{-~ (u-CX'-a(v-x)) 2 } 
} 21TKcr2 2Kcr 

N (v-X) 2 
K = n(N-n) + 2 

s 
x 

v = ..L (NX - nx) , 
N-n 

- - N (- ..-'\ v ~ x = ~ x - x,. NT"n 

E(u) = ~+ S(v-x) = y + -1L (X-x)f3' 
N-n 

i N + (v-x) 2 ·} 
n(N-n) 2 

s 
x 

= _1L E..2 J 1 + hN 
N-n n l N~n 

(X-?f)2 1 
2 I" 

sx J 

(3.4) 

(3.5) 



Corollary 3 .1. If the assumptions of Theorem 3 .1 hold, then: 

(a) E(Y) • y + s<x~x) 

(b) V(Y) = (N-n) 
N ~2 { 

Proof: 

1 + n(N-n) 
N 

(~-x)2} 
2 . 

s 
x 

(a) From (3.2), we have 

E(Y) = N-n E(u) + .!!.y 
N N 

and by (3.4), we obtain 

E(Y) A -= y + f3(X-x). 

(b) The result follows immediately from (3.2) and (3.5). 

41 

Theorem 3.2. Let (yi'xi), i = 1,2, .•• , n, be a simple random sample 

of size n from the finite.populat:i,on ((Y1 ,x1),(Y2 ,x2), ••• , (YN,~)) 

and suppose the super population distr.ibution is given by (3.1) with 

a' and g both zero. Also, suppose 2 
a is known.and the prior 

density on f3 is a Jeffrey vague prior of the form 

n(f3)df3 ~ dS, -oo < f3 < oo. 

Then the p:redictive density of u is normal with mean: §'v and variance 
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where 

n 
L: xiyi 

A 1 s = 2 . _2 
nx + s x 

Proof: The proof follows in same manner as the proof of Theorem 3.1. 

Corollary 3.2. If the assumptions of Theorem 3.2 hold, then: 

(a) E(Y) 1 [ny + B(NX-nx) J = ..... 
N 

(b) V(Y) { N-rt · (NX - nl<) 2 
} %2 = -·+ 

N N(nx2 + s 2) 
x 

Proof: The proof is similar to the proof of Corollary 3.1. 

Theorem 3.3. Let· (y1 ,xi), i = 1,2, •.. , n, be a simple random sample 

of size n from the finite population ((Y1 ,x1), (Y2 ,x2), .•. , (YN'~)) 

and suppose the super population distribution is given by (3.1) with 

g "" o. Also, suppose the joint prior density on a,S, 

(a = a' + Sx) is a Jeffrey vague prior of the form 

2 1 
Tr (a , S , a ) a: ..... 2 , - 00 < a , s < 00' 

2 
(J > o. 

0 

and 2 
0 

Then the predictive density of u is a t.-distribution with (n-2) 

degrees of freedom, location parameter '(i' + 'S'(v-x), and precision 

where 



and 

A a = y 

s 
A XV f3 = .....:,:;.t... 

2 s 
x 

2 
s 
-~ 

2 
s 

x 
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Proof: Lindley [11] on page 205 writes the joint posterior distribution 

of a, (3, and 2 
o 

( 2 IA A ,.._2) Pa,S,a··a,-S,cr·· = 

as 

2· 
ns 

x 

2 2 82 ( 2 ) (21fo ) 2 r n; 

f 1 2 ")2 2 A 2 } • exp l - 202 [S + n(a-a + sx(f3-f3) ] • 

The distribution of u given a, S, and 2 
o is normal with mean 

a + S (v~x) and variance. o2 / (N-n). Hence, the predictive density of 

u is 

( IA A r.2) f iI a,(3,o 
(N-n)ns 2 
.. x 

( 20s~ )~ 
------

2 2 ·s2 r ( n-22 ) (21fO ) 2 

• exp {-~ [ s2 + (N.Jn) (u"""a-S (v-x)) 2 + n(a-S') 2 

2o 

+ •!<s·-$) 2]} dadSda2 . (3.6) 



Expanding and completing the square on a and then on S, it can be 

shown that 

where 

and 

(N-n)u - (N-n)S(v-x) + n~ 
N 

n(N-n) (- _)(- /'.) + s2~ N v-x u-a xµ 
)1 = 

S n(N-n) c--)2 + 2 N v-x sx 

Hence, if we substitute into (3.6) and integrate with respect to a 

and S, we obtain an integral in. the form of (2. 24) which reduces to 

where 

( n-1 ) n-1 
r -. { }--2 ~/'."-"'-- 2 2 

f(Uj2,)l',cr2i = ~ 1 + (u-0 -siv-;)) 
J TIKS2 r ( ?;2 ) (n-2)KS 

K 
N ---+ n(N-n) 

c- _)2 v-x. 
2 

s 
x 

Note that the ab.ove distribution reduces to a standardized 

t-distribution with (n-2) degrees of freedom, if we let 

44 
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(3.7) 

Coro.:Uary 3.3. If the assumptions of Theorem 3.3 hold, then: 

(a) E(Y) 
A -

= y + S(X-x) (3.8) 

2 l (li'-X)2] (b) V(Y) 
S N-n 4, = n-4 nN + 2 ' 

n > 
s 

x 

(3. 9) 

A 
where a and s2 are as defined in Theorem 3.3. 

Proof: 

(a) From (3.2), we have 

E(Y) = N;n E(u) + ~ y. 

But, by (3. 7) 

E(u) = 'CX' + ~<v-x). 

Hence, combining and silllplifying, yields 

E(Y) = y + i<x-x). 

(b) From (3.2) and (3.7), we obtain 

V (¥) = ( N-n ) 2 K. S 2 
N n-4 

which reduces t·o 

V(Y) 
.s2 

;:: 
(n-4) [ 

N---n + (X-x) 2 ] 
nN 2 ' 

s 
x 
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We note that (3.8) is the usual least squares regression estimator 

for Y. Also, we can wri~e (3.9) as 

where 

2 
s 

V(Y) = _:i.. 
· n-4 

2 s 
xy 

2 2 . 
s s x y 

(X-x)2 l 
2 ' s 
x 

This result is similar to the variance of the least squares regression 

estimator as given by Cochran [12] page 194. 

Theorem 3.4. Let (yi,xi)' i = 1,2, ••• , n, be a simple random sample 

of size n from the finite population ((Y1 ,x1),(Y2 ,x2), •.. , (YN,~)) 

and suppose the super population distribution is given.by (3.1) with 

a' and g both zero. Also, suppose the joint prior density on S and 

2 
a is a Jeffrey vague prior of the form 

2 'IT(S,cr ) 1 
cc -

2 ' 
a 

-oo < s < 00' 2 a > 0. 

Then the predictive density of T = (N-n)u is a t-distribution with 

(n-1) degrees of freedom, location parameter i(NX-nX), and precisiGn 

where 

(n-1) (nx2 + s2) 
x 
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n 
L: xiyi 

A 1 
8 = -2 2 

nx + s x 

and 

N-n 
sl = L: v .• 

1 
l. 

Proof: The proof follows in the same manner as the proof of Theorem 3.3. 

Corollary 3.4. If the assumption~ of Theorem 3.4 hold, then: 

(a) E (Y) = 'J3X + .!!. (y - i3'x) 
N 

ns 
(b) V(Y) = ! N-n + (,NX - . nx 82 + i - )2 } i 

N2 n-3 (n--3)(nx2+s~) 
2 ( _2: 2 y 

nx s 
x 

-~ .. ··-)2} 2 x • 
s 

Proof; The proof is similar to th~ proof of Corollary 3.3. 

If g 

and 

Now if 

Ra.tio Estimators 

1 in (3.1), then 

E (Y. Ix.) = a' xi + sx: 
l. . l. l. 

2 2 
= a X .• 

l. 

then there is a linear regression of 

which will be utilized. in predicting Y. 

x 

y 
X on x 

In order to simplify the notation we encaunter in this section, .we 

define the following additiona.l terms: 



and 

n 

N-n 
E 
1 

N-n 
E 
1 

= E (R. ~ R)(x. - x) = n(y - Rx), 
1 1 1 

2 
s = 

R 

n - 2 
E (R. - R) · • 
1 1. 
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Theorem 3.5. Let (yi,xi), i = 1,2, ..• , n, be a simple random sample 

of size n from th~ finite population ((Y1 ,x1),(Y2,x2), .. ,, (YN'~)) 

and suppose the super population distribution is given by (3.1) with 

g = 1. Also, suppose that 2 a is known and that the joint prior 

density on a and S (a = a' + Sx) is a Jeffrey vague prior of the 

form 

TI(a,S)dadS ~ dadS, - 00 < a, S < oo, 

Then the predictive density of T = (N-n)u is normal with meal'). 

and variance 

(ns2 + 2 2 2 s1)sx + n(s2 - xs1) 2 
~~~~~~~2~~~~~..-- a • 

ns 
x 
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Proof: Since the joint posterior 

density of a and a is 

P(a.~S 11l',$) 

where 

If we let 

R { 1 = exp - -2 . 2 
21fa.. 2a 

'&' = R ' 
sRx i=-2 s x 

T = (N-n)u, 

then the density ef T given a. and S is norm~.}. ¥ith mean 

a.s1 + S(S2 - xS1) 

T is 

and variance Hence, the predictive density of 

exp {- ~ · 
2a S 

2 

The portion of the exponent ef e in brackets may be rewritten by 

(3.10) 



where 

nS2~ + TSl - ssl(S2 - xSl) 

µa = nS2 + si 

and 

Now integrating (3.10) with respect to a and S, yields 

]"" ""') f(T a,8 = 

Hence, 

and 

V(T) 

E.(T) 

2 2 2 
(ns2 + s1)sx + n(S2 - xS1) 2 ---------2------ a • 

ns 
x 
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(3.11) 

(3.12) 



Corollary 3.5. If the assumptions of Theorem 3.5 hold, then: 

(a) E (Y) ... XR + £ (y - xR) 
N 

N 
E x: 

N 
E x: - NxX 
1 l. 

2 
s 

x 

J( - NxX )
2 

1 
l. 

82 + N(N-n) (b) V(Y) 
= :2 l 2 

where 

Proof: 

(a) Since 

then by (3.11), we have 

Note, that 

and 

x s x 

N 
2 -)2 S = E (Xl.. - X • 
x 1 

- 1 
Y = N [T + ny], 

A -a = R, 

'S = .!L. (y - xR) , 
2 

s 
x 

s1 = Nx - nx, 

n 
-2 x 
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(3.13) 

(3.14) 



N n 
s2 = E x: - E 

1 1 1 

2 
x .• 

1 

Substituting these into (3.14) and simplifying, yields 

E (Y) = RX + ~ (y - RX) 
N 

(b) By (3.13) and (3.12), we have 

Using the identities 

( ~ x7 - NXx ) 
2 = 

i=l 1 

and 

N 
E x2 - NxX 
1 i 

2 
s 

x 

1 ( ~ x. ) 2 
n i=l 1 

m ..!. s2 + 2 s + 2 n 1 x 1 nx ' 

the equality reduces. to 

V(Y) 
= a2 ~ (_[ _x~---~_xx:_)_2 

. 2 2 
N s 

x 

82 + N(N-n) 
x n -2} x • 

We remark that to use these formulas, it is necess~ry to know 
N 
E x7 which we did not require for the regression estimators. 
1 1 
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(3.15) 

(3.16) 



Note. that if 

and 

x=X 

S2 2 
x sx 

-·- =--N-1 n-1 

then (3.15) reduces to 

E(Y) = X[ + n(N-1) (y _ xR), 
N(n-1) 

the classical Hartley-Ross ratio estimator. Also, under these 

conditions (3.16) reduces. to 

V(Y) = a2 { N-n s2 + N(N-n) x2}. 
N2 q-1 X n 

We now state two theorems and two corollaries whose proofs are 

similar to the proefs of Theorem 3.5 and Corollary 3.5, respectively. 

53 

Theorem 3.6. Let (yi,xi)' i = 1,2,- ... , n, be a simple random sample 

of size n from the finite population ((Y1 ,x1),(Y2 ,x2), ••. , (YN,~)) 

and suppose the super population distribution is given by (3.1) with 

0\ I = Q and g = 1. Also, suppose 2 
a is known and the prior density 

on B is a Jeffrey vague prior of the form 

n(B)dB ~ dB, - 00 < B < 00 • 

Then the predictive density of 'I' = (N-n)u is normal with mean 

and variance 



where 

N 2 
s2 L xi 

1 2 
2 2 cr 

nx + s 
x 

,.... ny s = --..,------2 . 
nr + s 

x 

Corollary 3.6. If the assumptions of Theorem 3.6 hold, then: 

(a) 

(b) 

N 
E(Y) a l '$' L x: 

N J. 
1 

( ~ x2 )2 - ~ xi2 ~ x21· 
1 i 1 1 2 v (Y) = ----.,.2------- cr • 

N (nx2 + s 2) 
x 
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Theorem 3.7. Let (yi,xi), i = 1,2, ..• , n, be a simple random sample 

of size n from the finite population ( (Y1 ,X1), (Y2 ,x2), ..• , (YN,XN)) 

and suppose the super population distribution is given by (3.1) with 

S = 0 and g = 1. Also, suppose that 2 
cr is known and that the prior 

density on a' is a Jeffrey vague prior of the form 

rr(a')da' ~ da', -oo <a' < oo, 

Then the predictive density of T = (N-n)u is normal.with mean 

R(NX - nx) 

and variance 



Corollary 3.7. If the assumptions of Theorem 3.7 hold, then: 

(a) E (Y) • RX + ~ (y - Rx) 

2 
(b) V(Y) = {n(N-n) + (NX - nx) 2 } ~ • 

nN 
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We now consider the case when the variance of the super population 

distribution is unknown. 

Theorem 3.8. Let (yi,xi), i = 1,2, •.. , n, be a simple random sample 

of size n from the finite population ((Y1 ,x1),(Y2 ,X2), ... , (YN,~)) 

and suppose the super population .distribution is given by (3.1) with 

g = 1. Al th t th .. t i d . ro, 0 , and ~2 so, suppose· a · e Join pr or ens1ty on w µ v 

(a = a' + Sx) is a Jeffrey vague prior of the form 

2 
TI(a,13,cr ) 

1 
ex: -

2 ' cr 
-oo < a, 2 cr > O. 

Then.the predictive density of T = (N-n)u is.at-distribution with 

(n-2) degrees of freedom, loca,tion parameter 

and precision 

2 S [(ns2 + 

where 

SRx a= -2-
s 

x 



and 

Proof: . Note that 

2 
2 SRx 

~R - -2- • 
s x 

Yi 2 
R = -· ,...,N(a + f3(xi - x),cr) 

i xi 
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and proceeding in a manner similar to that in the proof of Theorem 3.3, 

we obtain the joint posterior of a, f3, 

( 2 IA A '°'2) P a.,S,cr a,S,cr ~ 

2 ns 
x 

2 2 
(2'1T<J ) 

and cr 2 as 

{ 1 2 . r-.2 2 2 l 
• exp - 202 [S + n(a-a) + sx (S-10 ] J. 

If we let 

T = (N-n)u, 

then 

g(T/a,f3,cr2) = r+ exp {- -~-
_/ 2Ticr~s 2 2cr s 2 

Hence, the l>redictive density of T, 

'

,A A r-2 I 2 f(T u,f3,cr) = E[g(T.a,S,cr )], 



can be expressed as 

2 ns 
x 

2 3 
(2mJ ) s2 
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By completing the square on a and S, the portion in brackets ·of the· 

exponent of e can be writte.n as 

= s s2 + W(a-µ )2 ·+ K (S-µQ)2 
2 a W µ 

where 



and 

Now integration with respect .to a., 8, and a2· yields 

( I" ,,... ..... 2) f T a.,8,cr • 
(~) 

r ( n;2) 

Corqllary 3.~. If .the assumptions of Theorem 3.8 hold, then: 

(Iii.) 

N 2 . -
I: Xi - NXX 
1 . 

J<; ('f) • ."RX + ~ (y - xit) ---2 --

(b) 
s2 

V(Y) • 2 . 
N (n-4) 

Proof: 

(a) I;t follows from 

and (.3 .17) , that 

'·'· 

Recall that · 

s x 

- 1· Y = N [T + ny] 
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(3.17) 

(3.18) 



and 

Hence, 

A -
a = R, 

s 
~ Rx n (- Ti'.-) ..,·=-2-=z y- .l'l.X' 

s s 
x x 

81 = NX - nx, 

N 2 n 2 
82 "' I: X. - I: xi 

1 1. 1 

E(Y) = ~ { NRX + n(Y-Rl<) + :; (Y-Rl<) [ [ X~ - Nxli'. ~ •! J}· 
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(3.19) 

N 
I: x2 - NXX 
1 i 

= RX + : (y-Rx) ---2--

(b) From (3.18) and (3.17), we obtain 

= _8_2 __ { 8 + 8i + 
N2(n-4) 2 n }· 

Using $Uhl!ltit.utions similar to that in part (a), WE? have 

82 { 1 ( N ) 2 N 2 1 ( N 2 )2} V(Y) = - I: x. - I: x. + - I: x. - NXX . 
N2 (n-4) n 1 i 1 1 s 2 1 1 

x 

s 
x 

(3.20) 
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We note that if 

x•X 

and 

1 N 2 · 1 n 2 
N-1 L (Xi - X) =- L (x. - x) 

1 n-1 1 1 

then (3.19) reduces to 

the well-known Hartley-Ross ratio estimator. Also, it is easy to 

verify that (3.20) reduces to 

V(Y) = s2 . J N-n [ ~ x~ - mc2] + N(:-n) x2} • 
N2(n-4) l n-1 1 i 

We will n0w state two theorems and two corellar.ies whose proofs 

are omitted, but note th~t the proofs are similar to the pro0f of 

Theorem 3.8 and the proof of Corollary 3.8, respectively. 

The0rem 3.9• Let (yi,xi), i = 1,2, ••• , n, be a ::;imple random sample 

of size n from the finite p0pu:\.atfon ((Y1 ,x1),(Y2 ,x2), ••• , (YN,X:N)) 

and suppose the super populat:i,on distribution is given by (3.1) with 

a'= 0 and g"' 1. ,Also,.suppese the joint prior density on i3 and 

2 a is a Jeffrey vague prior of the form 

2 n(S,o ) 1 
ex: - 2 ' 

(J 

-oo < i3 < 00' 2 
(J > 0. 

Then the predictive density of T = (N-n)u is a t-distribution with 

(n-.1) degrees of freedom, location parameter 



and precision 

where 

and 

N 
$ L: x2 - ny, 

1 i 

w""' 

82 = 

2 
ns 

+ -2!. 
w 

(n-l)w 

r- nv s = .::L. 
w ' 

2 

(- r-_)2 J y· - Sx · 

2 SRx 
SR - -2- • 

s 
x 

-1 

Corollary 3.9. If the assumptions of Theorem 3.9 hold, then: 

(a:) 

(b) 

N 
~(Y) = S E x2 

1 i 

V(Y) = 
2 (N-n)w + 82 

(n...;3)w 

2 ns 
+~ (y-

w 
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Theorem 3.10. Let (yi,xi), i • 1,2, •.• , n, be a simple random sample 

of size n from the finite population ((Y1 ,x1),(Y2 ,x2), •.. , (YN,~)) 

and suppose th.e super populaticm distribution is given by (3.1) with 

S = 0 and g = 1. Also, suppose the joint prior density on a' and 

2 a is a Jeffrey vague prior of the form 



2 
Tr(a' ,a ) 1 

0: -

2 ' 
a 

-oo < 0\ I < oo ' 
2 a > O. 

Then the predictive density of T = (N-n)u is a t-distribution with 

(n-1) degrees of freedom, location parameter 

R(NX - nx) 

and precision 

n(n-1) 

Corollary 3.10. If the assumptions of Theorem 3.10 hold, then: 

(a) E(Y) = RX+ ~ (y - Rx) 

2 

(b) 
- SR 2 

V(Y) =----2 fos 2 + s1 }. 
n(n-3)~ 
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CHAPTER IV 

STRATIFIED RANDOM SAMPLING 

In thi$ chapter we introduce a stratifiqatiop concept and some 

notation associated with stratification which. will be utilized in the 

next chapter. Also., we will derive predictive estimators for some of 

the more interesting cases of stratification. 

Concept of Stratification 

Suppose the finite population of interest can be partitioned into 

k subsets or strata. Let Nh be the number of units in stratum h 

and b h i t 1 h d h . th . . e t e var a e va ue attac e to t e J. unit in stratum h, 

i = 1,2, .•• , Nh; h = 1,2, ••• , k. Each stratum of the finite 
Nh 

population may be considered as a vector in R , where R is the real 

numbers. A stratum may.then be sampled by randomly obtaining nh 

integers from the label set, {1,2, .•• , Nh} and observing the values, 

attached t0 the units. For simplicity, we will denote the observed 

values by· ~l '~2 , •.• , xhnh and. the unobserved values . remaining in 

the p0pulation by yhl ,yhZ, ••• , ·yht , where th 
h 

a samp;Le of size °h from ea<:,h stratum, we wish to make an inference 

n0t only about ·the stratum mean, 
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but. also about the overall mean, 

where 

As an extension of Cochran's [3], [4] suggestion, suppose that the 

value, Uhi' attached to the ith unit in stratum h is the 

realization from a super distribution, say fh (Uh I eh), h .. 1,2, .•. , k. 

That is, the finite population, (Uhl, UhZ, .•. , UhN ) , in stratum h 
h 

is the result of a.random physicaJ process. described by a probability 

distribution. For example, suppose the finite populations of heights, 

weights, or i~telligence is stratified on the basis of race, then we 

can consider each stratum as ·large random samples from a normal 

distributi.on defined by genetical mechanisms peculiar to that race. 

Under this concept, a simple random sample from a stratum is also 

a simple random. sample from the super distribution giving rise to that 

stratum. Now the hth stratum mean can be predicted frGm the hth 

predictive density and the overall mean is predicted by 
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with precision 

Three features of this conc~pt should be noted. First, it is not 

necessary for the super distributions to be members of the same general 

class of distributions. Second, the prior distribution for stratum i 

and the prior distribution for stratum j, i .;. j, are not required to. 

be members of the same general class of distributions. Third, it is not 

appropriate to group the k strata into one population and obtain a 

simple random sample from this one population in order to estimate the 

overall mean. Hence, we do not consider the problem of increased 

precision by stratification. 

Stratified Sampling 

In this section we assume the finite population can be stratified 

as previously discussed, and we will derive a predictive estimator for 

the overall mean, 

for some·of the m0re interesting super populations. Although it is 

not·necessary, we will require the super distribution and the prior 

distributicm for each st:ratum to belong to the same general classes of 

distributions, respectively. Alsp? we will emit defining notation which 

.is an obvious extension of the notation used in Chapters II and III to 

stratification. 
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First, suppose the super distribution for each stratum belongs to 

the class of Bernoulli. distributions •. If we as.sume a Jeffrey vague 

prior distribution on the parameter, ph, in each stratum, it follows 

by Corollary 2.1 that the predictive estimator _for the proportion of 

successes,. Y, is 

(4.1) 

with precision 

(4. 2) 

Now assume the super distribution for each stratum belongs to the 

class of normal distributions whose variance is known.for each stratum. 

If we assume a Jeffrey vague prior distribution for the parameter, µh, 

in each stratum, then by Corolla~y 2.5 the predictive estimator for the 

overall mean, Y, is 

1 k 
E(Y) "" - ~ N X. 

N l h n 
(4. 3) 

with precision 

(4.4) 

Also, it the prior distribution for the parameter, µh, in each stratum 

belongs te the class of normal distributions, that is 

) ' 
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then by Corollary 2.6 the predictive estimator for the overall mean, Y, 

is 

E(Y) = 1 E N h n Oh Oh + n Oh 
k[ nX.+n µ n.n 

. . N 1 h ~ + nOh nh + nOh 
(4.5) 

with precision 

(4.6) 

Again, assume the super population for each stratum belongs to 

the class of normal distributions but whose variance is unknown for 

each stratum. Now if a Jeffrey vague prior distribution is assumed for 

the parameters, and in each stratum, then the predictive 

estimator for the overall mean, Y, is obtained from Corollary 2.7 as 

1 k 
E (Y) = - E N xh . 

N l h 
(4. 7) 

with precision 

(4. 8) 

Now, if it. is appropriate to assume a normal-inverted gamma 

distributicm as the .Prior dist;ribution for the parameters, and 

in ea.ch stratum, then it follows ltiy Corollary 2. 8 that the predictive 

estimator of the c:>verall mean,. Y, is 

E(Y) 
1 k 

= - E 
N l 

(4.9) 
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with precision 

1 k vlh ~lh 
V(Y) = ·N2 lE (Nh - n. )(Nh + nOh) n nlh(vlh - 2) • 

(4.10) 

Now suppose the super distripution fqr eac;h st;-.atum belongs to the 

2 . class of distributions. defined by (3.1) with gh = 0 and crh known for 

all h. If we assume a Jeffrey vague .prior dist.ributioI). for the 

parameter$, ah· and Sh, .· in each stratum, then by. Corollary 3 .1 the 

predictive estimator of the overall mean, Y, is 

with precision. 

1 k 
V (Y), = ...- E N (N . -

N2 l h h 

2 
If crh is unknewn for all h and we assume a.Jeffrey vague prior 

(4.11) 

(4.12) 

distri'bution for the parameters, and in ·each str~tum, 

then ·by.Co:rnllary 3.3 the predictive es·timator <1>f. the overall mean, Y, 

.is given by (4.11) wit'h prec,ision 

2 2 '{ 1 . k Nh Sh . Nh - ~·. 
V(Y) = - E · + 2 n··-4 n.·N. 

N . 1 h , n 'h 
(4.13) 

Again, assut,ne th~ super distributi.on for eaqh stratum belongs to 

the class of distributioQ.s defined by (3._ l) but with 8h = 1 

known for all h.. If we a$su~e a Jeffrey vague .prior distribution for 
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the parameters, ah and Sh' in each stratum, then by Corollary 3.5 

the predictive estimator for the overall mean, Y, is 

1 k 
E(Y) • - 2: N 

N l h 

with precision 

( 
k 1 2 

V(Y) = - E a 
N2 1 h 

(4.14) 

Nh ~i - NhXh'),) 2 E 
1 2 Nh(Nh-~) 

~ 2 8hx + nh 
shx 

(4.15) 

If we assume 2 
crh is unknown for all h and reti:i.in the other previous 

assumptions, then by Cc!>rqllary 3.8 the predictive e$timator of the 

overall mean, Y, is given by (4.14), but with precision 

V (Y) = ~ ! ~ S~ 4 { ~ ( ~h ~i r 
(4.16) 



CHAPTER V 

OPTIMUM ALLOCATION 

In this chapter we assume.the finite population may·be.stratified 

into k strata as discussed .in Chapter IV and that we are interested in 

predicting a linear combination of the stratum mean, say 

where .tb' h = 1,2, ..• , k, is a conE?tant and Yh is the mean of 

stratum h. ·Also, we assume the total resources, C, for the sample .. 

survey is fixed and that .. 

k 

C = ~ t~ ch' g > 0 (5 .1) 

where is the cost associated with sampling one unit·in stratum h 

and th is the total number of units sampled in stratum h. 

The object,ive in this chapter is to alloc~te the resources, C, 

among the k strata in order to achieve a minimum for the expected 

precision of the predictive estimator.. If the prior information for the 

variance in each stratum is not informative, a complete solution for 

the allocation is not known. In this event w~ propose the following 

ad hoc procedure util.ized by Draper and GuttmC:1.n [13] in their Bayesian 

approach to allocation in stratified sampling. 

7() 
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The total sample will be selected in two phases. First, a sample 

of size nh is obtained from stratum h,. h "' 1,2, ... , k. The value 

attached to a unit in this sample will be represented by xhi' 

i "' 1,2, .•. , ~; h = 1,2, •.• , k. Second, a sample of size ~ is 

obtained from the remaining units in stratum h, h = 1,2, ... , k. The 

value attached to a unit in this second sample will be represented by 

i - 1,2, m, ·, ••• ' n h = 1,2' ... ' k. 

remaining in stratum h, h = 1,2, ... , k, 

There are N -n -m. 
h h n 

and we will let 

represent the unobserved value attached to ith remaining unit in 

stratum h. 

units 

Assume that the first-phase sample has been obtained and that nh' 

h = 1,2, ... , k, were determined so that 

k 
C > " ng c i. h h 0 

Our objective now is to determine. ~' h = 1,2, ... , k, such that the 

expected precision of the predictive estimator is a minimum subject to 

Bernoulli Super Distribut.ion 

In this section we will assume the following: 

(1) The super distribution in each stratum is a Bernoulli 

distribution with parameter, ph, h = 1,2, ... , k. 

(2) The prior distribution for the parameter, ph, 

h = 1;2, ... , k, is a Jeffrey vague prior. 
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We now state two lemmas whose proofs are omitted because the proof 

of each is analogous to the proof of Theorem 2.1. 

Lemma 5.1. Suppose assumptions (1) and (2) hold. Let ~i, 

i • .1,2, .• •• , ~' be a simple random sample ot size ~ .. from stratum 

h. Let· yhi' i • ·1,2, ••• , 11b' be a futute simple.rand:em sample of 

size 11\i from stratum h. Let 

. Then the. predicti,ve density of yh is 

(5.2) 

Lemma·5.2. Suppose assumpti1;ms .(1) and (2). hold. Let ~i, 

i "" 1,-i ~- ..• , ~, · be a first-phase simple .ra:ndom sample .of size ~ 

fro)ll stratum h ·-and_ let, yhi' i = -1,2, ••• ; 11\i' be a second-phase 

simple random sample af size 11b from stratum h. Let zhi' 

i = 1, 2, .•• , .Nh -°ii-Il\i, repi;-ese,nt the unobserved value attached ta the 

i th remaining. unit_ ;in stratl.!:m h. Also, le-t . 
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and 

Then the predictive densit~ of is 

(5. 3) 

If we utilize a two-phase sampling scheme as previously discussed, 

then 

can be written as · 

when~ and 

estimat.or of Y is 

which will reduce to 

using (5.3). 

are defined in ;Lemma 5.Z. 

k 
E(Y) = E [E(zh) + yh + xh] 

1 

The predictive 

(5. 4) 
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The precision of this estimator is 

and obtaining V(zh) from (5.3), we have 

k. 
V(Y) = }.: 

1 
) . (5.5) 

Also, the expected precision of t4e predictive estimator based on the 

result.s of. the first ... phase sample can be derived utilizing Lemma 5 .1 and 

is 

(5.6) 

Theo:rem 5 .1. Suppose· assumptions (1) and (2) hold. Let ~, 

h = 1;2, ·~·' k, be an allocation for the first-phase sample such that 

k . 
C > E ~ ch, g > O. 

1 

Then (5.6) is m;lnimized subjec~ to (5.1) if 

1 
-1 a g 

C(qhch ) 
h = 1,2' ••• ' ·k 

where. 

(5. 7) 
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( l r ~ Nh ~ 
h 1,2, •.. , k. qh = = 

~ nh+l ' 

and 

a =z fi 
g + 1 • 

Proof:. Apply the method of Lagrange multipliers to min~mize 

subject to 

It is possible that formula (5. 7) col.lld produce values such that 

~ < 0 or ~ > Nh - nh. If ~ < O, th.en stratum h has been 

oversampled. Hence, this .stratum should be omitted from the second-

phase sample. If ~ > Nh - nh, then set ~ = Nh - nh. In either 

case it is recommended that these strata be deleted in determining the 

second-phase allocation and that the fixed cost be adjusted 

correspondingly. A new allocation is then calculated for tl:i.e remaining 

strat~. 

Normal Super Distribution 

In this section we assume the super distribution in each stratum 

is a normal distribution with mean and variance 

h = 1,2, ••• , k. Formulas are derived for allocating the total 
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resources, C, in order to minimize the expected precision of the 

predictive estimator of 

Suppose is known for all h and assume a Jeffrey vague prior 

distribution for h=l,2, ... ,k. The precision of the predictive . 

estimator of Y is given in (4.4) by 

(5. 8) 

Since V(Y) does not involve sample observations, it is not necessary 

to resort to the twp-phase sampling technique. Hence, we determine the 

nh, h = 1,2, ••. , k, which minimizes (5.8) subject to (5.1) by the 

Lagrange multiplie~ technique, and we obtain 

h = 1,2, ... ' k 

where wh = :Nh/N. This is the classical result of Neyman given in 

Cochran (12] page 97 with g = 1. 

2 Now suppose oh is unknown for all h and assume a Jeffrey vague 

prior distribution fo~ and h = 1,2, •. '·' k. If a one-phase 

sample is used, then the precision of the predictive estimator as given 
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by .(4.8) invo.lves the sample observations. Hence, we will ut.ilize the 

two"'.'phase sampling sch.eme. 

In a4dition to. the terminology given at the first of this chapter,. 

we will let 

and 

2 s .. 
hy 

for h = 1,2, ... , k. Hence~ we can ,express 

in the fGlrm 

(5.9) 

We n!i>W state .three. lemmas without proofs, but .remark that the 

proofs.of each follow in the same manner as the proof ot Theorem 2.~. 

1n each leni'ma we assume the super. distribution is normal with mean µh 
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and variance Also, we _assume the. prior distribution of and. 

2 crh is ~ Jeffrey vague prior. 

Lemma 5.3. Let ~-i' i = 1,2, ••• ' nh·'. be a simpl~ ra'I}dom sample of 

s:i,ze· nh from stratum h. Let yhi' i ... 1,,2' ... ' ~' be a future 

simple random sample of size ~- from stratum h. Then the predict;i,ve 

density of. yh is a t-distri,butipn with (nh-1). degrees of freedom, 

location parameter xh' a:p.d precision nh~/(~ + 11\i)s~x· 

Lemma 5.4. Let x. i = 1 2 ·h,. be .a s. imple ran_d. om s_ ampl_e -of ; · ni' · · ' ' • • • ' 'h' 

size from st~atum h. Le.t i = ,1,2 ~ ••• ' ~' be a future 

simple random sample of.size ~ from stratum h. Then the predictive 

density of u = s 2 /s2 is an F-distrib_ution with ·· hy hx (1I\i-l) and 

degrees of freedom. · 

Lemma_S.5. Let· ~i~ i = 1,2, ••• , nh, . be a first"'."phase simple .. 

random sample of size ~ from stratum h and let 

i = _l, 2, ••• ·, -~, be a second-:-phase simple random sample .of size ~ 

from stratum h. Then the p.redictiye density cH zh is a 

t-distril>Uti0n with (11\i+nh-l) df:\grees of freadom,. location parameter 

and prec:f;siot1 

where 

~yh + nhXb 

th 

(Nh "'."th)th.(th -1) 

Nh qh 
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(5.10) 

From Lemma 5.5, we obtain 

as the predictive estimator of (5. 9). Also, .we ob ta.in .the precision as 

V(Y) 

where qh is defined.in (5.10). Now V(Y) is a function of unobserved 

sample values; hence, we consider E[V(Y)] where expectation is with, 

respect to the predictive densi~ies of yh and 

From Lemma 5. 3 and 5. 4 ~ we ob ta.in 

k 
E[V(Y)] = ! E N2 

N2 l h 

2 
sh ' .Y 

h = l·, 2 ' ••• ' k. 

(5.11) 

Theorem 5.2. Suppese tbe super populat:I:on distribution in each stratum. 

is normal with mean . µh and variance 

suppose the prior distributi.on of µh 

2 
oh, 

apd 

h = 1,2, 

2 h oh,. = 

a Jeffrey v~gue prior. Let h=l,2, ••• ,k, 

for the Hr st-phase sample such that .. 

Then· (5 .11) is minimized subject to · (5 .1) if 

... ,._, k. Also, 

1,2, .. •.' k, is 

be an allocation 



where 

and· 

1 

2 -1 a g 
c(Whphch ) 

a = g 
g + l ' 

°h-1 2 
p m--s 
h nh-:3 hx • 

h ... 1,2, ••• ' k 

Proof: · The. result is obt~Jned by apply:i,ng the method of Lagrange · 

multipliers to (5.11) and.(5.1). 
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(5.12) 

The discussion following Theorem 5 .1 pertaining to formula (5, 7.) 

als.o applies to formu.l,a (5 .12). In addition, note that ... formµla (5 .11) 

requires °h .:_.4, h = 1,2, ••• ; k. 

Parametric Fµnctions in Stratified Sampling 

Previously in this chapter, we were cencetned with estimating the 

overall finite population mean. In th.is section:, we will coneiider the. 

more general problem of estimating r < k linear functions . 

i = 1,2, ••. , r 

of the k stra.tum means where the coefficients, .e.ih' are kndwn. 
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Des Raj [6] considered this problem from the classical approach 

with the stratum variances known. We will assume the super population 

distribution in each stratum is a normal with mean µh and variance 

2 ah. Also, we will assume that the joint prior distrib.ution cm µh and 

a~, h .. 1,2, ... , k, is a Jeffrey vague prior. With these assumptions, 

we will utilize the two-phase sampling scheme to determine the optimum 

second-phase allocation for various restrictions. We will assume that 

an allocation for the first-phase has been determined such that 

k 
C > ~ n~ ch, g > 0. 

We will first consider the minimization of cost plus total. expected 

loss base-d on the first-:phase sample where. the loss function is of the 

form 

and is a co.nstant, Hence, the function to be minimized is 

k r 
G = L (~ + nh)g ch+ L µiE[V(Li)], 

1 1 

Using Lemma 5.3 and Lemma 5.4, we can express G as 

where is defined in '.l'heorem 5.2 and 
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It is easy to verify that 

( + )g+l 
~ nh (5 .13) 

minimizes· G. Hence, the second-phase allocat:i,.on formula is 

Now consider minimizing the expected loss based on.the first-phase 

sample subject tq a fixed cost. That is, minimize 

r 
G "" L: µ . E[V (L .) ] 

1 1 1 

subject to 

Expressing G as 

and using the method of Lagrange multipliers, we obtain 
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1 
g 

11\i = - n 
h (5.14) 

where l:lh and ph are as previously defined. We note that if 

r = 1, and 

then (5.14) is equivalent to (5.12). 

Now suppose we wish to minimize the cost subject to a fi:ll:ed 

exp!'!cted variance based on the first-phase sample. That is, minimize 

subj e'Ct to . 

where 

E[V(L )] • . i 

are fixed cortstants. 

have the system of equations 

a, + 
1 

i = 1,2, ..• , r, 

If we apply Lagrange multipliers, we 

h = 1,2, •.. ' k 

i = 1,2, ••• ' k 



We note that .these. equations are not. algebraic in Il\i' · 

h • 1,2, ••• , k, and Ai' i = 1,2, • , • , r,· Hence, these equations 

would have to be solved by an iterative process to determine the 

second-phase allocation. 
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CHAPTER VI 

SUMMARY AND EXTENSIONS 

Our study is devoted to the application of predictive densities to 

sample surveys utilizing th.e super populatio~ conc;ept as given by 

Coch.ran [3], [4]. This approach is applied to three general areas of 

sampling the0ry, namely, (i) es.timation of the finite population mean 

in simple random sampling, (ii) estimation of the finit.e population 

mean utilizing available auxiliary informaticm, and (iii) allocation 

of sampling units among strata when estimating a linear function .of the 

stratum means is of inte.rest. 

Estimators of the finite population mea~ are derived in Chapter II 

assuming the super population is (i) a Bernoulli, (ii) an exponential, 

and (iii) a normal distribution. Also, a measure of the precision of 

these predictors is obtained. Auxiliary information is utilized in 

Chapter III to derive regression and ratio type estimators of the 

finite population mean. 

The 1results of Chapters II and III are extended in Chapter IV to 

obtain estimatorsi of the overall finite population mean when, it is 

feasible, to stratify the total finite populat:l,on. These results are 

then used in Chapter V to derive formulas for allocating the sampling 

units among the strata. In partic;ular, allocation formulas are derived 

when estimat.ing several linear combinations of stratum means and only 

Qc; 



vague prior information is available for the .vector parameter e of 

the super populat~on. 

Sine~ only. vague prior information is available., we allocated a 

portion of the total resources to the first-phase sample and then, 

based on the results of the first-phase sample, the. remaining 

resoui::-ces were allocated among the .strata. A problem for future 

consideration would be to determine a.best method of allocating the 

total resources between the first-phase sample and the second-phase 

sample. In addition, the allocation problem for a stratified 

population utilizing auxillary information would be of interest. 
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It would be of interest to apply the technique we have used to 

other areas of sample surveys. Fer instance, our technique could be 

adapted to cluster sampling. Also, it may be of interest to apply this 

procedure to sampling with .probability proportional.tG> size. 

Another area of inter.est for future study is to compare finite 

population parameters utilizing ptedictiye densities. Geisser [2] has 

suggested how this cou.ld be done. 
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