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CHAPTER I 

INTRODUCTION 

The formation of ion-pairs and complexes in solutions of electro­

lytes is an area of physical chemistry in which considerable development 

has occurred in the last thirty years. Much of the recent impetus has 

come from the development of new physical methods for studying the ther­

modynamic and kinetic properties of solutions. These new methods have 

provided much of the needed additional information required for the de­

tailed study of the factors involved in ion association. 

In.order to describe a system thermodynamically, it is necessary to 

have a detailed knowledge of the species present in a solution. New 

ions or uncharged molecules resulting from interactions in solution will 

affect the thermodynamic parameters of the solution, and a description 

involving only the unassociated constituent ions will not be adequate. 

There are many dif~iculties in the analysis of a system as complex as a 

solution, but a concerted effort is being made to solve the numerous 

problems. 

One area of special interest in the description of solutions is the 

study of the formation of metal ion complexes and the manner in which 

these comple~es are formed and interconverted. In solutions this pro­

cess is most often a matter of the replacement of one coordinated ligand 

by another. The substitution of a ligand in the inner coordination 

sphere (leaving group) by another ligan (entering group) is the funda-

1 



2 

mental reaction in metal ion solution chemistry. All discussions of 

metal complex ~ormation are dependent upon a knowledge of the dynamics 

of these processes. 

Thermodynamic Background 

The acceptance of the Debye-Huckel theory of interionic attraction 

has permitted a satisfactory interpretation of the thermodynamic behavior 

of very dilute solutions of electrolytes (1). In these solutions the 

ions are sufficiently far apart that the interionic effects are essen-

tially electrostatic in nature. However, at higher concentrations when 

the ions are closer together, the approximations used in the development 

of the Debye-Huckel theory are no longer valid. It can be shown that 

the attraction force between ions of opposite charge may be considerably 

larger than the thermal energy which attempts to maintain random orien-

tation of the ions (2). Thus ions in more concentrated solutions may 

not be considered as simple point charges in a dielectric continuum. If 

the attractive force is great enough, an actual bond may be formed be-

tween ions and a new species formed in the solution. Although the 

equilibrium is a dynamic equilibrium and not a static one, the result is 

that.there exists an appreciable concentration of the ion-pair at any 

given instant. 

Ion association in a solution of an electrolyte, M A , may be ex­
m n 

pressed by the equilibrium: 

(1.1) 

If the solution is dilute enough that the activity of the solvent remains 

constant, then the thermodynamic association constant is related to the 



activities of the species in the solution by the Equation 

K = 
[MA(n-m)+J 

[Mn+][Am-J 

where the brackets enclose the activities of the species. 

3 

(1. 2) 

The Debye..;;HUckel theory makes certain assumptions that clearly will 

not remain valid as the concentration increases. Among these are that 

the central ion sees its surroundings in the form of a smoothed-out 

charge density not as discrete charges; no ion-pairs are formed; only 

long-range coulombic forces are involved in ion-ion interaction; and the 

only role the solvent plays is to provide a dielectric continuum (3). 

The applicability of this theory to solutions is valid only long as the 

assumptions represent an approximation of the actual conditions in the 

solution. As the concentration increases. ions will approach each other 

so that the charge density will not be smooth. Furthermore, if the sol-

vent has a dipole moment, as many do, the ion will interact with the 

dipole and may actually be bound to the ions. This ion-dipole interac-

tion will not be important (in most cases) to the thermodynamic proper-

ties of very dilute solutions, but if the ions interact, tP.e solvent 

molecules bound to the ion may interfere. 

In 1926 Bjerrum was.the first to recognize the possibility of ion-

pair formation in solution and proposed that the deviations from the 

Depye-ff~cke1 theory could be accounted for on this basis. From purely 

electrostatic considerations he obtained the expression for a thermody-

namic equilibrium constant for the formation of a single ion-pair as (1) 
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2 
41TN q [-z+z_e J 2 

K = 1000 lg exp . e:rkT. r dr (1. 3) 

0 
where N is Avogadro's number, q is the interaction limit, a is the dis-

tance of closest approach of the ions, e: is the dielectric constant of 

the bulk solvent, zi is the ionic charge of the i-th ion, r is the dis­

tance of separation of .the two ions center-to-center, k is the Boltzmann 

constant, and T is the temperature of the solution in degrees Kelvin. 
! 

Although this equation was developed from consideration of the factors 

that will determine the formation of ion-pairs, it uses the simplest 

model possible. The ions are considered to be rigid spheres in a con-

tinuous dielectric medium and all ion-solvent interactions are discount-

ed. In order to evaluate the integral, Bjerrum found it necessary to 

impose a cut-off on the limits at r = q, and this was justified by argu-

ing that only short-range coulombic interactions lead to ion-pair forma-

tion and ions separated at distances of r > q are more appropriately 
0 

considered as free ions. In the Bjerrum equation the value of a is not 

necessarily that separation which places the ions in contact. Later 

theories are.either very complex mathematic~lly (4,5) or only consider 

ions in contact.as forming ion-pairs (6,7) and are no more satisfactory 

for many purposes than is the Bjerrum equation (2). 

At the time the relaxation methods were conceived, the development 

of classical experiments and theories of solutions were at an impasse. 

The development of the Debye~Hlickel theory and the extensions to it were 

unable to explain electrolytic solutions in detail (1). Based solely 

upon electrostatics and the model of the solvent as a dielectric con-

tinuum, the relative simplicity of the .model failed to account for dif-
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ferences in equilibrium behavior of reactions .whic~ involved ions of the 

same charge type, and restricted its application to relatively dilute 

solutions. 

Kinetic Background 

During the Second World War, as sonar was undergoing development, 

it was discovered that the seawater attenuated the propagated sound wave 

more than could be accounted for by theoretical predictions (8). At-

tempts were made to vary the sonar pulse frequency and achieve a longer 

range of detection. These attempts were unsuccessful as there appeared 

to be multiple absorption maxima at different frequencies. After the 

war, the application of ultrasonic tools to electrolyte solutions opened 

a new field to investigation, and ultrasonic relaxation processes were 

noticed and recorded but no definite interpretation proposed. It was 

necessary to wait for the work of Eigen and his school (9) for the in-

terpretation of the ultrasonic spectra of electrolyte solutions as well 

as the introduction of new relaxation methods which has stimulated the 

recent fundamental advances in the theory of electrolytic solutions. 

The advent of relaxation methods provided a new dimension to equil­

ibrium studies in that, as the time resolution of the experiment was im-

proved, the analysis of the progress of the reaction toward equilibrium 

became a tangible experiment. The multiple relaxations of seawater have 
I 

been attributed to the divalent metal sulfates forming ion-pairs, and a 

new model of the structure of solutions developed to account for the 

multiple relaxations observed. Experimental results suggest that more 

than'. one type of ion"'!{>air is formed as the constituent ions approach one 

another, in contrast with the more classical interpretation of only one 
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ion-pa'ir. As th,e ions converge to contact distances in solution, the 

prqcess is primarily diffusion. More importantly, at shorter separation 

distances, there is a region of ionic salvation where, due to ion elec-

trostriction, the solvent can no longer be thought of as a continuum. 

Regions of .concentric potential wells enveloping the central ion, whose 

minima correspond·to the formation of a number of stable ion-pairs, dis-

rupt the monotonic increase of coulombic energy of attraction expected 

from the continuum model. A description of the proposed overall mechan-

ism follows . 

General Mechanism 

The generalized elementary reaction to be considered is described 

by the equation 

rhis reaction proceeds in competition with solvent exchange 

k ex 
MS + S* ~ MS* + S 

(1.4) 

(1. 5) 

The solvent is of paramount importance, and each ion has a characteris-

tic rate of substitution. The observed rate law for the formation of 

ML (10) is 

= (1. 6) 

in the absence of competing chemical equilibrium, exclusive of solvent 

exchange; kf is th~ observed overall effective forward rate constant for 
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a reaction which may involve a number of steps, only one o~ which is 

rate determining,. ~ is the overall backward rate constant. One step 

will·involve the exchange of coordinated water(s). kf[M][L] then does 

not necessarily represent the structure of the .activated complex nor the 

molecularity of the forward rate-controlling step. Based upon compara-

tive kinetic studies done by varying M and L, activation energy, and non-

kinetic considerations (10), three types of mechanisms are possible 

which are equally compatible with the rate law:. (1) dissociative, D, 

(2) associative, A, and (3) interchange, I; the last having tendencies 

toward either dissociative interchange, Id (non-limiting D), or associa­

tive intercb,ange, I (non-limiting A). 
a 

In the D mechanism the rate-controlling step is cleavage of the 

metal water bond to produce a transition state of reduced coordination 

number. Confirmation of this mechanism is sought in equality between the 

rate of solvent exchange calculated from the rate of complex formation 

and k measured experimentally (11) by 170 nmr. kf might also be ex­ex 

pected to be independent of the nature of the entering ligand. A further 

test more recently proposed (12) is that a linear relationship between 

the free ene:rgy of activation ad* and !J.G0 for a particular metal with a 

series of ligands is indicative of the D mechanism. A, on the other 

hand, will involve an activated complex of increased coordination and 

ultimate confirmation c01µes from kf values which, for a given cation, 

are ligand dependent. This.is believed to be the only true test for an 

associative mechanism (13). The interchange mechanism is a concerted 

exchange between water in the first co.ordination sphere and. ligand in 

the second coordin~tion sphere (14). Since the mechanism is not limit-

ing like the other two it is impractical to describe the coordination 
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number of the activated complex. Ligand dependence might be anticipated 

but to a lesser degree than in A. Distinction between Id and D mechan­

isms could be difficult, if at all meaningful, since experimental error 

in kf may conceal any differences between the directly measured and the. 

calculated k , To date it is perhaps fair to say that the dissociative, ex 

or if prefert'ed, the Id mechanism is the one most frequently encountered 

in complex formation reactions. Substitution into square- planar metal 

complexes appears to be the sole province for associative mechanisms 

(10). 

The Ion-Pairing Mechanism 

After considerable deliberation, the multi-relaxations observed 

acoustically were correlated with a multistep comple:ic formation mechan-

ism (15) attributed to Diebler and Eigen. A three-step mechanism was 

postulated to account for the relaxation spectra and the search has gone 

on for three distinct .relaxations (l.6,17,18). The mechanism describes 

the approach of the ions from infinite separation to contact distances 

in steps controlled by (a) ion diffusion until the ions, with coordina-

tion spheres intact, are in contact (8,19,20), (b) desolvation of the 

anion to form an outer ion-pair, and (c) desolvation of the cation to 

form a contact ion-pair. These steps in order of decreasing relaxation 

frequency are 

~+ + Aa-
(~q) (aq) 



where the kij values (j = i + 1) represent the specific rate 

The individual equilibrium constants are then defined as Kij 

for each of the consecutive steps. 

constants. 

= ki ./k .. 
J J1 

The expression for the overall thermodynamic.formation constant, 

9 

Eq. (1.2), must be revised and now is.related to the individual step-wise 

ion-pair formation constants hy the following expression (neglecting 

K = 

= 

K = 

[MW2A] + [MWA] + [MA] 
[MJ [A] 

[MW2A] [MWA] [MA] 
--....-- {l + + ~..-. . ..,,..] 
[M] [A] [MW 2A J [MWA 

(1. 7) 

(1.8) 

A.s a consequence, if the assigned mechanism is c;:orrect, the structure 

and molar distribution of the complex species present in t~e solution 

can not be.identified from the overall formation constant. The only 

route to the evaluation of the individual equilibrium constants is by 

kinetic investigations. Typically these equilibria are established very 

rapidly and are accessible to relaxation technique. 

Research on fast reactions in solution has developed rapidly in the 

years since fast kinetic methods have become available. Rates of reac-

tion of the alkali metals (21,22) alkaline earths (21,23), and transi-

tion metal ions (21,24) with various ligands have.been extensively 

studied. It is generally observed that the ions of these groups which 

have a noble gas electronic configuration show a linear rate dependence 

with inverse cation radius, but a similar relationship for the transition 
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metal ions exists only after the ligand-field stabilization corrections 

have been made. In practically every case the role of water exchange is 

paramount ta ligand substitution. Chemically the lanthanides.may be 

compared to both the transition metal ions and the alkaline earth ions, 

but the relative unimportance of the ligand-field stabilization energy 

(LFSE) in the lanthanides (10) indicates a closer resemblance to the 

latter. It might be expected that a linear rate dependance with inverse 

cation radius would be apparent in the lanthanides but this is not the 

case (25). In the case where the entering group is murexide (26), sul-

fate (27-29), antll.ranilate (30,31), or oxalate (32), a sufficient number 

of the ions of lanthanide series have been studied to attempt an analy-

sis of .the rate dependence. The dependence is similar for all four cases 

showing a maximum rate of compJ,.exation for the ions in the middle of the 

series. Ultrasonic measurement of rates of complexation for the lantha.,... 

nide S\llfates (27-29) compare favorably with the rate of water exchange 

17 3+ obtained by 0 nmr line broadening for Gd in perchlorate medium (33). 

These rates are gener•lly about one order of magnitude greater than 

those for other.systems studied by other techniques and under differing 

ionic strengths. Since these other ligands may be considered to be 

bidentate ligands a direct cqmparison may not be justified, 

More recently'an attempt has been made to account for the variation 

of the .rate constants by assigning the variation to a change in the de-

gree of hydrogen bonding in.the solvated lanthanide ions across the 

series. In a study of the association reaction of the lanthanide ions 

with anthranilate in two solvent media, H2o and n2o, a large solvent 

isotope effect was found (31), from a ratio of kf (H20)/kf (D20) for 

lanthanum of 1:1 to a high at samarium of 6,3:1 and 6,9:1.1 at ytterbium. 
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These rates were determined by T-jump at 0.2 M ionic strength. A later 

study of the neodymium sulfate reaction by ultrasonic techniques (34) 

indicated again that the degree of hydrogen bonding might account for 

the variation in rate cqnstants. The results of the latter study might 

be questioned as the thermodynamic formation constant was not determined 

by an independent method.and in fact the ratio of the rate constants de­

termined, k34 (H2o)/k34 (n2o) = 2.37, is approximately the same as the 

ratio of the formation constants, K(H20)/K(D20) = 2.27. 

It is obvious from this resume of experimental results that rates 

of substitution and mechanisms have attracted most interest. Little in­

formation is yet available on.molar distribution ratios. 

The Solvent Media 

Water is thought to have considerable structm;:-e throughout its 

liquid range and especially at common laboratory temperatures. There is 

considerable evidence for this structure (35) including calculations 

based on the "flickering cluster" model of Frank-Wen (36) done by Nemethy 

aµd .scheraga which assigns discrete energy levels to water molecules de­

pending on their degree of hydrogen bonding. This model is capable of 

reproducing the the1;111odyna~ic properties for water from 0 to l00°c. The 

current models consider water to be composed of a variety of small poly­

meric species in rapid equilibrium with each other and monomeric water, 

The~e molecules in the;i.r clusters are held together by hydrogen bonds 

whose geometric energetic requirements are assumed to be sharply defined 

(35). Heavy water is considered to have much the same structure, indeed 

even more, as the strength of the deuterium bond is stronger than the 

hydrogen bond (35). A general rule in comparing H2o to n2o is that be-
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0 0 tween 0 and 35 C n2o is more structured than H2o. The commonly assumed 

corollary that n2o at one temperature behaves like H2o at a lower temper-

ature, is not necessarily exact. 

When an electrolyte is added to water some of the structure is ap-

parently lost which partially compensates for the normal types of elec-

trostriction of water molecules c1ose to the ions. Frank and Evans (37) 

have.attributed this effect to the development of a transition zone be-

tween the well regulated geometric pattern of·the first hydrated layer 

and the highly s.tructured but less ordered region of the bulk of the 

solvent. Whem salts are added to heavy water (n2o) there is an even 

greater loss of structure as would be expected. The evidence for this 

loss in structute is noted in larger negative values of AH and AS , the 
s s 

partial molar enthalpy and entropy of solution respectively. Swain and 

Bader (38) noted the effecta of salts on the broad infrared bands assign-

ed to hindered rotation (libration) of water. They have shown that this 

could be closely correlated with the corresponding heats of transfer for 

0 
the salts from H2o to n2o (AHt). Assuming tetracoordinated water mole-

cules and that the only difference between light and heavy water (as 

b~~ween ice and liquid water) is in their librational freedom, the entire 

solvent isotope effect can be ascribed to the change in the librational 

freedom of the four water molecules replaced as the ions are transferred 

Statement of the Problem 

This study was undertaken in an attempt.to further clarify tpe 

mechanism of the complex formation reaction in aqueous solution, and in 

particular the reaction of the trivalent lanthanide ions with the sulfate 



13 

ion and the effect of the solvent medium on the reaction para~eters. 

Experimentally the work has consisted of three ~ajor parts: (1) a con­

du~~imetri~ ~tudy of the ~ree energy of complexation of the 1:1 lanthan­

ide sulfates in deuterium oxide, (2) a kinetic study to determine if a 

solvent isotope effect (SIE) is apparent in the dynamics of the reaction, 

a~d (3) a study of the dynamics of the reaction at constant ionic. 

strength. The developments .;ind the pel::'tinence.of this investigation to 

the pt"operties of t;he aqueous lanthanide ions arediscusaeQ. in the fol­

lowing sections. 



CHAPTER II 

GENERAL THEORY OF RELAXATION METHODS 

The general principle of relaxation methods is that some parameter 

which affects a chemical equilibrium (pressure, temperature, electric 

field} is changed so rapidly that the chemical reaction lags behind. In 

the ultrasonic technique the parameter (both temperature and pressure 

together) is varied periodically, as.opposed to a transient disturlpance 

' (T-jump, P-jump, etc • .>'. The effect of the periodic perturbation is felt 

in chemical reactions which establish equilibrium very rapidly. All re-

laxation methods are restricted in application to reversible reactions 

and the rates measured are those near equilibrium. 

The response of a chemical equilibrium to an imposed perturbation 

is characterized by a relaxation time, T. This time can be defined from 

the generalized first order rate equation 

(2 .1) 

where x is ·the extent :of the displacement from the equilibrium value of 

reactant xe at time t and keff the overall effective rate constant with 

which the equilibrium is re-established. On integtation Eq. (2.1) gives 

x 
x 

0 

= 

wP,ere x is the magnitude of the instantan~ous displacement. When 
0 

14 

(2.2) 
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kefft = 1, x becomes equal to x0 /e and the time taken to reach this 

equality is defined as the relaxation time, T (39). Once the relaxation 

time is known, the effective rate constant is given by 

= 
-1 · -1 

T (sec) (2.3) 

The analytical form of kef f contains contributions from the forward and 

backward rate constants and depends upon the molecularity of both steps. 

The expe:r:tment;al objective' is to measure the relaxation time, T. 

Table II.contains some typical ~xpanded forms of the effective rate con­

stants, k~ff(40), For ionic :reactions in particular, the rate constants 

usually include concentration-dependent terms, primarily as a result of 

e+ectrostatic .interactions with .other ions, in the system, and increase 

in comple:dty because of induced changes in the ionic strength. 

TABLE I 

EXPANDED FORMS OF EFFECTIVE RATE CONSTANTS keff 

Stoichiometric Equilibrium 

(1) 

kf 
(2) A+ B t AB 

kb 
kf 

(3) A+B :t C + D 
~ 

kf 
2A :; A2 
~ 

-1 
T 

[kf(A+B) + ~] 

[kf(A+B) + kb(c+fi)] 

[4kf.A + kb] 

A, B, etc~ refer to equilibrium concentration. Whether these are 
initial or final equilibrium conditions depends upon the nature of the 
perturbation, forced oscillatory or transition. 
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Transient Relaxation Methods 

In some relaxation methods the perturbation is not periodic in 

nature, but rather a single displacement from equilibrium. For example, 

the T-jump experiment consists of altering the temperature of the solu-

tion in a few microseco~ds by dischraging a high-voltage capacitor 

through the solution. If the complexation equilibrium is enthalpy de-

pendent (or if any reaction coupled to the complexation is enthalpy de-

pendent), the equilibrium will shift. Because the RC product (R is 

electrical resistance; C, capacitance) must be kept low (8) since RC/2 

is the time constant of the temperature rise, an inert electrolyte (like 

KClo4) is added to the solution to lower its resistance, In this case, 

use of electrical conductance as the sensor device for monitoring the 

charge would be a poor choice. A sensor device commonly used is the 

optical density of the solution (19). If the color of the solution does 

. not.change appreciably in some region of the vi$ible or uv spectrum upon 

change of the ionization of the complex, a suitable indicator may be 

added to the solution coupling its dissociation with the dissociation of 

the ligand and the metal complex. The resulting information from the ex-

periment is a signal relating the change in the optical density (and 

therefore the ionization of the complex, since the response of the indi-
I 

cator is much faster than the complexation reaction) with time, This 

signal is amplified and displayed on an oscilliscope and recorded per-

manently by making a photographic.record. -1 
' is obtained.from the 

photograph by determining the time it takes the conGentration to fall to 

l/e of its original value. The time resolution of the experiment is 

such that individual complexation equilibria can not be determined, in-

stead the overall formation rates are deter+nined in the form of forward 
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and reverse, kf and~' rate constants (8). 

Forced Oscillatory Relaxation Methods 

The att:en~ation of a sound wave, passing through a fluid, for any 

type of absorption process, in terms of the amplitude level is related 

to the path l.'ength, d, by the Equation (41) 

p = -ad p e 
0 

(2.4) 

where P is the initial amplitude and Pis the amplitude at d(cm), and 
0 

a, in neper/cm, is the absorption coefficient. The quantity a is deter-

mined experimentally and is related to the relaxation time as follows. 

Eq ,, (2 .1) describes th,e response of the chemical equilibrium to the 

displacement in terms of a first order rate constant, provided the 

equilibrium value ~ is time in4ependent. If the perturbation is sinu­
e 

soidal in nature then the equilibrium value will vary in phase with it 

(curve b, Figure 1) around the mean value (curve a, Figure 1). If this 

variation is y and equal.to (x - x) where xis the equilibrium value at 
e 

time t, and similarly if the variation with the perturbation of the 

actual concentration difference (x - x ) is defined as y then the revised 
e 

.form of Eq, (2.1) can be shown to be (19) 

(2.5) 

w If the ultrasonic fequency f is 2-; and the amplitude of the wave is p, 

then the oscillatory variation in y is given by y = P.sin wt which on 

subst::i,tution into Eq. (2.5) gives the response to the'sinusoidal pertur­

bation to be 
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Figure 1. Periodic Disturbance of Chemical Equilibrium by External Parameter 
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(dv) + 
dt y = p sin wt (2.6) 

The solution to this equation in the steady state is 

y = 1 WT 
( · 2 i)p sin wt - ( 2 2)p cos wt 
1 + W T 1 + W T 

(2. 7) 

Graphical representations of this equation are shown as.broken lines in 

Figure 1 for various values of WT. The first term gives the harmonic· 

variation of y in phase with y = p sin wt. Absorption of power. (the 

damped oscillations) arises from the second term, so the dissipation of 

energy is p:i:;oportional to (wT/[l + w2, 2J), This expression has a maxi-

mum value of 1/2 when wrr = 1 which locates the characteristic or relaxa-

tion frequency (wR = 2TifR) when the absorption is a maximum as a function 

-1 of frequency~· The relaxation time is therefore given by i: = 2TifR, 

Lines a ·and b in Figure 1 correspond to the variation in y whe.n ' is much 

longer. than the period of .. oscillation (essentially zero displacement) 

and much shotter tha11 the period of oscillation (in phase with it) re--

spectively. Any other T produces a lag in response. 

In the absence of a chemical relaxation the absorption coefficient 

a increas.es with the square of the frequency a$ a function of frequency 
. . 2 

i.e., a/f = constant. Consequently an expression for absorption which 

does maximize wit:h increasing freql,lency is introduced. This is ,(a.·h A.), c em 

a dimensionless· absorption coefficient for the chemical relaxation which 

is normalized with re$pect to frequency and called the absorption co-

efficient per wavelength or per cycle. The resultant equation for a 

single chem:i.cal rela;J1:ation then becomes 

= Z(a. h. A.)R c em 2 2 l.+ w· L' 

(2.8) 



where (a .. h ~)R is the maximum chemical absorption per wavelength at c em 

WT = 1. Using this last equality, Eq. (2.8) can be revised to read 

20 

= 
f/fR 

2(a h ;\)R {---~.2} 
c em 1 + (f /fR) . 

(2.9) 

An alternative re:presentation of a chemical relaxation, this time in a 

solution where the solvent makes a contribution to the .total absorption 

aT, is (2 • 8) 

aT 
""2 = 
f 

A + B (2.10) 

where A.= 2(achem;\)R/cfR and c is the velocity of sound usually consid­

erec;i to be.the same in the solution and the solvent. Bis a constant 

term which includes the classical solvent absorption and contributions 

from relaxations which are characterized by higher values of.fR. aT' 

the total e~peri.mentally measured absorption coefficient, is usually 

taken to be t;he linear sum of the solvent absorption and the absorption 

by.chemical relaxation. The graphical representations of Equations (2.9) 

and (2,10) as a functi,on of frequency for a single relaxation are given 

in Figure 2. fR corresponds.with the frequency of the maximum in curve 

(a), Eq. (2.9) and with the frequency of maximum inflection, curve (b), 

Eq. (2.10), 

From the term in brackets in Eq~ (2.9) it can be shown that a single 

chemical relaxation ext;ends over one decade in the frequency range, e,g., 

if fR .., 5 MHz, then (achem;\) has the same value at 0.5 MHz and 50 MHz. 

As a resv.lt the resolution of fR is relatively poor. Plots of. (achem;\) 
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versus f:requency must be lllB.de as log-log plots to preserve the symmetry 

pf the curves. Multiple relaxations are distinguishable as single re-

laxations only i;E the successive fR values differ by at least a factor 

of two, a situation not too frequently encoup.tered in practice. In that 

case the experimental data would be fitted to a multiple relaxation 

equation which is the simple sum of terms for the appropriate number of 

single t"elaxation~ (40). 

Correlation Between Relaxation Times and Stepwise Rate Constants 

Consider the two-step reaction: 

k12 k23 
A++ B- :Z· AB :t C (2 .11) 

k21 k32 

(1) (2) (3) 

Eigen and deMaeyer (9) have demonstrated the correlation between relaxa-

tioti ti,mes i:., the rate .ccmstants, and the concentration vari·ables for 
]. 

sueh a mechanism. It can be shown (9) that the relaxation times are 

given by 

I' -l ' SI 1/2 [tk ± (Ek2 - 41Tk) 1/ 2] 
I,II · 

(2,12) 

-1 -1 
where the positive sign corresponds to 'r , the negati~e to 'rr' and 

tk = (ki2 + k2l + k23 + k32) and 1Tk = ki2<k23 + k32) + k21k32· ki2 is a 

bimolecular rate constant which includes an activity coefficient quot-

ient to account for ionic atmosphere effects.on the reactant ions. 

Since chemical processes proceed with descrete time constants, the 

rate equations may be separated (9). If step 1 is diffusion control!ed, 
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as·it would be for outer ion-pair for111.ation, then tt21 , k21 » k23 , k32 

in which case the separate rate equations: reduce to 

and 

k' 
( I . 12. ) k + k 
kl2 + k21 23 . 32 

(2 .13) 

(2.14) 

Here TI is independent of the other step but T!I has to account for the 

·faster equilibr;lum shift ,which must accompany th,e secQnd step. By 

analqgy for the a4dition of a third step (9), and a third relaxation 

time the correlation is given by 

= (2.15) 

wherek2J is the f;i.rst terll). of Equation 26 a1;1d.the simplifying assumption 

th~t k12 ~k21 » k23 ,k32 >> k34 ,~43 i$ used. 

The overall rate expression is second or~er1 c;Lnd the only second 

·a 
ord~r rate c.c;inst~nt ;in the multistep mech~nism is k12 = kl2 e where e is 

the concentr~tion functio"Q. in 111oles/liter. The genet'al expression for e 

:ls (28) 
I 

e • 
a· ln 'fTf 

'fTfco C[IJ + [~] + [~] <a ln e >c } · 
0 

(2.16) 

wher1.a C ;J.s the analytical salt concentration, the bats represe.nt equi..;. 
0 . . . 

lib.if11m <Toncentraticms, S is. l:he degree of association Qf the salt calcu"'"'. 

lated from the overall,equilibrium constant measured under the conditions 
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of the kinetic experiment, Tif is the activity coefficient quotient which 

depends on the stoichiometry of the salt and the complex, and the partial 

derivative accounts for the change 'in the activity coefficeints on per-

turbation. 

lt should be emphasized that the stepwise rate constants, k .. and 
1J 

kji' are determined by the ultrasonic technique and the overall rate 

constants, kf and kb, by the temperature (and pressure) jump techniques. 

One of the difficulties in the correlation is that u may differ· between 

the methods~ 

Correlation Between Transient Methods and Acoustics 

Fro.m the steady state kinetic analysis (8), the overall rate con-

stants may be related to the individual rates by the following equations 

= = (2.17) 

The overall forward rate constants from techniques other tha~ acoustics 
, 

are frequently written as kf = K0k34 where K0 is the constant for a 

rapid preequilibrium step which if it can be calculated allows,a compar-

ison between k~ 4 and the rate of solvent exchange, k , for the purpose · ~ ex 

of i;nechanist:ic ass.ignment. Here·in. lies ·a serious problem in that K (or 
' 0 

indeed K12K23 ) cannot be calculated with confidence and usually these 

values are estimated from theoretical equations to establish an order of 

~ag~itude value. At the present it is not yet possible to measure these 

very high frequency reactions by acoustical means, although this even-

tuality is anticipated by some.workers in the field; 

Equ.ation (2.17) is the relationship which .correlates the overall 
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and stepwise rate' constants. The Bjerrum equation can be used to calcu-

late the outer ion-pair association constant K.J'.2 which where.necessary 

must be corrected for the ionic strength conditions of the experiment 

such that KJ'.z "" KlZ'TJ'f. Rewriting Eq. (2.17) in the new terms it becomes 

k = 
Kl2irf.k23k34 

k32 + k34 
(2.18) 

To simplify the interpretation an assumption can be made regarding the 

relative magnit;udes of the constants k32 and k34 , It is reasonable to 

assume that;,k32 :::! k34 (8) in which case kf = 1/2 [K12rrfK23k34J. 

The quantity K12irfK23 should be consistant with theoretical predic­

tions if the mechanistic result is correct. An exact comparison would. 

requi"t"e independen~ relaxation studies on the same metal-ligand system 

at the same conditions of temperature and ionic strength. So far this 

has not been.attempted, 



CHAPTER III . 

INSTRUMENTATION AND PROCEDURES 

The Conductivity Apparatus 

There are several methods available tc;> measure the conductance of 

an electro;I.yte ii;i. aquec;>us solut;l..on. Of these methods, the a.c, audio 

freque?).cy technique is less susceptible to polarizat;i.on effects at the 

electrodes, and more capable of precise measurement. For this reason, 

tP,e system e.boi;en ~or this study was.an a.c. conductivity apparatus 

operated at 1000 Hz. 

I 
The Conductivity Bridge 

The bric;lge used in.this study was.a Leeds and Northrup (Model 4666) 

electrol,ytic con4uotivity bridge with the audio. signal suppl.i.ed by a 

General Radio audio oscilJ..ator (Type l311-A) operated at 10.00 Hz and 10 

volts peak-to-peak. The detector circuit consistedof a General.Radio 

tuned ampl;l,t'ier and null, detector (Type 1232-A) and, a Tektronb: oscillo-

scope (Type 561 ... A equipped wHh Type 2B67 time base and Type 3A72 plug-

in unit). When the 60 kohm range of the bridge was insufficient to 

balance the high resistance of the cond'uctiyity ce:I.l or when the capaci-

tive reactance was greater than could be compensated for by the internal 

capacitors 9f the bridge; balance was achieved by connecting to the 

bridge a decade resistor (General Radio .'.J'.'ype 1432\o-Q) and a decade poly­

styrene capacitor (General Radio Type 1419~A). 

26 
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The Conductivity Cell 

A dilution type conquctivity cell with grey platinum electrodes was 

i~ersed.in.a thermostatec;l bath containing light.pataffin oil and con­

n,ected ,to th.e conductance bridge with 12 gauge copper wire. The bath 

temperature was regulated by a Thermistemp tempei;ature controller (Model 

71) and monitoted 'by a Beckman thermometer which had been calibrated 

aga;tnst.a NBS stanQ.arc;lized.thermocouple, The bath was maintained at 
0 . 

25 t 0~001 C with no observable drift for the duration of the experiment. 

The cell constant was measured using the standa~ds of Jones and 

Bradsh$W (43). Three solutions each .of O.lD and O.OlD KCl were prepared 

and multiple measurement,s of the 'J;'esistance made. Vsing the values for 

-1 -1 the specific conductivities of 0,012856 int. ohm cm · fol' tl)e O.lD KCl 

scil\ltion and 0.0014087 int. ohm_.1 cm-:ol for the O.OlD KCl·solution, the 

cell constant was found.to be 0;41687 a~-l 

.Experimental Procedure 

A weighed amount of the solvent was introduced;into the clean.dry 

cell. ~e cell was sealed and placed in the thermostated_bath and 

all.owec;l. to equilibrate, wh,ich requite4 about twenty m:i.nutes. After 

equilibration, the resistance was measured in the following manner. · The 

amplified signal from the btidge was.usec;l to-drive the vel;'tical amplifier 

of the . oscilloacope and a. signal ·from the input . transfo.rmer on the l>ridge 

was used to drive tb,e horizontal amplifier of the oscilloscope. The re­

sulting trace·on the oscilloscope was a Lissajous figure when the reac-
,. 

tance ot the .ce11 was not in balance with the reactaI).ce o:I; t.1;1.e bridge. 

TQ.~s trace was reduced to a horizontal line trace.as the bridge was ad_. 

jqsted to a balanced condition.. The measurement; was retained if the 
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balance was stable to within 0.001 ohms for a period of ten minutes. 

The resistance value obtained ·was used to calculate the specific conduct-

ance of the solvent (specific conductance = cell constant/measured re-

sistance) which was the value used in the remainder of the experiment. 

Weighed aliquots of the stock solution were added in succession to the 

cell from a weight buret and the resistance measurements repeated for 

each addition as described above. 

The Ultrasonic Apparatus 

The ultrasonic absorption technique.can be applied to a broad range 

of relaxation times., from 10-4 to 10-lO seconds, but the instrumentation 

varies depending on the particular time scale to be studied. For the 

pulse method, due to mechanical and electronic limitations, the range 

-6 -10 is limited to 10 to 10 · seconds. The instrument used in this study 

was limited to operating in the range from 5 MHz to 65 MHz. 

The Electronic System 

A block diagram of the apparatus is shown in Figure 3. A pair of 

square wave pulses are supplied by a pulse generator with a repetition 

rate of 60 pulses per.second. The time separation of the two pulses was 

not permanently fixed and could be changed by means of a variable delay 

line. The first pulse was use4 to drive the transducer system and the 

second pulse was used as a standard for comparison purposes. After 

leaving the pulse generator, the first pulse was amplified from 23 volts 

to 500 volts amplitude by the pulse amplifier. This signal was then 

sent to the t:i;'ansmitter which modulated the pulse. The signal from the 

transmitter, which was now about 150 volts peak-to-peak, was fed into a 
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circuit of about 75 ohms impedance. This final circuit contains the 

crystal transducer which oscillates at the frequency of the modulation 

on the pulse. The second pulse is amplified by the transistor pulse 

amplifier and modulated by the comparison pulse oscillator. The signal 

is then passed through a set of precision attenuators. The output from 

the receiver t:ransducer of the mechanical system is combined with the 

output from the attenuators in a passive adder circuit. 'The combined 

signal.pair.drives a narrow-band, high gain amplifier. The amplified 

signal was then demodulated by the video amplifier and displayed on an 

oscilloscope (Tektronix 536 with Type L plug-in unit for fast rise .time 

display). 

The Mechanical System 

The mechanical system used was that described by Fay (44). It con­

sists of three parallel stainless steel platforms anchored to a stain­

less steel back. On the lowel;' plat:(orm is positioned a table, fastened 

by a spring through the center and two spin-off nuts on either side. The 

table is supported by three adjustable leveling feet, and is also a chuck 

into which .the quartz delay rod is inserted. The electrical contacts 

with the rod are made·through either side of the chuck and through the 

bottom by a leaf assembly~ Externally, the connection to the electronic 

system is made through a B~C connector mounted on the side of the table. 

The center platform is e.quipped with a movable chuck (with electrical 

connections through the sides and base) tensioned by springs. The upper 

platform has a micrometer attached to it and mounted directly above the 

upper.chuck. The micrometer moves the upper chuck via an intermediate 

stainless steel ball; the motion of the micrometer is against the tension 
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of the,springs and provides a calibrated vertical motion of the receiver. 

transducer. 

The Transducer Assemb,ly 

Two delay rods of spectr·osil B grade fused quartz were obtained 

from Thel;'mal Syndicates Ltd., England. , The emitter and 1.ower delay rod 

:was manufactured to the following specifications: length, 80 ± 1 •. o mm; 

diameter, 30 ± 0.5 tDJD., with one.end ground to a taper with a semi-angle. 

0 of 5 • This tapered end was fitted into a ground glass joint on the 

lower pal't of a water Jacket and formed.the bottom of the absorption 

cell. The detector delay rod was pt'epared to the following specifica-

tions: lengt;h, 80 mm::!: 1 mm, diameter, 20 mm± 0.5 mm. Both cylinders 

had end faces optically flat to 1/4 the wavelength of green light and 

parallel to within 6 seconds of arc. 

Each rod was plated with platinum on one.end for a length of about 

30 nnn by application of Liquid Bright Platinum (DuPont /17447) and heat .... 

ing to ~oo0c. The plating was.consideired acceptable U: the resistance 

bet;ween th~ face and si!ie was approxi11lat;ely 1 oQ.m, The piezoelectric 
i 

tra~sducer elements were X-cut,quartz cr~stals with a fundamental reson-

ant frequency.of 5000 KHz with a tolerance of 70 KHz (Marconi's W~ T~ 

Co •. , Ltd,). · The crystal!;! were attached to t't!.e delay rods using hot 

pat'affin wa;x 1;1.nd the crystals were."rung-in" until there was less than 

20 db of loss.as measµred by the electronic system operating on common 

transm.it""'lieceive mode. The outer face of the crystal was plated with 

liquid si,l.ver'conc:Jucting paint .to ·achieve elC!lctrical contact. 
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Experimental Procedure 

The solution under study was placed in the. thermostated cell and 

sealed with a Plexiglas cap equipped with latex.rubber seals. The delay 

rods.were made parallel by adjusting the lower table until the trans­

mitted pulse displayed on the oscilloscope was maximized, This proce­

dure was carried out at minimum separation of the delay rods so that all 

subsequent operations would be removing a thermally stable rod from the 

solution rather than introducing a cold rod to the solution. The trans­

mitter pulse was tuned to a maximum amplitude as displayed on the oscil­

loscope. To insure that the comparison pulse generator was operating 

at the same·frequency a~ the transmitter circuit, the comparison pulse 

anc;l the transmitte.d pl,llse were overal.pped by adjusting the time delay 

in the comparison pulse circuit and adjusting the comparison pulse 

oscillator until a common frequency was obtained and "beating" of the 

two signals occurred. The operating frequency was then measured by sup­

plying a radio propagated continuous wave (c.w.) to the receivers from a 

signal generator (Eico, Model 315) powering a loop antenna encircling 

the receiver circuits. The exact frequency of the c.w. signal was moni­

tored by a freque.ncy counter (ElDorado, Model 1615) in the antenna cir­

cuit and the operating frequency noted when the oscilloscope once again 

displayed "beating" of the pulses. As it was not possible t.o measure 

the precise separation of tp.e delay rods, the total sound absorbed, in 

decibel,s, wai; measured as a function of the change in separation, in 

centimeters, of the delay rods. 



CHAPTER IV 

EXPERIMENTAL AND .TREATMENT OF THE bATA 

Solutions'for Conductivity 

Reagent gria.de.potassium chlortlde (Baker Analyzed) was dried at 300° 

C and 1 micron pressure for 48 hours. The Demal solutions used to ob-

tain the cell constant were prepared from the fried KCl and conductivity 

wa~er. The conduotivity water was steam-distillate passed through a 2 

meter column containing Rei;earch Grade Re~yn 300 (H-OH)(Fisher Certified 

Reagent) mi~ed bed deionizing resin and trace organic,:s were removed by 

further passage .over a 1 meter long column of activated charcoal. The 

water was.i:itored u:qde+- a stream of.dry nitrogen gas to purge dissolved 

ca:i::bon dio:dde. The specific conductivity of the water was.always 9,9 x 

10-7 mho cm-l or better for the duration of the study. 

Deuterium oxide of .99.9 w/w % quality was obtained from Stohler 

Isotope Chemic.ab, Inc. The initial measurement of the conductance of 

the n2o indicated the presence of ~onic impurities which were reduced by 

fractional distillation under a stream of dry nitrogen gas. The distil~ 

lation apparatus was purged with dry nitrogen.for 48 hours before the 

n2o was int:i::oduced and·only the middle fraction of the distillate was re­

tained and stored in the manner·described above for H2o. The n2o was. 

periodicially checked by measuring the velocity of sound at ultrasonic 
.... I 

frequencies. (45) .and was never observed .. tQ .exceacL0.5 mole percent. The 

specific conducUvity of the n2o was.always 2.3 x 10-6 mho cm-l or better 

33 
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after distillation. , 

Comi.nercially available lanthanide sulfates (American Potash and 

Chemical Corp.) were found to contain sufficient free sulfuric acid that 

the literature.values for equivalent conductance in water could not be 

reproduced. After recrystallizing the salts from water with absolute 

ethanol and repeating the measurements, the agreement was excellent 

(Figure 3), Prior to preparing the solutions, all salts were dried at 

70°C and at 1 micron pressure for 72 hours to remove as much of the 

water of hydration as possible. The equivalent weight of each of the 

$alts was determined by cation exchange on columns prepared from Dowex 

50W-X4 resin (Baker Analyzed Reagent) and titration of the eluant acid 

with standard potassium hydroxide solution. It was dete:t;'1llined that the 

salts retained one or two water molecules per formula weight of the salt 

and that this amount of H2o would not significantly effect the isotopic 

composition of the resulting solution, Stock solutions, approximately 

-2 10 N in concentration, were prepared by weight and corrected from 

molality to normality using the: equivalent weights determined by titra""". 

tio:p; and the densities of H2o and n2o of 0.9970 gm/ml and 1.1044 gm/ml 

respectively~ 

Conductivity Data 

In the association reaction of a lanthanide ion with a sulfate ion, 

there are at least three species of major thermodynamic importance pres-

3+ 2-ent at equilibrium in dilute aqueous solution:. Ln , SO 4 , and the asso-

ciated ion-pair, LnSO~. In order to describe the system thermodynamical­

ly, it is neceasary to have a knowledge of the activity of each of the 

ions. 
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The thermodynamic formation constant for the lanthanide sulfate 

complex is given by 

K = m(2.-.e) (3-:S) 
(4 .1) 

where mis the molar concentration, e is the degree of.association, and 

yi is tqe activity coefficient of the i-th ion. For a dilute solution, 

the activity coefficient may be calculated by using a modified .form of 

the Debye-HUckel eq~ation suggested by Davies (2) 

-log r1 

1/2 . 
= A { µ o 1/2 - 0.3 µ} 

1 + B aµ 
(4.2) 

0 
whereµ=;: (15m - 6Sm) is the ionic.strength, a is the distance of closest 

approach. A and Bare defined by the following equations: 

A = 

8 Ne2 1/2 
·· rooo k 

3 
e 

2.303 k 312 

1 

(ET)l/2 
= 

= 
1.8246 x 106 ll/Z(°K) 3/ 2 

(ET)312 mole112 . (ET) 3/2 
1 

. 8 
50.29 x 10 

(ET)l/2 

where N is Avogadro's number, e is the protonic charge (equal but oppos-

ite.in sign to the electronic charge), k is Boltzmann's constant, Eis 

the bulk dielectric constant of the solvent, and T is the temperature in 

degrees Kelvin. 

The denominator of the Davies equation was empirically modified to 

0 
include the variable paramet:.er a, identified with the Bjerrum distance 

of closest approach. In the original form of .the Davies equation, the 
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0 
product Ba is taken as b~ing equal to 1 for univalent symmetrical elec-

trolytes. It -is known that a trivalent ion will have a larger region of 

interaction (2) than a univalent ion especially in the case of the.in-

teraction of·atrivalent ion with a divalent ion. To .be consistent with 

0 0 
the previous kinetic studies, the value of a is set equal to 8.86 A, the 

sum of the ionic crystal radii plus two water molecule diameters. In 

any case, the over-all analysis proved to be relatively insensitive to 
0 

the choice of a. 

A solution of a lathanide sulfat.e ·salt in water may be treated con-:-

ductimetrically as a mixture of the uni-bivalent salt (Lnso4) 2so4 _at 

equivalent concentration Sm, and the tri-bivalent salt Ln2(so4) 3 at 

equivalent concentration (6m - 3Sm). The conductance of each component 

may be calculated from the sununation of the Onsager equations for both 

the ,cation artd the anion, and with .the universal constants inserted (2)): 

A = + 

where 

q = 

ari.d 

µ ' = 

Here A is the equivalent conductance-of the salt considered, p.. 0 is its 

zero concentration equivalent conductance, T is the absolute temperature, 
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n the viscosity of the solvent, z1 and z2 are the charges carried by the 

Cqtion and anion, A~ and A~ their zero concentration equivalent conduct­

ance, and m1 and m2 their concentrations in moles per liter. 

All terms of order higher than the limiting square root terms have 

been truncated and the error introduced in Ai is absorbed in K. The de­

gree 1 of association may then be calculated by applying the mixture rule 

and solving the Equation (2) 

= a A' 6 1,2 + 6 - 3S A 
6 3,2 

(4.4) 

where A is the experimentally measured equivalent conductance obtain-exp 

ed by the following equation (Table II) 

A = 
exp 

1000 K l so n 
c eq 

Ksoln = 
cell constant 
resistance 

(4. 5) 

wher~ K is the specific conductance of the solution corrected for the 

specific conductance of the pure solvent and c is the concentration in eq 

equivalents per liter. 

A difficulty arises in that a knowledge of the limiting conductance 

0 
of tne associated ion-pair, ALnsoZ' is not available by direct experi-

mental measurement. Several values have been assigned on an empirical 

basis, varying from 23.2 to 40 conductance units (46,47). An arbitrary 

0 
value for ALnSO~' was chosen and a formation constant calculated by a 

standard iterative technique. To do this a computer program was develop-

ed which calculated a value for K at each concentration, using the 

0 
initial guess for the value of A.Lnsot' and the standard deviation ob-

tain~d. The initial guess for the limiting mobility of the ion-pair 
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TABLE II 

EQUIVALENT CONDUCTANCES IN Mho. Cm-l IN H20 AND n2o AT 25° 

La(D20) 104N· Pr(n2o) 104N Sm(D20) 104N 

78,38 .5 .177 68.58 9.070 92.l,l 1.634 
72,30 7 .383 63.46 12.55 84. 72 2.965 
68.78 9.070 61.27 14.44 78.13 . 4. 705 
63.66 12.37 56.14 19.91 75.19 6.012 
57.44 18.49 52.05 27 .01 . 71.42 7.131 
51_.47 27.50 38.61 80.40 68.36 8.481 
46 .31 41.46 36.81 95.20 66.53 9.411 
41.57 62.57 ·. 35.48 110,8 62.90 ll.67 

57.97 15.79 
52. 77 22.25 
46.36 35.73 

Dy(o2o) 104N Yb(D20) 104N Lu(D2o) 104N 
·•· 

77. J,.3 •. 5.574 95,25 2.073 85,94 3,369 
69 ,56~: 8.691 80.17 5.539 70.48 9.395 
66.83' 10.20 76.28 7.035 67.23 11.59 
61.58'- 14.20 71.54 9.391 63.93 14.39 
59 .53'~ 16.21 68.85 11.13 62.01 16.33 
57.40# 18.71 65.17 13.87 60.24 18.37 
55 .• 61.:· 21.02 57.32 23.14 57.60 21.99 
53 .41""' 24 .67 ' 53.38 30.67 51.30 34.70 
50. 96 -~ 29.52 49,55 40 .98 ' 49.44 40.11 
46.56= 41.67 47.20 49.40 46.47 51.03 
43.05 56.20 44.76 59.05 - 42.62 71.18 

-· l04N 104N ,Sm(ij20). Lu(H20) 

117.2 - 1.925 123.5 1.285 
100.3 : 4.551 106.5 3.997 

91.22· 6.956 97.16 6.593 
85. 74~: 8.987 90.02 9.344 
80.62> 11.52 86 .18 11.50 
75 .• 41.: 14.94 82.44 14.01 
68.78 21,16 78.07 17. 72 
62.28. 30.65 71.95 24.70 
55.71. 46.49 64.58 37.83 
52.89 56,35 58.30 56.24 

53.98 75. 72 
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was then increased incrementally and the calculations repeated. The 

criterion for the best fit of Eq. (4.3) to the experimental curve was 

that the standard deviation (SD) be a minimum and therefore the variation 

of the formation constant with concentration minimized, Figure 4 illus-

trates an abbreviated set of iterations for Lu2(so4) 3 in which the varia­

tion of the formation constant is plotted as a function of ionic 

strength. 0 
The values of ALnsot which give the best fit for all salts in 

H2o are considerably less than those used previously. However, at µ = 0 

0 the agreement in K for any salt using either value of ALnso+ is reason-
4 

ably good. The physical justification for using the value 23.2 for 

0 
ALnsot was that the charge on the ion-pair is one third that of the free 

0 . 2 -1 metal ion (A183+ = 69.6 mho cm equiv. ), and therefore the complex 

should be no more than one third as mobile as is the metal ion. However, 

this assumption presumes a spherical ion-pair, an improbable geometry. 

Thus, the mobility of the complex would be expected to be lower than the 

values previously used. 

Sin~e the purpose of this study was to make comparisons between 

thermodynamic formation. constants obtained in two solvent media, it was 

thought advisable to repeat a dilution study in H2o that the data may 

be compared with those of Spedding and Jaffe (46)(Figure 5) as well as 

to complete the study of the lanthanide series by obtaining data on 

lutetium sulfate. Since no value for the limiting conductance of lutet-

ium (III) is available from the literature, the computer program was 

0 
modified to calculate by iteration a value for ALu3+· 

For such a calculation to succeed, it was necessary to estimate the 

0 + value for ALu3+ before determining the mobility of the Luso4 complex. 

In the case of lutetium the former value was first estimated from a 
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linear e:)ttrapolation of the limiting conductances of the trivalent ions 

of the lanthanide series. 
0 

A value for ALuso4 was subsequently found by 

minimizing the SD as before. Using this value for A~uso+' the computer 

0 4 
prog;ram was recycled by incrementing ALu3+ until the SD was -again mini-

mized. The results of this series of calculations indicated ~hat such a 

0 
procedure was in fact successful and the value of ALu3+ that minimized 

2 -1 the SD was 64.7 mho cm equiv. which was approximately the value ex-

pected from extrapolation. 

Although more than one minimum in the standard deviation could be 

0 
obtained depending on the value estimated for ALu3+, it was found that 

the final SD was smaller if the initial estimate was chosen to be about 

80% of the expecte4 value and the computer program allowed to cycle by 

incrementing up to th,e final value. In every case, the SD reported is 

the smallest obtained, Table III includes the values for the formation 

constants determined by this method for the equivalent condui;:tances ob-

tained in this study and, for comparison; those recalculated from Spedd-

ing and Jaffe's data (46) using this treatment. Also included in the 

+ table is a ;recent value for Euso4 formation obtained by differential uv 

spectrophotometry (48), 

The success of this approach in determining both a reasonable value 

for the limiting conductance of the lutetium ion and the formation con-

stant for the system indicated that, provided a value for the limiting 

conductance of the sulfate ion could be assigned, the measurement of 

·the limiting conduetance of A~n3+ in D2o would not be necessary in order 

to arrive at a value for the formation constants in D2o. 

From available experimental data on the limiting conductances of 

various univalent cations and anions in D2o, including the polyatomic 
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TABLE Il;I 

FORMATION CONSTANTS AND EQUIVALENT CONDUCTANCE PARAMETERS 

(D2o) :\0 (SO 2-) 
4 

:;:: 64 .2 MHO. CM 2 EQUIV-l 

Ion A A Ao 0 Kxl0-3 
o(l,Z) o(3,2) (LnSo4 +). A Ln3+ S.D. 

La 72.0 120,3 7 ,8 . 56.l 4.69 23 
Pr 72.4 118.9 8 .2 . 54.7 4.63 126 
Sm 71.4 117.8 7.2 53.6 4.82 100 
Dy 70.8 117.5 6.6. 53.3 4.26 29 
Yb 73.9 l:J.7.1 9.7 52.9 3.57 92 
Lu 73.7 114 .• 5 9.5 50.3 3.50 15 

(H O)a :\0 (SO 2-) :;:: 79 .8 mho. 2 -1 
2 4 cm. equiv 

La 91.3 149.5 11.5 69.7 4.43 129 
Ce 92~.5 149.5 12.7, 69.7 4.69. 46 
Pr 91.3 149.5 11.5 69.7 4.,70 57 
Nd 92.3 149.5 12.5 69.7 4.76 45 
smb 89.8 148,5 10.0 68.7 4.78 12 
Gd 91.9 147.4 12.1 67.6 4. 7,2 39 
Ho 92,8 . 14.6 .3 13.0 66.5 3 .9.5 187 
Er 92,8 145.9 13.0 66.1 3.79 63 
Yb 90.3 145.2 10.5 65,4 3.26 49 
Lu 93.0 144.5 13.2 64.7 3.31 20 
Euc 4.69 

aPresent a~alysis of data Qf reference 46. 

bPl:'e$ent dat;a cqmbined with data from reference.46. 
c. ' 
. Ftom. U ~ V ~ Spectral Analysi$, reference 48 • 
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anion nitrate (49), it is apparent that .the ionic mobility in n2o is 

approximately 80% of the value in H2o. On considering the Stokes equa­

tion 

v = F (4.6) 
(61fnr) 

where V :i.s the particle velocity in cm/sec, F is the force in dynes, r 

is the ra4ius of the.spherical particle~ and n is the viscosity of the 

medium, this is not an unexpected result as the viscosity of H20 is 

about 80% of the viscosity of J?20. Although this equation is not really 

0 applicable to small pa"tticles, a value of A.so2- equal to 80% of the 
4 

limiting conductance in H2o is a useful approximation. Such an approxi-

mation would also seem justifiable for determining the limiting conduct-

ance of the lanthanide ions, but these values were not fixed. Instead 

they we.re used as variable parameters in the calculation. In this way 

the variation of the limiting conductance with atomic number would not 

be an artifact of the calculational method. 

Th~ calQulations were· carried out on the equivalent conductances ob-

tained in n2o usin~ the method described above for lutetium, and a value 

0 ' 2 -1 0 2 -1 
of Aso2-'D 0 = 64,2 mho Clll equiv. (A. 502- H 0 = 79.8 mho cm equiv. ). 

4 2 4 ~ 2 
0 In all cases the .initial est:i.mate used for ALn3+,n20 was chosen to be 

about 75% of the corresponding limiting mobility in water. No attempt 

was made to force a trend of decreasing mobility with increasing atomic 

number. In addition, various initial estiniates were used; ranging from 

50% of the water value to 90% of the water value and no lower.final SD 

was ever obtained. 

Alth0ugh the value fo-r A.0 + seems realistic, the 80% corres-
Lnso4,n2o 
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pondence between the two solvents is not good. Because of this lack of 

0 
agreement and since "'tnsot is used only as a fitting parameter, no physi-

cal significance can be attached to these values. 

Solutions for Kinetics 

All solutions used in the kinetic study were prepared using salts 

and solvents treated as described above for the conductivity study. Ap-

proximately 20 ml of each solution was prepared by weighing both salt 

and.solvent into small erlenmyer flasks which were then sealed with 

rubber serum stoppers. The solutions were stored in a dessicator until 

th.e measurements were made. These solutions were not recycled by dis-

tillation nol;" were they mixed with new n2o as the opportunity for isotop­

ic exchange was considered to be too great during the measurement and 

transfer to and from the ultrasonic absorption apparatus, although veloc-

ity measurements indicated no significant exchange before and during the 

me.asurement. 

The solutions for the constant ionic strength study were prepared 

in a i;;im;Llar manner except that the solvent was 0.75 an.d 0.50F Nac104 

(G, Frederick Smith Chemical Co.) and delivered by a transfer pipet and 

not weigh'ed, The concentration range and ionic· strength of the medium 

was restricted by a marked decrease in the solubility of the samarium 

sulfate. 

Kinetic Data 

In the evaluation of specific rate constants the usual procedure is 

to mea,sure the ultrasonic absorption, at.:, over the frequency range of 

inte:t;'est. Since the solvent·also absorbs some of the energy of the 
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sound wave, a correction is made for this by assuming additivity of the 

chemical absorption, achemA' and the solvent absorption, ~8 A. The fre­

quency of maximum chemical absorption is assigned by various means. In 

this st;udy two methods were used. The first method was to apply Equa-

tion (2.9) 

(2.9) 

at .two experimental frequencies and solve the resulting equation for fR. 

If this is done at all experimental frequencies, by pairs, and the re-

sults ave:raged, the results are not smoothed as they may be by other 

methods, The second method of determining the relaxation frequency was 

. by a non-linear, weigh~ed, least squa?;"es technique. In this particular 

case, a computer program was written which operated in the following 

manner: (1) a ten by ten array was established using initial estimates 

of the minimum and maximum values for (achemA)R and fR; Ci) a value of 

<a A)i was.calculated at each of the 100 grid points from the . chem c.alc 

equation 

(4. 7) 

where f. is the frequency of experimental measurement, the sui:n--of the 
l. 

variance of each a h A from the calculated value was obtained from the c·em 

equation 

(4. 8) 
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where n is the number of experimental data points and W, is the weighting 
1 

coefficient; (3) the array was then searched for the minimum value of s2 ; 

(4) a new array established using the values which gave the minimum s2 

and new minimum and maximum values for fR and (cxchemA.)R (obtain1ad by in­

crementing these new fR and (cxchemA.)R values appropriately) and repeating 

the above procedure a number of times (in most cases 7). The final 

values represent the best fit of the experimental values to a single re-

laxation curve and were presented along with a value of S. The weighting 

coefficients were obtained by analyzing the expected error in the meas-

urement at each frequency. The results of both calculational methods 

were in good agreement and either was determined to be an adequate method 

of analysis. 

High frequency relaxation studies (50,51) indicate that another re-

l.a.xation o~curs in the range 400'to 600 MHz and this is sufficiently 

separated from those in the 10 to 60 MHz range that there will be no 

interference from the form.er at the lower range. For this reason the 

spectra were interpreted as single relaxations (Figure 6). The same 

three-step mechanism assumed in H2o previously (28,42) was adopted for 

consistency, 

Once the relaxation frequencies for a number of solutions with dif-

fering salt concentrations are known, it is the possible to evaluate the 

step .. wise rate constants. This is discussed specifically for the tri-

'valent lanthanide sulfates for which the association reaction is written 

as 

+ Lnso4 

(2C -S) (3C -S) SC 
0 0 0 

(4. 9) 
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TABLE IV 

EXCESS ABSORPTION (O\CHEMA. X 103) DB AS A FUNCTION OF FREQUENCY 

f (MHz) 

103c 
0 

5.2 1~.4 25.5 36.1 56.0 66.5 

D20 

Pr 25 .17 28.62 51.17 47. 77 . 41.80 33.04 30. 33 . 
19.79 25.90 37.84 37.73 32. 9;L 26.12 23. 71 
14.97 22.44 32.05 30 .30 . 25.35 20.94 18. 72 

9.92 . 17. 71 21.40 20.93 17.68 14.02 12.68 
6.96 10.34 16.09 15.63 14.13 10.80 8.66 

Sm 19.82 19.26 43.86 55.37 56.74 54.00 46.85 
14.94 16 .62 . 34.49 41.88 44.78 40.40 33.68 
10.46 8.97 24,07 31.28 31.61 27.40 24.99 

7.40 7.60 20.50 24. 20 . 24.80 20.20 19.40 

Gd 15.22 15.77 39.40 44.76 44.24 37.25 33.76 
7 • .79 10.41 18.96 23.09 22.05 18.51 16. 71 
3.26 5.67 9.1~ 10.53 10.04 6.93 4.27 

Dy 24.45 26,08 43.88 43.50 36.19 28.57 27.59 
20 • .13 . 21.64 37.53 36.16 30.82 26.55 23.62 
14.28 17 .07 . 27.72 26.49 22.87 18.54 18.73 
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TABLE V 

RELAxA+ION FREQUENCIES AND CONCENTRATION DATA 

Ion 3 8(C) x 103 ,F 2Ilf III (MHz) RMS C x 10 ,F· o· 

-H Oa-
2 

Pr 14.70a 6.23 128 ± $ l.1 
9.76a 5.07 122 ± 7 0.73 
5.38a 3.58 122 ± 7 1.3 
2.69 2.29 100 ± 5 0.20 
1.34 1.43 80 :!; 8 o.b9 

Nd 15. 26a Ej.36 155 ± 4 0.95 
9.61a 5.04 147 ± 4 0.62 
5.o8a 3.46 142 ± 10 0.72 

Sm 18.51 6.91 236 ± 5 0.14 
9.76a 5.10 228 ± 5 0.04 
4.88a 3.38 214 ± 7 0.03 

Eu 15.02 6.33 255 ± 6 ·0.82 
9.80a. 5.11 249 ± 6 
s.ooa. 3.44 230 ± 7 0.54 

Gd 15.28 6.38 211 ± 5 0.89 
9.45 5.01 202 ± 5 
4.73 3.31 196 ± 5 
2.36 2.10 173 ± 7 

Tb 9.88 5 .11 148 ± 5 
4.99a 3.42 133 ± 7 
2.50 2.18 128 ± 7 

Dy 15.17a 6.30 117 ± 5 
9,7oa 5.03 114 ± 5 
6.50a 4.00 105 ± 8 

Ho 10.80a 5.30 72 ± 10 
5.40a 3.56 69 ± 10 
2.70 2. 29 69 ± 12 

--02()-...... 

Pr 25,17 7,46 119 ± 5 0.12 
19.79 6.99 121 ± 5 0.14 
14.97 6.26 112 ± 5 0.12 

9.92 5.10 116 ± 5 0.12 
6.96 4.17 105 ± 6 0.06 
5.18 3.49 112 ± 8 0.03 
3.02 2.46 96 ± 8 0.02 
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TABLE V (Continued) 

Ion C x 103 ,F· 
0 

' 3 
S(C) x 10 ,F 2nf III (MHz) RMS 

Sm : lQ.82 7.01 212 ± 5 a.so 
14.94 6.26 205 ± 5 0.82 
10.46 5,25 208 ± 5 0.26 

7.40 4.33 196 ;!:'5 0.31 

Gd 15.22 6.30 180 ± 5 0.65 ' 
7.79 4.45 179 ± 8 0.31 
3.26 2,59 150 ;!: 10 0.63 

Dy 24.45 7.37 126 ± 7 1.1 
20~13 6.99 123 ± 7 1.0 
14.28 6 •. 08 123 ± 7 1.1 

8natafrom reference 47. 

bRMS calculated for only those exper:iments done on present equip­
ment. O~her data taken from r~f. a. 
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Figure 6. Chemical Aq.sorption. Versus Frequency for Sm2 (SO 4 ) 3 Solu-
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tion curves the arrows indicating the relaxation fre­
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Substitution into Equations (2.1~-2.15) gives 

-1 
'u = 

= 

e = 

(4.10) 

(4 .11) 

(4.12) 

(4.13) 

(4.14) 

where 'Tl'f = Y1/Y3Y2 and Yi is the activity coefficient of the i-th ion, 

The solution of these equations for k34 and k43 present considera­

ble difficulty. Among these are how to evaluate K12 since 'I and 'II 

are net ob~erved~ the activity coefficients, and the partial derivative 

term. In addition, the'):'e is a prol;>lem of more practical importance, is 

the concentration dependi;mce of 'rrr :\.arge enough that the variation in 

'III is.greater than the experimental error in its determination? 

The equilibrium constant for the first step is calculated from the 

Bjerrum equation (Eq. 1,3)(for the very good reason that K12 does not 

pass through a minimum with increasing distance of closest.approach (38)), 

For the lanthanide sulfates, the value of K12 is about 440 atµ+ 0 using 
0 
a = 8. 86A ·(Table IJ:l). The activity coefficients are calculated from 

the Davies equation (Eq. 4.2) in the same manner as the values used in 
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the conductance study. 

The concentration function in Equation (4,13), ¢,may not be de­

termined until a value of K23 is assigned. Generally this is left as a 

val;'iable parameter and used to fit Equation (4.13) to the expression 

(4.15) 

where K34 = k34 /k43 • The fit may be made by a reiterative calculation 

(44), but in the iteration process a graphical solution to equation is 

necessary. Figure 7 describes the var:i,.ation of ¢ w;tth .analytical con­

centration of a lanthanide sulfate. It is apparent that ¢is relatively 

insensitive to the variation of the analytical concentration even for a 

reasonably wide concentration span, It would seem that a reasonable 

solution to the difficulty woqld be to lower the concentration so that 

the values lie in the region of greatest change for the function ¢, Un­

fortunately the error in the absorption measurements at low concentration 

are so great as to preclude this solut:Lon. Likewise~ it is obvious that 

meas\lrements at highel! concentrations will not improve the precision of 

the anllllysis~ Us:lng typical va:j.u~s of k34 and k43 and the calculated 

values of ~ the anticipated frequency range can be shown to be around 

3.;.,4 MHz. If a conservative error in fR(UI) is used, about ± 1 MHz, it 

;is apparent that the linear pJ,.ot: of 2'll"fR(III) versus ¢will often result 

in a negative intercept (42) because of the very long extrapolation to 

zero. Figure 8 shows a.typical result of the calculation. Although 

this ;is not the result of a direct graphical solution, it can be seen 

that a long extrapolation is necessary to evaluate the rate constants 

(the slope of: the line is k34 and the zero intercept is k43). The re­

iterative calculation may be avoided by the appropriate combination of 
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Eq. (4 •. 1.3), the equaUon for t;he oveia.l .. l :eotination ~onstant, Eq, (4.15), 

aud the e~pression f o-,: ~. A. two parameter equat:Lon is obtained: 

(4.16) 

which, on substituting two values pf 2'1rfR(III) and e, yields K23 and k43 

on s:Lmult~neous solution, k34 is detet'lllined by substituting the values 

of K23 and t<.4~ into equat;j,on,,· Figu~e 8 was coustructed using rf;!,te cqn-
. I. , 

stants ~alculated by this method •. 

For this study a computer program was written which incorporated 

the above eq~atiqns and solved ~hem for eaeh pair of data points. The 

detiva.tive term wae eval.Uated by the same method used previously (44) 

. 2 2 
=;; o,so9 [(~3+) + czi:.,2 ... ) 

(4.17) 

the ·Valu,es Of f3 and }.I being Qbtained by Standal'q iterative/procedures. 

The ~ndividual rate eons~a,nes dete~ined fol:' each data point pair were 

averaged to obtain.the ',fema;l.ning unknowns. The·results of these calcu-

·latioris are shown tn Table V!. 

In the case.of the constant ~onic strength study, Tables VII, VIII, 

IX, th~ calculational·procedure WH somewhat simp'.1.ified in that; the deri­

vative tem (i;tq. 4 •. in vanishes .. and. the term e red\,lces t;o 

e = c.:; - 2B)cP (4.;1.8) 

e ~Y then be detet'Tll,in~d f~om the CQnditio~al formation constant. Figure 

9 a.hows the,variation of pKeqn4 withµ. S~nce the functional relation-
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TABLE. VI 

RATE CONSTANTS AND STEPWISE ASSOCIATION CONSTANTS 

Ion -8 -7 
K23 x 10-3 k34 x 10 k43 x ;tO K12 K34 K c 

.,..1. .-1 
sec sec 

H2o 

Pr 2.1 2.8 432 1.0 7.5 4.17 
Nd 2.3 4.0 433 1.3 5.9 4.35 
Sm 3.3 6.3 436 1.5 5.3 4.55 
Eu 3.4 6,7 437 1.5 5.1 4.55 
Gd 2.8 5.7 437 1.6 4.9 4.55 
Tb 1,9 4.4 439· 1.7 4. 2 . 4.32 
Dy ;t.3 3.9 440 1.9 3.3 4.08 
Ho 1.0 2.5 441 1.5 4.1 3.85 

o2o 

Pr 1.5 3.0 432 1.6 5.0 4.63 
Sm 2.9 5 .4- 436 1.6 5.4 4.82 
Gd 2.9 4.3 437 1.2 6.8 4.55 
Dy 1.3 4.4 440 2.2 2.9 4.24 
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TABL.E VII 

EXCESS ABSORPTION (aCHEMA. x 10~) DB AS A FUNCTION OF FREQUENCY 

f (MHz) 

3 5.0 15.30 c x 10 
0 

25.40 35.40 56.00 66.00 

Sm2(so4) 3 in 0.5 M NaCl04 

9,31 9.30 17.93 22,32 20.23 15.70 15.20 

18.53 15.68 32,34 40.83 40.08 35.03 29.60 
( . 

42.05 18.26 43.57 48 .. 31 50,84 43.97 43.94 

Sm2 (so4.) 3 · in. 0"75 M ·NaClO 4, 

10.00 12.19 13.78 17.10 17.27 12.88 11.67 

12.52 12.72 21.81 24.93 23.74 19;05 17.17 

15.09 12.30 28.02 32.18 31.40 24.20 23.47 



59 

TABLE VIII 

RELAXATION FREQUENC.IES AND CONCENTRATION DATA FOR 
. Sm2 (SO 4) 3 AT CONSTANT IO~IC STRENGTH 

c 3 e<c> x 102 2'1l'fIII (MHz) RMS x 10 .o 

0.5 M NaCl04 

.,.,·· 

.. 
9.31 2 .54. 166.75 0.4799 

18.53 ·4.12 188.43 0.5902 

22,05 4.6$ 192.89. 1.3906 

0 • 7 5 M NaClO 4 

10.00 3,18 157.08 1.0007 

12.5 2 3. 75 . 159.65 0.5345 

l,5.09 4.30 168.89 0.2961 
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TABLE IX 

RATE CONSTANTS AND STEP-vHSE ASSOCIATION CONSTANTS FOR 
Sm2(so4) 3 AS A FUNCTION OF IONIC STRENGTH 

-8 -7 
k34 x 10 k43 x 10 K12 K23 K34 K 

c 

0;;75 M NaClo4 

2.5 9•9 4 .. o 2.6 2.6 40. 

0.50 ~ NaCl04 

2,4 9.6 .7 .5 2.6 2.6 76. 

µ + 0 

3.3 6,3 436. 1.5 5.3 4400 
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ship between K d andµ is not known,.a monotonically decreasing func­con 

tion (with inc;reasing :f,o-nic strength) was assumed and the line drawn 

arbitrarily. sm2(so4) 3 has not been studied at; more than two different 

ionic strena;ths (µ + o, and u = 2.0 m) so that the intermediate values 

are those for ce2 (so4) 3. (53). It .was assumed that no large variation in 

K for the two .salts would occur since no la:t"ge change in Kth was cond ermo 

seel).. The va~ues of pK d were taken directly from the graph. cc;in 

Kb was. det'e:t"mined ·as follows: 

Kconditional · = Kthermodynamic 'ITf 

and 

then 

K l<.r'ITf. coa4 
11111 

K" K12 (µ + 0) 'IT . 
12 f 

so that 

Kl~ (µ + 0) .K .. 
. cond 

K" -12 K.r 

Table IX. is. t;b,e rate constant data for Sm2 (SO 4> 3 at constant ionic 
' ' . ' 

(4.19) 

(4.20) 

(4 •. 21) 

(4. 22) 

st;teQ.gth~ of 0.5 Mand 0.75 M (NaCl04). Since the formation constants 

wel;'e·calculated from potentiometric data measured in NaC:J,o4 media (53), 

no corre~tion was made fol:' Naso4-. 



CHAPTER V 

DISCUSSION 

The purpose of this study was to investigate the comple:l!:ation reac-

tion of the lanthanide sulfates. The presence or absence of a solvent 

isotope effect (SIE) in the reaction i$ critical to the understanding of 

the mechanism. The lack of a SIE would support a rate controlling dis-

sociative step in the general Eigen mechanism. The constant ionic 

strength study was \J,ndertaken in an attempt to resolve the discrepancy 

which exists between rate constants measur~d by the ultrasonic technique 

are those determined by transient methods by conducting the acoustic 

studiea in a high $alt media. Sir;ice the error in the overall equilibrium 

constant;s·determined kinetically is greater than that in conventional 

methods, ~was measured by an independent, non-kin,etic method for the 

lanthanide sulfate salts in n2o. 

All of the variations in the thermodynamic formation constants for 

complex forn:iation of the lanthanide series with various ligands can be 

grouped in three ways (53). The first and simple~t is a monotonic in-

crease in ~ which is easily explained in terms of an electro1:1tatic 

model.. The remainip.g two groups are less regular and ~ either increases 

to a plateau value around Gd3+, group two, or increases to.a maximum at. 

the same ion with a subsequent decrease, group three. The sulf.ate 

series of complexes in water fall into group three. The increase in KT 

over the light lanthanides is shallow (Figure 10). Earlier KT data from 
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Spedding and Jaffe (46) for these members were low which exaggerated the 

increase in KT. Recalculation of their data and a comparison with the 

+ present results leaves only Ceso4 formation outside the proposed error 

of ± 10% from both conductance studies. This study is the first reported 

for any lanthanide complex in heavy water.done by non-kinetic .methods. 

The change of solvent prqduced no significant variation in the trend of 

~ with atomic number from that observed in water. By coincidence all 

of the ligands for which a ldnetic study has been done fall into group 

three. 

The interpretation of this trend in thermodynamic parameters could 

have a significant bearing upon the mechanistic discussion.. From a kine-

tic study of the complete series of sulfate complexes (Figure 10) the 

variation in k34 with atomic number is seen to be exactly analogous to 

the variation in K.r· ~he possibility exists however that the rate con­

stant variation is not due to the same reason suggested by thermodynam-

ists but is indic~tive of a change in mechanism between the light and 

heavy members of the series. 

In order to explain the departure of K.r from the purely electro­

static dependence on atomic number, several factors have been considered. 

Among these are ligand f;i.eld stabilization effects (LFSE), steric ef-

fects, changes in the coordination number of the cation, changes in the 

degree of hydrogen bonding in the first hydration ~phere of the cation, 

and differences in the coordin~ting ability of the ligands. LFSE are an 

unlikely possibility since the enthalpy of complex formation show both 

3+ 3+ stal?ilization and destabilization relative to those for La , Gd , and 

Lu3+ (first, middle, and last members of the series) for :wh-i.ch-ligand 

field stabilization effects would be zero (54), (but see also (25)). 
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Steric and ligand coordinating abilities can probably also be dismissed 

~s rel,atively unimportant since the irregularity always occurs around 

3+ Gd and the change is never abrupt. The remaining effects of import-

ance a:t;'e the change in the degtee of hydrogen bonding and the coordina-

tion number cI:iange across the series. 

lf the degree of hydrogen bonding is involved, then a.n isotope ef-

feet.should be noticed in the formation (lonstants in n2o as the strength. 

of the deut;e'j::'ium bond dHfers from the strength of the hdyrogen bond by 

about 0.3 kcal/mole (55). In both previous.studies of the lanthanide 

ion association reaction in n2o (34,35), such an isotope effect was 

found in K.r· However, the formation constant was not determined inde­

pendently but was used as a.fitting parameter in the kinetic analysis. 

The results of this c:.u-rrent study do not support the previous result in 

that, w:i,thin exper.imental eri-or, the fot'mation constants of the lanthan-

ide sulfates in n2o were the same as those .in H2o. From this analysis 

it would appear that th,e only reasonable explanation of the variation 

in KT of the second and third types is that of the coordination m,imber 
I 

change and this :ls the most generally accepted thermodynamic interpreta-

t;l.on. 

Although the et'ror in the determination of Kif is probably within 

the l,imits set by SpeQ.ding and Jaffe (46), there we-re some a,pp:t;"oximations 

made which shot,tld be explained. Since the limiting conductance of the 

complex io ... , tnso;, is not accessible to experimental measurement, and 

since in this study they were actually used as a fitting parameter, the 

true vaJ,.ue will be distorted by the calculational procedure and the 

error may be propagated to K.r· Also excluded was higher complex forma­

tion, e.g., Ln(so4>2· Although'the formation of further complexes is a 
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pPssibility, the conc;entration range used in this study was thought to 

be low enough that only a very limited error in the formation constant 

is introduced by this appro;ximation. 

No attempt should be made to generalize the lack of a SIE found in 

this study and inf er that all complex formation reactions are without a 

possible SIE, Indeed there in fact may be a small secondary isotope ef-

feet in sul,.fate complexation that is undetectable over the error. If 

2-the complexation reacUon involves a weak acid such as N3 , c2o4 , or 

others (35), the i$otope effect Otl the ioniza1;:'ion of the acid may effect 

the formation constant of any complex formed. The only generalization 

that should be applied to the .results of this study is that HSO~ and 

cat:ion. hydrolysis .do not complicate the reaction as either of these 

would involve a primary isotope effect and thus would cause a significant 

change in the formation constant. 

The resul,t of the present kinetic study also show no SIE. In the 

two previous studies (30,34) where a kinetic isotope effect was found 

(in addition to an isotope effect in the thermodynamic formation con ... 

stant) the results were interpreted to be caused by a mechanistic change, 

However, in the anthranilate study, (30), the possibility of a SIE for the 

reaction of the ;1,ndicator used to follow the reaction in the T-jump ex-

periment was.not discussed, nor was the effect of the possible complex 
·' 

formation of the metal with the indic.ator (methyl red), Since both of 

these reactions.involve the breaking of.a hydrogen (deuterium) bond, the. 

possibility of a large primary isotope effE;l.ct is high. This SIE for the 

indicatot' would definitely effect the results of the kinetic analysis 

because the reaction cannot be f Ollowed directly and so is coupled to an 

indicator iqnization 
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Hln * In + H+ 

. and the variation of the optical density of the solution that is follow­

ed spectrophotometrically is not that contributed by the reaction pro-

ducts, but that of the indicator ionization. In the second study (34), 

+ the formation constant for Ndso4 was not determined by independent, 

nap. ... k;i:p.etie means and . is probably grossly unreliaple and that unrelia-

bility transmitted to the rate constants. There is no experimental 

justification at this time to argue in favo~ of a·change from a dissoci-

ative (D) mechanism. However, the absence of a SIE 

* constancy observed between k34 and kex and AH34 and 

on k34 , coupled the 

AH* (33) there is ex 

geod reason to believe that the mechanism in D for all ions of the 

series. 

It has been noted that the variation of kf with atomic number 

through the lanthanide series is similar to the variation of k34 for the 

same·ions, at least with some ligands (8). It would be interesting to 

compare th,e rate copstants determined acoustically with those from T-

jump experiments. Unfortupately the solution conditions are such that 

a comparison cannot be made directly. For this reason the study of 

samarium sulfate was undertaken at constant ionic strength in this work. 

The results from the constant 'ionic strength stuc;ly indicate a small 

decrease in k34 as well as a somewhat larger increase in· k43 • From 

theqry one would expect the rate constant for the forward reaction to de-

c:):'ease.as the ioP.ic strength inc;reases in accordance with the Br-onsted-

Debye-HUckel equations (56) 'and conver.sely, the reverse rate to increase 

with inoreasing ionic ·strength. 

Unfortunately, assuming the validity of the Eigen dissociative 
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mechanism, these results do not resolve the discrepancy in the calculated 

rate constants and rate constants measured by differing techniques. For 

·a comparison.between the measured kf by transient methods and the calcu­

lated kf from acoustics the lack of agreemet}.1: is unequivocal: for samar-

. . .7 ' 7 
iu~ with murexid~, kf = 9.6 x ~O (57), with anthranilate kf = 6.3 x 10 

(30), and with .oxalate kf = 8.2 x 107 (32) (all with the units M-l 

-1 
sec ). If Equation (2.l,.8) is applied to the ultrasonically measured 

rates, assuming k 32 = k34 

= 

then the calcul~ted kf for samarium~ sulfate (using data from Table IX) 
9 . 9 . . ~ 10 -l -1 

is 1.3 x 10, 2,3 x 10, and 1.1x10 (aJl M sec ) at u = 0.75, 0.5, 

and + 0 respectively. These values should agree to within experimental 

error :1,f the same mechanism applies to all ligands since a) K]'.2 is cal­

culated from Bjerrum's equation a,nd should be the same at least for 

sul,f ate and oxalate; b) K23 should n.ot change over two orders of magni­

tµde as the interaction is p'l'.'imarily .electrostatic in origin and between 

similar charge types the variation should be small; c) from the D mechan-

ism, k34 is t1').ought to be characteristic of the metal and equal to the 

watet' exchange rate, k • ex 

The dbcrepancy might be resolved if the mechanistic .assignment is 

different for some ligand· types. Al,1 of the ligands whose react;l..cm 

rates are.slow enough to be studied by T-jump also show the probability 

of polyden~ate binding to the metal. If ·a four step chelation mechanism 

is postu:t.ated wit;h the slow step being ring-closure, the discrepancy 

between 11\easured rates and calculated rates could be._resolved. 
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The rates fail to compare because KJ:2K23 /2 > l. If this term was. 

less than one tQ.en_kf would be greater than or e,qual to k34 • Assuming 

a qhelati.on.mechanism with k45 rate c.ontl;'olling, th'en 

K]'.2Kz3K34"tt45 
2 and~ 

The~e should now be a correspondence between.kf and k45 •. If K]'.2K23K34 /2 
I 

is also greater than one, then k45 is very small which would indicate 

that. the relaxation fre·quency of this fourth step is almost at the lower 

limit o~ the pulse sound absorption meth_od. So far no "probaQle"- chelat-
I' 

ing ligands have been studied acoustically and the order of magnitude 

f:or k45 is unavai;J.able. 

Conclusions and Suggestions for Further Work 

Although the present wo:i:k suppo;rts the D mechanism, it in no way 

proves the correctness of .the mechanism unequivocally. The results of 

the constant ionic·stil;-ength stµdy indicate the differences between pres-.. :-.. . 

sure and temperature jump analysis and ultra.sonic absorption analysis 

a;re not due to a dependence.of th.e rate controlling step on the ionic· 

13t:rength,of.the med:f,um •. The only possible cauee of·the variation in the 

measured kf from P- and T-jump method and the kf calculated from ultra­

sonic mea!ilurements is that the reactions i;ilow enough to observe by the 

dower methods a;re not proc.eedin·g by th.e same mechanism as are' the fast-

· er (ul.trasonic) reactions• Th:i.s. different mechanism might involve a 

fo.u?;'th step in which the ligand chelates the cation. In order to study 

the slower-reactions, the ultrasonic method must be improved in acc,ul;'acy 

at the lQWer frequencies and the low frequency absorption spectra meas-
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ured. If a relaxation is detected the controversy might be resolved and 

the Eigen mecha.p.ism would receive more support. In ad4ition, if the 

high frequency ultrasonic absorption (up to the Ghz range) could\ be ob­

ta~ned with sµfficient accuracy to assign a relaxation frequency (or 

frequenci~s) t:o th~ first and/or the second step, the dissociative Eigen 

mechanism could be confi~med. 
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