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CHAPTER I 

INTRODUCTI0N 

Triphenylmethane dyes are widely Uf:led in the field 0£ chemistry, 

the food and, drug industries, the textile. industry, and. in '·the manufac.,,­

tory of inks. The phthaleins and sulfonephthleins are commonly .employed 

as acid-base· indicators. Purity tests fo,r these indicators have been set 

forth by the colill,llittee on Analytical Chemistry of the American Chem,iCal 

Society (58). Phenol red (phenolsulfonephthalein) has veterinary (76) 

and medical applications (21). Severalphthalein and sulfonephthalein 

dyes, namely, phthalein·complexone, methylthymol blue, xylenol orange, 

and pyrocatechol violet are noted for their uses, as chromogenic agent,g. 

for metal ions. 

The utility of. triphenylmethan,e basic dyes in chemi.cal analyses is 

indicated by more than forty applications reported in references (6) and 

(7) alone. Members of this group includ,e st.lob: dyes as, malach:j.,te green, 

brilliant·green, methyl violet, crystal violet, ethyl·violet, and para­

roseaniline. Dyes of this group also have• applications· in medicine. 

(74, 75), in .the preparation of. inks. (15), and .in ,the. dying of .textiles· 

(77). 

Tripheny;+methane ac:Ld dyes sue~ as xylenol green. A, lissamine g;ireen 

SF, xylene blue, and merantine blue V, a+e used to dye textiles (77). 

Five othe't'. dyes of this type have been certified by the Food and Drug 

Administ!'..atd .. on for use as coloring agents .for food, drugs, and cosmetics· 
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(l4). These. are,gu;inea.green B (FD&C green No. 1), light;: green SF 

yellowish (FD&C green No, 2), fast- green FCF (FD&C gr~en No, 3), bril.-
. . 

liant blue FCF (FD&C bl,ue No, 1) , and acid violet 6B ·. (FD&C violet No, 1), 

Methods for prep~:ring organic compound~ . such .as dyes usu'ally la.ck 

complete specificity. As a result more than one product: is formed, I11 

most.instances the subsidiary·products have structures and properties 

that: are very similar to those of the primary produc1:, making their de-

tection an(! determination difficult. by "in situ" procedures., Usually 

the presence of .such impuriti~s will -interfere with the determination of. 

the primary produ~t itself. The presence of uncombined starting materi-

als·an4 reaction intermediates might also interfere with product analy".'" 

sis. 

TRe literature contains numerous: accoupt.s of methods which have 

been used to determine the purity of various. types ·of .tripheny~methane 

dyes, Invariably these.procedures employ.a separa:tion technique.prior 

to determination. The techniques commonly employed are: thin-layer 

chromatography, paper chromatography, electrophoresis, and.solvent ex-

traction. In most instances very little information, if any at all, is 

reported concerning the. quantitative dete~ination afte.r separation .is' 

achieved. 

The study described· .. in this thesis was undertaken in. an effort to 

develop an "in situ" method for the multicomponent analysis .. of triphenyh·. 

methane dyes. Considering that the, identity and concentratic;ms of sub..,. 

sidiary components in a (lye sample are not,usually·known, an attempt.was 

!l\ade to develc;>p a method which is· applicable ·under these conditions~-

Accordingly, the kinetic method of proportional equations·was ch<;J~ert for 

this work. In seneral this method involves the simult?-nequs solution o:I: 
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two or.more non.-parallel.kinetic equations whic'h, relate t'fl.e rate'of, 

change of .an experimentallr mea:~nired additive p~rameter, of the Teacti'tlg 

mi:x;ture to the pro,portioJ;lalf.ty constant;-s and the· initial concentrations 

of the substances 'being detertD.ined. , Each preporti~malt.ty constant :t~ 

determined fl=om reactions, of a pure component and i~. a funatl.qn of the 

rate·cqnstant an~ time. A detailed trea~ment. of the theore~ical bases, 

pract:f.cal ,applications, advantages, ,and di~advantages .of this ·method ·1s .. 

g:i,ven in Chapter ·IL· 

More specifically~ .the, k.i,ll;etic '·met.hod ei:nplQyed in :thts WQrk' is ·. 

based on the· fact that under pr,,oper expetimental · conditieri.s .certain 

closely·related triphenylmethane 4yes are.<oxidized by per.iod,ate· ion at .. 

si,gnificantly ~if ferent 'rates. , Low co;ncenttat·ions of manganese (II) ion 

catalyze· the reactic;m. The rate at "which a given- dye ·is oxidized can b~ 

related to ita. init;.ial,concentral;ion. Specfrqphotometric.mea~urements. 

were use<;i.to ·follow·the reactions.~ Resu:J,.ts obtai.ned .by the kitletic · 

methQd·are ccimpated with those obt,ain~d using an equ:f.librium;spectro.-. 

photo~etrie method. • Compara,ble·. experimental :techniques are used ·in both,. 

approaches• 

Considering that the literature did not contain . infotma·tion rela'!'" 

tive. to th~ kinetic ,detepnination of dye mi~tures ;- it was ~decided that . . . . . ' 

this study.would be directed primat;ily.to~arc;l th!il development ,Of 'a 

method for. the analysis of sulfanep,hth,alei:o. dyes o Several fact.ors,. 

promptec;t .·this· decision.. First, the ·sulfonephthaleins . ar~ ·commonly usec;l 

as analytical ·inEl.icators. Thus, they c~n qe obtained in. a high degree 

of purity. Sec<1>n,d, aqueous soluttons.of these dyes exhibit--a greater· 

stability tha'Q. those ·of .the ac;.id and basic type t1dphenylmethanes. 

Th:f,rd, the structures of the sulfonephtha;Lein dye~ are.in general less 
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complex than those 'of .other triphenylmethanes~ Accordingly, one would 

. expect· th~ir react:i,on mechan.isms to be less· complex. Fou'l'..th, the· 

major:l;ty of sulfc.mephthaleins do not form cQmplexes -with ,metal,. iOns as 

readi:r.y as the Qas~c ·dyes -or .the phthale:ins. . The· relevance' of . this .. 

factor resides in tb,.e ·fact: that complexation of .the mang~7;1.ese catalyst• 

by the dyes ca:n cause rather pronounced effects on ·the rates at. which. 

they are .oxidizet;t. Usin~ these fa,c.for.s as .intl\itive. guides-, it was 

anticip~ted that less experimental .difficulties would .be encountered in.· 

the development' of a methpd for 11 in. situ'.' ·analysis 'of. "simple system!?", 

that is, mixtures ·of .. sulfonephthal~in, -dyes•: It was· hoped that once a . 

suitable method was developed far ·the. sulfon~p.hthaleins, the method, 

could be modified and.then applied to the-analysis of .mixt\.l,res.of ·other 

triphenylmethanes. With. this in mind some attention was given to the 

determinat:i,qn of .a mixture.of basic. dyes. 



CHAPTER-II · 

GENERAL. BACKGROUND 

Kinetic ·Methods· for the Simultanec;>tis .Analyais 

of Closely Related Mixtures 

In the past decade numerous accou~ts have been published in which 

kineti.c methods were applied to the simultaneous "in situ'' analysis of 

closely related species. The increasing interest inthe use'of kinetiC 

approaches in Analytical Chemistry arises from. the_. fact· tb,a.t it is often·.· 

necessary to determine mixtures of closely.related components; St.lch .as, 

homologs, isomers, metal ions of the same peri,odic group, or meta,l ions 

of .neighboring peri:odic groups. · Other factors 'that have ·contri'buted to' 

the·growthof analysis by kinetic meth1:>ds are the deve~optnent of better 

techniques for.data aqubition and the accessibility of. digital.computers 

fordata·pra,cessing. 

Methods based on kinetic techniques often have advantages over those. 

based on equilibrium tec'h,niques. For,example, when equilibrium proce­

dures are employed to determine closely relat~d species, the degree of 

differentiation .. obtained is·· often insuf:(icient to resolve .the individual 

concentrations of tl'le components contained in. the,mixture. Therefore, 

separat:ion of ·the components prior.to analysis is necessary. This ap-:­

proach b often labori<;>us and time consuming, making it .not suit!able for 

routine analysis of a , large number of samples.. Iri · some ca~es ,. quanti­

tative separat;ion.is impossible. In contrast, when.kinetic techn:i.ques 
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are applied. .. · to" the analysis of these .. mixtures the deg re~ o! dtf f erentia~ 

tion ob.tained, is of ten suf ficien~ to permit tlieir 'simultaneous · anaJ..i.sis ~· 

Reviews of ,the applications of kinetic·: methods of analysis h~ve 

been published in references. (25, ·26·,, ·~na, · 59)~ A discussion of the basic. 

principles, applic.ations ,. and limitation.a 'of .the val;'ious ·meth0:Q.s for 

simultaneous .kinetic. analysis is given· below·· .. A more detailed treatltletlt · 

can. be found .. in re·ferences (40) .and (41). 

·First-Order .. Lo.garithm:(.e ·Graphical E:i:ttrapolat.;i.on .• 

The reactions of x· and Y with a c.o~on .. reagent R under irrevei:sibl,.e · 

first-order or pseudo,..first order :cotidi:tions,. i.e •. , [R]0 » ([X] 0 + [Y] 0 ) 

can' be' repr~·sented by th.e ·equations: : 

X +R-+.Z 

Y + R -+ Z 

(2.1) 

(2 .2) 

The integrated rate. equl:!,tiot). for· the x-eacting mixtut'.e Ca'.\'lr be written as . 

,..~t -Ityt 
[xJ e ' + [Y] e · = [z] - [z] 

o. 0 co. t 
(2 .3) 

where the. subscripts t an.d · o ar.e ·used· to ~esignate the .conc~ntr.ation,s· of 

X, Y, and Z at Ut11es (t = o) and (t = t). The. pseud,o-f~rst.-oi:d,er .. ,rate · 

constants a,re:rep.resented as kx and ky• If the.ratio, ~/~~ is ·suffi.-

-~t 
ciently large, a t;me~ t, will be reached at which [x] e is relative,.. 

-k t ' 0 

ly small compared to [Y] e Y and can be neglected, · Also at this. time, 
0 

[X]t ::: 0 while an appreciable amount .of Y remains unreacted, Taking · 

these considerations into account the logarithm of:Equation (2.3) can be 

written 
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A plot of either ln([X] + [Y] ) or ln([Z] - [z] ) :versus t yields a. ' ' t t co ' t 

straight line having a slope, -ky, and anintercept, ln[Y] 0 , when extrap .. 

elated ·to, (t = o) I Beginning at the •point whete. [x]t ' .. [xJO the plot ' 

will contain two straight'line portions:, the first arising from the re-. 

action of X, the second from the ·reactic;m of Y. · The t.otal i11itial con";"' 

centrAtion of reactants, ([X] 0 + [Y] 0 ) must be determined by an 'inde~ 

pendent'experiment dr from the value of ((zJ"° .. - [Z] 0 ). Having determined 

[Y] 0 from the intercept af the plot, the value of [XJ 0 is ca.lculated by 

difference. However, a common practic~ is to determine the per.cent of 
. ·--...... -~---x from the intercept and'the per cent Y by difference (l,5,10,ll,69,70)~ 

A large n'Umber of applications have been reported for the first~ 

order logarithmic graphical ext;rapolation me.thod. Hydrolysis. react;ions 

(1,10,11) were used to resolve binary and.ternary mixtures of alkyl 

chlorides, The three component mixtures gave three distinct·portions in. 

their rate plots. Siggia, et al., (69) have resolved binary and ternary. 

mixtures of diazonium compound~. Mixtures of amides, anilides~ nitriles, 

and (nitriles and amides) were analyzed in references (5) and (70), 

Differences in rates of hydrogenation have been used (68) as a basiS for 

the determination of.unsatura~ed acids, esters and aleehclla~ A method 

for the analysis of mixtures of oxidants is described in.reference (62). 

Characteristic,pl6ts are shown but results frc,>m actual arialySis are not 

reported. 

Graphical 04d:rapolation in.conjunction wit;h metal.exchange.read""' 

tions·ha~ been used fer analysb of inorganic mixtures.· Determimtions 

f 0r ~ixtures of alkaline earth ions are reported in reference (55), 
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mixtures of Cd .and Zn in reference (35). A method for the resolution 

of various combinations of heavy metal ions is reported in reference 

(73). 

Second-Order Logarithmic.Graphical Extrapolation 

Organic reactions frequently follow second-order kinetics. In some 

instances it is possible to utilize rate studies of these reactions to 

resolve mixtures of closely related organic compoundso 

Consider the irreversible second-order reacti.on of a mixture, M, 

containing reactants, X and Y, reacting with R by the following equation 

M + R + Products 

If ([X] + [Y] ) rf:·[R] , the rate of the reaction is given by 
o ·o o 

dx 
dt = ~ ([M] 0 - x)([R] 0 - x) (2.5) 

where [M] = ([X] + [Y] ), xis the concentration of M that has reacted 
' 0 0 0 ' 

at time, t, and ~ is the second-order rate constant. 

Integrating Equatio~ (2.5), taking into account that (x = o) when 

(t = o) and (x = x) when (t,= t) yields 

= 
1 [R] . - x 

0 
ln([Ml, _ ) .- K 

0 

{2.6) [R]. - [M] 
0 0 

[R] - x 
0 If ln(--[M_] _____ --x) is plotted versus t a curve having two straight-line 
0 

portions results. Extrapolation of the second linear portion from a 

-,,t1ttre"';f··t, where [X]t ::: o, to the point where (t = o), i.e., the y inter-



cept, gives the value of the constant, K. Since at this intercept, 

x = [X] , this point can be used to evaluate [x] by the equation 
0 0 

[R) - [X) 
ln([M]o - [x]o) • Y 

0 0 

(2. 7) 

The value of [M] must be determined at (t "' CC)) or by an independent·. 
0 

measurement. [Y] is determined by difference, Alternate methods for 
0 

calculating [X] and [Y] are given (41,53,54). 
0 0 

The second-order graphical extrapolation method has been applied to 

the determination of mixtures of primary alcohols in the presence of 

their secondary isomers, their closest homolog, and in the presence of a 

homolog further separated in the series (65). Reference (65) also de-

scribes a method that will resolve mixtures of aliphatic as well as 

aromatic aldehydes and ketones, mixtures of two aldehydes, and mixtures 

of two ketones. Consecutive homologs can be resolved by this method 

also. 

Rates of addition of bromine to olefinic bonds were considered as a 

basis for the analysis of unsaturated compounds (68). Four mixtures were 

successfully determined using the second-order graphical method, The 

authors state, however, that the first-order extrapolation treatment 

utilizing the hydrogenation procedure seems to be more general and ex-

hibits wider applicability than the bromination reaction. 

Willeboorse and Critchfield (78) determined mixtures of primary 

alcohols, primary and secondary alcohols, primary and tertiary alcohols, 

secondary and tertiary alcohols, and one mixture containing all three 

types of alcohols by utilizing the reaction of the hydroxyl group with 

phenyl isocyanate. 
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Utilizing the reaction between amines and phenyl isothiocyanate, a 

method is presented in reference (66) for the determination of primary 

and secondary amines, mixtures of homologou~ primary and secondary. 

amines, and mixtures ·of aliphatic and aroin,atic ~mines. Binar~ and same 

ternary.· mixtures were .resolved. 

An alternate.method for the determinatfof1. ef a111iries is described in 

reference (64)·. The method is reported to be useful for the analysis of 

mixtures of primary·amines, mixtures of primary amines in·the presence 

of second~:rry.and tertiary amines, mixt4res of ·secondary amines, mixtures 

of tertiary.amines; and mixtures of .secondary amine,s in the presence.of 

tertiary amines. 

Method of Roberts and Regan. 

Consider a mb:ture, containin,g X and Y, reacting with R unde-r ·condi-. 

tions such that ([X] + [Y] ) » [R] . The reaatiCi>n is,pseudo.:.first ... 
. . .• 0 0 0 

order with respect. to R, and since the. concentrations :of .x and Y do :not 

change appreciably during the course of the reaction, the rate equation 

is 

d[R] .. 
- ""dt 

Dividing Equation (2.8) by [X] 0 + [YJ0 yields 

K* = + 
(x] + (Y] 

0 Cl) 

~[X] 

= K*(R] (2 .8) 

(2.9) 
[X]. + [Y] . 

. 0 0 

Subfi1tituting, (1-fX), for. the mole fracti.on of Y ·and rearranging gives 

f = x 
[x] 

.o 

[X] + [°Y] 
0 0 

= 
(K* - ky) 

<11c - ky>. (2 .10) 
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The integrated form of Equation (2,8) is used to evaluate K*. Scluti0ns 

of pure X and pure Y are used to measure kx .and ky~ The value of 

([X] t [Y] ) must be o~tained by an independent method. Using this : 
0 ' 0 

information, [X]0 and [Y] 0 can.be calculated. Robert·s and Regan used 

this method to resolve mixtures of carboxylic .acids by reaction with 

diphenyldiazomethane (61). 

The method developed by Raberts and Regan was ·modified (60) in order 

to make it more adaptable to routine analysis •. Integratian of Equation 

{208) yields 

= (2.11) 

' Letting [M] = ([X] + [Y] 0 ), substitution in Equation (2.11), followe,~ 
0 0 

by rearrangement.gives 

[x] 
0 - = 

[M]o 
' .. 

(ky - ttx> 
(2 .12) 

A plot of 
1 versus ([x]. + [Y].) , at a.predetermined 

·o o 

[x] 
·O 

t([X] .. + [Yf) 
0 0 

constant value for the ratio, [R]/[R] 0 , yields a straight line which 

has intercepts. l/t[Y] and l/t[X] 0 when the.mole fraction of X equals· 
0 

zero and one respectively. The plot, which serves as a calibration 

curve, is readily constru~ted by evaluating the intercepts using solu-

tions of pure X and pure Y, then drawing a.line between them. In cases 

where the kinetics are not well behaved and the plot is not linear it 

still can be constructed using known mixtures of ·X and Y, 

To insure that ·the optimum fractional life, [R]/[R] 0 , is chosen 
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for measurements, Equation (2.12) is differentiated with respect to [R]t 

and then t6 t. The following is obtained (54) 

d(dfX/d[R]t) 

~t 
.. 1 - Kt 

2 -Kt· 
t e 

(2.13) 

It can be seen from this equation that the error in fX is minimized'when 

.-Kt 
e , it can be seen Accordingly, from the relation [R] /[R] = 

t 0 
Kt = 1. 

that minimum error occurs when [R]t/[R] 0 = l/e, It follows that t is 

selected to achieve this condition, 

To test this method binary amines were determined by their reaction 

with hydroxylamine hydrochloride or semicarbazide, The reactions were 

followed by recording the conductance with time. Willeboordse and 

Meeker (79) applied the method developed by Reilley, et al., (54) to the 

determination of alcohols. 

A modification of the Roberts and Regan method, which requires only 

a single measurement for an analysis, is presented in reference.(38). 

By reaction with methyl iodide, mixtures of amines are determined. Auto-

lllC!:t:ic recording of the conductance as·a function of time is used to 

follow the reactions. Resolution is achieved by use of Equation (2.11) 

from which the following equation ca~ be written 

(2 .14) 

The total concentrations of reactants is determined by an independent 

method and can.be written 

[M] = [X] + [Y] 
0 0 0 

(2 .15) 

By following the decrease in R with time, K* is determined using Equa-



tion (2 .11}. Then [X] is calculated by the simultaneous solution of 
0 

Equations (2,14) and (2.15), [Y] is determined by difference, 
0 

Method of Proport:l-onal Equations· 

When a mixture of closely related species, X and Y, reac1;:s with 

reagent, R, forming products ZX and ZY the reaction is pseudo....,first,-. 

order with respect to X and Y if [R] » ([X] + [Y] ), Assuming that 
0 . 0 

X and Y react independently when mixed, the follOW'ing relation holds 

13 

= (2 .16) 

or 

= 
-~t -kyt 

[x] (1 - e ) + [Y] (1 - e ·) 
o ·o 

(2,17) 

where [z] = [Z ] + [ZY] . The value of z,. measured at twe dttfe~ent 
t x t t 

cqnditions can.be expressed as 

(2. i8} 

= [x]o ~2 + [Y]o l<y2 (2 .19) 

Almost any experimental variable may be utilb.:Eia to obtain the two con'."" 

ditions provided 1Sci Ky2 :/: 1Sc2 RYi• The optimum conditions, however, 

are those such that the ratio of ~l to Ky1 is greater than unity at one 

condition but less than unity at .the other, 

Several papers have been published in which time is used as the 

variable. The longer time, t 2 , is sele.cted after taking into account the 

nature of the reacting system and the extent to which the reaction must 
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proceed in.order to obtain the desired sensitivity. Having selected t2, 

the optimum short time, t · , is determined by an equation developed by op 

Garmon and Reilley (20). 

t op (2.20) 

Pseudo~first-order constants may also be used in Equation (2.20). 

In practice the proportionality constants RX,1 , RX,2 , r<y1 , and r<y2 

are· determined from reac.tiolts of pure X and pure Y. To detepline [X] 
0 

and [Y~0 , values of [z1]t and [z2Jt are meast.Jred, then Equations (2.18) 

and (2.19) are solved simultaneously. Usually the value of P, a para:"' 

meter proportional to Z, is measured rather than the value of Z itself. 

The-two time procedure has found application for the analysis of 

mixtures of d:iglycolic and glycolic ac;:Lds (20) 9 mixtures of sugars (37, 

52) and mixtures of ketones (22). 

When measured under'two experimental conc;litions, the value of K* 

given by Equation 16 becomes 

(2 .21) 

= (2.22) 

l.Jsing these.relationi:i, Mark and Greinke. (39) developed a method for the 

analysis·of mixtures of anisaldehyde and 3-pentanone. The values of· 

~' kxi• and ky1 .were measured in 78% methanl!>l-22% water.while the values 

* of K2, ~2 , and ky2 were determined in ·42% methanol-58% water.o· * K values 

for mixtures were measured under these same.conditions. 

Bensen and Fletcher (4) used temperature as the differentiating 
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v~riable to resolve mixtures of glycols'at the 10~3 tl to the ;10-l ~ 

level. Accurate·results are.obtained only for mixtures of ethylene 

glyc(:)l and butane-2,3-dioL The experimental error was about'2 to 3% 

for both components. It should be noted• howeve·r, that since· the ratio 

of the proportionality constants is not. reversed at ·.the two experimental 

co.nditions this -method, is·· probabl-r not usefu1 when th~ slower -reacting 

species is the minor component ·of.the mixture~ 

The reactian of phosphate and .silicate.ion witli:Mo(VI) to·form 

yellow heteropol:Ymolybdates and their reduced hetier0poly blues follows' 

first-order kinetics o Employing technci.ques of -stopped.-flow spectro­

photometry to ,mak.e.rate.meai;urements dur:ing the first fety seCC?!lds.of 

reaction and again after 30 secqnds, Ingle and CrC!l~ch (II) develqped-a 

method fc;>r the simultaneous determination of phosphate and-silicate.foti~. 

After standards were run, five simultaneous determinatiG>ns ccilulcd be .mad.e .. 

in fifteen minutes. 

The method of . praport:tonal _equations has· also been applied in a. de'."' 

termin.ation which e.mploys the. use of enzyme-catalyzed reactions (37). 

This method was used to determine mixtures of eth~nol and l~propanol, 

The results are not·very accurate but the validity of the.methed is de .... 

monstratedo Two concentrations.of the coenz:Yme~ nicotina.mi4e ar:leni!le 

dinucleotide are used ta·develop the proport'ional relations. 

A method f 0r the simultaneous determination of 'five organic per­

oxides of different· classes (two per0xycarb0xylic acids., two diacyl ,per-, 

oxides,·and one hydrape:i:'sxide) has been c;leveloped. by Ha.wk, et al. (27). 

The main'basis for this method is ,the fact that each of th~ peroxides is 

reduced by sulfides·at,a different rate, leaving varying amounts of total 

peroxide unreacted at a given timeo 
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In recent years, several papers have been published in which the 

simultaneous kinetic.determination of n species involves the use t>f a 

numbet of measurements m where (m > n)o Since the-metal exchange reac~ 

tions on which these reactions are based are extremely.fast, stopped-

flow spectrophotometry is employed in most of these analysis• Digital 

computers are'used 'for the processing of data. 

Binary and ternary mixtures of alkaline earth ions (Mg, Ca, Sr, and 

Ba) have been determined (55). For a number of runs graphical extrapo-

lation was employed; yielding results comparable to. those obtained by 

computer analysis. A linear regression analysis program was applied te 

(30 to 60) sets of absorbance versus time data to obtain a simultaneous 

solution for the unknown'metal ion concentrationso Ten to 100 fold ex-

cess of other metals do not interfere with the alkaline earth determina-

-6 -4 tions at the 10 M to 10 M concentration rangeo 

Multicomponent mixtures 0f transition and lanthanide metals Y1ere 

determined (35) • One example is given in which seven me.tals of a . nine 

component mixture were determined with an accuracy of about 10%. A 

graphical treatment was used to resolve Cd to Zp.ratios ranging from 

(1 to 10) to (10 to 1), with an average relative error of about 2% for 

Cd and 6% for Zn. 

Employing stopped-flow spectrophotometry in conjunction With a 

small on-line computer, a method is described (80} for the·. determination 

of binary and ternary mixtures of alkaline earth Ihetals. The mixtures 

wer'e resolved by a linear least squares tre~tment of 200 data points 

taken at regularly spaced time intervals, In general, the precision and 

accuracy of the results were improved 5 to 10 times over those obtained 

when 30 points (55) were used under similar conditions. 
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Single Point Method of Lee and Kolthoff 

Ifa mixture, X + Y, reacts irreversibly by first-order kinetics 

forming a common,produat, Z, the integrated form of the rate expression 

can be written 

-k t -k t 
[X] e -x + [y] e -x · 

0 0 
(2.23) 

Dividing by ([X] + [Y] ) and rearranging yields 
0 0 

[X]t + [Y]t 

[xJ + [YJ 
[z]co ~ [z]t [x] -~t -kyt . ,...kyt 

___ ,..__.o..,.,__ (e · - -e ) + e = 
0 0 

[z] -
"° -

[zJ,,, ... [z]t 
A plot of · [zJ 

ro 

or 

-= [x] + [y] 
. (l . 0 

[X]t + [Y]t 
[X] + [Y] 

0 0 

versus 

(2.24) 

[x] 
0 yields a [xJ · + [Yr 

0 E> 

-kyt -~t 
straigh,t line show intercepts are e and e when the mole fraction 

of X equals zero and one respectively~ This plot, which serves as ·a 

calibration curve can be constructed by reactions of pure X and pure Y 

or from known mixtures of X and Y. 

The optimum time at which measurements should be made is calcu~ated 

from Equation (2,25) (32) 

t = op 

ln(kx/ky) 

~ - icy_ 
(2.25) 

Kilthoff and Lee (30) applied this method td determine the per.cent· 

of internal and external double bonds in synthetic rubbers, The·pro.-

cedure used is based on the differences in the rates of reaction of 

perbenzoic acid with the two types of bonds, A method is described in 



reference (18) that utilizes competing rates of oxime formation to de-

termine aromatic aldehydes in the presence of aromatic ketones. · 

Employing a modification of the Lee and Kolthoff method, Papa et. 

al., (~2) developed a procedure for the determination of mixtures of 
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sugars, By this procedure the calibration curve cons:f.sted of a plot of 

the fraction of re.actant having reacted at· time t versus the mole. frac-

tion of X. The prdcedure for preparing the curve are similar to those 
0 ""'kyt . . -~t 

described above, The intercepts are (1-e ·) and (1-e ) when.the 

mole fractiGn of X equals zero and one respect~vely. 

Lohman and Mulligan (33) have applied the method of Lee and Kolt-

hoff to the analysis of mixtures of ethanolamides, Differences in the 

rates of saponification of mono- and diethanol-amides are utilized to .. 

determine these amides.in the presence of amines, amine soaps, amine 

esters, and the ester function of amide esters, all of which are com-

manly found i.n commercial alkanolamides ~ 

Second-Order Single Point Method of ·Lee and.Kolthoff 

A single-point method designed for the ana1ysis of mixtures of X' 

and Y react!ng by second..:.order kinetics was introduced by Lee and 

Kolthoff (14), The method is applicable only unc;ler conditicms where 

[R] 
0 

= ([X] + [Y] ), To resolve a mixture the quantitiesJ 
0 0 

([X]t + [Y] ) and ([X] + [Y] ), are measured, The value of %[X] 
t . 0 0 0 

is 

then·read from a calibration, i.e., a plot of %([X]t + [Y]t) versus 

%[X] , obtained from reactions of known mixtures of .X and Y. The value 
'O 

of %[Y] is determined by difference. Mixtures of esters; olefins and 
0 

carbonyl compounds were analyzed by this method (32). 
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Linear Extrapolation Method 

This method was developed by Reilley and Papa (66) ,.for the analysis· 
' ' 

of mixtures of X and Y reacting with reagent, R, by second,..order kine ... 

tics under conditions such that ([X] + [Y] ) .. [il] • The authors 
0 0 0 

showed that· after component X has'rea.cCed completely the follOwing equa .... 

tion is valid: 

where x equals· the concentration of .. X and Y consumed at time, t. A plot 

of x versus ([R] 0 ,.. x)t yields a.straight line having an.intercept of 

[X] . The value of [Y] is.calculated by difference, This method and 
0 ' 0 

the single point and double point methods described below were applied 

to the analysis of mixtures of 1-butanol and 2-butanol~ The three methods 

gave comparable results (60). 

Single Point Method of Reilley and Papa 

Under conditions identical, to those.of the previous method, the 

substitution 

pression for 

of [Y] = [R] - [x] 
0 0 0 

into Equation (2.26) yields an ex-

[x] (27) 
0 

[x] "' 
0 

[x - ky ([R] 0 ,.. x)t [RJ<) 
[l - ky. ([R] 0 .;_ x):t] 

(2~27) 

It follows that once.values for ky anq [R] 0 have been ascertained, a 

single measurement 'of x makes possible the calculation of [X] • ' . 0 

Double.Point Method of Reilley and.Papa. 

This method is also a tnodif icatio~ of the linear extrapolation 
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method described above, Experimental conditions are the same for both 

methods. However, when the double point method is applied, x and x', 

the concentration of X and Y consl,UD.ed at ·times, t and t', are measured. 

Both t and t' are times after which X has completely reacted. The 

values of x and x' are used in two equations like (2.26), whose simul~ 

taneous solution yields [X] (60). 
0 

([R] - x)t 
[x - 0 x'] 

([RJO - XI) t I 

[x] = 
0 ([R] - x)t 

[l - 0 J 
. ( [R] - x' ) t I 

0 

Tangent Method 

' 

(2.28) 

This method for the determination of binary mixtures reacting by 

first-order kinetics is described in reference (31). It appears, how-

ever, that no experimental applications have been reported. The method 

is·based on the measurement of the rate of concentration change after 

the faster reacting component has completely reacted. By1measuring the 

slope of the total concentration versus time plot, the rate constant, 

ky' is determined, Since at this point in the'reactio11_[X]t = o, [Y]t 

is readily measured. The initial concentrations of X and Y are then 

calculated. · 

Graphical Differential and Graphical Integral Methods' 

These methods were developed by Schmalz and Geiseler (63) for the 

determination of binary mixtures whose reactions follow second-order 
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kinetics. . Resolution ts achieved by eval\V\tion of .·the secC>nd'-:order .. 
differential rate laws and the secGnd-order integral. The methods were . 

used to· determine binary mixtures of olefines •. 

Method ·fc::r Analy-siS·of .Mixtures Reactin~ by Fractional-Order K.:tnetics 

A method applicable to the determination of mixtures of X. arid Y · 

reacting by.apparent.fractional-order.kinetics was developed by Greinke 

and Mark (23). The order of the reaction with respect to the·slower 

reacting component, ny, is ascertained by a series of approximations • 

. After the reacting of the faster reacting component is complete; ~qua-. 
,. 

tion (2 .29) can be us.ed to Q.etermine (Y] , the initial concentrati•' of. 
0 

the . slower reacting component~ 

(n-1) I<yt = l/[Y]n-1 ~ l/[Y]n-1 . 
. t. 0 . 

By plotting 1/[Y]n-l versus time and extrapolating to .(t •Cl}, tli..e'value 
. t 

of [Y]0 is.determined. In order.to determine [x]a thequant:tty ([X]0 + 

[Y]0 ) must be measured. This method was applied to the ·analysis Qf 

amines (23). 

Method for Analys.is ·Of Mixtures Reacting by Mixed Higher Sfoichipmetd.es · 

Bond, ~ aL , have described a method for analysis of mixtures: .in 
. . . . 

which the reactants, X and Y, react with different stoichiometries (9). 

·The method was applied to the determination of mixtures of cyc+otd,.-

methylenenitramine arid cyclotetramethylenenitramine. 



A Comparison of Kinetic Methods for the Simultaneous 

Aialysh .of ClOsely Related Mixtures 
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For the purpose of comparison, the kinetic .methods reviewed in th~ 

previous section can be divided into two main classes, general methods 

and miscellaneous methods. Because of their flexibility and adaptabil­

ity to connnon experimental problems the general methods find greater 

application than the miscellaneous ones. Several applications can.be 

found in the literature for each of the general methods whereas, usually, 

only one appears for the miscellaneous methods. 

Four general methods have been developed for the simultaneous 

analysis of mixtures: the logarithmic graphical extrapolation methods 

(both first- and second-order), the method of Roberts and Regan, the 

method of proportional equations, and the single-point method for first-. 

order reactions developed by Lee and Kolthoff. Depending on the circum­

stances, each of these methods has its place in kinetic analysis. Some· 

of them are inherently more flexible than others. Therefore, it is de­

sirable to compare the relative advantages and disadvantages of these 

methods, Since the miscellaneous methods have limited flexibility and 

accordingly very limited applicability their comparison will not be 

attempted. 

Graphical Extrapolation Methods (GEM) 

These methods were the first to be widely used for the simultaneous 

kinetic analysis of closely related mixtures. Consequently, they have. 

been applied more than the other methods; They have the following 

advantages: 
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1. Since they are based on values obtained by plotting tne log qf 

the tota:!:. reactant concentration versus time, a knowledge of the rate 

constants is not required. 

2. The methods are relatively temperaturo independent. 

3. The plotting procedures will, in most cases, minimize small 

errors since the "best" straight line is drawn through several points, 

It is found, however, that a relative error of about 2% results from the 

extrapolation procedure (23). 

4. These methods are not restricted to constant fractional life 

processes. Therefore, they can be applied in some cases where synergis­

tic effects occur (69). 

5, The second-order method can be applied under conditions where 

it is necessary to follow the reagent concentration rather than that of 

the reactants, 

6. The first-order method can be used for determinations of th~ee 

component mixtures. 

7. These methods are very practical when only a few samples are to 

be analyzed. 

The main disadvantage of the graphical extrapolation methods is 

that component X must be about 99% reacted before useful data can be 

collected. In many cases when this requirement is met the amount of Y 

remaining is insufficient for an accurate analysis. Also, since the 

reaction of Y must be followed for some time afteF the reaction of X is 

complete, the possibility is rather large that side reactions or back 

reactions will interfere with the reaction rate of component Y. Another 

disadvantage is that in many instances numerous samples must be with­

drawn from the reacting mixture and analyzed in order to collect data 
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for the plot. The final disadvantage is that the total initial conaen-

tration of reactants must be determined. In many cases this requires 

following the reaction to time infinity. 

Method of Proportional Equations (MPE) 

This is the most flexible of the kinetic methods for determining 

closely related mixtures. Even though it was developed long after the 

other methods, its number and variety of applications has grown much 

faster than the others. The method presents many advantages over the 

graphical extrapolation methods (GEM). 

1. Generally, the time required for an analysis is much shorter 

when the MPE is used. Typical times for a GEM analysis are 1.5 hours 

(64), 40 minutes (65), 5 hours (65), and 70 minutes (69), compared to 24 

minutes (20), 1.5 minutes (29), 50 minutes (52), and 2 hours (69), for 

a MPE analysis. 

2. Only two measurements are required for an analysis by the MPE. 

3. Even though a mixture reacts by complex kinetics the MPE is 

applicable if the proportionality constants can be determined (20). 

4. The total concentration of reactants is not required. 

5. A smaller ratio of rate constants is. required for accurate re-

sults. One should realize, however, that the required value for ~/ky 

changes as the value [X] /[Y] changes. Greinke and Mark (24) have shown 
0 0 

that for [X] 0 /[Y] 0 = 4, the ratio, ~/ky, should be about 7 in order to 

achieve good resolution. A kX/ky = 4 would suffice using the MPE. 

6. The MPE is easily adapted to the determination of multicomponent 

mixtures (27,35,80). 

7. The MPE is readily adapted to automation, making it the pre-
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ferred method for analysis of fast reactions (80) and for initial rate 

methods. 

8. The shorter time required for an analysis makes the MPE less 

susceptible to errors caused by side reactions. 

The method of proportional equations has the following disadvanta-

ges: 

1. The method is not applicable in the presence of synergistic 

effects. 

2. R~te constants must be carefully measuredo 

The Method of Roberts and Regan (~) 

The method of Roberts and Regan has the following advantages over 

the method of proportional equations and the graphical extrapolation 

methods:. 

1. Small ratios of ~/ky can be tolerated. For example, a mix­

ture containing 2.5% A, where ~/ky = 2.2, was determined with only a 

2 to 3% error (24). 

2. Since [R] << ([X] + [Y] ), side reactions are minimized. 
0 0 0 

3. The MRR is useful over a larger range of [xJ /[Y] as long as 
0 0 

~[X]0 is about five per cent to the value of K*. 

4. The large concentration of reactants will increase the rate of 

very slow reactions, in some cases, making them useful for kinetic de-

terminations. This could also be a disadvantage because some·reactions 

will be made too fast. 

The disadvantages in using the method of Roberts and Regan are: 

1. The total initial concentration of reactants must be determined. 

2. The method is restricted to binary determinations. 



3. The method can be used only when it is possible to follow the 

concentration of the reagent, R, or the common product, z. 

First-Order Single-Point Method 
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This method, like the method of proportional equations is based on 

the constant fractional life principle. Its main advantage is that by 

using empirical calibration curves the method is applicable to nearly any 

reaction mechanism. 

The disadvantages of this method are: 

1. A rate constant ratio of 4 to 1 or larger is required (32). 

2, The total initial concentration of 'reactants must be determined, 

3. The method is limited to binary determinations, 

Spectrophotometric Equilibrium Methods· 

for the Simultaneous Analysis 

of Closely Related Mistures 

The principles of equilibrium absorptiometric methods are well 

established. Extensive and comprehensive treatments of the methodology 

associated with spectrophotometry are presented by Mellon (44), Stearns 

(71,72), Lothian (34), Meehan (42), and Calder (13). Techniques employed 

for multicomponent "in.situ" analysis are treated in these works. In 

addition to these monographs a critical .survey of the instrumentation and 

application~ of Light Absorption Spectromf;try during the years 1930 to 

1944 was published in·l945 (43). Subsequent to this survey 14 reviews 

have chronicletl the progress in this field of analytical chemistry 

(8,45,46). These reviews document developments in this discipline from 

1944 through November 1971 and include numerous applications for multi-
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component analysis. 

In most instances the concentration of multicomponent mixtures is 

resolved by the simultaneous solution of j equations of the type 

= (2. 30) 

where i = (1 to j). 

In Equation (2.30), AAi is the absorbance of the mixture at wavelength 

i;e1 to ej, the molar absorptivities of the absorbing components, mea­

sured at the same wavelength as A; c1 to Cj, the molar concentrations of 

the components being determined; and b, the path length of the spectro­

photometric cell, 

A notable exception to the general procedure is one described by 

Przybylski (56) in which the number of analytical wavelengths is several 

times the number of components being determined. This technique was 

applied to the determination of hydrocarbon mixtures (57). The accuracy 

and precision of results were increased by a factor of two compared to 

that obtained using the general procedure in which the number of analyti­

cal wavelengths is the same as the number of species being determined, 



CHAPTER III 

EXPERIMENTAL METHODS AND PROCEDURES 

Apparatus 

Absorbances were measured with a Cary-14 spectrophotometer supplied 

with a thermostatable cell adapter (Cary Instruments) connected to a 

0 circulating water bath maintained at 25o0 ± 0.2 c. Temperature control 

was maintained with a Lauda/Brinkmann Model K-2/R circulator. A Corning 

Model 7 pH meter equipped with a glass-calomel electrode pair was used 

for pH measurements. 

Reagents and Solutions 

Sulfonephthalein Dyes 

All sulf onephthalein dyes except xylenol blue and thymol blue were 

Eastman white label sodium salts. The purity of these salts was checked 

by a modification of the paper chromatographic procedure reported by 

Frang1en (19). Using a solvent mixture of purified tertiary amyl alco-

hol (200 ml) and concentrated ammonia solution (50 ml), TLC separations 

on cellulose Eastman Chromagram Sheets showed only traces of a contam-

inant in cresol red, cresol purple, and bromocresol green, giving a 

yellow spot with Rf - l, The Rf values of the dyes were comparable to 

those reported by Franglen. Kinetic runs on purified (by TLC) and un-

purified dyes gave exactly the same results indicating no purification 
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was necessary and the kinetic behavior is not affected by the traces of 

contaminant. 

Xylenol Blue, Water Soluble 
. 
. I 
!'' 

(Aldrich Chemical Company, Inc., Milwaukee, Wisconsin.) Used as 

receivedo 

Thymol Blue, Sodium Salt 

(Baker Analyzed Reagent, J. T. Baker Chemical Company, Phill.ipsburg, 

New Jersey.) Used as received. 

Brilliant Green 

(National Aniline Division, Allied Chemical'and Dye Corporation, 

New York, New York.) Purified by Soxhlet extraction with acetone as 

described by Fogg (17). To insure that the brilliant green did not·con-

tain traces of malachite green, samples of the pure dyes arid their mix-

ture were chromatographed on an Eastman Chromatogram Sheet, Type K301R 

(Silica Gel) Thin Layer. The eluting solvent was a (2:2:1) mixture of 

methyl ethyl ketone, acetic acid, and isopropyl alcohol as used by Naff 

and Naff (50). The pure dyes gave only single spots on the chromatogram 

while their mixture was clearly resolved. The ratio of Rf values, 

brilliant green to malachite green, was 1.1. 

Fresh stock solutions were prepared after three days use. 

Malachite Green Perchlorate . 

Prepared by Therold E. Bailey, Department of Chemistry, Oklahoma 

State University, from malachite green oxalate by precipitation with ex-
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cess sodium perchlorate in aqueous solution. The precipitate was washed 

with cold water and dried over concentrated sulfuric acid in a vacuum 

desiccator, The product gave an elemental analysis corresponding to the 

formula c23H25N2c104 • An ultrasonic cleaner (disintegrator) was used to 

facilitate quick and complete dissolution of malachite green perchlorate 

in water. Fresh stock solutions were prepared after three days use, 

Malachite Green Hydrochloride 

(Allied Chemical Corporation, Morristown, New Jersey,) Used as re­

ceivedo 

Malachite Green Oxalate 

(Eastman white label,) Used as received, 

Distilled Water 

The water used to make solutions was purified by distilling de­

ionized water in a borosilicate still equipped with a quartz inunersion 

heater, Plain distilled water is satisfactory. Plain deionized water, 

however, was found to contain small amounts of organic matter which in­

interfered with some of the determinations. 

Other Reagents 

All other reagents were Analytical Reagent grade chemicals. 

Hydrochloric Acid - Potassium Chloride Buffer Solution for ~H 1,20 

The quantities, 335 ml of 0.5 M HCl plus 125 ml of 0.5 ~ KCl, were 

diluted to 500 ml with distilled watero Ten (10.0) ml of this buffer 
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were used per 25 ml of solution to be tested. 

Acetate - Phosphate Buffer Solution for pH 3.50 

The quantities, 70,0 g NaH2Po4 plus 30 ml glacial acetic acid, were 

diluted to 500 ml with distilled watero When necessary the pH of the re­

sulting solution was adjusted to pH 3,50 by addition of 1,0 M NaOH or 

1.0 M CH3COOH. Ten (10.0) ml of this buffer were used per 25 ml of 

solution to be tested. 

Phthalate Buffer Solution for pH 4.00 

The quantities, 0.5 ml of 0.1 M HCl and 5.10 g potassium hydrogen 

phthalate, were dissolved and diluted to 200 ml with distilled water, 

Ten (10.0) ml of this buffer were used per 25 ml of solution to be 

tested. 

Citrate - Phosphate Buffer for pH 4.00 

The quantities, 6.45 g c6H8o7 ·H2o and 10.32 g, Na2HP04 •7H2o, were 

dissolved and diluted to 200 ml with distilled water. Ten (10,0) ml of 

this buffer were used per 25 ml of solution to be tested, 

Acetate Buffer for pH 4.10,Ionic Strength 0,10 

The quantities, 3. 76 ml glacial acetic acid and 0 .8032 g KOH (86. 6%), 

were dissolved and diluted to 500 ml with distilled water. Ten (10,0) 

ml of this buffer were used per 2~ ml of solution to. be tested, 

Phthalate Buffer for pH 5.60 

The quantitiest 5.20 g of potassium hydrogen phthalate and 77.2 ml 



of 0.25 M NaOH, were dissolved and diluted to 200 ml with distilled 

water, 

Borate Buffer for pH 8.00 

The quantities, 3.78 g H3Bo3 and 9.8 ml of 0.25 ~ NaOH, were dis­

solved and diluted to 500 ml with distilled water. Ten (10.0) ml of 

this buffer were used per 25 ml of solution to be tested. 

Borate Buffer for pH 8080 
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The quantities, 7.75 g H3Bo3 and 158 ml of 0.25 ~ NaOH, were dis­

solved and diluted to 1.0 liter with distilled watero Ten (10.0) ml of 

this buffer were used per 25 ml of solution to be tested. 

Borate Buffer for pH 9.20 

The quantities, 15.5 g H3Bo3 and 528 ml of 0.25 ~ NaOH, were dis­

solved and diluted to 2.0 liters with distilled water. Ten (10.0) ml of 

this buffer were used per 25 ml of solution to be tested. 

Borate Buffer for pH 9.60 

The quantities, 3.78 g H3Bo 3 and 185 ml of 0.25 ~ NaOH, were dis­

solved and diluted to 500 ml with distilled water. Ten (10.0) ml of 

this buffer were used per 25 ml of solution to be testedo 

Procedures 

General experimental procedures used in this work are described be­

low. In order to resolve various dye mixtures the general procedures 

were modified. A detailed discussion of these modifications is given in 
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Chapter DJ. 

Kinetic Determination of Sulfonephthalein Dyes 

After being brought to constant temperature, solution I, containing 

5,00 ml of sodium periodate (0.01 ~) plus 10,00 ml of borate buffer 

(H3Bo3-NaOH) and solution II, containing 5.00 ml of dye and 5,00 ml of 

the manganese (II) perchlorate solutions, were mixed by pouring back and 

forth between the test tubes which contained them. The change in absorb-

ance, l':i.A, of the reacting mixture was re.corded over an experimentally 

determined time interval. The use of two-compartment reaction vessels 

similar to those designed by P. Dreyfus (Bolab Incorporated, Reading, 

Mass., Cat. No. BB568) did not offer any noticeable advantage over the 

test tubes except a little more freedom of operation. 

Kinetic Determination of Basic.Dyes 

The general procedure outlined above was employed in an attempt to 

determine a mixture of closely related basic dyes. Initial conditions 

for this study were similar to those employed by Mottola (48). The 

actual conditions were: pH 3.50 (acetate-phosphate buffer), 0.1% 

d ( ) · f 5.0 x 10-6 M d 1 h perio ate ion, a Mn II concentration o _, an a wave engt 

of 620 nm, Reaction curves for the pure dyes and their mixture are shown 

in Figure 8. 

Spectrophotometric Determination of Sulfonephthalein Dyes 

The required volumes of dye and buffer solutions were pipeted into 

volumetric flasks and diluted with distilled water. After thorough mix-

ing, portions of the resulting solutions were poured directly into the 

spectrophotometric cell for measurements. 



CHAPTER IV 

RESULTS AND DISCUSSION 

Kinetic Determination of Sulfonephtalein 

Dye Mixtures 

Sulfonephtalein dyes are slowly oxidized by periodate ion. Low 

concentrations of manganese(II) accelerate the process, Many other 

metallic ions do not catalyze the reaction appreciably. For example, 

at the 10-S M level, none of the following exerted a detectable effect 

on the oxidation of phenol red in one hour's reaction time: Fe(II), 

Fe(III), Hg(I), Hg(II), Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Pb(II), 

Tl(I), Ag(I), Cr(III), and La(III). For these tests the concentrations 

-5 . -3 
of phenol red and periodate ion were 1.0 X 10 M and loO X 10 M 

respectively. The reactions were buffered at pH 8.00 with borate buffer. 

In basic medium, pH 8 to 10, the predominate periodate species is 

2-H 3I 06 (12). Under these conditions the Mn(II) catalyzed oxidation of 

sulfonephthalein dyes by periodate may be represented as 

2-Dye + H3ro6 + Mn(II) + Colorless Products (401) 

For the purpose of the work reported herein, the identities of the 

oxidation products were not req"1lired and therefore not determined. The 

rate equation for the dye oxidation is 

(4.2) 
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Under the conditions employed throughout this study, i.e., 

[H3IO~-J >> [Dye], buffered reaction solutions~ and a constant catalyst 

concentration in all "runs" of a given type, it was unnecessary to t:ake 

into account the order of the oxidation reaction with respect to [H3ro~-] 
and [Mn(II)], Therefore, equation (4,2) could be reduced to 

-d~~ye] = k*[Dye] (4.3) 

where .k* is·the pseudo-first-order rate constant. The reactions, how-

ever, were first order with respect to dye concentration, Straight lines 

were obtained from plots of log(At - A00 ) versus time (Figure 1). 

The proposed reaction scheme for the reaction represented by 

equation (4.1) is as follows: 

2- , -Mn(II) + H3ro6 + Mn* + I03 (4.4) 

Mn* + Dye + Colorless Products + Mn(II) (4.5) 

In the above.equations, Mn* is a manganese species having an 

oxidation state higher than (II). 

The pH dependence of the reaction is reflected by the following 

observations. At pH 5.6 the protonated forms of the dyes were virt:ually 

unreactive, Between pH 8.8 and 9.6 the maximum rate of oxidation was 

obtained while at pH 10 the rate was consi.derably decreased, probably 

due to the formation of Mn(II) hydroxide and possibly undetectable 

amounts of MnOZ(aq)' 

Permanganate ion was not an effective oxidant under the experimental 

conditions at which the periodate-manganese(II) reaction provided an 

"in situ" generation of effective oxidizing species,, Furthermore, the 

use of permanganate was undesirable because of its contribution to the 

absorbance of the reacting system. Hydrogen peroxide was found to be 

an ineffective oxidant and as could be anticipated, due to the high pH, 
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peroxidisulfate was also ineffective. Periodate, and particularly the 

combination periodate-manganese(II), appeared to be a selective reagent 

for the oxidation of sulfonephthalein dyes within a limited range of 

hydrogen ion concentration. Chromate ion and cerium (IV) were not 

tested since even if effective the analytical procedure would be affected 

by hydroxide precipitation. 

The effecti,ve oxidizing species, Mn*, is probably Mn(III) and the 

reaction proceeds according to (4.4) and (4.5) until all dye has reacted 

after which the periodate further oxidizes the manganese to Mn(IV) and 

permanganate. Arninopolycarboxylic acids such as nitrilotriacetic acid, 

(NTA), ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA), and 1,2-

diarninocyclohexane-N,N,N' ,N'-tetraacetic acid (DCTA), all forming 

stronger complexes with Mn(III) than Mn(II), greatly enhance the effect 

of manganese. Their application to the resolution of sulfonephthalein 

dyes, however, is complicated by the presence of synergistic effects, 

Appendix (A) illustrates the structures of the sulfonephthalein 

dyes included in this study. The relative reactivity of these dyes 

included in this study. The relative reactivity of these dyes with the 

periodate-manganese oxidant is demonstrated by the values of the rate 

constants listed in Table I. Examination of these values indicated that 

by proper choice of experimental conditions; the differences in reaction 

rates might provide a basis for quaptitative "in situ" determinations of 

mixtures such as: 

1. Cresol red and cresol purple 

2. Cresol red and phenol red 

3. Cresol purple and phenol red 

4. Cresol red, cresol purple, and phenol red 



TABLE I 

KINETIC CONSTANTS 

Experimental 
Pseudo-First-Order Proportionality Time 

pH(l) 
Rate Constant Constant (3) Interval (7) 

Dye /..(nm) k*x 102 (min-1) (K±s) X lo-3 · (M-1) (Minutes) 

Section A(2) 

Bromothymol Blue 616*t 7.60 4.2 10 to 20 

Bromoxylenol Blue 614*t 7.60 1.5 10 to 20 

Cresol Red 572*t 9.20 0.95 0.5 to 1.5 

Cresol Purple 578*t 9.20 0.12 0.5 to 1.5 

Glycinecresol Red 580*t 9.20 2.1 15 to 20 

Glycinethymol Blue 604*t 9.20 1. 7 15 to 20 

Phenol Red 558*t 9.20 0.073 Oo4 to 1.5 

Thymol Blue 593*t 9.20 0.63 5 to 10 

Xylenol Blue 596*t 9.20 7,5 5 to 10 

Section B(4) 

Bromocresol Purple 572 9.20 0.32 0.15<5> 0.5 to 1.5 

Cresol Red 572*t 9.20 16.4 24.4 ± 0,3 0,47 to 1.0 

Cresol Purple 572 9.20 0.83 0.60<5> 0.47 to 1.0 

Phenol Red 572 9o20 0.25 0.50(5) 0.47 to 1.0 

Cresol Red 558 9,20 w 
00 



TABLE I (Continued) 

Experimental 
Pseudo-First-Order Proportionality Time 

pH(l) 
Rate Constant Constant (3) Interval (7) 

Dye :\(nm) k*Xl02 (min-1) (K±s) x lo-3 (M-1) (Minutes) 

Cresol Purple 558 9o20 

Phenol Red 558 9.20 

Section C ( 6) 

Bromocresol Green 572 9.20 0.042 1 to 10 

Bromophenol Blue 590*t 8.80 0.25 0.5 to 1.5 

Cresol Red 572*t 9.20 22.3 0.30(5) 6 to 8 

Cresol Purple 572 9.20 10.4 10.2 ± Ool 6 to 8 

Phenol Red 572 9.20 8.1 14o0 ± Ool 6 to 8 

Section D(6) 

Chlorophenol Red 558 8.80 1.0 6.0<5> 6 to 8 

Cresol Red 558 8.80 54 0.95 ± 0.06 6 to 8 

Cresol Purple 558 8.80 12.3 7.7 ± o.o 6 to 8 

Phenol Red 558*t 8.80 10.4 26.0 ± 0.4 6 to 8 

Section E(6) 

Bromocresol Purple 600 9.20 2.9 2a<5> 6 to 8 

Cresol Red 600 9.20 18.3 1.00 ± 0.04 6 to 9 w 
\0 



TABLE I (Continued) 

Pseudo-First-Order 
Rate Constant 

Dye A.(nm) pH(l) k*x 102 (min-1) 

Cresol Purple 

Phenol Red 

600 

600 

9.20 

9.20 

*t ' . 
Wavelength of maximum absorbance. 

l, Clark and Lubs Buffer Solutions. 
-6 2. Reagents: O.OOlM Naro4 , 1.0 x 10 M Mn(II). 

3. Slope of plot, b.A(t t t ) C (d ) 
1 o 2 versus 0 ye , 

-6 4, Reagents: 0.002M Naro4 , 2.0 x 10 M Mn(II). 

5, Computed by b.A(tl to t2)/Co (dye) 

-4 6, Reagents: 0.002M NaI04 , 1.0 x 10 M Mn(II). 

7. Interval over which constants were measured. 

8,3 

3.7 

s =Standard deviation, calculated by Equation (4.17). 

Experimental 
Proportionality 
Constant (3) 

(K±s) X 10-3 (M-l) 

10.2 ± 0.1 

0.76 ± 0.10 

Time 
Interval (7) 

(Minutes) 

6 to 9 

6 to 9 

.i::--
0 
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5. Xytenol blue and thymol blue 

6. Chlorophenol red, cresol red, and phenol red 

In Chapter III a comparison of the most.commonly used kinetic 

methods for analyses of mixtures shows'that; when applicable, the method 

of proportional equations (MPE) offers several advantages over· other 

methods. In order for a mixture to be resolved by this method, however, 

its components must react according to the principle of constant frac-

tional life, That is, at any time in the reaction a constant fraction 

of each component'must remain unreacted irrespective of its initial con-

centration, This condition must exist for reactions of different concen-

trations of the pure components as well as for reactions of their mix-

tures. The intermediates and products formed by the reaction of one 

component must not promote or inhibit the reaction of other components 

being determined. Synergistic effects of this kind make the (MEP) in-

applicable. 

Other factors which determine the applicability of the (MPE) are 

* * the ratio of rate constants, ~/ky, and the initial concentration ratio, 

[x] /[Y] • Depending on the concentration ratio the lower limit for the 
0 0 

rate constant ratio ranges from about two to four (51). The ratio of 

proportionality constants may be considered instead of the ratio of rate 

constants. The lower limit for the initial concentration of each com-

ponent being determined is about four percent (51). 

Under the conditions employed for this·work the reactions of cer-

tain sulf onephthalein dyes could be controlled such that a modified form 

of.the (MPE) was applicable for the determination of their mixtures. 

The method employed was based on the following mathematical treatment: 

Consider a dye mixture, X and Y, reacting with a common reagent, R, 
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under virtually irreversible pseudo-first-order conditions, i.e. , [R] » 
0 

([X] 0 + [Y] 0 ), w~ere the subscript o refers to the concentration before 

reaction. Assuming that X and Y react independently when mixed, the 

integrated fonn of their rate equations can be written 

= 
-k*t k._~t 

[x] e --x + [Y] e --y 
0 0 

(4. 6) 

where t is any given time of reaction. Using spectrophotometric measure-

ments to follow the reaction and assuming that the absorbance contribu-

tions of X and Y are additive, ~Y' the absorbance of the mixture at any 

time t·is 

Ax_y = (4. 7) 

In Equation (4.7) b represents the path length of the spectrophotometric 

cell, while EX and EY represent the molar absorptivities of X and Y re­

spectively. The change in absorbance, ~Y' over a given time interv~l, 

t 1 to t 2 , is given by 

~y = (4 .8) 

The change in absorbance, ~Y' over a second time interval, ti to t2, 

is given by 

AA_' = --xy . (4.9) 

Since t 1 , ti, t 2, and tz are fixed times, Equations 408 and 4o9 can be 

reduced to the proportional equations: 
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= (4 .10) 

= (4 .11) 

The proportionality constants in Equations 4.10 and 4,11 are func-

tions of the molar absorptivity, the pseudo-first-order rate constant, 

and the analytical time interval, It follows that the values of the 

proportional constants could readily be altered by changes in such ex-

perimental variables as pH, wavelength, temperature, manganese concen-

tration, and time. By selective manipulation of these variables reac-

tion-rate differentiation was effected for various sulfonephthalein dyes, 

Figures 2 and 3 illustrate the type of rate differentiation that could 

be obtained, Curves for these figures were obtained simply by oxidizing 

-6 the dyes at different concentrations of Mn(II) ion, 2.0 x 10 M for 

-4 Figure 2 and 1.0 x 10 ~ for Figure 3. 

For the work reported herein, each constant, i.e., rsc' IS{' Ky' and 

KY' was evaluated by plotting llA, the change in absorbance over art ex-

perimentally determined time interval, versus the concentration of pure 

dye. These plots yielded straight lines the slopes of which were de-

termined by least squares fits and taken t6 be the values ·of the propor-

tionality constants. Typical plots are shown in Figure 4. Values for 

the constants used in this work and the conditions under which they were 

measured are listed in Table I, In some instances plots of this type 

were used as calibration curves, 

Values for the proportionality constants could have been calculated 

from the equation 

~ye = 
* * -k" t -k t 

E b(e -l)ye 1 -e -1)ye 2) 
Dye (4 .12} 
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However, the procedure described above was preferred since it minimizes 

the influence factors unique to the reaction system. The method also 

has the advantage of not requiring a knowledge of the molar absorptivi-

ties and rate constantso 

In instances where the value of a proportionality constant was 

needed o~ly for purpose of comparison it was computed by use of the 

equation 

= ~ye[Dye]o (4 .13) 

where !iA is the change in absorbance of the pure dye measured over --uye 

the desired time interval. 

Several factors were taken into account before the analytical time 

intervals were selected. Since the most accurate kinetic methods of 

analysis are, in general, those which utilize initial rate measurements~ 

the time intervals used to determine cresol red was chosen to begin as 

early in the reaction as was practical, considering the time required 

for mixing reactants and transferring the reacting mixture to the spec-

trophotometer for measurements. The durations of these intervals were 

determined after considering to what length of time a mixture containing 

cresol red plus other sulfonephthaleins could react without measurable 

contributions from dyes other than cresol red (Figure 2). 

Analytical time intervals for cresol purple and/or phenol red de-

terminations were selected such that if cresol red was initially present· 

in a mixture it would be, in most cases, completely oxidized before 

~ixture was measured (Figure 3). Accordingly, time intervals which 

began at t = six minutes were selected. Under these conditions 
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~ixture (4.14) 

where AACP and AA.PR represent the AA contributions of cresol purple and 

phenol red respectivelyo As a result, (~ACP and/or ~R) could be 

measured directly~ thus simpligying the determination of mixtures con­

taining cresol red plus (cresol purple and/or phenol red). The lengths 

of these intervals were fixed after considering the size absorbance 

change required to prevent large errors in measuring its value, the 

probability of AA contributions from the reactions of other sulfone­

phthaleins, and the ability to obtain an additive behavior of (AACP + 

AA.PR)' 

Selective Determination of Cresol Red in Sulfonephthalein Dye Mixtures 

The principles for the kinetic determination of a·single reacting 

component of a mixture have been E:Jet forth by Garmon and Reilley (20) • 

For first-order or pseudo-first-order reactions with respect to dye, 

the change in absorbance, AA, which occurs between two fixed times is 

directly proportional to the initial concentration of reacting dye. 

This relation may be expressed as 

~1\iixture = ~ye[Dye]o (4 .15) 

Equation 4.15 characterizes the simplest case of proportional equations. 

After examination of the constants listed in Table I, Section B, 

and the reaction curves in Figure 2, the possibility of developing a 

method for the selective determination of cresol red in the presence 

of other sulfonephthaleins was pursued. Using 1.0 cm cells and a chart 

speed of 5 inches per minute, photometric measurements were made at 572 
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run, the wavelength at which the double charged anionic form of cresol 

red exhibits maximum absorbance. The change in absorbance of the re-

acting mixtures was recorded from 20 seconds to 1.0 minute, counting 

from the time at which the dye and reactants were mixedo Other experi-

mental conditions are given in Table II. 

Triplicate !>.A values were measured at each of five cresol red con-

-6 -5 centrations ranging from 5.0 x 10 M to 3.0 x 10 M. A plot of ~A 

versus initial cresol red concentration (Figure 5) yielded a straight 

line passing through the origin having a slope of (6.2 ± 0.2) x 103 1 • 

-1 mole • This was taken to be the mean value of the proportionality con-

stant, K_, , in Equation 4.150 Having determined the constant for the -nye 

pure dye, ~A for dye mixtures was measured. The cresol red concentra-

tion in the mixtures was then computed by use of Equation 4.15. Some 

experimental results are reported in Table II. Since the sulfone-

phthalein dyes used in this study do not interact on mixing, it was 

assumed that when a mixture containing cresol red and other sulfone-

phthaleins was oxidized any !>.A which resulted could be attributed to the 

reaction of cresol red (Figure 2). 

Cresol Red in Multicomponent Determinations 

For multicomponent determinations more accurate results were ob-

tained when 5.0 cm rather than 1;0 cm cells were used. The increase in 

accuracy possibly resulted from the fact that smaller dye concentrations 

were reacted. Therefore, the concentration of reaction products were 

smaller, thus reducing the possibility that they might interfere with 

the reaction itself, While this effect was not particularly significant 

for cresol red determinations where all measurements were made within 
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TABLE II 

KINETIC ANALYSIS OF CRESOL RED IN MIXTURES 

OF OTHER SULFONEPHTHALEIN DYES 

51 

Dye 

Concn in Reacting 

Mixture X 105M 

Results in Concn Cresol 

Red X 105M 

Found(a) S 

Cresol Red 2.50 2.50 

Cresol Purple 1.00 
Phenol Red 0.50 

Cresol Red LOO 1.02 

Cresol Purple 1.00 
Phenol Red LOO 

Cresol Red 0.50 0.48 

Cresol Purple LOO 
Bromocresol Purple 1.00 
Bromocresol Green LOO 

(a) Mean value based on eight out of eight determinations. 

S: Standard deviation 

b Based on eight replicates. 
c. Based on computation of error propagation (see page 74). 

Experimental Conditions 

pH= 9.20t 572 nmt 2.0 X l0-6M Mn(II)t 0.002M Naio4 t 

t 1 = 20 sec,t t 2 = 60 sec. 

±0.03b 
±0.02c 
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the first minute of the reactions, it was significant in other·determin.., 

ations where measurements were not made until the.sixth minute, Since 

more time was required to fill the larger cells, an analytical'time in-

terval of 28 to 60 seconds was used for cresol red determinations. 

Other experimental conditions were exactly as described in the previous 

section for the selective determination of cresol redo . 

In some runs, the cresol red reactions became significantly in-. 

hibited during the first two minutes. The cause of this inhibitory ef.,-

feet was traced to oxidizable ligands in the distilled, dionized water 

which, apparently, redu,c.ed the initial effective Mn(II) concentration, 

This effect was circumvented by decreasing the dye sample to 2.0 ml and 

-6 increasing the manganese concentration to. 4,0 x 10 !i_. All components 

of the reaction system, except the dye itself, were mixed 10 minutes 

before bringing into reaction with the dye; allowing the interfering 

species to be.destroyed by the periodate-Mn(II) oxidizing mechanismo 

Siml,lltaneoµs Determination of .Cresol Red and Cresol Purple 

Using experimental conditions listed in Table III, calibration 

curves, plots of ~ye versus [Dye] 0 , were construct;.ed for the two dyes 

(Figure 4), One portion of sample containing the mixed dyes was used to 

determine cresol red as described above (multi.component.determination). 
r;· , 

Having determined its concentration in tQ.e ~;txture, the change in ab ... 

sorbance of cresol red over the reaction interval six to eight minutes, 

llA(6 to 8), was read from its calibration curve, Using a second portion 

of the sample, M ( 6 to 8) for the mixture was measured. - The tiA ( 6 to 8) 

for cresol purple was then computed from M(total) = M(CR) + l!A(CP)' 

The concentration of cresol purple was subsequently read from its cali-
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bration curve, Experimental results are reported in Table II!. 

Although M(6 to 8) for cresol red is relatively small compared t<'.> 

that of creeol purple, in most instances it could not be neglected with-

out'causing significant positive errors in.the results for the cresol• 

purple concentration. 

Simultaneous ·.Determination of Cresol Red and Phenol Red 

Mixtures of cresol red and phenol red were resolved using the same 

procedure and experimental conditions as those employed for the simul-

taneous .·determination of cresol r~d and cresol purple. It was found, 
I 

however, that•M(6 to 8) for the dye mixtures corresponded closely to 

the value that-would have been obtained if the sample were pure phenol 

red. Accordingly~ a correction for AA.CR was unnecessary. Therefore, 

AA.(6 to 8) for the mixture was taken to be AA.PR' Experimented results 

are given.in Table IV. 

Simultaneous Determination of Cresol Purple and Phenol'Red 

Examination of .(curves C and' D, Figure 2) and (curves A and B, 

Figure 3) showed that because of the similarities in·their rates of oxi-

dation, mixtures of cr.esol purple and phenol .red could not be resolved 

under the conditions employed to determine mixtures of (cresol red and 

cresol purple) or (aresol red and phenol red). Therefore, the condi-

tions were altered as followsi 

Proportionality constants, KCP and ~R' were determined by follow­

ing the reacti9ns of pure dyes over an analytical time interval of 6 to 

8 minutes at.558 nm and .pH 8.80. Using a time interval of 6 to 9 

minutes, con.stants 'Ki>R and K~p were measured at 600 nm and pH = 9. 20. 



TABLE III 

ANALYSES OF CRESOL RED - CRESOL PURPLE MIXTURES 

Mixture· 

Cres.ol Red 
Cresol Purple 

Cresol Red 
Cresol Purple 

Cresol Red 
Cresol Purple 

Creaol Red 
Cresol Purple 

Cresol Red 

Concn.in 
Reacti~g Mixture 

. 5 
M x 10 

1.20 
0.20 

0.20 
1.20 

0.050 
LOO 

0.40 
0.40 

Specfrophotometric · 
Results .. 
Concn* 
Found 

M x 105 

1.19 
0.20. 

0.20 
1.20 

0.047· 
1.01 

0.40 
0.39 

0.32 
0.69 Cresol Purple 

Bromoctesol Green 

0.40 
0~40 
0.20 (14% background at 572 nm; 29% at 600 nm 

*Mean value of four determinations~ 
Spectrophotometric Experimental Conditions 

1. pH= 9.20, 572 nm 
2, pH = 9.20, 600 nm 

Kinetic Experimental Conditions 

1. 
-,6 

pH = 9.20, 572 nm, 4.0 x 10 M Mn(II), 0.002M 

2. -4 pH = 9.20, 572 nm, 1.0 x 10 M Mn(II), 0.002M 

NaI04 ; ti = 28 sec., t 2 = 60 sec •. 

NaI04 , t 1 = 6 min., t 2 =·8 min. 

Kinetic 
Results 

Concn* 
Found 

M x 105 

1.21 
0.19 

0.20 
1.22 

0.052 
1.04 

0.39 
0.40 

0.39 
0.41 

l/1 
~ 



Mixture 

Cresol Red 

Phenol·Red 

Cresol'Red 

Phenol Red 

Cresol Red 
Phenol Red 

Cref;!ol Red 
Phenol Red 

Cresol Red 
Phenol Red 
Bromocresol.Green 

TABLE IV 

ANALYSES OF CRESOL RED - PHENOL RED MIXTURES 

Concn in 
Reacting Mixture 

M x 105 

0.100 

0.45 

0.45 

0.100 

0.24 
0.24 

0.18 
0.36 

Spectrophotometric 
Results 

Cop.en* 
Found 

M x 105 

ci.114 ± 0.000** 
± 0.012*** 

0.45 ± 0.00** 
± 0.011*** 

0.45 ± 0.02** 
± 0.007*** 

0.101 ±0.004** 

0.24 
0.24 

0.19 
o.36 

0.26 
0.34 

± 0.006*** 

0.18 
0.36 
0.18 (18% background at 572 nm; 10% at 588 nm) 

*Mean value of four determinations unless othenrise indicated. 
**Mean and standard deviation based on eight out of eight determinations. 

Kine tie 
Results 

Concn* 
Found 

M x 105 

0.105 ± 0.006** 
± 0.007*** 

0.45 ± 0.0.3** 
± 0.02*** 

0.45 ± 0.02** 
± 0.01*** 

0.103 ± 0.008** 
± 0.007*** 

0.25 
0.24 

0.18 
0.35 

0.18 
0.36 

***Standard deviation based on computation of error propagation (see page 75). 
Spectrophotouietric Experimental Conditions: (1) pH = 9.20, 558 nm; (2) pH = 9.20, 572 nm. 
Kinetic Experimental Conditions 
1. pH= ~.20, 572 nm, 4.0 x 10-6~ Mn(II), 0.002M NaI04, ti= 28 sec., t2 = 60 sec. 
2. pH= 9.20, 572 nm, 1.0 x 10-4M Mn(II), 0.002M NaI04, t 1 = 6 min., t2 = 8 min. VI 

VI 



56 

Having measured the four constants, portions of a'dye µiixtures were re-

acted under each of the two ·conditions. The observed AA values and the. 

constants were then used to compute.the concentrations by the simultane-

ous solution of equations similar to 4.10 and 4.11. Experimental results 

are summarized.in.Table V. 

Determination of Cresol Red-Cresol Purple and Phenol Red 

Cresol Red is determined separately by using the pro.cedure described 

under "simultaneous determination of cresol red.and cresol purple. 11 

Cresol Red does not contribute significantly to the value of 

M(6 to 8) at pH= 8.8 and 558 nm. At pH= 9.2 and 600 run, however, it 

is necessary to correct for the contribution of cresol red if its aoncen-

tration .:is·more than three times that of cresol purple. See Table VI 

for experime~tal results. 

Interference of Cresols and Resorcinol 

Since sulfonephthalein dyes are prepared from hydroxyl derivatives 

of benzene.and toluene, the effect of some of these compounds on the 

manganese (II) catalyzed oxidation of the dyes by periodate ion was con-

sidered. For cresol req reactions, it was.found that a·resorcin61.to 

dye ratio of 0, 01 to 1. 0 reduces the rate of oxidation by about 30% while 

a 1 to 1 ratio stops the reaction completely. When the ratio of .o-cresol 

to dye is 0.01 to 1.0 the oxidation rate is·reduced about '50%, The same 

ratio of.m-cresol to dye reduces,the rate about ;30% •. Considering that 

t~ d t ti i h 1 ° 1 2 0 ·10-6~, h ~··e ye concen ra on n t ese so ut:ions was on y , . x t ese re-



Mixture 

Cresol Purple 

Phenol Red 

Cresol Purple 

Phenol·Recl 

Cresol Purple 
Phenol Red 

Cresol Purple. 
Phenol Red 

Cresol Purple 
Phenol Red 
Chlorophenol Red 

TABLE V 

ANALYSIS OF CRESOL PURPLE ...., PHENOL RED MIXTURES 

Concn in 
Reacting Mixture 

l! x 105 

0.90 

0.150 

0.150 

0.90 

1.50 
0.100 

0.50 
0.25 

Spectrophotometric 
Results 

Concn* 
Found 

M x 105 

0.90 ± 0.01** 
± 0.005*** 

0.145 ± 0.002** 
± 0.002*** 

0.148 ± 0.001** 
± 0.003*** 

0.86 ± 0.01** 

1.51 
0.87 

0.50 
0.24 

0.61 
0.29 

± 0.001*** 

0.50 
0.25 
0.14 (24% background at 558 nm; 21% at 600 nm) 

*Mean value of three determinations unless otherwise indicated. 
**Mean and standard deviation based on eight out of eight determinations. 

Kinetic 
Results 

Concn* 
Found 

M x 10 

0,90·. ± 0.02** 
± 0.02*** 

0.149 ± 0.005** 
± 0.009*** 

0,157 ± 0.008** 
± 0.014*** 

0.87 ± 0.02** 
± 0.02*** 

1.39 
0.96 

0.52 
0.24 

0.54 
0.24 

***Standard deviation based on computation of error propagation (see Page 75). 
Spectrophotometric Experimental Conditions: (1) pH= 9.20, 558 nm; (2) pH= 9.20, 600 nm 
Kinetic Experimental Conditions 

. -4 . 1. pH= 8.80, 558 nm, 1.0 x l0_4M Mn(II);, 0.002M NaI04, t 1 = 6 m7n•, t2 
2, pH= 9.20, 600 nm, 1.0 x 10 M Mn(II), 0.002H NaI04, t 1 = 6 min., t 2 

8 min. 
9 min. 

VJ ....., 



Mixture 

Cresol Red. 
Cresol Purple. 
Phenol Red 

Cresol, Red 
Cresol Purple 
Phenol Red 

Cresol Red 
Cresol Purple 
Phenol Red 

Cresol Red· 
Cresol Purple 
Phenol Red 

Cresol Red 
Cresol Purple 
Phenol Red 

TABLE VI 

ANALYSES OF CRESOL RED - CRESOL PURPLE - PHENOL RED MIXTURES 

Spectrophotometric 
Results 

Concn in Concn* 
Reacting Mixture Found. 

M x 105 M x 10 5 

0.80 0.84 
0.20 0.18 
0.40 0.36 

0.40 0.41. 
0.80 0.81 
0.20 0.19 

1.60 . 1.63 
0.20 0.18 
0.20 0.17 

0.20 0.20 
1.60 L58 
0.20 0.18 

0.16 0.17 
0.32 0.31 
0.60 0.57 

Kinetic 
Results 

Concn* 
Found 

M x J,.o5 

-
0.81 
0.22 
0.38 

0.38 
0.74 
0.22 

1.63 
0.18 
0.21 

0.21 
1.48 
0.21 

0.17 
0.32 
0.59 

VI 
00 



Mixture 

Cresol Red· 
Cresol Purple . 
Phenol Red 
Bromocresol Green 

TABLE VI {Continueq) 

Spectrophotometric 
Results 

Concn in 
Reacting Mixture 

M x 105 

0.16 
0.32 
0~·60 

0.16 {2% background at 558 nm; 
24% at 600 nm) 

Concn* 
Found 

5 
M x 10 

0.13 
0.52 
Oo55 
3% at 572 nm and 

Kinetic 
Results 

Concn* 
Found 

M x 105 

0.17 
0.32 
0.60 

Cresol Ret;l. 0.16 
0.32 
0.60 
0.032 
0 .016. 
0,.048 

0.13 0.17 
Cresol Purple 
Phenol Red 
Bromocresol Green 
Bromocresol Purple 
Bromophenol Blue 

*Mean value of three determinations 

Spectrophotometric Experimental Conditions 

1. pH = 9.20, 558 nm 
2. pH = 9.20, 572 nm 
3. pH= 9.20, 600 nm 

0.63 0.38 
0.53 0.59 

(6% background at 558 nm, 9% at· 572 and 36% at· 600 run) 

Kinetic Experimental Conditions 
1. pH = 8,80, 558 nm, 1.0 x 10-4M Mn{II), 0.002M Naro4 , ti = 6 min., t2 = 8 min. 
2. pH= 9.20, 572 nm, 4.0 x 10-6~ Mn{II), 0.002M NaI04, ti= 28 sec 9 , t2 = 60 sec •. 
3. pH= 9.20, 600 nm, 1.0 x 10-4~ Mn{II), 0.002M NaI04, ti= 6 min., t2 = 9 mino 

VI 
\0 
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sults 1:1eem to indicate the possibility of differentiating between low 

concentrations of o-cresol and m-cresol. 

Spectrophotometric Equilibrium 

Determination of Sulfone-

phthalein Dye Mixtures 

An equilibrium spectrophotometric determination can be considered 

to be a MPE approach in which the discriminating (proportionality) con.:. 

stants are molar absorptivities measured at different wavelengths rather 

than rate constants as in a kinetic MPE. Since the kinetic MPE developed 

herein was to be compared with an equilibrium method which employed com~ 

parable experimental te.chnique, the number of analytical wavelengths used 

in the equilibrium method was limited to the number of components being 

determined. 

Using buffered solu.tions, absorption spectra of each dye; cresol 

red, cresol purple, and phenol red, were recorded at pH 9.20, 5.60, 

and 1.20. At these conditions tlie predominate forms of the dyes are 

2-A , HA , and H2A respectively. Examination of the spectra showed that 

in terms of resolution, no particular advantage was prevalent at either 

of the conditions. For this work,. however, pH 9.20 was selected be..,. 

cause of the high molar absorptivities of the double charged anionic .. 

forms and for the relative ase of adjusting the pH using borate buffer. 

Figure 6 shows the spectra form which wawelengths were chosen for 

the analysis of mixtures •. Wavelength selection was made·such that 
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each of the dyes to be determined would be the primary ab8orbing com~ 

ponent at one of the analytical wavelengths. Serious wavelength errors 

were minimized by selecting wavelengths in regions where changes in 

absorbance with wavelength are relatively small, The choice of 600 nm, 

in one case, does not adhere to this criterion. However, for this work 

no serious consequences resulted in terms of conformity to Beer's law 

and reproducibility of results. The wavelengths chosen are listed in. 

Tables III, IV, V, and VI. 

-6 Solutions of various concentrations at the 10 M level were used 

to determine molar absorptivities, Duplicate, in some cases triplicate, 

measurements of the absorbances of these solutions were made at each 

of the analytical wavelengths. Values obtained were used to construct 

plots (absorbance versus .dye concentration) of the types shown in Figure 

7. The values of the slopes of these plots~ as determined by a least 

squares fit, ~ii-re divided by the path length of the cell and taken to 

be the molar absorptivities of the dyes at the specified wavelength. 

Values for the molar absorptivities are reported in Table VII. 

The solutions whose concentrations are given in Table VIII were 

used to verify the additivity of the absorbances of cresol red, cresol 

purple, and.phenol red when the dyes are mixed. The absorbance of each 

solution listed was measured at the three chosen wavelengths. Values 

obtained were compared with those computed by use of Equation (2.30), 

Agreement was found to be within 1% in all cases except one where it 

was about 2%. 



Dye 

Cresol Red 

Cresol Purple 

Phenol Red 

Cresol Red 

Cresol Purple. 

Phenol Red 

Cresol Req 

Cresol Purple 

Phenol Red 

TABLE VII 

MOLAR ABSORPTIVITIES FOR S<Jffi 

SULFONEPHTHALEIN DYES 

>,(nm) 

572 

572 

572 

558 

558 

558 

600 

600 

600 

*pH= 9.20, borat:e·buffer. 
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Molar Absorptivity* 
(E+si x lo-4 
(cm- ,M-1) ' 

5.83 + 0,04 

2. 34 . + 0.01 

3.54 + 0 .08 . 

4.64 . + 0.02 

2.03 + 0.07 

5.99 ± 0,05 . 

1.29 + 0.02 

1.64 + 0.06 

0. 200 + 0 '009 

s =Standard deviation, calculated from Equat:ion (4.17). 



TABLE VIII 

SOLUTIONS USED TO VERIFY ADDITIVITY OF 

ABSORBANCES IN DYE MIXTURES 

c x dye. 106:tt 

Mixt;:ure Cresol Red Cresol Purple 

l 2.00 4.00 

2 4. 00. 1.00 

3 0.80 1.60 

Phenol Red 

1,00 

2.00 

3,20 

. 63 
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Equilibrium determinations were effected by mea$uring the ab-

sorbances of each mixture at .the different analytical wavelengths. 

These values and the corresponding mola+ absorpt~vities were used in 

conjunctfon with .sets of proportional equations which were solved 

simultaneously to compute the concentrations values being sought. Ex-

perimental results are listed in Tables III, IV, V, and VI. 

Kinetic Determination of A Basic Dye Mixture 

The reaction scheme proposed fer the oxid.ation of sulfonephthalein 

dyes (Equations 4.4 and 4.5) is also proposed for the oxidation of the 

singly charged cationic form of basic triphenylmethane dyes in acidic 

2-sol tuions, pH 3.0 to 6.0. However, H4Io6 rather than H3Io6 is the 

predominate periodate species over this pH range (12). In basic so-

lutions there seems to be only a small difference between the rates of 

the uncatalyzed and catalyzed oxidation of dyes of this type, For 

example, the pseudo-fi:t;"st-order rate constants for the uncatalyzed 

and cat~lyzed reaction of malachite green at pH 9.2 (borate buffer) are 

-1 -1 0.0156 min and 0.0182 min respectively. These.values were determined 

-6 -6 -3 using 1.0 x 10 M Mn(II), 3.5 x 10 M dye, and 1.0 x 10 ~ periodate. 

Some kinetic applications of the oxidation of malachite green by 

the manganese-per iodate oxidant have been described in references (16, 

47, 48, 49, and 28). Examination of the reaction curves for pure 

malachite green and pure brilliant green (figure 8) suggested that the 

kinetic method of proportional equations could be readily applied to 

the determination of mixtures of these dyes. Reaction of a mixture, 

however, revealed that when combined malachite green and brilliant 

green were not oxidized according to the constant fractional life 
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aoooL---'----1--~::::::;x;=:a_ __ J..-~--l---
4.0 7.0 1.0 

TIME, Minutes 

Figure 8. Absorbance Versus Time Curves for Brilliant Green and 
Malachite Green in Acetate~Phosphate Buffer 

A: -5 -5 1.0 x 10 M MG, B: 1.0 x 10 M BG, 
1.0 x 10-5 M MG --1.0 x 10-5 M BG C: 

-6 
5.0 x 10 M Mn(II), 0.1% Na104, pH 3.50, 620 nm 
LO cm cells 
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prinCiple. The two dyes did not react, independently when mixed. The 

reaction of the faster reacting dye, malachite green, appeared to 

accelerate·the reaction of brilliant green to tqe extent,that.the mixture 

reacted as if it were a unique species. Since the me1;:hod of proportional 

equaticms is not -applicab,le under c:l,rcumstances of this kind, a series ef 

expedments were performed in an,effort to arrive at.a set of conditionE1 

suitable for analysis. These studies .a+e described .below., Figure 9 

s.hows the aqueous absotption spectra of malachite .green and brilliant 

green. The structure af the.dyes are illustrated in Appendix B. 

Effect of Mn(u) Ion Concentration 

At pH 3,5, runs were made using Mn(II) ian concentrations of lqO 

~5 -6 x 10 Mand 5.0 x 10 M. At the lower manganese.ion cqncentrat:ion less 

differentiation accurJ;ed in the.reaction .rates of the two dyes~ however~ 

the rate of the mix~ure more closely ,approached that which would r~sult 

if the two dyes were re~cting independently. 

Effect'of pH; 

-6 Using a Mn(II) ion concenti;~tion of 5~0 x 10 !!_, reactions were 

run at pH 3,0, 3.5, and 4.5. No particular ac,lvantage was realized at 

either pH 3.0 or 3.5. A pronounced decrease. in rate differentiation 

occurred at.pH 4.5. Therefore, studies were not made in.solutions, which 

were more ba9ic. Since both dyes, malachite green and brilliant green, 

exist primaJ;ily as the yellow, double charged, cation when the hydrogen 

-3 ion concentration of their solution is greater than 10 !!_ (3, 17), the 

use of solutions more acidic than pH 3.0 was not feasible. 
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Effect of Buffer Composition 
I 

In add;i.t;l.on to the acetate-phosphat;e 9 reactions .were.carried out in 

three other buffers; citric acid"':'phOE!phate, pH 4.0; HCl-biphthalate, pH,. 

4.0; and acetate; pH 4,1, ion:Lc strength 0.01. The citrate-phesphate 

buffer completeJ,.y inhibited the oxidation 0f the dyes, while rate differ-

entiation for the pure dyes was greatly increased by the other buffers. 

Syp.ergistic effects, however, prevented analysis 0f the dye mixtures. 

(See Figures 10 and ll). 

The dyes were reacted at pH 3.5 using .the acetate-phosphate buffer 

at 0ne-ha.lf fonic strength. Rate differentiation was less than that. 

0bserved. in the "full-strength" buffer, 

Effect of Sol.vent Composition 

Spectra of the two dyes were·run in 30% solutions of each of the 

foll0wing solvents• acetone, dimethylsulfoxide, diex~ne, apd dimethyl,-

formamide. Except for increases in peak heights, the spectra of the 

dyes were virtually unchanged by ~he mixed solvents. The m(:)lar ab-

sorptivity of brilliant;:·gr~en was increased frem 40% to 50%, the largest 

inGreased occurring in the acetone,mixture. 

Oxida1=fon of t1'.e two dyes and their mixture in 30% acetone gave 

resu],.ts .that were very similar to those obtained in 100% aqueqµs medium~ 

The acetate buffer, pH 4.1, was used in th~se studies, 

Other Effects 

At pH 3.5, "runs'' were made in which the order of combining 

reactants was altered. Instead of combining (dye. plus ;Mn(II) ion) and 

(periqdat;e ion plus buff er) the Mn(!!) ion, periodate ion, and buff er 



osoo· 

0600 

UJ 
u z 
CE 
~ en m 
c:( 

Q200 

2.0 . 30 

TIME, Minutes 

Figure 10. Absorbance Versus T~me Curves for Brilli~nt Green and 
Malachite Green in Acetate Buffer 
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. -6 -6 -7 . 
A: 2.0 x 10 7 M BG, B: 2.0 x 10 M BG - 8.0 x 10· M MG, 
C: 8.0 ~ 10- M BG --2.0 x 10-6 M MG, D: 2.0 x 10-6 M MG 

5.0 x lo-6 M Mn(II), 0.1% Naro4, pH 4.10, 620 nm, 5.0 cm cells 
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were aombined and then reacted with the dye. The latter procedure re .... 

sulted in. rate. curves hav:lng .shorter ;induction periods but otherwise not 

significantly different·from those. ebtained previously. The shorter 

induction periods, possibly resulted from the fact that a larger ratio of 

Mn(III) to Mn(II) was present in the system when the .dyes were brought 

into reaction with the oxidant, 

Determ:f,natiens, pf ethylenediamine-N ,N ;N' ,N', ~tetraacetic acid (EDT.A,) 

based on,its inhibitory effect o-q. the Mn(II)-catalyzed.oxidation of 

malachite green have been describ.ed (47, 48). In .each of these works, 

however, it was observed that under certain condi ti.ons the presence of 

EDTA produced a rate accelerating effect.rather.than inhibition. In-

eluded as pa;t of· the study ;reported .herein was an attempt - to use this 

catalytic -,effect as a means to res61ve mixtures of malachite green and 

brilliant g:t;'e~n. Two series of.experiments were conducted at 'PH 3.5. 

One in which the ratio of EDTA to Mn(II) was varied at the 10-6 M level. 

In the other, various.methods of combining the reactants was explored. 

While ea,ch series of experiments yiel.ded different rate curves, none 

proved to be analytically useful. 

MaJ,.achite green perchlorate was used for nearly all studies described 

above. A few "runs" were made witq malachite green.hydrochloride and 

malachite green oxalate. Except.for shorter induction periods when the 

oxalate.was used these forms ef malachite green behaved in the. same 
~-

manner as the perchlorate. 

Treatment of Errors 

The-values for all ccmstants, kinetic prc:ipertionaJ,.ity constants er 

molar absorptivities, used for the. ~nalysis of mixtures, were.determined 
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by .plotting an experimentally measured parameter versus the concentration 

of pure dye. The slopes of these plots, m, were determined by linear 

least squ~res fits from the re+ation 

NL(XiYi) - tXiLYi 
m.= 

NtX~. - (>::Xi) 2 (4.16) 

and taken to be,the "best" val'lJes for the coni;itants. In this eqation, 

N is the total number of measurements. Coordinates of the individual 

measurements are. represented by Xi and Yi. The standard deviations of 

the slopes; sm' were caJ,.culated from the equation (2) 

s ... s (, 2 .N 2) ~ I 

m y NEX - (>::Xi) 
i 

(4 .17) 

where 

(4.18) 

The value of oYi is .given by 

oYi = Yi - (b + mXi) (4.19) 

where.bis the intercept of the line of best fit, Graphically, oYi is 

the vertical dis.tance frc;im the point (YiXi) to the straight line of best 

fit. 

If P is a measured parameter and its ;value depends on several in-

dependent variables, x, y, x, then P = f(x,y,z). The general equation 

for the propagation of the error in P is 

2 
s = p (4. 20) 

2 The quantity s is termed the variance. 

Selective Kinetic Determination of Cresol Red 

From Equation (4.15) it can be said that CCR= f(KCR'AA), where CCR 



is the initial concentration of cresol red, Applying Equation (4.20), 

and using CR to represent CCR' the variance of the cresol red concen~ 

tration is 
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2 (oCR ) 2 2 + (oCR) 2 2 (4. 21) 
SCR "" s Sb.A oK KCR ob.A 

CR 

Taking the partial derivatives gives 

2 Cb.A ) 2 2 (_!__) 2 2 
8 CR = s + Sb.A 2 KCR KCR KCR 

(4.22) 

2 To evaluate sCR' the value of KCR was calculated by Equation (4.16), the 

value of sK from Equation (4.17), the value sl::.A was computed from 
CR 

replicate measurements, and b.A was taken as the mean of the replicates, 

For all error propagation studies described herein, this procedure was 

used to evaluate all constants, the standard deviation of constantse the 

measured parameters (A or !::.A), and the standard deviation of these 

parameters. Values for sCR' the standard deviation of the cresol red 

concentration, are reported in Table II. 

Kinetic Determination of Cresol Red and Phenol Red 

The variance of the cresol red concentration was determined in the 

exact manner as described in the previous section. Since both dyes are 

2 
determined independently the variance of phenol red, sPR' is computed 

from an equation analogous to Equation (4.22). Va;Lues for the standard 

deviations, sCR and sPR' are listed in Table IV. 

Kinetic and Egu:Uibrium Determinations of Cresol Purple and Phenol 
Red--Eguilibrium Determination of Cresol Red and Phenol Red 

Equations (4.10) and (4.11) are similar to those generally used 

for multicomponent analysis by the method of proportional equations, In 



the general case, constants in the equations may be either kinetic 

constants or molar absorptivities depending on the approach used for 
; 

analysis. Using P and P' instead of !J.Ay:y and 6A.Jcr, to represent the 

measured parameter, solutions to the general equations are 
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p~ ,.. P'Ky 
[xJ =-· --

(4.23) 

o K~ - KX1<Y 

and 

(4.24) 

From these equations it can be said that [X] 0 and [Y] 0 = f(KX,KX'Ky'~'P' 

P ')·. v 1 f 2 d 2 a ues or s[x] an s[y] 
. . 0 0 

can.be calculated by use of equations 

which are analogous to Equation (4.20), but have six terms each. As an 

example, using X to represent [X] , the variance of [x] is evaluated by 
0 0 

(4.25) 

Results from cal«:lulat:i,ons of this type are included in Tables IV and V. 

General solutions for the partial derivatives.of the various terms in the 

two error propagation equations are given in.Appendix C, 

In order to determine which variables eontributed most to the errors 

in [x] and [Y] , values for· the six terms of the error propagation 
0 0 

equations were compared. Jn general, it wai;; found that the values for 

most of the terms in an equation differed by less than two orders of 

magnitude. As could be expected, the variance contributions depended on 

factors such as the relative sizes of the constants and the relative 

standard deviations of the parameters, P and P1 • 
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Conclusions 

The studies described in this thesis demons~rate that a kinetic . 

method of ana,lysis can be successfully employed for the "in situ" 

multicompenent determination of dye mixtures whose components have very 

similar absorption spectra and structures which differ only by the 

position of a functional group or the type substituents present. The 

accuracy and precision of the kinetic results compare well with those 

obtained using a comparable equilibrium method. In general, the experi­

mental results obtained from this research agree with those which can be 

expected from calculations based on error propagation. 

In order to determine the minimum accuracy and precision of the 

binary analyses described in this thesis, eight replicate determinations 

were made for several mixtures. The mixtures selected for ~his treatment 

were ones which were most difficult to determine by the methods employed. 

It.was found that for kinetic determinations of mixtures of cresol red 

and phenol red the accuracy of the mean ranged from about (O to 5%) with 

a relative precision of (4 to 8%). The accuracy and precision for 

equilibrium determinations of these mixtures were about (O to 14%) and 

(0 to 4%) respectively. For mixtures of cresol purple and phenol red, 

an accuracy of (0 to 5%) was obtained using the kinetic procedure~· The 

precision was about. (2 to 5%). For the equilibrium determinations an 

accuracy of (0 to 3%) and a precision of about 1% were obtained. 

Results reported in this thesis show that a kinetic approach to 

analysis can of fer some definite advantages over a more conventional 

equilibrium approach. For example, the determination of cresol red in 

mixtures (Table I) by the equilibrium MPE would require prior knowledge 

of the identity of each dye in the mixture. In case of the third mix-
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ture in the same Table, not only must the dyes be identified, but the 

concentrations of bromocresol purple and bromocresol green have to be . 

known. The kinetic .method, however, does not require these prior 

determinations. 

Another advantage presented by the kinetic method and shown in 

Tables III, IV, V, and VI is that it can be readily. applied in cases· 

where background absorbance is caused by unknown unreactive impurities 

other than dyes. This advantage stems from the fact that the kinetic 

method is based on the measurement of relative changes in absorbances 

rather than absolute absorbance measurements as in the equilibrium 

absorptiometric MPE. 
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All RI s: 

R2' RB: 

Rl, R7: 

Rl, R4' 

R4' R6: 

R2' R4' 

Rl' R7: 

R3' RB: 

Rl' R7: 

R4' R6: 

R2' R4' 

APPENDIX A 

STRUCTURES OF SOME SULFONEPHTHALEIN DYES 

0 

-H, otherwise specified. 

-CH3, R1 , R4, R6, R7: -Br; BROMOCRESOL GREEN 

-CH3, R4 , R6: -Br; BROMOCRESOL PURPLE 

R6 , R7: -Br; BROMOPHENOL BLUE 

-CH-(CH3)2, Rl' R7: -Br, R2' Rs: -CH3; BROMOTHYMOL BLUE 

R6' RB: -CH3, Rl' R7: -Br; BROMoXYiENOL BLUE 

-Cl; CHLOROPHENOL RED 

-CH3; CRESOL PURPLE 

-CH3; CRESOL RED 

-CH-(CH3) 2, R2, R8: -cH3; THYMOL BLUE 

R6, R8 : -CH3; XYLENOL BLUE 
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APPENDIX B 

STRUCTURES OF BRILLIANT GRE~N AND MALACHITE GREEN 

Brilliant Green 

R = -C2H5; A - Hso4. 

Malachite Green 

R = -cH3; A• Cl-, c104, or c2o~: 
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APPENDIX·C 

SOLUTIONS TO PARTIAL DERIVATIVES USED IN ERROR 

PROPAGATION EQUATIONS FOR THE METHOD OF 

PROPORTIONAL EQUATIONS· 

For simplific~tion, let X = [X]0 , Y = [YJ 0 , and D = <Kx~ - KyKX>· 

~(I<YP-KyP') 
= -

K.__ (K._~P ..,K.__P ' ) ( ax , + --y -"Y . --y . 
a!<f.,, = . . ' D2 

(A. 2) 

(A.3) 

ax 
<·a71 

K..~ 
«~x) r: 

aP = n (A.5) 

ax 
< aP') 

Ky 
= -~ 

D 
(A.6) 

(A. 7) 

(A.8) 



ClY Ki (,....,,-)- = -
ClP D 
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(A. 9) 

(A, 10) 

(A.11) 

(A .12) 
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