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CHAPTER 1

INTRODUCT ION

Markov Processes were first defined and studied by the Russian
mathematiciaﬁ A, A. Markov (1856-1922), Since then the theory has been
extensively developed, and has found applications in many fields such as
Operations Research, Economic studies, Nuclear Physics, Educational

Psychology, and Genetics.
First Order Markov Chajins

The problem of analyzing first order Markov chains has received a
considerable amount éf attention in the literature, Research works have
been contributed by Kemeny and Snell (26), Feller (13), Howard (22),
Chung (9), and many others. A short description of first order,
discrete parameter Markov chains will follow,

Consider a system whigh is observed at a discrete set of times.

Let the sudcessive observations be denoted by XO’ Xl, con, Xn, ces o

it is assumed that Xn is a random variable, The value of Xn represents
the state at time n of this system. The sequence {Xn} is called a first
order discrete parameter Markov chain if the following conditions are
satisfied:

1)  The number of states in the system is finite.

o} Each random variable Xn is discrete.

3} For any integer m > 2 and any set of m points n1 <n2'<,,. <nm



the conditional distribution of Xn y for given values of
m
X , eoay X , depends only on X s the mast recent
n n n
1 m-1 m-1

known value; in particular, for any real numbers x

o *

1’

»ess X, one ohtains

l:".-_Xm:xm lxO-_—xo e xm—lzxm-rl:}z P[szxm lxm--1=xm—1] ( 1.1

this 1s known as the Markov property,

This means that knowledge of X

0° X1, eesy X 1 gives no more infor-

m—
mation for predicting the value of X& than does knowledge of Xﬁ-i alone,
In other words, the system has no "memory'" that would allow it to use
information about its behavior, before a known state was reached, to
mpdify the probabilities for the next stage. In essence this requires
that 1t be possible to deduce the future development of the process from
knowledge of its present state. Information about the history of the
process has no predictive value,

This is a severe and sometimes unrealistic restriction, as stated
by Bartholomew (3), Howard (22) states that there are few physical
systems that one could expect to be so memoryless in a strict sense,
€Cox (11) adds that this is a very strong restriction on the process.
Kuehn (30), in application to Consumer Brand switching, analyzed a
sequence of five purchases to determine the influence of the consumer's
previous purchases on his next purchase. He concluded that the most
recent purchase of the congumer is not the only one influencing his
brand choice, but rather previous purchases had an effect, He accord-
ingly questions the validity of the applicability of first order Markov

chains to such a case.



Systems, in which information about their history enables one to
deduce thelr future development, are better described or modeled as

higher order Markov chains.
Higher Order Markov Chains

Higher order Markov chains are those Markov chains whose future
outcomes depend upon one or more immediately preceding states. For
example, in the case of the first order Markov chain the next outcome
depends only upon the present state, in the second order Markov chain
the future outcome depends upon the present state and the state immed-
iately preceding the present state. In the.kth order chains the future
outcome will depend upon the present state and the (k-1) states immed-
iately preceding the present state., Considering a sequence of trials,
the autcome of each trial depends only on the outcomes of the k directly
preceding trials, The sequence of random variables {Xh} mentioned
previously forms a Markov chain of order k if, given a fixed k, for all

n and for all possible values of the variables, it is true that

b o e = o= p = X = eew X = -
p[ﬁnz;ﬁnlex:xO’ "’Xh~1 Xm—lj‘ P[?ﬁ xm‘ m-k xm—k"“ "m-1 Xm—;]

(1.2)
Little research has been done in the area of higher order Markov
chains, Cox (11) and Howard (22) have considered the problem of ana=
lyzing higher order Markov chains. They proposed a method by which one
would reduge the process to a Markov chain by appropriately redefining
the state space, with this redefinition, considerable increase in compu~
tations wpuld arise. Ganesan (16) considered analyzing higher order

Markev chains using n~dimensional matrices. Anderson and Goodman (1)



considered the problem of estimating the transgition probabilities of

higher order Markov chains, which was also considered by Telser (40),
Statement of the Problem

>The purpose of this research;is to develop appropriate methods of
analysis for higher order Markov and Semi-Markov chains, thus allowing
them to be applied to various problems in different areas.

Higher order Markov chains will be analyzed using n-dimensional
matrices. Chapter II introduces the mathematics of n-dimensional
matrices. The different operations of addition, multiplication and the
inverse of n-dimensional matrices are defined. An algorithm for finding
the inverse of n-~dimensional matrices is developed.

Chapter III is devoted to deriving the Chapman Kolmogorov equation.
An algorithm to compute the steady state probabilities is developed.

Chapter IV investigates the absorption characteristics of higher
order Markov chains, The following quantities which are of major
interest in the study of absorbing Markov chains are developed:

1) The expected number of steps before the process is absorbed.

2) The expected number of times the process is in a given

non-absorbing state,

3) The probability of absorption by any given absorbing state,.

Chapter V deals with the maximum likelihood method of estimation
of the transition probability matrix. Also, the problem of testing the
hypothesis that the chain is of a given order is discussed.

Chapter VI introduces higher order Semi-Markov chains and their

analysis, Both the discrete-time Semi-Markov processes and the



continuous~time Semi-Markov processes are considered. Emphasis is

placed on finding the holding and waiting time statistics.



CHAPTER II

ANALYSIS OF HIGHER ORDER MARKOV CHAINS

USING n~-DIMENSTIONAL MATRICES

The primary purpose of this chapter is to introduce the concept of
n~dimensional matrices, how they are used to analyze higher order Markov

chains and their computational advantages.
Mathematics of n~Dimensional Matrices

The theory of application of n-~dimensional matrices has received
little attention in the literature. Sikorski (39), Kron (29), and
Ganesan (16) have considered somé of the properties of n-dimensional
matrices, This section is concerned with the theory of n-dimensional
matrices.

Denote an n-dimensional matrix A by

A= [éii.,,i ] y where i ,i,,000,1 =1,2,00,,m (2.1)

(mymyeea,m)

n times

then the numbers a, . . are said to be the coordinates (or
11’12"'.’11'1

elements) of the matrix A; more precisely, the element a; i is
1'*%*'"n
said to he the (ii,,..,in)wth goordinate of the matrix A.
For example a three-dimensional matrix A will be denoted by

A:[a...]
1,1 1

12 3V(m,m,m)

and this is represented in Figure 1.
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Figure 1. A Representation of a Three-
Dimensional Matrix Subscripted

by (i,d,,1,)

It is not possible to display a matrix in the full n~dimensional
space, A two-dimensional array identified by subscripts will be used
instead. So the matrix of the previous example for the case m= 2, will

be shown as follows

2111 112
a a
121 1
A 3 ) 22 .
X 2 X /
(2 X2 X 2) 811 219
2901 Zppo

We shall now define some algebraic operations on n-dimensional

matrices.



Addition of Matrices

If

= | a, . and = [?. . ] 2.2
A [1 1*9-11] P 1 9meeyd » )

1 n 1 n

(myqpaym) (myeos,m)
we define the sum A + B to be the matrix
A+ B= [a. . + b, . ] .
11s9-'11n 111°!~11n

(myeeeym)

That is, the sum of two matrices of the same order is found by adding

the corresponding elements thereof,

Commgtative and Associative Laws of Addition

The addition of matrices is both commutative and associative, that

is, if A, B, and C are conformable for addition,

A+B=;[&. . +h, ._]=[b. . +a, i]=B+A
'11,900,1n 11’-.o,1nJ 11,oqo,1n 11,q--?,n

and

A+ (B4C) = [?i . +(bi XN i )]
gl qreccty qrecvety

=[(a, +b ) + e ]:(A+B)+C.

.11’”"’in ilowooyin .il""’in'

Subtraction of Matrices

In a similar manner we define the difference A-B of the matrices

defined in (2.2)

A-B = [é, . = b, . :} .
llgcgq,ln 11,-,9,1

% (Myeae,m)



Multiplication by a Scalar

Given a scalar c, and matrix A, as defined previously, then

C«A—.-'?- cai i] .
1"'?, n~

(ms"'sm)

The Multiplication of Matrices

If

A::[a. ] [ B:[b, '] !
11,',,,1 11,.-Q,1

n (Mmyeee,ym) n (myee,y,m)

¢ :[%1,...,1] (2.3)

n
(myees,m)

and

we define the product C = AB, where

c. - . = E: a. . . b, . . .. (2,4)
igdgseensd igigseee,d k 1213,...,1n_1k1n *

n—lln k=1 n-1

The Properties of Matrix Multiplicaﬁion

For the matrices defined in (2,3), we summarize the three funda-
mental properties of matrix multiplication:

(a) The commutative law does not hold true genérally: AB £ BA.

(b) The associative law does not hold: (AB)C # A(BC),

(0¢) Matrix multiplication is distributive with respect to addition.
This means A(B+C) = AB + AC., Also if we define the matrices
D, E, and F in a similar manner, then (D+E)F = DF + EF,

The fellowing equation follows frem the definition of multiplica-

tion given by (2,4) and from the above properties:
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Ak = A-Ak-i # Ak-iA for k = 2' 3, aee 'y (2-5)

The Identity Matrix

We define the identity matrix I such that for any matrix P
PI = P (2.6)

but we note that IP # P. An example of a threerdimensional identity

matrix with m = 2 is given by

) 1
I: .

1 0

0 1

Matrix Inversion

Given the two n-dimensional matrices A and B where

r
A = La, . ] and B = [b. . ]
11v~9q11n 1159°9?1 .

(myeeo,m) " (Myeen,m)

we define the matrix B to be the inverse of A if
BA =1 , (2.7)

Due to the properties of matrix multiplication mentioned earlier AB #£ I,
Before the algorithm for inverting the n-dimensional matrix is pre~
sented, the partitioning will be discussed.

(n~=2)

Partition the n-dimensional matrix A intom two-dimensional

matrices as follows:



*

]

where 8 = m

11

(n-2) and (n >2) . (2,.8)

Aj is an m by m two-dimensional matrix, (j = 1,2,.s.,8). For

example, if A is a three-dimensional matrix, and m = 3, n = 3, then we

can partition this matrix to 32'1 = 3 two-~dimensional matrices as follows:
2411 2112 2113
8121 8100 8123
?131 #132 133
8211 8212 8513
A=lays 8922 8923
2331 4232 233
311 312 #313
#321 #322 #323
#331 #332 #333
L -
2111 2412 2113 -;211 8512 a21;-
* *
Ay = 12101 102 103 0 Ay =l2901  Bppp  @pp3|
2431 2130 2133 2931 8932 2933
—;311 8312 a313v
¥
37 %321 %302 %323 "
331 #332 #333




Algorithm:

1 - Partition the matrix A into m(nqz) two-dimensional
. * X A (n-2)
matrices of equal size, Al’Az""’ & where s = m .

*
2 - Invert Aj (for j = 1,2,.9-,5)0
(n-3)

3 - Generate a sequence of numbers 123,..m12,..m12,,.m,m

(n—3)=35-3=9

times; for example, if n=5, m=3, then we have m

and we get the fallowing sequence

123 123 123 123 123 123 123 123 123
1 2 3 ) ) . . - 9

4 « The matrix B = A ~ is given by

%k
B=|. |, we have mB submatrices
L4

R
* {(n-2)

where B is an m by m twowdimensional matrix.

*
The elements of B are obtained as follows:

* -1
The 1st row of B will be the 1st row of A

-1

DD ¥ = *

E]
The 2nd row of B will be the 2nd row of A

* ¥_1
The mth row of B will be the mth row of Am

* ¥l
The (m+1)th row of B will be the 1st row of Am+1

* "
The (m+2)th row of B will be the 2nd row of Am+2

and so on according to the generated sequence.

1’1—3 4—3

For example if m = 3, n = 4 we have m = 3 = 3 the generated

sequence is 123123123

¥l
* i,
The 2nd row of B will be the 2nd row of A2

*
ae The ist row of B will be the 1st row of A



The 3rd
The 4th
The 5th
The 6th
The 7th
The 8th
The 9th

We note

row

row

row

row

row

row

»
of B

W
of B

*

of B

*
of B

*
of B

*
of B

will
will
will
will
will

will

be the 3rd

be

be

be

be

be

the
the
the
the

the

*
row of B will be the

1st
2nd
3rd
1st
2nd

3rd

row

row

row

row

row

Irow

row

that the n-dimensional matrix

*
if Aj(for J=1, «se, s) are non singular.

Examglevz-i

13

>
{]
ey

of

=
i
[=Y

of

>
1
=

DO ¥ O ¥~ *O\‘I*"\J'l E Sl VTR
=

of

>

of

=
]
[=Y

of

=
1
[=Y

of

=
1
[=Y

of

A has an iInverse if and only

Find the inverse of the following three-dimensional matrix A,

Steps

p—

BB WD MW W N H

L (S R R T - T UL I -

1 - Partition the matrix A into m

1l
w N F

[ V- RN

N = DN

(1’1-'!2_)
m =

32

3

=3

|

N B R N R DD R DN

(n-2)

two-dimensional matrices.

- matrices

|\ I N \v]

[N - RN
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2 ~ Invert A; (for j=1,2,3)

[~ ] (7 4 5] 3 1 47
17 17 17 7 777
*.1 1 2 *.1 2 6 1 ¥l 1 5 2
= - = 0 A = ’ o A = — -
Ay G 2 7 17717 | M3 7 77
AN UL T L .23
L.S 5 17 17 17 7 7 7
- S pu— S p—
3 - Generate a sequence of numbers
12, , m12 ., m (n-3) times
m(n'B) = 373 2 1 time
the sequence is 1 2 3,
4 ~ The matrix B=A-1 is given by
B
B
* * *
B = B we have mB ; i.e., 3B
* :
B
*. (n»—2) . . . .
where B ig an m by m two~dimensional matrix; i.e,, 3 by 3.
% ¥ q
The 1st row of B will be the 1lst row of A1 ) [1 0 -1].
The 2nd £ B will be the 2nd fA*—lEi-é--—l—:]
he 2nd row o wil e the 2nd row o i T 17 =15 J*
* *_1 1 2 5
The 3rd row of B will be the 3rd row of A3 ~7 ﬂ; 7'.
oo 1 0 -1
*
(3 X 3) 12 5
7 7 7
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Application of n-Dimensional Matrices

to Higher Order Markov Chains

We shall denote p. . . to be the conditional probability

of the process being in state i at the nth step given that it was in

k+1

at t=0,1,2,.,,,n~1, where (i

k S LA Al P |

thestatesil,iz,,q.,i
# 1,2,00.,m) and (k= 1,2,.,,) being the order of the chain.

Let (Xt; t=0,1,...) be a second order Markov chain with the state
space S having only two diserete points (1,2), then its three-dimensional

transition probability matrix P in two dimensions will be given below:

t = O t =1 t = 2
1 1

1 Plll P112
1

2 Pia1 Pigp

1 P211 P212
2

2 Poo1 Pago

Each row in P is a probability wvector describing the process
exhaustively for the given present state and the state immediately

preceding the present state, The elements of this transition matrix

P = [?i ii ] must satisfy the following:
Ttes (2,2,2)
O p, .. 51
111213
2
EZ P; 44 =1 for (11,12,= 1,2) . (2.9)
i =1 17273
'3

This matrix P is shown in Figure 2 in three dimensions. In Figure 2,

there are 2 X 2 matrices, one for every possible state at t=0, If the



1 2 t=2
1
1/ Py i Piy2
1! |
i |
} —
[ | | |
2 | pgn |p2 |
| v A
} 7 : ': 7 ‘l
/ /
7 2Py, ]
A s
/7 s 1 !
. | i i
7 :p 127 P22 N
/ el T
t=0 } t —
AT
)./____1____1_{______
1 7/
// 1 /
/ /!/
/ I
t=1
Figure 2. The Transition Probability Matrix P of a

Second Order Markov Chain with the

State Space S = (1,2)

17
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process does not depend upon the outcome at time t =0, then these 2 X 2
matrices reduce to a single 2 X 2 matrix independent of the outcome at
t=0 and it is a first order Markov chain.

For the general kth order Markov chains with m gtates, the trangi-

tion probability matrix is given by

P = [pil"’ik 1] , (2.10)
* (m,..o,m)
where ‘
0= p, ,
pll"'1k+1 =1

m

z Py i =1 for (i i =1,2 m)
. ,1q'o,k+1 = ) 1,,.., k— 9 seepmy L]
1 =1 '

k+1

k+

, . . 1 . .

This matrix will have m elements. As in the case of first order
Markov chains, the elements of this matrix are also called "one step
transition probabilities' since they describe the conditional probabil-

ity of being in a particular state in the nth step, given the states at

t = O,l,-or,n"lo
Computational Advantages

Howard (22) and Cex (11) both proposed a method for analyzing
higher arder Markev chains. In this section we shall present their
method of analysis and compare it to £he proposed method using
n-dimensional matrices and discuss the computational advantages the
proposed method offers,

Cox (11) states that processes may be encountered in which the
depemdence goes back more than one time unit and in such cases the

process can be reduced to a Markov chain by appropriately redefining
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the state gpace or changing the state structure. An example may best

illustrate the procedure,
Example 2-2

Consider a sequence of dependent Bernoulli trials in which the
probability of success, denoted by 1, or failure, denoted by O, at any
given trial depends on the outcome of the two preceding trials. Thus
we have a two state second order Markov chain, We redefine the state

space according to the outcome of two successive trials:

00 state O
01 state 1
10 state 2
11 state 3 .

Thus if trials (n-1) and n give rise, for example to 1 and O, then
we say that the process is in state 2 at time n. It is easy to see that
the process is now a Markov chain with four states. ‘

For the general second order Markov chains with m states, we can
define a new process (first order) with m2 states, each state in the
new process would correspond to a pair of successive states in the old
prog¢ess, With this redefinition a considerable increase in computation-
al complexity would arise. The transition probability matrix would have

4
m elements,

For the general kth order Markov chains with m states, the new

defined process (1st order) will have m' states, and the transition
L . . 2k
probability matrix will have m elements,

As mentioned earlier, when using n~dimensional matrices for

analyzing kth order Markov chains with m states, the transition

- . . +1 .
probability matrix will have mk+ elements only. This results in a
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reduction in the number of elements of the transition probability
matrix, and is given by

2k k+1 k+1, k-1
m (m

m - m = - 1) . (2.11)

Figure 3 presents the plot of such a reduction for second order
Markov chains,

As a result of the reduction in the number of elements of the
transition probability matrix, considerable amount of computations will
be reduced,

For the problem of matrix multiplication, we know that for multi-
plying two square matrices each of size n by n, then the process of

multiplying these two matrices requires
n3 multiplications, n3 additions . (2.12)

Not counting additions, the reduction in the number of multiplications
is given by

3k 3 k-1 k(mZk

2
m -m e m = m )

. (2,13)

- m

For the problem of matrix inversion, we know that for a square
matrix of size n, the inversion of this matrix by the Gauss process

requires, as indigated by Fox (14):
h reciprocals, n3-1 multiplications, n3-2n2-+n additions. (2.1k)
Considering only the number of multiplications, the reduction in campu-

tation is approximately given by (2.13), Figure 4 presents a plot of

this computational reduction for second order Markov chains.



REDUCTION IN MATRIX SIZE m2k-mk*! (x 10°)

Figure 3,

1) 20 30 40 30 60

NUMBER OF STATES

Element Reduction for Second Order Markov Chains
as a Function of the Number of States
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REDUCTION IN THE NUMEER OF COMPUTATIONS m3k-mk*2 (x09)

@) | ] L L

o

B

N
T

O
T

O 10 20 30 40 50 60
NUMBER OF STATES

Figure 4. Computational Reduction for Second Order Markov
Chains as a Function of the Number of States
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CHAPTER III

THE STEADY STATE CONDITIONS FOR HIGHER

ORDER ERGODIC MARKOV CHAINS

This chapter will be divided into two sections. First the Chapman-
Kolmogorov equations for higher order Markov chains will be derived,
Then, a development of the steady state Algorithm for such chains will

be presented.
Chapman~Kolmogorov Equations

We will adopt the following notation:
P - Transition probability matrix, or matrix of one

step probabilities,

P. ] - An element of the matrix of one-step transition prob-
Lieosl :
1 k+1
abilities, It is the conditional probability of the
process being in state ik+1 at the nth step given that
it was in the states il’iz”"’ik at t=0,1,2,44.,n-1,
where (il,iz,...,ik+1;1,2,...,m) and (k=1,2,,..) being
the order of the chain, and m the number of states.
p? . - Probability of the process being in the state i at
l19-91k+1 k+1

the (n-1+s)th step given that it was in the states
il,iz,..,,ik at t=0,1,2,...,n-1, respectively. These

are also known as the s-step transition probabilities.
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The derivation of the Chapman-Kolmogorov equation will be given for
the second order chains, For higher order chains, the proof follow in
a similar manner,

The Chapman-Kolmogorov equation for second order chain is given by

m
-1
isi i = EE Pi ir Pisri) (3.1)
17273 172 23
r=1
or in other words
m
(1 (s)
i IS; = Py i pPiopi (3,2)
1723 ‘ 172" T2’ 73

r=1

Prgor: The proof is by induction

1 - For s = 1 Equation (3.,2) becomes

m

(1+1)
iii = P; i v Piri
1*at3 21 Mt 23

this is true from the law of total probability,
2 » Assume Equation (3.2) is true for s = h, where h is any

positive integer m

. (1+h) (nh)
.o p =zpiirp

iid iri
- 1
12’3 7 2 273

3 = For s = h + 1, Equation (3.2) becomes
m
(i) § e
111213 o ijigr 12r13
but this is true from the assumption in step 2 and from the
law of total probability,

4 -~ Since the statement is true for s = 1 (from step 1) it must

(from step 3) be true for s = 1 + 1 = 2 and from this for
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s=2+1=3, etc,, and so must be true for all positive

integers.

1 :
oe pi Isi = E: P: iy pisli is true for all values of s,
tt2'y 7 a2t T3

or in other words

(s) ii (s-1)

i4i P

110 3 1 11121" 121"13

Equation (3.1) is a statement of the fact that in passing from state i2

in s steps given that the process was in state i, the time

to state i "

3

before, the first step takes the process from state i_ to some inter-

2

mediate state r and the remaining (s-1) steps then takes the process
from r to i,.
3
Similarly, it can be shown that the Chapman-Kolmogorov equation for

the kth order chain is given by

m
pijiz"'ikik+1 } rg% pilo,-ikr Pi:l;f..ikrik+1 . (3.3)
From (3,3), it follows that
pls) o pplst (3.4)
where
A P§S) i ] . (3.5)
1T ket {m,e.,,m)
This means that .
p(1) _p
p(2) _pp._p2
(3) (2) 3

P =P P =P(PP) =P
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(&) (3) b

= PP = P(P(P P)) =P

.
L]
.

S

(s) _p P(S*i) p® . (3.6)

P = P(P(Pe..(P(P P)).,.))

]

As mentioned in Chapter II, the associative law for multiplication
does not hold for n-dimensional matrices, then we have to notice the
order of multiplication as indicated by brackets in (3.6) and we note

also that

plasb)  p(a) ()

P where a,b are positive integers.

The Steady State Algorithm

Defipition_Bnlz An ergodic chain is one whose states form a single

ergodic set; or equivalently a chain in which it is possible to go from
every state to every other state, not necessarily in one step,

The existence of steady state conditions in higher order ergodic
Markov chains can be demonstrated by computing P(s) for various values
of s (see Table I),

Due to the complexity involved in the multiplication of
n~dimensional (higher order) matriqes, an algorithm is developed in this
section to compute the steady state conditions, As in the case of first
Qrdef Markov chains, steady state probabilities for higher order Markov
chains do not depend upon the present and past states of the process.

Ganesan (16) developed the "Reduction technique" to compute the
steady state conditions. His technique does not provide a general
proqedure, but rather a special method for each particular case. The
steady state algorithm developed here provides a general method for

computing steady state conditions for all cases of higher order chains,



VALUES OF P

TABLE I

(s)

FOR VARIOUS VALUES OF s
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(1)

(2)

'(3)-

(4)

(5) _

0.8000
0.6000
0.5000
0.3000

0. 7600
0.4200
0.7000
0.3600

0.6920
0.5640
0.5900
0.4620

0.666%4
0.5388
0.6280

0.5004

0. 6408
0.5769
0.6026

0.5386

0. 2000
0.4000
0. 5000
0.7000

0.2400
0.5800
0.3000
0. 6400

0.3080
0.4360
0.4100
0.5380

0.4612
0.3720
0.4996

0.3591
0.4230
0.3974
0.4613

(6)

(7)

(8)

(9)

(10) _ ~ 7°7
PP 7= o,6012

0.6280

' 0.5770

0.6089
0.5578

0.6178
0.5884
0.6025
0.5731

0.6120
0.5908
0.6031
0.5819

0.6077i
0.5947!
0.6014
0.5883

0.6051
0. 5961

0;5922

0.3719
0.4429

. 0.3910

0.4421

0.3821
0.4k415
0.3974
0.4268

0.3879
0.4091
0.3968

"0.4180

0.3922
0.4052

.0.3985

0.41164

0.3948
0.4038

0.3987

P(11)=

P(12)=

P(13)=

P(14L

2(15)

0.6033
0.5976
0. 6006
0. 5949

0. 6022
0.5983
0. 6005
0.5966

0.6014
0.5989
0.6003
0.5978

0.6009
0.5993
0.6002
0.5985

0.6006
0.5995
0.6001
0.5990

0.3966°

0.4023
0.3993
0.4%4050

0.3977
0.4016
0.3994
0.4033

0.3985
0.4010
0.3996
0.4021

0.3990
0.4006
0.3997
0.4014

0.3993
0.4004
0.3998
0.4009
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regardless of the number of states. The steady state algorithm was
checked against the Reduction technique and was found to yield the
same results.

A description of the Reduction technique and the steady state
algorithm is presented here, then it will be shown that they yield the

same results,

Rgduqtion Technique

The general procedure in this technique is to reduce the transition
matrix P of the higher order Markov chain to an equivalent first order
matrix, Once a first order matrix is determined, the steady state
probabilities are readily obtainable,

The cancept of reducing an n~order matrix can be demonstrated with
a second order matrix, Let P be the transition probability matrix of a

second order Markov chain, then P would appear as given below:

aaal b
Pi11 Pq1o
Pi21 Pioo

= L)
Po11 Po1p
Pon1 Pooo
L -

P contains two 2 X 2 matrices, one for the state 1 immediately preceding
the present state and the other for the state 2. If the process is an
ergodic¢ one, these two matrices must be the same at the steady state
independent of the states immediately preceding the present state.

Singe this steady state still depends upon the present state, it is

called an intermediate steady state. The intermediate steady state
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probabilities can be determined by treating the above matrices as first
order ones,

s _ s=1 N sel
P121 % Pyp1 Po11 * Pagg Pon1

s=1 s=1
= ) — 1 -
Pipg Ppyg * (1 = pypy)l Pooo?
S-!1
By setting
= -1 d
X =Pyyq + Pooo (3.8)
and
= 1 " ®
Y = ( pzzz) (3.9)
then
s Swl
Pioq @ p121(X) + Y
512
= (p121(X) +Y)X + ¥
S-.-Z 2 X
= p121(x ) + Y(1 + X)
s=3,.3 2
= plzl(x ) + Y(1 + X + X7)
= plzl(xs ) + ¥Y(1 + X + X2 + eas + x° 2) . (3,10)
lim pizl = 1iﬂ£§121(xs"1) RETCIID S N xs"z)] (3.11)
s-)l} s= L
then
s -1
1-p
2
= ,_.2? . (3.12)
Po11 T Popp
Similarly, it can be shown that
1-p
S S 222
S = pS o 222 (3.13)
121 221 2 Poyq ~ p222



2]
Piog ¥ Poop

2

] ¢
P114 ¥ P11 F

2 2
P1aa = Poqp

1-p

iy

211
= Po11 T Pogo
1 -
P1oo

2

" P11 T Peog

1- P11

)

" Pq11 T Pqog

30
(3.14)
(3.15)

(3.16)

It is clear from (3.13), (3.,14), (3.15), and (3,16) that at the
intermediate steady state the effect upon the process by its state
immediately preceding the present state is eliminated and the two

2 X 2 matrices are equal. They would appear as given below:

‘ s S
Pi11 Pioo
s s
P01 Pi2o
Pl = s s
Po11 Po1g
S S
Poo1 Pooo

If the results of (3.13), (3.14), (3.15), and (3,16) are utilized for

P1n it would appear as given below:

’ S S

P14 Pig
S s

Poq Pog

P = L ]

1 s S

P41 Pig
S S

Paq Pog

| _—
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From the above, it is observed that P1 consists of two identically equal
2 X 2‘fir$t order matrices, The steady state probabilities for these
first order matrices can be computed using the same procedure for the
determination of intermediate steady state probabilities. At the steady
state all the probability vectors will be the same . This is due to

the elimination of the effect of the process's present state. The

steady state probability matrix would appear as given below:

s s |
Py Py
s s
P1 P2
S S
P1 P2
S s
Py Py
where
S
1-p
22
pi = S s (3017)
11 22
s
1~p
s 11
= - — . .18
P, - (3.18)

' s
2 = Pyq " Pyy

Now consider the transition probability matrix for the second

order Markov chain. given by

a b
c d
P = - (3‘19)
e f
g h

To compute the steady state conditions substitute in Equations (3.13),

(3,14), (3.15), and (3.16) one obtains
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1 -4d 1-a r. d -1 ~b
2 -a~d 2~-a-d d-1-b d-1-b
1 ~-h 1 -e ~g e = 1
2 ~e~h 2 ~-e~-h e~1-g e~-1-g
P, = -
1 -4d 1-a d -1 -b
2~-a-d 2-a~-d d~-1+~05D d~-1-b
1 - h 1 -e -g e - 1
2 e =h 2 ~e~h e~-1-g e~-1+~4g
— -~ — -

Substituting back in (3.17) and (3.18) one obtains the steady state

conditions:
s ,
- —gb + gc
Py = 2gb + ge + fb (3'20)
i
ps gb + fb . (3.21)

2 7 2gb + gc + b

Steady State Algorithm

Before describing this algorithm, define the following terms:

Pr = The transition prebability matrix for the rth order chain
where r = 1, 2, ..., k; i.e,, P1 is the transition probability
matrix for the 1st order chain, P2 is the transition
probability matrix for the 2nd order chain, and so on.

Hr = Is an r order matrix with some of its elements equal 1 and

. . r—-1
the rest equal zero, The matrix Hr consists of m

twowdimensional matrices of equal size as shown below:



33

hy
h2
.
h
m
jth column
h1 - T
h 00 ¢4e 1 e0e O
2
00 oo e 1 eoe 0
H =1 = , where any h, = | . . .
r [ ] \] L ] - -
b XM 100 vee 1 4es O
hi
h2
:
h
m
-
. 1"—1
i,e,, for r = 3, m=2 , Tem =k
1
0 h1
1 0
1
(0] hz
0 1
H3 = = .
1 (0]
h1.
1 (0] ’
1
(0] h2
(0] 1
b - .. -

Next we define the "box'" notation [C] for matrix multiplication.

Ir C = .
1t o3 1ot 3=

—
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then if C = A Q) B, one can obtain any element in C as follows:

°iid, T %
17273
Algorithm
1 - Set r = k.
2 - Compute Br =
E 3
3 » Compute Br =
4 - Compute [?f *
Py
Pr-:-l

i i 3 ¢ forall i i i =1,...,m. (3.23)

17273 3

P F"Io

r
H -B OIH,
r r r

¥ el
Br] which is equal to

5 ~ Set r = r - 1, proceed to step 6,
6 -If r =1 go to step 7, otherwise go to step 2,
7 = Find a solution for this system of equations:
WIJm:;.'l
~ 1
s 4
¥ Pi=x

where w is an
~t

which exist at the steady state conditions and

column vector
Now consider the

steady state Algorithm

m X 1 vector that contains the probabilities

Jm is a

1
of ones.
same matrix P described in (3.19)., Using the

, it will now be shown that the same results

can be obtained as with the Reduction technique,
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1- r = 2.
) B = P - I
2 2 2
P -
ar1 b
C dv—l
B_ = .
2 e-1 f
g h-1
ol -

2~a 0
B* 1-¢ 0
2 0 1-f
0 2--h
L,  d-1 ~b
d-1-b d-1~b

—v” : e—v1

et 1 e=-1-g e~1l~g
BZ + B2 = .

d-1 -b
d-1~b d-1-b
—“ e-v1
e1mg emleg

oo —

7. Solving the system of equations

w' Ji =1
~I P, = il v

one obtains Y1 = ToD gbgz gpfb (3.24)
w, = R+ fP (3.25)

2" 2gb + gc + fb

which is the same results obtained in Equations (3.20) and (3.21),



Example 3-1: Given the following transition probability matrix P for
a 3rd order Markov chain having three states, we want to find the

steady state probability matrix,

povaree

0.6
0.5
O.h
0.7
0.6
0.2
0.5
0.3
0.2
0.5
0,k
0.2
0.1
0.2
0.3
0.4
0.6
0.3
0.7
0.1
0.2
0.5
0.k
0,6
0,8
0.7
0,2

0.3
0,2
0.1
0.1
0,2
0.6
0.3
0,3

0.3

0.1
0.3
0.5
0,8
0.6
0,2
O.h
0.2
0,3
0.2
0.7
0.7
O,h
0,5
0.1
0.1
0.1
0,7

0.1
0.3
0.5
0.2
0.2
0,2
0,2
0.4
0.5
0.4
0.3
0.3
0.1
0.2
0.5
0.2
0.2
0L
0.1
0.2
0.1
0.1
0.1
0,3
0.2
0.2
0,1
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We follow the steps as they occur

Step 1: Set r = k = 3.

Step 2: Compute B3 = P3

B =P Iz

-1
[ 0.4
0.5
Ouk
-0.3
0.6
0.2
~0e5
0.3
0.2
~0.5
0.k
0.2
~0.9
0.2
0,3
-0,6
0.6
0.3
-0,.3
0.1
0,2
=045
O.L
0.6
0.2
0.7
0.2

in the

0.3
-0.8
0.1
0.1
~0.8
0.6
0.3
=0,7
0.3
0.1
~-0.7
0.5
0.8
=0,k
0,2
0,54
~0.8
0,3
0.2
~0.3
0.7
0,54
-0,5
0.1
0.1
~0,9
0.7

37

algorithm:

0.1
0.3
-0.5
0.2
0,2
~0,8
0.2
O.k
~0.5
0.k
0.3
~0.7
0,1
0,2
-0.5
0.2
0.2
-0,6
0.1
0,2
-0.9
0.1
0.1
'?'0-7
0.1
0.2
-0.9
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=H3-.33DH3

*

Step 3: Compute 33

| 0 O In © @ W o o o |
o [ 3 [ ] [ 3 [ ] [ ] - [ 4 [ ] [ ]
O 0O 0O O OO 00« 00O O0OO0O0OO0OOoOCOoO-Ho0oOo0Oo0 o o0 o o «
o N & @ O In o
[ L ] [ ] .. [ ] [ 3 [ ] . [ ]
O 0005 OO0 0 0O 0O OO0 w00 O0OO0oOo o o o+wo0 o o o
4 n o © N O “~ o ©
* L] ® [ [ 4 L ] [ L] [ 3
|¥ 0 0O 0O O O 0 O 0 O = O 0 0 O 0 O 0 - 0 0 0 0 0 O © O
1
N © ©c ©c 0 0o W o = 0 O O O O O @ v % O O OO0 O O = « « i
O 0O O % o % O O 0 0 0 O " = o 000000« 9 0 0 O
L 9 ¢ 0 90 0 0 0 0 = =W o 0 0 0 0 0 0« «w =W O O 0 0 O |
T e 1N 3 O 0 F & 1N - e I = o th @ @ © « o & o — M~ — & o}
[ ] [ = [ = [ ] [ 3 [ ] [} [ 2 [ 3 L] L3 L [ ] - o- [ L2 L] L2 L] L] [ ] L 8 [ ] [ ] L ] [ ]
© 0 Q 00 Qoo 0QOo o0 Qo0 Qoo Qo0 Qoo0o oo
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Step 4: Compute [BB + B;]"’

(5, + )
By + By |=

1

""'005
0,3
0,2

~0.9
0,2
0.3
=0.6
0.6
0.3

=0.5
0.k
0.6
~0.2
0.7
0,2

0.3
-0,8
0.1

0.3
=0,7
0.3
0.1
~0.7
0.5

A
~0.8
0.3
0.2
-0.3
0.7

0.1
-0.9
0.7

0.1
0.3
~0,5
0,2
0.2
-0.8

O.l
0.2
"Fo-9

[B3+B

*]'1
3

i

0,530
0,577
0.329
0.370
0.205
0.437
0.288
0,472
0,712
0.530
0.577
0.329
0.370
0.205
0.437
0.288
0,472
0.712
0.530
0.577
0.329
0.370
0.205
0,437
0,288
0,472
0.712

0,229
0.222
0,300
0.293
0.538
0.312
0.556
0.403
0.170
0.229
0.222
0.300
0.293
0.538
0.312
0,556
0.403
0,170
0.229
0.222
0.300
0.293
0.538
0.312
0.556
0.403
0.170

0.241
0.201
0.371
0.337
0,257
0.251
0.156
0.125
0.118
0.241
0.201
0.371
0.337
0.257
0.251
0.156
0.125
0.118
0,241
0.201
0.371
0.337
0.257
0,251
0.156
0.125
0.118
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Step 5:

Step 6:

Step 2’

Step 31:

w
i
'c o oo 0 © R » wi

Je P

Set r =

LX)
e ¥ =

Compute B_ =

2

[ 0.530
0.577
0.329
0,370
= | 0.205
0,437
0.288
0,472

0.712

P2 - I

-—-0.470
0.577
0.329

-0.630

= | 0.205
0.437

-0,712
0.472

L_O'712

0.229
0.222
0.300
0.293
0.538
D.312
0.556
0.403
0.170

2 and not 1, go to step 2.

0.229

-0,778

0.300
0.293

-0, 462

0,312
0,556

-O' 597

0.170

*
Compute B2 = Hz - B2|:|H2

0,470 0,229 0.241]

© O O m»r ®r R»r O O ©

0.577
0,329
-0, 630
0.205
0.437
-0.712
0.472
0.712

L =2 0 O O O O 0O
1

ey

~0.778
0.300
0.293
-0,462
0.312
0.556
~0.597
0.170

0.201
-0,629
0.337
0.257
~0.749
0.156
0.125

-0,882
-

T © © O © O O r wr @\,

0,241
0,201
0,371
0.337
0.257
0.251
0,156
0.125
0.118

0.241
0.201

~0.629

0,337

0.257
-0.749

0.156
0.125

-0.882

O O O =»m »r » O O ©
| » » r O O O O O Ol

r-1=3-1= 2, proceed to step 6.

E,47 o]
0,423 0
0.671 O
0 0.707
(o) 1,462
o 0.688
0 0
0 0
0 0

© O © O O

0.84h
0.875
1,882
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Step &'t Comput [? B*]'i
tep : ompute 2.+ o
1 0.229 0.2k1 0,488 0.246 0,266
1 0.300 =~0.629 0,427 0.436 0.137
~0.630 1 0.337 1 0.488 0,246 0.266
‘ . -
[Fz * Bé] = 0.205 1 0.257 [Pz + B;] =]0.324 0.395 0.281
' 0.437 1 -0.7hk9| 0.427 0.436 0.137
«0.712 0,556 1 . 0.488 0.246 0.266
0.Lk72 -0.597 1 0.324 0.395 0,281
0.712 0.170 1 0.427 0.436 0.137
[ - L 4
0.488 0,246 0.266
os P, = 0,324 0,395 0.281] ,
0.k27 0.436 0,137
Step 5 Setr=r-1=2-1= 1, proceed to step 6.
Step 6': ' r=1go to step 7.
Step 7: We find the steady state condition for the 1st order chain whose

transition probability matrix is given by P i.e., we solve the

%
problem
1
xl J1 =1
7
¥ Pi=¥ -
We get
0.324L
w3 3
— - . —

.+ The steady state conditions for the 3rd order Markov chain
example is given by (3,26). This example was solved by Ganesan

(16) and the same results were obtained.



CHAPTER IV

ANALYSIS OF HIGHER ORDER ABSORBING

MARKOV CHAINS

In order to study various aspects of Markov chains it is necessary
to recognize several types of state. Then by considering which kinds of
state occur in a given chain, the chain may be classified and its
special properties discussed, Few definitions are given beldw, a more

detailed description is given by Kemeny and Snell (26).

Definition b-1; A state i is said to be transient if and only if

starting from state i there is a positive probability that the process

may net eventually return to this state.

Definition L-2: A state i is said to be recurrent if and only if,

starting frogm state i, eventual return to this state is certain.

Dgfinitipn Lk-=3: An absorbing state is a state which once entered is

never left,

Definitiqn 4«&: Absorbing Markov chains are chains all of whose non-

transient states are absorbing.
The following quantities are of major interest in the study and
analysis of higher order absorbing Markov chains.

1) The mean and variance of the total number of visits from a
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trangient state i to another transient state j before the
process enters an absorbing state.
2) The mean of the total number of steps in transient states
before entering a recurrent state,
3) The probability that the process is absorbed in the absorbing
state j, given that it started in the transient state i.
Before developing methods for computing these quantities, consider
the three-dimensional transitional probability matrix P for a second
order absorbing Markov chain. lLet P be displayed as a two-dimensional

array. The rows of P may be arranged to conform to the configuration

with the indicated partitions described as follows. The partitions 11
and O are respectively, an array of zero's and ones and an array of all
zero's, which have no bearing on the consequent computations, Of im~
portance here are the partitions Q@ and R, Let r denote the number of
absorbing states and (m-r) the number of non-absorbing (transient)
states.s Then Q is an (m-r) X (m-r) X (m-r) matrixwith probabilities of
transition only among the transient states for its elements. R is an
(mer) X (m=r) X r matrix whaose elements are the probabilities of the one~

step tramsition from the (m-r) transient states to the r recurrent

sﬁates.
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The Mean of the Total Number of Visits from a
Transient State i to Another Transient
State j Before the Process Enters

a Recurrent State

The expected number of times the process will be in a non-absorbing
(transient) state j is given by: Expected number of times in j = (1)
(probability of being in j at the start) + (1)(probability of being in j
after one step) + (1)(probability of being j after two steps) + .e. «

The sum of this series is given by M(Fundamental matrix) where
2 n
M=TI+Q+Q + .00 +Q (L.1)

This is a geometric series, but unfortunately due to the fact that
MI £ IM and that the Associative law of multiplication does not hold for
higher order matrices, then

MZ (I - ) (L.2)

The following method is developed to find M. Multiply Equation

(4.1) by the matrix Q from the left, one obtains

M= Qi Q2@ 4 oee + @@ (4.3)

M-M-1-Qt | (b.b)

1
We know that Qn+ = O when n = ®, therefore

M—w=1. ([‘:95)

Although the preceding discussion was presented for second order Markov

chains, Equation (4.5) holds also for higher order chains, it represents
a system of (me-r)k+1 equations in (m-nr)k+1 unknowns, the unknowns being

the elements of the matrix M, and k is the order of the chain

(k = Z,B,O-v)Q
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One can write this system of linear equations in vector notation

where

F )

. k+1
is an (m~r)

F L

*
is an (m-nr)k+1

A

Zero or one,

¥ * *
Q m = I .
~ ~

R +1 k+1 . , R
is an (mwr)k+ by (m~r) * tWo-dlmenslqnal matrix,

X 1 column vector, and

(4.6)

X 1 column vector with all the elements either

In this system of linear equations (4.6) one will solve for the

unknown column vector m

*
the matrix of this system of equations (4,6) one gets the matrix Q

* ¥l _*
=Q Ln

Permuting the rows and columns of

which can be partitioned into (m-—r)2 square submatrices of equal size

as follows:

*

Q =
[(m~r)k+1 X (m—.r)k+ 1]

N

Noting that
and

and

* *
Q11 Q12 *
3 E ]
Q21 QZZ ree
* *
Q(mnr)l Q(m-—_r)2_ :
E ]
Q. .= 0 fOI’
1]

if]

*

Qi(mwr)
*

2 (ner)

-
.
-

%k

Q(m—r)(m—r)

-

%
Qq = Qp = ver = Q(m~r)(m-r) # 0

*
Qij is an [ﬂm—r)k X (m—r)k] square matrix for i,j=1,...(m-r),

then

*‘11

Q =
[ﬁmmr)k+1 X (m—r)k+{]

ﬂ_,*~1

ii
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*.1
S0 the problem now reduces to finding Qii « Hence

* ®,1 *

m = Q I 3 (4-7)

~
. *

In many actual problems the matrix Qii would be of large size but
with many zero coefficients. Such a matrix is known as a sparse matrix.
The problem of finding the inverse of a sparse matrix have been studied
and reviewed in detail by Tewarson (41), Matsushita (33), Walsh (43),

Nathan and Even (35), and many others.

Example -1

Consider a second order Markov chain with m = 3., The transition

matrix P is given below.

[ 0.3 0.3 0.k |
0.2 0,2 0.6
0 (0] 1
0.5 0.4 0.1

P = 0.k 0.2 0.4 .
(3 %3 X 3)

0 (0] 1
0 (0] 1
0 0 1
0 0 1 ]

For the above abserbing state 3, withm = 3, k = 2, r = 1, and (m-r) = 2.

The matrices Q and R are given below:

0.3 0.3] (0.4 ]
Q (02 0.2 R _ o6 .
(2 X2 X2) [0.5 Ouk (2 X 2 X 1) 0.1
0.k 0.2 0.k
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.- : M - Q.bd = I
my m5 0.3 0.3 m, m5 1 0
m2 m6 ) 0.2 0.2 m2 m6 ) 0 1
. '] 1
m3 m7 0.5 0,k m3 m7 0
LT4 m84 ~0.4 O,%J m,, mg | 0 1

.. 1 1 . . .
This is a system of (m--r)k+ = (3—1)2+ = 8 equations in eight unknowns,

which can be written in vector notations as .

* * *
Q m !
~ A~

0.7 -0.3 0 0 0 0 0 o | *ﬁl_ 1 7]
0 0 0 0 0.7 =~0.3 0 0 m,, 0
0 1 -0,2 -0.2 0 0 0 0 m.y 0
0 0 0 0 0 1 -0,2 -0.2 m f=]1 |-
-0,5 =0.4 1 0 0 0 0 0 my 1
0 0 0 0 ~0.5 -0.4 1 0 me 0
0 0] -0.4 0.8 0] 0 0] 0] m,, 0]
| O 0] 0 0 0 0] ~-0.h 0.8 mg 1
4L % L

Permuting the rows, one obtains:

=4 ~ - -
0.7 ~0.3 mi 1-
1 0,2 —0.2 m2 0
-0,5 -0,k 1 m3 1
t
-0.4 0.8 m,, 0
0.7 -0,3 m5 0
1 -0e2 *0.2 m6 1
-0,5 ~0.k 1 m,, 0
"o-l‘f 0.8 m8 1
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0.7 -0.3 0 .0 i ;.54 0.525 0,157 o.13i—

- < 0 1 ~0.2 =0.2 ’ Q,j‘_.'1==0.263 1,226 0,367 0.312
o llois 0.k 1 0 10,876 0.753 1.226 0.188 |
__0 0 -0k o.§J 9.438 0.376 0.613 1'34%4

mf ) Q*'l.zf
1,54 0.525 0.157 0.131 111 q.697-

0.263 1,226 0.367 0.312 0| [0.630
0.876 0,753 1,226 0,188 1} [2.102
0,438 0,376 0,613 1.344 o| |1.051

1,54 0.525 0,157 0.131 | ]|o| |0.656
0.263 1.226 0,367 0.312| 1| [1.538

0.876 0.753 1.226 0.188 ] |0} |0.941

0.438 0,376 0.613 1,344 1 1,72

e 4t .. .
1,697 0. 656
0.630 1.538
". M = -
2,102 0.941
1,051 1,72
_ i

Let the m state second order Markov chain consist of r recurrent
states and (m-r) transient states, Let T be the set of these transient
states and Tc the set of recurrent states.

Let N

hij(h,i,:j €T) be the random variable denoting the number of

times the process visits j before it eventually enters a recurrent state,
having initially started from state h and was in i one step later.

SEN .
Let Mhij NhlJJ
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Theorem 4-1: For h, i, j €T

HMhij” =M, (L4.8)
Proof:
Initiaily the Markov chain was in state h then i one step later,

where h,i €T, Now if in one step it enters a recurrent state (with

probability z Phir’)’ the number of visits to j is zero unless j = 1,

r&T i#j
If 8§ .. is a function such that 6§ .. = , then we can write
hij hij .
) 1 i=j
o8 . 1 s z )
"Nhi.] hi j with probability ‘Phir
rGTc

On the other hand, suppose the Markov chain moves to a state r €T

at the first step (with probability Phir). From that position onward

the number of visits to j is Nirj" However, if i=j then the total

number of visits to j would he Nirj + 8 ... Thus we have

hij
. . éhij with probability E: Phir (5.0)
hij = +8 . ... r ETC *
irj” hij with probability Phir’ r€T,
Taking expectations, we get
E(N, ..) = Z P ) + Z P E(N + 8 ..)
hij® ~ hir hij hir irj hij
r€t° rer
= o1
éhij * Z Prhir Mirj (2.10)
r€7
=] . ,11
M haad QM = I ()

This is the same Equation (4.5) derived earlier. It should be noted the
number of visits here is counted with reference to state i, It is

apparent that this counting could have begun at state h, in which case



Equation (4.11) becomes

where

e

c=lc

- 1 i o Lo a
Chi 5 if h Jor i j

hij
Oifh #£i#]j .
The Variance of the Number of Visits from a
Transient State i to Another Transient
State j Before the Process Enters

a Recurrent State

Related to the matrix M, define the matrices Md, Mz,
- - =3 -
Note: ra b ra o a2 b2
c d o d c2 d2
if M= e £ then Md =le of and M2 = e2 fz »
2
g h; o h g2 h
“hij T ' hij
Theorem 4~2: For h, i, j €T
I ozhij | =my -n, (L.13)
where M1 is the solution to this system of equations
P 2
- = - . .1
llE(Nhij) Il Q“E(Nhij)‘l M, -1 (&, 14)
Proof: By definition
2 2 2
= = E ..) - {E . . ko1
%5 V(Nhij) (NhlJ) [ (,NhlJ)] (4.15)



hence

1[0y, 0] 1=, -

One can also write

2 . o }Z
6hij with probability Phir
: rETc
2 .
N™, ., = ‘
hij 2
(Nirj+6hij) with probability P, . , r €T,
2 . . .
One also has ahij = éhij' Taking expectations one obtains
2 2 2
E(N",.) = Z R L. 2 . . . 6 ..
B ( hlJ) Ph1r 6h13 * : Phlr E(Nlrg * h13)
r € 1° r€T

] 2 Z 2 Z
* 2:0 Prir ®hij * L Phir EWipy) + 2 ; Priy B0ipg00h55
r€fT r€&T r&T

2
*'Ei Phir ®nij
r&T

2 EZ
=8 . . .. . E(N, )8 ..
6h;j + Ei Phlr E(NlrJ) + 3 Phlr '(NlrJ) hij

r&r rér
S ||E(Nhij) | = QllE(Nhij)|l+ a(QM), + T

(M), =M. -1 ,

Subgtituting back in (4.19) one obtains

I E(Niij) | - all E(Niij) | =ov, -1,

51

(k.16)

(L,17)

(4,18)

(4.19)

(4.20)

(L.21)



Solving this system we get M

Examele sz

From the previoys example

-

1.697

2,102

-

1 and hence
2
" chij ” = M1 - MZ .
[(1.697  0.656
0.630 1.538
M= 12102 0.941
1,051 1.72
3. 394
and ZMd = °
4,20k
0
_5.394 0 ]
0 2,076
= 3.20L 0 *
0 2. kbl

0
3.076
0
3Lk

Now writing Equation (4,14) in vector notation one obtains

1,54

0,263
0,876
0,438

0.525
1,226
0.753
0,376

0.157
0.367
1.226
0.613

*

4

0.131
0.312
0.188
1,344

*

1,54

0.263
0.876
0,438

-1
Q (2m,

* *

- 5 )

0,525
1,226
0.753
0.376

0.157
0.367
1.226
0.613

2,39k
3,20k
0.131] |0

0.312]}2.076
0.188] [0
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4,19 |
1.805
6.025
3.012
1.408
3.306
2,021

1,344 | 2.440

L,06



L. 19
1.805

6,025

3.012

1.408]
3.306

2,021

4,06

By squaring the elements of M one gets

The Mean of the Total Number of Steps in

Transient States Before First

2,879
0.397
L, 418

1,05

.

0,430 |
2.365

0.885

2.95§J

(1,311
1,408

1,607

1,962

0.978 |
0.941

1,36

1,102

Entering a Recurrent State

The variable to be considered is

Using the results given by Theorem L-1, we can get the mean of

Nhi(h’i €T), Define

a columpn vector where the kth component is the sum of the elements in

the kth row of M.

jer

A

€T

33

(k.22)



Theorem 4-3

lem ) 1l = .

Proaf

H

E(N, ;)

Example 4-3:; From Example 4-1

1,697
0.630

2,102

1,051

[2.353 |
2.168
3,043

_2.77?J

E( Z Nhij)

o.655~
1,538
0.941

1,72

The Probability of Absorption by Any

Given Absorbing State

In a similar manner the probability of absorption by any given

absorbing state is found. Let j signify some given absorbing state;

let i signify some specified non~absorbing state.

The probability of ending in j

(probability of going from i to

j in 1 step) + (probability of going from i to j in 2 steps) + eee o

54

(&,23)
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In the first order Markov chains this can be obtained from the series
R + QR + QZR + eee = (I"Q)'.-1 R .

Unfortunately this is not the case in higher order Markov chains.
According to the properties of multiplication in n-dimensional matrix
algebra the probability of ending in j = R + QR + Q(QR) + Q(Q(QR)) + eew »

Let the sum of this series be denoted by B.
v+ B =R+ QR+ Q(QR) + Q(Q(QR)) + ... Q(...(QR)))) . | (k.2k)
Multiplying Equation (4,24) by the matrix Q from the left hand side,
one obtains
QB = QR + Q(QR) + Q(Q(QR)) + eee + Q(Q(+..(QR))...) (k.25)
B - QB = R - Q(Q(c_oo‘(QR))coo) 9
but Q(Q(...(QR)).e.) »0 when the order of multiplication gets bigger,
.’p B -~ QB = R -« (4-26)

Writing this in vector notation, one obtains

* * %*
Q.. b =R
ii~ T o~

E 3
where Qii is the same two-dimensional matrix defined earlier

*
b is a (me-r)k X 1 column vector
* k
R is a (m~-r)" X 1 column vector .,
* *_1

v * *_1
Solve for E = Q 5 where Qii has already been computed.

ii



Example &-4:

1

1,54

0,263
0,876
0,438

0.525
1,226
O. 753

0.376

0.157
0.367
1,226

0,613

b* _ .1 R*
~ ii ~
0.131 | [0.47
0.312 0.6
0.188 0.1
1,344 L9.4
— -
1,000
1,000
) 1,000 )
1,000

1,0023
1,000

0.9997

10,9991
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CHAPTER V

ESTIMATION OF TRANSITION PROBABILITIES

OF HIGHER ORDER MARKOV CHAINS

The problem of estimation of transition probabilities for first
order Markov chains has received a considerable amount of attention in
the literature, This problem has been studied and reviewed in detail by
Lee, Judge and Zellner (31), Miller (34), Whittle (44), Lee, Judge and
Takayama (32), and others. Both Telser (40) and Anderson and Goodman (1),
have studied the problem of estimation of transition probabilities for
first order as well as higher order Markov chains.

In this chapter the Maximum Likelihood method of estimation of
transition probabilities of higher order Markov chains is presented.

In addition, a discussion of the problem of testing the hypothesis that

the chain is of a given order is considered.

Maximum Likelihood Estimates of

Transition Probabilities

The multinomial distribution is given below since it will be used

in the following discussion.

p(ki’kz’.'.’kn) = P(x1 = kl, coqy x = k )

h h
k! (pkl kZ (pkn+ 1
11 ¢2 **° Th+l

= TR ..! ‘
k1!'2!' 'kn kn+1



where

k1=k_k1—k2—...

n+

- k
n

= - - - - 1 < s
Q=1 =0 =@ - e =@ withoS @ S 1

n+

The method of estimation presented in this section will be for

second order Markov chains.

used,

for r = 1, ..., n+l
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(5.1)

For higher orders the same procedure is

Suppose a second ordeir Markev chain has been observed for n time

points (at a stretch) and let nsij

be the number of transitions; i.e.,

the number of individuals in state s at time t-2, in i at time t-1 and

in j at time t. These transition counts may be represented as

t-2 t~1 t
1 2 L W ] m
. 1 411 112 e ™ 1m "11
2 N1 Nygp 10t Pyop Rio
- » . . [
m Tm1 Mm2 s 2 mm M m
1 n211 n212 coe n21m n21
2 2 Moo1 Moo roe Boom Roo
. - L] L] .
] - . » .
» ° )
. m n2m1 nz.mz see nzmm n2m
* '3 - . . .
o . . - -
1 nmll rlm12 v nm1m rlm1
m 2 Tmp1 o2 v “mom m2
m D “mm2 *ee Damm Dm
n

(5.2)
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where m is the number of states and

m m m m
n = Ez E: E: n.,adn ., = E: n .. e
sij si sij

S=1 i=1 j::l j:l

Let the transition probability matrix of the second order Markov
chain be P = [psij]' We are interested in the estimates of the elements

A . -
psij; we shall denote these estimates by psij (s,1,3=1,.,.,m).

For a given initial state and a number of trials n_:s the sample of

transition counts (n 'm) can be considered as a sample of

. .0 . n
sil? 'gi2?° "V si

size n_; from a multinomiai distribution with probabilities (psi

11
) such that Y P = 1. The prohability of this out
psi2"‘"’psim ‘ jéﬁ sij =~ " p 1ty o outcome
can therefore be given as
!
Rgi® Ngi1 Psio Bsim

n . In . T...n . | Psit Pgip *** Pgin ° (5.3)
sil "si2 sim

Extending this argument, the probability of the realization of
transition counts as in (5.2) is given by

o o nsil nsil Bsio Dsim

” - N i . 3 ) [ N - .

s=1 i=1n ., In . leeen . ! psii p512 pslm (5.4)
sil si2 sim

In (5,2) the row sums (n R nmm) are also random vari-

11 Mqp?

ables, and therefore the unconditional likelihood function f(psij) of

the sample observation consists of another factor giving the joint dis-
tribution of these random variables, Whittle (44) has shown that this
distribution is independent of the probability elements psij' Denoting

n

A(nsij) to be the contribution of the dlstrlbutlpn of Niqs Nygr eema

to the likelihood function, then f(psij) is given by

o nsi! Psi1 Psiz Msim
“ . =A . . TT .TT T T LA . . L ]
513) ”(n51J) s=1 iz11n . In . l.e.n . 1 Psi1 Pgin *** Pgin
sil "si2 sim

=

f(p

(5.5)
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Taking the natural logarithm, we can write

m m

m
L(psij) = BﬂB(nsij) + }Z }5 }Z nsijznpsij , (5.6)
s=1 i=1 j::l

where BnB(nsij) contains all terms independent of the psij's'
To deréve maximum likelihood estimates, we maximize (5.6) under the

condition E:psij = 1 for (s,i=1,.e.,m). Incorporating this condition

J=1
into (5.6), one can write

m m m

Lip ;) =@Bln_; )+ Z Z znsiijsij
S:1 i:1 j:l

m m
1 - - ~ sep . .
* E: E: nsimen( Pgi1 ™ Psio psl(m—l))
s=1 i=1
’ (5.7)
From the structure of the log likelihpod function L(Psij)’ it is elear

that the estimates can be obtained separately for the m values of

5,i=1,2,e..,m. For a specific value of s and i, we have

m~1
.. ) =nB(n .. E: 5 . n(1l=p . =D . =ees
Lsi(P51j) ’ (n51J) * n513 ps134'n51m ( Psi1 7 Psin
J=1 .
Differentiating (5.8) with respect to Psij(j=1,...,m~1) and setting it

equal’ to zero, we get

n . n .
sil sim -0
-“ - 1" ' N "' . - o-o’ - . -
Psit Psit1 7 Pgig psl(m-l)
Nsio nsim -0
. 1_ . - . - e o - . -
Psio Psi1 7 Pgio * Psi(m-1)
. .
L 3
n . n .
si(m-1 sim
(,_)__1_ — ~ — =0 . (5.9)
Psi(m-1) Pgi1 7 Pgipg 7 **° si(m-1)



Combining these equations, one may write

fsi1 _ Nsio _ nsi(m—l) _ Msim
. B . Teee® - 1 -] T eee ™ .
Pgi1  Psio Psi(m-1) Psi1 " Pgin Psi(m=1)

This leads to

nsil

P-—-—-I.P

k!l
o

n . sit si1
sil

n .
si2
4—,P

n
o

n . sil si2
sil

LI ]

sim

. 1"P. haad . "'.-"'P. .
sil sit 7 Pgia 7 * si(m-1)

.
o]
[t}

n .
sil

Adding both sides of the equations in (5,11) one obtains

nfil +_?siz + eee + nSrim . .
n_iq sil
which yields the estimate
A _ sil
Psil Psi )

In a similar manner, one can derive estimates of other elements,

one obtains

A sij .
P = 22l Sy1,J = 1,2,¢00,m
which is the same result obtained by Anderson and Goodman (1).

Test of the Hypothesis that the Chain is

of a Given Order

Anderson and Goodman (1) considered this problem of testing the

hypothesis that the chain is of a given order.
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(5.11)

(5.12)

(5.13)

Thus

(5.14)
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They considered testing the null hypothesis that the chain is
first~order against the alternative that it is second-erder. The null
hypothesis is that

plij = pzij = seq = P ,.=P.., for i,j = 1,0ee,m (5.15)

The likelihood ratio criterion for testing this hypothesis is

" given by Anderson and Goodman (1) as

n ..
A sij
m P, .
)\. = . TT. (5-16)
Syi,j=1 ﬁ
sij
A
where LI is given by (5.14), and
m 'm m
A
Pis 7 z Msi z z Rsid (5.17)
S:l $=1 &1

is the maximum likelihood estimate of ﬁij' Under the null hypothesis,
Anderson and Goodman (1) showed that ~20nX has an asymptotic Xz distri-
bution with m(m—.-1)2 degrees of freedom. The preceding analysis can be
directly generalized for a chain of order k. This means that one can
test the hypothesis that the process is a chain of order (k-1) against

the alternative hypothesis that it is not a (k-1) but a k order chain.

Example 5-~1

Consider the following table which gives the transition counts,
The maximum likelihood estimate of the transition probabilities will be
calculated, Also, the problem of testing the null hypothesis that the
chain is first-order against the alternative that it is second-order is

cansidered.



tm2 t-1 t
1 125 5 16 146
1 2 7 106 15 128
3 11 18 142 171
1 146 2 L 152
2 2 16 111 L 131
3 Lo 36 96 172
1 80 20 20 120
3 2 30 70 29 129
3 21 65 65 151
| 1300

Using Equation (5,14) to estimate P,qq» OME obtains

U>

0.03k
0.828
0. 105
0,013
0.8L47
0.209
0,167
0.543

0,430

0.110
0.117
0.831
0.026
0.031
0.558
0.166
0.22k

0.430
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To test the null hypothesis that

= = = i ] = 1
pllj Pzij p31j pij’ for 1,3 ’2,3

6L

A
one needs to first calculate pij for i,j = 1,2,3. Using Equation (5.17)

one obtains

A 125 + 146 + 80

P11 =16+ 152 + 120 ~ 0.839.
Similarly,
A A A A
Py, = 04065, Pyg = 0.096, p,, = 0.136, p,, = 0.740
, 124, p 146, p 40, p.. = 0.61k
P23 = 0.12%, P31 = O. 1 P32 = 0.2%0, P33 = V. .

Using Equation (5,16), and taking the natural logarithm one obtains

3 3 3
A A
o\ = 2 z z ni g [ﬂmpij -émpsij] .
s=1 i=1 j=1
3 3 3
ocamh= ) ) ) en lond . -mp. ]
. = feij~ " Psij T Pij

8=1 i=1 j=1

+ 65(0,844~-0,487) ]

il

283.22 .,
The degrees of freedom is m(m-1)% = 12.

From X2 tables, we find

P(x% 2 283,22) < 0.0001 .
This shows that we can reject the hypothesis that the chain is first

order even with 0.01% significance level,

20125(0.155-0,175) + 5(3.38-2.73) + ou. + 65(0.843-1,427)



CHAPTER VI
HIGHER ORDER SEMI-MARKOV CHAINS

First order discrete-time semi-Markov chains have been studied and
reviewed in detail by Howard (23), A short discussion of such chains
will follow.

A first order discrete-time semi-Markov chain is a process whose
successive state occupancies are governed by the transition probabil-
ities of a Markov process, but whose stay in any state is described by
an integer-valued random variable that depends on the state presently
occupied and on the state to which the next transition will be made.

Let pij be the probability that a semi-Markov process that entered
state 1 on its last transition will enter state j on its next transition.

pij must satisfy the following:

P; 5 Z20 , i,d = 1lyeee,m (6.1)
m
‘E: Pij = 1, i=1,2, eee, m (6.2)
j=1

where m is the total number of states in the system. Whenever a process
enters a state i, we imagine that it determines the next state j to
whieh it will move according to state i's transition probabilities Pi1’

reey P. . However, after j has been selected, but before making

Pi2’ im

this transition from state i to state j, the process "holds" for a time

in state i. The holding times are positive, integer valued random

A
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variable each governed by a probability mass function called the holding
time mass function for a transition from state i to state j.

For a first order discrete-time semi-Markov process to be described
completely, we must specify m2 holding time mass functions, in addition
to the transition probabilities. Figures 5 and 6 better describe the
difference between a first erder Markov process and a first order semi-
Markov process,

One can consider a first order discrete Markov process to be a

special case of a first order semi-Markov process.
Higher Order Discrete-Time Semi-Markov Chains

The analysis for second order chains is presented in this section.
For orders higher than two, the analysis follow in a similar manner.
The second order discrete-time semi-Markov process is a process
whose successive state occupancies are governed by the transition
probabilities of a second order Markov chain, but whose stay in any
state is described by an integer-valued random variable that depends on
the state presently occupied, the previous occupied state, and on the
state to which the next transition will be made.
Define the following variables:
m = Number of states in the process,
psij = The probability that a semi-Markov process that entered
state i on its last transition will enter state j on its
next transition given that it entered state s time before

last.

Tsij = Holding time. The time the process will spend in state i
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now before meking a transition to state j given that it
was in state s last time,

hsij(.) = The probability mass function for Tsij’ the holding time.

Tsi = The waiting time for state i, the time the process will

spend in state i before making a transition given that

it was in state s last time,

w_.(+)

51

It

The probability mass function for Tsi’ the waiting time.

The transition probabilities must satisfy the following equations.

P..20 s
sS1]

fl

1,2,..-,m (6.3)
i = 1’2,ooo,m

j = 1,2,...’m

m

ZP .= 1 i=1,0e.,m (6.4)
5 sij ,

j s = 1,.ou’m -

Given that é process enters state i having been in state s the time
before, we imagine that it determines the next state j, to which it will
move acearding to the state i's transition probabilities Psil’ Psiz’
reay Psim' However, after j has been selected, but before making this
transition from state i to state j, the process '"holds" for a time Tsij
in state i, this holding time Tsij depends not only on the process
destination state but also on the previous state and the state it is in

now. The holding times TSij are positive integer random variable each

governed by a probability mass function hsij(.)'

h LY = P = ese .
a0 = P(T =n) n < 1,2, (6.5)
S=1,...,m
i=1,--.,m
J=1,4ce,m .

We assume that the means ?sij of all holding time distributions are

finite, and that all holding times are at least one time unit in length,
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h . .(O) = O 3 (6.6)
s1]

We must specify m3 holding time mass functions, in addition to the
transition probabilities to describe the second order discrete time

semi~-Markov process.

Holding Times and Waiting Times

It is useful to develop this additional notation. We use= hsij(n)

. for the cumulative probability distribution of Tsij

n
< hsij(n) = z hsij(k) = P('rsij < n) (6.7)
k=0

> . P . . .
and hsij(n) for the complementary cumulative probability distribution

Of T ..
sij
[ -]
>
b (n) = ) h_ () = P(T . >n) . (6.8)
s1] s1] s1)
k=n+1

Call Tsi the waiting time in state i given that the process was in
state s the time before, and wsi(') the probability mass function of
this random variable. Thus, a waiting time is merely a holding time

that is unconditional on the destination state. Then

m
wsi(k) = z Psij hsij(k) = 1,2,000,m (6.9)
J:l
=P(7T . = k) .
. S1

The mean waiting time Tsi is related to the mean holding time

1

sij by
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n
E(T .) = Tr . = -ZP P} -:r .. 8 = 1,2,--.,m ') (6.10)
si si sij sij

j=1

The second moments are related in the same way:

m
E(T°.) = 2, - Ez P .. T, S = Lyeee,m o (6.11)
si si sij sij
j=1

V(T .) = 7. -~ (7T .)2 § = 1ly0ee,m . (6.12)
si

Also the cumulative and complementary cumulative probability distri-

butions for the waiting times are

n
<
w () =P(T_ Sn) = ) w (k) , s=1m (6.13)
si si ' si
k=0
n m i
= P « . . . = 1 eeo o
Z Z sij h513(k) » S ! o
k=0 j=1
m
<
= P .. h . .(n) y 8= 1,.0,,m
sij sij
J=1
and
[}
>
w .(n) =P(7_, >n) = }; w . (k) , s = 1,000,m (6.14)
si , s
k=n+1
® m
= Ez Ei P..h . .(k) y 5= 1l,eee,m
sij "sij
k=n+1 j=1
m
>
= = 1,00 .
E: Psij hsij(n) , S s ,m
j=1
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Example 651

Consider a second order discrete time semi-Markov process described

by the following two matrices:

— -
0.2 0.8
Ok 0.6
Transition Probability Matrix P =
Ou.7 0.3
0.5 0.5
| _J
- =
Holding | h, (k)= %) ﬁ)k_i By oK)= %}(%>k”1
Time ’
Mass
oo 00D n-)E
Matrix 121777 4 L 122 “\12/\12
H(k) = k=1,2,--.o
k=1 -1
1\/1 1 6)
h211(k)=(5>(§> hziz(k)=<7>(7
k-1 -1
) @@
L?221(k)=’§>(5 hyoo(i)=\g)\5

The holding time distributions are all geometric distributions with

different parameters, Then the moments for holding times are:

— Y
T2 = 3 111 = P VT4 s 6
- )
7112 = 6 T112 = 66 V(T112) = 30
Ye— .—2
7121 = L ¢121 = 28 V(T121) = 12
)
'Flzz = 12 Tios = 276 v(¢122) = 132
* = 2 .;E = 6 V(T...) = 2
211 © 211 211
7212 = 7 o1g = 91 v(¢212) = L2
= 2
Tony = 2 Tog1 = 5 V(Typ,) = 20
-— )
-~ 8 = 120 v(T, ) = 56

rr222 ‘ ' T222 222
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= 4k means that given the process was in state 1 the

time before, it will stay (on the average) in state 2 for four time

units before preceding to state 1 in its coming transition.

The cumulative and complementary cumulative distributions of the

holding time can be written in this matrix form:

SH(n) =

These results show, for example that 1 - (

- 3

- @)

- @
-
@

*H(n) = @)n

@)

N TN
ol o
\—/z \/5

') n = 0,1,2,.-0

] n-= 0,1,2,‘.0- ®

n
{%) is the probability

that the process will stay n or fewer time periods in state 1 given that

the process was in state 1 the time before, in state 1 now and will be

in state 2 in its ceming

To find the waiting

(6.10) to get:

4l

11

12

transition.

time statistics one substitutes in Equation

]

1

{(0.2)(3) + (0.8)(6) = 5.4

(0.4) (&) + (0.6)(12) = 8.8



T21

L
i}

(0.7)(2) + (0.3)(7) = 3.5

Too (0,5)(5) + (0.5)(8)

6-5 .

]
]

This means that'? = 8,8 is the time the process will stay (on the

12
average) in state 2 now given that it was in state 1 last time.

Substituting in Equation (6.11) one gets the second moments:

(0.2)(15) + (0.8)(66) = 55,8

-
i}

(0.4)(28) + (0.6)(276) = 176.8

a
i

= (0,7)(6) + (0.3)(91) = 31.5

=Y
1

ol

(0.5)(45) + (0.5)(120) = 82.5 .

Then one can compute the variances,

V(Tll) = 26,64
V(le) = 99.36
V(T,) = 19.25
V(Tzz) = 40,25 .

The distribution of waiting can be found by using Equation (6.9),

w, () = (0.2)(1/3)(2/3) 7 & (0.8)(1/6)(5/6)™  k=1,2,...;
Wi (k) = (0.4) (1/8) (3/8)7F & (0.6)(1/12) (11/12)7 k= 1,2,000;
Wy (k) = (0,7)(1/2) (/207 + (0.3) (/D) (6.7 k=1,2,000;
wop () = (0.5)(1/5)(4/5)7" + (0.5)(1/8)(7/8)™" ke 1,2,e.. .

Higher Order Continuous-Time Semi-~-Markov Chains

In the continuous-time semi-Markov process the transitions of the
system can occur after any positive, not necessarily integral, time

spent in a state. The analysis for second order continuous-time

73
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semi=Markov process is presented in this section. For orders higher
than two, the analysis follows in a similar manner.

The second order continuoué-time semi-Markov process is just like
the second order discrete-time semi-Markov process except for the domain
of the holding times, The states occupied on successive transitions are
still governed by the transition probabilities psij of a second order
Markov Chain. However, now the time Tsij that the system will hold in
state i before making a transition to state j given that the system was
in state s last time is a random variabhle that can take on any positive
value, and not necessarily an integral value. One must now use a
probability density function to describe the nature of this random

variable,

Holding Times

We will adopt the same notation used in the previous section.
Therefore, let hsij(.) be the holding time density function for the
holding time Tsij' Complete specification of the holding time behavior
of the process requires an m by m by m matrix H(+) with elements

(*)., The kth moment E(Tk..) = Tk.. of a holding time T .. is
si s1] s1]

sij J
defined by
-]
B ) = * = (mar (6.15)
sij s1] s1]
0

One can represent the probabilistic nature of a holding time by
<
its cumulative probability distribution hsij(.) and complementary

. . > .
cumulative probability distribution hsij(') defined by
t
<
h .. (t) =P(T..5t) =\h . .(7drT (6.16)
sij sij ) Tsij
(0]
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and

>h L L(t) s P(T .. >1t) = S'h L (T)dT = 1 -—Sh L. (t) . (6.17)
sij s1] s1] 51]
t

Waiting Times

Define Tsi the waiting time in state i given that the process was
in state s the time before, just as we defined it for the discrete-time
case, Since Tsi is a continuous random variable like Tsij’ it must also
be described by a probability density function, for which we use the
symbol wsi('). The waiting time density function is related to the

holding time density functions by

m

wsi(T) = jz; psij hsij(T) , (6.18)

where we have simply weighted the holding time density functions by the
probabilities that they will occur.

The waiting time Tsi has a kth moment E(Tii) = T:i defined by

E('rk,) = 'rkv, = S * w . (mar . . (6.19)
s1 [Sh s1
0

By using Equations (6.15) and (6.18) one can express the waiting time

moments in terms of the holding time moments,

__ ® m
71;1 =.S 8 <jZ1 Psij hsij(T)>dT
) -

il

E(wk.)
S1

,.(m)drT
sij

1
i} =]
" >~
o
n
e
.
o8
B
w

m
= z P .. 71; . (6.20)
=1
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e

Again, one usually deals with the mean ?si' second moment 'rzi and
variance V(Tsi) of the waiting times,

The cumulative probability distribution Swsi(°) and the comple-
mentary cqmulative probability distribution >Qsi(-) provide an alternate

representation of the probabilistic nature of waiting times, They are

given by
t t m
<
w.(t)::P('T.St)zgw.('T)d'ng(Zp..h..('T))d"r
si si s1 Ly Ts1]  s1]
0 o 7
m
<
=z p .. h ..(¢) (6.21)
=1 s1] s1]
and
o [--]
>w.(t)=P('T.>t)=gw.(T)dT=S(Zp..h..('T)>d'T
si s1 s1 s1J s1]
t t
'm
- ) b Tho(0) (6.22)
=1 s1] s1]

Example 6-2

Considering the same transition probability matrix used in

Example 6~1, and specifying the holding time density function matrix as:

L 27 |
Lhe T 2e 2T
Be-B'T e-'r
H(T) = , T=20.
2e-2'T Be—B'T
e_T 2e—ZT

The helding time distributions are exponential distributions. The

moments of these exponentially distributed holding times are
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T = % L % » V(T ) = T16' Ty1g = ’;’ ' :21-12 =%" V(T 4p) =%
?121 =% ’ :?-21 = '3‘ » V(Typ) % ?122 =1, :fzz =2, ViT,) =1
7211 = ';' ’ :22-11 = % v V(T44) =Ti' 7212 = ';' ’ :512 = ?)2" ’ V(sz) =%
?221 =1, :Eéi =2, V(Tzzl) =1 ?ézz = %" :3;2 = %" V(Ty00) ='%

One can construct the matrices of cumulative holding time probabilities,

1—e"4t 1—e—2t e—ét e-2t
< 1~e-3t 1-e*t > e_Bt e_t
H(t). = o2t 3t ) H(t) = -2t 3t *
1ne™ 1-e72% e e-th

The waiting time density functions for the example follow from

Equation (6.18).

wll(T) = O.8eP4T + 1,627
wlz(T) - 1.2¢77 4 0,667
wzl(T) =b1.4e_2T + O..‘)e-jrr
W22(T) = 0.5¢7 " 4 1.0e727

Equation (6.20) allows us to write the waiting time moments

T4 5 (0.2)(1/k) + (0.8)(1/2) = 0.450
T, = (0.5)(1/3) + (0.6)(1) = 0.733
Ty1 = (0.7)(1/2) + (0.3)(1/3) = 0.45
T = (0.5)(1) + (0.5)(1/2) = 0.75

22



Then the variance of the

1

waiting time

(0.7)(1/2) + (0.3)(2/9)

(0.5)(2) +

V(Tll)

V(le)

V(T21)

V(T

22

)
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.(0,2)(1/8) + (0,8)(1/2) = 0,425

(0.4)(2/9) + (0.6)(2) = 1.289

0.4167

|

(0.5)(1/2) = 1.25 ,
ig given by

0.222

]

0,752

LR

0.213

1l

= 0.687 .



CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS

This research has been directed towards analyzing higher order
Markov and semi-Markov chains. The study revealed that the analysis of
such chains using n-dimensional matrices was computationally superior
to the existing method found in the literature.

The study of n-~dimensional matrices showed that these matrices had
different properties as opposed to two-dimensional matrices, mainly:

1) The associative law of multiplication doeé not hold.

2) For an n-dimensional matrix A and the identity matrix I the

following is true:

- -1
a) A - aAl gkt for K = 2, 3, e
b) AI = A £ IA

) ATla- £ aa™?

It was found that as in the case of the first order Markov chains,
steady state probabilities for higher order Markov chains do not depend
upon the present and past states of the process. An algorithm was
developed to compute steady state probabilities.

The study of the absorption properties of higher order Markov
chains revealed that the following quantities can be easily calculated
once the inverse of the matrix in is obtained:

1) The expected number of steps before the process is

absorbed.
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2) The expected number of times the process is in a given

non-absorbing state.

3) The probability of absorption by any given absorbing state.

The study of higher order discrete time semi-~-Markov processes
revealed that the generality it provides in modeling does not cause
unusual computational problems, On the other hand, higher order
continuous~time semi-Markov processes do exact a price in computation.

A possible area of further study would be to extend the analysis of
Higher OrdervSemi-Markov chains. To derive equations that would compute
interval transition probabilities, entrance and destination probabil=
ities for higher order chains analogous to first order chains.

Another area of possible investigation would be to find more
applications and uses for n-dimensional matrices in fields other than
higher order Markov chains.

It was found that by permuting the rows and columns of the sparse
matrix Q;i a particular pattern arose which might make the matrix easier
to invert., Consequently, another area of possible research is to
develop an algorithm for inverting this particular type of sparse
matrix,

As a final recommendation it is suggested that the techniques
developed in this dissertation be implemented in computer codes so that
they may be more conveniently applied to the solution of actual

problems.
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