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CHAPTER 1
INTRODUCTION

Background and Purpose of Obtaining

Existence Criteria

The concept of mobility was something of a mystery until it was
mathematically formulated by Gribler (1, 2, 3)1 in 1884, Delassus
(4,5,6) in 1900, Malytcheff (7) in 1923, Bricard (8,9) in 1927, and
Kutzbach (10,11,12,13) in 1929,

Given an arbitrary arrangement of rigid bodies connected by
kinematic joints, Gribler's mobility criteria will determine the num-
ber of degrees of freedom or mobility of the system. Artobolevski
and Dobrovolskii (14,15) proposed more general mobility criteria
which attempt to account for the existence of a number of overcon-
strained linkages. Sharikov (16) used the theory of screws to study
the classification and existence of such linkages. Sharikov's method
is geometrical in nature and it has its limitations. Voinea and

Atanasiu (17) have examined the mobility of linkages by considering

1
Numbers in parentheses denote the references given in the
Bibliography.



the relationship between the classical theory of screws and line geom-
etry. This study, though incomplete, has influenced many of the later
studies in this area.

Myard (18) and Goldberg (19) derived overconstrained linkages
by combining Bennet linkages in such a manner that one or more mem-
bers become redundant.

The existence of overconstrained linkages has also been studied
by Soni (20,21, 22,23,24) and by Soni and Harrisberger (25,47). The
basic tool used is the 3 x 3 screw matrix. The method consists in
examining the residual coefficient matrix (RCM) of a linkage. The
-rank of RCM is directly related to the mobility of the linkage. The
number of columns is related to the number of general constraints.
The number of passive constraints or idle freedoms is represented by
the difference between the number of rows and the number of columns,
Using this procedure, Soni (21) has investigated the existence criteria
of linkages with one general constraint by examining some of the six-
link, six revolute mechanisms. The properties of the RCM also per-
mit it to be used as a basis for the classification of mechanisms (21).

An alternate approach to the study of mechanism mobility is
based on the use of vector algebra. A general method for obtaining
the compatibility conditions of mechanisms by using this method has

been proposed by Soni and Pelecudi (26, 46).



Moroshkin's (92) approach is based on the number of closed
loops in a mechanism. In this method, transformation equations are
used to describe the basic geometry of a mechanism. The number
‘of independent transformation equations, which is also the rank of
the system of equations, is determined by the configuration of the
mechanism. The mobility of the mechanism is related to the number
of degrees of freedom in all the joints and the rank of the system of
the transformation equations.

Another method is based on the classical theory of screws, A
detailed account of the theory has been given by Ball (112) in 1900.

An excellent review of the theory has also been given by Henrici

(114). Sharikov (16), Voinea and Atanasiu (17) have employed this
theory to examine the mobility of the mechanisms. In this method,

a mechanism is regarded as a group or a collection of screws in
space. The screws define a screw system whose order is determined
by the configuration of the mechanism and the pitch values of the
screws, The mobility of the mechanism is related to the total number
of screws in the mechanism and the order of the screw system formed
by them.

Myard (i8), Goldberg (19), Voinea and Antansiu (17), and
Dimentberg and Yoslovich (29) are among those who have proposed
various linkages with two general constraints. Using the five-bar

linkage (5H) proposed by Voinea and Atanasiu (17) as a basis, Hunt



(30,31,32) and Waldron (33,34, 35,36,37) have recently proposed a
class of linkages derivable from this linkage for instantaneous
mobility, Waldron has also proposed some single and multi-loop
linkages by combining the known Delassus overconstrained three and
four-link mechanisms.

The various methods described above for examining the mobility
of mechanisms have contributed considerably to a better understand-
ing of the nature of space mechanisms. However, all these methods
suffer from one serious shortcoming, that they are all essentially
dealing only with instantaneous or transitory mobility and not with
finite mobility. This feature makes these methods unsuitable for
examining the existence criteria of mechanisms in which there are
conditions imposed not only on the twist angles, but also on the other
constant kinematic parameters. This drawback is overcome by the
passive coupliﬁg method developed by Dimentberg and first introduced
by him in 1948 (38,39,40). In this method, the existence criteria of
an overconstrained mechanism are obtained from the displacement
relationships of an appropriate zero family mechanism (20,21,47) by
imposing suitable passive coupling conditions on the latter, by making
some of the joints passive. The method not only assures finite
mobility, but is also capable of yielding the necessary conditions for

the existence of the derived mechanism.



For finite mobility, one would therefore prefer to adopt the
‘passive éoupling technique proposed by Dimentberg (38, 39, 40).
Dimentberg's passive coupling approach was extended by Pamidi (41)
to develop the existence criteria of 5R spatial mechanism with two
passive constraints. Further extension of the work led Soni, Pamidi
and Dukkipati (42,43) and Soni (27) to develop the necessary and
sufficient existence criteria of four and fiverlink mechanisms with
one and two passive couplings. Design procedures of mechanisms
with a passive coupling are also recently proposed by Soni and Harris-
berger (44, 45, 46),

The successful application of Dimentberg's technique to study
passive coupling conditions of single loop four and five-link mecha-
nisms with various types of pairing conditions (consisting of R, P, H,
Cand S pairs)2 by Pamidi (41), Soni, Dukkipati and Pamidi (42, 43),
and Soni (27) makes it possible to further extend its application to
study passive coupling conditions of six-link, single and multi-loop
spatial mechanisms. A systematic investigation of these mechanisms
has been greatly hindered so far by the non-availability of closed-
form displacement relationships of spatial six-link mechanisms.
However, the results recently obtained by Soni and Dukkipati (120)
make it possible to obtain the existence criteria of these mechanisms

by using Dimentberg's passive coupling technique.

> :
‘Throughout this study, R, P, H, C, and S are used to denote
the revolute, prism, helical, cylinder and spherical pairs respectively,



The concept of general constraints suggests that there are cer-
tain specific geometrical conditions which must be imposed on a multi-
loop kinematic chain if it is to have one degree of freedom. According
to the mobility criteria of Artobolvski and Dobrovolskii (14, 15) and
Voinea and Atanasiu (17) that one general constraint is defined by a
specific orientation of the axes of the pairs along with some specific
geometrical relationship between the constant kinemétic parameters
of the chain.

The mobility criteria permits us to enumerate all possible
single and multi-loop mechanisms with or without passive couplings.
For example, when there are no general constraints, Soni and
Harrisberger (21,23,24) showed that there are one type and 28 dif-
ferent kinds of single~loop, six-link mechanisms with one general
constraint. A systematic enumeration by Soni and Robertson (28)
showed the possible existence of nearly 350 constrained kinematic
chains possessing one general constraint. In a similar way, when
there are no general constraints (m = 0), Huang and Soni (48) showed
that there are seven different types and 494 different kinds of six-link,
two-loop single degree of freedom space chains which do not have
general constraints. In a similar way, Huang and Soni showed that
there could exist a maximum of 4 different types and 287 different
kinds of six-link, two-loop single degree of freedom mechanisms

with one general constraint, and two different types and 119 kinds of



six-link, two-loop single degree of freedom mechanisms with two
general constraints, and one type and 36 different kinds of six-link,
two-loop single degree of freedom mechanisms requiring three
general constraints for mobility.

A systematic enumeration of the six-link, two loop space kine-
matic chains with Zero general constraint shows (48) the possilile
existence of nearly 365,025 constrained kinematic chains. A similar
survey by Soni and Huang enumerated the possible existence of
146,313 constrained kinematic chains possessing one general con-
straint, 31,509 constrained kinematic chains possessing two general
constraints and 2, 430 constrained kinematic chains possessing three
general caonstraints. Thus there is a possibility for the existence of
180,252 constrained kinematic chains possessing either 1, 2 or 3
general constraints. The necessary and sufficient existence criteria
for these mechanisms are not yet known.

The objective of the present study is to investigate the mobility
and the existence of single and multi-loop mechanisms with one
general constraint. Linkages with two passive couplings are repre-
sentative of the class of two-loop linkages. It is proposed to extend
Dimentberg's theory of passive coupling and the 3 x 3 matrices with
dual-number elements to develop a generalized approach to derive
the existence criteria of multi-loop overconstrained mechanisms.

Using this method it is proposed to investigate the existence of



six-link, one and two-loop linkages with one general constraint and

having lower kinematic pairs. The proposed method, besides being

useful in the study of the mobility and existence of linkages, will also
facilitate the closed form displacement relationships for the newly
discovered mechanisms which can be utilized for their type determi-
nation, kinematic analysis and synthesis,

Specifically, the objectives of the present study are:

1. To obtain the existence criteria of six-link, single-loop, 3H+3P
space mechanisms. Besides explaining the existence of known
five and six-link mechanisms, the derived criteria should also
reveal the existence of other mechanisms.

2, To obtain the ,existenpe criteria of six-link, two-lpop, R-R-C-
Cc-C-R-C, R-R-C-C-C-P-C, R-C-C-R-C-C-R, and R-C-C-
R-C-C-P space mechanisms. The derived criteria should
facilitate the investigation of the existence of such mechanisms.
In the next chapter, the Dimentberg's passive coupling method

employed for the above purpose is discussed in detail. In the remain-

ing chapters, the results of the objectives mentioned above are pre-

sented,
Definitions and Explanation of Terms

Some of the definitions of existence criteria used in this study

are described below:
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Mechanism: A closed kinematic chain in which one of the links

fixed is called a mechanism.
Mobility: The mobility of a mechanism is the number of inde-

pendent quantities required to specify its motion completely.

Constrained Motion: A mechanism with mobility one is said
to have a constrained motion,

Constrained Mechanism: A mechanism with one degree of

freedom (denoted by "F = 1" mechanism) is referred to as
constrained mechanism,

Unconstrained Mechanism: A mechanism with multi-degree of

freedom is referred to as an unconstrained mechanism.
Structure: A mechanism with zero degree of freedom is
referred to as a structure.

Kinematic Pair: A kinematic pair can be defined as a

(frictionless) joint which connects, and at the same time,
constrains the relative motion between two rigid bodies.
Geometrically, one may imagine a pair as two mating profiles,
known as pairing elements or male and female elements.

Degree of freedom of a kinematic pair: The degree of freedom

of a kinematic pair is the number of independent variables
necessary to specify the relative position of two links connected

by the pair.
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Lower and higher kinematic pairs: If a male element of a

kinematic pair makes, with its female element, either area or
surface contact, the kinematic pair is called a lower kinematic
pair. Examples of lower kinematic pairs include a revolute
pair, a prism pair, a helical pair, a cylinder pair, a spherical
pair, etc.

If, however, male and female elements pf a kinematic
pair make either a line contact or a point contact, then this
kinematic pair is called a higher kinematic pair. Examples of
higher kinematic pairs are a cam-pair, a sphere-plane pair,
etc. For a complete description and classification see
reference (21).

Lower kinematic pairs are efficient for transmitting
higher forces. Higher kinematic pairs are used primarily
for building motion transmitting devices rather than force
transmitting devices,

Linkage configuration: The configuration of the mechanism,

or linkage configuration, at a given instant during motion, is
completely specified by the spatial polygon defined by the axes
of the mechanism.

Constant kinematic parameters of a mechanism: The constant

kinematic parameters of a mechanism are the link lengths, the

twist angles, the constant offset distances (kink-links) and the



12,

13-

14,
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constant displacement angles. These parameters are constant
for a given mechanism and remain unchanged during its motion.

Variable kinematic parameters of a mechanism: The variable

kinematic parameters of a mechanism are the variable offset
distances (translations) along its pair axes and the variable
displacement angles. These parameters are not constant for
a given mechanism, but vary during its motion.

Finite mobility: A mechanism is said to have finite mobility

when it is capable of executing motion over a finite range. Thus,
for example, a spherical four-link, four-revolute mechanism
has a finite mobility ¢f one.

Transitory or instantaneous mobility: A mechanism is said

to have transitory or instantaneous mobility‘ when it is capable
of executing motion over only an infinitesimal range. Thus, for
example, a spherical four-link, four helical mechanism (equal
pitch values) has a transitory or instantaneous mobility of

one (32). It may also be noted that instantaneous mobility at

all instants may often lead to finite mobility (30, 35).

True mobility: A mechanism is said to have true mobility when

it has finite mobility with all the freedoms in all of its joints
active, Thus, for example, a plane four-link, four revolute
mechanism has, except at its locking positions, a true mobility

of one, but a five-link H-P-P-P-P space mechanism does not
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have true mobility since its helical pair remains permanently
locked, In the present study, a mechanism is said to '"exist"
when it has a true mobility of one.

Zero family mechanisms: Consider a two-loop, six-link space

mechanism, Let Py denote the number of kinematic pairs of
class k in which the degree of freedom is k and Epk =7, Then
Kk denotes the total number of degrees of freedom permitted
at all the joints. When Epk = 13, any random combination of
constant kinematic parameters will, in general yield a two-

loop mechanism with mobility one,

Similarly, let fi denote the number of degrees of freedom
permitted at the ith joint qf a single-lpop space mechanism.
Then the total number of degrees of freedom permitted at all
the joints is denoted by-Ef.l,, When Z fi = 7, any random combi-
nation of constant kinematic parameters will, in general, yield
a single-loop mechanism with mobility one.

Such mechanisms in which there are no conditions imposed
on the constant kinematic parameters are called zero family
mechanisms. The 1R+6C mechanism, the 4R+3S mechanism,
and the 1R+3P+3E mechanism are some examples of zero family
mechanisms.

Overconstrained mechanism: Consider a two-loop, six-link

space mechanism. When £k 128 < 13, a random combination of
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13

constant kinematic parameters will, in general, yield a
configuration which is a structure. Two-loop mechanisms
with Tk Py < 13 can exist with mobility one only when their
constant kinematic parameters satisfy certain definite mathe-
matical relationships,

In. a similar way when.T f_l < 7, a random combination of
constant kinematic parameters.will, in general, give a single-
loop configuration which is a structure.

Hence, such mechanisms in which conditions are imposed
on the constant kinematic parameters are called overconstrained
mechanisms.

Number of passive couplings: The number of passive couplings

Cp in an overconstrained mechanism with two loops is given by

‘the simple relationship

C, = 13 - Tkp,

Where.):'kpk denotes the total number of degrees of freedom
permitted at all the joints of the six-link two-loop overceon-
strained space mechanism,

The number of passive couplings Cp in an overcon-
strained mechanism with one loop is given by the simple
relationship

CP=7-kak
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where Zktpk denotes the total number of degrees of freedom

permitted at all the joints of the six-link single-loop overcon-

strained space mechanism.

Existence criteria of an overconstrained mechanism: For the
present study, the existence criteria of an overconstrained
mechanism denotes a set(s) of conditions that atre necessary

for its existence. These conditions are equations relating to

the constant kinematic parameters of the mechanism, An over-
constrained mechanism of the prescribed type satisfies all of the
conditions forming the existence criteria simultaneously.

Closure conditions: Closure conditions are algebraic equations

between the parameters of a linkage which give the conditions
required by the closure of a loop in a linkage.

Passive freedoms: Passive freedoms are the destroyed free-

doms of the pairs as a result of certain geometric constraints
(passive constraints). In practice the passive freedoms and
also the redundant freedoms, may be kep in the mechanism
rather than eliminating them by replacing the pairs possessing
the passive freedoms with pairs of lower class. This is pre-

ferred to have ease in design, operation, and lubrication.



CHAPTER II

DIMENTBERG'S PASSIVE COUPLING METHOD
ILLUSTRATED FOR A SPATIAL FIVE-LINK

H-H-P-P-H MECHANISM
Nature of Dimentberg's Method

Dimentberg in 1948 introduced the method of passive coupling
and illustrated the method of obtaining the existence criteria of a
number of overconstrained four-link mechanisms (29,38,39, 40).
Waldron (33, 34, 35,36,37), Ogino and Watanabe (51) however ap-
parently unaware of the work of Dimentberg have recently used dual-
number algebra to study the mobility of a spatial four-link chain with
four cylinder pairs and have come-up. with certain overconstrained
four-link mechanisms.

The use of Dimentberg's method for obtaining the existence
criteria of an overconstrained mechanism involves the following
three steps:

1. Select a Parent Mechanism. It is, in general, possible to
derive an overconstrained mechanism from more than one

parent mechanism.,

15
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Thus, for eéxample, the four-link RSRR mechanism can
be derived from either the RSCR mechanism or the ' RSRC
mechanism.

Develop the closed-form displacement relationships between
independent and dependent displacement variables of the
parent mechanism.

If the parent mechanism has no helical pairs, the dis-

placement relationships are algebraic in nature. If the parent

mechanism has helical pairs, the displacement relationships are
complicated in nature.

Impose the required passive coupling conditions on the parent
mechanism so as to obtain the desired overconstrained mecha-
nism. Thus, for example, passive coupling condition is imposed
on the cylinder pair of the parent four-link RSCR mechanism.in
arder to obtain the RSRR overconstrained mechanism. When

the displacement relationshiprs invalved are algebraic in nature,
this step very often involves examination of the conditions for
common roots between two algebraic polynomials or between
successive sets of two polynomials. The results obtained lead
to conditions on the constant kinematic parameters of the parent
mechanism and provide the necessary conditions for the

existence of the desired overconstrained mechanism.
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Example

In this section, the Dimentberg method of passive coupling
technique is demonstrated to obtain the existence criteria of an
H-H-P-P-H five-link mechanism. This is done by considering a five-
link H-H-C-C-~-H mechanism as the parent mechanism.

An H-H-C-C-H five-link space mechanism with general pro-
portions is shown in Figure 1, with helical pairs at joints A, B, E
and cylinder pairs at joints C and D. The instantaneous configuration
of the H-H-C-C-~H mechanism as shown in Figure 1 is completely
defined by two sets of five dual angles (38), each as follows:

1. Between adjacent pairing axes:
@, =a +ea, i=1,2,...,5) (2-1)

where.a(,1 (i=1to5)are the twist angles and a (1=1to5)are

the kinematic link lengths. Note that, by definition, €® = 0.

2. Between adjacent common perpendiculars:
8. =8, +es, (1=1,2,...,5) (2-2)
i i i
with s, = p,. 0, i=1, 2, 5) . (2-3)
i i'i

where ei (i =1to5) are the angular displacements at the kine-
matie pairs, s, (1=1 to5) are the translational displacements
along the kinematic axes, and P, (i=1, 2, 5) are the finite

pitch values of the helical pairs,
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In equation (2-2), the five angles, ei (1 =1 to5) and the two

sliding components along the cylindric axes (s, and 54) constitute the

3
seven independent linkage variables; among them 91 is the input angle
and §5 is the output angle. The five dual angles, &i (i=1tob5)in
equation (2-1) and the three finite pitch values of the helical pairs
(pl, P,» p5) constitute the thirteen real parameters necessary to
specify an H-H-C-C-H mechanism of general proportions.

Consider the H-H-C-C-H five-~link space mechanism shown
schematically in Figure 2. This mechanism reduces to an H-H-P-P-
H mechanism, as shown in Figure 3, if the rotational displacement

angles 6, and 64 at the two cylinder pairs remain constant at all

3
positions of the mechanism.,
The dual-matrix loop closure equation for the H-H-C.C-H

mechanism shown in Figure 2 is given by (120)

o ~ ~ A~ P ~

(6415 [23]) 1851, [&2]1 (6,15 Loy ) [é5]3 [, ]

= [1] (2-4)
where
. ,. 7 1
Cs Se, 0
1 1
[ei]3— -sei cei 0
0 0 IJ

lln this equation and in all the subsequent equations and tables
throughout this study, C and S denote the cosine and sine of the
respective angles.
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Figure 2, H-H-C-C-H Space Mechanism

@ g ®

Figure 3.

H-H-P-P-H Space Mechanism Obtained From
the Mechanism in Figure 2 by Making 83 =
831 = @ Constant and 04 = 843 = a Constant

20
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B 0 0|
[“i]1 = {0 c&1 s&i
E .s&i c&i
and
) 0 0]
[1] = |O 1 0
0 0 1

-—

By arranging the loop-closure condition of the mechanism in

three different ways, the following relationships can be obtained.

“~ ~ "~ ~ ~ -~ A~ » A »~
F(G4, 63, 61) = (Sozz Soz4 863)864 - Soz4(Cozz Sa3

+ Sozz Coz3 CG3)C6 + Co (Cozz Coz3 - Sozz Soz3 C63)

4 4
- (Ca| Ca, - ¥, 53, Ch ) = 0 (2-5)
f(es, 94, 63) = |:(Soz4 Coz5 + Coz4 Soz5 CGS)SG4

+ S, S8, CB ] (Sx, SB,) + [Sa, S8, S8,

- (Soz4 Coz5 + Coz4 Soz5 C95)064] (Cozz Soz3

+ So,zz Coz3 C93) + (Coz4 Coz5 - Soz4 Soz5 CGS)(Cozz Coz3

- Sozz Soz3 C63) - Cozl =0 (2-6)
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d

(9 93, 92) = [(S::v3 Co:4 + Co’:3 So:4 CG{_L)SG3

+sa, s8, C8,] (s, s8,) +[s&, s§, Sb,

- (Soz3 Coz4 + Co:3 Soz4 ce4)ce3] (Coz1 Soz2

+ Soz1 Co:2 cez) + (Coz3 Coz4 - Soz3 Sa Ce4)(Coz1 Co

4 2

- 8§, S&, C§,) - Ca, = 0 (2-7)

Note that each of the above equations relates the dual displace-

ment angles 63 and 64 at the two cylinder pairs to a third dual dis-

placement angle.

Let the rotational displacement angles 6, and 6, at the two

4

cylinder pairs be now held constant at all positions of the mechanism,

Denoting these constant values by 8,, and e4k respectively, the

3k
primary parts of Eqs. (2-5), (2-6) and (2-7) give

=0 -

AC ce1 + An (2-8)
Bs«se5 +B_ ce5 +B_= 0 (2-9)
cS sez + cc Ce,z +C = 0 (2-10)

The constants used in the above equations are functions of the
constant kinematic parameters a.l, oz.l and the constant displacement
angles 931( and e4k of the mechanism are defined in Table I.

Note that each of the equations (2-8), (2-9) and (2-10) contains

only one variable and must hold true at varying values of that variable.

Their coefficients must, therefore, vanish. This gives



TABLE I

CONSTANTS FOR USE IN EQUATIONS (2-8) THROUGH (2-11)
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Ac ='S<1'1 Soz5
A = Sozz[SOI4 (se,, S8, - Ca, Co, Ca,,)
- Sas Ca4 Ce3k] + Caz (Coz3 Ca4 - Ca'3 Soz4 C64k)
- Ccz1 Ca/5
B, = Soy [Scz2 (593k Co,, *+ Ca, cesk se4k)
+ Soz3 Ca, se4k]
B, = Say {Cay [Sa, (Seék S84y - Co3 CO5y CB)
- Ca, Sa, Co ] - So, (Ca, Ca, - Sa, Sa, Co,, )3

B = Coz5 {Soz4 [Sozz (88, S8, - Ca, Co,, Co )

- Ca, Soz3 Co + Coz4 (Ca ch3 - Sozz Soz3 ce3k)} - Ca

4k]

2 1
C, =S, [Soz4 (663k se4k + Ca, se3k ce4k) + Sa, Ca, se3k]
C, = Sozl {Cozz [Soz4 (se_,)k 88,, - Coy Co ce4k)
- S, Ca, ce3k] - Sa, (Coz3 Ca, ~ Sa, Sa, Ce4k) }
C, = Cu, [ S, [Sa, (S8, S0, - Ca, Co, C8, )

- So, Co ce3

3 4 k] + Coz2 (Co43 Coz4 - Sa/3 Soz4 C94k)] - CCYS
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o
it

B =B =0 (2-11)

C =C =C =0
s c n

The above equations provide the necessary conditions for the existence
of an H-H-P-P-H mechanism. However, it is possible to further
simplify the conditions given by Egs. (2-11). For example, examina-
tion of Egs. (2-11) yields the following relationships:

o, =a. =0 » (2-12)

and

Soz3 (So:z Coz4 Ce3k + Co, So, C8,.) - Coz3 (Coz2 Co

2774 4k 4

- Sozz Soz4 Ce:‘,'k ce4k) - Sozz Soz4 se3k se4k

+1=0 (2-13)
Equation (2-12) shows that the axes of the three helical pairs
are parallel to one another. Equation (2-13) is a definite closure
condition relating the twist angles Uyy O and ¢, of the mechanism

3 4
with the constant displacement angles e3k and e4k at the two pris-
matic pairs (Figure 3). The H-H-P-P-H linkage is shown in Figure
4,
Note that the results have been obtained by considering only
the primary parts of the dual displacement relationships of the

parent H-H-C-C-H mechanism. Hence, the results will remain

unaffected even if one or more of the helical pairs are replaced by



Figure 4.

W

H-H-P-P-H Space Mechanism (30,
35, 119)

25



26

revolute pairs, Note further that the results obtained are independent
of the link lengths involved. Hence, if one of the link lengths is taken
to be zero, the results will apply with equal validity to four-link
mechanisms derivable from the above five-link mechanism (29). The
results obtained in the present example for the H-H-P-P-H mecha-
nism also confirm the results obtained by Hunt (30), Waldron (35),
Pamidi (41), and Pamidi, Soni and Dukkipati (119). The results of
Hunt and Waldron were obtained by considering the 5H and 6H mecha-
nisms of Voinea and Atanasiu (17) which are themselves overcons-
strained mechanisms, The results of Pamidi, Soni and Dukkipati
were obtained by considering the more general zero family mecha-
nisms, thus guaranteeing full-cycle mobility. Also, in addition to
the parallelism of the axes, the existence derived in the present
study gives definite closure conditions to be satisfied by the constant

kinematic parameters of the respective mechanism.
Scope of Dimentberg's Method

Dimentberg has employed his method in those cases in which
the translational freedom of a cylinder pair is made passive (29, 38,
39, 40). The method has been shown equally applicable to the cases
in which the rotational freedom of a cylinder pair is made passive by
Soni (27), Pamidi (41), and Dukkipati (122), Pamidi obtained the

‘existence criteria of R-P-C-P and R-C-P-P mechanisms by imposing
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passive coupling conditions on the rotational freedom of the output
cylinder pair of an R-C-C-C mechanism, Soni (27) obtained the
existence criteria of an R-P-R~-C-R five«link overcanstrained mecha-
nism from the parent R-C-R-C-R mechanism. Dukkipati (122)
obtained the existence criteria of an R-S-P-R four-link overcon-
strained mechanism by imposing passive coupling on the rotational
freedom at the cylinder pair of the parent R-S-C-R mechanism.

Extension of Dimentberg's method to five-link mechanisms led
Pamidi, Soni and Dukkipati (119) to obtain the existence c¢riteria of
the five-~link, five revolute mechanism, R-R-R-FP-R mechanism,
and 3H+2P, 2H+3P mechanisms.

Dimentberg's method also holds true for the case in which the
ent;\lr_s freedom of a kinematic pair is made passive by Pamidi (41)
and Dukkipati (122). The joint thus becomes locked and no motion is
‘possible at that joint, The results obtained are in agreement with
those obtained by Dimentberg and show that it is possible to obtain
an overconstrained mechanism from more than one parent mechanism.

The extensions tb Dimentberg's method as demonstrated by
Soni, Pamidi and Dukkipati illustrate the immense scope of the method
and show that the method can be employed to handle a variety of
passive coupling conditions. The objective of the present study is to
extend Dimentberg's method to single and multi-loop six-link mecha-

nisms.
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Passive Coupling Conditions Considered in
Single-Lioop Mechanisms in the

Present Study

The passive coupling conditions considered in single~loop
mechanisms in the present study are confined to those cases in
which a passive coupling is imposed on a cylinder pair in order to
obtain a prism pair. This involves examination of only the primary
part of the various dual displacement relationships of the parent
mechanism.

The cases proposed are summarized in Table II and fall into
the following single category.

1. Passive coupling in a cylinder pair to obtain a prism pair.
Thus passive coupling is imposed on the cylinder pair of the
parent 3H+2P+1C space six-link mechanisms in order to reduce e=
it to a pri\sm pair of the overconstrained 3H+3P space mecha-

nisms (see cases 1, 2, and 3 in Table II).

Passive Coupling Conditions Considered in
Two-L.oop Mechanisms in the

Present Study

The passive coupling conditions cansidered in two-loop
mechanisms in the present study are confined to those cases in

which the required displacement relationships are algebraic in



TABLE II

PASSIVE COUPLING CONDITIONS CONSIDERED IN SINGLE-LOOP
MECHANISMS IN THE PRESENT STUDY

(H: Helical pair, P: Prismatic pair, C: Cylinder pair)

Kinematic pair

selected for in-

ducing passive

coupling condi-
Case tion

Kinematic pair
obtained because

of passive coupling
condition

Parent mechanism
examined for in-
ducing passive
coupling condi-
tion

Overconstrained
mechanism ob-
tained because

of passive coupling

condition

Considered
in

1 C
2 C
3 C

P

P

P

H-C-P-P-H-H
H-C-P-H-P-H

H-C-H-P-H-P

H-P-P-P-H-H

H-P-P-H-P-H

H-P-H-P-H-P

Chapter III

o,

the links of a spatial mechanism, starting with the fixed link. See Figure 5.

Here and throughout, this abbreviation refers to the sequence of kinematic pairs joining

62



Figure 5.

Schematic Representation of Six-link, Single-loop
Space Mechanism (Zf; = 7)

i
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nature. The cases considergd are summarized in Table III and fall

into the following three categories:

1, Passive coupling in two cylinder pairs (one in each loop) to
obtain the revolute pairs (see cases 1, 3, and 4 in Table III).

2. Passive cbupling in two cylinder pairs (one in each loop) to
obtain one revolute pair and one prism pair (see casesb.Z and
5 in Table III).

3. Passive coupling in two cylinder pairs (one in each loop) to

obtain two prism pairs (see case 6 in Table III),

31



TABLE III

PASSIVE COUPLING CONDITIONS CONSIDERED IN TWO-LOOP
MECHAMNISMS IN THE PRESENT STUDY

{R: Revolute pair, P: Prismatic pair, C: Cylinder pair)

Kinematic pairs
(one from each
loop) selected
for inducing pas-
sive coupling

Kinematic pairs
obtained because
of passive coupling

Parent mechanism
examined for in-
ducing passive
coupling condi-

Overconstrained
mechanism ob-

tained because of
passive coupling

Considered

Case conditions conditions tions conditions in

1 Cc-C R-R R—C—C—C—C-C-C:l R—R-C—C—C—R-C2 Chapter IV

2 C-C R-P R-C-C-C-C-C-C R-R-C-C-C-P-C

3 C-C R-R R-C-C-C-C-C-C R-R-C-C-C-R-C Appendix A

4 Cc-C R-R R-C-C-C-C-C-C R-C-C-R-C-C-R Appendix B

5 C-C R-P R-C-C-C-C-C-C R-C-C-R-C-C-P

6 C-C P-P R-C-C-C-C-C-C R-P-C-P-C-P-C
R-P-P-C-C-P-C

Here and throughout, this abbreviation refers to the sequence of kinematic pairs joining the
links of a six-link, two-loop spatial mechanism of Stephenson type, starting with the fixed link. See
Figure 6.

One kink-link assumed zero,

Non-zero kink-links,

{Special form of Case 3.)

(General proportions.)

(4%



Onsss 6

- Figure 6. Schematic Representation of Six-link, Two-loop

Space Mechanism of Stephenson Type
(= f; = 13)
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CHAPTER III

EXISTENCE CRITERIA OF SINGLE-LOOP

MECHANISMS

Displacement Relationships for Obtaining

the Existence Criteria

The use of Dimentberg's method for obtaining the existence
criteria of overconstrained mechanisms requires the displacement
relationships of the appropriate parent mechanisms. The required
relationships can always be obtained by suitably arranging the loop-
closure condition of the parent mechanism,

Consider a general single-loop, six-link space mechanism
consisting of helical, revolute, prismatic and cylinder pairs com-
bined in such a way that the sum of the degrees of freedom in all the
-joints is equal to seven (Figure 7). Such a mechanism would
necessarily have to have one cylinder pair. . If the type of the re-
maining five pairs and the location of all the six pairs in the mecha-~
nism are properly chosen, this mechanism will serve as a parent
mechanism for any overconstrained mechanism with one pressure

coupling.

34



' Figure 7.

General Six-link, Single-loop Space Mechanism With
Helical, Revolute, Prismatic and Cylinder Pairs
(Zf; =7)
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The instantaneous configuration of the mechanism in Figure 7
is completely defined by two sets of six dual angles, each as follows:
1. Between adjacent pairing axes:

‘. =, t+ e a, (3-1)
1 1 1

where o, (i =1 to 6) are the twist angles and 2, (i=1to6)are the
link lengths. These twelve quantities are constant for any given

mechanism. - Note also, that by definition,

2, Between adjacent common perpendigulars:

5. =6, +¢s, | (3-2)
1 1 1

where 9.1 (i =1 to 6) are the angular displacements at the kinematic
pairs and 5, (i =1 ta 6) are the translations along the kinematic
axes. These quantities may be variable or remain constant depending
upon the type of kinematic pairs used in the mechanism. ' For instance,
in a prismatic pair, the angular displacement remains constant, while
in a revolute pair, the translation along the axis is constant.  In a
helical pair, the translation along the axis and the angular displace-
ment both vary in such a way that their ratio is always constant and
equal to the pitch. In a cylinder pair, the translation along the axis
and the angular displacement both vary and are independent of each
other.

The dual-matrix loop-closure equation of the spatial six-link

mechanism in Figure 7 is given by (120):



A S

(0,1, 18,1, [@,] 8,1, [@,] 18,1, [a,]; 18,1, (a1 [,

~

(], [8], = [1]

where
"1 0 0
[QJI = 0 Ca'.1 Sai
0 -So, Co
- 1 1
— 1
1 0 0
[I] = 0 1 0
0 0 1
and
™~ & ~ J—
Cho Se, 0
1 1
6.1, = -S8, ce, 0
0
| 0 1]

Three arrangements of Eq. (3-3) are useful in the study of

existence criteria.

1. The relationship involving two adjacent dual displacement

angles and the two dual displacement angles opposite to both of

them.

In this arrangement of Eq. (3-3), six matrices are used on

either side of the equality sign. Thus, for instance,
(0515 [ay]y [0,)5 [og]) [05]5 o],

-1 -1 -1 -1 -1 ]:1

=[92]3 [e)], [0,157 [y ], [8]4 5],

37

(3-3)

(3-4)

(3-5)

(3-6)
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-Simplifying the above equation by using relations (3-4) and

(3-5) and equating the '"33'" elements of the resultant matrix equation,

we get
r(8,8,8,8)= [s6,, sé3vs&4 s&z

- cé4(063 5&4 0&3 s&z + 5&4 3&3 c&z)]

+(-C8, Ca, Sa, Sz, + Ca, Ca, C&,)

- [sé1 S8, s&, Sa - cél(cé6 sa, c&6 s,

+ s&l 3&6 0&5)] - (.cé6 c&l s&6 S&S

+Ca Ca, C&) =0 (3-7)
Note that Eq. (3-7) involves the adjacent displacement angles ‘61 and
‘66 and the displacement angles §3 and 64 opposite to both of them.

Cyclic permutation permits Eq. (3-7) to be vilritten in six dif-
ferent ways. It is, therefore, possible to get six equations of the
form (3-7) involving different combinations of two adjacent angles
and the two angles opposite to both of them.

2, Relationship involving three adjacent dual displacement
angles and the dual displacement angle opposite to all three of‘
them.

In this arrangement of Eq. (3-3), seven matrices are used
on one side of the equality sign and five matrices on the other. Thus,

we have, for instance,
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A o A A

[6,]5 [25]) [8,], [2,]; (8,1,

N T M M T I VR N T e W
=[o) 17 18,157 [ ]y 8,15 o], ™ [6.157 o, ], (3-8)

Simplifying Eq. (3-8) by using relations (3-4) and (3-5) and
equating '"33'" elements of the resultant matrix equation, we get

= CGS [SG1 566 (Soz1 Coz5 Soz4)

+.Ce1 ce6 (-ch1 Coz6 Ccv5 ch4) + Cel(ch1 So:6 Soz5 Soz4)

+ C96(-Ccv1 Soz6 Cas Soz4) + (»Coz1 6 So:5 Soz4)]

Ca
S6. CB, Sa. Sa. + C8. S8, Sy. C&, Sa

t S85[se, Co, Sa, Sa ] S8 Sy Lo Sy

, Co., Sa 6 Soz1 Soz5 Coz4

"
+Se6 1 5%

ch4] + [Se1 Sé

A a - & » A N A . ~ N IS A
+ Cel Ceé( S 1 Cozé SozS Coz4) + Cel( Sozl Sot6 COI5 COI4)

A A A A ~ A A
+ Ceé(-Coz So, Sa Coz4) + Coz1 Co

1 6 5 Cozv Co

6 C% Oy

- Ca Coz2 + So Soz2 ce3 =0 (3-9)

3 3
Note that Eq. (3~9) involves the three adjacent displacement .angles
.él" é(," and é\S‘and the displacement angle §3 opposite to all of them.
Cyclic permutation allows Eq. (3-9) to be written in six different
ways. It is, therefore, possible to obtain six equations of the form
(3~9) involving different combinations of three adjacent angles and a
fourth displacement angle opposite td them.

3. Relationship involving four adjacent dual displacement angles.

In this arrangement of Eq. (3-3), nine matrices are used on

one side of the equality sign and three matrices on the other. The
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important point to note is that the matrix on the side containing three
matrices involves only the constant kinematic parameters of the

mechanism. Thus, we have, for instance,

A

313 [o3]y [64]3 [&4]1

D>

(o], 8,1, [&)], 6,1, [&,])

-~ -]. A 4-]. P 'l

Note that the central matrix [& on the right hand side involves

5]
only the constant kinematic parameters of the mechanism.

- Simplifying the above equation by using relations (3~4) and
(3-5) and equating the ''33"" elements of the resultant matrix, we get

F3(el, 62, 63, 94) = -Se1 Soz4 So:6(-.C62 564 C63

- C64 Coz3 563 + SG‘2 Coz2 564 593 - sez Coz2 C64 Coz3 C63

+ S8 C64 Saf3) + 86, Su Coz4(C62 S, S8

2 1 6 3 3
+ Se2 Caf2 ch3 C63 + Se2 Soz2 Soz3)
- cel Soz6 Soz4 Cozl(~Se2 se4 ce3 - Se2 ce4 Coz3 se3

- Cez Soz2 Ce4 Soz3) + Ce1 Soz6 Soz4 Sozl(-rSaf2 894 s-e3

2 %4 7% ~73 2 "¥4 7%

+ C8, sa, Ca, c&l (sé2 5&3 563 - Cb, Ca, 5&3 063

- 8, s, C&,) - CB, s&, Ca, Ca, (_S&2 sa, C8,

+ Ca, Ca,) - Ca, S&, Sa, (-8B, S8, C§, - s8, C8, Ca, S8,
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- CGZ Coz2 594 593 + CGZ CQ’Z C94 CQ/3 C93
- cez Saz ;:94 ch3) - Ca6 SQ'4 Coz1 (—ch2 894 893

+ chz 094 CQ'3 ce3 + CoLZ 064 Sa'3

+ Caé Ca4 Sal (Se2 SQ'3 Se3 - cez CQ’Z SQ'3 ce3

,céz Sa., Ca, + Ca, Ca c&l (.s&2 Sa., C8

2 3 6 4 3 3

+ Caz .Ca'3) -Co_ =0 (3-11)

Note that Eq. (3-11) involves the four adjacent dual displacement

~ ~ ~ ~

angles el, 92, 93, and 94.

Cyclicl permutation allows Eq. (3-11) to be written in six
different ways. It is, therefore, possible to obtain six equations
of the form (3-11) involving different combinations of four adjacént
dual displacement angles.

Observe that Eqs. (3-7), (3-9) ;nd (3-11) are all dual equations.
Each of them, therefore, represents two scalar equations. Since
six equations of the form (3-7), six equations of the form (3-9), and
six .equations of the fcrm (3-11) are possible, a total of thirty-six
scalar equations are available. These thirty-six equations make it
possible to obtain the existence criteria of all mechanisms with one

passive coupling (and also many mechanisms with one -or more

‘passive couplings with number of links equal to or less than six).
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Existence Criteria of the Six-Link

3H+3P Mechanisms

In the following sections, the Dimentberg's passive coupling
technique has been employed to obtain the existence criteria of the
six-link 3H+3P mechanisms. These criteria are obtained by con-
sidering only the primary parts of the displacement relationships
of the appropri_atevparent‘mechanisms. They, therefore, lead to
conditions on only the twist angles and constant displacement angles
of the mechanisms considered and are independent of their link
lengths and constant offset distances.

In a 3H+3P mechaniém, the three three revolute pairs may be
either adjacent to each other or be separated by one or two pris=-
matic pairs. All possible types of 3H+3P mechanisms are, there-
fore, represented by the f_ollowing mechanisms:

i) H-P-P-P-H-H Mechanism
ii) H-P-P-H-P-H Mechanism

iii) H-P-H-P-H-P Mechanism

Existence Criteria of the Six-Link

H-P-P-P-H-H Mechanism

The existence criteria of an H-P-P-P-H-H mechanism can be
obtained from the displacement relationships of an H-C-P-P-H-H

mechanism.
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Consider the H-C-P-P-H-H mechanism with general propor-
tions shown schematically in Figure 8, with helical pairs at joints
A, E, and F, cylinder pairs at joint B, and prismatic pairs at joints
C and D. The instantaneous configuration of the H-C.P-P-H-H
mechanism as shown in Figure 8 is completely defined by the two
sets of six dual angles, each as follows:

1. Between adjacent pairing axes:

. =q, tea, i=1,2,...,6) (3-12)
1 1 1

Where-OI.1 (i=1to 6) are the twist angles and a, (i=1to 6) are the

‘kinematic link lengths.

2. Between adjacent common perpendiculars:
®i=ei-l~e:s,1 i=1,2, ..., 6) (3-13)
with s, =P, 9.1 (i=1, 5, 6)

where 6.1 (i =1 to 6) are the angular displacements at the kinematic
pairs, 5. (1 =’ 1 to 6) are the translational displacements along the
kinematic axes, and ];)i (i=1, 5, 6) are the finite pitch values of the
helical pairs.

In equation (3-13), the four angles, 8.1 (i=1, 2, 5, 6) and the
three sliding components along the axes of the cylinder and prism
pairs, s, (i =2, 3, 4) constitute the seven linkage variables; the six
dual angles, &i (i =1 to 6)in equation (3-12), the two constant dis-

placement angles of the prism pairs at joints C and D, e.l (i=3, 4)



Figure 8. Six-link H-C-P-P-H-H Space Mechanism
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in equation (3-13), and the three finite pitch vé.lues of the helical |
pairs, P, (i =1, 5, 6) constitute the seventeen real parameters
necessary to specify an H-C-P-P-H-H mechanism of general pro-
portions. This mechanism reduces to an H-P-P-P-H-H mechanism

.if the displacement angle .62 at the cylinder pair remains constant

at all positions of the mechanism (Figure 10).

By considering the loop-closure condition of the mechanism
in Figure 9 in three different ways, the following relationships can
be -obtained (120):

F,(8,, 8,, 8,, 8.)=c8, [s, sb,(sa, Ca, Sz)

~ A ~ ~ ~ ~ “~ A ~ A ~
+ Ce4 C63(-Soz4 Co:3 Co:2 Sozl) + C94(So:4 So:3 Soz2 Sozl)

+

Co, (-Ca, Sx, Ca, Sa ) + (-Ca, Ca, Sa, Sozl)]

+ Se2 [Se Ce3 (Soz4 Sozl) + C8 Se3 (So:4 Co:3 Safl)

4 4
+ S8, (Cd, S, S%,)] + 5B, B, (5%, S&, C&))
+Ch, Cb, (-Sa, Ca, S, Ca,) + Cb (-8, Sa, C&Z ca, )
+ c63 (.c:&4 5&3 sa, c&l) + (0&4 0&3 Ca, c&l)]
. 0&6 c&5 + 5&6 8&5 066 =0 | (3-14)
F, (61, 8, 8,0 0,) = -8B, Sa, Sa, (-CB, Sb, Co,

+ 56, C8 So:3) + Sel Sf):6 Ccv4 (CG2 So:3 Se3



Figilre 10. H-P-P-Bsb-H Space Mechanism Obtained
From the Mechanism in Figure 9 by
Making 6 = 6} = a Constant
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A » A A A ~ - A A
- ce3 Coz3 865 se4 + ce3 Coz3 C95 Coz4 C94

- ce3 Soz3 CeS Soz4) + Ce2 Sozl So Soz2 (-Se_, S8_ S8

5 3574

+ Soz3 ce5 Coz4 ce4 + Coz3 Ce5 Soz4) :

+ Ce2 Sozl Coz5 Coz2 (Se3 Soz4 se4 - ce3 Coz3 ch4 ce4

- ce3 Sq3 Coz4) - Cez Saf1 Caf5 Soz2 (-Soz3 Soz4 ce4

+ Ca3 Coz4)~-- Cozl Sa5 Soz2 (-S8_ S8, C»o

- Ccvl Soz5 Coz2 (-Soz3 895 se4 + Soz3 Ce5 Ca4 094

+ Coz3 C65 Soz4) + Cal Ca5 Soz2 (893'Sa4 se4

- Ce3 Coz3 Soz4 ce4 - ce3 Soz3 Coz4)

Cé +Ca Ca,)-Ca =0

+ Coz1 Co% Caz (-Sar3 Sa/4 4 3 4 6

(3-16)

Observe that Eq. (3~14) is similar in form to Eq. (3-9) and
Eqgs. (3-15) and (3-16) are similar in form to Eq. (3-11). Note also
that each of the above equations relates the dual displacement angles

éZ’ 8 , and 8

3 4 to a fourth dual displacement angle. The displace-

ment angles 63 and 64 at the prismatic pairs are constant.

Let the displacement angle 8, at the cylinder pair be now held

2

constant at all positions of the mechanism. Denoting the constant
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value of 62 by 8 the primary parts of Egs. (3-14), (3-15), and

2k’
(3-16) give
A_Se, +A Co, +A =0 (3-17)
B_Se, +B_Ce +B =0 (3-18)
cs»se5 +C_Ce, +C_=0 (3-19)

The constants in the above equations involve the constant
kinematic parameters and are defined in Table IV,

Observe that each of the equations (3-17) through (3-19) contains
only one variable and must hold true at varying values of that variable.
This is possible only if their coefficients vanish. This gives

A =A =A =0
S c n

B =B =B =0 (3-20)
S C == n

C =C =C =0

Examination of Eqs. (3-20) gives the following relationships:

= =0 (3-21)

ce., [Se

2% SeSk (Soz4 Cozz Sozl) + Cos,. Co, (-Su

4k are CO3(-50 G Gy Sy

+ Ce4k (Soz4 Sot3 Sozz Sozl) + Ce3k (--Coz4 Soz3 Cozz Sozl)

- o
+ (-Ca, Cu, Sa, Sa )] + 88, [S6, Co, (S, Sa,)

4 2k 4

+ ce4k Se3k (Soz4 Coz3 Sozl) + Se:‘}k(Cot4 Soz3 Sozl)]

+ S8 . -S8 (S

4k 583 Sozz Cozl) + Cs, . Co_ _ (-Su

4 ax C83y (-Sey CaySa, Coy)



TABLE IV

CONSTANTS FOR USE IN EQUATIONS (3-17) THROUGH (3-20)
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n Zk[ 4k

Swo, Sa

c 6 5

C8 S8 se3k (Soz4 Cozz Sozl) + ce4k Ce3k(--Soz4 Coz3 Coz2 Sozl)

+ C64k (Soz4 Soz3'Soz2 Sozl) + ce3k (-Coz4 Soz3 Co:2 Sozl)

+ (-Coz4 Co, Sa Soz1 )] + S8

3 5 S8 C8 (Soz4 Sozl)

2k [ 4k 3k

+ Cs,, SO (Soz4 Co

4k SO 3 Sozl) + se3k (Coz4 Soz3 Sozl)]

+ [Se,, S8

4x 93y (Soy S

5 Cozl) + ce4k ce3k (-Soz4 Coz3 Soz2 Cozl)

+ C8 (-Soz4vSoz Co Cozl)+Ce

4k 3 5 (~Co, S, Sa Cozl)

3k 4 "3 772

+ (Coz4 Coz3 Coz2 Cozl)] - Ca, Co

6 5

B_= - Su, S, (-C8, S8, C8, -Cb,  Cu, S8

B
c

k =4k 3k 4k

3 "3k

+ SeZk CozZASG:,’k se4k - SeZk Coz2 C94k Coz3 C03k

+88,, C8, Sa)+Sw

2k "4 Ca, (C8,

6 k 3k 2k 2 73

+ S8 Soz2 So

2k )

3

= -Su Soz4 Coz1 (-S8,, S8 Ce,, - S6 ce4k Coz3 563

6 2k 4k 3k 2k k

- Co,, Cu ‘594 Se,, + C8 Coz2 C64 Co C93

2k 2 k 3k 2k k 3 k

- C8 So 064

2k 2 Soz3) + S

Soz4 Soz1 (-SOlz se4k 563k

k 6

+ Soz2 C64 Coz3 ce3 + Coz2 ce4k Soz3)

k k

Soz3 S8 + S8 Co., So ce3

k



TABLE IV (Continued)
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B

C

C

n

S

C

+ S, Co, Co (Se2 Sa, Se3k-C92

6

- Ce2 Soz2 Coz3) - Sa

= -Ca6 So

" CeZk

-G8y

+ Soz2 Co

+ Co, Co Sal (SG2 So_ S8 -CG’Zk C”?z

6

- CGZk

- Coz5

4 1 k 3 k

Ca Soz1 (-Sa/2 So

6 4 3

Soz1 (-S8,, S8 . C8¢ - S6,, C#¢

4 2k 4k 3k 2k

Coz2 S8 S8 + CGZ
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k 4k
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Swo,) -
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+ Coz2 Cso
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TABLE IV (Continued)

- Co Sa Sa4) - Cof:l Sa

3k °%3 , Co

5 (Sa, Co, CH

2 3 4 4k

+ Caf3 Soz4

Cn=SeZk Sal. Co (C93 Sa4 894 +se3 Caf3‘Soz Co

5 k k k 4 4k

+ Se3k Saf3 Ca4) + Ce‘2 Safl Caf5 Coz‘2 (se3 Saf4 S8

k 4k

- C63 Coz‘3 Saf4 C64. - C8

X Soz3 Coz4) -

k 3k

-Cez Sa. Co. So

k 1 5 72 (

--So/3 Sof4 ce4k + Caf3 Caf4)

+ Co, Cu Soz‘2 (593 Soz4S64 -C'63 Co S<1/4C64

1 5 k k k 3 k
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+ Ce4k(-Sa/4 Soz3 Ca/2 Carl) + C63k(-Ca4 Soz3 Soz2 Carl)

+ (Ca/4 Coe3 Co Carl)] -1=0 (3-22)

2
The above relationships provide the necessary conditions for

the existence of an H-P-P-P-H-H mechanism. Eq. (3-21) shows

that the axes of the three helical pairs are parallel to each other.

Eq. (3-22) is a closure condition relating the twist angles o , o

17 72

o,, and o, of the mechanism with the constant displacement angles

3 4

8,,, 8,,, and 8 . at the three prismatic pairs (Figure 10).

2k” "3k 4k

Existence Criteria of the Six-Link

H-P-P-H-P-H Mechanism

The existence criteria of an H-P»P-H-P-H mechanism can be
obtained from the displacement relationships of an H-C-P-H-P-H
mechanism.

Consider the H-C-P-H-P-H space mechanism shown
schematically in Figure 11, with helical pairs at joints A, D, and

F, cylinder pairs at joint B, and prism pairs at joints C and E. The

instantaneous configuration of the H-C-P-H-P-H mechanism as shown

~in-Figure 11, is completely defined by the two sets of six dual-angles,

each as follows:

1. Between adjacent pairing axes:

®. = + ¢a, (i'=1 to 6) (3-23)
1 1 1



Figure 11.

Six-link H-C-P-H-P-H Space Mechanism

54



55

where @, (i=1to6)are the twist angles and a, (i=1to 6) are the

kinematic link lengths.

2, Between adjacent common perpendiculars:
9, =8, +es, (i=1tob) (3-24)
1 = i = 4
with s, =P, 8, (i=1, 4, 6)

where 9.1 (i =1 to 6) are the angular displacements at the kinematic
pairs, 5, (i =1to6) are the translational displacements along the
kinematic axes, and P, (i=1, 4, 6) are the finite pitch values of the
helical pairs.

In Eq. (3-24), the four angles, ei (i=1, 2, 4, 6) and the three
sliding components along the axes of the cylinder and prism pairs

(sz,, S5 and s_) constitute the seven linkage variables of the

5

‘H-C-P-H-P-H mechanism. The six dual angles &i (i=1to6)in
Eqg. (3-23) and the two constant displacement angles e3k and 65k of
the prismatic pairs at joints C and E and the three finite pitch
values of the helical pairs (pl, Py p6) constitute the seventeen real
parameters necessary to specify an H-C-P-H-P-H mechanism of
general proportions.

Consider the H-C-P-H-P-H space mechanism shown
schematically in Figure 12. This mechanism reduces to an
H-P-P-H-P-H mechanism if the displacement angle 62 at the

cylinder pair remains constant at all positions of the mechanism

(Figure 13).



Figure 13.

H-P-P-H-P-H Space Mechanism Obtained
From the Mechanism in Figure 12 by
Making 8, = 82k = a Constant
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By considering the loop-closure condition of the mechanism
in Figure 12 in three different ways, the following relationships can

be obtained (120):

A

65, 63, ez) = [863 Se2 Saf3 Safl - ce3(ce28a3 Ca/z Safl

+ S, Safz Cafl)] + (-Ce2 Caf3 Safz Safl + Caf3 Cafz Cafl)

- [866 885 Saf6 Sa, - C8, (Ce5 Saf6 CCYS Sa,,

+ Sa, Sa 0&4)] - (C8_ ca

6 % 5 C% Sog S,

1}
o

+ Cq, Ca 0&4)

¢ Ca; (3-25)

F,(8,, 8,8 ,8)= cel [593 sez (Saf3 C»oz1 Saf6)

+ C€3 C_Gz (-Saf3 ch/2 Cafl Saf6) + ce3 (Saf3 Safz Safl S<1/6)

+Ce, (-Caf3 Sa, Cafl Sa/6) + (--Ccv3 Ca, Sa/l ch6)]

3 6) + CG3 sez (Saf3 Ca/z Sa/6)

+ 56, (Ca, Su Soz6)]+[Se S (Sa(3 Soz1 Caf6)

+ Co_ C8 (-Saf1 Sa/3 ch/2 Ca/6) + Ce3(-Saf3 SCYZ Caf‘l Caf6)

+ C@ (-Ca/3 Safé Sa/l Café) + (Coz3 Co

5 2 Cafl Ccvé)]

- Caf5 Coz4 + So ch4 ce_ =0 (3-26)

5 5

8 8 84, 95) = - sez Scy5 Sczl (-Ce, Ch_. Co

+ 893 C@S Soz4) + sez
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+ se3 Coz3 Soz4 C64 + se3 Soz3 Soz4)

A A A A ~ A

(-363 S6_ Cch, -S8.ChH. Caq, S8

cez Soz1 Soz5 Cuo

2 5 74 3 75 % Py
- c§3 0&3 sé5 364 + cé3 0&3 cés Ca, cé4

- cé3 5&3 cé, Sa,) + céz s&l 5&5 Sa, (_3&3 sé5 564
+ 5&3 cés Ca, CB, + 0&3 b say)

+ Ce2 Sql Cce5 Coz2 (se3 Sce4 se4 - C63 Coz3 Soz4 C64

t

C63 Soz3 Coz4) - cez Soz1 Coz5 Soz2 (-Soz3 Soz4 ce4
A A ) A A A A ~ A A A ~
+ Coz3 Coz4) - Coz1 Soz5 Soz2 (-863 Se5 C64 - Se3 ce5 Coz4 se4

. Ch. C& SB.S6.+C8_Ca. Cb. Cca, Cb

3 ~% PV P 3 w¥3 VU5 My LI,
- ¢§, sa, c§5 Sa,) - Ca, Sa_ Ca, (-Sa, S8, 364
+ Soz3 C95 Cc)z4 ce4 + Coz3 ce5 Sot4)

+ Co:l C@z5 Sozz (Se3 Soz4 Se4 - ce3 Cot3 Soz4 ce4

- C93 Soz3 Coz4) + Ca, Co Coz2 (—Soz3 Soz4 (o]:]

1 5 4

+ Coz3 Coz4) - Coz6 =0 \ (3-27)

Note that Eq. (3-25) is similar in form to Eq. (3-7), Eq. (3-26)
is similar in form to Eq. (3-9) and Eq. (3-27) is similar in form to
Eq. (3-11). Note also that each of the above equations relates the

and 8. to a fourth dual displacement

dual displacement angle 92, 63, 5

angle. The displacement angles 63 and 95 of the prism pairs are

constant. Let the displacement angle 8, at the cylinder pair be now

2
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made constant at all positions of the mechanism. Denoting the

constant value of 8, by 8 the primary parts of Eqs. (3-25),

2
(3-26), and (3-27) give

2k’

D_ 896+Dc C96+Dn_= 0 (3-28)
Es Sel + EC Ce1 + En =0 (3-29)
F Se4+FC Ce4+Fn=O (3-30)

The constants used in the above -equations involve the constant
kinematic parameters of the mechanism and are defined in Table V.

Observe that each of the equations (3-28) through (3-30) contains
only one variable and must hold true at varying values of that vari-
‘able. This is possible only if their coefficients vanish. This gives

D =D =D =0
s c n

E =E =E =0 (3-31)
] C n

F =F =F =0
s c n

Equation (3-31) represents the necessary conditions for the
existence of H-P-P-H-P~H mechanism. Itis, however, possible to
further simplify the conditions given by Eq. (3-31). For example,
examination of Eq. (3-31) together with the consi:ants of Table V
show that the following case is possible:

o, =0 (3-32)

o, + o = nm (n=0,1, 2, ...) (3-33)



TABLE V

CONSTANTS FOR USE IN EQUATIONS (3-28) THROUGH (3-31)

= - SeSk Sa/6 Sa/4

((.'195k Sa/6 Caf5‘Saf4 + Sa/6 Saf5 Ca/4

il

= [S€93k seZk Sa/3 Saf1 - ce3k (CeZk Sa/3 Caz Sarl +'Sa/3 Saz Cafl)]

+ (-C8 ‘Goz3 So Soz1 + Ca/v3 Coz2 Cozl) - (Ce5 Co, So_ Su

2k 2 k 6 5 4

+ Ca Coz5 Co )

6 4

=[Se,, Ce (Soz3 So

3k 2% ) + ce3k sez‘k (Sa3 Co., So

6 2 S%)

+ SeZk (Coz3>Soz2 Sot6)

[Se3k SeZk (Soz3 Cal Sozé) +Co,, Co, (-Soz3 Ca, Cq Sozé)

+ C93k (Soz3 Soz2 Soz1 Soz6) + CBZk (-Coz3 Soz2 Coz1 Scxé)

+ (-Ccy3 Coz2 Soz1 Safé)]

= [S6 SeZk (Soz3 Soz1 Co,) + ce3 Co (--Scxf1 Soz_3 Co. Ca

3k 6) x ©921 2 Coy)

+ C# (-Soz3 So

3k chf1 Ca/6) + Cezk(-Coz3 Saz Soz1 Coz6)

2

+ (Coz3 ch2 Coz1 Coz6)] - chs Coz4

)

- S6,, Su Soz,1 (-Cs,, Co, + se3

2k ©% 3k 74k e C% S8,

-~ C8 So SO!5 Co

2k 5% -Se_. Co,. - C93

2 (-883, €8y Coy 86,

k 4k

+ Cez Soz1 So Soz2 (-Soz3 S8 . .) - Coz1 Soz5 Soz2 (-Se_, Co

k 5 4k 3k 4k
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TABLE V (Continued)

- Cs Coz3 se4k) - Coz1 So

3k Coz2 (-Se, SO ,.)

5 3 74k

Fc = - SeZk Soz5 Soz1 (-‘Coz4 Se4k - se3k Coz3 Coz4 ce4k + se3k Soz4)

- Cso Soz1 So. Ca. (-S8.,. Ca, Se,. +Cs Coz3 Goz4 Co

2k 5 2 ( 3k 4 "4k 3k 4k

- ce3k Soz3 Soz4) + CGZ Soz1 Soz5 Soz2 (Soz3 Coz4 C94k

+ Coz3 Soz4) - Coz1 Soz5 Soz2 (-Se3k Coz4 se4k + ce3k Coz3 Coz4 ce4k

- Co,, Sa )

3 5% Soz4) - Ca, Se, Coz2 Y(Soz3 Co, Co + Ca'3 So

1 75 4 4k 4

F =86 Sozl_ Co

n 2% (C93 So, S8,, +S6,, Co, S Co

5 k 74 4k 3k 374 4k

+ S8 Sa, C¥ ) + C»o Soz1 C&_. Co (Se3 So 864

3k 73 4 2k 5 2 k 74 k
- Ce3k Coz3 Soz4 ce4k - Ce3k Soz3 Ca4) -
- CeZk Soz1 Coz5 Sozz.(-Soz3 Soz4 Ce4k + Coz3 Coz4)
+ Coz1 Coz5 Soz2 (Se3k Sa4 se4k - C93k Coz3 Soz4'Ce4k

- Co So Coz)+Coz1 Co

3k 5% 4 Coz2 (-chzf3 Soz4 of)

5 4k

+Coz3Coz)-Coz

4 6
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and

[Se,, S6,. Sa Sa, - C8 (Cé,, Su, Co Sozl

3k 2k 73 3k 2k 73 2
+ Soz3 Saz Cozl)] + (~CeZk Coz3 Soz2 Sozl
+ Coz3 Coz2 Cozl) =0 (3-34)

The above relationships provide the necessary conditions for
the existence of an H-P-P-H-P-H space mechanism. Equations
(3-32) and (3-33) show that the axes of the three helical pairs are
parallel to each other. Equation (3-34) is a closure condition relating

the twist angles « 012, and 013 of the mechanism with the constant

l?
8 . . .
displacement angles eZk’ 93k, and 5k at the three prismatic pairs

(Figure 13),

Existence Criteria of the Six-Link

H-P-H-P-H-P Mechanism

The existence criteria of an H-P-H-P-H-P mechanism can be
obtained from the displacement relationships of an H-C-H-P-H-P
mechanism shown in Figure 14, with helical pairs at joints A, C,
and E, cylinder pair at joint B, and prism pairs at joints D and F.
The instantaneous configuration of the H-C-H-P-H-P mechahism as
shown in Figure 14 is completely defined by the two sets of six dual
angles, each as follows;

1. Between adjacent pairing axes:



04'( a, p‘| s,
Xy
E —
oS,
=8 ;
R s a, o,
sb

Figure 14. Six-link H-C-H-P-H-P Space Mechanism
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A

o, = + ¢a, (i=1 to6) » (3-35)
1 i i

where Ol_l (i=1 to6) are the twist angles and a, (i=1 to 6) are the

kinematic link-lengths.

2. Between adjacent common perpendiculars:
8. =8, +e¢s, (i=1 to6) ' (3-36)
i i i 4
ith =p. 6, o (i=1, 3,5
wit s, =p; 8, (i )

where 6,1 (i =1 to 6) are the angular displacements at the kinematic
pairs, s, (i=1to 6) are the translational displacements along the
kinematic axes, _and p,1 (i=1, 3, 5) are the finite pitch values of the
helical pairs.

In Eq. (3-36), the four angles, ei (i=1, 2, 3, B), and the three
sliding components along the axes of the cylinder and prism pairs

(s , 56) constitute the seven linkage variables of the H-C-H-P-

2’ %4
H-P mechanism. The six dual angles o (i=1to6)inEq. (3-35) and
the two constant displacement angles e4k and eék, of the prismatic
pairs at joints D and F and the three finite pitch values of the helical
pairs (pl, Py p5) constitute the seventeen real parameters necessary
to specify an H-C-H-P-H-P space mechanism of general proportions.
Consider the H-C-H-P-H-P space mechanism shown
schematically in Figure 15. This mechanism reduceg to an
H-P-H-P-H-P mechanism if the displacement angle 92 at the

cylinder pair remains constant at all positions of the mechanism

(Figure 16).



Figure 15. H-C-H-P-H-P Space Mechanism

Figure 16. H-P-H-P-H-P Space Mechanism
Obtained From the Mechanism

in Figure 15 by Making 63 =
6y = 2 Constant
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By considering the loop-closure condition of the mechanism
in Figure 15 in three different ways, the following dual displace-

ment relationships can be obtained (120):

A A A A - A A é A A F.)
F, (8, 8,, 8, 8,)=C8,[s8, S8, (S¥, Ca, Sa)

+ 094 ce3 (,-SOt4 Coz3 COt‘2 Sozl) + 064 (ch4 Sa3 ch2 Sal)

_|_

ce3 (-Coz4-Sa3 COt‘2 Sozl) + (-Ccv4 Cq3 ch2 Sozl)]

A

Se

+

) [Se4 ce3 (Soz4 Sotl) + 094 se3 (ch4 Ca3 Sozl)

+ se3 (Coz4 Soz3 Sotl)] + [Se4 se3 (Soz4 Sozz Cal)

2 ©¥y)

_|_

~ A A " - " A ) ) A
C94 C93 (--SOl4 COl3 Sozz COll) + C94~(-Sa4 Soz3 Ca

+

C93 (-.COI4 SOl3 SOl2 Cafl) + (COl4 COl3 COIZ COll)]

- 0016 COl5 + Scat6 5015 C96 =0 (3-37)

2)

A

F, (8, 8., B,, 6,)=C8, [sB s, (s&, Ca, s,

ce6 c95 (-So 3)

_|_

6 Cas Coz4 Scaz?’)+C§6 (Soz6 5015 soz4 Sa

é _ ~ A A ~ _ A A & ~
+ C 5( COI6 Soz5 COI4SOI3)+( Coz6 CQ’SS 48013)]

Ca_ Su_)

+ S8 6 5 3

A A -~ A + A A ~
o [88, CB, (sa, s ,) + C8, s6, (s&

+ Se5 (CO!6 So/ Soz3)] + [S8 865 (Soz6 Sa, Ca.)

5 6 4 3

+ ceé Ce5 (--Soz6 Coz5 Sa/4 C013) + ceé (-SG!6 Soz5 Ccv4 Ca/3)

A A A ~ S ~ A A -~
+ C95 (.Ca/6 Soz5 Soz4 Coz3) + (Ca/6 Coz5 Caf4 Cot3)]

- Ca, C&, + S, &) C§, =0 (3-38)
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o0 91 96, (Soz2 Coz6 Soz5)

|
—

D>
D>

é - A A A
) = C8, S8, S8

+ Co, C8 (--Soz2 Coz1 Ca, So 6 Soz5)

> 1 6 5) + CGZ (SO!2 SCz'l So

+C8, (-Ca, S, Ca, Sx.) + (-Ca, Ca, Sz, Sa)]

6

+ 58, [se2 ce1 (erz Sot5) + C8, se1 (Soz2 Cozl Soz5)

+ sel (Coz2 Sal Soz5)] + [Se2 Sel (Sf)z2 Soz6 C0!5)

+ CGZ cel (-Soz2 Car1 So Coz5) + C#o (--Soz2 Sozl Ccz6 Coz5)

6 2

Ca_) + (Ca. Ca. Ca, Ca

tC8) (-Ca 6 "5 , Gy G Cog)l

) Soz1 Sar

2

-,Coz4 Coz3+Scrz4 Soz3 ce4=o (3-39)

Observe that Eqs. (3-37) through (3~39) are similar in form to
‘Eq. (3-9). Note also that each of the above equations relates the dual
displacement angles éZ’ §4, and 66 to a fourth dual displacement

angle. The displacement angles 94 and 66 at the prismatic pairs

are constant for all positions of the mechanism.

Let the displacement angle 8_ at the cylinder pair be now held

2

constant at all positions of the mechanism. Denoting the constant

value of 62 by 8 the primary parts of Eqs. (3-37), (3-38), and

2k’
(3-39) give respectively:
H S8

s

+H Cs,+H =0 (3-40)
c n

3 3

I Se +I1 Co, +I =0 (3-41)

and J S8, +J Cs. +J =0 (3-42)
s 1 c 1 n
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The constants in the above equations involve the constant kinematic

parameters of the mechanism and are defined in Table VI.
Observe that each of the equations (3-40) through (3-42)

contains only one variable and must hold true at varying values of

that variable. This is possible only if their coefficients vanish.

This gives:
H =H =H =0
s c n
I =1 =1 =0 . (3-43)
5 c n
and J =J =J =0
s c n

Equations (3-43) represents the necessary conditions for the
existence of H-P~-H-P-H-P mechanism. It is, however, possible
to further simplify the ceonditions given by Eq. (3-43). For
‘example, examination of Eq. (3-43) together with the constants of
Table VI show that the following case is possible:

ozlioz2=pn

oz‘3v:l: @, =Ppm (p=0,1,2,...) (3-44)

ozsioz6=pn

Equations (3-44) give the necessary conditions for the existence
of an H-P-H-P-H-P mechanism. All these conditions show that the
axes of the helical pairs are parallel to one another and the axes of

the prism pairs are randomly oriented.



TABLE VI

CONSTANTS FOR USE IN EQUATIONS (3-40) THROUGH (3-43)
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n

n

= CeZk [se4k (Soz4 Coz2 Sal] + SeZk [C94k (Soz4 Coz3 Sozl)

+ (Coz4 Sa Sozl)] + S8,. So Soz2 Cozl

3 4k 4

= CeZk [Ce4k (—Soz4 Ca3 Coz2 Sozl) + (--Coz4 Sa3 Coz2 Sozl)]

+ S8 Sa'4 Sozl] + [ce4k (--ch4 Coz3 SQ’Z Cal)

2k [Se4k

+ (--Coz4 Sa3 Sa,, Cozl)]

= Co Co (Soz4 Soz3 Soz2 Sozl) + (-Coz4 Co. So Sozl)]

Zk[ 4k 3 72

- o -
+ ce4k ( Soz4 Soz3 Coz2 C 1) + (Coz4 Coz3 Coz2 Cozl) Coz6 Coz5

+ So Soz5 oF:]

6 6k

= Ce4k [Seék (Soz6 Coz4 Soz3)] + se4k [ceék (Soz6 Coz5 Soz3)

+ Co, So. Sa.| + S8 So Soz4 Co

6 5 3] 6k 6 3

ce4k [Ce6k (-Soz6 Coz5 Coz4 Soz3) + (-Coz6 Soz5 Coz4 Saf3)]

Co.,)

+58,, [S6,, Sa Sa 4 Gy

6 3] + [Ce6k (-Soz6 Coz5 So

+ (—Coz6 Sa, Sa, Coz3)]

= Co [Ce6k Sa, Sog Sa, Sa, - Ca, Ca, Sa, Soz3]
+ [Ce6k (-Soz6 Sa, Ca, Ca3) + (ch6 Ca, ch4 Coz3)] - Co, Coz1
+ Soz2 Soz1 CeZk
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TABLE VI (Continued)

n

"

Ceék [SeZk Sa.,, Co

» Cay Soz5] + seék [CeZk Soz2 Coz1 Sa. + Ca,, S« .Soz5]

5 2 1

+ SGZk Soz2 Soz«6 CaS

ceék [C@Zk (-Sa, Cafl Coz6 Saf5) + (-Ca, Safl Cay Sozs)]

Ca_)

+ 88, [seZk Sa, Sas] + [ceZk (-Sa ¢ Co%

5 Cafl Sa

+ (-Ca, St Sa Co,)]

ceék [CeZk (Sa,, Sa, Sa, So ) + (-Ca, Ca, Sa ch5)]

6 5 1776

+ [CeZk (=-SoszSoz1 Coz6 Coz5) + (Coz2 Cozl Coz6 Coz5)] - Coz4 Coz3

+ Soz4 Saf3 C64k
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Summary and Extension of the Results

to Other Mechanisms

The existence criteria derived in the above sections clearly
show that the six-link, single loop 3H+3P mechanisms can exist
only when the axes of the helical pairs are parallel to one another.
Substitution of the existence criteria of 3H+3P mechanisms derived
in the above sections into the displacement relationships of the re-
spective parent mechanisms show that these mechanisms have two
degrees of freedom. Note that the results have been obtained by
consgidering only the primary parts of the displacement relationships
.of the respective parent mechanisms. Hence, the results will
remain unaffected even if one or more of the helical pairs are re-
placed by revolute pairs. Such a replacement yields 18 different
types of overconstrained mechanisms with helical, revolute, and
prism pairs. The results are, therefore, equally valid for the six-
link 3R+3P, 2R+1H+3P, and ZH+1R+3P mechanisms. Using the
developed existence criteria, it becomes possible to write the
existence conditions of the 18 mechanisms with one passive
coupling, These 18 mechanisms and their existence conditions
are described in Table VII.

Note further that, the results obtained are independent of
the link lengths involved. Hence, if one of the link lengths is taken

to be-zero, the results will apply with equal validity to five-link
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TABLE VII

EXISTENCE CONDITIONS OF OVERCONSTRAINED SIX-LINK
SPATIAL MECHANISMS WITH HELICAL, REVOLUTE,
AND PRISM PAIRS (ONE PASSIVE COUPLING)

Parent Overconstrained Existence
Case Mechanism Mechanism! Criteria
1 H-C-P-P-H-H H-P-P-P-H-H . Axes of helical and revolute
2 R-C-P-P-R-R R.P.P.-P-R-R  parallel to one another and
3 H-C-P-P-R-R H-P-P-P-R-R should satisfy Eq. (3-22)
4 R-C-P-P-R-H R-P-P-P-R-H
5 R.C-P-P-H-H R-P-P-P-H-H
6 H-C-P-P-H-R H-P-P-P-H-R
7 H-C-P-H-P-H H-.P-P-H-P-H3 Axes of helical and revolute
8 R-C-P-R-P-R R-~-P-P-R-P-R  pairs parallel to one .
9 R-C-P-H-P-R R-P-P-H-P-R another and should satisfy
10 H-C-P-R-P-R H-P-P-R-P-R Eq. (3-34)
11 R-C-P-R-P-H R-P-P-R-P.H
12 ‘H-C-P-R-P-H H-P-P-R-P-H
13 R-C-P-H-P-H R-P-P-H-P-H .
14 H-C-P-H-P-R H-P-P-H-P-R
15 H-C-H-P-H-P H-P-—H-P-H-.P4 ‘Axes of helical and revolute
16 R-C-R-P-R-P R-P-R-P-R-P pairs parallel to one
17 H-C-R-P-R-P H-P-R-P-R.-.P another
18 R-C-H-P-H-P

1Mobility’ two (F = 2).
2 .
‘See Figure 17.
3 .
See Figure 19,

4See Figure 21.
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mechanisms derivable from the above six-link mechanisms, Simi-
larly, the criteria for four-link mechanisms derivable from the
above six-link mechanisms can be obtained by taking two link lengths
zero. Examples of five-link mechanisms deduced from the derived
existence criteria of the above six-link mechanisms are shown in
Figures 18, 20, and 22, The results of five-link mechanisms ob-
tained in this manner also confirm the results obtained by Pamidi,
Soni, and Dukkipati (119), Hunt (30), and Waldron (35). The results
of Hunt and Waldron were obtained by considering the 5H and 6H
mechanisms of Voinea and Atanasiu (17), which are themselves over-
constrained mechanisms. The results of Soni, Pamidi, and Dukki-
pati, and also in the present study, on the other hand, have been
obtained by considering the more general zero family mechanisms,
Further, in addition to the parallelism of the axes, the present
results also give definite closure conditions that must be satisfied
by the several constant kinematic parameters of the respective

mechanisms.



A%

® ®® —
Figure 17. Six-link H-P-P-P-H-H Overconstrained Space
Mechanism (F = 2). Case 1 in Table VII




Figure 18. Five-link H-P-P-R-H Overconstrained
Space Mechanism Obtained From the
H-P-P-P-H-H Mechanism in Figure
17 by Making ap = 0 and pg = O.

(30, 35, 119)
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Figure 20.

Five-link H-P-P-H-
P Overconstrained

Space Mechanism
(F = 1) Obtained
From Figure 19
by Making @5 = 0
(30,35,119)
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Space Mech

78



Figure 22. Five-link H-H-P-H-P Over-
constrained Space Mecha-
nism (F = 1) Obtained
From the H-P-H-P-H-P
Mechanism in Figure 21
by Making @) = 0. (30,
35, 119)
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CHAPTER IV

EXISTENCE CRITERIA OF TWO-LOOP

MECHANISMS

In this chapter, the Dimentberg passive coupling technique
has been employed to obtain the existence criteria of the six-link,
two-loop R-R-C-C-C-R-C (one kink~link zero) and R-R-C-C-C-P-C
mechanisms. These criteria are obtained from the displacement
relationships of the parent six-link, two-loop R-C-C-C-C-C-C
mechanism (120)., The procedure for obtaining the existence criteria
of R-R-C-C-C-R-C, R-C-C-R-C-C-R, and R-C-C-R-C-C-P mecha~
nisms from the parent R-C-C-C-C-C-C mechanism with general
proportions is cohsidered in Appendi};es A and B. Appendix C deals
with the conditions for the existence of two prism pairs in a two-

loop mechanism.

Displacement Relationships for Obtaining

the Existence Criteria

The use of Dimentberg's method for obtaining the existence
criteria of overconstrained two-loop mechanisms requires the dis-

placement of the appropriate parent mechanism. The required
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relationships can always be obtained by suitably arranging the loop-
closure conditions of the parent mechanism.

Consider a general six-link, two-loop spatial mechanism of
Stephenson type in Figure 23, with revolute pair at joint A and
cylinder pairs at joints B, C, D, E, F, and G, Note that the sum
of the degrees of freedom in all joints of the mechanism is thirteen.
The mechanism has four binary links (AB, CD, EF, and FG) and

two ternary links (AGD and BCE).
Definitions of a Spatial Ternary Link

-The geometrical configuration bounded by three non-parallel
and non-intersecting lines in space and a set of three uniquely
drawn common perpendiculars--one between each two lines--is
defined as a spatial ternary link. The three lines are defined as
. the axes of the ternary link; the three dual angles specifying the
relative positions of the axes are called the sides of the ternary
link. The three dual angles specifying the relative positions of the
common perpendiculars are defined as the angles of the spatial
ternary link,

Figure 24 shows a spatial ternary link A’A-B’B-C’C whose
three axes A’A, B’B, and C’C are respectively specified by unit

line vectors §1’ gZ’ and s The three unit line vectors é, Q, and

3"

8 are respectively coaxial with the common perpendiculars AB’,



Figure 23. General Six-link, Two-loop R-C-C-
C-C-C-C Space Mechanism of

Stephenson Type
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BC’, and C'A. The directions of the six unit line vectors forming

the spatial ternary link may be chosen arbitrarily provided the sense

of the dual angles is consistent with the directions of the unit line

vectors.

In Figure 24, the directions are chosen in accordance with the

-following convention:

1. Designate AA’, BB’, and CC’ as axes 1, 2, and 3 respectively.

2. g, Q, and § are directed from axes 1 to 2, 2 to 3, and 3 to 1
respectively.

3. The directions of §1’ 32, and §3 are chosen in such a way that
the six unit line vectors of the spatial ternary link are so
directed as to form a closed loop in space.

Thus, one may write the three sides of the spatial ternary
link as
é =B+eb
:( =yt ec (4-1)
5=8+ed

where B, ¥, and § are the twist angles and b, ¢, and d are the

kinematic link lengths.

The three angles of the spatial ternary link are

N=n+eu
§=x+eq (4-2)
%=§+ev
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where 7, x, and § are the constant rotational displacement angles

and u, q, and v are the constant offset distances,

Using 3 x 3 matrices with dual number elements, the loop

closure condition of the ternary link in Figure 24 is given by

(81, 9, [x], [B], [R1, (8], = [£)

where

(4-3)
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1 0 0

[8]1 = 0 c? S8

0 -S% C8

L‘— ve——

and

1 0 0

[1] = 0 1 0

0 0 1

(4-4)
In the case where the three axes A’A, B’B, and C’C in Figure

7

24 intersect at one point, say 0 (i,e., A% B, and C’ coincide at 0),
the spatial ternary link is reduced to a spherical ternary link as
shown in Figure 25; it is a configuration bounded by three arcs gf’:,
1§E, and CA on the surface of a sphere of unit radius, with 0 as its
center. Since the axes are intersecting, all the dual parts in Egs.
(4-1) and (4-2) become zero. Thus, the three sides of the spherical
_ternary link ABC are represented by 8, vy, and § and the three angles
are M, X, aﬁd g.

If the three axes in Figure 24 are parallel, then the spatial
ternary link A’A-B’B-C’C becomes a planar ternary link, the plane
P on which it lies is perpendicular to the three axes as shown in
Figure 26, Since the axes are parallel, B, v, and 8§ in Eq. (4-1)

are equal to zero. Thus the sides of the plane ternary link A’B'C’

are represented by the pure dual numbers eb, ec, and ed. With the



Figure 25. A Spherical Térnary Link
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Figure 26.

A Plane Ternary Link
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three common perpendiculars lying in the same plane, s_, 5, and

1
s3 in Eq. (4-2) vanish and the angles are represented by the real
numbers M, %, and §.

-Summarizing a spatial ternary link is completely specified by
the relative positions of its three axes which in general, are non-
parallel and non-intersecting, If the axes are intersecting, one
obtains a.spherical ternary link; if parallel, one obtains a plane
ternary link.

The relative positions of the three axes of a spatial ternary

‘link s _, SZ’ and s, may be expressed in terms of its three sides

1 3

é, ';, and g and three angles "ﬁ, ;(, and E However, these six dual
numbers are not independent of one another--given any three of the
six dual-numbers, the remaining ones can be determined by the
-closure condition of the ternary link. Thus, a spatial ternary link
can be completely specified by any three out of its six elements--
three sides and three angles,

The constant displacement angles T, x, and £, and the.constant
offset distances u, q, and v of a spatial ternary link in Figure 24 for
a given set of twist angles (8, v, §) and link lengths (b, ¢, d) can be
derived in the following manner.

Fquation (4-3) can be expressed as

[m] = [A]™" (4-5)

where



since [’?]] is an orthogonal matrix, [ﬁ]_

(] = (8],

[a] = (81, [v], [x], [B], [R],

90

(4-6)

is identical to its transposed

When the matrix products are carried out, the dual-matrix

loop equation for the spatial ternary link becomes:

1

0

lo

where
12l
122
123
124
f"1

L

0 0 124 cE. (122 Cvy - SBsy s0) s&
cs  sb| = |x CB-(k cy+sBsychst
-S8 Cs | LLZ SE + SBSy CE

—k4'S§ - (k, Cy -

-k sE -k, Cy +

iz CE - SB-Sx SE

il,sﬁ + Sy CT Sy

_Ll Cn + Sy ST Sy

CB Cx - SB Sy Cx

= ST CX + CB C7 sx
= C7 Sy + CB s7 Cx
= sf sy - CB Cf Cx
= CT Cx - CB 7 sy

SB cy + CB sy Cx

CB sy + SB cycy

sBsysT) C&

s sy cn) ci

-

(4-7)
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Equating the elements '"33" of both members of Eq. (4-7),
we have
cé = CB Cy - SB Sy Cx (4-8)
where all the dual angles are already defined in Eqs. (4-1) and (4-2).
The primary part of Eq. (4-8) can be written as

_CBCy -Cs
X =TS sy

(4-9)
The value of Cos X corresponding to a set of twist angles (B, v, §)
can be computed from Eq. (4-9). However, there are two ways to
assemble such a ternary link since the angle X is double-valued. The
dual-part of Eq. (4-8) gives the constant offset distance q for a given

setof B, v, § and b, c, d.

_~dS6+ b SBCy+c Sy CB+Cx (bCB Sy +c Cy SB) (4-10)
1= Sx SB Sy )

To solve for the remaining ternary link parameters, we equate
the corresponding dual elements '"13", 123", "31'", and "32" of both
members of Eq. (4-7). Separate the resultant equation into two parts

from which we may solve for:

_ - SySxSs
_ =11 S¢
se - - SB Sx S8 (4-13)

- LZ + S°B S°x
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;'LZ S8
=T 2 csn B, -
CE LESBSX (4-14)

b L, SN+ c (L, SN - Cy Sx CT) - ¢ Sy (Cn Cx -S7 Sx CB)

v L, Cn - Sy Sx SN
(4-15)
b(L., SE - CB Sx CE) - ¢ L, SE - q 5B (Cx CE -5y SECy)
vE L, CE- SB SxSE
(4-16)
where
‘L, =SB Cy + CB Sy Cx
L, = CB Sy + S8 Cy Cx
(4-17)
L3=SBSy-CB Cy Cx

L, = CB Cy - S8 Sy Cx

Thus the four parameters 7, £, u, and v are uniquely determined
from Eqs. (4-11) through (4-17).
The instantaneous configuration of the six-link, two-loop.
"R-C-C-C-C-C-C mechanism, schematically shown in Figure 27,
is completely defined by two sets of dual angles, each as follows:
1, Between adjacent pairing axes:

., =, 1t ea,, (4-18)
1) 1] 1)

where &ij is the dual angle between axes i and j, aij are the twist

angles and aij are the link lengths as shown in Figure 27.



Figure 27,

E
Q52 ,%xe 95,55
Six-link, Two-loop R-C-.C-Cc-.c-c.c Space

Mechanism
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2, Between adjacent common perpendiculars:

8.=0. +es. (4-19)
1 1 1

where ei (i=1to 7) are the angular displacements of links, s,1
(i =2 to 7) are the linear displacements at the cylinder joints, and

s, is the constant offset distance (kink-link) measured along the axis

1
of the revolute pair.

There are 13 variables in Eq. (4~19), 61 is the input angle at
the revolute pair A and ei, si (i=2to 7) are the other linkage vari-
ables. The 20 quantities in Eq.  (4~18), aij and aij (ij = 12, 23, 34,
41, 17, 76, 65, 52, 53, 47) and the constant offset distance 5, in
Eq. (4-19), constitute the 21 constant real linkage parameters
‘necessary to specify completely a six-link, two-loop space mecha-.
nism of Stephenson type with general proportions. . The loop-closure
condition of the mechanism can be written in three ways, one for
‘each loop. It is to be noted that the mechanism has only two inde-
.pendent loops. - Since -Q-l’ 5, (i=1to 7) are not independent of Gi
and A (i =1 to 7) respectively, the relationship between éi and

61 can be obtained. Thus

6.=6.+es. (4-20)

1 1 1
_e_2=-«62+¢1+'rr
83=-THe -0,
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g4=-n+e4-@3 (4-21)
95 = 95 + ¢3 -
867 %
A _/, A +
_9_7—67-62 i
where
§i=§i+e:pi i=1,2, 3)
. (4-22)
4, = U+ ec, (i=1, 2, 3)

170 Y740 %4 Bre the

Note that @,1 (i=1, 2, 3) are the angles and &
sides of the ternary link AGD and x],r_l (i=1, 2, 3) are the angles and
& ’ o are the sides of the ternary link BCE in Figure 23,

23’ %35 Y52

The parameters of the six-link, two-loop:R-C-C-C-.C-C-C space
mechanism of Stephenson type are described in Table VIII.

Using (3 x 3) matrices with dual number elements, closed
form displacement relationships of the mechanism are derived by

Soni, - Dukkipati, and Huang (120),

Loop 1 (ABCDA)

The loop-~closure condition of the mechanism in Figure 27 for
the loop'1 (ABCDA) is given by (120):
(6,15 [oy 5]y 18515 Toysly 18515 Ty ]y 18,05 [y, ),
= [1] (4-23)

where
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TABLE VIII

PARAMETERS OF SIX-LINK, TWO-LOOP R-C-C~.C-C-C-C
SPACE MECHANISM OF STEPHENSON TYPE

Constant Kinematic Parameters

Variable Kinematic Parameters

Independent Parameters:

Kinematic Links:

a,. (ij = 12, 23, 34, 41, 17, 76,
4 65, 52, 53, 47)

Twist Angles:

@., (ij = 12, 23, 34, 41, 17, 76,
Y 65, 52, 53, 47)

Kink-Link: s 1

Total:

21

Rotational Displacement Angles:
ei (i=1to?7)

Translational Displacements:

s. (i=2to7)
i

Total: 13

Dependent Parameters:

Constant Displacement Parameters:

@i, tl!i (i =1 to 3)

Kink-Links:

Pi' Ci (i=1 to 3)

Total:

12
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Co séi 0
[91]3 = |-S8, ce, 0
0 0 0

1 0 0 |
= 0 ” A

[ ‘ij]l Coy Sa,;
0 -sa. Co

— ij ij

and __ -

1 0 0 |

[1] = 0 1 0 (4-24)

0 0 1

Two arrangements of Eq. (4-23) are useful in the‘ study of
existence criteria.
1. Relationship involving the adjacent dual displacement angles.
In this arrangement of Eq. (4-23), five matrices are used on
one side of the equality sign and three matrices on the other. Thus,

we have, for instance,

Loy o1y 1815 Togy 1 8,5 (g ),

A ...1 ~ -1 Id -1

Simplifying the above equation by using relations (4-24) and equating

the !'33'" elements of the resultant matrix equation, we get
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Fl (61, 64) = (Saf12 Saf34 Sel) S'64 - [Saf34 (Saf41 Cafl2
S ’S A A A N N N
+ Ca41 ,Sozlz cel)] ce4 - Car23 + Ca34 (Car41 Cafl2
- ch41-Sa/12 Cel) =0 (4-26)

Note that Eq. (4-26) involves the two adjacent dual displacement
angles él and 64.

Cyclic permutation permits Eq. (4-26) to be written in four
different ways. It is, therefore, possible to get four equations of
the form (4-26) involving different combinations of two adjacent
angles,

2. Relationship involving two displacement angles opposite to
one another.

In this arrangement of Eq. (4-23), three matrices are used on
one side of the equality sign and five matrices on the other. The
important point to note is that the central matrix on the side con-
taining three matrices involves only the variable kinematic param-
eters of the mechanism. Thus, we have, for instance,

A A e N T QP R R |
Loy ply 1815 oy 0y = 185057 T3]y 18515 [ogy)y 18,150 (#-27)

Note that the central matrix [0 on the left hand side only

1]3
involves the variable kinematic parameters of the mechanism.

Simplifying Eq. (4-27) by using relations (4-24) and equating

the '"33" elements of the resultant matrix equation, we get
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fl (el, 63) = Coz21 Coz14 + SQ’Zl Soz14 Ce1 - Coz43 ('30132
- Soz43 Soz32 ce3 =0 (4-28)

Cyclic permutation allows Eq. (4-28) to be written in two different
ways. It is, therefore, possible to obtain two equations of the form
(4-~28) involving different combinations of two opposite displacement

angles.

Loop 2 (DGFEC}D)

»
The dual-matrix loop closure equation for loop 2 (DGFECD) is
given by
[64]3 [&47]1 [67]3 [&7'6]1 |:§(>]3 |:&65]1 |:65]3 [&53]1
(6,15 [a,4], = [1] (4-29)

Two arrangements of Eq. (4-29) are useful in the study of existence
criteria.
1. Relationship involving two adjacent dual displacement angles
and the dual displacement angle opposite to both of them.

In this arrangement of Eq. (4-29), five matrices are used on

either side of the equality sign. Thus, we have, for instance,

A A A A

(o, y (815 [, 18015 Ty ]y

-1

A :1 “~ —1
5]3

= [8 5

21 a el s
83 ol (8515 [og3]

[8 (4-30)

Simplifying the above equation by using relations (4-20), (4-21),
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(4-24) and equating the '""33" elements of the resultant matrix equation,
we get

ch

= S, Say g S8,) - S°‘65 (Cay, Sagy

65

+8a,, Ca,, CB.) CB, +Ca, . (Ca,, Ca

6 47 76

- So, . Sa Ce)-(Coz53Coz34—Soz53Soz34C_e_3)=O

(4-31)
Note that Eq. (4-31)\involves the adjacent displacement angles 66

A

and 57 and the displacement angle _9_3 opposite to both of them.
Cyclic permutation permits Eq. (4-30) to be written in five
different ways. It is, therefore, possible to get five equations of
the form (4-31) involving different combinations of two adjacent
angles and the angle opposite to both of them,
2. ‘Relationship involving three adjacent dual displacement
angles,
In this arrangement of Eq. (4-29), seven matrices are used
on one side of the-equality sign and three matrices on the other.
The important point to note is that the central matrix on the side

containing three matrices involves only the constant kinematic param-

eters of the mechanism. Thus, we have, for instance,

A

(6] (8715 Larg ]y 18,05 o)y [85)y [y

5 -1 o -1 :
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Note that the central matrix [a65]1-1 on the right hand side involves
only the constant kinematic parameters of the mechanism.

Simplifying Eq. (4-31) by using relations (4-24) and equating
the '""33" elements of the resultant matrix equation, we get

CH.) S8

8.) = [(Se,, Co +Coz47 Soz76 ) 58,

4’ 77 47 76

A

+ Sa., S8 C8 S8 ,) + [Sa., S8, S8

4 6 7T —4

- (Scx47 Cioz76 + Coz47 Soz76 C97) c8

+»Sa53 Coz34 C§3) + (Coz47 Coz76 -

- Sa, . Sag, C8y 53 %34 53 S%34 C83)

- Ca, =0 (4-32)

Note that Eq. (4-32) involves the three adjacent displacement angles

A

3 34, andé

g. 7°
Cyclic permutation allows Eq. (4-31) to-be written in five
different ways. It is, therefore, possible to obtain five equations of

the form (4-32) involving different combinations of three adjacent

angles.,

Loop 3 or Outer Loop (ABEFGA)

The loop-closure condition of the mechanism in Figure 27 for
loop 3 is given by

I:—6-1]3 |:&17]1 |:§7]3 I:&7611 I:66]3 I:&65]1 I:§5]3 I:&52.]1

~

[

J15 [a,,1, = (1 (4-33)
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Two arrangements of Eq. (4-33) are useful in the study of existence
criteria. These arrangements are similar to the loop 2 considered
above.

The first is the arrangement of five matrices on either side of

the equality sign. Thus, we have, for instance,

A

[ery 7] [§7]3 [&76]1 [é6]3 [&65]1

P RO RO RO
=18,157 [op ]y [8,]5 [og,]) 185 (4-34)

Simplifying the above equation by using relations (4-24) and equating
the ''33" elements of the resultant matrix equation, we get

A

Fy 8y 8r 8q) = (S g Sorg 5 587) 8¢ - S (Corp o Sz

+ Sar”, Ccz76 cg7) Ce, + Coz65 (Cozl_ Co

6 7 76

- Sa. _ Sa

17 5% C_@_,?) - (Ca/52 Ca,. -So.., S, Co_,)=0

21 52 21 =2
(4-35)

Note that Eq. (4-35) involves the adjacent displacement angles é()
aL.nd'_;o\_7 and the displacement angle —é~2 opposite to both of them.

Cyclic permutation allows Eq. (4-34) to be written in five
different ways. It is, therefore, possible to get five equations of
the form (4-35) involving different combinations of two adjacent
angles and the angle opposite to both of them.,

The second is the arrangement of seven matrices on one side
of the equality sign and the three matrices on the other. Thus, we

have, for instance,
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A

laggy [Bq1y [oy] (8],

-1 A A

g1 18,17 18y, [8,]), [, (4-36)

=817 [y, [6,]
Simplifying Eq. (4-36) by using relationships (4-24) and equating the

133" elements of the resultant matrix equation, we get

|®>

f. 8., 8

5 &, )=[(Sc1/1 Ca., + C Sa,., C8

2" 27 7 Cltqq + Copp S, C8 ) SB

+ Sa,, S8 ., cgl] [Sa,, S8,]+ [Sa76 S8, S8,

- (sa,, Ca,, + Ca ., S¥, C8.)Ch ] (Ca,, S

7 %76 17 "%76 72 52 °%21
+ S, G, CB8,)+ (Ca . Ca,
- Sa) , Sa,, CB ) (Cag, Cw, - S, S¥, C8 )
- Gay g = 0 (4-37)

Note that Eq. (4-37) involves the adjacent displacement angles :é-l

and _5_2- and the displacement angle §7 opposite to both of them.
Observe that equations (4-26), (4-28), (4-31), (4-32), (4-35),
and (4-37) are all dual equations. Each of them, therefore, repre-
sents two scalar equations. Since four equations of the form (4-26),
two of the form (4-28), and five each of the form (4-31), (4-32),
(4-35), and (4-37) are possible; a total of fifty-two scalar equations
are available. These fifty-two scalar equations make it possible to

‘obtain the existence criteria of all mechanisms with one general

caonstraint or two passive couplings,
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Existence Criteria of the Six-Link

R-R-C-C-C-R-C Mechanism

In this section, the Dimentberg passive coupling method has
been used to obtain the existence criteria of an R-R-C-C-C.R-C
mechanism with one kink-link zero from the displacement relation-
ships of the parent R-C-C-C-C-C+~C mechanism. The -procedufe
for obtaining the existence criteria of the R-R-C~-C~C-R-C mecha-

nism with non-zero kink-links is given in Appendix A.

Derivation of the Existence Criteria

Consider the six-link, two-loop R-C-C-C-~C-C-C space
mechanism shown schematically in Figure 27. Note that the offset
distance at the revolute pair at A is constant. If the translational

displacement s, at the cylinder pair at B remains constant and

2

the translational displacement s, at the cylinder pair at ¥ reduces

6
to zero at all positions of this mechanism, then it reduces to an
R-R-C-C~C-R-C mechanism as shown in Figure 28,

By considering the loop~closure condition of the mechanism
in Figure 27 in two different ways, one from loop 1 (ABCDA) and

the other from outer loop (ABEFGA), the following displacement

relationships can be obtained:
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Figure 28.

R-R-C-C-C-R-C Space Mechanism Obtained
From the Mechanism in Figure 27 by
Making s, = $2x = 2 Constant and sy = 0
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+ Ca,. Sa,, C6,)]Ch, -Ca,, + Ca,. (Ca,, Ca
- S&,, Sa,, Ch,) =0 (4-38)

Soz52 ng) S6. - Su (Coz52 Soz21

52 21 2 17 52 21
- ch52 Soz21 cez) - (Ccr'76 Coz65

Note that Eq. (4-38) is similar in form to Eq. (4-26) and Eq. (4-39)
is similar to Eq. (4-35). Now, let the translation s2 become con-
stant equal to S5k and the translation S¢ be zero at all positions of

the mechanism. Using equations (4-20), (4-21) and (4-22) the dual

part of Eq. (4-38) becomes

B, (tl)t§+Bl () t, + B (t1)=0 (4-40)
where

’cl = tan (91/2)

t2 .= tan (92/2)
and B, (t;) =B,, ti +B,, t1‘+ B,o

B, (t1)=:B12 t‘:'°l+B11t1+B10 (4-41)

01 021 ~o01 1 00
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The constants in Egs. (4-41) involve only the constant kinematic
parameters of the mechanism and are defined in Table IX.

Eliminating the angle -66 from the primary and dual parts of
Eq. (4-39) using Eqs. (4-20) through (4-22), we get

2
A, (£) t5 + A (tl) t, + A

(tl) =0 (4-42)

where

. - 2
Ay (b)) = Ay 6 +A A,

A (t.)=A t§+A t. + A

11 12 11 1 10 (4-43)

- 2
Ag (E)) = Ag, £ F Ay B+ A,

The constants in Eqs. (4-43) are defined in Table XI. If an
R-R-C-C-C~R-C mechanism of the type under consideration is to
.exist, the quadratic equations (4-40) and (4-42) must have at least

one common root. This gives the condition (102):

B, (t;) B, (t)) B, (t)) 0
0 B, (t,) B (t) B, ()
=0 (4-44)
A, (t)) AL () Ay (t) 0
0 A, (t) AL (t) Ay (t)

Equation (4-44) is a function of only the variable t Expanding and

1
simplifying it, we get

8 ” I -
C8t1+C7t1+u . .+C1t1+C0 0

or in short,
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TABLE IX

CONSTANTS FOR USE IN EQUATION (4-41)

002

001

000

002

001

000

002

001

000

=8 Sa, ., So + 5. Co, ., Su

=.a, , Co, 6 Ca ,+a , So , S¢

1
®
0N
5]
w0
R

i
1
©
Q
>
Q
Q
+
")
)]
R
0
Q

41 P%41 “%23 T %23 P%3 Y%

'E001 - Eooo * F001 * Fooo
-2 (Doo1 B ooo)
4 Doo2



TABLE IX (Continued)

10

02

01

00

2 “)001 ¥ 000

001 000 001 000
2 (E +F )

002 002

001 000 001 000

109
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TABLE X

CONSTANTS FOR USE IN TABLE XI

11

376 C%s5 345 ¥
Ser_ * Sa
76 65
. Cyq L. Cp s
76 Soz.{.,6 65 Soz65
Up = Uy Clag, -y - ayq) - (a5, =35, -2 7) Slag,
m ¥y = %)
-2 Soz17 [s1 S(oz52 Q’Zl) t s, Soz52]
Up - Uy Clagy mop) tag) - (ag, -2, +2,7) S (o,
Tyt
2 Sag, [s) Say, + s, Slay) +a )
4 Sozl7 Saf52 (a17 Ct 0117 - a76 Ct Uug = a65 Ct U

+ a52 Ct 0152)

-2 Sa Sa -8 S(o - o

52 [8) S q - 85 Slay) - o) 4)]

Ul - U2 C(oz52 + ozzl + 0117) - (a52 + az1 + a17) S(o

+ %1 + 0117)

)+ s So

2 Su [s1 S(oz52 + o 2k 52]

17 17

Ul-UZC(oz52+oz -a~17)S(a52+oz, -, )

217%7) ~{agta,, 217%17
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TABLE XI

CONSTANTS FOR USE IN EQUATION (4-43)
AND TABLE XII

x = tan (@l/z)

— <
Yo =¥ - Fy X

=2 F .F xX*+F._-2F
Yy 0*1 " 117 2 %1

- 2
yO—Foxl+lel+F2

- _ 2
w-G+Glx le

2 0 1 2
= .2 + 2 _ 2 G
W1 Gox) TGy *] -G 112G, x
_ 2 ’
Wo—--Cvoxl--Glxl-.G2

_ _ 3
z -HO Hlxl+H2xl

z =2H x -H xa+Hl..2H2x

1 01 171 1

zO:HOxl+Hlxl+H2

X_ = tan (11;1/2)

2
A22=x22y2+x2w2+z2
A21=x§yl+x w +zl
Ayg = %3 Yo X, Wyt 5
A, =2x, (2, - y,) T W, (xza-l)
A11-2x2 (zl -yl)+wl (x;-l)



TABLE XI (Continued)

:2 - 2-
—yz-x2W2+x2 z2

-]
—yl --x2W1+x2zl

112
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8 .
c.lt11=0, i=0,1,2, ..., 8 (4.+45)

i=0
The constants in the above equation are defined in Table XII. Equa-
tion (4-45) must hold good at all values of the variable tl. Its

coefficient must, therefore, vanish. Thus, we have

c, =0, i=0,1,2, ..., 8 (4-46)

Condition (4+46) represents nine equations among the 20 con-
stant kinematic parameters of the R-R-C-C-C-R-C mechanism in
Figure 28 (namely, the 8 link-lengths a76_, a65, a52, a17, a34,

a _, a

41 3? and a

127 the 8 twist angles Uogr Yo 0152, A gr Oy

0134, 0123, and a12’ the 2 Conétant offset distances sl’ sZk of the

revolute pairs A and B, and the Z constant displacement angles

2

@1 and 1.];1 at the two ternary links at jeints A and B). These nine
equations provide the necessary conditions for the existence of a
six~link two-loop R-R-C-C-~-C-R-C mechanism with constant offset
distanges at the revolute pairs at A and B and zero offset distance

at the revolute pair at F,

On Obtaining R-R-C-C+-C-R-C Mechanism

From the Derived Criteria

The existence criteria derived in the previous section can be
used to obtain the constant kinematic parameters of the R-R.C.C-C-

R-C mechanism,
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TABLE XII

COEFFICIENTS FOR USE IN EQUATION (4-45)

A + (2A A

) Boz Baa = 22 422 B,

Cg = 22 Bo2 B12 02 822 - 12

23
tA, AL, B, B, - A5, BY, - A, - BY,

AZ(B B _+B B11)+(A11A +A A )B _B

7782 01 12 02 22 12 #2217 Poz P12

]
TRAG, Ay, = AT (By) By £ By, By) T2 (Ag, A,

TAp By m A A1) By Byy -2 A, A, B B,

+ A _A _(B,..B +B., B,.)

’(A01A T Ay A 11 22 12 ~21

22 02 21) 12 02 ""12

. - A
T Ay At Ag, 810 B, Byy - 2[4, By, (A, By,

(Ay, By, + A, )]

+A2 )+A 22 21

22

= + +
A12A B B B B B11)+(A10A22+A A

€6 22 (Bgo By2 02 10 01 12 ©20

+A A )B

11 42, +(A,.A _+A A )(B.B _.+B._B_ )

02B11 11 " 22 12 21 01 12 02 711

+ B B + B B..)

t (A, A, Boo B2z T Bo2 Bao t Boy B2y

P
02 22 7 A1)

+[2 (A, FAL At A Ay - A A )qu]

22 20 01 " 21 02

t2(Ag) Ajy T hG, Ay - Ay App) (Bgy Byy By, Byy)

+B® )-(A A._+A_ A

"Ao A ( 10B12 11 00 “722 02 “720

2

2(A.. A_+A _A_ )B. .B

tAG Ay B, - 2(Ag A, HAL A ) B B,

01

Agg B2 (BigBay B By ¥ By Byy) + (Apq A,
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TABLE XII (Continued)

TAR AT A A1) B By T Ay Ao T A A )(B B

0 11 11 722

- 2 + 2 - 2 a 2
T B Bay) A5 BBog Boy T By - (28,4 Ayy t AG)) By,

- - A? (2 2.
48,1 Ay By By - Ay, (BB, By B, ) - RAG, A,
2 2
* A01) Bzz - 4A01 Aoz B21 By2

cg = Ay, Ayy (Byg By T Bop Brg) T (A g Ay T A Ayg) Byy By

TUA Ayt A, A (Byg By T Bgy Byg T By Bry)

A g Ay T A AT A Ay) (Byy By By, Bry)

- A® +2 +
* (ZAOZ AZZ AlZ) (BOO BZl * BQl BZO) (AOO AZl AOl AZO

+2(A,, A +A A . -A A _)B,.B

'AIOAll)BOZBZZ 01 " 22 02 "21 11 77127700 22

T By Bog ¥ By Bop) T L2 (A Apy AL, Ay T AL Ay

2
- - - 2
AlgA ) - A 1By By By, By -2A0, Ay BBy

_(A01 A22+A A )(2B_ _B

3
“(AooAzfrA Ayp) B 02 21 10 "12

01 "°20 12

2
TBI) 2B Ayt A Ayt A A ) B By,

+
TAgy A (B By # By By F (A Ay T Ay AGB, By

+(A01 A12+A All) (B

02 10 Baz T Bia Byg T By Byy)

) +
Ty A A Ag T A Ay By By T By, Byy)

] ) 2 2
- 2[A%, Byg By T A0 821 Bz T A, App 2By Byy F BYy)
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TABLE XII (Continued)

Cc

4

= A

2 2
+ (2A, . A AZI)B B

2
20 22 01 o.z]"z[A Ago &

02 20 21+ 00 "701 22

+B2 )+ (2A._ A _+A% B

2 ‘
T A Ay 2B,y By T By 00 202 T 201) Byy Byl

01 ""02

+A10A

12 %22 Boo Bio 20 Boz B12

+ (A11 A‘22

+A A . )(B_ .B _+B B10)+(A

12 21 00 711 01 10A21

TA A By Bl ¥ By Byt (A A, TA L A

+A A

2
11 821) Bog By ¥ By Byg ¥ By Byp) T (844, A

02 ""22

4

+ Z(A01 A

A
Al,) B 22

2
+ (2A, A -Alo) BOZB

00 BZO 00 "720 22

+A A ~A A )(B B21+B0 )+2(A

02 ""21 11 12 00 00 21

+A A, _-A A )(B. B, +B_ B, )+[2(A

01 20 10 "'11 01 22 02 21 OOAZZ

A AL T A Ay s A AL - AL T (B By, t B, By

—+

By Bay) m A A B* - A A, - 2(A), A

01 02 ""22 10 00 12 22

tAG, Ay ) Blg By - 2(Ag A, T AN A B By

+ B2
10 BlZ Bll)

1

(A00 A22+A A20+A01 A21) (2B

+A A _B B +A A B B + (A01 A

02 ""12 10 T20 00 ""10 712 22 12

A AL (Bl By F B Bog) A Ay T Ay A p)B By

TBy Byt A A A AT A A L) (BB,

2 2 2
+ B, Byg+ By Byy) - A%, BYo - A%, By,
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TABLE XII (Continued)

4‘(‘6‘21 Azz Boo Bo * Azo A 01 Boz) - (ZAzo Azz

+

2 2 2 2 2
2 - -
AZl) ( BOO BOZ * B ) AOZ 20 AOO BZZ

- / - (2
4(A01 AOZ BZO BZl ¥ AOO AOl BZl ) ( A00 AZO

+

2 2
AOl) (2B + BZl)

20 BZZ

c,=A A _(B B _+B )+(A A _+A A )B B

107720 "7 01 12 02 11 22 12 7721 00 10

A g Ay TA Ayt A Ay (Byg By By Brg)

+(AlO 21+A11A20)( 00 B12+BOZ B10+BOl Bll)

]
- 2
+ (2A_ A AIO) (B01 B,,+B BZl) + (A01 A

00 720 22 02 22

i Aoz A T AN AIZ) 00 Boo? [Z(Aoo Ao T 802 A2
2

* A01 A21 h A10 AlZ) A ] (B oo 7t B01 Bzo)

+2(A +A A, . -A A J)(B..B..+B..B

00 21 01 20 10 711 00 22 02 720

-(A . A__+A A )B‘J

+ B )=-2A A 10

01 00 ""20 ll BlZ 01 22 02

,.Z(AOOA +A A _+A A21)B

22 02 “*20 01 1° (Ao &

IOB 00 " 21

2
+ A01 Azo) (2B10 B12'+ B11) * Aoo AlO (Bll Bzz * B12 B21)

+A A )B B + (A A _+A A

+(A01’A12 02 ""11 10 20 00 712 02 710

A A (B By B Bogd T A Ay T A A)B 1 By

- 2[A? B _+A A

T Bio By B B 50 Bo1 Boz T 421 25, By

12 720 11 21)
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TABLE XII (Continued)

+ (2A. A +.A§1)B B .+A A . (2B, B__+ B2 )]

20 22 00 Bo1 T %20 %21 ““Boo Poz T Boy
2 1
- 2[A5) B, By, T Ag Ag, Boot (Ag0 Ag, HAL) B, B,
2
+ AOO A01 (2}320 B22 + B )]

A10820 Boo Bz T Bpa Big T Bpy By T (A g8, T4, 4,

A A B Brg T A g8y TA L Ao (Byg By
+ 3 : +
T By Brol T a8y 250 = A1g) (Bog Bap t Bgpy Byg T Byp Byy)

2
+[2(A00A2,+A AL +A A -A A )-All]BOOB

02 20 01 21 10 12 20

tAgg Aoy T A Ao m Ao A1) Bog Bay t Bop Bao)

2B. . B..+B%® )-(A +A A

- Bog B0 (3B g Byy T By 00 222 T %02 %20

2
+A01 A )B10 - Z(AOOAZI + A lAZO) BIOBll

+ + + + |
T AN A0 (Bl Bap ¥ B Byg T By By) F(Agg A, T A, A

tTAgp A1) B By T (Bgg Ay T Ag Brg) (Byg By T By Bog)
- 2 2 _ 2 2 2
A% 50 (BBoo Boz T Boy) - (BA,0 855 T451) Bhg

2
- 2
4A_ A B - AT | B20 B

-]
20 21 01 00 B21) T (ZAoo A

22 + 02

2 2
T 801 Boo m %800 201 Bao B2

(B..B. . +B )+(A A _+A A )B

=810 %20 Boo By 01 10 721 11 220’ Boo B1o

. |
t2AG A, - A7) (Bog By +Bo Byg) T 2(A5, A,
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TABLE XII (Continued)

. -2
TAG A0 " Bro211) Boo Bao m %00 220 Bro By

+A _A_)B® +A A B..+B..B..)

'(A00A21 01 °20° 710 00 1o<Blo 21 11 720
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If the constant kinematic parameters are regarded as unknowns,
it is possible to solve this system of equations (4-46) for the unknowns.
The algebraic equations (4-46) describing the existence criteria of
the mechanism are sufficiently complex to prevent from presenting
any simplified geometric descriptions. In fact, the complexity ex-
tends far enough to prevent from presenting simplified explicit
results in order to facilitate direct computations of the mechanism
parameters. Hence it is not practical to solve the equations analyti-
cally. Instead, a numerical search technique (123) is preferred to
solve for the constant kinematic parameters,

- The numerical method used in the present study for solving the
system of 9 consistent nonlinear algebraic equations representing the
‘existence conditions of the R-R-C+~C-C-R-C mechanism is that
developed by Chandler (123). The listing of the computer program
is given in Appendix D. Let

, x )=0 i=1,2,...,9 (4-47)

£Oeps Xpp Xgy oo vy X

represent a system of nonlinear equations in n unknowns Wherexl,

» X are the 20 unknowns (link lengths a76, a s @

27 52 217’

a, ., a

41 , and a5 and twist angles Upgr Fpor Xgos ¥ 0141,

23’ %34

, constant offset distances s, and s_., and the two

, and o 1 2k

Y34’ %23 12

constant displacement angles §1 and 1111 at the two ternary links).
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An objective function:

- 2
Y - i fi. (x1' le LA ] xZo)
i=1

is defined and is minimized such that Y~ 0.

It is important to note that the equations given by (4-47) repre-
sents only necessary conditions for the existence of R+R-C-C-C-R-C
mechanism. The conditions are not sufficient because satisfaction
of the criteria does not itself guarantee an R-R-C-.C-C-R-C space
mechanism. This is because Eqs. (4-46) also have solutions that
correspond to spherical and planar mechanisms. Such solutions are
called here trivial solutions. See, for instance Table XV in Appendix
D.

The triviality and non-triviality of the solutions of Eqs. (4-47)
can be checked by substituting the values of the constant kinematic
parameters in the original displacement relationships of the parent
R-C-C-C-C-C-C mechanism (120). A non-trivial solution will give
constant offset distance at the cylinder pair B, and zero offset dis-
tance at the cylinder pair F at all positions of the parent mechanism
without, at the same time, affecting its true mobility. A trivial
solution will not meet these requirements.

Using the proposed numerical technique, the following

solution is obtained: (See Table XVI and Figure 35 in Appendix D.)



Twist-Angles:

@), = 70. 000°
@5 = 0.0°

¥y, = 70. 000°
0141 = 0,,00

@5 = 0.120°
g = 70.100°
@, = 180. 000°
@ 180, 008°

Constant Displacement Angles:

30. 00°

(=
H

0
80.00

=
Ll

Kink-Links:

= 0, 4"
s1 0

= 1"
SZk 0.4

Link-Liengths:

2. 00"

312

1"
23 1.72
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Az, = 2,5"
a,, = 3.0"
a5 = 10,0"
g = 10.0"
ags = 0.5"
3, = 0,5"

Substitution of these parameters in the displacement relationships
of R«R-C-C-C-R-C mechanism (120) shaows zero translation S¢

c T
onstant translation 851
From the extensive search carried out using this numerical

technique, it shows that the system of Eqs. (4-47) appear to have

narrow range of solutions for the R-R-C-C-C-R~C mechanism,

Existence Criteria of the Six-Link

R-R-C-C-C.P-C Mechanism

The six-link, two-loop R-R-C-C-C-P-C mechanism can be
derived, like the R-R-C-C-C-R-.C mechanism, from the parent
R-C~C-C-C-C~C mechanism.

In this section, the Dimentberg method has been used to
obtain the existence criteria of the R-R-C~-C-~C-P~+C mechanism
with .constant offset distances at its revolute pairs and constant

displacement angle at the prismatic pair from the displacement

at the cylinder pairs F and B respectively.

123

and
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relationships of an R-C-C-C-C-C-C mechanism.

Consider the R-C-C-C-C-C-C space mechanism shaown sche-
matically in Figure 27. If the translational displacement 5, at the
cylinder pair at B and the rotational displacement S¢ at the cylinder
pair at ¥ remain constant at all positions of this mechanism, then it
reduces to an R-R-C-C-C-P.C mechanism as shown in Figure 29,

By considering the loop-closure condition of the mechanism in

Figure 27 in two different ways, one from loop 1 (ABCDA), the other

from outer loop (ABEFGA), the following relationships can be

1

obtained.
Fl(él, éz) = (Sc?z23 8&41 s6,) S8 - [3&41 (3&12 c&23
+ c&lz s&23 céz)] cé1 - 0&34 + 0&41 (c&12 c&23
- 8%, 3&23 ch)=0 (4-48)
Fy= (@ By 8g) = (55, 52y, 88,) 88 - S, (Cay, 8oy,
+ 8w, Ca, CB)CH, +Ca ., (Ca, Ca,,

=0 (4-49)
Note that Eq. (4~48) is the same as Eq. (4-38) and Eq. (4-49) is the

same as Eq. (4-39).

Now, let the translational displacement s, become constant

and the rotational displacement 8, be also constant at all positions

6

of the mechanism.
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Figure 29,

R-R-C-C-C-P-C Space Mechanism Obtained
From the Mechanism in Figure 27 by
Making s, = 821 = a Constant and B¢ =
8¢ = @ Constant
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The dual part of Eq. (4-48) after simplification using Eqgs.

(4-20) through (4-22) becomes

B, (tl)t§+B1 () t, + By (t1)=0 (4-50)
where t, = tan (91/2) t, = tan (8,/2)
and B, (t)) =B, t: + B, t ;-BZO

Bl(tl)=Blzt§J}Bll t + B, (4-51)

. . 2
Bolty) =B, t] ¥ Boy £ ¥ Byg

Note that Eq. (4-50) is the same as Eq. (4-40) and the constants
in Eqs. (4-51) involve only the constant kinematic parameters of
the mechanism and hence are defined in Table IX.

"Denoting the constant value of the angle 66 by 8 the

6k ’
primary part of Eq. (4-49) becomes

2 —
M, (£)) t5 + M () t, + My (t)) =0 (4-52)

_ _ 2
where M2 (tl) = M22 ,tl + M21 tl + MZO

]
- + 4-53
My () =My 6+ My 6+ M ( )

- 1
Mg (£)) = Mg, £] + My, £, + Mg,

The constants in Eqs, (4-53) also involve only the constant kine-
matic parameters of the mechanism and are defined in Table XIII.
The quadratic equations (4-50) and (4-53) represent two dif-

ferent forms of displacement relationships for the same mechanism.



TABLE XIII

CONSTANTS FOR USE IN EQUATIONS (4-53)
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TABLE XIII (Continued)

001

2 Byo

001

+ B - C + C

2+

+ B

000 001 000
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They should, therefore, have at least one root in common between
them.

The condition using Sylvester dialytic eliminant then

becomes
B, (t) B, (t) By(t) 0
0 B, (t,) B, (t) By(t)
M, (£) My (5) Mg (t) 0 -°
0 M, (8) M, (t) Mg () . (4-54)

It should be noted that Eq. (4-54) is a function of only the variable

tll

Expanding and simplifying the above equation, we get

8 7 : -
R81:1+R7t:+._..+R11;1+R0 0

or in short
§ i
Z R, t =0 (4-55)
i=0

Equation (4-55) is exactly similar in form to Eq. (4-45). Its
coefficients Ri (i =0 to 8) can be obtained from the coefficients
of Eq. (4-45) replacing the constants.A.lj by Mij'
Equation (4-55) must hold true at all values of the variable
vel. Its coefficients must, therefore, vanish (102). Thus, we have
R, =0, i=0,1,2, ..., 8 (4-56)
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Condition (4-56) represents nine equations among the 17 constant
kinematic parameters of the R-R-C-C-C-P-C mechanism in Figure
29 (namely, the four link lengths Y a

& and a 1’ the eight

23" %3 4

twist angles « , af52, a76' and o the three constant

122 %237 %41 65

displacement angles e6k" @1, and 1]11, and the two constant offset
distances 8 and sZk)' The nine equations provide the necessary
conditions for the existence of a six-link, two-loop R-R-C-C-C-P-C

mechanism with constant offset distances at the reyolute pairs at A

and B, and constant displacement angle at the prismatic pair-at F.

On Obtaining R-R-C-.C-C-P-C Mechanism

From the Derived Criteria

The existence criteria obtained above can be utilized to obtain
the constant kinematic parameters of an 'xR-R-C-C-C-P-'C mecha-
nism with constant offset distance at revolute pair B and constant
displacement angle at the prismatic pair at F,

Considering the constant kinematic parameters as unknowns,
the 9 equations given by condition (4-56) can be represented as

2,...,xn)=0 i=1to9

Fi (xl, X
The ‘above equation represents a system of nine consistent nonlinear
equations in the 17 unknown constant kinematic parameters of the

mechanism. However, the high nonlinearity of the equations once

again emphasizes the complex nature of the investigation and shows
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that the presenting of simplified explicit expressions for direct
computation of the mechanism parameters is a problem by itself.
Like Eqs. (4-47), the above equation also has trivial solutions.
As in the case of the R-R-C-C-C-R-C mechanism, the triviality or
non-triviality of a solution can be chécked by substituting the values
of the constant kinematic parameters in the original displacement
relationship of the parent R-C-C-C-C-C-C mechanism (120). A

)

non-trivial solution will give constant rotational displacement (eék

)

at the cylinder pair F and constant translational displacement (SZk
at the cylinder pair B', at all positions of the mechanism, without at
the same time, affecting its true mobility.

In an effort to abtain an overconstrained mechanism (non-
trivial solution) over one thousand sets of mechanism parameters
(initial guess values for the computer program) were tried, but
none yielded an R-R-C-C-C-P-~C space mechanism. Perhaps the
parameters of the overconstrained R-R-C-C-C-P-C mechanism

lie in a very narrow band of range, and can be discovered only by

an extensive search.



CHAPTER V
SUMMARY AND CONCLUSIONS

The present work-is devoted to exploring the application of
Dimentberg's passive coupling technique and studying existence
criteria of single and multi~-loop mechanisms. In this study, the
existence criteria of overconstrained mechanisms with one general
constraint and consisting of helical, revolute, e¢ylinder and pris-
matic pairs have been obtained by using Dimentberg's passive
coupling method. This represents the first attempt in using this
method to single and two-loop, six-link mechanisms after its use-
fulness in the case of four~link mechanisms was first demonstrated
by Dimentberg, five-link mechanisms by Soni and Pamidi.

The mechanisms considered in this study are the six-link,
single-loop 3H+3P mechanisms, two-loop R-R-C-C-C-R-C,
R-R-C-C.C-P-C mechanisms, twos+loop R+-R-C.-.C-.C-R-C,
R-R-C~C-C-P-C, R-C~-C-R-C-C-R and R-C~C-R-C-C-P mecha-
nisms. The results obtained in the case of single-loop 3H+3P
mechanisms confirm the findings of other investigators. The exis-
tence criteria of the two-loop mechanisms obtained in the study are

new,

132
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The principal results of the investigation are as follows:

The existence criteria of the six-link 3H+3P mechanisms
obtained in the study show that these mechanisms (and others
obtained by extending the resuits)'exist if and only if the axes
of the helical (and/or revolute) pairs are parallel to one
another. When the axes of the helical (and/or revolute)
pairs are parallel it was found that these mechanisms will
have two degrees of freedom. When one of the link lengths
is taken to be zero, the results will apply with equal validity
to five-link mechanisms derivable from the above six-link
mechanisms. This confirms the results that were obtained -
by.Hunt and Waldron by considering the H-H-H-H-H and

H-H-H~-H-H-H mechanisms of Voinea and Atanasiu; Soni,

-Pamidi, and Dukkipati by considering the H-C-H-C-H and

H-C-C-H-H mechanisms. The results in the present study
have, however, been obtained by considering the more general
zero family mechanisms and give, besides the parallelism of
the axes, the definite closure conditions to be satisfied by the
constant kinematic parameters of the mechanism éoncerned.
The existence criteria of the six-link, two-~loop R-R-C-C-C-
R-C mechanism with one zero offset distance were obtained

as a set of 9 nonlinear algebraic equations in the 20 constant

kinematic parameters of the mechanism. The number of
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independent equations, however, is suspected to be less than

9 because of the method of elimination used. The derived
criteria make it possible to investigate the existence of
R-R-C'-—C-C-R-C mechanism. The algebraic expressions
describing the existence criteria of the mechanism are suf-
ficiently complex to prevent from presenting any simplified
geometric descriptions. In fact, the complexity extends far
enough to prevent from presenting simplified explicit results
in order to facilitate direct computations of the linkage param-
eters. A numerical technique based on direct search technique
was proposed to solve for the parameters of the R-R-C-C-C-
R-C mechanism. The proposed numerical technique is

i

illustrated by presenting an illustrative example of an -

‘R<R-C-C-C-R-C overconstrained mechanism.

The existence criteria of the six-link, two-loop R-R-C-C-C-

P-C mechanism are obtained as a set of nine nonlinear equations

in the 17 constant kinematic parameters of the mechanism.

These equations make it possible to investigatethé existence
of R-R~-C-C-C-P-C mechanisms. However, the high non-
linearity of the equations once again emphasizes the complex
nature of the investigation and shows that presenting simplified
explicit expressions for direct computation of the linkage

parameters is a problem by itself. Hence numerical approach

—
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appears to be the only route. The proposed numerical

technique is tried using the derived existence criteria to

obtain a compatible set of constant kinematic parameters of

the- R~-R-C-C-C-P-C mechanism, but none yielded a non-trivial

solution.

The present study provides a general mathematical approach
to obtain the existence criteria of six-link, single and two-loop
space mechanisms for a variety of passive couplings and/or general
constraints. All the required displacement relationships (see, for
instance, Chapters III and IV) for obtaiﬁing the existence criteria of
six-link mechanisms for a variety of passive coupling conditions
are developed. The displacement relationships are derived in dual
form. They are valid for six-link, single and two-loop parent mecha-
nisms consisting of helical, revolute, prism and cylinder pairs.

By using the derived displacement relationships and Diment-
berg's passive coupling method the existence criteria conditions for
the following cases are also studied. (Appendixes A, B and C)

1, The existence criteria of the six-~link, two-loop R-R-C-C-C-
R-C mechanism with general proportions are shown to be a set
of seventeen conditions among the twenty-one constant kine-
matic parameters of the mechanism.

2, The existence criteria of the six-~link, two-loop R-C-C-R-C-C-

R mechanism of general proportions are shown to be a set of
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385 conditions among the 22 constant kinematic parameters

of the mechanism.,

3. The existence criteria of the six-link, two-loop R-C-C-R-C-
C-P mechanism of general proportions are shown as a set of
65 conditions among the 22 constant kinematic parameters of the
mechanism.

4, It was shown that, in an' R-C-C-C-C-C-C six-link, two-loop
space mechanism, when one cylinder pair in loop 1 is reduced
to a prismatic pair, another cylinder pair in that loop will
also reduce to a prismatic pair. This result agrees with that
by Dimentberg (29) in the case of four-link, single-loop:R-C-C-
C ' mechanism. It was.also shown that the existence criteria
of the six-link, two-loop R-P-C-P-C-P-C and R-P-P-C-C-P-C
mechanisms (Appendix C) requires the axes of the revolute
and cylinder pairs in both loops parallel to each other and the
axes of the prism pairs are randomly oriented.

Except in very simple cases, the solution of the derived exis-
tence criteria conditions can be regarded as a problem by itself.
Thus, for instance, the existence criteria of the R-C-.C-R-C-~C-R
mechanism (Appendix B) with general proportions are expected to
lead to 385 conditions among the 22 constant kinematic parameters
of the mechanism. It can be seen that errors are apt to be introduced

if such high order and large number of equations are not carefully
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handled. Again, the examination of the resultant conditions in order
to obtain a compatible set of constant kinematic parameters presents
a task of formidable proportions.

The concept of general constraints in mobility criteria for
single or multi-loop mechanisms suggests there are certain geo-
metrical conditions which must be imposed on a kinematic chain if
it is to have one degree of freedom. The exact nature of this general
constraint is not completely known (121). The mobility criteria pre-
dicts only the possible existence of mechanisms under the classifica-
tion of general constraints., The nature and significance of general
constraints can be realized only when all the kinematic chains under
the specific general constraint domain are virtually explored for
mobility, This is possible when general mathematical models for
each type and kind of mechanism (48) are developed in terms of all
of its constant kinematic parameters. By studying the degenerate
cases and by exploring relationships between all the basic parameters,
we can identify the general constraint criteria for mobility. The
present work is another attempt in achieving this objective. It is
then possible to construct physical models of most of these mecha-~
nisms and identification of the geometric conditions which create the
general constraints. The possible components of generél motion
under the concept of general constraints can then be identified. Thus,

for instance, for the case of one general constraint the components
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of general motion can be either 3 rotations and 2 translations or 2

rotations and 3 translations.

A previous study on the existence criteria of single-loop over-

constrained four and five-link mechanisms (29, 38, 39, 40, 27, 41,

122, 119) and also the present study on six-link, single and two-loop

mechanisms reveals certain important points. - These points are

presented below:

1.

When the displacement relationships involved are algebraic in
nature the Dimentberg method ultimately leads to one or more
polynomial equations, The complexity and the order of these
polynomaials can be reduced by considering the entire spectrum
of loop equations available by arranging the loop closure condi-
tion in various ways rather than by considering just a few of the
available equations.

The primary part of a dual equation contains only the primary
parts of its component terlﬁs. The dual part of a dual equation,
however, involves both the primary and the dual parts of its
component terms. The dual part of any dual equation is,
therefore, always more complicated than its primary part.
When passive coupling is imposed on a cylinder pair to reduce
it to a prism pair (Chapters II and III), restrictions are put

on only the rotation at the C pair and thus one has to deal with

‘the primary parts of the concerned displacement relationships.
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But when passive coupling is imposed on a cylinder pair to
reduce it to a revolute i)airv, restrictions a,re-plaged on only
the translation (see, for instance, Chapter IV) at the cylinder
pair and thus one has to deal with the dual parts of the con-
cerned displacement relationships. Thus the analytical work
involved in reducing a cylinder pair to a prismatic pair is

always much less complicated than in reducing that cylinder

‘pair to revolute pair.

When the displacement relationships are algebraic in nature,
the Dimentberg method often involves examination of the com-
mon roots between two polynomials or successive sets of two
polynomials. In such cases, it is necessary to consider only

one common root between the equations involved. It is however

‘possible to consider more than one common root between these

equations. - The resultant conditions, however, represent only
special cases of the more general case obtained by considering
only one common root. When two equations have more than
one common root, it implies that they have at least one
common root.

If the parent mechanism contains helical pair, the derived

existence criteria remain less complicated in nature if only

the rotations at the helical pairs are involved. Thus in the

‘present study, the existence criteria of the two-loop
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mechanisms are less complicated in nature because the
parent mechanism considered do not have any helical pairs.
When the existence criteria involve twist angles and constant
displacement angles they can generally expected to be simple.
In such cases, it is possible to examine the relationship
between the equations analytically. This ig illustrated in the
examples of Chapters II and III.

When the existence criteria involve link lengths, kink-
lengths in addition to twist angles and constant displacement
angles, it may then become difficult to examine the relation-
ships between the constant kinematic parameters of the
derived mechanism analytically, In such cases the suitable
numerical method is to be used to solve for the parameters
of the newly discovered overconstrained mechanism from the
derived criteria.

The derived criteria represents only necessary conditions for

‘existence of a mechanism considéred. The conditions are not

sufficient because the criteria does not by itself guarantee an
overconstrained mechanism of the desired type. The criteria
is expected to.provide trivial solutions that give mechanisms

without a true mobility of one. Trivial solutions can be one of

two types:
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(1) A solution becomes trivial if the constant kinematic
parameters yield an overconstrained mechanism with
mobility greater than one. . (See, for instance, Chapter
I1I)

(2) A solution becomes trivial if the constant kinematic
parameters yield an overconstrained mechanism of a
higher family, that is, an overconstrained mechanism
having more than the required number of passive
couplings. (See, for instance, Appendix C)

The triviality and non-triviality of a solution can be -examined
by substituting the values of the constant kinematic parameters in
the original displacement relationships of the parent mechanism,

If the mobility is two or more, the variable kinematic parameters
in the parent mechanism become indeterminate unless 2 or more
variables are specified,

A locked joint is indicated by the fact that a pair-variable
corresponding to that joint becomes constant. The case represents
a non-trivial solution only when either of the above conditions is
present and gives an overconstrained mechanism of the desired
type with a true mobility of one.

Since trivial solutions always exist, the existence criteria
obtained by the present method represents a set of consistent equa-

tions. But all the equations in the system (representing the conditions
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among the constant kinematic parameters) may not in general be

‘independent. This is especially true when the number of unknowns

in the equations is more or less than the number of equations. In

such cases it may not be possible to examine the relationship be-

tween the parameters analytically.

Although the existence criteria obtained using Dimentberg's

method is often complicated, the method has certain definite points

in its favor.

a.

C,

For example, it
provides necessary and sufficient conditions for the
existence of overcoﬁstrained mechanisms;
assures finite mobility to the newly discovered over-
constrained mechanisms;
shows clearly that, in general, the mobility of over-
constrained mechanisms is a function of the twist
angles, link lengths, éonstant displacement angles and
the constant offset distances;
permits the computation of the mechanism proportions
from the existence criteria;
permits the introduction of different forms of passive
coupling conditions iﬁ kinematic pairs; and
enables one to obtain the closed form displacement
relationships for the newly discovered mechanisms which

can be utilized for their type determination, kinematic

analysis and synthesis.
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The present study shows that the mobility of space mechanisms
is a field of continued interest and challenge. In the coming years, the
following important areas of research appear to offer great promise:
1. The development of a unified method for determining the exis-

tence of multi-loop mechanisms. This unified method utilizes

passive coupling technique to allow derivation of results
algebraically and screw systems theory to allow determination
of results geometrically so as to express the criteria as both
necessary and sufficient conditions among the constant kine-
matic parameters of the overconstrained mechanism in
explicit form.

2. Use of this unified method to formulate the neces séry and
sufficient existence conditions of multi-link, multi-loop
mechanisms with one, two and three general constraints.

3. Examination of the types of motion displayed by these over-

constrained mechanisms.

4, -Practical applicabilities of newly discovered overconstrained
mechanisms.
5. Investigation of mathematical functions for which these

mechanisms are best suited for function generation, three-

dimensional path generation and rigid body guidance.

Because of the nature of the problems, the proposed investi~
gation is expected to deal with an unusually high level of algebra and

geometry.
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APPENDIX A

EXISTENCE CRITERIA OF THE SIX-LINK
R-R-C-C-C-R-C MECHANISM WITH

NON-ZERO KINK-LINKS

This appendix deals with the calculations necessary to derive
the existence criteria of the six-link, two-loop R-R-C-C-C-R-C
mechanism with general proportions mentioned in Chapter IV,

Referfing to Figures 27 and 30, the same equations (4-38) and
(4-39) are written down, Now let the translations s,, s_ and s, be

1’ 72 6

constant at all positions of the mechanism. Since 5¢ does not appear
iri equation (4-38), equation (4-40) remains the same.

Separating equation (4-39) into primary and dual parts, with the
aid of equations (4-20) through (4-22) and then eliminating the angle
9

6 from these primary and dual parts, we get an equation of the

form

A (t)tr+ A (t)t"’+A2(t)t2+Al(t)t + A (t,)

4 717 2 3717 2 17 72 17 2 01
=0 ' (A-1)
where tl = tan (91/2)
tZ = tan (62/2)
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® B ®52,% 53 B ,§E©

Figure 30, R-R-C-C-C-R-C §

the Mechanism in Figure 27 by Making s
a Constant and S¢ = s

pace Mechanism Obtained From

2 = SZk =
6k = a Constant
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and

A (t

U + A

y=A,  t*+A _t3+A_t3+A_tP+A ¢t .
il 1 i0

T4 1 'i3 1 i2 1 iz 1
i=0,1, 2, 3, 4 (A-2)
The constants in equation (A-2) involve only the constant
kinematic parameters of the mechanism in Figure 30. The equations
(4-40) and. (A-1) represent two different forms of displacement
relationships for the same mechanism. They should, therefore,
have at least one root in common between them. This gives the

condition (102):

A4(t1) A3(t1) AZ(tl) Al(tl) AO(tl) 0
0 A4(t1) A3(t1) AZ(tl) Al(tl) Ao(tl)
BZ(tl) Bl(tl) Bo(tl) 0 0 0
0 BZ(tl) Bl(tl) Bo(tl) 0 0
0 0 Bz(tl) Bl(tl) Bo(tl) 0
0 0 0 Bz(tl) Bl(tl) Bo(tl)
(A-3)
Equation (A-3) is a function of only the variable t.l. Expanding and
simplifying it, we get
16 15
E16t1 +E]15‘c1 +.,O+E1t1+EO—O

or in short,
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¢ i
Y E £ =0 | (A-4)

L i

i=0

—

(or 8_) describing the

Equation (A-4) consists of only the variable tl 1

-position of the mechanism in Figure 30 and must be satisfied at all
positions of that mechanism. This equation must hold good at all

values of the variable tl. Thus, equating the coefficients to zero,

we have,

E =0 i=0,1,2, ..., 16 (A-5)

Condition (A-5) represents seventeen equations among the
twenty-one constant kinematic parameters of the mechanism in

Figure 30 (namely, the eight link lengths a a

76> %45° 2527 2177 234’

a,,, a and a

41’ 223 128 the eight twist angles «

76’ %57 Y527 Y170 Y34

o, ., o and o

41 s the three constant offset distances sl, s and

23 12’ 2k

Sék of the revolute pairs at A, B, and F; and the two constant dis-

placement angles &, and ¢l at the two ternary links at joints A and

1
B). These seventeen equations pfovide the necessary conditions for

the existence of an'-R-R-C-C-C-R-C mechanism with general

proportions.



APPENDIX B

EXISTENCE CRITERIA OF THE. SIX-LINK
R-C-C-R-C-C-R AND R-C-C-R-C-C-P

MECHANISMS

This appendix deals with the procedure for obtaining the
existence criteria of six-link, two-loop R-C-C-R-C-C-R,
R-C-C-R-C-C.P mechanisms with general proportions from the
displacement relationships of the parent R-C-C-C-C-C-C mecha-

nism mentioned in Chapter IV,

Existence Criteria of the Six-Link

R-C-C-R-C-C-R Mechanism

Consider the R-C-C-C-C-C-C mechanism shown schematically
in Figure 27. This mechanism reduces to an:R-C~-C-R-C-C-R
mechanism if the translational displacements S, and 8, of the cylinder
pairs at D and G are forced to be constant at all positions of the
mechanism (Figure 31).

By considering the loop-closure condition of the rhechanism

in Figure 27 for loop 1 (ABCDA) and outer loop (ABEFGA), the

following dual relationships can be obtained:

160
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A a.s | Q75 %¢)q G ®

Figure 31. R-C-C-R-C-C-R Space Mechanism Obtained From

the Mechanism in Figure 27 by Making S4 = sS4k =
a Constant and s7 = Sy = @ Constant '
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12 723 772 1

- s&l2 5&23-céz)= 0o (B-1)
S CH 54)= Cca 4 Gy + 5%, 5&43 cé4 - 0&32 0&21

- 5&32 5&21 céz =0 (B-2)
3 (él’ Y é7) - [(5&17 CS’76 ¥ C‘;’17 5&76 Cé?’ Sél

+sw,, S8, CB. ]Sy, s8,) + [s,, s§7 s6

- (s¥, C&, +Ca . s¥, C8.)C8 ](Ca, sa,,

+8&, C¥, C§,)+(Ca, C&, -5, 8%, C§)

(Co‘z52 c&21 - 5&52 5&21 c@z) - c&65 =0 (B-3)
Let the translational displlacements S, and 5, be now made con-

stant for varying values of 61. ‘Denoting the constant values of 54 and

by s, . and s_. respectively, and eliminating the angle 97 from the

7 %Y Sk 7k
primary and dual parts of Equation (B-3), with the aid of equations

(4-20) through (4-22), a polynomial of the form

Z S (B-4)

for j=0, 1, 2, 3, 4
.can be obtained, in which

tl = tan (61/2)
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and
Prmnj = Pmnj Pax’ e 510 St %10 %20 V)
for Ak =17, 76, 65, 52, 21 (B-5)

Similarly, by eliminating the angle 62 from the primary and dual

parts of equation (B-1), a polynomial of the form

m j_
i Uy by 5270 (B-6)
m=0

for j=0,1, 2, 3, 4
can be obtained, in which

Ui = Ly P Yo 51 (B-7)

for 4k =23, 41, 12, 34

Also eliminating the angle 8  from the primary and dual parts of

4

equation (B»2), a polynomial of the form

4 .
m J _
}: Rty 8y =0 (B-8)
m=0

.can be obtained, in which

R .,=R (A

mj mj  tk ) (B-9)

, & ., 8

Lk” 4k

for 4k = 41, 34, 23, 12

‘Eliminating t,, between equations (B-4) and (B-8) by Sylvester

2’
dialytic method (102),



0 U0 U1 U2 U3 U4 U5 U6 U7 U8
0 0 U0 Ul U2 U3 U4 U5 U6 U7
0 0 0 U0 U1 U2 U3 U4 U5 U6
V0 V1 V2 V3 V4 0 0 0 0 0
0 V0 V1 v, V3. V4 0 0 0 0
0 0 V0 V1 V2 V3 V4 0 0 0
0 0 0 V0 Vl V2 V3 V4 0 0
0 0 0 0 V0 V1 V2 V3 V4 0
0 0 0 0 0 V0 V1 V2 V3 V4
0 0 0 0 0 0 V0 V1 V2 V3
0 0 0 0 0 0 0 V0 V1 V2
=0
in which

164

(B-11)

(B-12)



165

Expanding and simplifying equation (B-10), a polynomial of the

form,

B .t s, =0 (B-13)

for 4k =12, 23, 34, 41, 17, 76, 52, 65
Eliminate 859 between equations (B-6) and (B-13) by Sylvester
dialytic method, The result will be a determinant of 36th order and

hence the diagonal term of the determinant is of the order of 32(8) +

4(32) (= 384) in the half tangent of the input angle 61, or symbolically,

384 o
YW 7 =0 (B-15)
£ m 1
m=0
in which
Wn ™ Wi Cue % By 800 Vy0 Sy S0 Sy (B-16)
and 4k = 12, 23, 34, 41, 17, 76, 65, 52

Equation (B-~15) is a function of only the variable 61. This
equation must hold true at all values of the variable angle 91. Hence
equating the coefficients of equation (B~15) to zero, gives

W _ =0 m=20,1, 2, ..

., 384 (B-17)
m

Condition (B-17) represents 385 equations among the 22 constant

kinematic parameters of the mechanism in Figure 31 (namely the
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eight link lengths a a ., a

127 223 170 @

34’ 2417 %17 5> and a

he

76" 26 520 ¢t

eight twist angles ¥ 5 o % s and o d

23’ %347 %410 Y17 Y6 % 525 an

the three kink-links s and s_., and the three constant displace-

1’ %4k 7k

ment angles @1, ‘“1’ and § These 385 equations provide the

2)'
necessary conditions for the existence of an'R-C-C-R~-C-C-R

mechanism with general proportions.

Existence Criteria of the Six-Link

R-C-C-R-C-C-P Mechanism

The existence criteria of an R-C-C+R-C-C-P space mecha-
nism can be obtained from the displacement relationships of the
R-C-C-C-C-C-C space mechanism. The R-C~-C-C~C-C-C mecha-~
nism in Figure 27 reduces to an R-C-C-R-C-C-P mechanism, if the

rotational displacement 6_ and the translational displacement s, of

7 4

the cylinder pairs at G and D respectively are forced to be constant
at all positions of the mechanism (Figure 32).

The existence criteria of this mechanism can be obtained in
the same manner as that of the R-C-C-R~C-C-R mechanism. It can
be shown that the number of conditions for this mechanism are lower
than that of the R-C-C-R-C.-C-R mechanism, because the variable
angle 67, which has to be eliminated, is kept constant in the present
case.

From the primary part of equation (B-3), a polynomial of the

form,
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A 9,5 Q755 G ®

Figure 32. R-C-C-R-C.C-P Space Mechanism Obtained From

the Mechanism in Figure 27 by Making sq = S4y =
a Constant and 87 = 87 = a Constant
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2
m m

z Mt =0 (B-18)

m, n=0

can be obtained, in which

Min™ Mpn G 30 ¥ 3y 8y 80)

ij = 17, 76, 52, 21, 65

and ’c1 and t2 are the same as in equations (B-5). Equations (B-6)

and (B-8) remain unchanged for this mechanism since these equations

do not involve 67 or s7.,

Eliminate 62 between equations (B-18) and (B-8) by Sylvester's

dialytic method,

U0 U1 U2 0 0 0
0 U0 Ul U2 0 0

0
0 0 U0 Ul U2

=0
0 0 0 U0 Ul U2
VO Vl V2 V3 V4 0
0 Vo vy VY Vi3V (B-19)
in which

and Vrl is the same as in equation (B-12).
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Expanding and simplifying equation (B-19), another polynomial of

the form
8 m
Z N_ 4" s j=0to4 (B-20)
m=0

can be obtained, in which

N =N 8

m - Nm @ Y Sape Sy (B-21)

7k’ él’ \l'rl, é2)
for 4k =17, 76, 52, 21, 65, 41, 34, 23,
The polynomial equation in one variable 61 can be obtained by

eliminating s_ between equations (B-20) and (B-6) by the Sylvester

2

dialytic method. The result will be a determinant of 8th order in

which each diagonal element is a polynomial of 8th order in t Hence

1
the diagonal term of the determinant is of the order of 8 x 8 (= 64)

in the half-tangent of the input angle 61, namely

4 .
i
z Pot] =0 (B-22)
j=0
where
- 8 | -
Pj P, (@) Yy 517 Sae O 80 %0 ©)) (B-23)

for 4k =17, 76, 52, 21, 65, 41, 34, 23.
The above equation (B-22) must be valid for varying values of
the variable tl. Its coefficients must, therefore, vanish. This
gives

P, =0 j=0,1,2, ..., 64 (B-24)
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Condition (B-24) represents 65 equations among the 22 constant
kinematic parameters of the mechanism in Figure 32, namely (the
eight link lengths 2,7 a76, a65, Y a21, a41, a34, and a23; the

o and o__;

the eight twist angles 0117, 0176, ¥ g 0152, %1 0’41. 34 23

the four constant displacement angles @1, §2, q;l and 4;2; and the two
constant offset distances (kink-links) s1 and s4k).

These 65 equations provide the necessary conditions for the

existence of an R-C-C-R-C-~C-P mechanism with general proportions,



APPENDIX C

EXISTENCE CRITERIA OF THE SIX-LINK
R-P-C-P-C-P-C, R-P-P-.C-C-P.C

MECHANISMS

In this appendix, Dimentberg's passive coupling technique has
been employed to obtain the existence criteria of the six-link, two-
loop R-P-C.P-C-P-C and R-P-P-C-C-P-C space mechanisms.
These criteria are obtained by considering only the primary parts of
the displacement relationships of the six-link, two-loop R-C-C-C-
C-C-C space mechanism, They, therefore, lead to conditions on
only the twist angles and constant displacement angles of the mecha-~
nism considered and are independent of their link lengths and con-

stant offset distances.
Derivation of the Existence Criteria

The existence criteria of the R-P-C-P-C-P-C, and R-P.P-
C-C-P-C mechanisms can be obtained from the displacement relation-
ships of an'R-C-C-C-C-C-C mechanism.

Consider thé R-C-C-C-C-C-C space mechanism shown

schematically in Figure 27, By suppressing the rotational freedom

171
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of the cylinder pairs at the joints B and F, it is possible to examine
‘the conditions for the existence of two prismatic pairs in this mecha-
nism at all positions of the mechanism.

By considering the loop-closure condition of the mechanism in
Figure 27 for loop 1 (ABCDA) and outer loop (ABEFGA) in three

different ways, the following dual displacement relationships can be

obtained.

£) ‘(§4, éz) = c&41 c&34 + 5&41 5&34 c§4 - c&23 c&lz

-5&23 s&lz céz =0 (C-1)
F, (5, §3) = (Sa,, s&lz séz.) sé, - [s&12 c&34

+C&,, S&,, C8,)] céz - C3,, +Cd , (C&,, Ca,,

- 5&23 5&34 cé3) =0 (C-2)
F (él’ 9,) = (5&23 S6’41 Séz) Sél - [5&41 (S&IZ c&23

+ c&lz .5&23 céz)] cé1 - c&34 + c&41 (c&12 c&23

- s&lz 5&23 céz) =0 (C-3)
F, (8, 8, 8))=(s8 ,53,,88,)88, -83.,(Cay,sd,

(C-4)
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f5 85 B¢ 85) = [(Sa5, Gayy + G, 53, CB ) S8

+5a,, 88, C8 ] (Sa,, S6,) + [, , S8, s,

- (8%, Ca,, + Cay, S¥, CB ) Ch ] (Car,, S&,

+8a,, Ca, Ch)+(Ca,, Ca, -S4, ¥, C8,)

(c&76 Ca, . - 5&76 Sa, . C8,) - c&” =0 (C-5)
FyBp 8¢ B7) = (5%, 5%, 88,) S8 - 53, (Ca, sé

+8& . Ca, C8,) CB, +Cx,, (Ca ca.,

- 8% s&76 Ch.) - (c&52 Ca,, - s&52 3&21 C8,) =0

(C-6)

Observe that equations (C-2) and (C-3) are similar in form to
equation (4-26), equations (C-4) and (C-6) are similar in form to
equation (4-35), and equations (C-5) and (C-1) are similar in form
to equations (4-37) and (4-28) respectively.

Note that each of the equations (C-1) through (C-3) relates the
dual displacement angle 62 to a second dual displacement angle, and

equations (C-4) through (C-6) relates the dual displacement angles

~

8, and 96 to a third dual displacement angle.

2

Let the displacement angles 62 and 8, at the cylinder pairs at

6

B and F be now made constant at all positions of the mechanism.

-Denoting the constant values of eZ and 8, by © and 8,, respectively,

6 2k ok

the primary parts of equations (C-1) through (C-6) give respectively,
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AC Ce4+An= 0 (C-17)
Bs *Se3 + Bc ce3 + Bn =0 (C-8)
Cs -Sel + Cc cel + Cn =0 (C-9)
D S8. +D C8_.+D =0 (C-10)
s =1 ¢ =1 n
ES 'S_§5+EC Cg5+En,_=O (C-11)
and FS S_e_7 + Fc Cg,{, + Fn =0 (C-12)

The constants in equations (C-7) through (C-12) involve -only
the constant kinematic parameters of the mechanism and are defined
in Table XIV,

Note that each of the equations (C-7) through (C-12) contains
only one variable and must be valid at varying values of that variable.
This is possible only if their coefficients vanish. This gives

A =A =0
(o} n

B =B =B =0

(C-13)

and F =F =F =0
s c n

Examination of equations (C-13) shows that the following

.cases are possible.
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TABLE XIV

CONSTANTS FOR USE IN EQUATIONS (C-7) THROUGH (C-13)

=Sy Sy

= Coz41 Coz34 - Coz23 Cafl2 - Scz23 Soz12 CGZk

= Surg, Sy, S8y

= -Ca, Sa,, S0, - COy S¥y, Coyg Sogy,

= =GO,y [S¥ 5 (85 Cag )] - Cay, + G, Cap g Cayy
= S5 50, SOy

= - [Soz41 (Soz12 Co,, + Coz12 Sa, . ceZk)]

17 ~ 52 =2k

=-So. _ (Ca_, So,. +Sa__, Co, . C8.. )

17 %52 2%21 52 %21 ~*2k
= Cayq (Cogy Cay) = Sogy Sayy Cyy) - (Cagq Cog g - Sag Sa 5 C8y )
= Sogq 58y (Sag, Cayy + Cap, Sapy €8, )+ 50, S8,y (Cogg Sogs

+ Se,, Co, _  CB8

76 “%¢5 )

6k

So, _ + Su Ca,_Co,_)

= Sa,, S8, (Sa,, S8, ) F (Ca . Sa, 76 %5 6k

76 6k 21 =2k

- (S<:1/52 CQ/ZI + Caf52 Sa/21 CQZk)

= (Cog, Ca,y - Sag, S,y €8, NCayy Copp - Sorg Sarg o €8y ) - Cop g



TABLE XIV (Continued)
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n

Soz1

-So

So

7

65

Se

65

Ce

6k

6k

Soz1

7

Co - Cuo, . So Sa

76 65 17 ~°76

Co Co. . Co

t Cayy Cop, Cayy

6k

- Co

52

Coz21 + So

52
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# mrm, @

I €O,y < |11, Ce,, < |1] (That is, 5

Pex x ¥ T
m=0,1,2,...)

The only real solution possible in this case is given by

Ujp = ¥y =¥ =y, =0

(C-14)

= Qg =¥, =0, =0

%76
Equation (C-14) shows that the kinematic axes are all parallel
to each other. An R-P-C-C~C-P-C mechanism satisfying this
condition, however, represents oanly a trivial solution since it

yields a planar configuration in which the revolute and cylinder

pairs remain locked.

2. Cce8, = 1], Ce,, = 1] (That is, 9y, = ™M, 8, =mm,
m=20,1, 2, ...)
This gives
ozlz+cv23 = nm
R Vi
¥ =0
0176,:!: cv65 = nm
and af52d: @, = nm
for n=0,1, 2, ... (C-15)
3. Coyy < 1], Co, = [1] (That is, 8, # mm, 8, =mm,

m=20,1, 2, .. .)
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This gives
¥1p = ¥p3 = AT
cv41 * cv34 = nT
(C-16)
U26 = Yo5 = *7 =0
and Up, @, =AM
‘ = < i =
Co,y l1], o, |1| (That is, 8y = ™, 8, # mm,
m=0,1, 2, .. .).
This gives
a/41 =0 or m
chl‘2 Saz_3 CeZk - Ccv12 Cor23 + Caf34 =0
U170
¥76 E X5 = T
for m=20,1, 2, ... (C-17)

Substitution of the relations given by equations (C-15) and (C-16)

in the displacement equations of the parent R-C-C-C-C-C-C mecha-

nism (120) show that cases 2 and 3 give a prismatic pair at joint D

- in addition to prismatic pairs at joints B and F. These solutions,

therefore, given an'R-P-C-P-C-P-C mechanism (Figure 33). They

also show that the axes of the revolute and cylinder pairs are parallel

to.each other.
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A 85 Q7% _ G @

Figure 33, R-P.C-P-.C-P-C Space Mechanism Obtained From

the Mechanism in Figure 27 by Making 6

2 = eZk =
a Constant and 96 = eék = a Constant _
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Similarly, case 4 gives a prismatic pair at joint C in addition
to the prismatic pairs at joints B and F. It, therefore, 'gives an
‘R-P-P-C-C-P-C mechanism (Figure 34). It also shows that the
axes of the revolute and cylinder pairs are parallel to each other.

The above results thus lead to the conclusion, that in an
‘R-C-C-C-C-~-C-C mechanism, when one cylinder pair in loop 1
(path ABCDA in Figure 27) is reduced to a prismatic pair, another
cylinder pair in that loop is also reduced to a prismatic pair, This
‘result agrees with that by Dimentberg and Yoslovich (29) in the case
of single loop, four-link mechanisms. Further, the axes of the
revolute and cylinder pairs in both the loops are then parallel tov

each other,
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. Q
(®) oz "o ss()

Figure 34. R-P-P-C.C-P-C Space Mechanism Obtained
From the Mechanism in Figure 27 by
Making 8, = eZk = a Constant and B¢ =
861 = a Constant



APPENDIX D
COMPUTER PROGRAM

The following computer program is used for solving the system
of nine consistent nonlinear algebraic equations representing the
existence conditions of the R~R-C—C-C-R-C and R-R-C-C-C-P-C
mechanisms. The program is that developed by Chandler (123) based
on function minimization technique. Its usage is given as part of the

listing.
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//DVRT9  JOB (12271 ,441-40-8386,20)+'DUKKIPATI

*yCLASS=A

/*ROUTE PRINT HOLD
// EXEC FORTGCLG,REGICN.GO=100K,TIME.GD=30
//FORT.SYSIN DD *

AN e NN R R N e N R N N N R R N e N o N N e N o N N N N R N e N Y e N e N N N e N N e N e N R N N e N N o N e N e N N N e N N o Y o W K Na Wa e N Na o Nal

REER RGN EAE R KRR RAR AR KRR SRR AR SRR A BB E RRRE SRR R R R R EE R R SRk K KRR K&

TO SYNTHESIZE THE SIX-LINK,TWO-LOOP R-R-C-C-C-~R-C SPACE
MECHANISM FROM THE EXISTENCE CRITERIA

DESCRIPTION OF PARAMETERS
N - NUMBER OF INDEPENDENT VARIABLES
NP - CONVERGENCE MON1TOR
=0 WILL NOT PRINT
=] WILL PRINT EVERY ITERATION
NN - TOTAL NUMBER OF ITERATIONS OR FUNCTION EVALUATIONS
DELTA - CURRENT STEP SIZE
F - MINIMUM STEP SIZE
ROW ~ REDUCTICN FACTOR FOR STEP SIZE, < 1
X = CURRENT BASE POINT
XL - LOWER BOUND OF SEARCH DOMAIN
XR - UPPER BOUND OF SEARCH DOMAIN

USAGE
REQUIRES THE FOLLOWING DATA CARDS
CARD 1 = NyNP NN¢DELTA,F¢ROW WITH 315,3D20.0
CARDS 293+% = INITIAL VALUES FOR XIN} WITH 7D10.0
CARDS S¢6,7 - LDWER BOUND VALUES FOR XL{N) WITH 7010.0
CARDS 849,10 -UPPER BOUND VALUES FOR XR{N) WITH 7D10.0

SUBROUT INES REQUIRED
SUBROUTINE PATRN
SUBROUTINE FUNK
SUBROUTINE STEPIT
SUBROUTINE MERIT

GENERAL REMARKS
VECTORS X(N)4XL{(N),XR{N} CONSISTS OF THE N PARAMETERS IN
THE FOLLOWING ORDER
TWIST ANGLES = ALPHA 12,ALPHA 23,ALPHA 34,ALPHA 41,
ALPHA 654ALPHA T6¢ALPHA 52,ALPHA 17
KINK=LINKS = P1,Cl
LINK=LENGTHS =~ Al12,A23,A34,A4]1,A65,A76,A52,A17
ALL TWIST ANGLES ARE MEASURED IN DEGREES AND KINK-LINKS
AND L INK-LENGTHS ARE MEASURED IN INCH UNITS
IF REQUIRED SOME OF THE VARIABLES CAN BE FIXED B8Y
SETTING THE CORRESPONDING MASK(N} EQUAL TO 1 IN THE
SUBROUTINE PATRN
WITH SLIGHT MOOIFICATIONS IN THE MAIN PRCGRAM ANO IN
THE SUBROUTINE MERIT THIS PROGRAM CAN ALSC BE USED FCR
SYNTHESIZING THE SIX-LINK,Tw0-LOOP R-R-C-C-C-P-C
MECHANISH

REFERENCES
CHANDLERyJ.P.y "™ STEPIT,PROGRAM NO.56,QUANTUM CHEMISTKY
PROGRAM EXCHANGE",DEPARTMENT NF CHEMISTRY, INDIANA
UNIVERSITY BLOCGMINGTON s INDIANA, 47401

HOOKE ¢ Re ¢ AND JEEVESoTeAes “ DIRECT SEARCH SOLUTION OF
NUMER1CAL AND STATISTICAL PROBLEMS ", J.ASSOC. FOR
COMPUTING MACHINERY,NO.2,VOL .B,APR.1962,PP.212~230

L I I R R A N N N R R R I N I I O N N N N NN RN
BN AR B ERRERETRARAR SRR RR R R R RR R R RER R AR R BRRE AR BR AR R AR RN R,

"eannnn.

ane

C
C
c

S5
1300
1310

1000

1010

1020

1200
1210

1030

1035
1040

1050

1660

* »
* L]
AR SRR RN ER R R R RN AR E SR U R SRR SR RS R RS R SR A R AR F R SRR R AR RN AR KRR R RN E S

IMPLICIT REAL * 8 (A-H,0-Z)

DIMENSION NAMEL1{2,10),NAME2(8)

DIMENSION X(20)4XL(20)¢XR(20),QP(9)

OIMENSION XX{20),XXX(20)

DATA. NAME 1/*ALPH'¢"A 12°,"ALPHI,*A 23*,*ALPH®y 'A 347, "ALPH*,
JUA 41T, PALPHY o' A 65" *ALPH s "A 76"y '"ALPH"y*A S2',ALPH','A 17','PH
Jr v . LS 3 T v/

DATA NAME2/%A 12%,%A 23%,"A 34°%, %A 41°,%A 65%;'A T6','A 52¢,'A 17
J o/

COMMON/QQ/Q1,Q2,Q3,04+05+06,Q07+Q84Q9

PI =3,141592653589793D0

RAD=PI/1B0.0

DEG=180./P1

READ INPUT DATA

READ(5,1300) NyNPyNN,DELTAsF,ROW
READ {5,55) (X (I),1=1,20)

READ (5,55) (XL{I),I=1,20)

READ (5455) (XR{I),I=1,20}
FORMAT(7010.0)

FORMAT{315,3D20.01
FORMAT(S5TX.'N = 411047,
JSTX, *NP = 'y 110,7/,

J57Xy 'NN = 411047y

JSTX, 'DELTA = 'yD10.34/,
J5TXs 'F = '4D10.34/s
JSTX, *ROW = '4D10.3,7/71}

PRINT THE INPUT DATA

WRITE (6,1000)

FORMAT(1H1,30X¢'" EXISTENCE CRITERIA OF SIX=LINK,TWG-LOOP <-R-{-(-
JC~R-C SPACE MECHANISM "1,/////+51Xy* INITIAL VALUES OF THE VARIABL
JES "o/ylH 451Xe32(*=%),///)

WRITE(6,1310) NyNP,NN,OELTA,F,ROW

WRITE(6,1010) }

FORMATI39X, " [* 4141t =" 1y *{1y3(13( =2}, {") )

WRITE(6,1200}

WRITE{6+1020)

FORMATI39Xs " 1* 3 1Xs? THIST ANGLES [% 46X o X' ot Xyt 194Xy I XMINY , 5K, 01,
J4Xs P XMAX® 4 SXs 1Y )

WRITE (6412000

FORMAT(39Xs 1% 914X "%y 3(13X,1"})

FORMAT(38Xs*1"12Xs" 4%, 3(13X,'|*})

WRITE(6,1010)

DO 1035 J=1,10
WRITE(6,1D30) (NAMEL(K,Jd) oK=1,21sX{JIsXL{JI o XRIJ)

FORMAT(39Xs ' 1% 33X, 28403X, " 1"e301XsD1lebs1Xs% ") )

WRITE (6412001

WRITF{6,1010)

CONTY INUE

WRITE(6+1040)

FORMAT(///7)

WRITEL6,1050)

FORMAT (38X, %[ "0120%=*1,219,3(13(*=*),'|{*} }

WRITE 16,12100
WRETE(641060)

FORMAT(38Xet] KINK LINKS ['98X, Xt 96Xy 10 yaXy PXMINY 5%, (14X, P XMA
JXV5XtY )

WRITE(6+1210)

€81



(aXa¥al

[aXaXal

c
<

WRITE(6+1050}
WRITE(641070) X{11)34XLEL1DoXR(11}
1070 FORMAT{IBXs" 1% 45Xs?S1295Xs®{%e3{1XsD1104s1Xs" )%}
WRITE (46,1210}
WRITE(6,10501}
WRITE(6,1080) X(12)4XLCL2}sXR(12)
1080 FORMATIBBX % 1¢¢5Ke*S2%¢SX st {1 o31XsD11e4olXs* "))
WRITE (641210}
WRITE{(641050)
WRITE(6+1040}
WRITE(641010}
WRITE{6+1090)
1090 FORMAT{39Xs*{*+* LINK-LENGTHS Iy

J
J'XHAX‘.5X"|' )
WRITE {6,1200)
WRITE{6.1010}
DO 1110 Il=1,8
L=12¢11
WRITE(6,1100)NAME2(TT 3o X(L) ¢ XLCLD4XR(L)

1100 FORMAT(39Xs* J ¥ 9 5XeA4e5Xs¢1*93011XsD11e4s1Xe? )]

WRITE(6,1200)
WRITE(6.1010}
1110 CONTINUE
D0 56 1=1,10
X{1)=X( 1)*RAD
XL{1)=XL{11%RAD
56 XR{I b=XR{1}&RAD
CALL PATRN TD MINIMIZE THE FUNCTION Y
CALL PATRN( N NP(DELTA;F XL sXRe Yy X, ROW, NN}
DO 22 1=1,10
XL(I)=XL{[}®DEG
XR(I ¥=XR{1}*DEG
22 X{I}=sX{I)*DEG

019Q2+G3reaevecsslq9 ARE THE NINE EXISTENCE CONDITIONS

Pt =01
QP({21=Q2
QP{31=03
QP (41 =04
QP(51=Q5
QP{6) =06
QP(T)=Q7
QP{8)=Q8
QP 91=09

PRINT THE FINAL VALUES OF THE VARTABLES

WRITE(6,2000)
2000 FORMAT(1H1,52X+*FINAL VALUES OF THE VARIABLES?+/¢lH ,52X,29(*="),/
3
WRITE(641010)
WRITE(6,1020)
WRITE(641200)
WRITE(641010)
00 1075  J=1,10
WRITE(6:10305 (NAMEL{X,J) oK=1¢2) o XEIToXLEJDXRES)
WRITE{6,1200)
WRITE(641010)
1075 CONTINUE
WRITE(641040)
WRITE(6,1050)
WRITE(&,1210)

ox.'xt,ex.'l'.ax.'xnlu'.sx. FredX,

[aXaKal

fO0n Oann

[aXal

WRITE(6,1060)
WRITEC6:1050)
WRITE(6,1070) X(113¢XL{11},XRELD)
WRITE(6,1210)
WRITE(6,1050) :
WRITE(6+1080) X(12)4XL{12),XR(12)
WRITE(6,1210)
WRITE(6,1050)
WRITE(6,1040)
WRITE(6,1010)
WRITE(6,1090)
- WRITE(6,41200)
WRITE(6,10103
20 1330 [Isl,8
Lal2<1f
WRITE(6+1100INAMEZ(T1),X(LD ,XLELY $XRIL?
WRITEC6,1200)
WRITE(6+1010)
1330 CONTINUE
WRITE(651040)

PRINT THE FINAL VALUES OF THE EXISTENCE CONDITIONS

WRITE{6420203 (L, QPEL)vL=1,9)

2020 FORMAT(48X,*FINAL VALUES OF THE EXISTENCE CCNDITIONSY 4777
J + (55X, 'EQUA
JTION *412s" ™ *sD1labs/}}

sToP

END

SUBROQUTINE PATRN { NoNPoDELTAsF s XL, XR ¢ ¥ e XXy ROW,NN)

ENTERFACE RODUTINE TO MAKE STEPIT LOOK LIKE PATRN. “

Jo P. CHANDLER, COMPUTER SCIENCE DEPT., OKLAHUMA STATE UNIVERSITY.

_IMPLICIT REAL®B(A~-H,0-1}

DIMENSITCN XL{20)oXR{20! 4XX(20}

COMMGN /CSTEPS X(20),XMAX{201} s XMIN{20)DELTX{20},0ELMNL20),
X ERR(21920) +CHISQ,NV, NTRAC «MATRX JMASK( 20}

COMMCN /7FRODU/ NFMAX,NFLAT  JVARYSNXTRA

EXTERNAL FUNK

MOVE VARIABLES INTO STEPIT COMMON.
NV=R
NTRAC*NP
NFMAX=RN
00 1 J=l,oNV
MASK(J} =0
DELTX(J1=DELTA
DELMN(J}=F
XMING S}=XLid)
XMAX ¢ 33 =XR( 5}
1 X{J)=XXCJ)
CALL STEPIT TO MINIMIZE CHISQ.
CALL STEPIT {FUNK)
RETURN ¥ AND XX{J).
¥==CHISQ
90 2 J=1,NV
2 XX(J)=X{ g}
RETURN
END
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52

SUBROUTINE FUNK
INTERFACE ROUTINE TO MAKE MERIT LOOK LIKE FUNK.

IMPLICIT REAL*8{A-H,0-2}
COMMON /CSTEP/ l(zOleNAX(ZOD'XHIN(ZOI'DELTX(ZOI-DELNN(ZO).
X ERR(21,20) 4CHISQyNVy NTRAC ; MATRX ¢MASK1 20}

CALL MERIT {
CHISQ=-Y
RETURN

END

Xe Y2

SUBRDUTINE XERIT {X,Y)

ROUTINE TO CALCULATE THE MERIT FUNCTION Y DEFINED
AS THE SUM OF THE SQUARES DF THE NINE EXISTENGE
CONDITIONS Q1,Q02¢Q3400000.Q9 FOR THE S1X~LINK,
TNO~LOOP R~R=C~C~C~R-C SPACE MECHANISM

IMPLICIT REAL *8 (A-H.J-1}

REAL *8 DABS,DSIN,DCOS,DTAN

DIMENSION X{20) ¢ XXE20) o XXX (20}, XL{20} ¢ XR{ 20}

COMMON/0Q/Q14C20,Q3,04+05+06.Q7,Q8.Q9

PI=3.141592653589793

AL12=Xt1l}
AL23=X(2}
AL34sX(3)
AL4l=Xt4])
AL6S=X(5)
ALTO=X(6)
ALS2=Xx{ T}
AL21=-AL12
AL1T7=Xx(8)
P1sX(9)
Ci=X{10)
S1=X{11}
S2=x(12}
A12=X(13)
A23=X{l4}
A34=X(15)
A&l=X(16)
A65=X(1T}
AT6=X{18B)
A52=X (19
A2l=-Al2
ALTaX{20}

CHECK FOR ZERO DENOMINATOR

DO 43 I=1,10
IF(X{[)+EQ..5%P[} GO TO 48
X{Ti=X(I}

GO T3 52

X{Ii=X{1)+.05

CONTINVE

IF{X(1)EQ.P1} GO TO &7
Xtiyaxels

[aNaRalal
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51

49

43

G0 TO 51

XEEy=X{11+,05

COGNT INVE

IF(XII)JEQ.1.5%P1)} GG TO 49
X{I¥mXE1}

60 7O 53

X(II=X{134005

CONT INUE

CONTINUE

SAL12=DSINCALL2)Y
SAL23=DSIN(AL23}
SAL34~DSIN(AL34)
SAL41=DSIN(ALSLY
SAL65=DSIN(ALSS )
SALT6=DSINCALTE}
SALS52=DSINCALS2)
SAL21=DSIN(AL2L)
SALL17=DSIN{ALLT)
CAL12=DCOS(ALL2}
CAL23=DCOS{AL23)
CAL34=DCOS{AL34}
CAL41=DCOS{ALSL}
CAL65=DCOS (AL65}
CALT6=DCOS(ALTS}
CAL52=DCOS(ALS2}
CAL21=DCGS(AL21Y
CAL17=DCOS{ALLT}
SP1=DSIN(PL/2.}

SC1=DSIN{CL/2.)

CP1=DCOSE{PL/2.3

CC1=DLeStCl/2.}

CONSTANTS FOR USE IN EQef4-41) SUNNARISED IN TABLE
IX OF THE THESIS

D002=A41*CAL&1*SAL23+A23%CAL23%SALS1
DOG1=S1¢SAL23#SAL41+S29CALL12%SAL23

DO00=S2%SAL124¢CAL&L1*SAL23

EO0ZnS29SAL23*SAL4L+S19CALL2¢SAL23

EOOL=~A235CAL23%CAL 12+4A129SAL124SAL23
EOOD--AIZ‘CnL12'€ALb.‘SA'23-‘23‘CAL61‘CAL23‘S&L120A41'SAL61‘SAL12
4 *SAL23

FOO2=S1*SAL&1¢SAL23 -
FOGl=~A41®CAL4AL1#CAL23+A2395AL2395AL41
FOOD=A34SSALIS=CALLI2® (AL ®SALALSCAL23+A230SAL23%CALA1)~AL2¥%SALT2
4 sCALAI&CAL 2D

822=E0QL1~-EQOO~F0CL+FOQO

821=-2,*(EQ02-F0O02} N

B20=-E001~-£E0Q0+F00L +F000

B12=-2.%{D001-0000}

Bl1=4,%0002

B10=2.*¢D001+D000)

B02=~EOQ1+EQ00-FOOL+F 000

BOl=2,.&(EQ02+F002)

BOO=EQO1+EOQO+FOO1+FO00

CONSTANTS FOR USE N TABLE X! .
SUMMARISED IN TABLE X IN THE THESIS

THESE ARE

ULlxAT6*CALSS5/SALTEL+AG5%CALT6/5AL6S
U2=ATOXCALTO/SALTO+A6S*CALES/SALGS
10=ALS52-AL2)-ALLY

FO=UL-U2%DCOS{Z0)-t AS2~A21-A1T7)*DSIN{ 70D}
I1=AL52~A2]

FlaeZ, *SALLT*(S12DSINIZ 1} +52¢5AL52)
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12=AL52-AL21+AL17

F2=U1-U2*DCOS{22)-{ A52-A21¢AL17)*DSIN(22)
I3=AL21#ALLT

GO=2,*SALS52*({ SL*SALLT7+S2¢DSIN(Z3))
CT17«0COSCALLT) /DSIN{ALLT)
CT76=DCOSTALT6) /DSINIALTG)
CT65=DCOS{AL6S5) /DSIN(ALGES)
CT52=DCOS{AL52) /DSIN(ALS2)

Glxb *SALLT*SALS2%(ALT*CTL7~AT6*CTT6-A65%LT65+A52#CT52)
L&a=AL21-AL17
G2=-2.%SALS2*{S1*SAL17-52*DSIN{Z4}}
I5%ALS2+AL21+ALLT

L6=ALS2+ALLY

I7=AL52+AL21-ALL1T7
HO=U1~U2#DCOS{25 )=~ AS2+A21+ALTI*DSIN(IS)
H1=2  #SALL7#(S1*DSIN{ 16 }+52%SAL52)
H2=U1-U2¢DCOS{ZTI-{ AS2+A21~-A1T}%*DSIN(ZIT)

CONSTANTS FOR USE IN EQ. (4-43) AND TABLE X{I.
THESE ARE SUMMARISED IN TABLE XI OF THE THESIS

X1=5P1/CP1

Xx2=5C1/CC1

Y2=FO0-F1l*X1+F2%X1%*X1

Y1=2 #FOX1~FLlEX1%X14¢F1~2,6F28X]
YO=FO*X1#X1¢F1*X1¢F2
W2==G0+Gl*X1-G2*X1*X1
W1le=2,.%GOXX1¢GLl*EX1#X1~G1le2,%G2%X]1
WO=~GU*X1#X1-Gl *X1-G2
IBaHO-HI®X1+¢H2%X1*X]1

1922 ,*HO*X1~H1 *X] *X1¢H1~2 . *H2*X]1
Z10=HO*X1* X1 ¢H]1*X1¢H2
A22=X2%X2%Y2+¢X2*HW2¢28
A21mX2%X2%Y] ¢X24W1¢219
A20=X2%X2%Y0+X2*W0+Z10Q
AL2=2,#X2%(1B-Y2) ¢W2%{X2%X2-1.}
ALL=2.%X2%{Z9-Y]1 ) ¢W1*(X2%X2-1,)
AlO=2.%X2%{Z10-Y0}+WO*{ X2%X2-1,)
AQ2=Y2-X2%W2+X2%X2%1B
AQl=Yl~X2%W] +X2%X2#%29
ADO=Y0-X2*WO+X2%X2*710

CONSTANTS FOR DEFINING THE NINE EXISTENCE CONDITIONS

Q1s02900404Q9 OF TABLE XI1I

XBl=A12%A22%B02%B12

XB2=-Al2%A12%B02#822

XB3=~A02%A22*B12#B12

X84=A02%A12%B812#B22

XB5=A22%A22%BC2%B02

XB53-X85

XB6=2,0%(A02%422%B02%822)

XBTx—A02*A02%B22%B22

XT1=Al1*A22#%B02*B12+A12%A21 #B024B12+A12#%A224B01 *B12+A12*A22%B02#81
11

XT2a-(2,0%A11#A12¢B02%B22+A12%A (2% (B01#B22+B02%R21})
XT73=-{{A01*A22+A02%A2]11%B12%B12+2.0%A02%A22*B11*8]12!}
X74=A01%A12%B12%B22+¢A02*A11*B12%B22+A02%A12%B11%B22¢A02 *A12%812%B2
11

X752~ (2.Q0%A21%A22%B02#B02+42,0%A22%A22%B01%B02}

XT6=2.0%{ AD1*A22%B02%B22+¢A02%A21#B02*B22+A02%A22%B01*B22+A02%A22%8
102#821}

XT77=-{2,0%A01*A02%R22#B22+2,0%A02%A02*B21%B22)
X611wA10%A22%B02¢B12+A12%A20%B02*B12+A12%A22*B0O0O*B12+A12%A22%B02%*8B
110
X6l;:%&&&‘ﬁ%l‘BOZ‘BIZ*AZZ‘BOI‘BlZ&AZZ‘BOZ‘Bll)0A12‘|A22'BOI‘8110A2

WRITEl6,1210)

11%B02#*B11+A21%801¢B12}

X61=X611¢X612

X621x2, 0%A10%A12#B02%B22+A12%A12#(B00*B22+R802%B20)
X622=A11%*A11%B02%B22+A12%A12%B01*B21+2.0%A11%A12*(BC1*B22+502%R21}
X62n~{X621+X622}
X631=(A00®A22+A02%A20)%812%B81242.0%A02%A22%810%*B12
X632=AD1%*A21%B12%B12+A02%A22%R11%*B11+2,0%BL1%B12#({A01%2224A02%A21}
X63x={X631¢X6321}
X641=A00%A12%B12%B22+A02%A10*R12%B22+A02%A12%B10*B22¢A02*A12*R]12%h
120
X642=A01%(Al1%B12%B22+A125B11%B22+A12%B12%B21)+A02*{Al2*R11*R2]1¢A]
11#B12#821+A11%B11%822)

X64=X641¢X642
X65==1(2,0%A20%A22%B02%B02+2.0%A22%A22%B00*B02+A22*A22*RC1*BOL¢A2]%
1A21%B02%B02¢4,0%A21*A22*B01*B02}
X661=A00*%A22%B02%B22+A02%A20%B02¢#B22+A02#A22%R00*R22+A02%A22%B02%B

X662=A01*{A21%B02%B22¢A22%B01#B22+A22%B02%B21)+A02%{A22%B01*R21 +A2
11%B02%B21+A21*801#B22}

X66=2.0%{X661+X662} .
X6T*=(2.0*A00*A02*B22%B2242.0%A02*A02%B20*B22+ACL*A0I*R22%B22+402%
1A02%B21%B21¢4.0*A01*A02*821%822}
XS511=A12%A21*BO1*B11+Al1%A22*B01*B114A11%A21%R02*B11+A11*A21%ROL*H

X512=A10%({A21%B02#B12+A22%B01*B12+A22%B02%B11}+A20%(A11%B802#A12+A1
12%801«B12+A1 2*802*R11}
X513=BO0*{AL1#A22%B12+¢A12%A21#B12+A12%A22*B1]1)+BlO* (A1} *A22%K0Z+AL
12%A21%B02+A12*A22*BO1}

X51=X511¢X512+4X513
X52122,0%A1l1*A12%B0O1*B21+Al1*Al1*{BO1*B22¢B02%B2]1)+2,0%A10*{AL1*RO
12%B22¢A12*B01*B22+A12%802%821}
X522=B00%{2.0%A11%A12%B22+A12%A12#B21)+B20%{2,0%A11%A12#B02+AL2=Al
12*801}

X52=-{X521+X522)
X531={A02*#A21+A01*A22)*B11#B11+2,0%A01%A2]1%B811#812
X532=A00%(A21*B12%B12+42.0%A22%B11%B12)+A20*{A01*B12*B12+2,0%402%B81
11#8121}

X53322,0%B1O*{A0L*A22%B 12¢A02%A21%B12+A02%A22%B11}
X53=~(X531¢X532¢X533)
X541=A02*A11%B11#B21+A01*A12%B11#B21+A01*A11*B12%B21+A01*A11%Bl1%*4
122
X542=A00*(Al1*B12%B22+A12%B11*8224A124B124B21)+A10%{A0]12812%B22+A0
12#B11#B22+A02%B12%B21)
X543=B10%{A01*A12#B22+¢A02%A11%B22+A02#A12%B21} ¢+B2C*(AQL*AL12*B12+AD
12%A11#%B12+A02%A12%B11)

X54=X541+X542+4X543

X55= A21#A22%BOL*BOL +A21 #A21*B01*B02+A20*(A21%B02%B02+2.0%A22*R0O 1 *A
102)+BOO*{2.0%A21%A22*%B02+A22%A22%B01)

X55x~2,0%X55

X561=A02%A21 #B01%B21+A01*A22%B01 #B21+A01*A21%B02*B21+A01%A2 15801 %R
122
X562=400%(A21%B02#B22+A22%BOL*B22+A22%B02%B21) +A2G*(A01 *BO2%R22+A0
12*#B01#B22+A02*B02¥B21)

X5632B00%{ AOL#A22#B22+¢402%A21%B22+¢A02%A22%B21)1+B2C*(AQ1%A22%80:4+2)
12%A21%B02+A02%A22*B01)

X56=2.0%({ X561 ¢X562+ X563}
X57=A01%A02%B21*B21+A01*A01*B21#B22+¢A00* (A0 1 *#B22%B22+2.0%A02%B21 *R
1221+4B20%{A02%A02%B21+2.0%A01*A02%B22}

X57=+2.0%X57

X411=A10%420%B02#812+A10%A22*%BO0*B124A10%A22%302*RIC
X412=A12%A20%B00*B12+A12%A20%B02*B10+A12*A22%B00*B10
X413=411%A21*{BOO*B12+B0O2*B10)+AL1*#BO1*{A20%B12+A22%8101+A11%RT 1
1420%B02+422%800}
X414=221*B01*{A10%B12+¢A12%B10)+A21%B11*(A10%B02+A12%B001¢R01*AL1%(
1AL10%A22¢A12%A20)+AL1%A21%B01#B11

X&1=X&411¢X412+¢X413¢X4l4
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SUBROUTINE STEPIT{FUNK}

STEPT 7.0

A.N.S.I. STANDARD FORTRAN " JANUARY 1973

COPYRIGHT 1965 =~ J, P. CHANDLER, PHYSICS DEPT., INOIANA UNIVERSITY,
(PRESENT ADDRESS «ese COMPUTER SCIENCE DEPT.y

OKLAHOMA STATE UNIVERSITY, STILLWATER, OKLAHOMA 74074}

STEPT (FORMERLY CALLED STEPIT) FINDS LOCAL MINIMA GF A SMOOTH
FUNCTION OF SEVERAL PARAMETERS.

-STEPIT IS A PHLEGMATIC METHOO OF SOLVING A PROBLEM.-

- Je

He BURRILLy JRey =360 STEPIT - A USER-S5 MANUAL~- -

THIS SOURCE DECK AND A WRITE-UP ARE AVATLABLE AS PROGRAM NO. 66 FROM

QUANTUM CHEMISTRY PROGRAM EXCHANGE
OF CHEMISTRY, INDIANA UNIVERSITY
BLOOMINGTONes INDIANA 47401

DEPT.

' EEEEEEEEERE I I I NI I I

INPUT VARIABLESesees FUNK,NV,NTRAC ;MATRXsMASK X ¢XBAXsXMINy

DELTX s DELMN, NFMAX ) NFLAT

OUTPUT VARIABLES..va CHISOsX,ERR

FUNK

NV
NTRAC

MATRX

CHISQ
MASK(J}
x(J3
XMAX(J)
XMINCJY
DELTX(J)
DELMN(J}

ERR{J,K)

NFMAX
NFLAT

JYARY

NXTRA

THE NAME OF THE SUBROUTINE THAT COMPUTES CHISQ
GEIVEN X(114XE2)yees s XENV) (AN EXTERNAL
STATEMENT 1S REQUIRED IN THE CALLING PROGRAM
FOR EACH SUCH SUBROUTINE}

THE NUMBER OF PARAMETERS, X

=0 FOR NORMAL OUTPUT, =+1 FOR TRACE COUTPUT,
=-1 FOR NO OUTPUT .

a0 FOR NO ERROR CALCULATION, =100¢M FOR ERROR
CALCULATION USING STEPS- 10%**® TIMES LARGER
THAN -THE LAST STEPS USED IN THE MINIMIZATION

THE VALUE OF THE FUNCTION TO BE MINIMIZED

NONZERO IF X¢J3} IS TO BE HELD FIXED

THE J-TH PARAMETER

THE UPPER LIMIT ON X{J}

THE LOWER LIMIT ON X{J}

THE INITIAL STEP SIZE FOR X{J}

THE LOWER LIMIT {CONVERGENCE TOLERANCE} ON THF
STEP S12E FOR X{J}

RETURNS THE ERROR MATRIX IF ~MATRX- IS NONZERO

{ALSO USED FOR SCRATCH STORAGE}

THE MAXIMUM NUMBER OF FUNCTICLN CGMPUTATIONS

NONZERD If THE SEARCH IS TO TERMINATE WHEN ALL
TRIAL STEPS GIVE IDENTICAL FUNCTION VALUES

STEPT SETS JVARY NONZERO IF X{JVARY} IS THE ONLY
X(J) THAT HAS CHANGED SINCE THE LAST CALL TO
FUNK (THIS CAN BE USED TO SPEED UP FUNK]

USED BY SUSROUTINE SIMPLEX 8UT NCT BY STEPIT

l‘.ti"tlit‘.t“lt“‘l“‘.‘.‘ill“‘

EXTERNAL

FUNK

THE FOLLOWING STATEMENTS CONVERT STEPT TG DOUBLE PRECISION.
STEPT CONTAINS NO MIXED MODE SYATEMENTS, NO MATTER WHETHER THE
VARIABLES BEGINNING WETH A-H AND O-I ARE TYPE REAL CR ARE TYPE

DOUBLE PRECISION.

DOUBLE PRECISEION Xy XMAX¢XMINeDELTXDELMNERR.CHISQ,

STEPT
STEPT
SYEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT
STEPT

[aY¥a¥aXaXakaXaXatakaKale !
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X VECsTRIAL ¢ XSAVE yCHE ¢ DX ¢ DLVEC o SALVO,X0SC»

X CHIOSsQsRELAC ¢ HUGE ¢RATIOyCOL IN,CMPMXy ACK ¢ FACUP,DELDF
DDUBLE PRECISION RZERGCy RHALF RUNIT RTWO,DELXsXPLUS,COMPR,
X AsSUBsPyCHSAV,CHOLDy SAVE s AUX s CHIME , DENOM 4 DEL yDXZ+DXUy
X DCZ.BCUsANUMoCINDR ¢ AVEC, SUMO y SUMV 4 COS INo COXCM,

X CHBAK.STEPS'FACpQSQRT.DSQRT

THE DIHENSIONS OF ALL VECTORS AND MATRICES (AS OPPOSED TO ARRAYS) -
ARE NV, EXCEPT FOR esee

ERR(NV,M0SQ) ¢ XOSCINV,#05Q) ,CHIOS{MOSQ)
IFf ERRORS ARE TO BE CALCULATEO 8Y SUBROUTINE STERR, HOWEVER, THEN
ERR MUST BE DIMENSICNED AT LEAST . ERR(NV,MAX{NV,MOSQ}) .
TO REDUCE STORAGE TO A MINIMUM, SET MDSQ=0, REDIMENSION ERR(I,1},
XOSC(1,13. SALVC(1}, AND CHIOS{1}, DELETE THE OSCILLATION SEARCH
(SEE COMMENT CARDS BELOW!, AND SUPPLY A DUMMY SUBROUTINE STERR.
OR, USE SUBROUTINE STP, WHICH HAS THESE CELETIONS PLUS DELETION OF
THKE COLINEARITY CHECK.

DIMENSTON VEC(20),TRIAL{20)¢XSAVE{2D},CHI(20},DX(20)
DIMENSION DLVEC(20)SALVD{20)+XDSC(20+5)sCHIOSIS) JFLAT(20}

If UNLABELLED COMMON AND SINGLE PREClSlO& ARE USED, SUBROUTINE STEPT
IS THEN WRITTEN ENTIRELY IN AcN.Sel. STANDARD BASIC’ FGRTRAN.

COMMON /CSTEP/ X{20)¢XMAX{20) ,XMIN(20),DELTX{20},DELMN{20},
* ERR(21+201yCHISQ/NVyNTRAC ,MATRX ,MASK{ 20}

1
COMMON /FRODO/ NFMAX,NFLAT,JVARY,NXTRA
SET THE LIBRARY FUNCTION FOR SINGLE PRECISION {SQRT) OR FOR
OBUBLE PRECISION (DSORT). . NO OTHER FUNCTIONS ARE USED, EITHER
EXTERNAL OR INTRINSIC.
THE ONLY SUBROUTINES CALLEDC ARE FUNK, STERR, AND DATSW.
STERR COMPUTES THE ERROR MATRIX ERR, IF MATRX IS NENZERO.
THE STATEMENT -~ CALL DATSW(NSSW,JUMP) .- RETURNS JUMP=1 IF
SENSE SWITCH NUMBER ~NSSW- IS ONy AND JUMP=2 IF (T IS OFF,
IF NO SENSE SWITCH. IS T0O BE USED, SUPPLY A DUMBY RCUTINE FOR OATSW.
OSQRTLQ) =DSQRTIQ}
QSQRT{Q}I=SQRT(Q}
l‘t‘“t‘tt“"ﬂt.t.t"l““.lt..““t
SET FIXED QUANTITIES «.ue
XW oso LOGICAL UNIT NUMBER OF THE PRINTER
KW=5
KTYPE ... CONSOLE TYPEWRITER UNIT
KTYPE=£A
NSSW +es TERMINATIOM SENSE SWITCH NUMBER
NSSW=6
HWUGE ... A VERY LARGE REAL NUMBER
. {DEFAULT VALUE FOR XMAX AND -XMIN}
HUGE=1.E37
NVMAX ..o MAXIMUM VALUE CF NV
NVMAX=20
MOSO +es MAXIMUM DEPTH OF OSCILLATICN
SEARCH
MOSQ =5
STCUT +o. RATIO OF STEP SIZE DECREASE
STCUT=10.
COLIN ... CDLINEARITY TCLERANCE
" COLIN=0.99
CMPMX ... UPPER BOUND ON COMPR
CHPMX=,999

NCOMP eee MAX1MUM NUMBER OF CYCLES

STEPT b4
STEPT 65
STEPT &6
STEPT &7
STEPT &8
STEPT 69
STEPT 70
STEPT T1
STEPT 72
STEPT 73
STEPT 74
STEPT 75
STEPT 76
STEPT 17
STEPT 78
STEPT 79
STEPT B8C
STEPT 81
STEPT 82
STEPT 83
STEPT 84
STEPT &S
STEPT 86
STEPT 87
STEPT 88
STEPT 89
STEPT S0
STEPT 91
STEPT 92

- STEPT 93

STEPT 94
STEPT 95
STEPT 96
STEPT 97
STEPT 98
SYEPT 99
STEPTI00
STEPT101
STEPT102
STEPTi03
STEPT104
STEPT10S
STEPT106
STEPTIO7
STEPTIOB
STEPTIO09
STEPT110
STEPTI111
STEPT112
STEPT113
STEPT114
STEPT115
STEPT116
STEPTI1T
STEPT118
STEPT119
STEPT120
STEPT121
STEPT122
STEPT123
STEPT 124
STEPT125
STEPT126
STEPT127
STEPT128
STEPT 129
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CHECK SOME INPUT QUANTITEES,
DESIRED.

10
20
30
40
50

60
T0

80
90
100

110
120

13

-3

140
150

160
170
1RO

WITHOUT ATTEMPTING A GIANT STEP

(NCOMP.LE.]l DISABLES THE COLINEARITY

CHECK)
NCOMPE4
ACK oo RATIO OF STEP SIZE INCREASE
ACK=2,0 )
FACUP ... IF MORE THAN FACUP STEPS ARE
TAKEN, THE STEP SIZE IS INCREASED
FACUP=4. .
MXSTP ... LOG2(MAXTMUM KUMBER OF STEPS}
MXSTP=5
DELDF ... ODEFAULT VALUE FOR CELTX{J)
DELDF=.01
RZERO=0.+
RHALF*.5
RUNIT=1.
RTWO=2.
RTEN=10.

REAL CONSTANTS ARE USED BEYOND THIS POINT,.

JuMp=2
CALL DATSW {NSSHyJUMP)
1FJUMP-1)10,10,40

WRITE(KTYPEy 20)NSSW
FNRAMAT(/23H TURN OFF SENSE SWITCH 12/7/1H )
CALL DATSKW [NSSHWsJUMP)
IF{JUMP-1)30,30,40

KWIT ... TERMINATION SWITCH
KWIT=0
IF(NV1440,440,50
IFANV=NVMAXI 604604440

A OEFAULT VALUE.

RELAC=RUNTT
RELAC=RELAC/RTEN
XPLUS=RUNIT+RELAC
IFIXPLUS-RUNET)80.+80,70
IF{NCOMP)50,90,100
NCOMP=]
JVARY=0

NACTV oo NUMBER OF ACTIVE Xx{J)
NACTV=0
DO 260 I=1,NV
SALYVOlI)=RZEROD
IFIMASK{1))260,110,260

CHECK THAT DELTX(I) IS NCT NEGLIGIBLE.

TF(DELTX(1})120,140,120
XPLUS=X{II+DELTX{I}
IF(XPLUS-X(11)130,140,130
XPLUS=X({I)=-DELTX(I)
IF(XPLUS~X{[}}170,140,170
TF{X{I1}150,160,150
DELTX(I}=DELOF*X( 1)

GO TO 170

DELTX(]}=DELDF
TF(OELMN{]}1190,180,200
DELMNLT)20ELTXLLIMRELAC

AND SET THEM TO STANDARD VALUES IF
FIRST, MAKE SURE THAT THE TERMINATIOM SENSE SWITCH IS OFF.

ONLY USAGE OF THE CONSOLE TVPEHRITER--’--

COMPUTE RELACy THE RELATIVE ERROR OF THE

MACHINE ANO PRECISION BEING USED.
RELAC IS USED IN SETTING DELMN(J) TO

STEPT130
STEPTLIL
STEPT132
STEPT133
STEPT 134
STEPT135
STEPT 136
STEPT 137
STEPT138
STEPT139
STEPT 140
STEPT141}
STEPT142
STEPT 143
STEPT144
STEPT145
STEPT 146
STEPT147
STEPT 148
STEPT 149
STEPT150
STEPT151
STEPTL1S2
STEPT153
STEPT 154
STEPT15S
STEPY1S6
SYEPT157
STEPT158
STEPT 159
STEPT160
STEPT161
STEPT162
STEPT 163
STEPT164
STEPT 1565
STEPT 166
STEPT167
STEPT168
STEPT 169
STEPTL170
STEPT171
STEPT17T2
STEPT173
STEPT1T4
STEPT17S
STEPT1T6
STEPT1TY
STEPT1?78
STEPT179
STEPT 180
STEPT181
STEPT182
STEPT183
STEPT1R4
STEPT185
STEPT186
STEPT187
STEPT188
STEPT1B9
STEPT190
STEPT19Y
STEPT192
STEPT193
STEPT194
$TEPTI95

conon

ao

an

IF{DELMN(I))190,200,200 STEPT196

190 DELMN(1)==DELMN{I) STEPT1S7
200 IF{XMAX{T)~XMINCI}}210,4210,220 STEPT198
210 XMAXI{1)=HUGE STEPT 199
XMIN{I)=-HUGE STEPT 200
220 NACTV=NACTYe) STEPT201
X{IY=AMAXLAXMIN{T ) AMINL EXMAXET) 4 XEE0D) STEPT 202
IF(XCI)=XMAK(1))2604240,230 STEPT203

230 X(I)=XMAX(T) STEPT 206
240 TFIX{I}=XMIN(T))250,260,260 STEPT205
250 X{1)=XMIN{I} STEPT 206
280 CONTINUE STEPT 207
STEPT2(R

COMPUTE COMPR. THE PROBABILITY THAT THE COSINE OF THE ANGLE STEPT 209
BETWEEN TWO RANDOM DIRECTIONS EXCEEDS COMPR [S APPROXIMATELY STEPT210
(1-COLIN}/2 o . STEPT211
STEPY212

COMPR=RZERO STEPT213
IFINACTV=11440,310,270 STEPT214

270 A=NACTY STEPT215
SUB=RTWO/{A-RUNIT) STEPT216&
P=RTWO* {RUNIT/QSORT(A)/ (RUNIT-RHALF&*SUB)=-RUNIT) STEPT217
COMPR={RUNIT-{RUNIT=COLIN}#*SUB}* {RUNIT+P*(RUNIT-CCLIN]) STEPT21R
STEPT219

COMPR=zAMINL (CHMPMX,ABS{COMPR] ) STEPT220

IF{COMPR) 280,290,290 STEPT 221

280 COMPR==COMPR STEPTZ222
290 IF({COMPR-CMPMX}310,310,300 STEPT223
300 COMPR=CMPMX STERT224
STEPT225

310 IFINTRACI400,.320,320 STEPT226
320 WRITE(KW,330) STEPT 227
330 FORMAT{SSGH1ENTER SUBROUTINE STEPT. COPYRIGHT 1985, J. P. CHANDLERSTEPT229
* 7/719H INITIAL VALUES..es /1H STEPT229
WRITE{KWe340) {IMASK(J}J=LyNV) STEPT 230

340 FORMAT{/10H MASK = F(164,6X)/(4X9112)) STEPT 231
WRITEIKWy350){X(J)yd=1sNV) STEPT232

350 FORMAT(/10H X * 9EL2.4/110X 9E12.41) STEPT233
WRITE(KK+3860){ XMAX{ ) oJ=1 4NV} STEPT234

360 FORMAT(/10H XMAX = GE12.4/(10X 9E12.4)) STEPTZ35
WRITE{KWsITOV(XMINLJ) s J=1,NY) STEPT 236
370 FORMAT{/10H XMIN = 9E12.4/(10X 9E12.41}} STEPT 237
WRITE(KWe3IBOI(DELTX (I e I=14NV) STEPT23R
380 FORMAT(/IOH DELTX = 9EL2.4/(10X 9E12.41}) STEPT 239
WRITE{KW,;3901{DELMN{JS) s J=1,NV]) STEPT 240

390 FORMAT(/10H DELMN = GE12.4/(10X 9El2.4}) STEPT 241
400 CALL FUNK STEPT242
CHSAV=CHISQ STEPT243
CALL FUNK STEPT244

NF .s. NUMBER OF FUNCTICN CALLS STEPT 245

NF=2 STEPT 246
IF{CHISO-CHSAV}410,430,410 STEPT 247

410 WRITE(KWy420)CHSAV,CHISQ,NF STEPT24R
420 FORMAT{///30/59H WARNING+..,o CHISQ IS NOT A REPRODUCIBLE FUNCTIONSTEPT249
® OF X{J). 1/5X BHCHSAV = E22.14,5X BHCHISQ = E22.14,5X5HNF = [5) STEPT250
STEPT251

JOCK eeo SWITCH USEQ IN SETTING JVARY STEPT252

430 JOCK=1 STEPT253
IF{NTRAC14T0,450,450 STEPT254

440 KAIT=1 STEPT 2SS
450 WRITE(KWs460)NV¢NACTV ¢MATRX ; NCOMP 4NFMAX | NFL AT, STEPT2S6
* RELAC,STCUT 4ACK,COLIN,COMPR,CHISQ STEPT 257
460 FORMAT(//1X 13,11H VARTABLES,yI3,BH ACTIVE.1OXTHVMATRX =14,10X STEPT 258
* THNCOMP 2+ 10XTHNFMAX =18, 10X7THNFLAT =127/ STEPT259

* 8H RELAC =E10.3,8X74STCUT =E10.3+8X5HACK =E10.3,8X SYEPT 260
STEPT 261

*  THCOLIN =E10.3,8XTHCOMPR =E1Q.3///8H_CHISQ =E16.9/7/
<
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* 23H BEGIN MINIMIZATION..s. 1
470 TFIKWIT}4B0,480,2140
480 IF{NTRAC}S510,510,490
490 WRITE{KW,500}
500 FORMAT(//60(2H %) //10X29HTRACE MAP OF THE MINIMIZATION //1H }

510 DO 520 I=1,NV
VEC{J) ..o CURRENT VECTQR OF NUMBER OF
STEPS IN XtJ}
VEC{I)=R2ZERD
DX{J4} +.a CURRENT STEP SIZE FOR X{J}
520 DX{I}=DELTX{1)

CHOLD ... BEST PREVICOUS VALUE OF CHIS2
CHOLD=CHISQ
NOSC .+ CURRENT DEPTH OF THE OSCILLATION
INFORMAT{ON
NOSC=0

K X K B K 8 K E S KK KKK KX E S RS RSN XXX EEK

VARY THE PARAMETERS ONE AT A TIME,
THIS 1S THE STARTING POINT USED EACH TIME THE STEP SIZE IS REDUCED
OR A SUCCESSFUL GIANT STEP IS COMPLETEO.

NCIRC ... NUMBER GF CCNSECUTIVE X{(J}
WITHOUT SE2ZEABLE CHANGES
530 NCIRC=0
NIZIP ... NUMBER OF CONSECUTIVE CYCLES
WITHOUT A GIANT STEP
N2iP=0

MAIN DO LOOP FOR CYCLING TMROUGH THE VARIABLES.
FIRST TRIAL STEP WITH EACH VARIABLE IS SEPARATE.

NACK +.. NUMBER OF ACTIVE X(Ji CYCLED
THROUGH
540 NACKxO
00 1770 I=1sNV
JFLAT{S) ... NONZERQ IF CHANGING X{J} 01D
NOT CHANGE CHISQ
JFLAT{I)=0
OLVEC(J4} +.. OLO VECTOR OF NUMBER OF
STEPS IN XtJ}
OLVEC{I)=VEC(I}
VECU1}=RZEROD
TREALLS) ... CHANGE IN X{J)
TRTAL{I)=RZERO
IF(MASK([))5504560,550
$50 VEC{!)=-RYEROQ
JFLAT{I}al
GO TO 1750
560 NACK=NACK+1
AOX=ABS(OX{1))
ADX=DX{ T}
IF(ADX}570,580,580
570 ADX==ADX
580 SAVE=X{I}
CHECK THAT OX{t} IS NOT NEGLIGIBLE.
XPLUS=SAVE+DX(1}
IF{XPLUS-SAVE}590,600+4590
590 XPLUS=SAVE-OX{I)
IF{XPLUS-SAVE}610+600,610
JFLAT{I)=2
60 TO 810

@
o
-1

STEP X(1}.
610 XUJESAVEXDXLL!

STEPT262
STEPT 263
STEPT 264
STEPT265
STEPT 266
STEPT267
STEPT268
STEPT 269
STEPT2T0
STEPT2TY
STEPT272
STEPT273
STEPT274
STEPT27S
STEPT276
STEPT217
STEPT278
STEPT279
STEPT2R0
STEPT 281
STEPT282
STEPT283
STEPT284
STEPT28S
STEPT286
STEPT 287
STEPT 288
STEPT 289
STEPT2%0
STEPT291
STEPT292
STEPT293
STEPT 294
STEPT295
STEPT296
STEPT297
STEPT298
STEPT299
STEPT300
STEPT30]
STEPT302
STEPT303
STEPT 304
STEPT 305
STEPT 306
STEPT307
STEPT308
STEPT309
STEPT310
STEPTIL]
STEPT312
STEPT313
STEPT314
STEPT315
STEPT 316
STEPT317
STEPT318
STEPT319
STEPT320
STEPT32}
STEPT322
STEPT323
STEPT324
STEPT32S
STEPT326
STEPT327

ono

nnno o

JVARY=0

IF{JOCK1630,630,620
620 JOCK=0

JVARY =1

STEPT 328
STEPT 220
STEPT330
STEPTI3]

NFLAG ... COUNTER USEQ IN SETTING JFLAG(JISTEPT332

630 NFLAG=L
IF{X{I}-XMIN({])}650,640,640
640 TF{X{1}-XMAXUT}16604660,650
650 NELAG=NFLAG+3
GO TO 680
660 CALL FUNK
NE=NF 1
JVARY =]
SAVE OLD VALUE OF CHISQ FOR INTERPOLATION,
CHIME=CHISOQ
IF(CHISO-CHOLD1B50+670, 680
670 NFLAG=NFLAG#+]
) STEP X(I) THE OTHER WAY.
680 XPLUS=X{I}
X{1}=SAVE=-DX(1)
TF{X{T1)~XMIN(])1820,690,4690
690 IFIX{I}~XMAX{1)3700,700,820
700 CALL FUNK
NF=NF+1
JVARY=1
1F{CHISO-CHOLD)B40, 710,720
710 NFLAG=NFLAG+]
720 [F{NFLAG-31}730,800,820
PERFQORM PARABOLIC INTERPCLATION.
CHECK FOR 2ZERD CENOMINATOR, ETC.

730 IF{CHISO-CHIME} 74048204740
740 ‘DENOM={CHISQ-CHOLD)={CHOLO-CHIME}
IF{DENOM} 750,820,750
750 TRIAL{I}=DX(E)}®(CHISQ-CHIME}/(RTWO*DENOM}
VECUII=TRIAL(T}/ADX
X{I}=SAVE+TRIAL{I}
TF(X{1}-SAVE}770,760,770
760 CHISO=CHOLD
GO TO 790
TTO CALL FUNK
NF=NF+1
IF{CHISQ-CHOLD) 780,790,750
780 CHOLD=CHISO
JOCK=1
GO TO 830
790 TRIAL!I}=RZERD
VEC{ F)=RZERO
GO T0 820
800 JFLAT(I}=]
810 VEC{I}=-RZERQ
820 X{1}=SAVE
830 NCIRC=NCIRC4+1
TF{NCIRC-NACTV}960,1840,1840
FLIP DX(I} FOR MORE EFFICIENT OPERATION.
840 DX{I}==DX{I)

A LOWER VALUE OF CHISO HAS BEEN FOUND. STEP, DDUBLE THE STEP Sizc,
ANC REPEAT AS LONG AS CHISQ DECREASES, UP TC MXSTP TIMES,

850 NCIRC=0
DEL=0x{ 1)
NSTP=0

B60 CHIME=CHOLD
CHOLN=CKEISQ
VEC(L\=VEC!I)ODEL/ADX

STEPT333
STEPT336
STEPT 336
STEPTA36
STEPT 33T
STEPTI3R
STEPT 339
STEPT 340
STEOY 341
STEPT 342
STEPT343
STEPT 344
STEPT 345
STEPT 346
STEMT 4T
STEPT 348
STEPT 340
STEPT 350
STEPT 351
STEPT3S52
STEPT 353
STEPT 354
STEPTI5S
STEPT356
STEPT 357
STEPT 358
STEPT359
STEPT360
SYEPTA61
STEPT362
STEPT363
STEPT 364
STEPT 365
STEPT 366
STEPT 357
STEPT 368
STEPT 369
STEPTATO
STEPT 371
STEPT372
STEPT3T72
STEPTAT4
STEPT375
STEPT3T6
STEPT 3?7
STEPT378
STEPTITQ
STEPT 380
STEPT3R]
STEPT3R2
STEPTIAY
STEPT 384
STEPT 3RS
STrPT38¢
STEPT3R7
STEPT3BE
STEPT3AQ
STEPT 390
STEPT39]
STEPT192
STEPT 393

061
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c
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aXa¥aRa¥a¥s Xalat

TRIAL IV =TRIAL{T)+DEL
NSTP=NSTP+1
IF(NSTP-MXSTP1B70,940,540
870 DEL=ACK#DEL
XPLUS=SAVE ,
SAVE=X(1}
X{1)=SAVE#DEL
IF(X{T1-XMIN{11)950,880,880
880 F(X(1}-XMAX(1})890,890,950
890 CALL FUNK
NFNF+]
IF(CHISQ=CHOLD} 860,900,900

PERFORM PARABOLIC INTERPCLATION.
900 0XZeSAVE-XPLUS
OXU=K{1)-SAVE
0CZ=CHOLO-CHTME
DCU=CHIS0-CHOLD
DENOM=DC Z#0OXU-DCU*DXZ
1F{DENOMI910, 950,910
910 OEL={DCZ*OXU*$2+DCU*DXZ %2}/ {RTWDSDENOM)
X{1)=SAVE+DEL
TF(X(1)=SAVE} 920,960,920
920 CALL FUNK
NF=NE+l’
1IF{CH1SQ=CHOLD} 930,950, 950
930 CHOLD=CHISO
TRIAL(I}=TRIAL{T)¢DEL
VEC{T}=VEC(I}+DEL/AOX
940 JOCK=1
GO YO 960
950 X{I}=SAVE
DO NOT INCREASE THE STEP SIZE PREMATURELY.
960 IF{N2IP}970,970,990
970 IF(NCOMP-11980,980,1740
980 JF{NACK-1)1740.,1740,990
AVEC=ABS{VEC(1))
990 AVEC®VECII})
IF(AVEC}1000,1010,1010
100D AVEC=-AVEC
1010 IF{AVEC-FACUP}1080,1020,1020

INCREASE THE STEP SIZE.

1020 DX{1)=ACK*ADX

VEC(It=VEC{L)/ACK

OLVEC{I3}=QLVEC(T1}/ACK

1F{NDSC}1050+1050.1030
1030 00 1040 J=1,NOSC
1040 ERR{1+JI=ERR([,J}/ACK
1050 IF(NTRAC}1D80,1080,1060
1060 WRITE{KW,1070}1,0X{1}
1070 FORMAT(10H STEP. SIZEI3,1l4H INCREASED TO El13.5)

R X R 6 % B K R ¥ X ¥ R WK E R E YN KN K & XK KKK N K KKK X

STEP ALONG A RESULTANT DIRECTIONs IF POSSIBLE.
FIRST CHECK THE COLINFARITY OF VEC AND OLVEC. - SINCE THESE ARE
NUMBERS OF SYEPS, THE YEST [S SCALE-INVARIANT.

CHECK THE COLINEARITY OF VEC AND DLVEC.
1080 SUMD=RZERD
SUMV=RZERC
00 1090 J=1,NV
SUMD=SUMC+OLVEC{J)*%2
1090 SUMV=SUMVEVEC(J}**2
TF{SUMC*SUMY}1740,1740,1100

STEPT 394
STEPT 395
STEPT 396
STEPTIS7
STEPT 358
STEPT399
STEPT400
STEPT4O0L
STEPT&02
STEPT403
STEPT404
STEPT405
STEPT406
STEPT407
STEPT408
STEPT409
STEPT410
STEPT&11
STEPT412
STEPT413
STEPT4 14
STEPT415
STEPT416
STEPT417
STEPT418
STEPT419
STEPT420
STEPT421
STEPT422
STEPT423
STEPT&24
STEPT425
STEPT426
STEPT427
STEPT428
STEPT429
STEPT430
STEPT431
STEPT432
STEPT433
STEPT434
STEPT43S
STEPT436
STEPT4A37
STEPT438
STEPT439
STEPT4&4D
STEPT 441
STEPT 442
STEPT 443
STEPT 444
STEPT445
STEPT 446
STEPT4AT
STEPT44R
STEPT 449
STEPT450
STEPT45]
STEPT452
STEPT 453
STEPT 454
STEPT 455
STEPT456
STEPTAS5?
STEPT458
STEPTAS59

1100

ii10

1120
1130
1140
1150
1160

1170
1180

SUMD=QJSQRT {SUND }

SUMY=QSQRT {SUMV}

COSIN=RZERQ

DD 1110 J=leNV .
COSIN=COSEN® {OLVEC{J) /SUMOI*{VECLJ}/SUMV)
IF(NZIP-NCOMP}1120,1150,1150
IF{NZIP=-1)1T740,1130,1140
IF{NACK=-NACTY)1740,1140,1140
1F{COSIN-COMPRI1T40,1150,1150
IFIVEC{I111160,1740+1160
NONZR=0

00 1180 J=1,NV
IF(VEC(JI)11TOs1180,1170
NONZR=NONZR+1

CONTINUE
IF{NONZR-2)1T40,1190,115%0

4
€ SIMON SAYS, TAKE AS MANY GIANT STEPS AS POSSIBL
c

1150
1200

10

o onooo0oo

1210

faXaXal

1220

1230
1240

1250

ononooo

1260
1270

1280

1290

IMMEDTATELY PREVICUS ONE.
GIANT STEPS OSCILLATE PERIDDICALLY (21G-2AG).
{DSCILLATION} STEPS OF OECREASING PERIOD, THEN DRDINARY GIANT STEPS,

IF{MDSQY137041370,1200
CONT INGE

Eess

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

DELETE THE OSCILLATION SEARCH SECTION, SET KOSQ=0, REMOVE ALL

STATEMENTS BETWEEN THIS POINT AND THE NEXT COMMENT CARD OF X-S, AND
REMOVE THE STATEMENT SURRGUNDEO 8Y X~S FURTHER ON.

L
KL ««s POINTER FOR OSCILLATION CHECX

KL=l
STORE OSCILLATION INFI
NOSC=NOSC+}
IF{NDSC-M0SQ}1240,1240,1210
NOSC=HOSQ

TF{NOSC-131370,124041220

ORMATICON.

THE STACK OF OSCILLATION INFORMATION IS

FULL. PUSH IT 0O
THE OLDEST [TEM.
00 1230 K=2,NOSC
CHIDSIK-1)=CHIOS{X}
D0 1230 J=1,NV
XOSCJsK~13=X0SCLJIsK)
ERR{J+K=1)=ERR{JyK)
ADD THE NEW ITEM,
00 1250 J=1,NV
XOSCtJoNOSCY=X{J}
ERR({J¢NOSCI=VEC{J}/SUNY
CHIDS(NOSC)=CHOLD
IF(NOSC~211370,41260,126D

COXCM=RZERO

00 1270 J=1,NV
COXCM=COXCM¢ERR{J,NOSC) *ERR{J 4, NOSC-11}
NAH=NOSC-1

00 1310 KaKLyNAH

NRETR=NAH~-K

COSIN=RZERD

DD 1290 J=1,NV
COSIN=COSIN+ERR(J,NOSCI%ERR{J,K}
TF(K=NAH}13D0,1320,1320

OWNy THROWING

TRY GIGANTIC

AWAY

SEARCH FOR A PREVIOUS SUCCESSFUL GIANT STEP IN A OIRECTION MORE
NEARLY PARALLEL TO THE OIRECTION OF THE PROPOSED STEP THAN WAS THE
THIS MAY MEAN THAT THE LIRECTIONS OF THE

STEPT460
STEPT46])
STEPT 442
STLPTa62
STEPT464
STEPT465
STEPT 466
STEPT46T
STEPT468
STEPT 460
STEPT4&TO
STEPT4T7]
STEOT4T2
STEPTA4T3
STEPT4T4
STEPT&TS
STEPTRTA
STEPT47T
STEPT478
STEPTATS
STEPT 480
STEPT4El
STEPT482
STEPT4A}
STEPT484
STEPT485
STEPT4A6
STEPT487
STEPT48R
STEPT&4BY
STEPT4Q0
STEPTASL
STEPT492
STEPT4Q3
STEPT4I4&
STEPT495
STEPY496
STEPT497
STEPT498
STEPT499
STEPT 500
STEPT501
STEPTSOQ
STEPTS503
STEPTS5D4
STEPTS5D5
STEPTS506
STEPTSO7
STEPTS08
STEPT509
STEPTS10
STEPTS11
STEPTS512
STEPTS13
STEPTS514
STEPTS15
STEATS16
STEPTSLY
STEPTS1R
STEPTS19
STEPTS20
STEPTS21
STEPTS522
STEPTS23
STEPTS52¢4
STEPT525

161



1300
1310

1320
1330
1340

IF(COSIN-COXCM)1310,132041320

CONTINUE

GO TO 1370

KL=K+]

IF(NTRAC11350,1350,1330

NT=NDSC-K

WRITE(KM+1340)NT,COXCM,COSIN
FORMAT{/1X8H***s4 &8 %x5X25HGIGANTIC STEP WITH PERILDO 12,

* 35H BEING AVTEMPTED. COXCM, COSIN = 2E13.4)

1350
1360

4
c XX

DO 1360 J=1,NV
SALVD(J)=TRIALLJ)

TRIAL (J)=X{J)=XOSCL1J,K)
CHBAK=CHIOS(KI

GO TO 1380

XX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

[
C PERFORM GIANT STEPS OR GIGANTIC (OSCILLATIDN} STEPS.

o

1370

Ao ano

1380
1390

1400
c

1410
1420
1430
1440

-1450

1460
1470
1480

1490
1500
1510

1520

a0 AN

1530
1540

1550

CHBAK=CHI{ 1)
NRETR ... NUMBER OF OSCILLATION PERIODS
YET TO BE TESTED (=-1 IF A GIANT STEP
1S BEING TRIED)
NRETR==1
NGIAN.., NUMBER OF GIANT OR GIGANTIC
STEPS COMPLETED
NGIAN=0D
DO 1440 J=1,NV
XSAVE(J}=XtJ}
IF(MASK(J))1440,+1400, 1440
X{JImX{JP+TRIAL (D
XUJP=AMAXL(AMINL XSV XRAXTJ) B o XHINGIY)
FFIX{J)=-XMAX{J))1420,1420,1410
XTUJ)=XHAXUI)
TF{X{J1-XMIN{J))1430,1440,1440
X(J)=XMINLSY
TRIAL{J)=ACK*TRIAL{J)
JOCK=0
JVARY=D
CALL FUNK
NFxNF+1
IF{CHISQ-CHOLD)1450,152041520
CHBAKzCHOLD
CHOLD=CHISQ
NGIAN=NGTAN+1
[F({NTRAC)1390,1390, 1460
IF{NGIAN-1)1470,1470,1500 X
WRITE (KW L4BQICHBAK «NFy {VEC{J) yJ=l,1)
FORMAT{//8H CHISQ =E16,848X&4HNF =17//5X16HNO. OF STEPS = 9ELl.3/

. {21X9E11.3))

WRITE(KWs2490) I XSAVEL S} s J=1,NV}
FORMATI9H X{1de.us./(1X9EL3.5))
WRITE(KWe15LOICHISQuNFy (X{J) s J=1,NV}
FORMAT{/8H CHIS5Q =EL16.B¢8X4HNF =I17/9H X{l1}eeea/(1X9EL3:51)
GO YO 1390
DO NOT INTERPOLATE AFTER AN UNSUCCESSFUL
GIANT STEP.
IF(NGTAN)1600,2600+1530
PERFORM PARABOLIC INTERPOLATION.

DENIM=ACK*CHBAK —( ACK+RUNI T} *«CHOLD +CHISQ

IF(OENOM)L540+1600, 1540

CINDR=({ ACK*#2#C HBAK= { ACK#*2=RUN] T ) *CHOLO~CHISQ) 7/ (RTWO*ACK*DENOM)
00 1590 J=1.NV

IF{MASK([J)11590,1550,1590

X(ALEXSAVECI)AC INORSTRLAL(J)

STEPT526
STEPTE2T
STEPTS528
STEPTS29
STEPTS30
STEPTS3]
STEPT532
STEPTS533
STEPTS34
STEPT S35
STEPTS36
STEPTS3T
STEPTS38
STEPTS3S
STEPTS40
STEPTSAL
STEPT542
STEPT 543
STEPT 544
STEPT 545
STEPTS546
STEPTS&T
STEPTS48
STEPT 549
STEPTS50
STEPTSS1
STEPT552
STEPT553
STEPTS55&
STEPTS555
STEPT556
STEPTSST
STEPTS58
STEPT559
STEPTS40
STEPTS61
STEPTS62
STEPT563
STEPT564
STEPTS&5
STEPT566
STEPTS&T
STEPTS88
STEPT569
STEPTSTO
STEPTSTL
STEPTS72
STEPYTS73
STEPTS74
STEPTS7S
STEPTSTA
STEPTS77
STEPTS578
STEPTSTQ
STEPTSA0
STEPTS5Q81
STEPTS5R2
STEPTS583
STEPTS84
STEPTS85
STEPTS586
STEPT587
STEPTS588
STEPTS89
STEPTS90
STEPTSQ)

X(I)=AMAXLLAMINLIXE I} XFAXCI) 1, XMINT I}

c STEPTS592
TFEX{J)=XMAXTJ) 11570,1570,1560 STEPT5G3

1560 X{J)=XMAX{J} STEPTS94
1570 TF(X(J)~XMIN(J))1580,1590,1590 STEPTSAS
1580 XCJ)=XHIN{J) STEPTS595
1590 CONTINUE STEPT&ST
JOCK=0 STEPT59R

JVARY =0 STEPTS90

CALL FUNK STEPT400
NF=NF+1 STEPT601
1F(CHISQ-CHOLD) 167041600, 1600 STEPT602

1690 DO 1610 J=1.NV STEPT603
TRIAL(J)=SALVO(Y) STEPT404

1610 X(J}=XSAVE(J) STEPT605
TF(NTRAC) 184041640, 1620 STEPT606

1620 WRITE(KW,1630)1CHOLD +NGI AN . STEPT607
1630 FORMAT{/8H CHISQ =E15.8,7H AFTERI3,13H GIANT STEPS. 1 STEPT608
WRITE(KW,1490) (X{J) ¢J=1sNV] STEPT609

1640 IFINGIAN)1650,1650,1700 STEPTA10
1650 CONTINUE STEPTAL1
4 STEPTA12
CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX STEPTA1)
c STEPTK14
€ IF THE OSCILLATIGN SEARCH IS DELEVED, DELETE THE FCLLOWING STATEMENT.STEPTAIS
¢ STEPT6lA
IF(NRETR)L720,1660, 1280 STEPTALT

¢ STERTHI R
CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX STEPTALS
[ STEPTOR20
c IF ALL GIGANTIC STEPS WERE UNSUCCESSFUL.  STEPT621
c TRY A GIANT STEP. STEPT62?
1660 [F(NRETRI1T20,1370.1720 STEPTAZY
c STEPT624
1670 CHOLO=CHISQ STEPTAZS
JOCK=1 STEPTH2A
IF{NTRAC}170C,1700,1680 STEPT&ZT

1680 STEPS=NGIAN STEPTH?R
STEPS=STEPS+CINDR STFPTA29
WRITE(KW,1690)CHOLO,STEPS STEPTA 30

1690 FDRMAT(/8H CHISQ =E16.8,TH AFTERE11.3.134 GIANT STEPS. | STEPTHA
WRITE (KW, 1490V I X{J) +J=1,NV) STEPTAI2

1700 IF{NRETR)530,1710,1710 STEPTHIL
1710 CONTINUE STEPTA 4
[4 . A SUCCESSFUL GIGANTIC STEP HAS OCCURRED.  STEPT63S5
GO TO 530 STEPT /34

[4 AN UNSUCCESSFUL GIANT STEP HAS OCCURREN.  STEPTH1I7
c DELETE 17S DSCILLATIGN INFORMATION,  STEPTA3R
C NOSC=MAXD(NOSC~1,0) STEPT639
1720 NOSC=NOSC-1 STEPTE40
IFINOSCY1730,1740,1740 STEPTA4]

1730 NOSC=0 STEPTAGL2
1740 CHI(I)=CHOLD STFRT 642
1750 CONTINUE STEPT A4S
4 RETURN IF THE SENSE SWITCH IS On. STEPTALS
CALL OATSW {(NSSW,JUMP} STEPT K4k
TF{JUMP~112110,2110,1760 STEPTAST

c STEPT64H
1760 IF(NF-NFMAX)1770,1770,2090 STEOTA4Q
1770 CONTINUE STEPTA5Q
c END OF THE MAIN DO LOOP. STEPT6R]
[ STEPT 652
C & % & & & & & &« & & &« & % & % & & & & 0 & & & ¢ & & & & * & x k¥ o x & STEPVHS
c STEPTH54
€ ANDTHER CYCLE THROUGH THE VARIABLES HAS BEEN (CMPLETED. STEPT6SS
€ PRINT ANOTHER LINE OF TRACES. STEPT656
[+ . STEPTE57
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IF{NTRAC)1790,1790,1780 STEPT658

1780 WRITE(KW,14B0}CHOLDsNFy (VEC(I) ,d=1 NV} STEPT659
1790 {F(NZIP)1830,1800,41830 STEPT660
1800 IF{NTRAC})1830,1830,1810 STEPT661
1810 WRITE{KWs1490)(X{J}sd=14NV} STEPTS62
WRITE{KW,1820) STEPT663

1820 FORMAT{1H } STEPT664
1B30 NZIP=NIIP+]1 STEPT665
G0 TD 540 STEPT666

C STEPT66T
C A NEW BASE POINT HAS BEEN FOUND. PRINT THE REMAINING TRACES. STEPT668
c STEPT669
1840 IF(NTRAC)1860,1860,1850 STEPT6TO
1850 WRITE{KMWs1480)CHOLDyNFy {VECTJ} sJx1,1} STEPTATL
WRITE(KW, 14903 (X{J} . J=1, NV} STEPT672

[ STEPT6T3
C DOECREASE THE SIZE OF THE STEPS FOR ALL VARIABLES. STEPT&6T4
4 STEPT4TS
1860 CONTINUE STEPT&TS
c RETURN IF THE SENSE SWITCH IS ON. STEPY6TT
CALL DATSW (NSSW,JUMP} STEPTATB
1F(JUMP~1}2110,2110,1870 STEPT6TS

c STEPTA80
1870 TF{NF~NFMAX}1880,1880,2090 STEPT681
CHECK WHETHER ALL ABS{DX{J}} LE. OELMN{J}.STEPTER2

1880 NGATE=L STEPTS83
DO 1930 J=1,NV STEPT 684
TFIMASK{J)11930,1890,1930 STEPT 485

c ADX=ABS{DX{J}) STEPT686
1890 ADX=DX(J) STEPT4BY
TF{ADX}19004+1510,1910 STEPTE8S8

1900 ADX=—ADX STEPY689
1910 IF{ADX-DELMN{J}}1930,1930,1920 STEPT690
1920 NGATE=Q STEPT691
1930 DX{JY¥=DX{J}/STCUT STEPT692
IF{NGATE)1970,1970, 1540 STEPY693

1940 IF{NTRAC}2150,1950+1950 STEPT6594
1950 WRITE(KW,1960) STEPT69S
1960 FORMAT{///65H TERMINATED WHEN THE STEP SIZES BECAME AS SMALL AS THSTEPTAS96
© #E DELMNGJY. ) SYEPT6ST
GO TO 2150 STEPT6SR

[ CHECK THE JFLAT(Jl. STEPT699
1970 IF{NFLAT}2060,2060,1980 STEPT700
1980 JFLMN=5 STEPT701
DD 2010 J=1.NV STEPTT02
IF(MASK{J)12010,1990,2010 STEPTTO03

1990 IF{JFLAT{J)-JFLMN}2000,2010,2010 STEPT 704
2000 JFLMN=JFLAT(J} STEPTTOS
2010 CONTINUE STEPT706
IF{JFLMN~-112060,2020,2020 STEPT707

2020 IF{NTRAC}2150,2030,2030 SYEPT 708
2030 WRITE(KH,2040) STEPY 709
2040 FORMAT(///49H TERMINATED WHEN THE FUNCTION VALUES AT ALL TRIAL STEPT710
«  23H POINTS WERE IDENTICAL. 1} STEPTT11
HWRIVE{KR120503 (DK{J ), J=1sNV] STEPTTI2

205D FORMAT(///23H CURRENT STEP SIZESes.s //(1X9E13.5)} STEPTT13
GO TD 2150 STEPT714

2060 IF(NTRAC}S530,530,2070 STEPYTLS
PRINT THE DX{J) AND SEARCH SOME HORE. SYEPT716

STEPTTLY

2070 WRTTE{KW,2080}(OK{J),J=1,NV} STEPTT1B
2080 FORMAT{/76D{I1X1H*}//26H STEP SIZES REDUCED TOess.//{1X9EL3.51) STEPTT19
G0 TO 530 STYERPTT20
STEPTT21

2090 WRITE(KWs21003NEMAX STEPTT22
2100 FORMAT(///46H ABNORMAL TERMINATION.ese  MORE THAN NFM8X = IT, STEPT723

c

. 31H CALLS TO THE CHiSQ SUBROUTINE.}
GO TO 2130

2110 WRITE(KW,21201}
2120 FORMAT{///642H SUBROUTINE STEPIT TERMINATED BY OPERATOR.}

<
2130 WRITE(KW;20503(DX{J)sJ=1,NV]}
c

c
2140 KWiT=1

c
2150 JVARY=0

SEY SWITCH FOR TERMINATION.
CALL FUNK WITH THE BEST SET OF X1J}.

CALL FUNK
TIF{CHISQ-CHSAVI21T70,2170,2160

2160 WRITE{KW,420}CHSAV,CHISQ,NF

2170 IF(NTRAC}2210,2180,2180

2180 WRITE{KWr2190INFs {X{JY,J=1,NV)

2190 FORMAT{//1X}5,23H FUNCTION COMPUTATIONS

. 77 /10X24HF INAL VALUES OF XtJleeso//(1X5E22.1411
WRITE(KW,2200)CHISQ

2200 FORMAT{//2&4H FINAL VALUE OF CHISQ = E22.14//}
2210 IFLKWIT12260+2220+2260

[
2220 MATO=MATRX-100

MATD=FABS{MATRX-100}

IF(MATD12230+2240,2240

2230 MATD=-MATD
2240 IF{MATD-5032250,2250,2260

[
[

c
2270 FACaRTEN®S{MATRX-100}

2280 DX(I}=FAC®DX{I}
[

[

[ ¥aXa¥a¥s)

AoNooon

STEPT T24
STEPTT2S
STEPTT26
STEPTT27
STEPTT28
STEPTT29
STEPT 730
STEPY 731
STEPTT32
STEPTT33
STEPT 734
STEPTT3S
STEPT 736
STEPTT37
STEPT 738
STEPT 739
STEPT 740
STEPTT&1
STEPT 742
STEPT743
STEPT 744
STFPTT45
STEPT 746
STEPTT4T
STEPTT48
STEPT 749
STEPT TS0
STFPTTS5]

SKIP ERROR CALCULATICN IF ANY MASK{J}oNE.O.STEPT7S52
2250 IF{NACTV-NV12260,2270+2260
2260 RETURN

SET THE STEP SIZES FCR SUBRRUTINE STERR.

DO 2280 I=l.NV

CALL STERR TO COMPUTE AN APPROXIMATE
ERROR MATRIX.

CALL STERR {FUNKsKWsNSSWyDX)NFsXSAVE,TRIAL}
GD TO 2140
END STEPT,
END
BLOCK DATA

BLOCK DATA SUBPROGRAM FOR STEPIT, SIMPLEX. AND STP,
ELIMINATE IF COMMON IS UNLABELLED, AND SET THE VARIABLES BEFURE
CALLING STEPT.

COMMON /FRODO/ NFMAXsNFLAT,JVARY,NXTRA
DATA NFMAK/100000D/, NFLAT/1/4 NXTRAZD/

END
SUBROUTINE DATSW (NSSKsJUMP)
DUMMY VERSION OF SUBRODUTINE DATSW (ALL SWITCHES PERMANENTLY OFFt.

JUMP=2
RETURN

END
SUBROUTINE STERR (FUNKyKWyNSSWeDXsNF¢XSAVE,TRIAL)

STERR 1.0 A.N.S.I1. STANDARD FORTRAN JANUARY 1973
Jeo P. CHANDLER, COMPUTER SCIENCE DEPT., OKLAHCMA STATE UNIVERSITY

STERR COMPUTES AN APPROXIMATE ERROR MATRIX FOR A NCNLINEAR
FITTING PROBLEM.
THE VALUES COMPUTED ARE OFTEN POOR APPROXIMATICNS. THEY SHOULD BE

STERTT5)
STEOT 754
STFPT 755
STEPT 756
STEPT?57
STEPT 758
SYEPTT59
STEPT 760
STEPT 761
STEPT 262
STEPT 763
STEPT 764
STEPT 765
FROBLOK]
FROBLOK2
FROBLOKZ
FROBLOKS
FROBLOKS
£20BLOKE
FROBL OKT
FROBL OXB
FROBLOKY
DU¥MY SH1
DUMMY Sk 2
DUMMY Sw3
DUMMYSwW&
DUMMYSWS
DYMHY SW6
DUMMY SW7
STERR
svean
STER®
STERR
STERP
STER3
STERW
sTeRD

DN PR W~
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AOAPNNOANOOONNOO

00 o oo

5000
5010

5020
5030

5040
5050

5060
c
c co
C CH
[

¢
5070

5080

5090

INPUT QUANTIT{ES..
DUTPUT QUANTITIES
SCRATCH SYORAGE...

CHECKED USING SUBROUTINE FIDO.

o FUNKKW;NSSWeDXsNFeX
NF ERR
o XSAVE,TRIAL

DX {4} ARE THE STEP SIZES FOR APPROXIMATING THE DERIVATIVES OF CHISQ
WITH RESPECT TO X(J) BY FINITE DIFFERENCES. SEE STEPT FOR
DEFINITIONS OF ALL OTHER QUANTITIES.

XMAK: XMIN, AND MASK ARE IGNORED IN STERR.

STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERRA

DOUBLE PRECISION XoXMAXXMINsDELTXyDELMNERR,CHISQyDXs TRIAL ,XSAVE,STERR

X SECND,CHOLDy RZERO+RUNIT+TENLNy SNDET ¢ DETLNy AB ER »DENOM
DDUBLE PRECISION PoAP40Q4QSORT,DSQRY,0LOG,DLCG,OXDEF,RTWO

DIMENSION DX(20},XSAVE{20),TRIALL20}
DIMENSION SECND(2,2)

COMMON /CSTEP/ X{20)4XMAK{20)sXMIN(20),DELTX{20),DELMN{20),
- ERR(214.20),C HISO;NVy NTRAC yMATRX yMASK{ 20}
COMMON /FRODD/ NFMAX,NFLAT3JVARY,NXTRA

QSORT(Q)=DSQRT{Q)
QSORT(QI=SQRT(0Q)
QLOG({ Q) =DLOGtO)
QLOG{QY=ALTGIQ)

DXDEF oo DEFAULT VALUE FOR DX
DXDEF=.001 .
RZERD=Q.
RUNTT=]1,
RTWO=2,
TENLN=2,303

DO 5030 J=1,NV
{FIDX{J})5020,5000,5030
DX{J)=DXDEF*X(J?
1F(DX(J)15020,5010,+5030
DX{J}=DXDEF

GO TO 5030

DX{J)==-DX{J]

XSAVELJI=X{J)

CALL FUNK

NF=NFel

CHOLD=CHISO
IFINTRAC)5070,5040, 5040
WRITE(KMW,5050}
FORMATI41HISIZES OF INCREMENTS TO BE USED BELOW..
WRITE{KW.5060) (DX(J)sJ=1,NV)
FORMAT(/{1X9E13,51)

MPUTE THE {SYMMETRIC) MATRIX OF SECOND PARTIAL DERIVATIVES OF
I1SQO WITH RESPECT TO THE X(J).

COMPUTE THE OIAGONAL PARTIALS FIRST.
DO 5090 I=1,NV
JVARY=0
DO 5080 J=1,2
X{I)=XSAVE(I }#DX(1)
CALL FUNK
NF=NF ¥l
JVARY =L
SECND{L,J)=CHISQ
DX{T)=-DXCtI)
X1 =XSAVE(T)
ERR(II3=([SECND(1,1)~CHOLD)-(CHOLD~SECNOLLy2) 1 )/0x (] 1¥%2

STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR

STERR 3

STERR

STERR
STERR

STERR

STERR

STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STERR
STER®R
STER®
STERR
STERR
STERR
STERR
STERR
STERR
STFRR
STERR
STERR
STERR
STERR

anaa

5100

5110

c
5120

[
c

c

fAAGAOOA

~

5130

5140
5150
5160
5170

5180

5190

5200
5210

. e

IN
Jo
BY
ONI

5220

5230
5240

STERR 75 '

COMPUTE THE OFF-DIAGCNAL PARTIALS. LSE A STERR 76
REDUNDANT FOUR-POINT RULE FOR GREATER STERR 77

RELIABILITY, STERR 78

IF{NV-215140,5100+5100 STERR 79
DO $130 I=24NV STERR 80
IM=1-1 STERR 81
0D 5130 J=l,(M STERR R2
DO 5120 K=1,2 STERP 83
XCEY=XSAVE(I}+DX (I} STERR A4
JVARY 20 STERR® RS
DD 5110 L=1,2 STERR A5
XEJIaXSAVELJ) ¢DXEJ) . STERR 87
CALL FUNK STERR A8
NFaNF+1 STERR A9
JVARY =) ) STFRR 90
SECND(K,L)=CHISQ STERR 91
X{J1=XSAVELJ) STERR 92
DX{J1==DX(J} STERR 93
X(LI=XSAVELI) STERP 94
. RETURN [f THE SENSE SWITCH 1S ON. STERR 95

JUMP =2 STERR 96
CALL OATSW {NSS¥.JUMP) STERR 97
IFLJUNP-115580,5580,5120 STER? 9A
STERR 949

OX{I)==DX(1} STERR100

ERR{I+J)=((SECND{1+1)=SECND{1,2))-(SECND(2,11=SECNOI2.:2)))/ STERe 101
. (RTHOSDX{ I} #RTWO*DX(J) } STER2 102
STLER 102

END OF THE DERIVATIVE COMPUTATICN STERR 106

IF(NTRAC)S180,5150+5150 STLRRLO%
WRITE(KNW,5160) STERR10A

FORMAT(/7///745H MATRIX OF THE SECOND PARTIAL DERIVATIVES.... /1H ISTERR1O7
00 5170 I=1,NV STERR 108
WRITE(KW, 50601 {ERR(T,J) e Jdml,y 1} SYERR109

STERR11N
D0 5190 t=1,NV STERRL11
DD 5190 J=1,1 STERRILL2
1F{ERR(1,4))5190,5200,5190 STERRI13
CONT INUE STERR 114
GO YO 5220 STERRL1S
WRITE(KW,5210) STERR1l4
FORMAY(//7/46H THE ABOVE MATRIX CONTAINS CNE OR MORE ZEROES. / STERR117
* S1H PERHAPS A LARGER VALUE OF -MATRX- SHOULD BE TRIED, STERR1LR
- 314 TO SEE IF THEY ARE LEGIVIMATE. ) STERR 119

STERR120
A XS N RS E XL S SN NS kS S EE e S x % STERR]2]

STERR]122
VERT THE MATRIX OF SECOND PARTIAL DERIVATIVES USING THE GAUSS- STERR 123

ROAN METHOD (F. L. BAUER AND C. REINSCHy P, 45 IN =LINEAR ALGEBRA- STERR124

Jeo Ho WILKINSON AND C. REINSCH (SPRINGER-VERLAG, 1971)). STERR12S

LY THE LOWER TRIANGLE OF ERR IS USED OR ALTERED. STERR 126
STEPR12T

DETLN=RZERO STERR128

SNDET=RUNIT STERQ 129

NOTPD .., =1 IF THE MATRIX IS NOT STERR 130

POSITIVE DEFINITE STERR 131

NOTPD=0 SYERu4 12

00 5350 KK=1,NY STERR1IY

KeNV+1=KK STFRR1 34

P=ERR(1,11 STERD 116

AP=P STTRR136

IF(P15250,5230,5260 sTere]az

WRITE(KW,5240) STERR138

FORMAT(////27H ERROR MATRIX IS SINGULAR. STERR 139

* 3TH PERHAPS -MATRX~ SHOULD BE INCREASEOD. Fr77n STFRR 140

61



GO TO 5580 STERR 141

5250 NOTPD=} STERR142
SNDET=~SNDET STERR143
AP==AP STERD 144

5260 DETLN=DETLN+QLOG{AP}/TENLN STERR 145
TFINV~2)5320,5270,5270 STERR 146

5270 DO 5310 J=2.NV STERR1&T
O=ERR(J,1) STERR 148
IF{J=K15290,5290,5280 STERR149

5280 XSAVELJ)=Q/P STERR150
GO TO 5300 STERR1S1

5290 XSAVE{J)=~Q/P STERR152

<5300 DO 5310 L=32+J STERR153

5310 ERR{J=1,L=11=ERR{JsL}+Q*XSAVE(L) STERR 1S4

5320 ERR{NV,NVI=RUNIT/P STERR155
IF(NV-215350,5330,5330 STERR 156

5330 DO 5340 J=2,NV STERR1S57

5340 ERR{NV,J~1)1=XSAVELJ) STERR158

5350 CONTINUE STERRI59

c STERRLIGO

C“‘..t‘l."".l‘l‘.“‘"."“l""lsffkll@l
c STERR162
€ PRINT THE ERRDRS AND CORRELATIONS. AND RETURN. STERR163
c STERRIG64&

IF{NGTPD}$5380,5380,5260 STERRI&S

5360 WRITE(KW;5370) STERR166

5370 FNRMAT(////44H THE ERROR MATRIX IS NOT POSITIVE OEFINITE. STERR167
- 37TH PEAHAPS -MATRX- SHOULO BE DECREASED. ! STERR168

5380 IF{NTRAC}5410,5390,5390 STERR169

5390 WRITE{KHW,5400J0ETLN,SNDET STERR170

5400 FORMAT{////51H ALCGIO{MAGNITUOE OF DETERMINANT CF ABOVE MATRIX) = STERRITI
& E13.5,10X2ZHSIGN OF OETERMINANT = F4,1) STERRLT2

c STERR173

c THE ERROR MATRIX IS TWICE THE INVERSE OF  STERR17e

c THE MATRIX OF SECOND DERIVATIVES. STERR1TS

5610 DO 5480 Ix1,NV STERR176
DO 5420 J=1,1 STERRLT?
ERR{I,JI=ERR{I4J}*RTWO STERR]178

c RETURN THE FULL MATRIX. STERRLTS

5420 ERR{J,I}=ERR{I,J} STERR1AO

c XSAVE({I)=SIGN(SQRT{ABS{ERR{T,I1}},ERRL1,1)ISTERRLSL
ABER=ERR{I,I} STERR182
IF(ABER}5430,5480,5440 STERR183

5430 ABER=-ABER STERR 184

5440 ABER=QSORT{ABER} STERR1AS
IF({ERRIT,1}1545045460,5480 STERR186

5450 ABER=-ABER N STERALRT

5460 WRITE{KW,54T0IERR{Is11 STERR188

5470 FORMAY{ ///50H NEGATIVE OR ZERD MEAN SQUARE EFRCP ENCOUNTERED... STERR189
- 3XEL6.8/37H PERHAPS =—MATRX- SHOULD RE DECREASED. ///1H ) STERR190D

5680 XSAVE(1)=ABER STEPR191
TF(NTRAC}5580,5490+ 5490 STERR1I92

5490 WRITE{KW,5500} STERR193

5500 EQORMAT{/////20H STANOARO ERRORSeses } STERR194
WRITE(KW, 5060} { XSAVE{J} yJ21,NV} STERR195

[4 STFPR195
TF(NV-1)5580,5580,5510 STERR197

5510 WRITE{(KW,552Q) STERR198

5520 FORMAT(/////45H LOWER TRIANGLE OF THE CORRELATICN MATRIX.... /IH }STERR199
DO 5570 1=2.KV STERR 200
Pu=1-1 STERR 201
DN 5560 J=il i STERR2D2
DENOM=XSAVE{ 1) *XSAVE(J! STERR201
TF{DENDM}S540,5530,5550 STERR 20«

5530 TRIAL{J}=R7FRO STERR20%
GO TN 3560 STERR20&

5540 DENDM=-DENDH

5550 TRIAL(JI=ERR{I+J}/DENOM

5560 CONTINUE

5570 WRITE(KW,50603 (TRIAL{J) sJ=1, [N}

c

5580 RETURN

€ END STERR.
EN

1]
//GD,SYSIN DD »
17

STERRP20T
STERR 208
STFRR2D9
STFAR 210
STERRZ{1
STFRR?12
STFRR2112
STEQR 215
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TABLE XV

PARAMETERS OF SPHERICAL SIX-LINK
R-R-R-R-R-R-R MECHANISM

* EXISTENCE CRITERIA OF SIX-LINK, TWO~L3J3P i-R*C-é-C-R-: SPAZZ MECHANISM *

INITIAL VALUES OF THE VARIA?LES

- - - (> > e o

N = 20

NP = 0

NN = 99002

DELYA = 0.500D-01

F = 0,1000-04

ROW = 0.500D 29
[orommmermmema R adtaltetteld | =m—mm——m | == e |
| | | | ]
| TWIST ANGLES | X | XMIN l. XMA X |
| | | | |
R ittt | == mm e | == e e e it [
| ALPHA 12 | 0.85000 02 | 0.2 | 7.36000 03 |
| | 4 H |
| e e |- e e jmmmmmmmmm e |
| ALPHA 23 | 0412000 03 | 0.) | 2.3670D 23 |
| | | | |
R e et ind formm—mm—————e e B et b |meemmmm e }
| ALPHA 34 § 0.1900D 03 | 0.9 I J.3630D 93 |
| | i | |
i el R ) Anbeiaite ettt
| ALPHA 41 | 0.22000 03 1 0.2 1 72.36200 03 |
H | | | i
------------- R et Rt R |
| ALPHA 65 I 0.5500D 02 | (C.0 | D.3670D0 03 |
| i | | i
| | e B | mm oo |
| ALPHA 76 | 0.1750D0 03 | 0.2 | 0.3500D 33 |
] _ | § |
|-- o e { | =wm——m e | em—erm e |
i ALPHA 52 | 0.72000 02 | 0.0 | 0.36000 33 |
! | i | |
R e Rttt B e e b Dl Ea DA e Ll |
i ALPHA 17 § 0.3120D0 03 | 0.2 | 0.3600D 23 |
| } | ] |
- | | ————————- |———ommeeee i
} PHI 1 { 0.7T000D 02 | 0.0 ! 0.3600D 23 |
§ | | |
I el Rttt e

| SI 1 }] 0.12000 03 | 0.0 | n.3600D 03 |
| | |
| =~ ——— | =———m——————e e | ———————— !
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TABLE XV (Continued)

| t ' i
] I o~ 1 —~ t
] ! © 1 O ]
! [} [} )
] (=} P~ ]
[} > | © [ =] ¥
] < | © 1 O I
1 x [ = I o |
1 > I o ]
] [ 1 . 1
] [ =] ] © ]
[ t ] ]
1 | J }
] \ { }
i ' ! 1
] [} | ]
] | | !
[} ] ] ]
t zZ ] ] i
o 1 \
| x | | '
I X 1o 1o |
1 [ | Y ]
' [ = | © t
t 1 i )
] ' t ]
' [} | ]
[ ! [ '
1 t 1 t
' [l ] 1
} 1 ] '
1 1 ] 1
] x | ] 1]
! ! }
1 o (=] ]
| . | o ]
' o I O ]
) ) '
! ' 1
————— ey " " "
| | ] )
) (%} ] t )
! » I} ] )
| z ] 1 '
1= i 1
1 - - 1 N ]
[} 7] [, ]
| b4 \ 1
1z ] t
o= ' '
1 x | | i
t ) t ]

] ' ' [ [ } ! ) | |
) o~ [ ! e [ t - [ | | o~ ]
' [a) [ o 1 © [ ] [ =) 1 o 1o [~ ]
] i ] t ] ] [} 1 1 '
] (=] [ =] t Q o~ [ 1~ [ | B Y [}
1 x (=] 1o (=] [ = [ [ =) (=] [ =] |
t < 1o 1o I © (= [ =) | © = | Q |
t X i o (= | © (K= (=} [ = | © [ |
I x 1 n I I twn [BTs} [T tn I n i
[} | o | o [ [ S 1 . . | S [ !
] o I O Vo [~} | I © t O P o t
| t 1 ] i 1 | | t i
[ [ ] | ' \ | i ] t
| \ | | ] [ ! | | 1
1 | ) 1 | 1 | | 1 1
) t [} t [} ] | L} [} [}
| ] | i} | 1 [} | i 1
1 } | i [} | | I [} [}
[ | | i ] i 1 ] | |
b o— | 1 ] | | | | | ]
[ 4 t ] | i ) i | | )
1 x P o | © (= 1o I © (=] (=] I © 1
| [ | . [ I . I o I e [ 1 o ]
t I © 1 c 1 O [ o) | © | © | O [ =] |
' 1 1 1} | 1 t } [} [
] 1 1 ] ] ] 1 | | '
llllllllllllllllllllllllllll
| ] ] | 1 ] [ ] [ i
i 1 ] | [} | } ] ] t
] | ] ] | ] \ 1 ] 1
| | t [} ! t | 1 1
1 ! [} } ' [} | 1 ]
[} | [} | i ] 1 } t
o t | | t i | | ] 1
| I} } t [} } t [} '
(K] [ =] i o | © (=] 1 O t © [ 1
I [ [ (S t . Y [ [ t
(=] (=] 1 © [~ (=] t o (=] i o 1
] | | ] { 1 1 1 ]
-1 ' } t t t ] | '
llllllllllllllllllllllllllll
1 1 1 [} ] ] [] ] !
] | ' ] 1 1 t 1 1 1
o o i ] | 1 t t t ] 1
- 1 ] | 1 1 ] ) ] ]
& 1 ] ! 1 } 1 t ] i
2 [ I I m [ ) o~ [IRTA] I 0 r N I~ ]
w [ I N [ | < [ 1~ 1w | - |
- t ' [ I ] ' ] | ]
1 | « | « | < [ < [ 1 < [ ]
4 ] } ! 1 ] 1 ! ] t
4 ] ! t + ] | ' ¢ ]
— t | ¢ | T [} ] t t
] ' t ) ] 1 [ ' 1 ]
1 ] ] | ] ] ' ] 3 [




ENTER SUBRQUTINE STEPIT.

INITIAL YVALUES....»

MASK = 0
0
0

X - 0.14840 01
0.20940D 01
0.0

XMAX = 0.62830 01
0.6283D 01
0.50000 01

XML N = 0.0
0.0
0.0

DELTX = 0.50000-01
2.5300D-01
0.5000D0-01

DELMN = 0.10000-04
0.1000D-04
0. 1000D-04

0
0
o]

0.209%D 01
.

0.0

0.6283D 01
0.50000 01
0.50000 01

0.0
0.0
0.0

0. 50000~ 01
0.50000-01
0.5000D-01

0.10000-04
0.1000D0-0%
0.10000~0%

20 VARIABLES, 20 ACTIVE.

RATIO = 0.160D 02

CHISQ = 0.0

BEGIN MINIMIZAT IONsss.

ACK =

TABLE XV {(Continued)

COPYRIGHT 1965 J. P.

[-X+]

0.3316D 01

0.6283D0 01
0.50000 21

0.0
0.0

0.50000-01
0.50000-01

0.10000~ 04
0.100)D-04

MATRX =

0.2000 01

CHANDLER+ PHYSICS DEPTV.s INDIANA UNIVERSITY,

oo

0.3840D 01

0.62830 01
0,.53000 Ol

0.0
0.0

0.50000-01
0,50000-01

0. 10000~-04
0.1002D-04

oo

0.95990 00

0.0

0.6283D 01
0.50000 01

0.0

0.0

0.50000-01
0. 50000-01

0.10000-04
0.10000-04

NCONP = 5

COLIN = 0.990) ©

TERMINATED WHEN THE STEP SIZES BECAME AS SMALL AS THE DELNMNLJ).

152 FUNCTION COMPUTATIONS

FINAL VALUES OF XfI)eoss

0.148352986419520 01
0.30543261909971D Ol
0.0
0.0

FINAL VALUE OF lrilSQ =

0.20943951023932D Ol
0.12566370614359D 01

0.0
0.0

0.0

0.33161255787832D 01
0.54454272662223D0 01

0.0
0.0

0.0
0.0

co

0.30540 01

0.6283D 01
0.5000D0 Ol

0.0
940

0.50000-01
0.50000-01

0.10000~04
0.10000-04

NFMAX =

0

34383972435438750 01
0.122173047639630 31

oo

J.12570 01

.

0.62830 21
0.50000 01

vo
CR=)

J.52029D-01
3.50030-21

0.10000-2%
0. 10000-J4

93220

[SX=1

0.5445D 01
J.)

J.6283D )1
0.53030 31

0.0
0.0

0.50000-01
3.53330-31

J.1333D~04
0. 10000-04

NFLAT

COMPR = 0.4010 00

0.0

0.0

198

oo

0.12220 01

7.62830 01
J.52330 231

0. 50000-01
3.50000-21

0.1000D0-04
0.10000-J¢%

1

0.95993108859688) 00
J.239433512239320 01



TABLE XV (Con_tinued)

FINAL VALUES OF THE VARIABLES

— —————— o o

- e ———-—————

| 1 {
| TWIST ANGLES | X } XMIN i XMAX !
| H | | ]
| | ——— R e atnaab et o |
| ALPHA 12 ! 0.8500D0 02 | 0.0 | 0.3600D 23 |
1 | } | |
{-- -] e i ntad Bttt e D et |
i ALPHA 23 { 0.12000 03 | 0.0 | 0.36000 03 |
| | I | |
o |rmmm e jrmm——————— e ittt {
i ALPHA 34 ] 0.1900D0 03 | 0.0 | 0.36000 03 |
i | i } 1
jremmm e ——— j=m—mm——— |- el B |
l ALPHA 41 | 0.22000 03 § 0.0 { 0.36000 03 |
| 1 ! | |
=== -} ——mm————] - {—-
{ ALPHA 65 | 0.5500D0 02 | 0.0 i1  0.36000 03 |
| | | [ H
R e e e | === | =mm J
§ ALPHA Ts | 0.17500 03 | 0.0 | 0.36000 03 |
| | { | |
R e atntat | ittt jmmm— e |=——m— e |
} ALPHA 52 ] 0.72000 02 | 0.0 j 0.36000 03 |
| i l J |
e - |mm e == —————— !
1~ ALPHA 17 { 0.31200 03 | 0.0 | ©.36000 03 |}
| } | | {
R et o Rl B e
| PHI 1 { 0.7000D 02 | 0.0 | 0.36000 03 |
| { | 1 i
el B R el B bl e |
| SI 1 | 0.1200D 03 | 0.0 } 0.36000 03 |
| | § | |
{ [ | === R il 1

R ]--- -] —————————| |

| { i | |

| KIENK LINKS | X f XMIN { XMAX |

R il b | |- -1 ———

! Sl I 0.0 | 0.0 | ©0.50000 Ol |

l | | | |

jommre e jmmmmm—————— |- | ————————

| S2 ! 0.0 | 0.0 ! 0.50000 01 |

| l |
| f |

199



“TABLE XV (Continued)

i | ]
} LINK~LENGTHS | X | XM IN i XMAX i
| ) | i |
R At e tadetobd - |=mmme e i
| A 12 | 0. | 0.0 I 2.50000 01 |
] § § | |
e e R ettt o jom e |
| A 23 ] 0.0 i 0.0 I 2.5000D 01 |
{ { | | [
jomrm———————— R et - jmmm e |
} A 34 | 0.0 1 0. | 0.5000D 01 |
| i H | }
I -— o o jmm e }
| A 41 | 0.0 I 0.2 1 0.50000 01 |
4 | } | i
R e ot I D et B D b bt LR
| A 65 | 0.0 } 0.2 | 0.50000 21 |
i ] | | |
R D R ettt bl [ |
| A 76 { 0.0 | 0.0 | 0.50000 231 |
§ | l i |
e i Iatitaae e el B bt bbb B bty
| A 52 I 0.0 ] 0.2 I 0.,5000D 31 |
i ] ] | |
R e DL Bt R ittt == = i
i A 17 i 0.0 } 0.0 | 0.50000 21 |
i | ] | |
j=m—————————— jmm————————— R itk I i et e i

FINAL VALUES OF THE EXISTENCE CONDITIONS

EQUATION 1 = 0.0
EQUATION 2 = D.0
EQUATION 3 = 0.0
EQUATION 4 = 0.0
EQUATION 5 = 0.0
EQUATION 6 = 0.0
EQUATION 7 = 0.0
EQUATION 8 =4 0.0

EQUATION 9 = 0.0

200



TABLE XVI

PARAMETERS OF SPACE SIX-LINK
R-R-C-C-C-R-C MECHANISM

201

# EXISTENCE CRITERIA OF SIX-L INK, TWO-LDOP R=R-C-C-C-R-C SPACE MECHANI SM ®

INITIAL VALUES OF THE VARIABLES

- ————— " o - — e " o S . e o

—— o — —

e e R

{
XMA X |

0.36000 03 |

0.36000 03 |
|

el SRR

N = 20

NP = 0

NN = 99000

DELTA = 0.5000-01

F = 0.100D~16

ROW = 0.,5000 00
|===me—m e i -— ==
| { i
I TWIST ANGLES | X | XMIN
i [ |
|- e |
| ALPHA 12 I 0.70000 02 | 0.7000D 02
i | |
[ -4 el R bttt
| ALPHA 23 ] 0.0 { 0.0
| i |
i | -- el D e
| ALPHA 34 §f 0.70000 02 | 0.70000 02
| { |
|-— i o
I ALPHA 41 I 2.0 i 0.0
| ) {
| =—m——m—————— ) |
| ALPHA 65 | 0.80000 02 | 0.0
| i |
| | |
| ALPHA To | 0.12000 03 | 0.0
| I |
| | -——=i -
] ALPHA 52 | 0.20000 03 | 0.0
| i |
et B Tt el [ ittt |
i ALPHA 17 } 0.1110D0 03 | 0.0
i | I
| - - i |
| PHI 1 | 0.35000 02 | 0.30000 02
i | i
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TABLE XVI {Continued)
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TABLE XVI (Continued)

ENTER SUBROUTINE STEPIT, CUPYRIGHY 1965 Js P. CHANDLER, PHYSICS DEPT. s INDLANA UMIVERSITY,

iNITJAL VALUES.ee»

MASK b ] 1 ’ 1 1 ] ] o 0 ]
[] [ -} 1 1 1 1 0 4
[} [} i
X - g.12220 0t 0.0 0.12220 01 0.0 0.1326D 0L  0.2094D 01 0.3491D0 01 0,1.9370 €1 0.6i09 00

O.1484D 01 0,12000. 01 0,7000D0 00 0.20000 01 ©.17200 01 0,25000 01 0.3000D 01 0.4000D 01 0©.3500D 0L
0.60000 Ol 0.43000 O}

AMAX e 0.12220 Cl 0.0 0.12220 01 0.0 C.6283D ¢t 0.6z83D0 01 0.6283D 01 0.6283D 01 0.6283D Ci
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CHISG = 0.18405228D 10

SEGIN MINIMIZATION eoe

TERMINATEY WHEN THE STEP S12ES BECAME AS SMALL AS THE DELMNLJ),.

52152 FUNCTICN COMPUT AT EUNS

FINM VALUE OF CHISQ « 0.139%39223729020-10
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FINAL VALUES OF THE VARIABLES
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FINAL VALUES OF THe EXISTENCE CONDITIONS

EWUATION
EQUAT ION
EQUAT IGN
EQUATION
EQUAT ION
EQUATION
EWUAT IUN
EQUATION

EQUATION

-0.2377D-06

~0.81720-06

-0.306070-06

0.1627D0-05

~0.21110-05

-0.,9166D-06

0,20230-05
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Figure 35. Proposed Six-link, Two-loop R-R-C-C-C-R-C
Overconstrained Mechanism (F = 1). The
Parameters for This Mechanism Are Given
in Table XVI. The General Motion of This
Mechanism Consists of Two Rotations and
Three Translations.



VITAI\(

Rao Venkateswara Dukkipati
Candidate for the Degree of

Doctor of Philosophy

Thesis: EXISTENCE CRITERIA OF SINGLE AND MULTI-LOOP
MECHANISMS WITH ONE GENERAL CONSTRAINT

Major Field: Mechanical Engineering
Biographical:

Personal Data: Born in Bhyravapatnam, India, in January
1945, the son of Annapurnamma and Nagabhushanam
Dukkipati.

Education: Graduated from Zilla Parishad High School,
Indupalli, India, in 1960; received the Bachelor of
Engineering degree in Mechanical Engineering from
Sri Venkateswara University, Tirupati, India, in 1966;
received the Master of Engineering degree in Mechanical
Engineering (Machine Design) from Andhra University,
Waltair, India, in 1968; received the Post Graduate
Diploma in Applied Statistics from Andhra University,
Waltair, India, in 1968; received the Diploma in Hindi
from Andhra University, Waltair, India, in 1969;
received the Master of Science degree in Mechanical
Engineering from the University of New Brunswich,
Fredericton, Canada, in 1971; completed the require-
ments for the Doctor of Ph,iliosophy degree at Oklahoma
State University in May, 1973.



Professional Experience: Graduate Teaching and:Research
Assistant at the College of Engineering, Andhra University,
India, from June, 1966,to December, 1968, under the
University Grants Commission of India Junior Research
Fellowship; Graduate Teaching and-Research Assistant,
Department of Mechanical Engineering, University of
New Brunswick, Canada, from September, 1969 to
December, 1970, supported by National Research Council
of Canada; working part time as Graduate Research '
Assistant at the School of Mechanical and Aerospace
‘Engineering, Oklahoma State University, supported by
National Science Foundation, from January, 1971 to
‘May, 1973.

Professional Organization: Associate Member of the American
Society of Mechanical Engineers; Associate Member of the
Institution of the Chartered Engineers, India.



