MULTI-LOOP MECHANISMS WI'TH

ONE GENERAL CONSTRAINT
$B y$
RAO VENKATESWARA DUKKIPATI
Bachelor of Engineering
Sri Venkatesware University
Tirupati, India 1966

Master of Engineering Andhra University Waltair, India 1968

Master of Science in Engineering University of New Brunswick Fredericton, Canada

1971

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
May, 1973

Theses

EXISTENCE CRITERIA OF SINGLE AND
 MULTI-LOOP MECHANISMS WITH

ONE GENERAL CONSTRAINT

Thesis Approved:

ACKNOWLEDGMENTS

I wish to express my profound sense of appreciation and gratitude to Dr. A. H. Soni for suggesting the problem, providing generous assistance, and spending very many hours of valuable time with me. His great research abilities and his excellent guidance have made the early completion of this thesis possible by providing stimulating and profitable discussions. I wish to acknowledge greatly the other members of my committee, Dr. M. M. Mamoun, Dr. H. R. Sebesta, Dr. J. P. Chandler, and Dr. S. Ahmad for their sincere help and valuable suggestions and in particular their teaching excellence. My gratitude is expressed to Dr. Lee Harrisberger, former member of my doctoral committee, for his advice and guidance.

It is a great pleasure to express my profound gratitude to my former advisers, Professor L. E. Torfason and Professor T. Venugopala Rao whose sincere and helpful efforts have been mainly responsible for my academic career.

I also wish to acknowledge the support provided by the National Science Foundation via Grant GK-21029, which made it possible for Dr. A. H. Soni to support me as a research assistant. The grant-in-aid by the Watumull Foundation for typing this the sis is duly acknowledged.

My appreciation is expressed to my colleagues, Dr. G. Dewey, Dr. M. Huang, S. Hamid, D. Kohli, A. D. Chaudhari, Louis Loeff, and Lary Fisher for their helpful discussions and companionship. My special gratitude is expressed to each member of my family, especially to my wife, Sudha, our son, Ravi, for their sacrifice, encouragement, understanding and support. Finally, I would like to acknowledge Mrs. Judy Lambert for her expert typing of this thesis.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Background and Purpose of Obtaining Existence Criteria 1
Definitions and Explanation of Terms 8
II. DIMENTBERG'S METHOD ILLUSTRATED FOR A SPATIAL FIVE-LINK H-H-P-P-H MECHANISM 15
Nature of Dimentberg's Method 15
Example 17
Scope of Dimentberg's Method 20
Passive Coupling Conditions Considered in Single-Loop Mechanisms in the Present Study 28
Passive Coupling Conditions Considered in Two-Loop Mechanisms in the Present Study 28
III. EXISTENCE CRITERIA OF SINGLE-LOOP MECHANISMS 34
Displacement Relationships for Obtaining the Existence Criteria 34
Existence Criteria of the Six-Link 3H+3P Mechanisms 42
Existence Criteria of the Six-Link H-P-P-P- H-H Mechanism 42
Existence Criteria of the Six-Link H-P-P-H- P-H Mechanism 53
Existence Criteria of the Six-Link H-P-H-P- H-P Mechanism 62
Summary and Extension of the Results to Other Mechanisms 70
Chapter Page
IV. EXISTENCE CRITERIA OF TWO-LOOP MECHANISMS 80
Displacement Relationships for Obtaining Existence Criteria 80
Definition of a Spatial Ternary Link 81
Existence Criteria of the Six-Link R-R-C-C-C-R-C Mechanism 104
On Obtaining $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}$ Mechanism From the Derived Criteria 113
Existence Criteria of the Six-Link R-R-C-C-C-P-C Mechanism 123
On Obtaining R-R-C-C-C-P-C Mechanism From the Derived Criteria 130
V. SUMMARY AND CONCLUSIONS 132
BIBLIOGRAPHY 144
APPENDIXES 156
A. EXISTENCE CRITERIA OF THE SIX-LINK R-R-C-C-C-R-C MECHANISM WITH NON- ZERO KINK-LINKS 156
B. EXISTENCE CRITERIA OF THE SIX-LINK R-C-C-R-C-C-R AND R-C-C-R-C-C-P MECHANISMS 160
C. EXISTENCE CRITERIA OF THE SIX-LINK
R-P-C-P-C-P-C AND R-P-P-C-C-P-C MECHANISMS 171
D. COMPUTER PROGRAM 182

LIST OF TABLES

Table Page
I. Constants for Use in Equations (2-8) Through (2-10) 23
II. Passive Coupling Conditions Considered in Single- Loop Mechanisms in the Present Study 29
III. Passive Coupling Conditions Considered in Two- Loop Mechanisms in the Present Study 32
IV. Constants for Use in Equations (3-17) Through (3-20) 50
V. Constants for Use in Equations (3-28) Through (3-31). 60
VI. Constants for Use in Equations (3-40) Through (3-43) 69
VII. Existence Conditions of Overconstrained Six-Link Spatial Mechanisms With Helical, Revolute, and Prism Pairs (One Passive Coupling) 72
VIII. Parameters of the Six-Link, Two-Loop R-C-C-C-C-C-C Space Mechanism of Stephenson Type 96
IX. Constants for Use in Equations (4-41) 108
X. Constants for Use in Table XI 110
XI. Constants for Use in Equation (4-43) and Table XII 111
XII. Constants for Use in Equations (4-45) 114
XIII. Constants for Use in Equations (4-53) 127
XIV. Constants for Use in Equations (C-7) Through (C-13) 175
XV. Parameters of Spherical Six-Link R-R-R-R-R-R-R Mechanism 196
XVI. Parameters of Space Six-Link R-R-C-C-C-R-C Mechanism 201

LIST OF FIGURES

Figure Page

1. Five-link H-H-C-C-H Space Mechanism 18
2. $\mathrm{H}-\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ Space Mechanism 20
3. H-H-P-P-H Space Mechanism Obtained From the Mechanism in Figure 2 by Making $\theta_{3}=\theta_{3 k}=$ a Constant and $\theta_{4}=\theta_{4 \mathrm{k}}=$ a Constant 20
4. H-H-P-P-H Space Mechanism (30, 35, 119) 25
5. Schematic Representation of Six-link, Single-loop Space Mechanism ($\Sigma \mathrm{f}_{\mathrm{i}}=7$) 30
6. Schematic Representation of Six-link, Two-loop Space Mechanism of Stephenson Type ($\Sigma f_{i}=7$) 33
7. General Six-link, Single-loop Space Mechanism With Helical, Revolute, Prismatic and Cylinder Pairs ($\Sigma f_{i}=7$) 35
8. Six-link H-C-P-P-H-H Space Mechanism 44
9. H-C-P-P-H-H Space Mechanism 46
10. H-P-P-P-H-H Space Mechanism Obtained From the Mechanism in Figure 9 by Making $\theta_{2}=\theta_{2 k}=a$ Constant 46
11. Six-link H-C-P-H-P-H Space Mechanism 54
12. H-C-P-H-P-H Space Mechanism 56
13. $\mathrm{H}-\mathrm{P}-\mathrm{P}-\mathrm{H}-\mathrm{P}-\mathrm{H}$ Space Mechanism Obtained From the Mechanism in Figure 12 by Making $\theta_{2}=\theta_{2 k}=$ a Constant 56
FigurePage
14. Six-link H-C-H-P-H-P Space Mechanism 63
15. H-C-H-P-H-P Space Mechanism 65
16. H-P-H-P-H-P Space Mechanism Obtained From the Mechanism in Figure 15 by Making $\theta_{2}=\theta_{2 k}=$ a Constant 65
17. Six-link H-P-P-P-H-H Overconstrained Mechanism ($\mathrm{F}=2$). Case 1 in Table VII 74
18. Five-link H.-P-P-R-H Overconstrained Mechanism ($F=1$) Obtained From the H-P-P-P-H-H Mechanism in Figure 17 by Making $\hat{\alpha}_{2}=0$ and $\mathrm{p}_{5}=0(30,35,119)$. 75
19. Six-link H-P-P-H-P-H Overconstrained Space Mechanism ($F=2$). Case 7 in Table VII 76
20. Five-link H-P-P-H-P Overconstrained Space Mechanism ($F=1$) Obtained From Figure 19 by Making $\hat{\alpha}_{5}=0$ (30, 35, 119) 77
21. Six-link H-P-H-P-H-P Overconstrained Space Mechanism ($F=2$). Case 15 in Table VII 78
22. Five-link $\mathrm{H}-\mathrm{H}-\mathrm{P}-\mathrm{H}-\mathrm{P}$ Overconstrained Mechanism ($\mathrm{F}=1$) Obtained From the H-P-H-P-H-P Mechanism in Figure 21 by Making $\hat{\alpha}_{1}=0(30,35,119)$ 79
23. General Six-link, Two-loop R-C-C-C-C-C-C Space Mechanism of Stephenson Type 82
24. A Spatial Ternary Link 83
25. A Spherical Ternary Link 87
26. A Plane Ternary Link 88
27. Six-link, Two-loop R-C-C-C-C-C-C Space Mechanism 93
28. R-R-C.C-C-R-C Space Mechanism Obtained From the Mechanism in Figure 27 by Making $s_{2}=s_{2 k}=a$ Constant and $s_{6}=0$ 105
29. R-R-C-C-C-P-C Space Mechanism Obtained From the Mechanism in Figure 27 by Making $s_{2}=s_{2 k}=a$ Constant and $\theta_{6}=\theta_{6 k}=a$ Constant............... 125
30. R-R-C-C-C-R.-C Space Mechanism Obtained From the Mechanism in Figure 27 by Making $s_{2}=s_{2 k}=a$ Constant and $s_{6}=s_{6 k}=$ a Constant 157
31. R-C-C-R-C-C-R Space Mechanism Obtained From the
Mechanism in Figure 27 by Making $s_{4}=s_{4 k}=a$ Constant and $s_{7}=s_{7 k}=$ a Constant 161
32. R-C-C-R-C-C-P Space Mechanism Obtained From the
Mechanism in Figure 27 by Making $s_{4}=s_{4 k}=a$
Constant and $\theta_{7}=\theta_{7 k}=$ a Constant 167
33. R-P-C-P-C-P-C Space Mechanism Obtained From the
Mechanism in Figure 27 by Making $\theta_{2}=\theta_{2 k}=a$
Constant and $\theta_{6}=\theta_{6 k}=$ a Constant 179
34. R-P-P-C-C-P-C Space Mechanism Obtained From the Mechanism in Figure 27 by Making $\theta_{2}=\theta_{2 k}=a$
Constant and $\theta_{6}=\theta_{6 k}=a$ Constant 181
35. Proposed Six-link, Two-loop R-R-C-C-C-R-C Over - constrained Mechanism ($F=1$). The Parameters for This Mechanism Are Given in Table XVI. The General Motion of This Mechanism Consists of Two Rotations and Three Translations 206

CHAPTER I

INTRODUCTION

Background and Purpose of Obtaining Existence Criteria

The concept of mobility was something of a mystery until it was mathematically formulated by Gruibler $(1,2,3)^{1}$ in 1884 , Delassus $(4,5,6)$ in 1900, Malytcheff (7) in 1923, Bricard (8,9) in 1927, and Kutzbach (10,11,12,13) in 1929.

Given an arbitrary arrangement of rigid bodies connected by kinematic joints, Grübler's mobility criteria will determine the number of degrees of freedom or mobility of the system. Artobolevski and Dobrovolskii (14,15) proposed more general mobility criteria which attempt to account for the existence of a number of overconstrained linkages. Sharikov (16) used the theory of screws to study the classification and existence of such linkages. Sharikov's method is geometrical in nature and it has its limitations. Voinea and Atanasiu (17) have examined the mobility of linkages by considering

[^0]the relationship between the classical theory of screws and line geometry. This study, though incamplete, has influenced many of the later studies in this area.

Myard (18) and Goldberg (19) derived overconstrained linkages by combining Bennet linkages in such a manner that one or more members become redundant.

The existence of overconstrained linkages has also been studied by Soni $(20,21,22,23,24)$ and by Soni and Harrisberger $(25,47)$. The basic tool used is the 3×3 screw matrix. The method consists in examining the residual coefficient matrix (RCM) of a linkage. The rank of RCM is directly related to the mobility of the linkage. The number of columns is related to the number of general constraints. The number of passive constraints or idle freedoms is represented by the difference between the number of rows and the number of columns. Using this procedure, Soni (21) has investigated the existence criteria of linkages with one general constraint by examining some of the sixlink, six revolute mechanisms. The properties of the RCM also permit it to be used as a basis for the classification of mechanisms (21).

An alternate approach to the study of mechanism mobility is based on the use of vector algebra. A general method for obtaining the compatibility conditions of mechanisms by using this method has been proposed by Soni and Pelecudi $(26,46)$.

Moroshkin's (92) approach is based on the number of closed loops in a mechanism. In this method, transformation equations are used to describe the basic geometry of a mechanism. The number of independent transformation equations, which is also the rank of the system of equations, is determined by the configuration of the mechanism. The mobility of the mechanism is related to the number of degrees of freedom in all the joints and the rank of the system of the transformation equations.

Another method is based on the classical theory of screws. A detailed account of the theory has been given by Ball (112) in 1900. An excellent review of the theory has also been given by Henrici (114). Sharikov (16), Voinea and Atanasiu (17) have employed this theory to examine the mobility of the mechanisms. In this method, a mechanism is regarded as a group or a collection of screws in space. The screws define a screw system whose order is determined by the configuration of the mechanism and the pitch values of the screws. The mobility of the mechanism is related to the total number of screws in the mechanism and the order of the screw system formed by them.

Myard (18), Goldberg (19), Voinea and Antansiu (17), and Dimentberg and Yoslovich (29) are among those who have proposed various linkages with two general constraints. Using the five-bar linkage (5 H) proposed by Voinea and Atanasiu (17) as a basis, Hunt
$(30,31,32)$ and Waldron $(33,34,35,36,37)$ have recently proposed a class of linkages derivable from this linkage for instantaneous mobility. Waldron has also proposed some single and multi-loop linkages by combining the known Delassus overconstrained three and four-link mechanisms.

The various methods described above for examining the mobility of mechanisms have contributed considerably to a better understanding of the nature of space mechanisms. However, all these methods suffer from one serious shortcoming, that they are all essentially dealing only with instantaneous or transitory mobility and not with finite mobility. This feature makes these methods unsuitable for examining the existence criteria of mechanisms in which there are conditions imposed not only on the twist angles, but also on the other constant kinematic parameters. This drawback is overcome by the passive coupling method developed by Dimentberg and first introduced by him in $1948(38,39,40)$. In this method, the existence criteria of an overconstrained mechanism are obtained from the displacement relationships of an appropriate zero family mechanism (20,21,47) by imposing suitable passive coupling conditions on the latter, by making some of the joints passive. The method not only assures finite mobility, but is also capable of yielding the necessary conditions for the existence of the derived mechanism.

For finite mobility, one would therefore prefer to adopt the passive coupling technique proposed by Dimentberg (38, 39, 40). Dimentberg's passive coupling approach was extended by Pamidi (41) to develop the existence criteria of $5 R$ spatial mechanism with two passive constraints. Further extension of the work led Soni, Pamidi and Dukkipati $(42,43)$ and Soni (27) to develop the necessary and sufficient existence criteria of four and five-link mechanisms with one and two passive couplings. Design procedures of mechanisms with a passive coupling are also recently proposed by Soni and Harrisberger $(44,45,46)$,

The successful application of Dimentberg's technique to study passive coupling conditions of single loop four and five-link mechanisms with various types of pairing conditions (consisting of R, P, H, C and S pairs $)^{2}$ by Pamidi (41), Soni, Dukkipati and Pamidi (42, 43), and Soni (27) makes it possible to further extend its application to study passive coupling conditions of six-link, single and multi-loop spatial mechanisms. A systematic investigation of these mechanisms has been greatly hindered so far by the non-availability of closedform displacement relationships of spatial six-link mechanisms. However, the results recently obtained by Soni and Dukkipati (120) make it possible to obtain the existence criteria of these mechanisms by using Dimentberg's passive coupling technique.

2
Throughout this study, R, P, H, C, and S are used to denote the revolute, prism, helical, cylinder and spherical pairs respectively.

The concept of general constraints suggests that there are certain specific geometrical conditions which must be imposed on a multiloop kinematic chain if it is to have one degree of freedom. According to the mobility criteria of Artobolvski and Dobrovolskii $(14,15)$ and Voinea and Atanasiu (17) that one general constraint is defined by a specific orientation of the axes of the pairs along with some specific geometrical relationship between the constant kinematic parameters of the chain.

The mobility criteria permits us to enumerate all possible single and multi-loop mechanisms with or without passive couplings. For example, when there are no general constraints, Soni and Harrisberger $(21,23,24)$ showed that there are one type and 28 different kinds of single-loop, six-link mechanisms with one general constraint. A systematic enumeration by Soni and Robertson (28) showed the possible existence of nearly 350 constrained kinematic chains possessing one general constraint. In a similar way, when there are no general constraints ($\mathrm{m}=0$), Huang and Soni (48) showed that there are seven different types and 494 different kinds of six-link, two-loop single degree of freedom space chains which do not have general constraints. In a similar way, Huang and Soni showed that the re could exist a maximum of 4 different types and 287 different kinds of six-link, two-loop single degree of freedom mechanisms with one general constraint, and two different types and 119 kinds of
six-link, two-loop single degree of freedom mechanisms with two general constraints, and one type and 36 different kinds of six-link, two-loop single degree of freedom mechanisms requiring three general constraints for mobility.

A systematic enumeration of the six-link, two loop space kinematic chains with Zero general constraint shows (48) the possible existence of nearly 365,025 constrained kinematic chains. A similar survey by Soni and Huang enumerated the possible existence of 146,313 constrained kinematic chains possessing one general constraint, 31,509 constrained kinematic chains possessing two general constraints and 2,430 constrained kinematic chains possessing three general constraints. Thus there is a possibility for the existence of 180,252 constrained kinematic chains possessing either 1, 2 or 3 general constraints. The necessary and sufficient existence criteria for these mechanisms are not yet known.

The objective of the present study is to investigate the mobility and the existence of single and multi-loop mechanisms with one general constraint. Linkages with two passive couplings are repre. sentative of the class of two-loop linkages. It is proposed to extend Dimentberg's theory of passive coupling and the 3×3 matrices with dual-number elements to develop a generalized approach to derive the existence criteria of multi-loop overconstrained mechanisms. Using this method it is proposed to investigate the existence of
six-link, one and two-loop linkages with one general constraint and having lower kinematic pairs. The proposed method, besides being useful in the study of the mobility and existence of linkages, will also facilitate the closed form displacement relationships for the newly discovered mechanisms which can be utilized for their type determination, kinematic analysis and synthesis.

Specifically, the objectives of the present study are:

1. To obtain the existence criteria of six-link, single-loop, $3 \mathrm{H}+3 \mathrm{P}$ space mechanisms. Besides explaining the existence of known five and six-link mechanisms, the derived criteria should also reveal the existence of other mechanisms.
2. To obtain the existence criteria of six-link, two-loop, R-R-C-$\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}, \mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{P}-\mathrm{C}, \mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{R}$, and $\mathrm{R}-\mathrm{C}-\mathrm{C}-$ R-C-C-P space mechanisms. The derived criteria should facilitate the investigation of the existence of such mechanisms. In the next chapter, the Dimentberg's passive coupling method employed for the above purpose is discussed in detail. In the remaining chapters, the results of the objectives mentioned above are presented.

Definitions and Explanation of Terms

Some of the definitions of existence criteria used in this study are described below:

1. Mechanism: A closed kinematic chain in which one of the links fixed is called a mechanism.
2. Mobility: The mobility of a mechanism is the number of independent quantities required to specify its motion completely.
3. Constrained Motion: A mechanism with mobility one is said to have a constrained motion.
4. Constrained Mechanism: A mechanism with one degree of freedom (denoted by " $F=1$ " mechanism) is referred to as constrained mechanism.
5. Unconstrained Mechanism: A mechanism with multi-degree of freedom is referred to as an unconstrained mechanism.
6. Structure: A mechanism with zero degree of freedom is referred to as a structure.
7. Kinematic Pair: A kinematic pair can be defined as a (frictionless) joint which connects, and at the same time, constrains the relative motion between two rigid bodies. Geometrically, one may imagine a pair as two mating profiles, known as pairing elements or male and female elements.
8. Degree of freedom of a kinematic paip: The degree of freedom of a kinematic pair is the number of independent variables necessary to specify the relative position of two links connected by the pair.
9. Lower and higher kinematic pairs: If a male element of a kinematic pair makes, with its female element, either area or surface contact, the kinematic pair is called a lower kinematic pair. Examples of lower kinematic pairs include a revolute pair, a prism pair, a helical pair, a cylinder pair, a spherical pair, etc.

If, however, male and female elements of a kinematic pair make either a line contact or a point contact, then this kinematic pair is called a higher kinematic pair. Examples of higher kinematic pairs are a cam-pair, a sphere-plane pair, etc. For a complete description and classification see reference (21).

Lower kinematic pairs are efficient for transmitting higher forces. Higher kinematic pairs are used primarily for building motion transmitting devices rather than force transmitting devices.
10. Linkage configuration: The configuration of the mechanism, or linkage configuration, at a given instant during motion, is completely specified by the spatial polygon defined by the axes of the mechanism.
11. Constant kinematic parameters of a mechanism: The constant kinematic parameters of a mechanism are the link lengths, the twist angles, the constant offset distances (kink-links) and the
constant displacement angles. These parameters are constant for a given mechanism and remain unchanged during its motion.
12. Variable kinematic parameters of a mechanism: The variable kinematic parameters of a mechanism are the variable offset distances (translations) along its pair axes and the variable displacement angles. These parameters are not constant for a given mechanism, but vary during its motion.
13. Finite mobility: A mechanism is said to have finite mobility when it is capable of executing motion over a finite range. Thus, for example, a spherical four-link, faur-revolute mechanism has a finite mobility of one.
14. Transitory or instantaneous mobility: A mechanism is said to have transitory or instantaneous mobility when it is capable of executing motion over only an infinitesimal range. Thus, for example, a spherical four-link, four helical mechanism (equal pitch values) has a transitory or instantaneous mobility of one (32). It may also be noted that instantaneous mobility at all instants may often lead to finite mobility $(30,35)$.
15. True mobility: A mechanism is said to have true mobility when it has finite mobility with all the freedoms in all of its joints active. Thus, for example, a plane four-link, four revolute mechanism has, except at its locking positions, a true mobility of one, but a five-link H-P-P-P-P space mechanism does not
have true mobility since its helical pair remains permanently locked, In the present study, a mechanism is said to "exist" when it has a true mobility of one.
16. Zero family mechanisms: Consider a two-loop, six-link space mechanism, Let p_{k} denote the number of kinematic pairs of class k in which the degree of freedom is k and $\Sigma p_{k}=7$. Then $\Sigma \mathrm{p}_{\mathrm{k}}$ denotes the total number of degrees of freedom permitted at all the joints. When $\Sigma p_{k}=13$, any random combination of constant kinematic parameters will, in general yield a twoloop mechanism with mobility one,

Similarly, let f_{i} denote the number of degrees of freedom permitted at the ith joint of a single-loop space mechanism. Then the total number of degrees of freedom permitted at all the joints is denoted by Σf_{i} 。 When $\Sigma f_{i}=7$, any random combi ${ }_{7}$ nation of constant kinematic parameters will, in general, yield a single-loop mechanism with mobility one.

Such mechanisms in which there are no conditions imposed on the constant kinematic parameters are called zero family mechanisms. The $1 R+6 C$ mechanism, the $4 R+3 S$ mechanism, and the $1 R+3 P+3 E$ mechanism are some examples of zero family mechanisms.
17. Overconstrained mechanism: Consider a two-loop, six-link space mechanism. When $\Sigma \mathrm{k} \mathrm{p}_{\mathrm{k}}<13$, a random combination of
constant kinematic parameters will, in general, yield a configuration which is a structure. Two-loop mechanisms with $\Sigma k p_{k}<13$ can exist with mobility one only when their constant kinematic parameters satisfy certain definite mathematical relationships.

In a similar way when $\Sigma f_{i}<7$, a random combination of constant kinematic parameters will, in general, give a singleloop configuration which is a structure.

Hence, such mechanisms in which conditions are imposed on the constant kinematic parameters are called oyerconstrained mechanisms.
18. Number of passive couplings: The number of passive couplings C_{p} in an overconstrained mechanism with two loops is given by the simple relationship

$$
C_{p}=13-\Sigma k p_{k}
$$

where $\Sigma k p_{k}$ denotes the total number of degrees of freedom permitted at all the joints of the six-link two-loop overconstrained space mechanism.

The number of passive couplings C_{p} in an overconstrained mechanism with one loop is given by the simple relationship

$$
C_{p}=7-\Sigma k p_{k}
$$

where $\Sigma k p_{k}$ denotes the total number of degrees of freedom permitted at all the joints of the six-link single-loop overconstrained space mechanism.
19. Existence criteria of an overconstrained mechanism: For the present study, the existence criteria of an overconstrained mechanism denotes a set(s) of conditions that are necessary for its existence. These conditions are equations relating to the constant kinematic parameters of the mechanism. An overconstrained mechanism of the prescribed type satisfies all of the conditions forming the existence criteria simultaneously.
20. Closure conditions: Closure conditions are algebraic equations between the parameters of a linkage which give the conditions required by the closure of a loop in a linkage.
21. Passive freedoms: Passive freedoms are the destroyed freedoms of the pairs as a result of certain geometric constraints (passive constraints). In practice the passive freedoms and also the redundant freedoms, may be kep in the mechanism rather than eliminating them by replacing the pairs possessing the passive freedoms with pairs of lower class. This is pre, ferred to have ease in design, operation, and lubrication.

CHAPTER II

DIMENTBERG'S PASSIVE COUPLING METHOD ILLUSTRATED FOR A SPATIAL FIVE-LINK
 H-H-P-P-H MECHANISM
 Nature of Dimentberg's Method

Dimentberg in 1948 introduced the method of passive coupling and illustrated the method of obtaining the existence criteria of a number of overconstrained four-link mechanisms (29, 38, 39, 40). Waldron (33, 34, 35, 36, 37), Ogino and Watanabe (51) however apparently unaware of the work of Dimentberg have recently used dualnumber algebra to study the mobility of a spatial four-link chain with four cylinder pairs and have come-up with certain overconstrained four-link mechanisms.

The use of Dimentberg's method for obtaining the existence criteria of an overconstrained mechanism involves the following three steps:

1. Select a Parent Mechanism. It is, in general, possible to derive an overconstrained mechanism from more than one parent mechanism.

Thus, for example, the four-link RSRR mechanism can be derived from either the RSCR mechanism or the RSRC mechanism.
2. Develop the closed-form displacement relationships between independent and dependent displacement variables of the parent mechanism.

If the parent mechanism has no helical pairs, the displacement relationships are algebraic in nature. If the parent mechanism has helical pairs, the displacement relationships are complicated in nature.
3. Impose the required passive coupling conditions on the parent mechanism so as to obtain the desired overconstrained mechanism. Thus, for example, passive coupling condition is imposed on the cylinder pair of the parent four-link RSCR mechanism in arder to obtain the RSRR overconstrained mechanism. When the displacement relationships involved are algebraic in nature, this step very often involves examination of the conditions for common roots between two algebraic polynomials or between successive sets of two polynomials. The results obtained lead to conditions on the constant kinematic parameters of the parent mechanism and provide the necessary conditions for the existence of the desired overconstrained mechanism.

Example

In this section, the Dimentberg method of passive coupling technique is demonstrated to obtain the existence criteria of an H-H-P-P-H five-link mechanism. This is done by considering a fivelink $\mathrm{H}-\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ mechanism as the parent mechanism.

An H-H-C-C-H five-link space mechanism with general propartions is shown in Figure 1, with helical pairs at joints A, B, E and cylinder pairs at joints C and D. The in stantaneous configuration of the $\mathrm{H}-\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ mechanism as shown in Figure 1 is completely defined by two sets of five dual angles (38), each as follows:

1. Between adjacent pairing axes:

$$
\begin{equation*}
\hat{\alpha}_{i}=\alpha_{i}+\epsilon a_{i} \quad(i=1,2, \ldots, 5) \tag{2-1}
\end{equation*}
$$

where $\alpha_{i}(i=1$ to 5$)$ are the twist angles and $a_{i}(i=1$ to 5$)$ are the kinematic link lengths. Note that, by definition, $\epsilon^{2}=0$.
2. Between adjacent common perpendiculars:

$$
\begin{align*}
\hat{\theta}_{i} & =\theta_{i}+\varepsilon s_{i} \tag{2-2}\\
\text { with } s_{i} & =p_{i} \theta_{i} \tag{2-3}
\end{align*}(i=1,2, \ldots, 5),
$$

where $\theta_{i}(i=1$ to 5) are the angular displacements at the kinematic pairs, $\mathbf{s}_{\mathbf{i}}(\mathrm{i}=1$ to 5) are the translational displacements along the kinematic axes, and $p_{i}(i=1,2,5)$ are the finite pitch values of the helical pairs.

Figure 1. Five-link How-C-C-H Space Mechanism

In equation (2-2), the five angles, $\theta_{i}(i=1$ to 5$)$ and the two sliding components along the cylindric axes (s_{3} and s_{4}) constitute the seven independent linkage variables; among them θ_{1} is the input angle and $\hat{\theta}_{5}$ is the output angle. The five dual angles, $\hat{\alpha}_{i}(i=1$ to 5) in equation (2-1) and the three finite pitch values of the helical pairs $\left(p_{1}, p_{2}, p_{5}\right)$ constitute the thirteen real parameters necessary to specify an $\mathrm{H}-\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ mechanism of general proportions.

Consider the $\mathrm{H}-\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ five-link space mechanism shown schematically in Figure 2. This mechanism reduces to an H-H-P-PH mechanism, as shown in Figure 3, if the rotational displacement angles θ_{3} and θ_{4} at the two cylinder pairs remain constant at all positions of the mechanism.

The dual-matrix loop closure equation for the $\mathrm{H}-\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ mechanism shown in Figure 2 is given by (120)

$$
\begin{gather*}
{\left[\hat{\theta}_{4}\right]_{3}\left[\hat{\alpha}_{3}\right]_{1}\left[\hat{\theta}_{3}\right]_{3}\left[\hat{\alpha}_{2}\right]_{1}\left[\hat{\theta}_{2}\right]_{3}\left[\hat{\alpha}_{1}\right]_{1}\left[\hat{\theta}_{5}\right]_{3}\left[\hat{\alpha}_{4}\right]_{1}} \\
=[\mathrm{I}] \tag{2-4}
\end{gather*}
$$

where

$$
\left[\hat{\theta}_{i}\right]_{3}=\left[\begin{array}{ccc}
C \hat{\theta}_{i} & S \hat{\theta}_{i} & 0 \\
-S \hat{\theta}_{i} & C \hat{\theta}_{i} & 0 \\
0 & 0 & 1
\end{array}\right]^{1}
$$

${ }^{1}$ In this equation and in all the subsequent equations and tables throughout this study, C and S denote the cosine and sine of the respective angles.

Figure 2. $\mathrm{H}-\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ Space Mechanism

Figure 3. H-H-P-P-H Space Mechanism Obtained From the Mechanism in Figure 2 by Making $\theta_{3}=$ $\theta_{3 \mathrm{k}}=$ a Constant and $\theta_{4}=\theta_{4 \mathrm{k}}=$ a Constant

$$
\left[\hat{\alpha}_{i}\right]_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathrm{C} \hat{\alpha}_{i} & \mathrm{~S} \hat{\alpha}_{i} \\
0 & -S \hat{\alpha}_{i} & \mathrm{C} \hat{\alpha}_{i}
\end{array}\right]
$$

and

$$
[I]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

By arranging the loop-closure condition of the mechanism in three different ways, the following relationships can be obtained.

$$
\begin{align*}
& F\left(\hat{\theta}_{4}, \hat{\theta}_{3}, \hat{\theta}_{1}\right)=\left(S \hat{\alpha}_{2} S \hat{\alpha}_{4} S \hat{\theta}_{3}\right) S \hat{\theta}_{4}-S \hat{\alpha}_{4}\left(C \hat{\alpha}_{2} S \hat{\alpha}_{3}\right. \\
& \left.\quad+S \hat{\alpha}_{2} C \hat{\alpha}_{3} C \hat{\theta}_{3}\right) C \hat{\theta}_{4}+C \hat{\alpha}_{4}\left(C \hat{\alpha}_{2} C \hat{\alpha}_{3}-S \hat{\alpha}_{2} S \hat{\alpha}_{3} C \hat{\theta}_{3}\right) \\
& \quad-\left(C \hat{\alpha}_{1} C \hat{\alpha}_{5}-S \hat{\alpha}_{1} S \hat{\alpha}_{5} C \hat{\theta}_{-1}\right)=0 \tag{2-5}\\
& f\left(\hat{\theta}_{5}, \hat{\theta}_{4}, \hat{\theta}_{3}\right)=\left[\left(S \hat{\alpha}_{4} C \hat{\alpha}_{5}+C \hat{\alpha}_{4} S \hat{\alpha}_{5} C \hat{\theta}_{5}\right) S \hat{\theta}_{4}\right. \\
& \left.\quad+S \hat{\alpha}_{5} S \hat{\theta}_{5} C \hat{\theta}_{4}\right]\left(S \hat{\alpha}_{2} S \hat{\theta}_{3}\right)+\left[S \hat{\alpha}_{5} S \hat{\theta}_{5} S \hat{\theta}_{4}\right. \\
& \\
& \left.\quad-\left(S \hat{\alpha}_{4} C \hat{\alpha}_{5}+C \hat{\alpha}_{4} S \hat{\alpha}_{5} C \hat{\theta}_{5}\right) C \hat{\theta}_{4}\right]\left(C \hat{\alpha}_{2} S \hat{\alpha}_{3}\right. \\
& \left.\quad+S \hat{\alpha}_{2} C \hat{\alpha}_{3} C \hat{\theta}_{3}\right)+\left(C \hat{\alpha}_{4} C \hat{\alpha}_{5}-S \hat{\alpha}_{4} S \hat{\alpha}_{5} C \hat{\theta}_{5}\right)\left(C \hat{\alpha}_{2} C \hat{\alpha}_{3}\right. \tag{2-6}\\
& \left.\quad-S \hat{\alpha}_{2} S \hat{\alpha}_{3} C \hat{\theta}_{3}\right)-C \hat{\alpha}_{1}=0
\end{align*}
$$

$$
\begin{align*}
f\left(\hat{\theta}_{4},\right. & \left.\hat{\theta}_{3}, \hat{\theta}_{2}\right)=\left[\left(S \hat{\alpha}_{3} C \hat{\alpha}_{4}+C \hat{\alpha}_{3} S \hat{\alpha}_{4} C \hat{\theta}_{4}\right) S \hat{\theta}_{3}\right. \\
& \left.+S \hat{\alpha}_{4} S \hat{\theta}_{4} C \hat{\theta}_{3}\right]\left(S \hat{\alpha}_{1} S \hat{\theta}_{2}\right)+\left[S \hat{\alpha}_{4} S \hat{\theta}_{4} S \hat{\theta}_{3}\right. \\
& \left.-\left(S \hat{\alpha}_{3} C \hat{\alpha}_{4}+C \hat{\alpha}_{3} S \hat{\alpha}_{4} C \hat{\theta}_{4}\right) C \hat{\theta}_{3}\right]\left(C \hat{\alpha}_{1} S \hat{\alpha}_{2}\right. \\
& \left.+S \hat{\alpha}_{1} C \hat{\alpha}_{2} C \hat{\theta}_{2}\right)+\left(C \hat{\alpha}_{3} C \hat{\alpha}_{4}-S \hat{\alpha}_{3} S \hat{\alpha}_{4} C \hat{\theta}_{4}\right)\left(C \hat{\alpha}_{1} C \hat{\alpha}_{2}\right. \\
& \left.-S \hat{\alpha}_{1} S \hat{\alpha}_{2} C \hat{\theta}_{2}\right)-C \hat{\alpha}_{5}=0 \tag{2-7}
\end{align*}
$$

Note that each of the above equations relates the dual displacement angles θ_{3} and θ_{4} at the two cylinder pairs to a third dual displacement angle.

Let the rotational displacement angles θ_{3} and θ_{4} at the two cylinder pairs be now held constant at all positions of the mechanism. Denoting these constant values by $\theta_{3 k}$ and $\theta_{4 k}$ respectively, the primary parts of Eqs. (2-5), (2-6) and (2-7) give

$$
\begin{align*}
& A_{c} C \theta_{1}+A_{n}=0 \tag{2-8}\\
& B_{s} S \theta_{5}+B_{c} C \theta_{5}+B_{n}=0 \tag{2-9}\\
& C_{s} S \theta_{2}+C_{c} C \theta_{2}+C_{n}=0 \tag{2-10}
\end{align*}
$$

The constants used in the above equations are functions of the constant kinematic parameters a_{i}, α_{i} and the constant displacement angles $\theta_{3 \mathrm{k}}$ and $\theta_{4 \mathrm{k}}$ of the mechanism are defined in Table I.

Note that each of the equations $(2-8),(2-9)$ and $(2-10)$ contains only one variable and must hold true at varying values of that variable. Their coefficients must, therefore, vanish. This gives

TABLEI
CONSTANTS FOR USE IN EQUATIONS (2-8) THROUGH (2-11)

$$
\begin{aligned}
& A_{c}=S \alpha_{1} S \alpha_{5} \\
& A_{n}=S \alpha_{2}\left[S \alpha_{4}\left(S \theta_{3 k} S \theta_{4 k}-C \alpha_{3} C \theta_{3 k} C \theta_{4 k}\right)\right. \\
& \left.-\mathrm{S} \alpha_{3} \mathrm{C} \alpha_{4} \mathrm{C} \theta_{3 \mathrm{k}}\right]+\mathrm{C} \alpha_{2}\left(\mathrm{C} \alpha_{3} \mathrm{C} \alpha_{4}-\mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{4 k}\right) \\
& -\mathrm{C} \alpha_{1} \mathrm{C} \alpha_{5} \\
& B_{s}=S \alpha_{5}\left[S \alpha_{2}\left(S \theta_{3 k} C \theta_{4 k}+C \alpha_{3} C \theta_{3 k} S \theta_{4 k}\right)\right. \\
& \left.+\mathrm{S} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{~S} \mathrm{\theta}_{4 \mathrm{k}}\right] \\
& B_{c}=S \alpha_{5}\left\{\mathrm { C } \alpha _ { 4 } \left[\mathrm{~S} \alpha_{2}\left(\mathrm{~S} \theta_{3 k} \mathrm{~S} \theta_{4 k}-\mathrm{C} \alpha_{3} \mathrm{C} \theta_{3 k} \mathrm{C} \theta_{4 k}\right)\right.\right. \\
& \left.\left.-\mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{3} \mathrm{C} \theta_{4 \mathrm{k}}\right]-\mathrm{S} \alpha_{4}\left(\mathrm{C} \alpha_{2} \mathrm{C} \alpha_{3}-\mathrm{S} \alpha_{2} \mathrm{~S} \alpha_{3} \mathrm{C} \theta_{4 \mathrm{k}}\right)\right\} \\
& \mathrm{B}_{\mathrm{n}}=\mathrm{C} \alpha_{5}\left\{\mathrm { S } \alpha _ { 4 } \left[\mathrm{~S} \alpha_{2}\left(\mathrm{~S} \theta_{3 \mathrm{k}} \mathrm{~S} \theta_{4 \mathrm{k}}-\mathrm{C} \alpha_{3} \mathrm{C} \theta_{3 \mathrm{k}} \mathrm{C} \theta_{4 k}\right)\right.\right. \\
& \left.\left.-\mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{3} \mathrm{C} \theta_{4 \mathrm{k}}\right]+\mathrm{C} \alpha_{4}\left(\mathrm{C} \alpha_{2} \mathrm{C} \alpha_{3}-\mathrm{S} \alpha_{2} \mathrm{~S} \alpha_{3} \mathrm{C} \theta_{3 \mathrm{k}}\right)\right\}-\mathrm{C} \alpha_{1} \\
& \mathrm{C}_{\mathrm{s}}=\mathrm{S} \alpha_{1}\left[\mathrm{~S} \alpha_{4}\left(\mathrm{C} \theta_{3 \mathrm{k}} \mathrm{~S} \theta_{4 \mathrm{k}}+\mathrm{C} \alpha_{3} \mathrm{~S} \theta_{3 \mathrm{k}} \mathrm{C} \theta_{4 \mathrm{k}}\right)+\mathrm{S} \alpha_{3} \mathrm{C} \alpha_{4} \mathrm{~S} \theta_{3 \mathrm{k}}\right] \\
& C_{c}=S \alpha_{1}\left\{\mathrm { C } \alpha _ { 2 } \left[\mathrm{~S} \alpha_{4}\left(\mathrm{~S} \theta_{3 \mathrm{k}} \mathrm{~S} \theta_{4 \mathrm{k}}-\mathrm{C} \alpha_{3} \mathrm{C} \theta_{3 \mathrm{k}} \mathrm{C} \theta_{4 \mathrm{k}}\right)\right.\right. \\
& \left.\left.-\mathrm{S} \alpha_{3} \mathrm{C} \alpha_{4} \mathrm{C} \theta_{3 \mathrm{k}}\right]-\mathrm{S} \alpha_{2}\left(\mathrm{C} \alpha_{3} \mathrm{C} \alpha_{4}-\mathrm{S} \alpha_{3} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{4 \mathrm{k}}\right)\right\} \\
& C_{n}=\mathrm{C} \alpha_{1}\left\{\mathrm { S } \alpha _ { 2 } \left[\mathrm{~S} \alpha_{4}\left(\mathrm{~S} \theta_{3 \mathrm{k}} \mathrm{~S} \theta_{4 k}-\mathrm{C} \alpha_{3} \mathrm{C} \theta_{3 k} \mathrm{C} \theta_{4 k}\right)\right.\right. \\
& \left.\left.-\mathrm{S} \alpha_{3} \mathrm{C} \alpha_{4} \mathrm{C} \theta_{3 \mathrm{k}}\right]+\mathrm{C} \alpha_{2}\left(\mathrm{C} \alpha_{3} \mathrm{C} \alpha_{4}-\mathrm{S} \alpha_{3} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{4 \mathrm{k}}\right)\right\}-\mathrm{C} \alpha_{5}
\end{aligned}
$$

$$
\begin{align*}
& A_{c}=A_{n}=0 \\
& B_{s}=B_{c}=B_{n}=0 \tag{2-11}\\
& C_{s}=C_{c}=C_{n}=0
\end{align*}
$$

The above equations provide the necessary conditions for the existence of an $\mathrm{H}-\mathrm{H}-\mathrm{P}-\mathrm{P}-\mathrm{H}$ mechanism. However, it is possible to further simplify the conditions given by Eqs. (2-11). For example, examination of Eqs. (2-11) yields the following relationships:

$$
\begin{equation*}
\alpha_{1}=\alpha_{5}=0 \tag{2-12}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathrm{S} \alpha_{3}\left(\mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{4} \mathrm{C} \theta_{3 k}+\mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{4 k}\right)-\mathrm{C} \alpha_{3}\left(\mathrm{C} \alpha_{2} \mathrm{C} \alpha_{4}\right. \\
& \left.\quad-\mathrm{S} \alpha_{2} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{3 k} \mathrm{C} \theta_{4 k}\right)-\mathrm{S} \alpha_{2} \mathrm{~S} \alpha_{4} \mathrm{~S} \theta_{3 k} \mathrm{~S} \theta_{4 k} \\
& \quad+1=0 \tag{2-13}
\end{align*}
$$

Equation (2-12) shows that the axes of the three helical pairs are parallel to one another. Equation (2-13) is a definite closure condition relating the twist angles α_{2}, α_{3} and α_{4} of the mechanism with the constant displacement angles $\theta_{3 \mathrm{k}}$ and $\theta_{4 \mathrm{k}}$ at the two prismatic pairs (Figure 3). The $\mathrm{H}-\mathrm{H}-\mathrm{P}-\mathrm{P}-\mathrm{H}$ linkage is shown in Figure

4.

Note that the results have been obtained by considering only the primary parts of the dual displacement relationships of the parent $\mathrm{H}-\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}$ mechanism. Hence, the results will remain unaffected even if one or more of the helical pairs are replaced by

Figure 4. H-H-P-P-H Space Mechanism (30, 35, 119)
revolute pairs. Note further that the results obtained are independent of the link lengths involved. Hence, if one of the link lengths is taken to be zero, the results will apply with equal validity to four-link mechanisms derivable from the above five-link mechanism (29). The results obtained in the present example for the H-H-P-P-H mechanism also confirm the results obtained by Hunt (30), Waldron (35), Pamidi (41), and Pamidi, Soni and Dukkipati (119). The results of Hunt and Waldron were obtained by considering the 5 H and 6 H mechanisms of Voinea and Atanasiu (17) which are themselves overconstrained mechanisms, The results of Pamidi, Soni and Dukkipati were obtained by considering the more general zero family mechanisms, thus guaranteeing full-cycle mobility. Also, in addition to the parallelism of the axes, the existence derived in the present study gives definite closure conditions to be satisfied by the constant kinematic parameters of the respective mechanism.

Scope of Dimentberg's Method

Dimentberg has employed his method in those cases in which the translational freedom of a cylinder pair is made passive (29, 38, 39, 40). The method has been shown equally applicable to the cases in which the rotational freedom of a cylinder pair is made passive by Soni (27), Pamidi (41), and Dukkipati (122). Pamidi obtained the existence criteria of $R-P-C-P$ and $R-C-P-P$ mechanisms by imposing
passive coupling conditions on the rotational freedom of the output cylinder pair of an R-C-C-C mechanism. Soni (27) obtained the existence criteria of an $R-P-R-C-R$ five-link overconstrained mechanism from the parent $\mathrm{R}-\mathrm{C}-\mathrm{R}-\mathrm{C}-\mathrm{R}$ mechanism. Dukkipati (122) obtained the existence criteria of an R-S-P-R four rlink overconstrained mechanism by imposing passive coupling on the rotational freedom at the cylinder pair of the parent R-S-C-R mechanism.

Extension of Dimentberg's method to five-link mechanisms led Pamidi, Soni and Dukkipati (119) to obtain the existence criteria of the five-link, five revolute mechanism, $R-R-R-P-R$ mechanism, and $3 \mathrm{H}+2 \mathrm{P}, 2 \mathrm{H}+3 \mathrm{P}$ mechanisms.

Dimentberg's method also holds true for the case in which the entire freedom of a kinematic pair is made passive by Pamidi (41) and Dukkipati (122). The joint thus becomes locked and no motion is possible at that joint. The results obtained are in agreement with those obtained by Dimentberg and show that it is possible to obtain an overconstrained mechanism from more than one parent mechanism.

The extensions to Dimentberg's method as demonstrated by Soni, Pamidi and Dukkipati illustrate the immense scope of the method and show that the method can be employed to handle a variety of passive coupling conditions. The objective of the present study is to extend Dimentberg's method to single and multi-loop six-link mecha nisms.

Passive Coupling Conditions Considered in Single-Loop Mechanisms in the

Present Study

The passive coupling conditions considered in single-loop mechanisms in the present study are confined to those cases in which a passive coupling is imposed on a cylinder pair in order to obtain a prism pair. This involves examination of only the primary part of the various dual displacement relationships of the parent mechanism.

The cases proposed are summarized in Table II and fall into the following single category.

1. Passive coupling in a cylinder pair to obtain a prism pair. Thus passive coupling is imposed on the cylinder pair of the parent $3 \mathrm{H}+2 \mathrm{P}+1 \mathrm{C}$ space six-link mechanisms in order to reduce . it to a prism pair of the overconstrained $3 \mathrm{H}+3 \mathrm{P}$ space mechanisms (see cases l, 2, and 3 in Table II).

Passive Coupling Conditions Considered in
Two-Loop Mechanisms in the
Present Study

The passive coupling conditions considered in two-loop mechanisms in the present study are confined to those cases in which the required displacement relationships are algebraic in

TABLE II

PASSIVE COUPLING CONDITIONS CONSIDERED IN SINGLE-LOOP MECHANISMS IN THE PRESENT STUDY
 (H: Helical pair, P: Prismatic pair, C: Cylinder pair)

	Kinematic pair selected for in- ducing passive coupling condi- tion	Kinematic pair obtained because of passive coupling condition	Parent mechanism examined for in- ducing passive coupling condi- tion	Overconstrained mechanism ob- tained because of passive coupling condition	Considered in
1	C	P	$\mathrm{H}-\mathrm{C}-\mathrm{P}-\mathrm{P}-\mathrm{H}-\mathrm{H}^{*}$	H-P-P-P-H-H	
2	C	P	$\mathrm{H}-\mathrm{C}-\mathrm{P}-\mathrm{H}-\mathrm{P}-\mathrm{H}$	H-P-P-H-P-H	Chapter III
3	C	P	$\mathrm{H}-\mathrm{C}-\mathrm{H}-\mathrm{P}-\mathrm{H}-\mathrm{P}$	$\mathrm{H}-\mathrm{P}-\mathrm{H}-\mathrm{P}-\mathrm{H}-\mathrm{P}$	

*Here and throughout, this abbreviation refers to the sequence of kinematic pairs joining the links of a spatial mechanism, starting with the fixed link. See Figure 5.

Figure 5. Schematic Representation of Six-link, Single-loop Space Mechanism ($\Sigma f_{i}=7$)

1
\vdots
\vdots
nature. The cases considered are summarized in Table III and fall into the following three categories:

1. Passive coupling in two cylinder pairs (one in each loop) to obtain the revolute pairs (see cases 1, 3, and 4 in Table III).
2. Passive coupling in two cylinder pairs (one in each loop) to obtain one revolute pair and one prism pair (see cases 2 and 5 in Table III).
3. Passive coupling in two cylinder pairs (one in each loop) to obtain two prism pairs (see case 6 in Table III),

TABLE III

PASSIVE COUPLING CONDITIONS CONSIDERED IN TWO-LOOP MECHANISMS IN THE PRESENT STUDY

(R: Revolute pair, P: Prismatic pair, C: Cylinder pair)

	Kinematic pairs (one from each loop) selected for inducing pas- sive coupling conditions	Kinematic pairs obtained because of passive coupling conditions	Parent mechanism examined for in- ducing passive coupling condi- tions	Overconstrained mechanism ob- tained because of passive coupling conditions	Considered

${ }^{1}$ Here and throughout, this abbreviation refers to the sequence of kinematic pairs joining the links of a six-link, two-loop spatial mechanism of Stephenson type, starting with the fixed link. See Figure 6.
${ }^{2}$ One kink-link assumed zero. (Special form of Case 3.)
${ }^{3}$ Non-zero kink-links. (General proportions.)
(1)

Figure 6. Schematic Representation of Six-link, Two-loop Space Mechanism of Stephenson Type $\left(\Sigma f_{i}=13\right)$

CHAPTER III

EXISTENCE CRITERIA OF SINGLE-LOOP
 MECHANISMS
 Displacement Relationships for Obtaining the Existence Criteria

The use of Dimentberg's method for obtaining the existence criteria of overconstrained mechanisms requires the displacement relationships of the appropriate parent mechanisms. The required relationships can always be obtained by suitably arranging the loopclosure condition of the parent mechanism,

Consider a general single-loop, six-link space mechanism consisting of helical, revolute, prismatic and cylinder pairs combined in such a way that the sum of the degrees of freedom in all the joints is equal to seven (Figure 7). Such a mechanism would necessarily have to have one cylinder pair. If the type of the remaining five pairs and the location of all the six pairs in the mechanism are properly chosen, this mechanism will serve as a parent mechanism for any overconstrained mechanism with one pressure coupling.

(6)

Figure 7. General Six-link, Single-loop Space Mechanism With Helical, Revolute, Prismatic and Cylinder Pairs ($\Sigma \mathrm{f}_{\mathrm{i}}=7$)

The instantaneous configuration of the mechanism in Figure 7 is completely defined by two sets of six dual angles, each as follows:

1. Between adjacent pairing axes:

$$
\begin{equation*}
\hat{\alpha}_{i}=\alpha_{i}+\varepsilon a_{i} \tag{3-1}
\end{equation*}
$$

where $\alpha_{i}(i=1$ to 6$)$ are the twist angles and $a_{i}(i=1$ to 6$)$ are the link lengths. These twelve quantities are constant for any given mechanism. Note also, that by definition,

$$
\varepsilon^{a}=0
$$

2. Between adjacent common perpendiculars:

$$
\begin{equation*}
\hat{\theta}_{i}=\theta_{i}+\varepsilon s_{i} \tag{3-2}
\end{equation*}
$$

where $\theta_{i}(i=1$ to 6$)$ are the angular displacements at the kinematic pairs and $s_{i}(i=1$ to 6$)$ are the translations along the kinematic axes. These quantities may be variable or remain constant depending upon the type of kinematic pairs used in the mechanism. For instance, in a prismatic pair, the angular displacement remains constant, while in a revolute pair, the translation along the axis is constant. In a helical pair, the translation along the axis and the angular displacement both vary in such a way that their ratio is always constant and equal to the pitch. In a cylinder pair, the translation along the axis and the angular displacement both vary and are independent of each other.

The dual-matrix loop-closure equation of the spatial six-link mechanism in Figure 7 is given by (120):

$$
\begin{align*}
& {\left[\hat{\alpha}_{1}\right]_{1}\left[\hat{\theta}_{1}\right]_{3}\left[\hat{\alpha}_{2}\right]_{1}\left[\hat{\theta}_{2}\right]_{3}\left[\hat{\alpha}_{3}\right]_{1}\left[\hat{\theta}_{3}\right]_{3}\left[\hat{\alpha}_{4}\right]_{1}\left[\hat{\theta}_{4}\right]_{3}\left[\hat{\alpha}_{5}\right]_{1}\left[\hat{\theta}_{5}\right]_{3}} \\
& {\left[\hat{\alpha}_{6}\right]_{1}\left[\hat{\theta}_{6}\right]_{3}=[I]} \tag{3-3}
\end{align*}
$$

where

$$
\begin{align*}
& {\left[\hat{\alpha}_{\mathrm{i}}\right]_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathrm{C} \hat{\alpha}_{\mathrm{i}} & \mathrm{~S} \hat{\alpha}_{\mathrm{i}} \\
0 & -\mathrm{S} \hat{\alpha}_{\mathrm{i}} & \mathrm{C} \hat{\alpha}_{\mathrm{i}}
\end{array}\right]} \tag{3-4}\\
& {[I]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{align*}
$$

and

$$
\left[\hat{\theta}_{i}\right]_{3}=\left[\begin{array}{ccc}
C \hat{\theta}_{i} & S \hat{\theta}_{i} & 0 \tag{3-5}\\
-S \hat{\theta}_{i} & C \hat{\theta}_{i} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Three arrangements of Eq. (3-3) are useful in the study of existence criteria.

1. The relationship involving two adjacent dual displacement angles and the two dual displacement angles opposite to both of them.

In this arrangement of Eq. (3-3), six matrices are used on either side of the equality sign. Thus, for instance,

$$
\begin{align*}
{\left[\theta_{5}\right]_{3} } & {\left[\alpha_{4}\right]_{1}\left[\theta_{4}\right]_{3}\left[\alpha_{3}\right]_{1}\left[\theta_{3}\right]_{3}\left[\alpha_{2}\right]_{1} } \\
& =\left[\theta_{2}\right]_{3}^{-1}\left[\alpha_{1}\right]_{1}^{-1}\left[\theta_{1}\right]_{3}^{-1}\left[\alpha_{6}\right]_{1}^{-1}\left[\theta_{6}\right]_{3}^{-1}\left[\alpha_{5}\right]_{1}^{-1} \tag{3-6}
\end{align*}
$$

Simplifying the above equation by using relations (3-4) and (3-5) and equating the " 33 " elements of the resultant matrix equation, we get

$$
\begin{align*}
F_{1}\left(\hat{\theta}_{1},\right. & \left.\hat{\theta}_{3}, \hat{\theta}_{4}, \hat{\theta}_{6}\right)=\left[S \hat{\theta}_{4} S \hat{\theta}_{3} S \hat{\alpha}_{4} S \hat{\alpha}_{2}\right. \\
& \left.-C \hat{\theta}_{4}\left(C \hat{\theta}_{3} S \hat{\alpha}_{4} C \hat{\alpha}_{3} S \hat{\alpha}_{2}+S \hat{\alpha}_{4} S \hat{\alpha}_{3} C \hat{\alpha}_{2}\right)\right] \\
& +\left(-C \hat{\theta}_{3} C \hat{\alpha}_{4} S \hat{\alpha}_{3} S \hat{\alpha}_{2}+C \hat{\alpha}_{4} C \hat{\alpha}_{3} C \hat{\alpha}_{2}\right) \\
& -\left[S \hat{\theta}_{1} S \hat{\theta}_{6} S \hat{\alpha}_{1} S \hat{\alpha}_{5}-C \hat{\theta}_{1}\left(C \hat{\theta}_{6} S \hat{\alpha}_{1} C \hat{\alpha}_{6} S \hat{\alpha}_{5}\right.\right. \\
& \left.\left.+S \hat{\alpha}_{1} S \hat{\alpha}_{6} C \hat{\alpha}_{5}\right)\right]-\left(-C \hat{\theta}_{6} C \hat{\alpha}_{1} S \hat{\alpha}_{6} S \hat{\alpha}_{5}\right. \\
& \left.+C \hat{\alpha}_{1} C \hat{\alpha}_{6} C \hat{\alpha}_{5}\right)=0 \tag{3-7}
\end{align*}
$$

Note that Eq. (3-7) involves the adjacent displacement angles $\hat{\theta}_{1}$ and $\hat{\theta}_{6}$ and the displacement angles $\hat{\theta}_{3}$ and $\hat{\theta}_{4}$ opposite to both of them.

Cyclic permutation permits Eq. (3-7) to be written in six different ways. It is, therefore, possible to get six equations of the form (3-7) involving different combinations of two adjacent angles and the two angles opposite to both of them.
2. Relationship involving three adjacent dual displacement angles and the dual displacement angle opposite to all three of them.

In this arrangement of Eq. (3-3), seven matrices are used on one side of the equality sign and five matrices on the other. Thus, we have, for instance,

$$
\begin{align*}
{\left[\hat{\theta}_{4}\right]_{3} } & {\left[\hat{\alpha}_{3}\right]_{1}\left[\hat{\theta}_{3}\right]_{3}\left[\hat{\alpha}_{2}\right]_{1}\left[\hat{\theta}_{2}\right]_{3} } \\
& =\left[\hat{\alpha}_{1}\right]_{1}^{-1}\left[\hat{\theta}_{1}\right]_{3}^{-1}\left[\hat{\alpha}_{6}\right]_{1}^{-1}\left[\hat{\theta}_{6}\right]_{3}^{-1}\left[\hat{\alpha}_{5}\right]_{1}^{-1}\left[\hat{\theta}_{5}\right]_{3}^{-1}\left[\hat{\alpha}_{4}\right]_{1}^{-1} \tag{3-8}
\end{align*}
$$

Simplifying Eq. (3-8) by using relations (3-4) and (3-5) and equating " 33 " elements of the resultant matrix equation, we get

$$
\begin{align*}
& F_{2}\left(\hat{\theta}_{1}, \hat{\theta}_{3}, \hat{\theta}_{5}, \hat{\theta}_{6}\right)=C \hat{\theta}_{5}\left[S \hat{\theta}_{1} S \hat{\theta}_{6}\left(S \hat{\alpha}_{1} C \hat{\alpha}_{5} S \hat{\alpha}_{4}\right)\right. \\
&+C \hat{\theta}_{1} C \hat{\theta}_{6}\left(-S \hat{\alpha}_{1} C \hat{\alpha}_{6} C \hat{\alpha}_{5} S \hat{\alpha}_{4}\right)+C \hat{\theta}_{1}\left(S \hat{\alpha}_{1} S \hat{\alpha}_{6} S \hat{\alpha}_{5} S \hat{\alpha}_{4}\right) \\
&\left.+C \hat{\theta}_{6}\left(-C \hat{\alpha}_{1} S \hat{\alpha}_{6} C \hat{\alpha}_{5} S \hat{\alpha}_{4}\right)+\left(-C \hat{\alpha}_{1} C \hat{\alpha}_{6} S \hat{\alpha}_{5} S \hat{\alpha}_{4}\right)\right] \\
&+S \hat{\theta}_{5}\left[S \hat{\theta}_{1} C \hat{\theta}_{6} S \hat{\alpha}_{1} S \hat{\alpha}_{4}+C \hat{\theta}_{1} S \hat{\theta}_{6} S \hat{\alpha}_{1} C \hat{\alpha}_{6} S \hat{\alpha}_{4}\right. \\
&\left.+S \hat{\theta}_{6} C \hat{\alpha}_{1} S \hat{\alpha}_{6} S \hat{\alpha}_{4}\right]+\left[S \hat{\theta}_{1} S \hat{\theta}_{6} S \hat{\alpha}_{1} S \hat{\alpha}_{5} C \hat{\alpha}_{4}\right. \\
&+C \hat{\theta}_{1} C \hat{\theta}_{6}\left(-S \hat{\alpha}_{1} C \hat{\alpha}_{6} S \hat{\alpha}_{5} C \hat{\alpha}_{4}\right)+C \hat{\theta}_{1}\left(-S \hat{\alpha}_{1} S \hat{\alpha}_{6} C \hat{\alpha}_{5} C \hat{\alpha}_{4}\right) \\
&\left.+C \hat{\theta}_{6}\left(-C \hat{\alpha}_{1} S \hat{\alpha}_{6} S \hat{\alpha}_{5} C \hat{\alpha}_{4}\right)+C \hat{\alpha}_{1} C \hat{\alpha}_{6} C \hat{\alpha}_{5} C \hat{\alpha}_{4}\right] \\
&-C \hat{\alpha}_{3} C \hat{\alpha}_{2}+S \hat{\alpha}_{3} S \hat{\alpha}_{2} C \hat{\theta}_{3}=0 \tag{3-9}
\end{align*}
$$

Note that Eq. (3-9) involves the three adjacent displacement angles $\hat{\theta}_{1}, \hat{\theta}_{6}$, and $\hat{\theta}_{5}$ and the displacement angle $\hat{\theta}_{3}$ opposite to all of them. Cyclic permutation allows Eq. (3-9) to be written in six different ways. It is, therefore, possible to obtain six equations of the form (3-9) involving different combinations of three adjacent angles and a fourth displacement angle opposite to them.
3. Relationship involving four adjacent dual displacement angles.

In this arrangement of Eq. (3-3), nine matrices are used on one side of the equality sign and three matrices on the other. The
important point to note is that the matrix on the side containing three matrices involves only the constant kinematic parameters of the mechanism. Thus, we have, for instance,

$$
\begin{align*}
{\left[\hat{\alpha}_{6}\right]_{1} } & {\left[\hat{\theta}_{1}\right]_{3}\left[\hat{\alpha}_{1}\right]_{1}\left[\hat{\theta}_{2}\right]_{3}\left[\hat{\alpha}_{2}\right]_{1}\left[\hat{\theta}_{3}\right]_{3}\left[\hat{\alpha}_{3}\right]_{1}\left[\hat{\theta}_{4}\right]_{3}\left[\hat{\alpha}_{4}\right]_{1} } \\
& =\left[\hat{\theta}_{5}\right]_{3}^{-1}\left[\hat{\alpha}_{5}\right]_{1}^{-1}\left[\hat{\theta}_{6}\right]_{3}^{-1} \tag{3-10}
\end{align*}
$$

Note that the central matrix $\left[\hat{\alpha}_{5}\right]^{-1}$ on the right hand side involves only the constant kinematic parameters of the mechanism.

Simplifying the above equation by using relations (3-4) and (3-5) and equating the " 33 " elements of the resultant matrix, we get

$$
\begin{aligned}
F_{3}\left(\hat{\theta}_{1},\right. & \left.\hat{\theta}_{2}, \hat{\theta}_{3}, \hat{\theta}_{4}\right)=-S \hat{\theta}_{1} S \hat{\alpha}_{4} S \hat{\alpha}_{6}\left(-C \hat{\theta}_{2} S \hat{\theta}_{4} C \hat{\theta}_{3}\right. \\
& -C \hat{\theta}_{4} C \hat{\alpha}_{3} S \hat{\theta}_{3}+S \hat{\theta}_{2} C \hat{\alpha}_{2} S \hat{\theta}_{4} S \hat{\theta}_{3}-S \hat{\theta}_{2} C \hat{\alpha}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{3} C \hat{\theta}_{3} \\
& \left.+S \hat{\theta}_{2} C \hat{\theta}_{4} S \hat{\alpha}_{3}\right)+S \hat{\theta}_{1} S \hat{\alpha}_{6} C \hat{\alpha}_{4}\left(C \hat{\theta}_{2} S \hat{\alpha}_{3} S \hat{\theta}_{3}\right. \\
& \left.+S \hat{\theta}_{2} C \hat{\alpha}_{2} S \hat{\alpha}_{3} C \hat{\theta}_{3}+S \hat{\theta}_{2} S \hat{\alpha}_{2} S \hat{\alpha}_{3}\right) \\
& -C \hat{\theta}_{1} S \hat{\alpha}_{6} S \hat{\alpha}_{4} C \hat{\alpha}_{1}\left(-S \hat{\theta}_{2} S \hat{\theta}_{4} C \hat{\theta}_{3}-S \hat{\theta}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{3} S \hat{\theta}_{3}\right. \\
& -C \hat{\theta}_{2} C \hat{\alpha}_{2} S \hat{\theta}_{4} S \hat{\theta}_{3}+C \hat{\theta}_{2} C \hat{\alpha}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{4} C \hat{\theta}_{3} \\
& \left.-C \hat{\theta}_{2} S \hat{\alpha}_{2} C \hat{\theta}_{4} S \hat{\alpha}_{3}\right)+C \hat{\theta}_{1} S \hat{\alpha}_{6} S \hat{\alpha}_{4} S \hat{\alpha}_{1}\left(-S \hat{\alpha}_{2} S \hat{\theta}_{4} S \hat{\theta}_{3}\right. \\
& \left.+S \hat{\alpha}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{3} C \hat{\theta}_{3}+C \hat{\alpha}_{2} C \hat{\theta}_{4} S \hat{\alpha}_{3}\right) \\
& +C \hat{\theta}_{1} S \hat{\alpha}_{6} C \hat{\alpha}_{4} C \hat{\alpha}_{1}\left(S \hat{\theta}_{2} S \hat{\alpha}_{3} S \hat{\theta}_{3}-C \hat{\theta}_{2} C \hat{\alpha}_{2} S \hat{\alpha}_{3} C \hat{\theta}_{3}\right. \\
& \left.-C \hat{\theta}_{2} S \hat{\alpha}_{2} C \hat{\alpha}_{3}\right)-C \hat{\theta}_{1} S \hat{\alpha}_{6} C \hat{\alpha}_{4} C \hat{\alpha}_{1}\left(-S \hat{\alpha}_{2} S \hat{\alpha}_{3} C \hat{\theta}_{3}\right. \\
& \left.+C \hat{\alpha}_{2} C \hat{\alpha}_{3}\right)-C \hat{\alpha}_{6} S \hat{\alpha}_{4} S \hat{\alpha}_{1}\left(-S \hat{\theta}_{2} S \hat{\theta}_{4} C \hat{\theta}_{3}-S \hat{\theta}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{3} S \hat{\theta}_{3}\right.
\end{aligned}
$$

$$
\begin{align*}
& -C \hat{\theta}_{2} C \hat{\alpha}_{2} S \hat{\theta}_{4} S \hat{\theta}_{3}+C \hat{\theta}_{2} C \hat{\alpha}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{3} C \hat{\theta}_{3} \\
& \left.-C \hat{\theta}_{2} S \hat{\alpha}_{2} C \hat{\theta}_{4} S \hat{\alpha}_{3}\right)-C \hat{\alpha}_{6} S \hat{\alpha}_{4} C \hat{\alpha}_{1}\left(-S \hat{\alpha}_{2} S \hat{\theta}_{4} S \hat{\theta}_{3}\right. \\
& \left.+S \hat{\alpha}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{3} C \hat{\theta}_{3}+C \hat{\alpha}_{2} C \hat{\theta}_{4} S \hat{\alpha}_{3}\right) \\
& +C \hat{\alpha}_{6} C \hat{\alpha}_{4} S \hat{\alpha}_{1}\left(S \hat{\theta}_{2} S \hat{\alpha}_{3} S \hat{\theta}_{3}-C \hat{\theta}_{2} C \hat{\alpha}_{2} S \hat{\alpha}_{3} C \hat{\theta}_{3}\right. \\
& -C \hat{\theta}_{2} S \hat{\alpha}_{2} C \hat{\alpha}_{3}+C \hat{\alpha}_{6} C \hat{\alpha}_{4} C \hat{\alpha}_{1}\left(-S \hat{\alpha}_{2} S \hat{\alpha}_{3} C \hat{\theta}_{3}\right. \\
& \left.+C \hat{\alpha}_{2} C \hat{\alpha}_{3}\right)-C \hat{\alpha}_{5}=0 \tag{3-11}
\end{align*}
$$

Note that Eq. (3-11) involves the four adjacent dual displacement angles $\hat{\theta}_{1}, \hat{\theta}_{2}, \hat{\theta}_{3}$, and $\hat{\theta}_{4}$.

Cyclic permutation allows Eq. (3-11) to be written in six different ways. It is, therefore, possible to obtain six equations of the form (3-11) involving different combinations of four adjacent dual displacement angles.

Observe that Eqs. (3-7), (3-9) and (3-11) are all dual equations. Each of them, therefore, represents two scalar equations. Since six equations of the form (3-7), six equations of the form (3-9), and six equations of the form (3-11) are possible, a total of thirty-six scalar equations are available. These thirty-six equations make it possible to obtain the existence criteria of all mechanisms with one passive coupling (and also many mechanisms with one or more passive couplings with number of links equal to or less than six).

Existence Criteria of the Six-Link 3H+3P Mechanisms

In the following sections, the Dimentberg's passive coupling technique has been employed to obtain the existence criteria of the six-link $3 H+3 P$ mechanisms. These criteria are obtained by considering only the primary parts of the displacement relationships of the appropriate parent mechanisms. They, therefore, lead to conditions on only the twist angles and constant displacement angles of the mechanisms considered and are independent of their link lengths and constant offset distances.

In a $3 H+3 P$ mechanism, the three three revolute pairs may be either adjacent to each other or be separated by one or two prismatic pairs. All possible types of $3 \mathrm{H}+3 \mathrm{P}$ mechanisms are, therefore, represented by the following mechanisms:
i) $\mathrm{H}-\mathrm{P}-\mathrm{P}-\mathrm{P}-\mathrm{H}-\mathrm{H}$ Mechanism
ii) H-P-P-H-P-H Mechanism
iii) H-P-H-P-H-P Mechanism

Existence Criteria of the Six-Link
 H-P-P-P-H-H Mechanism

The existence criteria of an $\mathrm{H}-\mathrm{P}-\mathrm{P}-\mathrm{P}-\mathrm{H}-\mathrm{H}$ mechanism can be obtained from the displacement relationships of an $\mathrm{H}-\mathrm{C}-\mathrm{P}-\mathrm{P}-\mathrm{H}-\mathrm{H}$ mechanism.

Consider the $\mathrm{H}-\mathrm{C}-\mathrm{P}-\mathrm{P}-\mathrm{H}-\mathrm{H}$ mechanism with general proportions shown schematically in Figure 8, with helical pairs at joints A, E, and F, cylinder pairs at joint B, and prismatic pairs at joints C and D . The instantaneous configuration of the $\mathrm{H}-\mathrm{C}-\mathrm{P}-\mathrm{P}-\mathrm{H}-\mathrm{H}$ mechanism as shown in Figure 8 is completely defined by the two sets of six dual angles, each as follows:

1. Between adjacent pairing axes:

$$
\begin{equation*}
\hat{\alpha}_{i}=\alpha_{i}+\varepsilon a_{i} \quad(i=1,2, \ldots, 6) \tag{3-12}
\end{equation*}
$$

where $\alpha_{i}(i=1$ to 6$)$ are the twist angles and $a_{i}(i=1$ to 6$)$ are the kinematic link lengths.
2. Between adjacent common perpendiculars:

$$
\begin{equation*}
\hat{\theta}_{i}=\theta_{i}+\varepsilon s_{i} \quad(i=1,2, \ldots, 6) \tag{3-13}
\end{equation*}
$$

with

$$
s_{i}=p_{i} \theta_{i} \quad(i=1,5,6)
$$

where $\theta_{i}(i=1$ to 6$)$ are the angular displacements at the kinematic pairs, $s_{i}(i=1$ to 6) are the translational displacements along the kinematic axes, and $p_{i}(i=1,5,6)$ are the finite pitch values of the helical pairs.

In equation (3-13), the four angles, $\theta_{i}(i=1,2,5,6)$ and the three sliding components along the axes of the cylinder and prism pairs, $s_{i}(i=2,3,4)$ constitute the seven linkage variables; the six dual angles, $\hat{\alpha}_{i}(i=1$ to 6$)$ in equation (3-12), the two constant displacement angles of the prism pairs at joints C and $D, \theta_{i}(i=3,4)$

Figure 8. Six-link H-C-P-P-H-H Space Mechanism
in equation (3-13), and the three finite pitch values of the helical pairs, $p_{i}(i=1,5,6)$ constitute the seventeen real parameters necessary to specify an $\mathrm{H}-\mathrm{C}-\mathrm{P}-\mathrm{P}-\mathrm{H}-\mathrm{H}$ mechanism of general proportions. This mechanism reduces to an H-P-P-P-H-H mechanism if the displacement angle θ_{2} at the cylinder pair remains constant at all positions of the mechanism (Figure 10).

By considering the loop-closure condition of the mechanism in Figure 9 in three different ways, the following relationships can be obtained (120):

$$
\begin{align*}
& F_{2}\left(\hat{\theta}_{2}, \hat{\theta}_{3}, \hat{\theta}_{4}, \hat{\theta}_{6}\right)=C \hat{\theta}_{2}\left[S \hat{\theta}_{4} S \hat{\theta}_{3}\left(S \hat{\alpha}_{4} C \hat{\alpha}_{2} S \hat{\alpha}_{1}\right)\right. \\
&+C \hat{\theta}_{4} C \hat{\theta}_{3}\left(-S \hat{\alpha}_{4} C \hat{\alpha}_{3} C \hat{\alpha}_{2} S \hat{\alpha}_{1}\right)+C \hat{\theta}_{4}\left(S \hat{\alpha}_{4} S \hat{\alpha}_{3} S \hat{\alpha}_{2} S \hat{\alpha}_{1}\right) \\
&\left.+C \hat{\theta}_{3}\left(-C \hat{\alpha}_{4} S \hat{\alpha}_{3} C \hat{\alpha}_{2} S \hat{\alpha}_{1}\right)+\left(-C \hat{\alpha}_{4} C \hat{\alpha}_{3} S \hat{\alpha}_{2} S \hat{\alpha}_{1}\right)\right] \\
&+S \hat{\theta}_{2}\left[S \hat{\theta}_{4} C \hat{\theta}_{3}\left(S \hat{\alpha}_{4} S \hat{\alpha}_{1}\right)+C \hat{\theta}_{4} S \hat{\theta}_{3}\left(S \hat{\alpha}_{4} C \hat{\alpha}_{3} S \hat{\alpha}_{1}\right)\right. \\
&\left.+S \hat{\theta}_{3}\left(C \hat{\alpha}_{4} S \hat{\alpha}_{3} S \hat{\alpha}_{1}\right)\right]+\left[S \hat{\theta}_{4} S \hat{\theta}_{3}\left(S \hat{\alpha}_{4} S \hat{\alpha}_{2} C \hat{\alpha}_{1}\right)\right. \\
&+C \hat{\theta}_{4} C \hat{\theta}_{3}\left(-S \hat{\alpha}_{4} C \hat{\alpha}_{3} S \hat{\alpha}_{2} C \hat{\alpha}_{1}\right)+C \hat{\theta}_{4}\left(-S \hat{\alpha}_{4} S \hat{\alpha}_{3} C \hat{\alpha}_{2} C \hat{\alpha}_{1}\right) \\
&\left.+C \hat{\theta}_{3}\left(-C \hat{\alpha}_{4} S \hat{\alpha}_{3} S \hat{\alpha}_{2} C \hat{\alpha}_{1}\right)+\left(C \hat{\alpha}_{4} C \hat{\alpha}_{3} C \hat{\alpha}_{2} C \hat{\alpha}_{1}\right)\right] \\
&-C \hat{\alpha}_{6} C \hat{\alpha}_{5}+S \hat{\alpha}_{6} S \hat{\alpha}_{5} C \hat{\theta}_{6}=0 \tag{3-14}\\
& F_{3}\left(\hat{\theta}_{1},\right.\left.\hat{\theta}_{2}, \hat{\theta}_{3}, \hat{\theta}_{4}\right)=-S \hat{\theta}_{1} S \hat{\alpha}_{4} S \hat{\alpha}_{6}\left(-C \hat{\theta}_{2} S \hat{\theta}_{4} C \hat{\theta}_{3}\right. \\
&-C \hat{\theta}_{4} C \hat{\alpha}_{3} S \hat{\theta}_{3}+S \hat{\theta}_{2} C \hat{\alpha}_{2} S \hat{\theta}_{3} S \hat{\theta}_{4}-S \hat{\theta}_{2} C \hat{\alpha}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{3} C \hat{\theta}_{3} \\
&\left.\quad+S \hat{\theta}_{2} C \hat{\theta}_{4} S \hat{\alpha}_{3}\right)+S \hat{\theta}_{1} S \hat{\alpha}_{6} C \hat{\alpha}_{4}\left(C \hat{\theta}_{2} S \hat{\alpha}_{3} S \hat{\theta}_{3}\right.
\end{align*}
$$

Figure 9. H-C-P-P-H-H Space Mechanism

Figure 10. H-P-P-Pmeth Space Mechanism Obtained From the Mechanism in Figure 9 by Making $\theta_{2}=\theta_{2 k}=a$ Constant

$$
\begin{align*}
& \left.+S \hat{\theta}_{2} C \hat{\alpha}_{2} S \hat{\alpha}_{3} C \hat{\theta}_{3}+S \hat{\theta}_{2} S \hat{\alpha}_{2} S \hat{\alpha}_{3}\right) \\
& -C \hat{\theta}_{1} S \hat{\alpha}_{6} S \hat{\alpha}_{4} C \hat{\alpha}_{1}\left(-S \hat{\theta}_{2} S \hat{\theta}_{4} C \hat{\theta}_{3}-S \hat{\theta}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{3} S \hat{\theta}_{3}\right. \\
& \left.-C \hat{\theta}_{2} C \hat{\alpha}_{2} S \hat{\theta}_{3}+C \hat{\theta}_{2} C \hat{\alpha}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{3} C \hat{\theta}_{3}-C \hat{\theta}_{2} S \hat{\alpha}_{2} C \hat{\theta}_{4} S \hat{\alpha}_{3}\right) \\
& +C \hat{\theta}_{1} S \hat{\alpha}_{6} S \hat{\alpha}_{4} S \hat{\alpha}_{1}\left(-S \hat{\alpha}_{2} S \hat{\theta}_{4} S \hat{\theta}_{3}+S \hat{\alpha}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{3} C \hat{\theta}_{3}\right. \\
& \left.+\mathrm{C} \hat{\alpha}_{2} \mathrm{C} \hat{\theta}_{4} \mathrm{~S} \hat{\alpha}_{3}\right)+\mathrm{C} \hat{\theta}_{1} \mathrm{~S} \hat{\alpha}_{6} \mathrm{C} \hat{\alpha}_{4} \mathrm{C} \hat{\alpha}_{1}\left(\mathrm{~S} \hat{\theta}_{2} \mathrm{~S} \hat{\alpha}_{3} \mathrm{~S} \hat{\theta}_{3}\right. \\
& -C \hat{\theta}_{2} C \hat{\alpha}_{2} S \hat{\alpha}_{3} C \hat{\theta}_{3}-C \hat{\theta}_{2} S \hat{\alpha}_{2} C \hat{\alpha}_{3} \\
& -\mathrm{C} \hat{\theta}_{1} \mathrm{~S} \hat{\alpha}_{6} \mathrm{C} \hat{\alpha}_{4} \mathrm{~S} \hat{\alpha}_{1}\left(-\mathrm{S} \hat{\alpha}_{2} \mathrm{~S} \hat{\alpha}_{3} \mathrm{C} \hat{\theta}_{3}+\mathrm{C} \hat{\alpha}_{2} \mathrm{C} \hat{\alpha}_{3}\right) \\
& -C \hat{\alpha}_{6} S \hat{\alpha}_{4} S \hat{\alpha}_{1}\left(-S \hat{\theta}_{2} S \hat{\theta}_{4} C \hat{\theta}_{3}-S \hat{\theta}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{3} S \hat{\theta}_{3}\right. \\
& -C \hat{\theta}_{2} C \hat{\alpha}_{2} S \hat{\theta}_{4} S \hat{\theta}_{3}+C \hat{\theta}_{2} C \hat{\alpha}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{3} C \hat{\theta}_{3} \\
& \left.-C \hat{\theta}_{2} S \hat{\alpha}_{2} C \hat{\theta}_{4} S \hat{\alpha}_{3}\right)-C \hat{\alpha}_{6} S \hat{\alpha}_{4} C \hat{\alpha}_{1}\left(-S \hat{\alpha}_{2} S \hat{\theta}_{4} S \hat{\theta}_{3}\right. \\
& \left.+S \hat{\alpha}_{2} C \hat{\theta}_{4} C \hat{\alpha}_{3} C \hat{\theta}_{3}+C \hat{\alpha}_{2} C \hat{\theta}_{4} S \hat{\alpha}_{3}\right) \\
& +\mathrm{C} \hat{\alpha}_{6} \mathrm{C} \hat{\alpha}_{4} \mathrm{~S} \hat{\alpha}_{1}\left(\mathrm{~S} \hat{\theta}_{2} \mathrm{~S} \hat{\alpha}_{3} \mathrm{~S} \hat{\theta}_{3}-\mathrm{C} \hat{\theta}_{2} \mathrm{C} \hat{\alpha}_{2} \mathrm{~S} \hat{\alpha}_{3} \mathrm{C} \hat{\theta}_{3}\right. \\
& \left.-C \hat{\theta}_{2} S \hat{\alpha}_{2} C \hat{\alpha}_{3}\right)+C \hat{\alpha}_{6} C \hat{\alpha}_{4} C \hat{\alpha}_{1}\left(-S \hat{\alpha}_{2} S \hat{\alpha}_{3} C \hat{\theta}_{3}\right. \\
& \left.+\mathrm{C} \hat{\alpha}_{2} \mathrm{C} \hat{\alpha}_{3}\right)-\mathrm{C} \hat{\alpha}_{5}=0 \tag{3-15}\\
& F_{3}\left(\hat{\theta}_{2}, \hat{\theta}_{3}, \hat{\theta}_{4}, \hat{\theta}_{5}\right)=-S \hat{\theta}_{2} S \hat{\alpha}_{5} S \hat{\alpha}_{1}\left(-C \hat{\theta}_{3} S \hat{\theta}_{5} C \hat{\theta}_{4}\right. \\
& -C \hat{\theta}_{5} C \hat{\alpha}_{4} S \hat{\theta}_{4}+S \hat{\theta}_{3} C \hat{\alpha}_{3} S \hat{\theta}_{5} S \hat{\theta}_{4}-S \hat{\theta}_{3} C \hat{\alpha}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} C \hat{\theta}_{4} \\
& \left.+S \hat{\theta}_{3} C \hat{\theta}_{5} S \hat{\alpha}_{4}\right)+S \hat{\theta}_{2} S \hat{\alpha}_{1} C \hat{\alpha}_{5}\left(C \hat{\theta}_{3} S \hat{\alpha}_{4} S \hat{\theta}_{4}\right. \\
& \left.+S \hat{\theta}_{3} C \hat{\alpha}_{3} S \hat{\alpha}_{4} C \hat{\theta}_{4}+S \hat{\theta}_{3} S \hat{\alpha}_{3} S \hat{\alpha}_{4}\right) \\
& -C \hat{\theta}_{2} S \hat{\alpha}_{1} C \hat{\alpha}_{2}\left(-S \hat{\theta}_{3} S \hat{\theta}_{5} C \hat{\theta}_{4}-S \hat{\theta}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} S \hat{\theta}_{4}\right.
\end{align*}
$$

$$
\begin{align*}
& -C \hat{\theta}_{3} C \hat{\alpha}_{3} S \hat{\theta}_{5} S \hat{\theta}_{4}+C \hat{\theta}_{3} C \hat{\alpha}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} C \hat{\theta}_{4} \\
& \left.-C \hat{\theta}_{3} S \hat{\alpha}_{3} C \hat{\theta}_{5} S \hat{\alpha}_{4}\right)+C \hat{\theta}_{2} S \hat{\alpha}_{1} S \hat{\alpha}_{5} S \hat{\alpha}_{2}\left(-S \hat{\alpha}_{3} S \hat{\theta}_{5} S \hat{\theta}_{4}\right. \\
& \left.+S \hat{\alpha}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} C \hat{\theta}_{4}+C \hat{\alpha}_{3} C \hat{\theta}_{5} S \hat{\alpha}_{4}\right) \\
& +C \hat{\theta}_{2} S \hat{\alpha}_{1} C \hat{\alpha}_{5} C \hat{\alpha}_{2}\left(S \hat{\theta}_{3} S \hat{\alpha}_{4} S \hat{\theta}_{4}-C \hat{\theta}_{3} C \hat{\alpha}_{3} S \hat{\alpha}_{4} C \hat{\theta}_{4}\right. \\
& \left.-C \hat{\theta}_{3} S \hat{\alpha}_{3} C \hat{\alpha}_{4}\right)-C \hat{\theta}_{2} S \hat{\alpha}_{1} C \hat{\alpha}_{5} S \hat{\alpha}_{2}\left(-S \hat{\alpha}_{3} S \hat{\alpha}_{4} C \hat{\theta}_{4}\right. \\
& \left.+C \hat{\alpha}_{3} C \hat{\alpha}_{4}\right)-C \hat{\alpha}_{1} S \hat{\alpha}_{5} S \hat{\alpha}_{2}\left(-S \hat{\theta}_{3} S \hat{\theta}_{5} C \hat{\theta}_{4}\right. \\
& -S \hat{\theta}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} S \hat{\theta}_{4}-C \hat{\theta}_{3} C \hat{\alpha}_{3} S \hat{\theta}_{5} S \hat{\theta}_{4} \\
& \left.+C \hat{\theta}_{3} C \hat{\alpha}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} C \hat{\theta}_{4}-C \hat{\theta}_{3} S \hat{\alpha}_{3} C \hat{\theta}_{5} S \hat{\alpha}_{4}\right) \\
& -C \hat{\alpha}_{1} S \hat{\alpha}_{5} C \hat{\alpha}_{2}\left(-S \hat{\alpha}_{3} S \hat{\theta}_{5} S \hat{\theta}_{4}+S \hat{\alpha}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} C \hat{\theta}_{4}\right. \\
& \left.+C \hat{\alpha}_{3} C \hat{\theta}_{5} S \hat{\alpha}_{4}\right)+C \hat{\alpha}_{1} C \hat{\alpha}_{5} S \hat{\alpha}_{2}\left(S \hat{\theta}_{3} S \hat{\alpha}_{4} S \hat{\theta}_{4}\right. \\
& \left.-C \hat{\theta}_{3} C \hat{\alpha}_{3} S \hat{\alpha}_{4} C \hat{\theta}_{4}-C \hat{\theta}_{3} S \hat{\alpha}_{3} C \hat{\alpha}_{4}\right) \\
& +C \hat{\alpha}_{1} C \hat{\alpha}_{5} C \hat{\alpha}_{2}\left(-S \hat{\alpha}_{3} S \hat{\alpha}_{4} C \hat{\theta}_{4}+C \hat{\alpha}_{3} C \hat{\alpha}_{4}\right)-C \hat{\alpha}_{6}=0 \tag{3-16}
\end{align*}
$$

Observe that Eq. (3-14) is similar in form to Eq. (3-9) and
Eqs. (3-15) and (3-16) are similar in form to Eq. (3-11). Note also that each of the above equations relates the dual displacement angles $\hat{\theta}_{2}, \hat{\theta}_{3}$, and $\hat{\theta}_{4}$ to a fourth dual displacement angle. The displacement angles θ_{3} and θ_{4} at the prismatic pairs are constant.

Let the displacement angle θ_{2} at the cylinder pair be now held constant at all positions of the mechanism. Denoting the constant
value of θ_{2} by $\theta_{2 k}$, the primary parts of Eqs. (3-14), (3-15), and $(3-16)$ give

$$
\begin{align*}
& A_{s} S \theta_{6}+A_{c} C \theta_{6}+A_{n}=0 \tag{3-17}\\
& B_{s} S \theta_{1}+B_{c} C \theta_{1}+B_{n}=0 \tag{3-18}\\
& C_{s} S \theta_{5}+C C_{c} C \theta_{5}+C_{n}=0 \tag{3-19}
\end{align*}
$$

The constants in the above equations involve the constant kinematic parameters and are defined in Table IV.

Observe that each of the equations (3-17) through ($3-19$) contains only one variable and must hold true at varying values of that variable. This is possible only if their coefficients vanish. This gives

$$
\begin{align*}
& A_{s}=A_{c}=A_{n}=0 \\
& B_{s}=B_{c}=B_{n}=0 \tag{3-20}\\
& C_{s}=C_{c}=C_{n}=0
\end{align*}
$$

Examination of Eqs. (3-20) gives the following relationships:

$$
\begin{align*}
& \alpha_{5}=\alpha_{6}=0 \tag{3-21}\\
& \mathrm{C} \theta_{2 k} \cdot\left[\mathrm{~S} \theta_{4 k} \mathrm{~S} \theta_{3 k}\left(\mathrm{~S} \alpha_{4} \mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{1}\right)+\mathrm{C} \theta_{4 k} \mathrm{C} \theta_{3 k}\left(-\mathrm{S} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{1}\right)\right. \\
& \\
& +\mathrm{C} \theta_{4 k}\left(\mathrm{~S} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{~S} \alpha_{1}\right)+\mathrm{C} \theta_{3 k}\left(-\mathrm{C} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{1}\right) \\
& \\
& \left.+\left(-\mathrm{C} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{~S} \alpha_{1}\right)\right]+\mathrm{S} \theta_{2 k} \cdot\left[\mathrm{~S} \theta_{4 k} \mathrm{C} \theta_{3 k}\left(\mathrm{~S} \alpha_{4} \mathrm{~S} \alpha_{1}\right)\right. \\
& \\
& \left.+\mathrm{C} \theta_{4 k} \mathrm{~S} \theta_{3 k}\left(\mathrm{~S} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{1}\right)+\mathrm{S} \theta_{3 k}\left(\mathrm{C} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{1}\right)\right] \\
& \\
& +\mathrm{S} \theta_{4 k} \mathrm{~S} \theta_{3 k}\left(\mathrm{~S} \alpha_{4} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{1}\right)+\mathrm{C} \theta_{4 k} \mathrm{C} \theta_{3 k}\left(-\mathrm{S} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{1}\right)
\end{align*}
$$

$$
\begin{aligned}
& A_{c}=S \alpha_{6} S \alpha_{5} \\
& A_{n}=C \theta_{2 k}\left[S \theta_{4 k} S \theta_{3 k}\left(S \alpha_{4} C \alpha_{2} S \alpha_{1}\right)+C \theta_{4 k} C \theta_{3 k}\left(-S \alpha_{4} C \alpha_{3} C \alpha_{2} S \alpha_{1}\right)\right. \\
& +\mathrm{C} \theta_{4 \mathrm{k}}\left(\mathrm{~S} \alpha_{4} \mathrm{~S} \alpha_{3} \cdot \mathrm{~S} \alpha_{2} \mathrm{~S} \alpha_{1}\right)+\mathrm{C} \theta_{3 \mathrm{k}}\left(-\mathrm{C} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{1}\right) \\
& \left.+\left(-\mathrm{C} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{~S} \alpha_{1}\right)\right]+\mathrm{S} \theta_{2 \mathrm{k}}\left[\mathrm{~S} \theta_{4 \mathrm{k}} \mathrm{C} \theta_{3 \mathrm{k}}\left(\mathrm{~S} \alpha_{4} \mathrm{~S} \alpha_{1}\right)\right. \\
& \left.+\mathrm{C} \theta_{4 \mathrm{k}} \mathrm{~S} \theta_{3 \mathrm{k}}\left(\mathrm{~S} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{1}\right)+\mathrm{S} \theta_{3 \mathrm{k}}\left(\mathrm{C} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{1}\right)\right] \\
& +\left[\mathrm{S} \theta_{4 \mathrm{k}} \mathrm{~S} \theta_{3 \mathrm{k}}\left(\mathrm{~S} \alpha_{4} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{1}\right)+\mathrm{C} \theta_{4 \mathrm{k}} \mathrm{C} \theta_{3 \mathrm{k}}\left(-\mathrm{S} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{1}\right)\right. \\
& +\mathrm{C} \theta_{4 \mathrm{k}}\left(-\mathrm{S} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{C} \alpha_{1}\right)+\mathrm{C} \theta_{3 \mathrm{k}}\left(-\mathrm{C} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{1}\right) \\
& \left.+\left(\mathrm{C} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{C} \alpha_{1}\right)\right]-\mathrm{C} \alpha_{6} \mathrm{C} \alpha_{5} \\
& B_{s}=-S \alpha_{4} S \alpha_{6}\left(-C \theta_{2 k} S \theta_{4 k} C \theta_{3 k}-C \theta_{4 k} C \alpha_{3} S \theta_{3 k}\right. \\
& +\mathrm{S} \theta_{2 k} \mathrm{C} \alpha_{2} \cdot \theta_{3 k}{ }^{\mathrm{S} \theta_{4 k}}-\mathrm{S} \mathrm{\theta}{ }_{2 k} \mathrm{C} \alpha_{2} \mathrm{C} \theta_{4 k} \mathrm{C} \alpha_{3} \mathrm{C} \theta_{3 k} \\
& \left.+\mathrm{S} \theta_{2 k} \mathrm{C} \theta_{4 \mathrm{k}} \mathrm{~S} \alpha_{3}\right)+\mathrm{S} \alpha_{6} \mathrm{C} \alpha_{4}\left(\mathrm{C} \theta_{2 k} \mathrm{~S} \alpha_{3} \mathrm{~S} \theta_{3 \mathrm{k}}+\mathrm{S} \theta_{2 k} \mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{3} \mathrm{C} \theta_{3 \mathrm{k}}\right. \\
& \left.+\mathrm{S} \theta_{2 \mathrm{k}} \mathrm{~S} \alpha_{2} \mathrm{~S} \alpha_{3}\right) \\
& \mathrm{B}_{\mathrm{c}}=-\mathrm{S} \alpha_{6} \mathrm{~S} \alpha_{4} \mathrm{C} \alpha_{1}\left(-\mathrm{S} \theta_{2 k} \mathrm{~S} \theta_{4 \mathrm{k}} \mathrm{C} \theta_{3 k}-\mathrm{S} \theta_{2 k} \mathrm{C} \theta_{4 k} \mathrm{C} \alpha_{3} \mathrm{~S} \mathrm{\theta} \theta_{3 k}\right. \\
& -\mathrm{C} \theta_{2 k} \mathrm{C} \alpha_{2} \mathrm{~S} \theta_{4 k} \mathrm{~S} \theta_{3 k}+\mathrm{C} \theta_{2 k} \mathrm{C} \alpha_{2} \mathrm{C} \theta_{4 k} \mathrm{C} \alpha_{3} \mathrm{C} \theta_{3 k} \\
& \left.-\mathrm{C} \theta_{2 k} \mathrm{~S} \alpha_{2} \mathrm{C} \theta_{4 \mathrm{k}} \mathrm{~S} \alpha_{3}\right)+\mathrm{S} \alpha_{6} \mathrm{~S} \alpha_{4} \mathrm{~S} \alpha_{1}\left(-\mathrm{S} \alpha_{2} \mathrm{~S} \mathrm{\theta} \theta_{4 k} \mathrm{~S} \mathrm{\theta} \theta_{3 k}\right. \\
& \left.+\mathrm{S} \alpha_{2} \mathrm{C} \theta_{4 k} \mathrm{C} \alpha_{3} \mathrm{C} \theta_{3 \mathrm{k}}+\mathrm{C} \alpha_{2} \mathrm{C} \theta_{4 k} \mathrm{~S} \alpha_{3}\right)
\end{aligned}
$$

TABLE IV (Continued)

$$
\begin{aligned}
& +\mathrm{S} \alpha_{6} \mathrm{C} \alpha_{4} \mathrm{C} \alpha_{1}{ }^{\left(\mathrm{S} \theta_{2 k}\right.} \mathrm{S}_{3} \mathrm{~S} \theta_{3 k}-\mathrm{C} \theta_{2 k} \mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{3} \mathrm{C} \theta_{3 k} \\
& \left.-\mathrm{C} \theta_{2} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{3}\right)-\mathrm{S} \alpha_{6} \mathrm{C} \alpha_{4} \mathrm{~S} \alpha_{1}\left(-\mathrm{S} \alpha_{2} \mathrm{~S} \alpha_{3} \mathrm{C} \theta_{3 \mathrm{k}}+\mathrm{C} \alpha_{2} \mathrm{C} \alpha_{3}\right) \\
& \mathrm{B}_{\mathrm{n}}=-\mathrm{C} \alpha_{6} \mathrm{~S} \alpha_{4} \mathrm{~S} \alpha_{1}\left(-\mathrm{S} \theta_{2 k} \mathrm{~S} \theta_{4 k} \mathrm{C} \theta_{3 k}-\mathrm{S} \theta_{2 k} \mathrm{C} \theta_{4 k} \mathrm{C} \alpha_{3} \mathrm{~S} \theta_{3 k}\right. \\
& -\mathrm{C} \theta_{2 k} \mathrm{C} \alpha_{2} \mathrm{~S} \theta_{4 k} \mathrm{~S} \theta_{3 k}+\mathrm{C} \theta_{2 k} \mathrm{C} \alpha_{2}{ }^{\mathrm{C}} \theta_{4 k} \mathrm{C} \alpha_{3} \mathrm{C} \theta_{3 k} \\
& \left.-\mathrm{C} \theta_{2 k} \mathrm{~S} \alpha_{2} \mathrm{C} \theta_{4 \mathrm{k}} \mathrm{~S} \alpha_{3}\right)-\mathrm{C} \alpha_{6} \mathrm{~S} \alpha_{4} \mathrm{C} \alpha_{1}\left(-\mathrm{S} \alpha_{2} \mathrm{~S} \theta_{4 \mathrm{k}} \mathrm{~S} \theta_{3 \mathrm{k}}\right. \\
& \left.+\mathrm{S} \alpha_{2} \mathrm{C} \theta_{4 \mathrm{k}} \mathrm{C} \alpha_{3} \mathrm{C} \theta_{3 \mathrm{k}}+\mathrm{C} \alpha_{2} \mathrm{C} \theta_{4 \mathrm{k}} \mathrm{~S} \alpha_{3}\right) \\
& +\mathrm{C} \alpha_{6} \mathrm{C} \alpha_{4}{ }^{\mathrm{S} \alpha_{1}}{ }^{\left(\mathrm{S} \theta_{2 k}\right.} \mathrm{S}_{3} \mathrm{~S} \theta_{3 \mathrm{k}}-\mathrm{C} \theta_{2 \mathrm{k}} \mathrm{C} \alpha_{2} \mathrm{~S}_{3} \mathrm{C} \theta_{3 \mathrm{k}} \\
& \left.-\mathrm{C} \theta_{2 \mathrm{k}} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{3}\right)+\mathrm{C} \alpha_{6} \mathrm{C} \alpha_{4} \mathrm{C} \alpha_{1}\left(-\mathrm{S} \alpha_{2} \mathrm{~S} \alpha_{3} \mathrm{C} \theta_{3 \mathrm{k}}+\mathrm{C} \alpha_{2} \mathrm{C} \alpha_{3}\right) \\
& -\mathrm{C} \alpha_{5} \\
& C_{s}=-S \theta_{2 k} S \alpha_{5} S \alpha_{1}\left(-C \theta_{3 k} C \theta_{4 k}+S \theta_{3 k} C \alpha_{3} S \theta_{4 k}\right) \\
& -\mathrm{C} \theta_{2 k} \mathrm{~S} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{C} \alpha_{2}\left(-\mathrm{S} \theta_{3 k} \mathrm{C} \theta_{4 k}-\mathrm{C} \theta_{3 k} \mathrm{C} \alpha_{3} \mathrm{~S} \theta_{4 k}\right) \\
& +\mathrm{C} \theta_{2 k} \mathrm{~S} \alpha_{1} \cdot \mathrm{~S} \alpha_{2} \mathrm{~S} \alpha_{5}\left(-\mathrm{S} \alpha_{3} \mathrm{~S} \theta_{4 \mathrm{k}}\right)+\mathrm{C} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{~S} \alpha_{2}{ }^{\left(\mathrm{S} \theta_{3 k}\right.}{ }^{\mathrm{C}} \theta_{4 k} \\
& \left.+\mathrm{C} \theta_{3 k} \mathrm{C} \alpha_{3} \mathrm{~S} \theta_{4 k}\right)+\mathrm{C} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{3} \mathrm{~S} \theta_{4 \mathrm{k}} \\
& C_{c}=-\mathrm{S} \theta_{2 k} \mathrm{~S} \alpha_{5} \mathrm{~S} \alpha_{1}\left(-\mathrm{C} \alpha_{4} \mathrm{~S} \theta_{4 \mathrm{k}}-\mathrm{S} \theta_{3 \mathrm{k}} \mathrm{C} \alpha_{3} \mathrm{C} \alpha_{4} \mathrm{C} \theta_{4 k}+\mathrm{S} \theta_{3 \mathrm{k}} \mathrm{~S} \alpha_{4}\right) \\
& -\mathrm{C} \theta_{2 k} \mathrm{~S} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{C} \alpha_{2}\left(-\mathrm{S} \theta_{3 \mathrm{k}} \mathrm{C} \alpha_{4} \mathrm{~S} \theta_{4 \mathrm{k}}+\mathrm{C} \theta_{3 \mathrm{k}} \mathrm{C} \alpha_{4} \mathrm{C} \theta_{4 k}\right. \\
& \left.-\mathrm{C} \theta_{3 \mathrm{k}} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{4}\right)+\mathrm{C} \theta_{2 k} \mathrm{~S} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{~S} \alpha_{2}\left(\mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{4} \mathrm{C} \theta_{4 \mathrm{k}}+\mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{4}\right) \\
& -\mathrm{C} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{~S} \alpha_{2}\left(-\mathrm{S} \theta_{3 \mathrm{k}} \mathrm{C} \alpha_{4} \mathrm{~S} \theta_{4 \mathrm{k}}+\mathrm{C} \theta_{3 \mathrm{k}} \mathrm{C} \alpha_{3} \mathrm{C} \alpha_{4} \mathrm{C} \theta_{4 \mathrm{k}}\right.
\end{aligned}
$$

TABLE IV (Continued)

$$
\begin{aligned}
& \left.-\mathrm{C} \theta_{3 k} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{4}\right)-\mathrm{C} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{C} \alpha_{2}\left(\mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{4} \mathrm{C} \theta_{4 \mathrm{k}}\right. \\
& +\mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{4} \\
\mathrm{C}_{\mathrm{n}}= & \mathrm{S} \theta_{2 k} \mathrm{~S} \alpha_{1} \mathrm{C} \alpha_{5}\left(\mathrm{C} \theta_{3 k} \mathrm{~S} \alpha_{4} \mathrm{~S} \theta_{4 k}+\mathrm{S} \theta_{3 k} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{4 \mathrm{k}}\right. \\
& \left.+\mathrm{S} \theta_{3 k} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{4}\right)+\mathrm{C} \theta_{2} \mathrm{~S} \alpha_{1} \mathrm{C} \alpha_{5} \mathrm{C} \alpha_{2}\left(\mathrm{~S} \theta_{3 k} \mathrm{~S} \alpha_{4} \mathrm{~S} \theta_{4 k}\right. \\
& \left.-\mathrm{C} \theta_{3 k} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{4 k}-\mathrm{C} \theta_{3 k} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{4}\right) \\
& -\mathrm{C} \theta_{2 k} \mathrm{~S} \alpha_{1} \mathrm{C} \alpha_{5} \mathrm{~S} \alpha_{2}\left(-\mathrm{S} \alpha_{3} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{4 k}+\mathrm{C} \alpha_{3} \mathrm{C} \alpha_{4}\right) \\
& +\mathrm{C} \alpha_{1} \mathrm{C} \alpha_{5} \mathrm{~S} \alpha_{2}\left(\mathrm{~S} \theta_{3 k} \mathrm{~S} \alpha_{4} \mathrm{~S} \theta_{4 k}-\mathrm{C} \theta_{3 k} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{4 k}\right. \\
& \left.-\mathrm{C} \theta_{3 k} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{4}\right)+\mathrm{C} \alpha_{1} \mathrm{C} \alpha_{5} \mathrm{C} \alpha_{2}\left(-\mathrm{S} \alpha_{3} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{4 k}+\mathrm{C} \alpha_{3} \mathrm{C} \alpha_{4}\right)-\mathrm{C} \alpha_{6}
\end{aligned}
$$

$$
\begin{align*}
& +\mathrm{C} \theta_{4 \mathrm{k}}\left(-\mathrm{S} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{C} \alpha_{1}\right)+\mathrm{C} \theta_{3 \mathrm{k}}\left(\mathrm{C} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{1}\right) \\
& \left.+\left(\mathrm{C} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{C} \alpha_{1}\right)\right]-1=0 \tag{3-22}
\end{align*}
$$

The above relationships provide the necessary conditions for the existence of an H-P-P-P-H-H mechanism, Eq. (3-21) shows that the axes of the three helical pairs are parallel to each other. Eq. (3-22) is a closure condition relating the twist angles α_{1}, α_{2}, α_{3}, and α_{4} of the mechanism with the constant displacement angles $\theta_{2 k}, \theta_{3 k}$, and $\theta_{4 k}$ at the three prismatic pairs (Figure 10).

Existence Criteria of the Six-Link
H-P-P-H-P-H Mechanism

The existence criteria of an H-PnP-H-P-H mechanism can be obtained from the displacement relationships of an $\mathrm{H}-\mathrm{C}-\mathrm{P}-\mathrm{H}-\mathrm{P}-\mathrm{H}$ mechanism.

Consider the $\mathrm{H}-\mathrm{C}-\mathrm{P}-\mathrm{H}-\mathrm{P}-\mathrm{H}$ space mechanism shown schematically in Figure 11, with helical pairs at joints A, D, and E, cylinder pairs at joint B, and prism pairs at joints C and E. The instantaneous configuration of the $\mathrm{H}-\mathrm{C}-\mathrm{P}-\mathrm{H}-\mathrm{P}-\mathrm{H}$ mechanism as shown in Figure 1l, is completely defined by the two sets of six dual-angles, each as follows:

1. Between adjacent pairing axes:

$$
\begin{equation*}
\hat{\alpha}_{i \mathrm{i}}=\alpha_{i}+\varepsilon a_{i} \quad(i=1 \text { to } 6) \tag{3-23}
\end{equation*}
$$

Figure 11. Six-link H-C-P-H-P-H Space Mechanism
where $\alpha_{i}(i=1$ to 6$)$ are the twist angles and $a_{i}(i=1$ to 6$)$ are the kinematic link lengths.

2, Between adjacent common perpendiculars:

$$
\begin{equation*}
\hat{\theta}_{i}=\theta_{i}+\varepsilon s_{i} \quad(i=1 \text { to } 6) \tag{3-24}
\end{equation*}
$$

with

$$
s_{i}=p_{i} \theta_{i}
$$

$$
(i=1,4,6)
$$

where $\theta_{i}(i=1$ to 6$)$ are the angular displacements at the kinematic pairs, $s_{i}(i=1$ to 6) are the translational displacements along the kinematic axes, and $p_{i}(i=1,4,6)$ are the finite pitch values of the helical pairs.

In Eq. (3-24), the four angles, $\theta_{i}(i=1,2,4,6)$ and the three sliding components along the axes of the cylinder and prism pairs (s_{2}, s_{3}, and s_{5}) constitute the seven linkage variables of the $\mathrm{H}-\mathrm{C}-\mathrm{P}-\mathrm{H}-\mathrm{P}-\mathrm{H}$ mechanism. The six dual angles $\hat{\alpha}_{i}(i=1$ to 6$)$ in Eq. (3-23) and the two constant displacement angles $\theta_{3 k}$ and $\theta_{5 k}$ of the prismatic pairs at joints C and E and the three finite pitch values of the helical pairs $\left(p_{1}, p_{4}, p_{6}\right)$ constitute the seventeen real parameters necessary to specify an $\mathrm{H}-\mathrm{C}-\mathrm{P}-\mathrm{H}-\mathrm{P}-\mathrm{H}$ mechanism of general proportions.

Consider the $\mathrm{H}-\mathrm{C}-\mathrm{P}-\mathrm{H}-\mathrm{P}-\mathrm{H}$ space mechanism shown schematically in Figure 12. This mechanism reduces to an H-P-P-H-P-H mechanism if the displacement angle θ_{2} at the cylinder pair remains constant at all positions of the mechanism (Figure 13).

Figure 12. H-C-P-H-P-H Space Mechanism

Figure 13. H-P-P-H-P-H Space Mechanism Obtained From the Mechanism in Figure 12 by Making $\theta_{2}=\theta_{2 k}=a$ Constant

By considering the loop-closure condition of the mechanism
in Figure 12 in three different ways, the following relationships can be obtained (120):

$$
\begin{align*}
& F_{1}\left(\hat{\theta}_{6}, \hat{\theta}_{5}, \hat{\theta}_{3}, \hat{\theta}_{2}\right)=\left[S \hat{\theta}_{3} S \hat{\theta}_{2} S \hat{\alpha}_{3} S \hat{\alpha}_{1}-C \hat{\theta}_{3}\left(C \hat{\theta}_{2} S \hat{\alpha}_{3} C \hat{\alpha}_{2} S \hat{\alpha}_{1}\right.\right. \\
&\left.\left.+S \hat{\alpha}_{3} S \hat{\alpha}_{2} C \hat{\alpha}_{1}\right)\right]+\left(-C \hat{\theta}_{2} C \hat{\alpha}_{3} S \hat{\alpha}_{2} S \hat{\alpha}_{1}+C \hat{\alpha}_{3} C \hat{\alpha}_{2} C \hat{\alpha}_{1}\right) \\
&-\left[S \hat{\theta}_{6} S \hat{\theta}_{5} S \hat{\alpha}_{6} S \hat{\alpha}_{4}-C \hat{\theta}_{6}\left(C \hat{\theta}_{5} S \hat{\alpha}_{6} C \hat{\alpha}_{5} S \hat{\alpha}_{4}\right.\right. \\
&\left.\left.+S \hat{\alpha}_{6} S \hat{\alpha}_{5} C \hat{\alpha}_{4}\right)\right]-\left(C \hat{\theta}_{5} C \hat{\alpha}_{6} S \hat{\alpha}_{5} S \hat{\alpha}_{4}\right. \\
&\left.+C \hat{\alpha}_{6} C \hat{\alpha}_{5} C \hat{\alpha}_{4}\right)=0 \tag{3-25}\\
& F_{2}\left(\hat{\theta}_{3}, \hat{\theta}_{2}, \hat{\theta}_{1}, \hat{\theta}_{5}\right)=C \hat{\theta}_{1}\left[S \hat{\theta}_{3} S \hat{\theta}_{2}\left(S \hat{\alpha}_{3} C \hat{\alpha}_{1} S \hat{\alpha}_{6}\right)\right. \\
&+C \hat{\theta}_{3} C \hat{\theta}_{2}\left(-S \hat{\alpha}_{3} C \hat{\alpha}_{2} C \hat{\alpha}_{1} S \hat{\alpha}_{6}\right)+C \hat{\theta}_{3}\left(S \hat{\alpha}_{3} S \hat{\alpha}_{2} S \hat{\alpha}_{1} S \hat{\alpha}_{6}\right) \\
&\left.+C \hat{\theta}_{2}\left(-C \hat{\alpha}_{3} S \hat{\alpha}_{2} C \hat{\alpha}_{1} S \hat{\alpha}_{6}\right)+\left(-C \hat{\alpha}_{3} C \hat{\alpha}_{2} S \hat{\alpha}_{1} S \hat{\alpha}_{6}\right)\right] \\
&+S \hat{\theta}_{1}\left[S \hat{\theta}_{3} C \hat{\theta}_{2}\left(S \hat{\alpha}_{3} S \hat{\alpha}_{6}\right)+C \hat{\theta}_{3} S \hat{\theta}_{2}\left(S \hat{\alpha}_{3} C \hat{\alpha}_{2} S \hat{\alpha}_{6}\right)\right. \\
&\left.+S \hat{\theta}_{2}\left(C \hat{\alpha}_{3} S \hat{\alpha}_{2} S \hat{\alpha}_{6}\right)\right]+\left[S \hat{\theta}_{3} S \hat{\theta}_{2}\left(S \hat{\alpha}_{3} S \hat{\alpha}_{1} C \hat{\alpha}_{6}\right)\right. \\
&+C \hat{\theta}_{3} C \hat{\theta}_{2}\left(-S \hat{\alpha}_{1} S \hat{\alpha}_{3} C \hat{\alpha}_{2} C \hat{\alpha}_{6}\right)+C \hat{\theta}_{3}\left(-S \hat{\alpha}_{3} S \hat{\alpha}_{2} C \hat{\alpha}_{1} C \hat{\alpha}_{6}\right) \\
&\left.\quad+C \hat{\theta}_{2}\left(-C \hat{\alpha}_{3} S \hat{\alpha}_{2} S \hat{\alpha}_{1} C \hat{\alpha}_{6}\right)+\left(C \hat{\alpha}_{3} C \hat{\alpha}_{2} C \hat{\alpha}_{1} C \hat{\alpha}_{6}\right)\right] \\
& F_{3}\left(\hat{\theta}_{2},\right.\left.\hat{\theta}_{3}, \hat{\theta}_{4}, \hat{\theta}_{5}\right)=-S \hat{\theta}_{2} S \hat{\alpha}_{5} S \hat{\alpha}_{1}\left(-C \hat{\theta}_{3} C \hat{\theta}_{5} C \hat{\theta}_{4}\right. \tag{3-26}\\
&-C \hat{\theta}_{5} C \hat{\alpha}_{4} S \hat{\theta}_{4}+S \hat{\theta}_{3} C \hat{\alpha}_{3} S \hat{\theta}_{5} S \hat{\theta}_{4}-S \hat{\theta}_{3} C \hat{\alpha}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} C \hat{\theta}_{4} C \hat{\theta}_{5}=0 \\
&\left.+S \hat{\theta}_{3} C \hat{\theta}_{5} S \hat{\alpha}_{4}\right)+S \hat{\theta}_{2} S \hat{\alpha}_{1} C \hat{\alpha}_{5}\left(C \hat{\theta}_{3} S \hat{\alpha}_{4} S \hat{\theta}_{4}\right. \\
&
\end{align*}
$$

$$
\begin{align*}
& \left.+S \hat{\theta}_{3} C \hat{\alpha}_{3} S \hat{\alpha}_{4} C \hat{\theta}_{4}+S \hat{\theta}_{3} S \hat{\alpha}_{3} S \hat{\alpha}_{4}\right) \\
& -C \hat{\theta}_{2} S \hat{\alpha}_{1} S \hat{\alpha}_{5} C \hat{\alpha}_{2}\left(-S \hat{\theta}_{3} S \hat{\theta}_{5} C \hat{\theta}_{4}-S \hat{\theta}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} S \hat{\theta}_{4}\right. \\
& -C \hat{\theta}_{3} C \hat{\alpha}_{3} S \hat{\theta}_{5} S \hat{\theta}_{4}+C \hat{\theta}_{3} C \hat{\alpha}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} C \hat{\theta}_{4} \\
& \left.-C \hat{\theta}_{3} S \hat{\alpha}_{3} C \hat{\theta}_{5} S \hat{\alpha}_{4}\right)+C \hat{\theta}_{2} S \hat{\alpha}_{1} S \hat{\alpha}_{5} S \hat{\alpha}_{2}\left(-S \hat{\alpha}_{3} S \hat{\theta}_{5} S \hat{\theta}_{4}\right. \\
& \left.+S \hat{\alpha}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} C \hat{\theta}_{4}+C \hat{\alpha}_{3} C \hat{\theta}_{5} S \hat{\alpha}_{4}^{\prime}\right) \\
& +C \hat{\theta}_{2} S \hat{\alpha}_{1} C \hat{\alpha}_{5} C \hat{\alpha}_{2}^{\left(S \hat{\theta}_{3} S \hat{\alpha}_{4} S \hat{\theta}_{4}-C \hat{\theta}_{3} C \hat{\alpha}_{3} S \hat{\alpha}_{4} C \hat{\theta}_{4}\right.} \\
& \left.-C \hat{\theta}_{3} S \hat{\alpha}_{3} C \hat{\alpha}_{4}\right)-C \hat{\theta}_{2} S \hat{\alpha}_{1} C \hat{\alpha}_{5} S \hat{\alpha}_{2}\left(-S \hat{\alpha}_{3} S \hat{\alpha}_{4} C \hat{\theta}_{4}\right. \\
& \left.+C \hat{\alpha}_{3} C \hat{\alpha}_{4}\right)-C \hat{\alpha}_{1} S \hat{\alpha}_{5} S \hat{\alpha}_{2}\left(-S \hat{\theta}_{3} S \hat{\theta}_{5} C \hat{\theta}_{4}-S \hat{\theta}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} S \hat{\theta}_{4}\right. \\
& -C \hat{\theta}_{3} C \hat{\alpha}_{3} S \hat{\theta}_{5} S \hat{\theta}_{4}+C \hat{\theta}_{3} C \hat{\alpha}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} C \hat{\theta}_{4} \\
& \left.-C \hat{\theta}_{3} S \hat{\alpha}_{3} C \hat{\theta}_{5} S \hat{\alpha}_{4}\right)-C \hat{\alpha}_{1} S \hat{\alpha}_{5} C \hat{\alpha}_{2}\left(-S \hat{\alpha}_{3} S \hat{\theta}_{5} S \hat{\theta}_{4}\right. \\
& \left.+S \hat{\alpha}_{3} C \hat{\theta}_{5} C \hat{\alpha}_{4} C \hat{\theta}_{4}+C \hat{\alpha}_{3} C \hat{\theta}_{5} S \hat{\alpha}_{4}\right) \\
& +C \hat{\alpha}_{1} C \hat{\alpha}_{5} S \hat{\alpha}_{2}\left(S \hat{\theta}_{3} S \hat{\alpha}_{4} S \hat{\theta}_{4}-C \hat{\theta}_{3} C \hat{\alpha}_{3} S \hat{\alpha}_{4} C \hat{\theta}_{4}\right. \\
& \left.-C \hat{\theta}_{3} S \hat{\alpha}_{3} C \hat{\alpha}_{4}\right)+C \hat{\alpha}_{1} C \hat{\alpha}_{5} C \hat{\alpha}_{2}\left(-S \hat{\alpha}_{3} S \hat{\alpha}_{4} C \hat{\theta}_{4}\right. \\
& \left.+C \hat{\alpha}_{3} C \hat{\alpha}_{4}\right)-C \hat{\alpha}_{6}=0 \tag{3-27}
\end{align*}
$$

Note that Eq. (3-25) is similar in form to Eq. (3-7), Eq. (3-26) is similar in form to Eq. (3-9) and Eq. (3-27) is similar in form to Eq. (3-11). Note also that each of the above equations relates the dual displacement angle $\hat{\theta}_{2}, \hat{\theta}_{3}$, and $\hat{\theta}_{5}$ to a fourth dual displacement angle. The displacement angles θ_{3} and θ_{5} of the prism pairs are constant. Let the displacement angle θ_{2} at the cylinder pair be now
made constant at all positions of the mechanism. Denoting the constant value of θ_{2} by $\theta_{2 k}$, the primary parts of Eqs. $(3-25)$, (3-26), and (3-27) give

$$
\begin{align*}
& D_{s} S \theta_{6}+D_{c} C \theta_{6}+D_{n}=0 \tag{3-28}\\
& E_{s} S \theta_{1}+E_{c} C \theta_{1}+E_{n}=0 \tag{3-29}\\
& F_{s} S \theta_{4}+F{ }_{c} C \theta_{4}+F_{n}=0 \tag{3-30}
\end{align*}
$$

The constants used in the above equations involve the constant kinematic parameters of the mechanism and are defined in Table V .

Observe that each of the equations (3-28) through (3-30) contains only one variable and must hold true at varying values of that variable. This is possible only if their coefficients vanish. This gives

$$
\begin{align*}
& D_{s}=D_{c}=D_{n}=0 \\
& E_{s}=E_{c}=E_{n}=0 \tag{3-31}\\
& F_{s}=F_{c}=F_{n}=0
\end{align*}
$$

Equation (3-31) represents the necessary conditions for the existence of $\mathrm{H}-\mathrm{P}-\mathrm{P}-\mathrm{H}-\mathrm{P}-\mathrm{H}$ mechanism. It is, however, possible to further simplify the conditions given by Eq. (3-31). For example, examination of Eq. (3-31) together with the constants of Table V show that the following case is possible:

$$
\begin{align*}
& \alpha_{6}=0 \tag{3-32}\\
& \alpha_{4} \pm \alpha_{5}=n \pi \quad(n=0,1,2, \ldots) \tag{3-33}
\end{align*}
$$

TABLE V

CONSTANTS FOR USE IN EQUATIONS (3-28) THROUGH (3-31)

$$
\begin{aligned}
& D_{s}=-\mathrm{S} \theta_{5 k} \mathrm{~S} \alpha_{6} \mathrm{~S} \alpha_{4} \\
& D_{c}=\left(\mathrm{C} \theta_{5 k} \mathrm{~S} \alpha_{6} \mathrm{C} \alpha_{5} \mathrm{~S} \alpha_{4}+\mathrm{S} \alpha_{6} \mathrm{~S} \alpha_{5} \mathrm{C} \alpha_{4}\right. \\
& D_{n}=\left[\mathrm{S} \theta_{3 k} \mathrm{~S} \theta_{2 k} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{1}-\mathrm{C} \theta_{3 k}\left(\mathrm{C} \theta_{2 k} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{1}+\mathrm{S} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{1}\right)\right] \\
& +\left(-\mathrm{C} \theta_{2 k} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{~S} \alpha_{1}+\mathrm{C} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{C} \alpha_{1}\right)-\left(\mathrm{C} \theta_{5 k} \mathrm{C} \alpha_{6} \mathrm{~S} \alpha_{5} \mathrm{~S} \alpha_{4}\right. \\
& \left.+\mathrm{C} \alpha_{6} \mathrm{C} \alpha_{5} \mathrm{C} \alpha_{4}\right) \\
& E_{s}=\left[S \theta_{3 k} C \theta_{2 k}\left(S \alpha_{3} S \alpha_{6}\right)+C \theta_{3 k} S \theta_{2 k}\left(S \alpha_{3} C \alpha_{2} S \alpha_{6}\right)\right. \\
& +\mathrm{S} \theta_{2 \mathrm{k}}\left(\mathrm{C} \alpha_{3} . \mathrm{S} \alpha_{2} \mathrm{~S} \alpha_{6}\right) \\
& E_{0}=\left[S \theta_{3 k} S \theta_{2 k}\left(S \alpha_{3} C \alpha_{1} S \alpha_{6}\right)+C \theta_{3 k} C \theta_{2 k}\left(-S \alpha_{3} C \alpha_{2} C \alpha_{1} S \alpha_{6}\right)\right. \\
& +\mathrm{C} \theta_{3 \mathrm{k}}\left(\mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{~S} \alpha_{1} \mathrm{~S} \alpha_{6}\right)+\mathrm{C} \theta_{2 \mathrm{k}}\left(-\mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{1} \mathrm{~S} \alpha_{6}\right) \\
& \left.+\left(-\mathrm{C} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{1} \mathrm{~S} \alpha_{6}\right)\right] \\
& E_{n}=\left[S \theta_{3 k} S \theta_{2 k}\left(S \alpha_{3} S \alpha_{1} C \alpha_{6}\right)+C \theta_{3 k} C \theta_{2 k}\left(-S \alpha_{1} S \alpha_{3} C \alpha_{2} C \alpha_{6}\right)\right. \\
& +\mathrm{C} \theta_{3 \mathrm{k}}\left(-\mathrm{S} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{1} \mathrm{C} \alpha_{6}\right)+\mathrm{C} \theta_{2 k}\left(-\mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{~S} \alpha_{1} \mathrm{C} \alpha_{6}\right) \\
& \left.+\left(\mathrm{C} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{C} \alpha_{1} \mathrm{C} \alpha_{6}\right)\right]-\mathrm{C} \alpha_{5} \mathrm{C} \alpha_{4} \\
& \mathrm{~F}_{\mathrm{s}}=-\mathrm{S} \theta_{2 k} \mathrm{~S} \alpha_{5} \mathrm{~S} \alpha_{1}\left(-\mathrm{C} \theta_{3 k} \mathrm{C} \theta_{4 k}+\mathrm{S} \theta_{3 k} \mathrm{C} \alpha_{3} \mathrm{~S} \theta_{4 k}\right) \\
& -\mathrm{C} \theta_{2 k} \mathrm{~S} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{C} \alpha_{2}\left(-\mathrm{S} \theta_{3 \mathrm{k}} \mathrm{C} \theta_{4 \mathrm{k}}-\mathrm{C} \theta_{3 \mathrm{k}} \mathrm{C} \alpha_{3} \mathrm{~S} \theta_{4 \mathrm{k}}\right) \\
& +\mathrm{C} \theta_{2 k} \mathrm{~S} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{~S} \alpha_{2}\left(-\mathrm{S} \alpha_{3} \mathrm{~S} \theta_{4 \mathrm{k}}\right)-\mathrm{C} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{~S} \alpha_{2}{ }^{\left(-\mathrm{S} \theta_{3 k}\right.}{ }^{\mathrm{C} \theta}{ }_{4 \mathrm{k}}
\end{aligned}
$$

TABLE V (Continued)

$$
\begin{aligned}
& \left.-\mathrm{C} \theta_{3 \mathrm{k}} \mathrm{C} \alpha_{3} \mathrm{~S} \theta_{4 \mathrm{k}}\right)-\mathrm{C} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{C} \alpha_{2}\left(-\mathrm{S} \alpha_{3} \mathrm{~S} \theta_{4 \mathrm{k}}\right) \\
& F_{c}=-S \theta_{2 k} S \alpha_{5} S \alpha_{1}\left(-C \alpha_{4} S \theta_{4 k}-S \theta_{3 k} C \alpha_{3} C \alpha_{4} C \theta_{4 k}+S \theta_{3 k} S \alpha_{4}\right) \\
& \ddot{-}_{-\mathrm{C}}^{\mathrm{C}}{ }_{2 \mathrm{k}} \mathrm{~S} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{C} \alpha_{2}\left(-\mathrm{S} \theta_{3 \mathrm{k}} \mathrm{C} \alpha_{4} \mathrm{~S} \theta_{4 \mathrm{k}}+\mathrm{C} \theta_{3 \mathrm{k}} \mathrm{C} \alpha_{3} \mathrm{C} \alpha_{4} \mathrm{C} \theta_{4 \mathrm{k}}\right. \\
& \left.-\mathrm{C} \theta_{3 k} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{4}\right)+\mathrm{C} \theta_{2} \mathrm{~S} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{~S} \alpha_{2}\left(\mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{4} \mathrm{C} \theta_{4 \mathrm{k}}\right. \\
& \left.+\mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{4}\right)-\mathrm{C} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{~S} \alpha_{2}\left(-\mathrm{S} \theta_{3 \mathrm{k}} \mathrm{C} \alpha_{4} \mathrm{~S} \theta_{4 \mathrm{k}}+\mathrm{C} \theta_{3 \mathrm{k}} \mathrm{C} \alpha_{3} \mathrm{C} \alpha_{4} \mathrm{C} \theta_{4 \mathrm{k}}\right. \\
& \left.-\mathrm{C} \theta_{3 \mathrm{k}} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{4}\right)-\mathrm{C} \alpha_{1} \mathrm{~S} \alpha_{5} \mathrm{C} \alpha_{2}\left(\mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{4} \mathrm{C} \theta_{4 k}+\mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{4}\right) \\
& F_{n}=S \theta_{2 k} S \alpha_{1} C \alpha_{5}\left(C \theta_{3 k} S \alpha_{4} S \theta_{4 k}+S \theta_{3 k} C \alpha_{3} S \alpha_{4} C \theta_{4 k}\right. \\
& \left.+\mathrm{S} \theta_{3 k} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{4}\right)+\mathrm{C} \theta_{2 k} \mathrm{~S} \alpha_{1} \mathrm{C} \hat{\alpha}_{5} \mathrm{C} \alpha_{2}\left(\mathrm{~S} \theta_{3 k} \mathrm{~S} \alpha_{4} \mathrm{~S} \theta_{4 \mathrm{k}}\right. \\
& \left.-\mathrm{C} \theta_{3 \mathrm{k}} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{4 \mathrm{k}}-\mathrm{C} \theta_{3 k} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{4}\right)- \\
& -\mathrm{C} \theta_{2 \mathrm{k}} \mathrm{~S} \alpha_{1} \mathrm{C} \alpha_{5} \mathrm{~S} \alpha_{2}\left(-\mathrm{S} \alpha_{3} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{4 \mathrm{k}}+\mathrm{C} \alpha_{3} \mathrm{C} \alpha_{4}\right) \\
& +\mathrm{C} \alpha_{1} \mathrm{C} \alpha_{5} \mathrm{~S} \alpha_{2}{ }^{\left(\mathrm{S} \theta_{3 k}\right.} \mathrm{S}_{4} \mathrm{~S} \theta_{4 \mathrm{k}}-\mathrm{C} \theta_{3 \mathrm{k}} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{4 \mathrm{k}} \\
& \left.-\mathrm{C} \theta_{3 \mathrm{k}} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{4}\right)+\mathrm{C} \alpha_{1} \mathrm{C} \alpha_{5} \mathrm{C} \alpha_{2}\left(-\mathrm{S} \alpha_{3} \mathrm{~S} \alpha_{4} \mathrm{C} \theta_{4 \mathrm{k}}\right. \\
& \left.+\mathrm{C} \alpha_{3} \mathrm{C} \alpha_{4}\right)-\mathrm{C} \alpha_{6}
\end{aligned}
$$

and

$$
\begin{align*}
& {\left[\mathrm{S} \theta_{3 \mathrm{k}} \mathrm{~S} \theta_{2 k} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{1}-\mathrm{C} \theta_{3 \mathrm{k}}\left(\mathrm{C} \theta_{2 k} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{1}\right.\right.} \\
& \left.\left.\quad+\mathrm{S} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{1}\right)\right]+\left(-\mathrm{C} \theta_{2 k} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{~S} \alpha_{1}\right. \\
& \left.\quad+\mathrm{C} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{C} \alpha_{1}\right)=0 \tag{3-34}
\end{align*}
$$

The above relationships provide the necessary conditions for the existence of an H-P-P-H-P-H space mechanism. Equations (3-32) and (3-33) show that the axes of the three helical pairs are parallel to each other. Equation (3-34) is a closure condition relating the twist angles α_{1}, α_{2}, and α_{3} of the mechanism with the constant displacement angles $\theta_{2 k},{ }^{\theta} 3 k$, and $\theta_{5 k}$ at the three prismatic pairs (Figure 13).

Existence Criteria of the Six-Link H-P-H-P-H-P Mechanism

The existence criteria of an $\mathrm{H}-\mathrm{P}-\mathrm{H}-\mathrm{P}-\mathrm{H}-\mathrm{P}$ mechanism can be obtained from the displacement relationships of an $\mathrm{H}-\mathrm{C}-\mathrm{H}-\mathrm{P}-\mathrm{H}-\mathrm{P}$ mechanism shown in Figure 14, with helical pairs at joints A, C, and E, cylinder pair at joint B, and prism pairs at joints D and F. The instantaneous configuration of the $\mathrm{H}-\mathrm{C}-\mathrm{H}-\mathrm{P}-\mathrm{H}-\mathrm{P}$ mechanism as shown in Figure 14 is completely defined by the two sets of six dual angles, each as follows:

1. Between adjacent pairing axes:

Figure 14. Six-link H-C-H-P-H-P Space Mechanism

$$
\begin{equation*}
\hat{\alpha}_{1}=\alpha_{i}+\varepsilon a_{i} \quad(i=1 \text { to } 6) \tag{3-35}
\end{equation*}
$$

where $\alpha_{i}(i=1$ to 6$)$ are the twist angles and $a_{i}(i=1$ to 6$)$ are the kinematic link-lengths.
2. Between adjacent common perpendiculars:

$$
\begin{equation*}
\hat{\theta}_{i}=\theta_{i}+\varepsilon s_{i} \quad(i=1 \text { to } 6) \tag{3-36}
\end{equation*}
$$

with

$$
s_{i}=p_{i}{ }_{i} \quad(i=1,3,5)
$$

where $\theta_{i}(i=1$ to 6$)$ are the angular displacements at the kinematic pairs, $s_{i}(i=1$ to 6$)$ are the translational displacements along the kinematic axes, and $p_{i}(i=1,3,5)$ are the finite pitch values of the helical pairs.

In Eq. (3-36), the four angles, $\theta_{i}(i=1,2,3,5)$, and the three sliding components along the axes of the cylinder and prism pairs $\left(s_{2}, s_{4}, s_{6}\right)$ constitute the seven linkage variables of the $\mathrm{H}-\mathrm{C}-\mathrm{H}-\mathrm{P}-$ H-P mechanism. The six dual angles $\hat{x}(i=1$ to 6$)$ in Eq. (3-35) and the two constant displacement angles $\theta_{4 \mathrm{k}}$ and $\theta_{6 \mathrm{k}}$ of the prismatic pairs at joints D and F and the three finite pitch values of the helical pairs (p_{1}, p_{3}, p_{5}) constitute the seventeen real parameters necessary to specify an $\mathrm{H}-\mathrm{C}-\mathrm{H}-\mathrm{P}-\mathrm{H}-\mathrm{P}$ space mechanism of general proportions.

Consider the $\mathrm{H}-\mathrm{C}-\mathrm{H}-\mathrm{P}-\mathrm{H}-\mathrm{P}$ space mechanism shown schematically in Figure 15. This mechanism reduces to an H-P-H-P-H-P mechanism if the displacement angle θ_{2} at the cylinder pair remains constant at all positions of the mechanism (Figure 16).

Figure 15. H-C-H-P-H-P Space Mechanism

Figure 16. H-P-H-P-H-P Space Mechanism Obtained From the Mechanism in Figure 15 by Making $\theta_{Z}=$ $\theta_{2 k}=a$ Constant

By considering the loop-closure condition of the mechanism
in Figure 15 in three different ways, the following dual displacement relationships can be obtained (120):

$$
\begin{align*}
& F_{2}\left(\hat{\theta}_{4}, \hat{\theta}_{3}, \hat{\theta}_{2}, \hat{\theta}_{6}\right)=C \hat{\theta}_{2}\left[S \hat{\theta}_{4} S \hat{\theta}_{3}\left(S \hat{\alpha}_{4} C \hat{\alpha}_{2} S \hat{\alpha}_{1}\right)\right. \\
& +C \hat{\theta}_{4} C \hat{\theta}_{3}\left(-S \hat{\alpha}_{4} C \hat{\alpha}_{3} C \hat{\alpha}_{2} S \hat{\alpha}_{1}\right)+C \hat{\theta}_{4}\left(S \hat{\alpha}_{4} S \hat{\alpha}_{3} S \hat{\alpha}_{2} S \hat{\alpha}_{1}\right) \\
& \left.+C \hat{\theta}_{3}\left(-C \hat{\alpha}_{4} S \hat{\alpha}_{3} C \hat{\alpha}_{2} S \hat{\alpha}_{1}\right)+\left(-C \hat{\alpha}_{4} C \hat{\alpha}_{3} S \hat{\alpha}_{2} S \hat{\alpha}_{1}\right)\right] \\
& +S \hat{\theta}_{2}\left[S \hat{\theta}_{4} C \hat{\theta}_{3}\left(S \hat{\alpha}_{4} S \hat{\alpha}_{1}\right)+C \hat{\theta}_{4} S \hat{\theta}_{3}\left(S \hat{\alpha}_{4} C \hat{\alpha}_{3} S \hat{\alpha}_{1}\right)\right. \\
& \left.+S \hat{\theta}_{3}\left(C \hat{\alpha}_{4} S \hat{\alpha}_{3} S \hat{\alpha}_{1}\right)\right]+\left[S \hat{\theta}_{4} S \hat{\theta}_{3}\left(S \hat{\alpha}_{4} S \hat{\alpha}_{2} C \hat{\alpha}_{1}\right)\right. \\
& +C \hat{\theta}_{4} C \hat{\theta}_{3}\left(-S \hat{\alpha}_{4} C \hat{\alpha}_{3} S \hat{\alpha}_{2} C \hat{\alpha}_{1}\right)+C \hat{\theta}_{4}\left(-S \hat{\alpha}_{4} S \hat{\alpha}_{3} C \hat{\alpha}_{2} C \hat{\alpha}_{1}\right) \\
& \left.+C \hat{\theta}_{3}\left(-C \hat{\alpha}_{4} S \hat{\alpha}_{3} S \hat{\alpha}_{2} C \hat{\alpha}_{1}\right)+\left(C \hat{\alpha}_{4} C \hat{\alpha}_{3} C \hat{\alpha}_{2} C \hat{\alpha}_{1}\right)\right] \\
& -C \hat{\alpha}_{6} C \hat{\alpha}_{5}+S \hat{\alpha}_{6} S \hat{\alpha}_{5} C \hat{\theta}_{6}=0 \tag{3-37}\\
& F_{2}\left(\hat{\theta}_{6}, \hat{\theta}_{5}, \hat{\theta}_{4}, \hat{\theta}_{2}\right)=C \hat{\theta}_{4}\left[S \hat{\theta}_{6} S \hat{\theta}_{5}\left(S \hat{\alpha}_{6} C \hat{\alpha}_{4} S \hat{\alpha}_{3}\right)\right. \\
& +C \hat{\theta}_{6} C \hat{\theta}_{5}\left(-S \hat{\alpha}_{6} C \hat{\alpha}_{5} C \hat{\alpha}_{4} S \hat{\alpha}_{3}\right)+C \hat{\theta}_{6}\left(S \hat{\alpha}_{6} S \hat{\alpha}_{5} S \hat{\alpha}_{4} S \hat{\alpha}_{3}\right) \\
& \left.+\mathrm{C} \hat{\theta}_{5}\left(-\mathrm{C} \hat{\alpha}_{6} \mathrm{~S} \hat{\alpha}_{5} \mathrm{C} \hat{\alpha}_{4} \mathrm{~S} \hat{\alpha}_{3}\right)+\left(-\mathrm{C} \hat{\alpha}_{6} \mathrm{C} \hat{\alpha}_{5} \mathrm{~S} \hat{\alpha}_{4} \mathrm{~S} \hat{\alpha}_{3}\right)\right] \\
& +S \hat{\theta}_{4}\left[S \hat{\theta}_{6} C \hat{\theta}_{5}\left(S \hat{\alpha}_{6} S \hat{\alpha}_{3}\right)+C \hat{\theta}_{6} S \hat{\theta}_{5}\left(S \hat{\alpha}_{6} C \hat{\alpha}_{5} S \hat{\alpha}_{3}\right)\right. \\
& \left.+S \hat{\theta}_{5}\left(C \hat{\alpha}_{6} S \hat{\alpha}_{5} S \hat{\alpha}_{3}\right)\right]+\left[S \hat{\theta}_{6} S \hat{\theta}_{5}\left(S \hat{\alpha}_{6} S \hat{\alpha}_{4} C \hat{\alpha}_{3}\right)\right. \\
& +C \hat{\theta}_{6} C \hat{\theta}_{5}\left(-S \hat{\alpha}_{6} C \hat{\alpha}_{5} S \hat{\alpha}_{4} C \hat{\alpha}_{3}\right)+C \hat{\theta}_{6}\left(-S \hat{\alpha}_{6} S \hat{\alpha}_{5} C \hat{\alpha}_{4} C \hat{\alpha}_{3}\right) \\
& \left.+C \hat{\theta}_{5}\left(-C \hat{\alpha}_{6} S \hat{\alpha}_{5} S \hat{\alpha}_{4} C \hat{\alpha}_{3}\right)+\left(C \hat{\alpha}_{6} C \hat{\alpha}_{5} C \hat{\alpha}_{4} C \hat{\alpha}_{3}\right)\right] \\
& -\mathrm{C} \hat{\alpha}_{2} \mathrm{C} \hat{\alpha}_{1}+\mathrm{S} \hat{\alpha}_{2} \mathrm{~S} \hat{\alpha}_{1} \mathrm{C} \hat{\theta}_{2}=0
\end{align*}
$$

$$
\begin{align*}
& F_{2}\left(\hat{\theta}_{2}, \hat{\theta}_{1}, \hat{\theta}_{6}, \hat{\theta}_{1}\right)=C \hat{\theta}_{6}\left[S \hat{\theta}_{2} S \hat{\theta}_{1}\left(S \hat{\alpha}_{2} C \hat{\alpha}_{6} S \hat{\alpha}_{5}\right)\right. \\
&+C \hat{\theta}_{2} C \hat{\theta}_{1}\left(-S \hat{\alpha}_{2} C \hat{\alpha}_{1} C \hat{\alpha}_{6} S \hat{\alpha}_{5}\right)+C \hat{\theta}_{2}\left(S \hat{\alpha}_{2} S \hat{\alpha}_{1} S \hat{\alpha}_{6} S \hat{\alpha}_{5}\right) \\
&\left.+C \hat{\theta}_{1}\left(-C \hat{\alpha}_{2} S \hat{\alpha}_{1} C \hat{\alpha}_{6} S \hat{\alpha}_{5}\right)+\left(-C \hat{\alpha}_{2} C \hat{\alpha}_{1} S \hat{\alpha}_{6} S \hat{\alpha}_{5}\right)\right] \\
&+S \hat{\theta}_{6}\left[S \hat{\theta}_{2} C \hat{\theta}_{1}\left(S \hat{\alpha}_{2} S \hat{\alpha}_{5}\right)+C \hat{\theta}_{2} S \hat{\theta}_{1}\left(S \hat{\alpha}_{2} C \hat{\alpha}_{1} S \hat{\alpha}_{5}\right)\right. \\
&\left.+S \hat{\theta}_{1}\left(C \hat{\alpha}_{2} S \hat{\alpha}_{1} S \hat{\alpha}_{5}\right)\right]+\left[S \hat{\theta}_{2} S \hat{\theta}_{1}\left(S \hat{\alpha}_{2} S \hat{\alpha}_{6} C \hat{\alpha}_{5}\right)\right. \\
&+C \hat{\theta}_{2} C \hat{\theta}_{1}\left(-S \hat{\alpha}_{2} C \hat{\alpha}_{1} S \hat{\alpha}_{6} C \hat{\alpha}_{5}\right)+C \hat{\theta}_{2}\left(-S \hat{\alpha}_{2} S \hat{\alpha}_{1} C \hat{\alpha}_{6} C \hat{\alpha}_{5}\right) \\
&\left.+C \hat{\theta}_{1}\left(-C \hat{\alpha}_{2} S \hat{\alpha}_{1} S \hat{\alpha}_{6} C \hat{\alpha}_{5}\right)+\left(C \hat{\alpha}_{2} C \hat{\alpha}_{1} C \hat{\alpha}_{6} C \hat{\alpha}_{5}\right)\right] \\
&-C \hat{\alpha}_{4} C \hat{\alpha}_{3}+S \hat{\alpha}_{4} S \hat{\alpha}_{3} C \hat{\theta}_{4}=0 \tag{3-39}
\end{align*}
$$

Observe that Eqs. (3-37) through (3-39) are similar in form to Eq. (3-9). Note also that each of the above equations relates the dual displacement angles $\hat{\theta}_{2}, \hat{\theta}_{4}$, and $\hat{\theta}_{6}$ to a fourth dual displacement angle. The displacement angles θ_{4} and θ_{6} at the prismatic pairs are constant for all positions of the mechanism.

Let the displacement angle θ_{2} at the cylinder pair be now held constant at all positions of the mechanism. Denoting the constant value of θ_{2} by $\theta_{2 k}$, the primary parts of Eqs. (3-37), (3-38), and (3-39) give respectively:

$$
\begin{align*}
& H_{s} S \theta_{3}+H_{c} C \theta_{3}+H_{n}=0 \tag{3-40}\\
& I_{s} S \theta_{5}+I_{c} C \theta_{5}+I_{n}=0 \tag{3-41}
\end{align*}
$$

and

$$
\begin{equation*}
J_{s} S \theta_{1}+J_{c} C \theta_{1}+J_{n}=0 \tag{3-42}
\end{equation*}
$$

The constants in the above equations involve the constant kinematic parameters of the mechanism and are defined in Table VI.

Observe that each of the equations (3-40) through (3-42)
contains only one variable and must hold true at varying values of that variable. This is possible only if their coefficients vanish. This gives:

$$
\begin{align*}
& H_{s}=H_{c}=H_{n}=0 \\
& I_{s}=I_{c}=I_{n}=0 \tag{3.43}
\end{align*}
$$

and

$$
J_{s}=J_{c}=J_{n}=0
$$

Equations (3-43) represents the necessary conditions for the existence of $\mathrm{H}-\mathrm{P}-\mathrm{H}-\mathrm{P}-\mathrm{H}-\mathrm{P}$ mechanism. It is, however, possible to further simplify the conditions given by Eq. (3-43). For example, examination of Eq. (3-43) together with the constants of Table VI show that the following case is possible:

$$
\begin{align*}
& \alpha_{1} \pm \alpha_{2}=\mathrm{p} \pi \\
& \alpha_{3} \pm \alpha_{4}=\mathrm{p} \pi \tag{3-44}\\
& \alpha_{5} \pm \alpha_{6}=\mathrm{p} \pi
\end{align*}
$$

Equations (3-44) give the necessary conditions for the existence of an H-P-H-P-H-P mechanism. All these conditions show that the axes of the helical pairs are parallel to one another and the axes of the prism pairs are randomly oriented.

TABLE VI

CONSTANTS FOR USE IN EQUATIONS (3-40) THROUGH (3-43)

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{s}}=\mathrm{C} \theta_{2 \mathrm{k}}\left[\mathrm{~S} \theta_{4 \mathrm{k}}\left(\mathrm{~S} \alpha_{4} \mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{1}\right]+\mathrm{S} \theta_{2 \mathrm{k}}\left[\mathrm{C} \theta_{4 \mathrm{k}}\left(\mathrm{~S} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{1}\right)\right.\right. \\
& \left.+\left(\mathrm{C} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{1}\right)\right]+\mathrm{S} \theta_{4 \mathrm{k}} \mathrm{~S} \alpha_{4} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{1} \\
& \mathrm{H}_{\mathrm{c}}=\mathrm{C} \theta_{2 \mathrm{k}}\left[\mathrm{C} \theta_{4 \mathrm{k}}\left(-\mathrm{S} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{1}\right)+\left(-\mathrm{C} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{~S} \alpha_{1}\right)\right] \\
& +\mathrm{S} \theta_{2 \mathrm{k}}\left[\mathrm{~S} \theta_{4 \mathrm{k}} \mathrm{~S} \alpha_{4} \mathrm{~S} \alpha_{1}\right]+\left[\mathrm{C} \theta_{4 \mathrm{k}}\left(-\mathrm{S} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{1}\right)\right. \\
& \left.+\left(-\mathrm{C} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{C} \alpha_{1}\right)\right] \\
& H_{n}=\mathrm{C} \theta_{2 k}\left[\mathrm{C} \theta_{4 \mathrm{k}}\left(\mathrm{~S} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{~S} \alpha_{1}\right)+\left(-\mathrm{C} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{~S} \alpha_{2} \mathrm{~S} \alpha_{1}\right)\right] \\
& +\mathrm{C} \theta_{4 \mathrm{k}}\left(-\mathrm{S} \alpha_{4} \mathrm{~S} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{C} \alpha_{1}\right)+\left(\mathrm{C} \alpha_{4} \mathrm{C} \alpha_{3} \mathrm{C} \alpha_{2} \mathrm{C} \alpha_{1}\right)-\mathrm{C} \alpha_{6} \mathrm{C} \alpha_{5} \\
& +S \alpha_{6} S \alpha_{5} C \theta_{6 k} \\
& I_{s}=C \theta_{4 k}\left[S \theta_{6 k}\left(S \alpha_{6} C \alpha_{4} S \alpha_{3}\right)\right]+S \theta_{4 k}\left[C \theta_{6 k}\left(S \alpha_{6} C \alpha_{5} S \alpha_{3}\right)\right. \\
& \left.+\mathrm{C} \alpha_{6} \mathrm{~S} \alpha_{5} \mathrm{~S} \alpha_{3}\right]+\mathrm{S} \theta_{6 \mathrm{k}} \mathrm{~S} \alpha_{6} \mathrm{~S} \alpha_{4} \mathrm{C} \alpha_{3} \\
& I_{c}=\mathrm{C} \theta_{4 \mathrm{k}}\left[\mathrm{C} \theta_{6 \mathrm{k}}\left(-\mathrm{S} \alpha_{6} \mathrm{C} \alpha_{5} \mathrm{C} \alpha_{4} \mathrm{~S} \alpha_{3}\right)+\left(-\mathrm{C} \alpha_{6} \mathrm{~S} \alpha_{5} \mathrm{C} \alpha_{4} \mathrm{~S} \alpha_{3}\right)\right] \\
& +\mathrm{S} \theta_{4 \mathrm{k}}\left[\mathrm{~S} \theta_{6 \mathrm{k}} \mathrm{~S} \alpha_{6} \mathrm{~S} \alpha_{3}\right]+\left[\mathrm{C} \theta_{6 k}\left(-\mathrm{S} \alpha_{6} \mathrm{C} \alpha_{5} \mathrm{~S} \alpha_{4} \mathrm{C} \alpha_{3}\right)\right. \\
& \left.+\left(-\mathrm{C} \alpha_{6} \mathrm{~S} \alpha_{5} \mathrm{~S} \alpha_{4} \mathrm{C} \alpha_{3}\right)\right] \\
& I_{n}=C \theta_{4 k}\left[C \theta_{6 k} S \alpha_{6} S \alpha_{5} S \alpha_{4} S \alpha_{3}-C \alpha_{6} C \alpha_{5} S \alpha_{4} S \alpha_{3}\right] \\
& +\left[\mathrm{C} \theta_{6 k}\left(-\mathrm{S} \alpha_{6} \mathrm{~S} \alpha_{5} \mathrm{C} \alpha_{4} \mathrm{C} \alpha_{3}\right)+\left(\mathrm{C} \alpha_{6} \mathrm{C} \alpha_{5} \mathrm{C} \alpha_{4} \mathrm{C} \alpha_{3}\right)\right]-\mathrm{C} \alpha_{2} \mathrm{C} \alpha_{1} \\
& +S \alpha_{2} S \alpha_{1} C{ }_{2 k}
\end{aligned}
$$

TABLE VI (Continued)

$$
\begin{aligned}
J_{s}= & C \theta_{6 k}\left[S \theta_{2 k} S \alpha_{2} C \alpha_{6} S \alpha_{5}\right]+S \theta_{6 k}\left[C \theta_{2 k} S \alpha_{2} C \alpha_{1} S \alpha_{5}+C \alpha_{2} S \alpha_{1} \cdot S \alpha_{5}\right] \\
& +S \theta_{2 k} S \alpha_{2} S \alpha_{6} C \alpha_{5} \\
J_{c}= & C \theta_{6 k}\left[C \theta_{2 k}\left(-S \alpha_{2} C \alpha_{1} C \alpha_{6} S \alpha_{5}\right)+\left(-C \alpha_{2} S \alpha_{1} C \alpha_{6} S \alpha_{5}\right)\right] \\
& +S \theta_{6 k}\left[S \theta_{2 k} S \alpha_{2} S \alpha_{5}\right]+\left[C \theta_{2 k}\left(-S \alpha_{2} C \alpha_{1} S \alpha_{6} C \alpha_{5}\right)\right. \\
& \left.+\left(-C \alpha_{2} S \alpha_{1} S \alpha_{6} C \alpha_{5}\right)\right] \\
J_{n}= & C \theta_{6 k}\left[C \theta_{2 k}\left(S \alpha_{2} S \alpha_{1} S \alpha_{6} S \alpha_{5}\right)+\left(-C \alpha_{2} C \alpha_{1} S \alpha_{6} S \alpha_{5}\right)\right] \\
& +\left[C \theta_{2 k}\left(-S \alpha_{2} S \alpha_{1} C \alpha_{6} C \alpha_{5}\right)+\left(C \alpha_{2} C \alpha_{1} C \alpha_{6} C \alpha_{5}\right)\right]-C \alpha_{4} C \alpha_{3} \\
& +S \alpha_{4} S \alpha_{3} C \theta_{4 k}
\end{aligned}
$$

Summary and Extension of the Results to Other Mechanisms

The existence criteria derived in the above sections clearly show that the six-link, single loop $3 \mathrm{H}+3 \mathrm{P}$ mechanisms can exist only when the axes of the helical pairs are parallel to one another. Substitution of the existence criteria of $3 \mathrm{H}+3 \mathrm{P}$ mechanisms derived in the above sections into the displacement relationships of the respective parent mechanisms show that these mechanisms have two degrees of freedom. Note that the results have been obtained by considering only the primary parts of the displacement relationships of the respective parent mechanisms. Hence, the results will remain unaffected even if one or more of the helical pairs are replaced by revolute pairs. Such a replacement yields 18 different types of overconstrained mechanisms with helical, revolute, and prism pairs. The results are, therefore, equally valid for the sixlink $3 R+3 P, 2 R+1 H+3 P$, and $2 H+1 R+3 P$ mechanisms. Using the developed existence criteria, it becomes possible to write the existence conditions of the 18 mechanisms with one passive coupling. These 18 mechanisms and their existence conditions are described in Table VII.

Note further that, the results obtained are independent of the link lengths involved. Hence, if one of the link lengths is taken to be zero, the results will apply with equal validity to five-link

TABLE VII
EXISTENCE CONDITIONS OF OVERCONSTRAINED SIX-LINK SPATIAL MECHANISMS WITH HELICAL, REVOLUTE, AND PRISM PAIRS (ONE PASSIVE COUPLING)

Case	Parent Mechanism	Overconstrained Mechanism	Existence Criteria
1	$H-C-P-P-H-H$	$H-P-P-P-H-H^{2}$	Axes of helical and revolute
2	$R-C-P-P-R-R$	$R-P-P-P-R-R$	parallel to one another and
3	$H-C-P-P-R-R$	$H-P-P-P-R-R$	should satisfy Eq. (3-22)
4	$R-C-P-P-R-H$	$R-P-P-P-R-H$	
5	$R-C-P-P-H-H$	$R-P-P-P-H-H$	
6	$H-C-P-P-H-R$	$H-P-P-P-H-R$	

mechanisms derivable from the above six-link mechanisms. Similarly, the criteria for four-link mechanisms derivable from the above six-link mechanisms can be obtained by taking two link lengths zero. Examples of five-link mechanisms deduced from the derived existence criteria of the above six-link mechanisms are shown in Figures 18, 20, and 22. The results of five-link mechanisms obtained in this manner also confirm the results obtained by Pamidi, Soni, and Dukkipati (119), Hunt (30), and Waldron (35). The results of Hunt and Waldron were obtained by considering the 5 H and 6 H mechanisms of Voinea and Atanasiu (17), which are themselves overconstrained mechanisms. The results of Soni, Pamidi, and Dukkipati, and also in the present study, on the other hand, have been obtained by considering the more general zero family mechanisms. Further, in addition to the parallelism of the axes, the present results also give definite closure conditions that must be satisfied by the several constant kinematic parameters of the respective mechanisms.

Figure 17. Six-link H-P-P-P-H-H Overconstrained Space Mechanism $(F=2)$. Case 1 in Table VII

Figure 18. Five-link H-P-P-R-H Overconstrained Space Mechanism Obtained From the $\mathrm{H}-\mathrm{P}-\mathrm{P}-\mathrm{P}-\mathrm{H}-\mathrm{H}$ Mechanism in Figure 17 by Making $\hat{\alpha}_{2}=0$ and $\mathrm{P}_{5}=0$. (30, 35, 119)

Figure 19. Six-link H-P-P-H-P-H OverConstrained Space Mecha-
nism Table VII 2). Case 7 in

Figure 20. Five-link H-P-P-HP Overconstrained
Space Mechanism
($\mathrm{F}=1$) Obtained
From Figure 19
by Making $\hat{\alpha}_{5}=0$
(30,35,119)

$\begin{aligned} & \text { Figure 21. } \text { Six-link H-P-H-P-H-P Overconstrained } \\ & \text { Space Mechanism }(F=2) \text {. Case l5 } \\ & \text { in Table VII }\end{aligned}$

Figure 22. Five-link H-H-P-H-P Overconstrained Space Mechanism ($F=1$) Obtained From the H-P-H-P-H-P Mechanism in Figure 21 by Making $\hat{\alpha}_{1}=0$. (30, 35, 119)

CHAPTER IV

EXISTENCE CRITERIA OF TWO-LOOP
 MECHANISMS

In this chapter, the Dimentberg passive coupling technique has been employed to obtain the existence criteria of the six-link, two-loop R-R-C-C-C-R-C (one kink-link zero) and R-R-C-C-C-P-C mechanisms. These criteria are obtained from the displacement relationships of the parent six-link, two-loop R-C-C-C-C-C-C mechanism (120). The procedure for obtaining the existence criteria of $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}, \mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{R}$, and $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{P}$ mechanisms from the parent $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ mechanism with general proportions is considered in Appendixes A and B. Appendix C deals with the conditions for the existence of two prism pairs in a twoloop mechanism.

> Displacement Relationships for Obtaining the Existence Criteria

The use of Dimentberg's method for obtaining the existence criteria of overconstrained two-loop mechanisms requires the displacement of the appropriate parent mechanism. The required
relationships can always be obtained by suitably arranging the loopclosure conditions of the parent mechanism.

Consider a general six-link, two-loop spatial mechanism of Stephenson type in Figure 23, with revolute pair at joint A and cylinder pairs at joints B, C, D, E, F, and G. Note that the sum of the degrees of freedom in all joints of the mechanism is thirteen. The mechanism has four binary links ($A B, C D, E F$, and $F G$) and two ternary links (AGD and BCE).

Definitions of a Spatial Ternary Link

The geometrical configuration bounded by three non-parallel and non-intersecting lines in space and a set of three uniquely drawn common perpendiculars-one between each two lines--is defined as a spatial ternary link. The three lines are defined as the axes of the ternary link; the three dual angles specifying the relative positions of the axes are called the sides of the ternary link. The three dual angles specifying the relative positions of the common perpendiculars are defined as the angles of the spatial ternary link.

Figure 24 shows a spatial ternary link $A^{\prime} A-B^{\prime} B-C^{\prime} C$ whose three axes $A^{\prime} A, B^{\prime} B$, and $C^{\prime} C$ are respectively specified by unit line vectors \hat{s}_{1}, \hat{s}_{2}, and \hat{s}_{3}. The three unit line vectors $\hat{\beta}, \hat{\gamma}$, and $\hat{\delta}$ are respectively coaxial with the common perpendiculars $A B^{\prime}$,

Figure 23. General Six-link, Two-loop R-C-C-C-C-C-C Space Mechanism of Stephenson Type

$B C^{\prime}$, and $C^{\prime} A$. The directions of the six unit line vectors forming the spatial ternary link may be chosen arbitrarily provided the sense of the dual angles is consistent with the directions of the unit line vectors.

In Figure 24, the directions are chosen in accordance with the following convention:

1. Designate $\mathrm{AA}^{\prime}, \mathrm{BB}^{\prime}$, and CC^{\prime} as axes 1, 2, and 3 respectively.
2. $\hat{\beta}, \hat{\gamma}$, and $\hat{\delta}$ are directed from axes 1 to 2,2 to 3 , and 3 to 1 respectively。
3. The directions of \hat{s}_{1}, \hat{s}_{2}, and \hat{s}_{3} are chosen in such a way that the six unit line vectors of the spatial ternary link are so directed as to form a closed loop in space. Thus, one may write the three sides of the spatial ternary link as

$$
\begin{align*}
& \hat{\beta}=\beta+\epsilon b \\
& \hat{\gamma}=\gamma+\epsilon c \tag{4-1}\\
& \hat{\delta}=\delta+\varepsilon d
\end{align*}
$$

where β, γ, and δ are the twist angles and b, c, and dare the kinematic link lengths.

The three angles of the spatial ternary link are

$$
\begin{align*}
& \hat{\eta}=\eta+\varepsilon u \\
& \hat{x}=x+\varepsilon q \tag{4-2}\\
& \hat{\xi}=\xi+\varepsilon v
\end{align*}
$$

where η, x, and ξ are the constant rotational displacement angles and u, q, and v are the constant offset distances.

Using 3×3 matrices with dual number elements, the loop closure condition of the ternary link in Figure 24 is given by

$$
\begin{equation*}
[\hat{\xi}]_{3}[\hat{\gamma}]_{1}[\hat{\chi}]_{3}[\hat{\beta}]_{1}[\hat{\eta}]_{3}[\hat{\hat{\delta}}]_{1}=[\hat{\mathrm{I}}] \tag{4-3}
\end{equation*}
$$

where

$$
\begin{aligned}
& {[\hat{\xi}]_{3}=\left[\begin{array}{ccc}
C \hat{\xi} & S \hat{\xi} & 0 \\
-S \hat{\xi} & C \hat{\xi} & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {[\hat{\gamma}]_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mathrm{C} \hat{\gamma} & \mathrm{~S} \hat{\boldsymbol{\gamma}} \\
0 & -\mathrm{S} \hat{\gamma} & \mathrm{C} \hat{\gamma}
\end{array}\right]} \\
& {[\hat{x}]_{3}=\left[\begin{array}{ccc}
C \hat{x} & S_{\hat{x}} & 0 \\
-S \hat{x} & C \hat{x} & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {[\hat{\beta}]_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \hat{\beta} & S \hat{\beta} \\
0 & -S \hat{\beta} & C \hat{\beta}
\end{array}\right]} \\
& {[\hat{\eta}]_{3}=\left[\begin{array}{ccc}
C \hat{\eta} & S \hat{\eta} & 0 \\
-S \hat{\eta} & C \hat{\eta} & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

$$
[\hat{\delta}]_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \hat{\delta} & S \hat{\delta} \\
0 & -S \hat{\delta} & C \hat{\delta}
\end{array}\right]
$$

and

$$
[I]=\left[\begin{array}{lll}
1 & 0 & 0 \tag{4-4}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

In the case where the three axes $A^{\prime} A, B^{\prime} B$, and $C^{\prime} C$ in Figure 24 intersect at one point, say 0 (i.e., $A^{\prime \prime}, B^{\prime}$, and C^{\prime} coincide at 0), the spatial ternary link is reduced to a spherical ternary link as shown in Figure 25; it is a configuration bounded by three arcs $\overparen{A B}$, $\widehat{B C}$, and $\overparen{C A}$ on the surface of a sphere of unit radius, with 0 as its center. Since the axes are intersecting, all the dual parts in Eqs. (4-1) and (4-2) become zero. Thus, the three sides of the spherical ternary link $A B C$ are represented by β, γ, and δ and the three angles are η, x, and ξ.

If the three axes in Figure 24 are parallel, then the spatial ternary link $A^{\prime} A-B^{\prime} B-C^{\prime} C$ becomes a planar ternary link, the plane P on which it lies is perpendicular to the three axes as shown in Figure 26. Since the axes are parallel, β, γ, and δ in Eq. (4-1) are equal to zero. Thus the sides of the plane ternary link $A^{\prime} B^{\prime} C^{\prime}$ are represented by the pure dual numbers $\varepsilon b, \varepsilon c$, and εd. With the

Figure 25. A Spherical Ternary Link

Figure 26. A Plane Ternary Link
three common perpendiculars lying in the same plane, s_{1}, s_{2}, and s_{3} in Eq. (4-2) vanish and the angles are represented by the real numbers η, x, and ξ.

Summarizing a spatial ternary link is completely specified by the relative positions of its three axes which in general, are nonparallel and non-intersecting. If the axes are intersecting, one obtains a spherical ternary link; if parallel, one obtains a plane ternary link.

The relative positions of the three axes of a spatial ternary link s_{1}, s_{2}, and s_{3} may be expressed in terms of its three sides $\hat{\beta}, \hat{\gamma}$, and $\hat{\delta}$ and three angles $\hat{\eta}, \hat{x}$, and $\hat{\xi}$. However, these six dual numbers are not independent of one another--given any three of the six dual-numbers, the remaining ones $c a n$ be determined by the closure condition of the ternary link. Thus, a spatial ternary link can be completely specified by any three out of its six elements-three sides and three angles.

The constant displacement angles η, x, and 5, and the constant offset distances u, q, and v of a spatial ternary link in Figure 24 for a given set of twist angles (β, γ, δ) and link lengths (b, c, d) can be derived in the following manner.

Equation (4-3) can be expressed as

$$
\begin{equation*}
[\hat{m}]=[\hat{n}]^{-1} \tag{4-5}
\end{equation*}
$$

where

$$
\begin{align*}
& {[\hat{\mathrm{m}}]=[\hat{\delta}]_{1}} \\
& {[\hat{\mathrm{n}}]=[\hat{\mathrm{s}}]_{3}[\hat{\gamma}]_{1}[\hat{\mathrm{x}}]_{3}[\hat{\mathrm{\beta}}]_{1}\left[\hat{\hat{m}_{i}}\right]_{3}} \tag{4-6}
\end{align*}
$$

since $[\hat{\eta}]$ is an orthogonal matrix, $[\hat{\eta}]^{-1}$ is identical to its transposed matrix. When the matrix products are carried out, the dual -matrix loop equation for the spatial ternary link becomes:

$$
\begin{align*}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & C \hat{\delta} & S \hat{\delta} \\
0 & -S \hat{\delta} & C \hat{\delta}
\end{array}\right]=\left[\begin{array}{l}
\hat{k}_{4} C \hat{S}-\left(\hat{k}_{2} C \hat{\gamma}-S \hat{\beta} S \hat{\gamma} S \hat{\eta}\right) S \hat{\xi} \\
k_{1} C \hat{\xi}-\left(\hat{k}_{3} C \hat{\gamma}+S \hat{\beta} S \hat{\gamma} C \hat{\eta}\right) S \hat{\xi} \\
\hat{L}_{2} S \hat{S}+S \hat{\beta} S \hat{x} C \hat{\xi}
\end{array}\right.} \\
& -\hat{k}_{4} S \hat{\xi}-\left(\hat{k}_{2} C \hat{\gamma}-S \hat{\beta} S \hat{\gamma} S \hat{n}\right) C \hat{\xi} \\
& -\hat{k}_{1} S \hat{\xi}-\left(\hat{k}_{3} C \hat{\gamma}+S \hat{\beta} \cdot S \hat{\gamma} C \hat{\pi}\right) C \hat{\xi} \\
& \hat{\mathrm{~L}}_{2} C \hat{\xi}-S \hat{\beta} \cdot \mathrm{~S} \hat{\mathrm{X}} \mathrm{~S} \hat{\mathrm{E}} \\
& \hat{L}_{1} s \hat{\eta}+S \hat{y} C \hat{\eta} S \hat{x} \\
& -\hat{L}_{1} C \hat{\eta}+S \hat{\gamma} S \hat{\eta} S \hat{x} \\
& C \hat{\beta} C \hat{\chi}-S \hat{\beta} S \hat{\gamma} C \hat{\chi} \tag{4-7}
\end{align*}
$$

where

$$
\begin{aligned}
& \hat{k}_{1}=S \hat{\eta} C \hat{x}+C \hat{\beta} C \hat{\eta} S \hat{x} \\
& \hat{k}_{2}=C \hat{\eta} S \hat{x}+C \hat{\beta} S \hat{\eta} C \hat{x} \\
& \hat{k}_{3}=S \hat{\eta} S \hat{x}-C \hat{\beta} C \hat{\eta} C \hat{x} \\
& \hat{k}_{4}=C \hat{\eta} C \hat{x}-C \hat{\beta} S \hat{\eta} S \hat{x} \\
& \hat{L}_{1}=S \hat{\beta} C \hat{\gamma}+C \hat{\beta} S \hat{\gamma} C \hat{x} \\
& \hat{L}_{2}=C \hat{\beta} S \hat{\gamma}+S \hat{\beta} C \hat{\gamma} C \hat{x}
\end{aligned}
$$

Equating the elements " 33 " of both members of Eq. (4-7),
we have

$$
\begin{equation*}
C \hat{\delta}=C \hat{\beta} C \hat{Y}-S \hat{\beta} S \hat{Y} C \hat{X} \tag{4-8}
\end{equation*}
$$

where all the dual angles are already defined in Eqs. (4-1) and (4-2).
The primary part of Eq. (4~8) can be written as

$$
\begin{equation*}
C_{X}=\frac{C \beta C y-C \delta}{S \beta S \gamma} \tag{4-9}
\end{equation*}
$$

The value of $\operatorname{Cos} X$ corresponding to a set of twist angles (β, γ, δ) can be computed from Eq. (4-9). However, there are two ways to assemble such a ternary link since the angle X is double-valued. The dual-part of Eq. (4-8) gives the constant offset distance q for a given set of β, γ, δ and b, c, d.

$$
\begin{equation*}
q=\frac{-d S \delta+b S \beta C \gamma+c S \gamma C \beta+C X(b C \beta S \gamma+c C \gamma S \beta)}{S X S \beta S \gamma} \tag{4-10}
\end{equation*}
$$

To solve for the remaining ternary link parameters, we equate the corresponding dual elements "13", "23", "31", and "32" of both members of Eq. (4-7). Separate the resultant equation into two parts from which we may solve for:

$$
\begin{align*}
& S \eta=\frac{-S \gamma S x S \delta}{L_{1}^{2}+S^{2} \gamma S^{2} x} \tag{4-11}\\
& C \eta=\frac{-L_{1} S \delta}{L_{1}^{2}+S^{2} \gamma S^{2} x} \tag{4-12}\\
& S \xi=\frac{-S \beta S x S \delta}{L_{2}^{2}+S^{2} \beta S^{2} \chi} \tag{4-13}
\end{align*}
$$

$$
\begin{gather*}
C \xi=\frac{-L_{2} S \delta}{L_{2}^{2} S^{2} \beta S^{2} \chi} \tag{4-14}\\
u=\frac{-b L_{4} S \eta+c\left(L_{3} S \eta-C y S_{\chi} C \eta\right)-q S \gamma(C \eta C x-S \eta S \chi C \beta)}{L_{1} C \eta-S \gamma S \times S \eta} \\
v=\frac{b\left(L_{3} S \xi-C \beta S x C \xi\right)-c L_{4} S \xi-q S \beta\left(C \chi C \xi-S_{\chi} S \xi C \gamma\right)}{L_{2} C \xi-S \beta S \times S \xi} \tag{4-15}
\end{gather*}
$$

where

$$
\begin{align*}
& L_{1}=S \beta C \gamma+C \beta S \gamma C \chi \\
& L_{2}=C \beta S \gamma+S \beta C \gamma C \chi \\
& L_{3}=S \beta S \gamma-C \beta C \gamma C \chi \tag{4-17}\\
& L_{4}=C \beta C \gamma-S \beta S \gamma C \chi
\end{align*}
$$

Thus the four parameters $\eta, 5, u$, and v are uniquely determined from Eqs. (4-11) through (4-17).

The instantaneous configuration of the six-link, two-loop: R-C-C-C-C-C-C mechanism, schematically shown in Figure 27, is completely defined by two sets of dual angles, each as follows:

1. Between adjacent pairing axes:

$$
\begin{equation*}
\hat{\alpha}_{i j}=\alpha_{i j}+\varepsilon a_{i j} \tag{4-18}
\end{equation*}
$$

where $\hat{\alpha}_{i j}$ is the dual angle between axes i and $j, \alpha_{i j}$ are the twist angles and $a_{i j}$ are the link lengths as shown in Figure 27.

Figure 27. Six-link, Two-loop R-C-C-C-C-C-C Space
2. Between adjacent common perpendiculars:

$$
\begin{equation*}
\hat{\theta}_{i}=\theta_{i}+\varepsilon s_{i} \tag{4-19}
\end{equation*}
$$

where $\theta_{i}(i=1$ to 7$)$ are the angular displacements of links, s_{i} ($\mathrm{i}=2$ to 7) are the linear displacements at the cylinder joints, and s_{1} is the constant offset distance (kink-link) measured along the axis of the revolute pair.

There are 13 variables in Eq. (4-19), θ_{1} is the input angle at the revolute pair A and $\theta_{i}, s_{i}(i=2$ to 7$)$ are the other linkage variables. The 20 quantities in Eq. $(4-18), \alpha_{i j}$ and $a_{i j}(i j=12,23,34$, $41,17,76,65,52,53,47)$ and the constant offset distance s_{1} in Eq. (4-19), constitute the 21 constant real linkage parameters necessary to specify completely a six-link, two-loop space mechanism of Stephenson type with general proportions. The loop-closure condition of the mechanism can be written in three ways, one for each loop. It is to be noted that the mechanism has only two independent loops. Since ${\underset{i}{i}}^{\theta_{i}} \underline{S}_{i}\left(i=1\right.$ to 7) are not independent of θ_{i} and $s_{i}\left(i=1\right.$ to 7) respectively, the relationship between $\hat{\theta}_{i}$ and $\hat{\theta}_{i}$ can be obtained. Thus

$$
\begin{align*}
& \hat{\hat{\theta}}_{\mathrm{i}}=\underline{\theta}_{\mathrm{i}}+\varepsilon \underline{s}_{\mathrm{i}} \tag{4-20}\\
& \underline{\hat{\theta}}_{1}=-\hat{\theta}_{1}+\hat{\Phi}_{1}+\pi \\
& \underline{\hat{\theta}}_{2}=-\hat{\theta}_{2}+\hat{\psi}_{1}+\pi \\
& \underline{\hat{\theta}}_{3}=-\pi+\hat{\theta}_{3}-\hat{\psi}_{2}
\end{align*}
$$

$$
\begin{align*}
& \underline{\hat{\theta}}_{4}=-\pi+\hat{\theta}_{4}-\hat{ष}_{3} \tag{4-21}\\
& \hat{\theta}_{5}=\hat{\theta}_{5}+\hat{\psi}_{3}-\pi \\
& \underline{\hat{\theta}}_{6}=\hat{\theta}_{6} \\
& \underline{\hat{\theta}}_{7}=\hat{\theta}_{7}-\hat{\Phi}_{2}+\pi
\end{align*}
$$

where

$$
\begin{array}{ll}
\hat{\Phi}_{i}=\Phi_{i}+\varepsilon p_{i} & (i=1,2,3) \\
\hat{\psi}_{i}=\psi_{i}+\varepsilon c_{i} & (i=1,2,3) \tag{4-22}
\end{array}
$$

Note that $\hat{\Phi}_{i}(i=1,2,3)$ are the angles and $\hat{\alpha}_{17}, \hat{\alpha}_{74}, \hat{\alpha}_{41}$ are the sides of the ternary link $A G D$ and $\hat{\psi}_{i}(i=1,2,3)$ are the angles and $\hat{\alpha}_{23}, \hat{\alpha}_{35}, \hat{\alpha}_{52}$ are the sides of the ternary link $B C E$ in Figure 23. The parameters of the six-link, two-loop $R-C-C-C-C-C-C$ space mechanism of Stephenson type are described in Table VIII.

Using (3 x 3) matrices with dual number elements, closed form displacement relationships of the mechanism are derived by Soni, Dukkipati, and Huang (120).

Loop 1 (ABCDA)

The loop-closure condition of the mechanism in Figure 27 for the loop 1 (ABCDA) is given by (120):

$$
\begin{gather*}
{\left[\hat{\theta}_{1}\right]_{3}\left[\hat{\alpha}_{12}\right]_{1}\left[\hat{\theta}_{2}\right]_{3}\left[\hat{\alpha}_{23}\right]_{1}\left[\hat{\theta}_{3}\right]_{3}\left[\hat{\alpha}_{34}\right]_{1}\left[\hat{\theta}_{4}\right]_{3}\left[\hat{\alpha}_{41}\right]_{1}} \\
=[I] \tag{4-23}
\end{gather*}
$$

where

TABLE VIII

PARAMETERS OF SIX-LINK, TWO-LOOP R-C-C-C-C-C-C SPACE MECHANISM OF STEPHENSON TYPE

Constant Displacement Parameters:

$$
\Phi_{i}, \psi_{i}(i=1 \text { to } 3)
$$

Kink-Links:

$$
p_{i}, c_{i}(i=1 \text { to } 3)
$$

Total: 12
$\left[\hat{\theta}_{i}\right]_{3}=\left[\begin{array}{ccc}C \hat{\theta}_{\mathbf{i}} & S \hat{\theta}_{\mathbf{i}} & 0 \\ -S \hat{\theta}_{\mathbf{i}} & \mathrm{C} \hat{\theta}_{\mathbf{i}} & 0 \\ 0 & 0 & 0\end{array}\right]$

and

$$
[I]=\left[\begin{array}{lll}
1 & 0 & 0 \tag{4-24}\\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Two arrangements of Eq. (4-23) are useful in the study of existence criteria.

1. Relationship involving the adjacent dual displacement angles.

In this arrangement of Eq. (4-23), five matrices are used on one side of the equality sign and three matrices on the other. Thus, we have, for instance,

$$
\begin{gather*}
{\left[\hat{\alpha}_{12}\right]_{1}\left[\hat{\theta}_{1}\right]_{3}\left[\hat{\alpha}_{41}\right]_{1}\left[\hat{\theta}_{4}\right]_{3}\left[\hat{\alpha}_{34}\right]_{1}} \\
\quad=\left[\hat{\theta}_{2}\right]_{3}^{-1}\left[\hat{\alpha}_{23}\right]_{1}^{-1}\left[\hat{\theta}_{3}\right]_{3}^{-1} \tag{4-25}
\end{gather*}
$$

Simplifying the above equation by using relations (4-24) and equating the " 33 " elements of the resultant matrix equation, we get

$$
\begin{align*}
& \mathrm{F}_{1}\left(\hat{\theta}_{1}, \hat{\theta}_{4}\right)=\left(\mathrm{S} \hat{\alpha}_{12} \mathrm{~S} \hat{\alpha}_{34} \mathrm{~S} \hat{\theta}_{1}\right) \mathrm{S} \hat{\theta}_{4}-\left[\mathrm { S } \hat { \alpha } _ { 3 4 } \left(\mathrm{S} \hat{\alpha}_{41} \mathrm{C} \hat{\alpha}_{12}\right.\right. \\
& \left.\left.\quad+\mathrm{C} \hat{\alpha}_{41} \mathrm{~S} \hat{\alpha}_{12} \mathrm{C} \hat{\theta}_{1}\right)\right] \mathrm{C} \hat{\theta}_{4}-\mathrm{C} \hat{\alpha}_{23}+\mathrm{C} \hat{\alpha}_{34}\left(\mathrm{C} \hat{\alpha}_{41} \mathrm{C} \hat{\alpha}_{12}\right. \\
& \left.\quad-\mathrm{S} \hat{\alpha}_{41} \mathrm{~S} \hat{\alpha}_{12} \mathrm{C} \hat{\theta}_{1}\right)=0 \tag{4-26}
\end{align*}
$$

Note that Eq. (4-26) involves the two adjacent dual displacement angles $\hat{\theta}_{1}$ and $\hat{\theta}_{4}$.

Cyclic permutation permits Eq. (4-26) to be written in four different ways. It is, therefore, possible to get four equations of the form (4-26) involving different combinations of two adjacent angles.
2. Relationship involving two displacement angles opposite to one another.

In this arrangement of Eq. (4-23), three matrices are used on one side of the equality sign and five matrices on the other. The important point to note is that the central matrix on the side containing three matrices involves only the variable kinematic parameters of the mechanism. Thus, we have, for instance,

$$
\begin{equation*}
\left[\hat{\alpha}_{12}\right]_{1}\left[\hat{\theta}_{1}\right]_{3}\left[\hat{\alpha}_{41}\right]_{1}=\left[\hat{\theta}_{2}\right]_{3}^{-1}\left[\hat{\alpha}_{23}\right]_{1}^{-1}\left[\hat{\theta}_{3}\right]_{3}^{-1}\left[\hat{\alpha}_{34}\right]_{1}^{-1}\left[\hat{\theta}_{4}\right]_{3}^{-1} \tag{4-27}
\end{equation*}
$$

Note that the central matrix $\left[\hat{\theta}_{1}\right]_{3}$ on the left hand side only involves the variable kinematic parameters of the mechanism.

Simplifying Eq. (4-27) by using relations (4-24) and equating the "33" elements of the resultant matrix equation, we get

$$
\begin{align*}
& \mathrm{f}_{1}\left(\hat{\theta}_{1}, \hat{\theta}_{3}\right)=\mathrm{C} \hat{\alpha}_{21} \mathrm{C} \hat{\alpha}_{14}+\mathrm{S} \hat{\alpha}_{21} \mathrm{~S} \hat{\alpha}_{14} \mathrm{C} \hat{\theta}_{1}-\mathrm{C} \hat{\alpha}_{43} \mathrm{C} \hat{\alpha}_{32} \\
& -\mathrm{S} \hat{\alpha}_{43} \mathrm{~S} \hat{\alpha}_{32} \mathrm{C} \hat{\theta}_{3}=0 \tag{4-28}
\end{align*}
$$

Cyclic permutation allows Eq. (4-28) to be written in two different ways. It is, therefore, possible to obtain two equations of the form (4-28) involving different combinations of two opposite displacement angles.

Loop 2 (DGFECD)

The dual-matrix loop closure equation for loop 2 (DGFECD) is given by

$$
\begin{gather*}
{\left[\hat{\theta}_{4}\right]_{3}\left[\hat{\alpha}_{47}\right]_{1}\left[\hat{\theta}_{7}\right]_{3}\left[\hat{\alpha}_{76}\right]_{1}\left[\hat{\theta}_{6}\right]_{3}\left[\hat{\alpha}_{65}\right]_{1}\left[\hat{\theta}_{5}\right]_{3}\left[\hat{\alpha}_{53}\right]_{1}} \\
{\left[\hat{\theta}_{3}\right]_{3}\left[\hat{\alpha}_{34}\right]_{1}=[\mathrm{I}]} \tag{4-29}
\end{gather*}
$$

Two arrangements of Eq. (4-29) are useful in the study of existence criteria.

1. Relationship involving two adjacent dual displacement angles and the dual displacement angle opposite to both of them.

In this arrangement of Eq. (4-29), five matrices are used on either side of the equality sign. Thus, we have, for instance,

$$
\begin{align*}
{\left[\hat{\alpha}_{47}\right]_{1} } & {\left[\hat{\theta}_{7}\right]_{3}\left[\hat{\alpha}_{76}\right]_{1}\left[\hat{\theta}_{6}\right]_{3}\left[\hat{\alpha}_{65}\right]_{1} } \\
& =\left[\hat{\theta}_{4}\right]_{3}^{-1}\left[\hat{\alpha}_{34}\right]_{1}^{-1}\left[\hat{\theta}_{3}\right]_{3}^{-1}\left[\hat{\alpha}_{53}\right]_{1}^{-1}\left[\hat{\theta}_{5}\right]_{3}^{-1} \tag{4-30}
\end{align*}
$$

Simplifying the above equation by using relations (4-20), (4-21),
(4-24) and equating the " 33 " elements of the resultant matrix equation, we get

$$
\begin{align*}
& \left.F_{2}\left(\hat{\theta}_{3}, \hat{\theta}_{6}, \hat{\theta}_{7}\right)=S \hat{\alpha}_{47} S \hat{\alpha}_{65} S \hat{\theta}_{7}\right)-S \hat{\alpha}_{65}\left(C \hat{\alpha}_{47} S \hat{\alpha}_{76}\right. \\
& \left.\quad+S \hat{\alpha}_{47} C \hat{\alpha}_{76} C \hat{\theta}_{7}\right) C \hat{\theta}_{6}+C \hat{\alpha}_{65}\left(C \hat{\alpha}_{47} C \hat{\alpha}_{76}\right. \\
& \left.\quad-S \hat{\alpha}_{47} S \hat{\alpha}_{76} C \hat{\theta}_{7}\right)-\left(C \hat{\alpha}_{53} C \hat{\alpha}_{34}-S \hat{\alpha}_{53} S \hat{\alpha}_{34} C \hat{\theta}_{3}\right)=0 \tag{4-31}
\end{align*}
$$

Note that Eq. (4-31) involves the adjacent displacement angles $\hat{\theta}_{6}$ and $\hat{\theta}_{7}$ and the displacement angle $\hat{\theta}_{3}$ opposite to both of them.

Cyclic permutation permits Eq. $(4-30)$ to be written in five different ways. It is, therefore, possible to get five equations of the form (4-31) involving different combinations of two adjacent angles and the angle opposite to both of them.
2. Relationship involving three adjacent dual displacement angles.

In this arrangement of Eq. (4-29), seven matrices are used on one side of the equality sign and three matrices on the other. The important point to note is that the central matrix on the side containing three matrices involves only the constant kinematic parameters of the mechanism. Thus, we have, for instance,

$$
\begin{align*}
{\left[\hat{\alpha}_{76}\right]_{1} } & {\left.\left[\hat{\theta}_{7}\right]_{3}\left[\hat{\alpha}_{47}\right]_{1}\left[\hat{\theta}_{4}\right]_{3}\left[\hat{\alpha}_{34}\right]\right]_{1}\left[\hat{\theta}_{3}\right]_{3}\left[\hat{\alpha}_{53}\right]_{1} } \\
& =\left[\hat{\theta}_{6}\right]_{3}^{-1}\left[\hat{\alpha}_{65}\right]_{1}^{-1}\left[\hat{\theta}_{5}\right]_{3}^{-1} \tag{4-31}
\end{align*}
$$

Note that the central matrix $\left[\alpha_{65}\right]_{1}^{-1}$ on the right hand side involves only the constant kinematic parameters of the mechanism.

Simplifying Eq. (4-31) by using relations (4-24) and equating the "33" elements of the resultant matrix equation, we get

$$
\begin{align*}
& \mathrm{f}_{2}\left(\underline{\hat{\theta}}_{3}, \underline{\hat{\theta}}_{4}, \hat{\theta}_{7}\right)=\left[\left(\mathrm{S}_{47} \mathrm{C} \hat{\alpha}_{76}+\mathrm{C} \hat{\alpha}_{47} \mathrm{~S} \hat{\alpha}_{76} \mathrm{C} \hat{\theta}_{7}\right) \mathrm{S} \hat{\hat{\theta}}_{4}\right. \\
& \left.+S \hat{\alpha}_{76} S \hat{\theta}_{7} C_{-\hat{\theta}_{4}}\right]\left(S \hat{\alpha}_{53} S \underline{\hat{\theta}}_{3}\right)+\left[\mathrm{S}_{76} \mathrm{~S} \hat{\theta}_{7} \mathrm{~S} \hat{\hat{\theta}}_{4}\right. \\
& \left.-\left(\mathrm{S} \hat{\alpha}_{47} \mathrm{C} \hat{\alpha}_{76}+\mathrm{C} \hat{\alpha}_{47} \mathrm{~S} \hat{\alpha}_{76} \mathrm{C} \hat{\theta}_{7}\right) \mathrm{C} \hat{\hat{\theta}}_{4}\right]\left(\mathrm{C} \hat{\alpha}_{53} \mathrm{~S} \hat{\alpha}_{34}\right. \\
& \left.+S \hat{\alpha}_{53} C \hat{\alpha}_{34} C \hat{\theta}_{3}\right)+\left(C \hat{\alpha}_{47} C \hat{\alpha}_{76}-\right. \\
& \left.-S \hat{\alpha}_{47} S \hat{\alpha}_{76} C \hat{\theta}_{7}\right)\left(C \hat{\alpha}_{53} C \hat{\alpha}_{34}-S \hat{\alpha}_{53} S \hat{\alpha}_{34} C \underline{\hat{\theta}}_{3}\right) \\
& -C \hat{\alpha}_{65}=0 \tag{4-32}
\end{align*}
$$

Note that Eq. (4-32) involves the three adjacent displacement angles $\hat{\hat{\theta}}_{3}, \hat{\hat{\theta}}_{4}$, and $\hat{\hat{\theta}}_{7}$.

Cyclic permutation allows Eq. (4-31) to be written in five different ways. It is, therefore, possible to obtain five equations of the form (4-32) involving different combinations of three adjacent angles.

Loop 3 or Outer Loop (ABEFGA)

The loop-closure condition of the mechanism in Figure 27 for
loop 3 is given by

$$
\begin{gather*}
{\left[\underline{\hat{\theta}}_{1}\right]_{3}\left[\hat{\alpha}_{17}\right]_{1}\left[\underline{\hat{\theta}}_{7}\right]_{3}\left[\hat{\alpha}_{76}\right]_{1}\left[\hat{\theta}_{6}\right]_{3}\left[\hat{\alpha}_{65}\right]_{1}\left[\hat{\hat{\theta}}_{5}\right]_{3}\left[\hat{\alpha}_{52}\right]_{1}} \\
{\left[\underline{\hat{\theta}}_{2}\right]_{3}\left[\hat{\alpha}_{21}\right]_{1}=[I]} \tag{4-33}
\end{gather*}
$$

Two arrangements of Eq. (4-33) are useful in the study of existence criteria. These arrangements are similar to the loop 2 considered above.

The first is the arrangement of five matrices on either side of the equality sign. Thus, we have, for instance.,

$$
\begin{align*}
{\left[\hat{\alpha}_{17}\right]_{1} } & {\left[\hat{\hat{\theta}}_{7}\right]_{3}\left[\hat{\alpha}_{76}\right]_{1}\left[\hat{\theta}_{6}\right]_{3}\left[\hat{\alpha}_{65}\right]_{1} } \\
& =\left[\underline{\hat{\theta}}_{1}\right]_{3}^{-1}\left[\hat{\alpha}_{21}\right]_{1}^{-1}\left[\hat{\theta}_{2}\right]_{3}^{-1}\left[\hat{\alpha}_{52}\right]_{1}^{-1}\left[\hat{\theta}_{5}\right]_{3} \tag{4-34}
\end{align*}
$$

Simplifying the above equation by using relations (4-24) and equating the "33" elements of the resultant matrix equation, we get

$$
\begin{aligned}
& \mathrm{F}_{3}\left(\underline{\hat{\theta}}_{2}, \hat{\theta}_{6}, \underline{\hat{\theta}}_{7}\right)=\left(\mathrm{S} \hat{\alpha}_{17} \mathrm{~S} \hat{\alpha}_{65} \mathrm{~S} \hat{\theta}_{7}\right) S \hat{\theta}_{6}-\mathrm{S} \hat{\alpha}_{65}\left(\mathrm{C} \hat{\alpha}_{17} \mathrm{~S} \hat{\alpha}_{76}\right. \\
& \left.\quad+\mathrm{S} \hat{\alpha}_{17} \mathrm{C} \hat{\alpha}_{76} \mathrm{C} \underline{\hat{\theta}}_{7}\right) \mathrm{C} \hat{\theta}_{6}+\mathrm{C} \hat{\alpha}_{65}\left(\mathrm{C} \hat{\alpha}_{17} \mathrm{C} \hat{\alpha}_{76}\right. \\
& \\
& \left.-S \hat{\alpha}_{17} \mathrm{~S} \hat{\alpha}_{76} \mathrm{C} \underline{\hat{\theta}}_{7}\right)-\left(\mathrm{C} \hat{\alpha}_{52} \mathrm{C} \hat{\alpha}_{21}-S \hat{\alpha}_{52} S \hat{\alpha}_{21} \mathrm{C} \hat{\hat{\theta}}_{2}\right)=0
\end{aligned}
$$

Note that Eq. (4-35) involves the adjacent displacement angles $\hat{\theta}_{6}$ and $\hat{\theta}_{7}$ and the displacement angle $\hat{\theta}_{2}$ opposite to both of them.

Cyclic permutation allows Eq. (4-34) to be written in five different ways. It is, therefore, possible to get five equations of the form (4-35) involving different combinations of two adjacent angles and the angle opposite to both of them.

The second is the arrangement of seven matrices on one side of the equality sign and the three matrices on the other. Thus, we have, for instance,

$$
\begin{align*}
{\left[\hat{\alpha}_{76}\right]_{1} } & {\left[\hat{\hat{\theta}}_{7}\right]_{3}\left[\hat{\alpha}_{17}\right]_{1}\left[\hat{\theta}_{1}\right]_{3} } \\
& =\left[\hat{\theta}_{6}\right]_{3}^{-1}\left[\hat{\alpha}_{65}\right]_{1}^{-1}\left[\hat{\theta}_{5}\right]^{-1}\left[\hat{\alpha}_{21}\right]_{1}\left[\underline{\hat{\theta}}_{2}\right]_{3}\left[\hat{\alpha}_{52}\right]_{1} \tag{4-36}
\end{align*}
$$

Simplifying Eq. (4-36) by using relationships (4-24) and equating the "33" elements of the resultant matrix equation, we get

$$
\begin{align*}
& \left.f_{3} \underline{\hat{\theta}}_{1}, \hat{\underline{\theta}}_{2}, \hat{\hat{\theta}}_{7}\right)=\left[\left(\operatorname{Si\alpha }_{17} C \hat{\alpha}_{76}+C \hat{\alpha}_{17} S \hat{\alpha}_{76} C \underline{\hat{\theta}}_{6}\right) S \underline{\hat{\theta}}_{1}\right. \\
& \left.+S \hat{\alpha}_{76} S_{\underline{\theta}_{7}} C \hat{\hat{\theta}}_{1}\right]\left[S \hat{\alpha}_{52} S \underline{\hat{\theta}}_{2}\right]+\left[S \hat{\alpha}_{76} S_{\underline{\theta}_{7}} S \underline{\hat{\theta}}_{1}\right. \\
& \left.-\left(\mathrm{S} \hat{\alpha}_{17} \mathrm{C} \hat{\alpha}_{76}+\mathrm{C} \hat{\alpha}_{17} \mathrm{~S} \hat{\alpha}_{76} \mathrm{C}_{\underline{\theta}_{7}}\right) \mathrm{C} \underline{\hat{\theta}}_{1}\right]\left(\mathrm{C} \hat{\alpha}_{52} \mathrm{~S} \hat{\alpha}_{21}\right. \\
& \left.+\mathrm{S} \hat{\alpha}_{52} \mathrm{C} \hat{\alpha}_{21} \mathrm{C} \hat{\theta}_{2}\right)+\left(\mathrm{C} \hat{\alpha}_{17} \mathrm{C} \hat{\alpha}_{76} .\right. \\
& \left.-S \hat{\alpha}_{17} S \hat{\alpha}_{76} C \underline{\hat{\theta}}_{7}\right)\left(C \hat{\alpha}_{52} C \hat{\alpha}_{21}-S \hat{\alpha}_{52} S \hat{\alpha}_{21} C \hat{\theta}_{2}\right) \\
& -\mathrm{C} \hat{\alpha}_{65}=0 \tag{4-37}
\end{align*}
$$

Note that Eq. (4-37) involves the adjacent displacement angles $\hat{\theta}_{1}$ and $\hat{\theta}_{\dot{2}}$ and the displacement angle $\underline{\hat{\theta}}_{7}$ opposite to both of them.

Observe that equations (4-26), (4-28), (4-31), (4-32), (4-35), and (4-37) are all dual equations. Each of them, therefore, represents two scalar equations. Since four equations of the form (4-26), two of the form (4-28), and five each of the form (4-31), (4-32), (4-35), and (4-37) are possible; a total of fifty-two scalar equations are available. These fifty-two scalar equations make it possible to obtain the existence criteria of all mechanisms with one general constraint or two passive couplings.

Existence Criteria of the Six-Link

R-R-C-C-C-R-C Mechanism

In this section, the Dimentberg passive coupling method has been used to obtain the existence criteria of an $R-R-C-C-C r R-C$ mechanism with one kink-link zero from the displacement relationships of the parent R-C-C-C-C-C-C mechanism. The procedure for obtaining the existence criteria of the R-R-C-C-C-R-C mechanism with non-zero kink-links is given in Appendix A.

Derivation of the Existence Criteria

Consider the six-link, two-loop R-C-C-C-C-C-C space mechanism shown schematically in Figure 27. Note that the offset distance at the revolute pair at A is constant. If the translational displacement s_{2} at the cylinder pair at B remains constant and the translational displacement s_{6} at the cylinder pair at F reduces to zero at all positions of this mechanism, then it reduces to an $R-R-C-C-C-R-C$ mechanism as shown in Figure 28 .

By considering the loop-closure condition of the mechanism in Figure 27 in two different ways, one from loop 1 (ABCDA) and the other from outer loop (ABEFGA), the following displacement relationships can be obtained:

Figure 28. R-R-C-C-C-R-C Space Mechanism Obtained From the Mechanism in Figure 27 by Making $s_{2}=s_{2 k}=a$ Constant and $s_{6}=0$

$$
\begin{align*}
& F_{1}\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)=\left(S \hat{\alpha}_{23} S \hat{\alpha}_{41} S \hat{\theta}_{2}\right) S \hat{\theta}_{1}-\left[S \hat { \alpha } _ { 4 1 } \left(S \hat{\alpha}_{12} C \hat{\alpha}_{23}\right.\right. \\
& \left.\left.\quad+C \hat{\alpha}_{12} S \hat{\alpha}_{23} C \hat{\theta}_{2}\right)\right] C \hat{\theta}_{1}-C \hat{\alpha}_{34}+C \hat{\alpha}_{41}\left(C \hat{\alpha}_{12} C \hat{\alpha}_{23}\right. \\
& \left.\quad-S \hat{\alpha}_{12} S \hat{\alpha}_{23} C \hat{\theta}_{2}\right)=0 \tag{4-38}\\
& F_{3}\left(\underline{\theta}_{1}, \hat{\theta}_{2}, \hat{\theta}_{6}\right)=\left(S \hat{\alpha}_{17} S \hat{\alpha}_{52} S \hat{\theta}_{2}\right) S \hat{\theta}_{1}-S \hat{\alpha}_{17}\left(C \hat{\alpha}_{52} S \hat{\alpha}_{21}\right. \\
& \left.\quad+S \hat{\alpha}_{52} C \hat{\alpha}_{21} C \underline{\theta}_{2}\right) C \underline{\theta}_{1}+C \hat{\alpha}_{17}\left(C \hat{\alpha}_{52} C \hat{\alpha}_{21}\right. \\
& \left.\quad-S \hat{\alpha}_{52} S \hat{\alpha}_{21} C \hat{\theta}_{2}\right)-\left(C \hat{\alpha}_{76} C \hat{\alpha}_{65}\right. \\
& \left.\quad-S \hat{\alpha}_{76} S \hat{\alpha}_{65} C \hat{\theta}_{6}\right)=0 \tag{4-39}
\end{align*}
$$

Note that Eq. (4-38) is similar in form to Eq. (4-26) and Eq. (4-39) is similar to Eq. (4-35). Now, let the translation s_{2} become constant equal to $s_{2 k}$ and the translation s_{6} be zero at all positions of the mechanism. Using equations (4-20), (4-21) and (4-22) the dual part of Eq. (4-38) becomes

$$
\begin{equation*}
B_{2}\left(t_{1}\right) t_{2}^{2}+B_{1}\left(t_{1}\right) t_{2}+B_{0}\left(t_{1}\right)=0 \tag{4-40}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{t}_{1}=\tan \left(\theta_{1} / 2\right) \\
& \mathrm{t}_{2}=\tan \left(\theta_{2} / 2\right)
\end{aligned}
$$

and

$$
\begin{align*}
& \mathrm{B}_{2}\left(\mathrm{t}_{1}\right)=\mathrm{B}_{22} \mathrm{t}_{1}^{2}+\mathrm{B}_{21} \mathrm{t}_{1}+\mathrm{B}_{20} \\
& \mathrm{~B}_{1}\left(\mathrm{t}_{1}\right)=\mathrm{B}_{12} \mathrm{t}_{1}^{2}+\mathrm{B}_{11} \mathrm{t}_{1}+\mathrm{B}_{10} \tag{4-41}\\
& \mathrm{~B}_{0}\left(\mathrm{t}_{1}\right)=\mathrm{B}_{02} \mathrm{t}_{1}^{2}+\mathrm{B}_{01} \mathrm{t}_{1}+\mathrm{B}_{00}
\end{align*}
$$

The constants in Eqs. (4-41) involve only the constant kinematic parameters of the mechanism and are defined in Table IX.

Eliminating the angle θ_{6} from the primary and dual parts of Eq. (4-39) using Eqs. (4-20) through (4-22), we get

$$
\begin{equation*}
A_{2}\left(t_{1}\right) t_{2}^{2}+A_{1}\left(t_{1}\right) t_{2}+A_{0}\left(t_{1}\right)=0 \tag{4-42}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{2}\left(t_{1}\right)=A_{22} t_{1}^{2}+A_{21} t_{1}+A_{20} \\
& A_{1}\left(t_{1}\right)=A_{12} t_{1}^{2}+A_{11} t_{1}+A_{10} \tag{4-43}\\
& A_{0}\left(t_{1}\right)=A_{02} t_{1}^{2}+A_{01} t_{1}+A_{00}
\end{align*}
$$

The constants in Eqs. (4-43) are defined in Table XI. If an R-R-C-C-C-R-C mechanism of the type under consideration is to exist, the quadratic equations (4-40) and (4-42) must have at least one common root. This gives the condition (102):
$\left|\begin{array}{cccc}B_{2}\left(t_{1}\right) & B_{1}\left(t_{1}\right) & B_{0}\left(t_{1}\right) & 0 \\ 0 & B_{2}\left(t_{1}\right) & B_{1}\left(t_{1}\right) & B_{0}\left(t_{1}\right) \\ A_{2}\left(t_{1}\right) & A_{1}\left(t_{1}\right) & A_{0}\left(t_{1}\right) & 0 \\ 0 & A_{2}\left(t_{1}\right) & A_{1}\left(t_{1}\right) & A_{0}\left(t_{1}\right)\end{array}\right|=0$

Equation (4-44) is a function of only the variable t_{1}. Expanding and simplifying it, we get

$$
C_{8} t_{1}^{8}+C_{7} t_{1}^{7}+\ldots .+C_{1} t_{1}+C_{0}=0
$$

or in short,

TABLE IX
CONSTANTS FOR USE IN EQUATION (4-41)

$$
\begin{aligned}
& D_{002}= a_{41} C \alpha_{41} S \alpha_{23}+a_{23} C \alpha_{23} S \alpha_{41} \\
& D_{001}= s_{1} S \alpha_{23} S \alpha_{41}+s_{2 k} C \alpha_{12} S \alpha_{23} \\
& D_{000}= s_{2 k} S \alpha_{12} C \alpha_{41} S \alpha_{23} \\
& E_{002}= s_{2 k} S \alpha_{23} S \alpha_{41}+s_{1} C \alpha_{12} S \alpha_{23} \\
& E_{001}=-a_{23} C \alpha_{23} C \alpha_{12}+a_{12} S \alpha_{12} S \alpha_{23} \\
& E_{000}=-a_{12} C \alpha_{12} C \alpha_{41} S \alpha_{23}-a_{23} C \alpha_{41} C \alpha_{23} S \alpha_{12} \\
&+a_{41} S \alpha_{41} S \alpha_{12} S \alpha_{23} \\
& F_{002}= s_{1} S \alpha_{41} S \alpha_{23} \\
& F_{001}=-a_{41} C \alpha_{41} C \alpha_{23}+a_{23} S \alpha_{23} S \alpha_{41} \\
& F_{000}= a_{34} S \alpha_{34}-C \alpha_{12}\left(a_{41} S \alpha_{41} C \alpha_{23}+a_{23} S \alpha_{23} C \alpha_{41}\right) \\
&-a_{12} S \alpha_{12} C \alpha_{41} C \alpha_{23} \\
& B_{22}= E_{001}-E_{000}-F_{001}+F_{000} \\
& B_{21}=-2\left(E_{002}-F_{002}\right) \\
& B_{20}=-E_{001}-E_{000}+F_{001}+F_{000} \\
& B_{12}=-2\left(D_{001}-D_{000}\right) \\
& B_{11}=4 D_{002}
\end{aligned}
$$

TABLE IX (Continued)

$$
\begin{aligned}
& B_{10}=2\left(D_{001}+D_{000}\right) \\
& B_{02}=-E_{001}+E_{000}-F_{001}+F_{000} \\
& B_{01}=2\left(E_{002}+F_{002}\right) \\
& B_{00}=E_{001}+E_{000}+F_{001}+F_{000}
\end{aligned}
$$

TABLE X

CONSTANTS FOR USE IN TABLE XI

$$
\begin{aligned}
& U_{1}=\frac{a_{76}{ }^{C} \alpha_{65}}{S \alpha_{76}}+\frac{{ }_{65}{ }_{65}{ }^{C}{ }_{76}}{S \alpha_{65}} \\
& U_{2}=a_{76} \frac{C \alpha_{76}}{S \alpha_{76}}+a_{65} \frac{C \alpha_{65}}{S \alpha_{65}} \\
& F_{0}=U_{1}-U_{2} C\left(\alpha_{52}-\alpha_{21}-\alpha_{17}\right)-\left(a_{52}-a_{21}-a_{17}\right) S\left(\alpha_{52}\right. \\
& \left.-\alpha_{21}-\alpha_{17}\right) \\
& F_{1}=-2 S \alpha_{17}\left[s_{1} S\left(\alpha_{52}-\alpha_{21}\right)+s_{2 k} S \alpha_{52}\right] \\
& F_{2}=U_{1}-U_{2} C\left(\alpha_{52}-\alpha_{21}+\alpha_{17}\right)-\left(a_{52}-a_{21}+a_{17}\right) S\left(\alpha_{52}\right. \\
& \left.-\alpha_{21}+\alpha_{17}\right) \\
& \mathrm{G}_{0}=2 \mathrm{~S} \alpha_{52}\left[\mathrm{~s}_{1} \cdot \mathrm{~S} \alpha_{17}+\mathrm{s}_{2 \mathrm{k}} \mathrm{~S}\left(\alpha_{21}+\alpha_{17}\right)\right. \\
& \mathrm{G}_{1}=4 \mathrm{~S} \alpha_{17} \mathrm{~S} \alpha_{52} \mathrm{a}_{17} \mathrm{Ct} \alpha_{17}-\mathrm{a}_{76} \mathrm{Ct} \alpha_{76}-\mathrm{a}_{65} \mathrm{Ct} \alpha_{65} \\
& \left.+a_{52} \mathrm{Ct} \alpha_{52}\right) \\
& \mathrm{G}_{2}=-2 \mathrm{~S} \alpha_{52}\left[\mathrm{~s}_{1} \mathrm{~S} \alpha_{17}-\mathrm{s}_{2 \mathrm{k}} \mathrm{~S}\left(\alpha_{21}-\alpha_{17}\right)\right] \\
& H_{0}=U_{1}-U_{2} C\left(\alpha_{52}+\alpha_{21}+\alpha_{17}\right)-\left(a_{52}+a_{21}+a_{17}\right) S\left(\alpha_{52}\right. \\
& \left.+\alpha_{21}+\alpha_{17}\right) \\
& \mathrm{H}_{1}=2 \mathrm{~S} \alpha_{17}\left[\mathrm{~s}_{1} \mathrm{~S}\left(\alpha_{52}+\alpha_{17}\right)+\mathrm{s}_{2 \mathrm{k}} \mathrm{~S} \alpha_{52}\right] \\
& H_{2}=U_{1}-U_{2} C\left(\alpha_{52}+\alpha_{21}{ }^{-\alpha}{ }_{17}\right)-\left(a_{52}+a_{21}-a_{17}\right) S\left(\alpha_{52}+\alpha_{21}-\alpha_{17}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\tan \left(\Phi_{1} / 2\right) \\
& y_{2}=F_{0}-F_{1} x_{1}+F_{2} x_{1}^{2} \\
& y_{1}=2 F_{0} x_{1}-F_{1} x_{1}^{2}+F_{1}-2 F_{2} x_{1} \\
& y_{0}=F_{0} x_{1}^{2}+F_{1} x_{1}+F_{2} \\
& w_{2}=-G_{0}+G_{1} x_{1}-G_{2} x_{1}^{2} \\
& w_{1}=-2 G_{0} x_{1}+G_{1} x_{1}^{2}-G_{1}+2 G_{2} x_{1} \\
& w_{0}=-G_{0} x_{1}^{2}-G_{1} x_{1}-G_{2} \\
& z_{2}=H_{0}-H_{1} x_{1}+H_{2} x_{1}^{a} \\
& z_{1}=2 H_{0} x_{1}-H_{1} x_{1}^{2}+H_{1}-2 H_{2} x_{1} \\
& z_{0}=H_{0} x_{1}+H_{1} x_{1}+H_{2} \\
& x_{2}=\tan \left(\psi_{1} / 2\right) \\
& A_{22}=x_{2}^{2} y_{2}+x_{2} w_{2}+z_{2} \\
& A_{21}=x_{2}^{a} y_{1}+x_{2} w_{1}+z_{1} \\
& A_{20}=x_{2}^{2} y_{0}+x_{2} w_{0}+z_{0} \\
& A_{12}=2 x_{2}\left(z_{2}-y_{2}\right)+w_{2}\left(x_{2}^{2}-1\right) \\
& A_{11}=2 x_{2}\left(z_{1}-y_{1}\right)+w_{1}\left(x_{2}^{2}-1\right)
\end{aligned}
$$

TABLE XI (Continued)

$$
\begin{aligned}
& A_{10}=2 x_{2}\left(z_{0}-y_{0}\right)+w_{0}\left(x_{2}^{2}-1\right) \\
& A_{02}=y_{2}-x_{2} w_{2}+x_{2}^{2} z_{2} \\
& A_{01}=y_{1}-x_{2} w_{1}+x_{2}^{2} z_{1} \\
& A_{00}=y_{0}-x_{2} w_{0}+x_{2}^{2} z_{0}
\end{aligned}
$$

$$
\sum_{i=0}^{8} c_{i} t_{1}^{i}=0, \quad i=0,1,2, \ldots, 8
$$

The constants in the above equation are defined in Table XII. Equation (4-45) must hold good at all values of the variable t_{1}. Its coefficient must, therefore, vanish. Thus, we have

$$
\begin{equation*}
c_{i}=0, \quad i=0,1,2, \ldots, 8 \tag{4-46}
\end{equation*}
$$

Condition (4, 46) represents nine equations among the 20 constant kinematic parameters of the $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}$ mechanism in Figure 28 (namely, the 8 link-lengths $a_{76}, a_{65}, a_{52}, a_{17}, a_{34}$, $\mathrm{a}_{41}, \mathrm{a}_{23}$, and a ${ }_{12}$, the 8 twist angles $\alpha_{76}, \alpha_{65}, \alpha_{52}, \alpha_{17}, \alpha_{41}$, α_{34}, α_{23}, and α_{12}, the 2 constant offset distances $s_{1}, s_{2 k}$ of the revolute pairs A and B, and the 2 constant displacement angles Φ_{1} and ψ_{1} at the two ternary links at joints A and B). These nine equations provide the necessary conditions for the existence of a six-link two-loop $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}$ mechanism with constant offset distances at the revolute pairs at A and B and zero offset distance at the revolute pair at F.

On Obtaining $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}$ Mechanism
From the Derived Criteria

The existence criteria derived in the previous section can be used to obtain the constant kinematic parameters of the $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-$ R-C mechanism.

TABLE XII

COEFFICIENTS FOR USE IN EQUATION (4-45)

$$
\begin{aligned}
& c_{8}=A_{12} A_{22} B_{02} B_{12}+\left(2 A_{02} A_{22}-A_{12}^{2}\right) B_{02} B_{22}-A_{02} A_{22} B_{12}^{2} \\
& +\mathrm{A}_{02} \mathrm{~A}_{12} \mathrm{~B}_{12} \mathrm{~B}_{22}-\mathrm{A}_{22}^{2} \mathrm{~B}_{02}^{2}-\mathrm{A}_{02}^{2}-\mathrm{B}_{22}^{2} \\
& c_{7}=A_{12} A_{22}\left(B_{01} B_{12}+B_{02} B_{11}\right)+\left(A_{11} A_{22}+A_{12} A_{21}\right) B_{02} B_{12} \\
& +\left(2 A_{02} A_{22}-A_{12}^{2}\right)\left(B_{01} B_{22}+B_{02} B_{21}\right)+2\left(A_{01} A_{22}\right. \\
& \left.+A_{02} A_{21}-A_{11} A_{12}\right) B_{02} B_{22}-2 A_{02} A_{22} B_{11} B_{12} \\
& -\left(A_{01} A_{22}+A_{02} A_{21}\right) B_{12}^{2}+A_{02} A_{12}\left(B_{11} B_{22}+B_{12} B_{21}\right) \\
& +\left(A_{01} A_{12}+A_{02} A_{11}\right) B_{12} B_{22}-2\left[A _ { 2 2 } B _ { 0 2 } \left(A_{21} B_{02}\right.\right. \\
& \left.\left.+A_{22} B_{01}\right)+A_{02} B_{22}\left(A_{01} B_{22}+A_{02} B_{21}\right)\right] \\
& c_{6}=A_{12} A_{22}\left(B_{00} B_{12}+B_{02} B_{10}+B_{01} B_{11}\right)+\left(A_{10} A_{22}+A_{12} A_{20}\right. \\
& \left.+A_{11} A_{21}\right) B_{02} B_{11}+\left(A_{11} A_{22}+A_{12} A_{21}\right)\left(B_{01} B_{12}+B_{02} B_{11}\right) \\
& +\left(2 \mathrm{~A}_{02} \mathrm{~A}_{22}-\mathrm{A}_{12}^{2}\right)\left(\mathrm{B}_{00} \mathrm{~B}_{22}+\mathrm{B}_{02} \mathrm{~B}_{20}+\mathrm{B}_{01} \mathrm{~B}_{21}\right) \\
& +\left[2\left(A_{00} A_{22}+A_{02} A_{20}+A_{01} A_{21}-A_{10} A_{12}\right)-A_{11}^{2}\right] B_{02} B_{22} \\
& +2\left(\mathrm{~A}_{01} \mathrm{~A}_{22}+\mathrm{A}_{02} \mathrm{~A}_{21}-\mathrm{A}_{11} \mathrm{~A}_{12}\right)\left(\mathrm{B}_{01} \mathrm{~B}_{22}+\mathrm{B}_{02} \mathrm{~B}_{21}\right) \\
& -A_{02} A_{22}\left({ }^{2} \mathrm{~B}_{10} \mathrm{~B}_{12}+\mathrm{B}_{11}^{2}\right)-\left(\mathrm{A}_{00} \mathrm{~A}_{22}+\mathrm{A}_{02} \mathrm{~A}_{20}\right. \\
& \left.+A_{01} A_{21}\right) B_{12}^{2}-2\left(A_{01} A_{22}+A_{02} A_{21}\right) B_{11} B_{12} \\
& +\mathrm{A}_{02} \mathrm{~A}_{12}\left(\mathrm{~B}_{10} \mathrm{~B}_{22}+\mathrm{B}_{12} \mathrm{~B}_{20}+\mathrm{B}_{11} \mathrm{~B}_{21}\right)+\left(\mathrm{A}_{00} \mathrm{~A}_{12}\right.
\end{aligned}
$$

TABLE XII (Continued)

$$
\begin{aligned}
& \left.+A_{02} A_{10}+A_{01} A_{11}\right) B_{12} B_{22}+\left(A_{01} A_{12}+A_{02} A_{11}\right)\left(B_{11} B_{22}\right. \\
& \left.+B_{12} B_{21}\right)-A_{22}^{2}\left(2 B_{00} B_{02}+B_{01}^{2}\right)-\left(2 A_{20} A_{22}+A_{21}^{2}\right) B_{02}^{2} \\
& -4 A_{21} A_{22} B_{01} B_{02}-A_{02}^{2}\left(2 B_{20} B_{22}+B_{21}^{2}\right)-\left(2 A_{00} A_{02}\right. \\
& \left.+A_{01}^{a}\right) B_{22}^{2}-4 A_{01} A_{02} B_{21} B_{22} \\
C_{5}= & A_{12} A_{22}\left(B_{00} B_{11}+B_{01} B_{10}\right)+\left(A_{10} A_{21}+A_{11} A_{20}\right) B_{02} B_{12} \\
& +\left(A_{11} A_{22}+A_{12} A_{21}\right)\left(B_{00} B_{12}+B_{02} B_{10}+B_{01} B_{11}\right) \\
& +\left(A_{10} A_{22}+A_{12} A_{20}+A_{11} A_{21}\right)\left(B_{01} B_{12}+B_{02} B_{11}\right) \\
& +\left(2 A_{02} A_{22}-A_{12}^{2}\right)\left(B_{00} B_{21}+B_{01} B_{20}\right)+2\left(A_{00} A_{21}+A_{01} A_{20}\right. \\
& \left.-A_{10} A_{11}\right) B_{02} B_{22}+2\left(A_{01} A_{22}+A_{02} A_{21}-A_{11} A_{12}\right)\left(B_{00} B_{22}\right. \\
& \left.+B_{02} B_{20}+B_{01} B_{21}\right)+\left[2 \left(A_{00} A_{22}+A_{02} A_{20}+A_{01} A_{21}\right.\right. \\
& \left.\left.+A_{10} A_{12}\right)-A_{11}^{2}\right]\left(B_{01} B_{22}+B_{02} B_{21}\right)-2 A_{02} A_{22} B_{10} B_{11} \\
& -\left(A_{00} A_{21}+A_{01} A_{20}\right) B_{12}^{2}-\left(A_{01} A_{22}+A_{02} A_{21}\right)\left(2 B_{10} B_{12}\right. \\
& \left.+B_{11}^{2}\right)-2\left(A_{00} A_{22}+A_{02} A_{20}+A_{01} A_{21}\right) B_{11} B_{12} \\
& +A_{02} A_{12}\left(B_{10} B_{21}+B_{11} B_{20}\right)+\left(A_{00} A_{11}+A_{01} A_{10}\right) B_{12} B_{22} \\
& +\left(A_{01} A_{12}+A_{02} A_{11}\right)\left(B_{10} B_{22}+B_{12} B_{20}+B_{11} B_{21}\right) \\
& +\left(A_{00} A_{12}+A_{02} A_{10}+A_{01} A_{11}\right)\left(B_{11} B_{22}+B_{12} B_{21}\right) \\
& -2\left[A_{22}^{2} B_{00} B_{01}+A_{20} A_{21} B_{02}^{2}+A_{21} A_{22}\left(2 B_{00} B_{02}+B_{01}^{2}\right)\right. \\
&
\end{aligned}
$$

TABLE XII (Continued)

$$
\begin{aligned}
& \left.+\left(2 A_{20} A_{22}+A_{21}^{2}\right) B_{01} B_{02}\right]-2\left[A_{02} B_{20} B_{21}+A_{00} A_{01} B_{22}^{2}\right. \\
& \left.+A_{01} A_{02}\left(2 B_{20} B_{22}+B_{21}^{2}\right)+\left(2 A_{00} A_{02}+A_{01}^{2}\right) B_{21} B_{22}\right] \\
c_{4}= & A_{12} A_{22} B_{00} B_{10}+A_{10} A_{20} B_{02} B_{12}+\left(A_{11} A_{22}\right. \\
& \left.+A_{12} A_{21}\right)\left(B_{00} B_{11}+B_{01} B_{10}\right)+\left(A_{10} A_{21}\right. \\
& \left.+A_{11} A_{20}\right)\left(B_{01} B_{12}+B_{02} B_{11}\right)+\left(A_{10} A_{22}+A_{12} A_{20}\right. \\
& \left.+A_{11} A_{21}\right)\left(B_{00} B_{12}+B_{02} B_{10}+B_{01} B_{11}\right)+\left(2 A_{02} A_{22}\right. \\
& \left.+A_{12}^{2}\right) B_{00} B_{20}+\left(2 A_{00} A_{20}-A_{10}^{2}\right) B_{02} B_{22}+2\left(A_{01} A_{22}\right. \\
& \left.+A_{02} A_{21}-A_{11} A_{12}\right)\left(B_{00} B_{21}+B_{01} B_{20}\right)+2\left(A_{00} A_{21}\right. \\
& \left.+A_{01} A_{20}-A_{10} A_{11}\right)\left(B_{01} B_{22}+B_{02} B_{21}\right)+\left[2 \left(A_{00} A_{22}\right.\right. \\
& \left.\left.+A_{02} A_{20}+A_{01} A_{21}-A_{10} A_{12}\right)-A_{11}^{2}\right]\left(B_{00} B_{22}+B_{02} B_{20}\right. \\
& \left.+B_{01} B_{21}\right)-A_{02} A_{22} B_{10}^{2}-A_{00} A_{20} B_{12}^{2}-2\left(A_{01} A_{22}\right. \\
& \left.+A_{02} A_{21}\right) B_{10} B_{11}-2\left(A_{00} A_{21}+A_{01} A_{20}\right) B_{11} B_{12} \\
& +\left(A_{00} A_{22}+A_{02} A_{20}+A_{01} A_{21}\right)\left(2 B_{10} B_{12}+B_{11}^{2}\right) \\
& +A_{02} A_{12} B_{10} B_{20}+A_{00} A_{10} B_{12} B_{22}+\left(A_{01} A_{12}\right. \\
& \left.+A_{02} A_{11}\right)\left(B_{10} B_{21}+B_{11} B_{20}\right)+\left(A_{00} A_{11}+A_{01} A_{10}\right)\left(B_{11} B_{22}\right. \\
& \left.\left.+B_{12} B_{11}\right)+\left(A_{00} A_{12}+A_{02}\right)-A_{22}^{2} A_{10}^{2}+A_{00}-A_{20}^{2} A_{11}\right)\left(B_{10}^{2} B_{22}\right. \\
&
\end{aligned}
$$

TABLE XII (Continued)

$$
\begin{aligned}
& -4\left(A_{21} A_{22} B_{00} B_{01}+A_{20} A_{21} B_{01} B_{02}\right)-\left(2 A_{20} A_{22}\right. \\
& \left.+A_{21}^{2}\right)\left(2 B_{00} B_{02}+B_{01}^{2}\right)-A_{02}{ }^{B} B_{20}^{2}-A_{00}^{2} B_{22}^{2} \\
& -4\left(A_{01} A_{02} B_{20} B_{21}+A_{00} A_{01} B_{21} B_{22}\right)-\left(2 A_{00} A_{20}\right. \\
& \left.+A_{01}^{2}\right)\left(2 B_{20} B_{22}+B_{21}^{2}\right) \\
c_{3}= & A_{10} A_{20}\left(B_{01} B_{12}+B_{02} B_{11}\right)+\left(A_{11} A_{22}+A_{12} A_{21}\right) B_{00} B_{10} \\
& +\left(A_{10} A_{22}+A_{12} A_{20}+A_{11} A_{21}\right)\left(B_{00} B_{11}+B_{01} B_{10}\right) \\
& +\left(A_{10} A_{21}+A_{11} A_{20}\right)\left(B_{00} B_{12}+B_{02} B_{10}+B_{01} B_{11}\right) \\
& +\left(2 A_{00} A_{20}-A_{10}^{2}\right)\left(B_{01} B_{22}+B_{02} B_{21}\right)+2\left(A_{01} A_{22}\right. \\
& \left.+A_{02} A_{21}+A_{11} A_{12}\right) B_{00} B_{20}+\left[2 \left(A_{00} A_{22}+A_{02} A_{20}\right.\right. \\
& \left.\left.+A_{01} A_{21}-A_{10} A_{12}\right)-A_{11}^{2}\right]\left(B_{00} B_{21}+B_{01} B_{20}\right) \\
& +2\left(A_{00} A_{21}+A_{01} A_{20}-A_{10} A_{11}\right)\left(B_{00} B_{22}+B_{02} B_{20}\right. \\
& \left.+B_{01} B_{21}\right)-2 A_{00} A_{20} B_{11} B_{12}-\left(A_{01} A_{22}+A_{02} A_{21}\right) B_{10}^{2} \\
& +2\left(A_{00} A_{22}+A_{02} A_{20}+A_{01} A_{21}\right) B_{10} B_{11}-\left(A_{00} A_{21}\right. \\
& \left.+A_{01} A_{20}\right)\left(2 B_{10} B_{12}+B_{11}^{2}\right)+A_{00} A_{10}\left(B_{11} B_{22}+B_{12} B_{21}\right) \\
& +\left(A_{01} A_{12}+A_{02} A_{11}\right) B_{10} B_{20}+\left(A_{00} A_{12}+A_{02} A_{10}\right. \\
& \left.+A_{01} A_{11}\right)\left(B_{10} B_{21}+B_{11} B_{20}\right)+\left(A_{00} A_{11}+A_{01} A_{10}\right)\left(B_{10} B_{22}\right. \\
& \left.B_{11} B_{21}\right)-2\left[A_{20}^{2} B_{01} B_{02}+A_{21} A_{22} B_{00}^{2}\right. \\
&
\end{aligned}
$$

TABLE XII (Continued)

$$
\begin{aligned}
& \left.+\left(2 A_{20} A_{22}+A_{21}^{2}\right) B_{00} B_{01}+A_{20} A_{21}\left(2 B_{00} B_{02}+B_{01}^{2}\right)\right] \\
& -2\left[\mathrm{~A}_{00}^{2} \mathrm{~B}_{21} \mathrm{~B}_{22}+\mathrm{A}_{01} \mathrm{~A}_{02} \mathrm{~B}_{20}^{2}+\left(2 \mathrm{~A}_{00} \mathrm{~A}_{02}+\mathrm{A}_{01}^{2}\right) \mathrm{B}_{20} \mathrm{~B}_{21}\right. \\
& \left.+A_{00} A_{01}\left(2 B_{20} B_{22}+B_{21}^{2}\right)\right] \\
& \mathrm{c}_{2}=\mathrm{A}_{10} \mathrm{~A}_{20}\left(\mathrm{~B}_{00} \mathrm{~B}_{12}+\mathrm{B}_{02} \mathrm{~B}_{10}+\mathrm{B}_{01} \mathrm{~B}_{11}\right)+\left(\mathrm{A}_{10} \mathrm{~A}_{22}+\mathrm{A}_{12} \mathrm{~A}_{20}\right. \\
& \left.+\mathrm{A}_{11} \mathrm{~A}_{21}\right) \mathrm{B}_{00} \mathrm{~B}_{10}+\left(\mathrm{A}_{10} \mathrm{~A}_{21}+\mathrm{A}_{11} \mathrm{~A}_{20}\right)\left(\mathrm{B}_{00} \mathrm{~B}_{11}\right. \\
& \left.+\mathrm{B}_{01} \mathrm{~B}_{10}\right)+\left(2 \mathrm{~A}_{00} \mathrm{~A}_{20}-\mathrm{A}_{10}^{2}\right)\left(\mathrm{B}_{00} \mathrm{~B}_{22}+\mathrm{B}_{02} \mathrm{~B}_{20}+\mathrm{B}_{01} \mathrm{~B}_{21}\right) \\
& +\left[2\left(A_{00} A_{22}+A_{02} A_{20}+A_{01} A_{21}-A_{10} A_{12}\right)-A_{11}^{2}\right] B_{00} B_{20} \\
& +\left(A_{00} A_{21}+A_{01} A_{20}-A_{10} A_{11}\right)\left(B_{00} B_{21}+B_{01} B_{20}\right) \\
& -A_{00} A_{20}\left(2 B_{10} B_{12}+B_{11}^{2}\right)-\left(A_{00} A_{22}+A_{02} A_{20}\right. \\
& \left.+A_{01} A_{21}\right) B_{10}^{2}-2\left(A_{00} A_{21}+A_{01} A_{20}\right) B_{10} B_{11} \\
& +\mathrm{A}_{00} \mathrm{~A}_{10}\left(\mathrm{~B}_{10} \mathrm{~B}_{22}+\mathrm{B}_{12} \mathrm{~B}_{20}+\mathrm{B}_{11} \mathrm{~B}_{21}\right)+\left(\mathrm{A}_{00} \mathrm{~A}_{12}+\mathrm{A}_{02} \mathrm{~A}_{10}\right. \\
& \left.+A_{01} A_{11}\right) B_{10} B_{20}+\left(A_{00} A_{11}+A_{01} B_{10}\right)\left(B_{10} B_{21}+B_{11} B_{20}\right) \\
& -\mathrm{A}^{2}{ }_{20}\left(2 \mathrm{~B}_{00} \mathrm{~B}_{02}+\mathrm{B}_{01}^{2}\right)-\left(2 \mathrm{~A}_{20} \mathrm{~A}_{22}+\mathrm{A}_{21}^{2}\right) \mathrm{B}_{00}^{2} \\
& -4 A_{20} A_{21} B_{00} B_{01}-A_{00}^{2}\left(2 B_{20} B_{22}+B_{21}^{2}\right)-\left(2 A_{00} A_{02}\right. \\
& \left.+A_{01}^{2}\right) B_{20}^{2}-4 A_{00} A_{01} B_{20} B_{21} \\
& c_{1}=A_{10} A_{20}\left(B_{00} B_{11}+B_{01} B_{10}\right)+\left(A_{10} A_{21}+A_{11} A_{20}\right) B_{00} B_{10} \\
& +\left(2 \mathrm{~A}_{00} \mathrm{~A}_{20}-\mathrm{A}_{10}^{2}\right)\left(\mathrm{B}_{00} \mathrm{~B}_{21}+\mathrm{B}_{01} \mathrm{~B}_{20}\right)+2\left(\mathrm{~A}_{00} \mathrm{~A}_{21}\right.
\end{aligned}
$$

TABLE XII (Continued)

$$
\begin{aligned}
& \left.+A_{01} A_{20}-A_{10} A_{11}\right) B_{00} B_{20}-2 A_{00} A_{20} B_{10} B_{11} \\
& -\left(A_{00} A_{21}+A_{01} A_{20}\right) B_{10}^{2}+A_{00} A_{10}\left(B_{10} B_{21}+B_{11} B_{20}\right) \\
& +\left(A_{00} A_{11}+A_{01} A_{10}\right) B_{10} B_{20}-2\left[A _ { 2 0 } B _ { 0 0 } \left(A_{21} B_{00}\right.\right. \\
& \left.\left.+A_{20} B_{01}\right)+A_{00} B_{20}\left(A_{01} B_{20}+A_{00} B_{21}\right)\right] \\
C_{0}= & A_{10} A_{20} B_{00} B_{10}+\left(2 A_{00} A_{20}-A_{10}^{2}\right) B_{00} B_{20}-A_{00} A_{20} B_{10}^{a} \\
& +A_{00} A_{10} B_{10} B_{20}-A_{20}^{2} B_{00}^{2}-A_{00}^{a} B_{20}^{2}
\end{aligned}
$$

If the constant kinematic parameters are regarded as unknowns, it is possible to solve this system of equations $(4-46)$ for the unknowns. The algebraic equations (4-46) describing the existence criteria of the mechanism are sufficiently complex to prevent from presenting any simplified geometric descriptions. In fact, the complexity extends far enough to prevent from presenting simplified explicit results in order to facilitate direct computations of the mechanism parameters. Hence it is not practical to solve the equations analytically. Instead, a numerical search technique (123) is preferred to solve for the constant kinematic parameters.

The numerical method used in the present study for solving the system of 9 consistent nonlinear algebraic equations representing the existence conditions of the $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}$ mechanism is that developed by Chandler (123). The listing of the computer program is given in Appendix D. Let

$$
\begin{equation*}
f_{i}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=0 \quad i=1,2, \ldots, 9 \tag{4,47}
\end{equation*}
$$

represent a system of nonlinear equations in n unknowns where x_{1}, x_{2}, \ldots, x_{n} are the 20 unknowns (link lengths $a_{76}, a_{65}, a_{52}, a_{17}$, a_{41}, a_{23}, a_{34}, and a_{12}, and twist angles $\alpha_{76}, \alpha_{65}, \alpha_{52}, \alpha_{17}, \alpha_{41}$, α_{34}, α_{23}, and α_{12}, constant offset distances s_{1} and $s_{2 k}$, and the two constant displacement angles Φ_{1} and ψ_{1} at the two ternary links).

An objective function:

$$
Y=\sum_{i=1}^{9} f_{i}^{2}\left(x_{1}, x_{2}, \ldots, x_{20}\right)
$$

is defined and is minimized such that $Y \approx 0$.

It is important to note that the equations given by (4-47) represents only necessary conditions for the existence of $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}$ mechanism. The conditions are not sufficient because satisfaction of the criteria does not itself guarantee an $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}$ space mechanism. This is because Eqs. (4-46) also have solutions that correspond to spherical and planar mechanisms. Such solutions are called here trivial solutions. See, for instance Table XV in Appendix D.

The triviality and non-triviality of the solutions of Eqs. (4-47) can be checked by substituting the values of the constant kinematic parameters in the original displacement relationships of the parent R-C-C-C-C-C-C mechanism (120). A non-trivial solution will give constant offset distance at the cylinder pair B, and zero offset distance at the cylinder pair F at all positions of the parent mechanism without, at the same time, affecting its true mobility. A trivial solution will not meet these requirements.

Using the proposed numerical technique, the following solution is obtained: (See Table XVI and Figure 35 in Appendix D.)

Twist-Angles:

$$
\begin{aligned}
& \alpha_{12}=70.000^{\circ} \\
& \alpha_{23}=0.0^{\circ} \\
& \alpha_{34}=70.000^{\circ} \\
& \alpha_{41}=0.0^{\circ} \\
& \alpha_{65}=0.120^{\circ} \\
& \alpha_{76}=70.100^{\circ} \\
& \alpha_{52}=180.000^{\circ} \\
& \alpha_{17}=180.008^{\circ}
\end{aligned}
$$

Constant Displacement Angles:

$$
\begin{aligned}
& \Phi_{1}=30.00^{\circ} \\
& \psi_{1}=80.00^{\circ}
\end{aligned}
$$

Kink-Links:

$$
\begin{aligned}
& s_{1}=0.4^{\prime \prime} \\
& s_{2 k}=0.4^{\prime \prime}
\end{aligned}
$$

Link-Lengths:

$$
\begin{aligned}
& a_{12}=2.00^{\prime \prime} \\
& a_{23}=1.72^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& a_{34}=2.5^{\prime \prime} \\
& a_{41}=3.0^{\prime \prime} \\
& a_{65}=10.0^{\prime \prime} \\
& a_{76}=10.0^{\prime \prime} \\
& a_{52}=0.5^{\prime \prime} \\
& a_{17}=0.5^{\prime \prime}
\end{aligned}
$$

Substitution of these parameters in the displacement relationships of $\mathrm{R}+\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}$ mechanism (120) shows zero translation s_{6} and constant translation $s_{2 k}$ at the cylinder pairs F and B respectively. From the extensive search carried out using this numerical technique, it shows that the system of Eqs. (4-47) appear to have narrow range of solutions for the $R-R-C-C-C-R-C$ mechanism.

Existence Criteria of the Six-Link R-R-C-C-C.-P-C Mechanism

The six-link, two-loop $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{P}-\mathrm{C}$ mechanism can be derived, like the $R-R-C-C-C-R-C$ mechanism, from the parent $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ mechanism.

In this section, the Dimentberg method has been used to obtain the existence criteria of the $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{P}-\mathrm{C}$ mechanism with constant offset distances at its revolute pairs and constant displacement angle at the prismatic pair from the displacement
relationships of an $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ mechanism.

Consider the R-C-C-C-C-C-C space mechanism shown schematically in Figure 27. If the translational displacement s_{2} at the cylinder pair at B and the rotational displacement s_{6} at the cylinder pair at F remain constant at all positions of this mechanism, then it reduces to an R-R-C-C-C-P-C mechanism as shown in Figure 29. By considering the loop-closure condition of the mechanism in Figure 27 in two different ways, one from loop 1 (ABCDA), the other from outer loop (ABEFGA), the following relationships can be ' obtained.

$$
\begin{align*}
& F_{1}\left(\hat{\theta}_{1},\right.\left.\hat{\theta}_{2}\right)=\left(S \hat{\alpha}_{23} S \hat{\alpha}_{41} S \hat{\theta}_{2}\right) S \hat{\theta}_{1}-\left[S \hat { \alpha } _ { 4 1 } \left(S \hat{\alpha}_{12} C \hat{\alpha}_{23}\right.\right. \\
&\left.\left.+C \hat{\alpha}_{12} S \hat{\alpha}_{23} C \hat{\theta}_{2}\right)\right] C \hat{\theta}_{1}-C \hat{\alpha}_{34}+C \hat{\alpha}_{41}\left(C \hat{\alpha}_{12} C \hat{\alpha}_{23}\right. \\
&\left.-S \hat{\alpha}_{12} S \hat{\alpha}_{23} C \hat{\theta}_{2}\right)=0 \tag{4-48}\\
& F_{3}=\left(\underline{\hat{\theta}}_{1}, \underline{\theta}_{2}, \hat{\theta}_{6}\right)=\left(S \hat{\alpha}_{17} S \hat{\alpha}_{52} S \hat{\theta}_{2}\right) S \hat{\theta}_{1}-S \hat{\alpha}_{17}\left(C \hat{\alpha}_{52} S \hat{\alpha}_{21}\right. \\
&\left.+S \hat{\alpha}_{52} C \hat{\alpha}_{21} C \hat{\theta}_{2}\right) C \hat{\theta}_{1}+C \hat{\alpha}_{17}\left(C \hat{\alpha}_{52} C \hat{\alpha}_{21}\right. \\
&\left.-S \hat{\alpha}_{52} S \hat{\alpha}_{21} C \hat{\theta}_{2}\right)-\left(C \hat{\alpha}_{76} C \hat{\alpha}_{65}-S \hat{\alpha}_{76} S \hat{\alpha}_{65} C \hat{\theta}_{6}\right) \\
&= 0 \tag{4-49}
\end{align*}
$$

Note that Eq. (4-48) is the same as Eq. (4-38) and Eq. $(4-49)$ is the same as Eq. (4-39).

Now, let the translational displacement s_{2} become constant and the rotational displacement θ_{6} be also constant at all positions of the mechanism.

Figure 29. R-R-G-C-C-P-C Space Mechanism Obtained From the Mechanism in Figure 27 by Making $s_{2}=s_{2 k}=a$ Constant and $\theta_{6}=$ $\theta_{6 k}=a$ Constant

The dual part of Eq. (4-48) after simplification using Eqs.
(4-20) through (4-22) becomes

$$
\begin{equation*}
B_{2}\left(t_{1}\right) t_{2}^{2}+B_{1}\left(t_{1}\right) t_{2}+B_{0}\left(t_{1}\right)=0 \tag{4-50}
\end{equation*}
$$

where

$$
t_{1}=\tan \left(\theta_{1} / 2\right) \quad t_{2}=\tan \left(\theta_{2} / 2\right)
$$

and

$$
\begin{align*}
& B_{2}\left(t_{1}\right)=B_{22} t_{1}^{p}+B_{21} t_{1}+B_{20} \\
& B_{1}\left(t_{1}\right)=B_{12} t_{1}^{2}+B_{11} t_{1}+B_{10} \tag{4-51}\\
& B_{0}\left(t_{1}\right)=B_{02} t_{1}^{2}+B_{01} t_{1}+B_{00}
\end{align*}
$$

Note that Eq. $(4-50)$ is the same as Eq. $(4-40)$ and the constants in Eqs. (4-51) involve only the constant kinematic parameters of the mechanism and hence are defined in Table IX.

Denoting the constant value of the angle θ_{6} by $\theta_{6 k}$, the primary part of Eq. (4-49) becomes

$$
\begin{equation*}
M_{2}\left(t_{1}\right) t_{2}^{a}+M_{1}\left(t_{1}\right) t_{2}+M_{0}\left(t_{1}\right)=0 \tag{4-52}
\end{equation*}
$$

where

$$
\begin{align*}
& M_{2}\left(t_{1}\right)=M_{22} t_{1}^{2}+M_{21} t_{1}+M_{20} \\
& M_{1}\left(t_{1}\right)=M_{12} t_{1}^{2}+M_{11} t_{1}+M_{10} \tag{4-53}\\
& M_{0}\left(t_{1}\right)=M_{02} t_{1}^{2}+M_{01} t_{1}+M_{00}
\end{align*}
$$

The constants in Eqs, (4-53) also involve only the constant kinematic parameters of the mechanism and are defined in Table XIII.

The quadratic equations $(4-50)$ and (4-53) represent two different forms of displacement relationships for the same mechanism.

TABLE XIII

CONSTANTS FOR USE IN EQUATIONS (4.53)

$$
\begin{aligned}
& A_{002}=S \alpha_{17} S \alpha_{52} C_{\psi_{1}} C \Phi_{1}-S_{\psi_{1}} S \alpha_{17} S \alpha_{52} \mathrm{C} \alpha_{21} S \psi_{1} \\
& A_{001}=-S \alpha_{17} S \alpha_{52} C_{\psi_{1}} S \Phi_{1}+C_{\Phi_{1}} S \alpha_{17} S \alpha_{52} C \alpha_{21} S \psi_{1} \\
& A_{000}=C \alpha_{17} S \alpha_{52} S \alpha_{21} S_{\psi_{1}} \\
& B_{002}=-S \alpha_{17} S \alpha_{52} S \psi_{1} C \Phi_{1}-S \Phi_{1} C \psi_{1} S \alpha_{17} S \alpha_{52} \mathrm{C} \alpha_{21} \\
& B_{001}=S \Phi_{1} S \alpha_{17} S \alpha_{52} S \psi_{1}+C \psi_{1} C \Phi_{1} S \alpha_{17} S \alpha_{52} C \alpha_{21} \\
& B_{000}=C \alpha_{17} S \alpha_{52} S \alpha_{21} C \psi_{1} \\
& C_{002}=S \Phi_{1} S \alpha_{17} C \alpha_{52} S \alpha_{21} \\
& C_{001}=C \Phi_{1} S \alpha_{17} C \alpha_{52} S \alpha_{21} \\
& C_{000}=C \alpha_{17} C \alpha_{52} C \alpha_{21}-C \alpha_{76} C \alpha_{65}+S \alpha_{76} S \alpha_{65} C \theta_{6 k} \\
& M_{22}=B_{001}-B_{000}-C_{001}+C_{000} \\
& M_{21}=-2 B_{002}+2 C C_{002} \\
& M_{20}=-B_{001}-B_{000}+C C_{001}+C_{000} \\
& M_{12}=-2 A_{001}+2 A_{000} \\
& M_{11}=4 A_{002} \\
& M_{10}=2 A_{001}+2 A_{000}
\end{aligned}
$$

TABLE XIII (Continued)

$$
\begin{aligned}
& M_{02}=-B_{001}+B_{000}-C_{001}+C_{000} \\
& M_{01}=2 B_{002}+2 C_{002} \\
& M_{00}=B_{001}+B_{000}+C_{001}+C_{000}
\end{aligned}
$$

They should, therefore, have at least one root in common between them.

The condition using Sylvester dialytic eliminant then becomes

$$
\left.\begin{array}{cccc}
B_{2}\left(t_{1}\right) & B_{1}\left(t_{1}\right) & B_{0}\left(t_{1}\right) & 0 \\
0 & B_{2}\left(t_{1}\right) & B_{1}\left(t_{1}\right) & B_{0}\left(t_{1}\right) \\
M_{2}\left(t_{1}\right) & M_{1}\left(t_{1}\right) & M_{0}\left(t_{1}\right) & 0 \\
0 & M_{2}\left(t_{1}\right) & M_{1}\left(t_{1}\right) & M_{0}\left(t_{1}\right)
\end{array} \right\rvert\,=0
$$

It should be noted that Eq. $(4-54)$ is a function of only the variable ${ }^{t}{ }_{1}$.

Expanding and simplifying the above equation, we get

$$
\mathrm{R}_{8} \mathrm{t}_{1}^{\mathrm{B}}+\mathrm{R}_{7} \mathrm{t}_{1}^{7}+\ldots+\mathrm{R}_{1} \mathrm{t}_{1}+\mathrm{R}_{0}=0
$$

or in short

$$
\begin{equation*}
\sum_{i=0}^{8} R_{i} t_{1}^{i}=0 \tag{4-55}
\end{equation*}
$$

Equation $(4-55)$ is exactly similar in form to Eq. (4-45). Its coefficients $R_{i}(i=0$ to 8$)$ can be obtained from the coefficients of Eq. (4-45) replacing the constants. $A_{i j}$ by $M_{i j}$.

Equation (4-55) must hold true at all values of the variable θ_{1}. Its coefficients must, therefore, vanish (102). Thus, we have

$$
\begin{equation*}
\mathrm{R}_{\mathrm{i}}=0, \quad \mathrm{i}=0,1,2, \ldots, 8 \tag{4-56}
\end{equation*}
$$

Condition (4-56) represents nine equations among the 17 constant kinematic parameters of the $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{P}-\mathrm{C}$ mechanism in Figure 29 (namely, the four link lengths a_{12}, a_{23}, a_{34}, and a_{41}, the eight twist angles $\alpha_{12}, \alpha_{23}, \alpha_{41}, \alpha_{52}, \alpha_{76}$, and α_{65}, the three constant displacement angles $\theta_{6 \mathrm{k}}, \Phi_{1}$, and ψ_{1}, and the two constant offset distances s_{1} and $s_{2 k}$). The nine equations provide the necessary conditions for the existence of a six-link, two-loop R-R-C-C-C-P-C mechanism with constant offset distances at the revolute pairs at A and B, and constant displacement angle at the prismatic pair at F.

On Obtaining $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{P}-\mathrm{C}$ Mechanism
From the Derived Criteria

The existence criteria obtained above can be utilized to obtain the constant kinematic parameters of an R-R-C-C-C-P-C mechanism with constant offset distance at revolute pair B and constant displacement angle at the prismatic pair at F.

Considering the constant kinematic parameters as unknowns, the 9 equations given by condition (4-56) can be represented as

$$
F_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \quad i=1 \text { to } 9
$$

The above equation represents a system of nine consistent nonlinear equations in the 17 unknown constant kinematic parameters of the mechanism. However, the high nonlinearity of the equations once again emphasizes the complex nature of the investigation and shows
that the presenting of simplified explicit expressions for direct computation of the mechanism parameters is a problem by itself.

Like Eqs. (4-47), the above equation also has trivial solutions. As in the case of the $R-R-C-C-C-R-C$ mechanism, the triviality or non-triviality of a solution can be checked by substituting the values of the constant kinematic parameters in the original displacement relationship of the parent $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ mechanism (120). A non-trivial solution will give constant rotational displacement ($\theta_{6 k}$) at the cylinder pair F and constant translational displacement ($\mathrm{s}_{2 \mathrm{k}}$) at the cylinder pair B, at all positions of the mechanism, without at the same time, affecting its true mobility.

In an effort to obtain an overconstrained mechanism (nontrivial solution) over one thousand sets of mechanism parameters (initial guess values for the computer program) were tried, but none yielded an $R-R-C-C-C-P-C$ space mechanism. Perhaps the parameters of the overconstrained R-R-C-C-C-P-C mechanism lie in a very narrow band of range, and can be discovered only by an extensive search.

CHAPTER V

SUMMARY AND CONCLUSIONS

The present work is devoted to exploring the application of Dimentberg's passive coupling technique and studying existence criteria of single and multi-loop mechanisms. In this study, the existence criteria of overconstrained mechanisms with one general constraint and consisting of helical, revolute, cylinder and prismatic pairs have been obtained by using Dimentberg's passive coupling method. This represents the first attempt in using this method to single and twa-loop, six-link mechanisms after its usefulness in the case of four-link mechanisms was first demonstrated by Dimentberg, five-link mechanisms by Soni and Pamidi.

The mechanisms considered in this study are the six-link, single-loop $3 \mathrm{H}+3 \mathrm{P}$ mechanisms, two loop $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}$, $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C} \pi \mathrm{C}-\mathrm{P}-\mathrm{C}$ mechanisms, two-loop $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}$, R-R-C-C-C-P-C, R-C-C-R-C-C-R and R-C-C-R-C-C-P mechanisms. The results obtained in the case of single-loop $3 H+3 P$ mechanisms confirm the findings of other investigators. The existence criteria of the two-loop mechanisms obtained in the study are new.

The principal results of the investigation are as follows:

1. The existence criteria of the six-link $3 \mathrm{H}+3 \mathrm{P}$ mechanisms obtained in the study show that these mechanisms (and others obtained by extending the results)'exist if and only if the axes of the helical (and/or revolute) pairs are parallel to one another. When the axes of the helical (and/or revolute) pairs are parallel it was found that these mechanisms will have two degrees of freedom. When one of the link lengths is taken to be zero, the results will apply with equal validity to five-link mechanisms derivable from the above six-link mechanisms. This confirms the results that were obtained by Hunt and Waldron by considering the $\mathrm{H}-\mathrm{H}-\mathrm{H}-\mathrm{H}-\mathrm{H}$ and $\mathrm{H}-\mathrm{H}-\mathrm{H}-\mathrm{H}-\mathrm{H}-\mathrm{H}$ mechanisms of Voinea and Atanasiu; Soni, Pamidi, and Dukkipati by considering the $\mathrm{H}-\mathrm{C}-\mathrm{H}-\mathrm{C}-\mathrm{H}$ and $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}-\mathrm{H}$ mechanisms. The results in the present study have, however, been obtained by considering the more general zero family mechanisms and give, besides the parallelism of the axes, the definite closure conditions to be satisfied by the constant kinematic parameters of the mechanism concerned.
2. The existence criteria of the six-link, two-loop R-R-C-C-C-R-C mechanism with one zero offset distance were obtained as a set of 9 nonlinear algebraic equations in the 20 constant kinematic parameters of the mechanism. The number of
independent equations, however, is suspected to be less than 9 because of the method of elimination used. The derived criteria make it possible to investigate the existence of R-R-C-C-C-R-C mechanism. The algebraic expressions describing the existence criteria of the mechanism are sufficiently complex to prevent from presenting any simplified geometric descriptions. In fact, the complexity extends far enough to prevent from presenting simplified explicit results in order to facilitate direct computations of the linkage parameters. A numerical technique based on direct search technique was proposed to solve for the parameters of the $R-R-C-C-C-$ R-C mechanism. The proposed numerical technique is illustrated by presenting an illustrative example of an .-R-R-C-C-C-R-C overconstrained mechanism.
3. The existence criteria of the six-link, two-loop R-R-C-C-C-P-C mechanism are obtained as a set of nine nonlinear equations in the 17 constant kinematic parameters of the mechanism. These equations make it possible to investigate the existence of $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{P}-\mathrm{C}$ mechanisms. However, the high nonlinearity of the equations once again emphasizes the complex nature of the investigation and shows that presenting simplified explicit expressions for direct computation of the linkage parameters is a problem by itself. Hence numerical approach
appears to be the only route. The proposed numerical technique is tried using the derived existence criteria to obtain a compatible set of constant kinematic parameters of the $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{P}-\mathrm{C}$ mechanism, but none yielded a non-trivial solution.

The present study provides a general mathematical approach to obtain the existence criteria of six-link, single and two-loop space mechanisms for a variety of passive couplings and/or general constraints. All the required displacement relationships (see, for instance, Chapters III and IV) for obtaining the existence criteria of six-link mechanisms for a variety of passive coupling conditions are developed. The displacement relationships are derived in dual form. They are valid for six-link, single and two-loop parent mechanisms consisting of helical, revolute, prism and cylinder pairs.

By using the derived displacement relationships and Dimentberg's passive coupling method the existence criteria conditions for the following cases are also studied. (Appendixes A, B and C)

1. The existence criteria of the six-link, two-loop R-R-C-C-C-R-C mechanism with general proportions are shown to be a set of seventeen conditions among the twenty-one constant kinematic parameters of the mechanism.
2. The existence criteria of the six-link, two-loop R-C-C-R-C-CR mechanism of general proportions are shown to be a set of

385 conditions among the 22 constant kinematic parameters of the mechanism.
3. The existence criteria of the six-link, two-loop R-C-C-R-C-C-P mechanism of general proportions are shown as a set of 65 conditions among the 22 constant kinematic parameters of the mechanism.
4. It was shown that, in an $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ six-link, two-loop space mechanism, when one cylinder pair in loop 1 is reduced to a prismatic pair, another cylinder pair in that loop will also reduce to a prismatic pair. This result agrees with that by Dimentberg (29) in the case of four-link, single-loop R-C-CC : mechanism. It was also shown that the existence criteria of the six-link, two-loop R-P-C-P-C-P-C and R-P-P-C-C-P-C mechanisms (Appendix C) requires the axes of the revolute and cylinder pairs in both loops parallel to each other and the axes of the prism pairs are randomly oriented.

Except in very simple cases, the solution of the derived existence criteria conditions can be regarded as a problem by itself. Thus, for instance, the existence criteria of the $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{R}$ mechanism (Appendix B) with general proportions are expected to lead to 385 conditions among the 22 constant kinematic parameters of the mechanism. It can be seen that errors are apt to be introduced if such high order and large number of equations are not carefully
handled. Again, the examination of the resultant conditions in order to obtain a compatible set of constant kinematic parameters presents a task of formidable proportions.

The concept of general constraints in mobility criteria for single or multi-loop mechanisms suggests there are certain geometrical conditions which must be imposed on a kinematic chain if it is to have one degree of freedom. The exact nature of this general constraint is not completely known (121). The mobility criteria predicts only the possible existence of mechanisms under the classification of general constraints. The nature and significance of general constraints can be realized only when all the kinematic chains under the specific general constraint domain are virtually explored for mobility. This is possible when general mathematical models for each type and kind of mechanism (48) are developed in terms of all of its constant kinematic parameters. By studying the degenerate cases and by exploring relationships between all the basic parameters, we can identify the general constraint criteria for mobility. The present work is another attempt in achieving this objective. It is then possible to construct physical models of most of these mechanisms and identification of the geometric conditions which create the general constraints. The possible components of general motion under the concept of general constraints can then be identified. Thus, for instance, for the case of one general constraint the components $+$
of general motion can be either 3 rotations and 2 translations or 2 rotations and 3 translations.

A previous study on the existence criteria of single-loop overconstrained four and five-link mechanisms (29, 38, 39, 40, 27, 41, 122, 119) and also the present study on six-link, single and two-loop mechanisms reveals certain important points. These points are presented below:

1. When the displacement relationships involved are algebraic in nature the Dimentberg method ultimately leads to one or more polynomial equations. The complexity and the order of these polynomials can be reduced by considering the entire spectrum of loop equations available by arranging the loop closure condition in various ways rather than by considering just a few of the available equations.
2. The primary part of a dual equation contains only the primary parts of its component terms. The dual part of a dual equation, however, involves both the primary and the dual parts of its component terms. The dual part of any dual equation is, therefore, always more complicated than its primary part. When passive coupling is imposed on a cylinder pair to reduce it to a prism pair (Chapters II and III), restrictions are put on only the rotation at the C pair and thus one has to deal with the primary parts of the concerned displacement relationships.

But when passive couplang is imposed on a cylinder pair to reduce it to a revolute pair, restrictions are placed on only the translation (see, for instance, Chapter IV) at the cylinder pair and thus one has to deal with the dual parts of the concerned displacement relationships. Thus the analytical work involved in reducing a cylinder pair to a prismatic pair is always much less complicated than in reducing that cylinder pair to revolute pair.
3. When the displacement relationships are algebraic in nature, the Dimentberg method often involves examination of the common roots between two polynomials or successive sets of two polynomials. In such cases, it is necessary to consider only one common root between the equations involved. It is however possible to consider more than one common root between these equations. The resultant conditions, however, represent only special cases of the more general case obtained by considering only one common root. When two equations have more than one common root, it implies that they have at least one common root.
4. If the parent mechanism contains helical pair, the derived existence criteria remain less complicated in nature if only the rotations at the helical pairs are involved. Thus in the present study, the existence criteria of the two-loop
mechanisms are less complicated in nature because the parent mechanism considered do not have any helical pairs.
5. When the existence criteria involve twist angles and constant displacement angles they can generally expected to be simple. In such cases, it is possible to examine the relationship between the equations analytically. This is illustrated in the examples of Chapters II and III.

When the existence criteria involve link lengths, kinklengths in addition to twist angles and constant displacement angles, it may then become difficult to examine the relation. ships between the constant kinematic parameters of the derived mechanism analytically, In such cases the suitable numerical method is to be used to solve for the parameters of the newly discovered overconstrained mechanism from the derived criteria.
6. The derived criteria represents only necessary conditions for existence of a mechanism considered. The conditions are not sufficient because the criteria does not by itself guarantee an overconstrained mechanism of the desired type. The criteria is expected to provide trivial solutions that give mechanisms without a true mobility of one. Trivial solutions can be one of two types:
(1) A solution becomes trivial if the constant kinematic parameters yield an overconstrained mechanism with mobility greater than one. (See, for instance, Chapter III)
(2) A solution becomes trivial if the constant kinematic parameters yield an overconstrained mechanism of a higher family, that is, an overconstrained mechanism having mare than the required number of passive couplings. (See, for instance, Appendix C)

The triviality and non-triviality of a solution can be examined by substituting the values of the constant kinematic parameters in the original displacement relationships of the parent mechanism. If the mobility is two or more, the variable kinematic parameters in the parent mechanism become indeterminate unless 2 or more variables are specified.

A locked joint is indicated by the fact that a pair variable corresponding to that joint becomes constant. The case represents a non-trivial solution only when either of the above conditions is present and gives an overconstrained mechanism of the desired type with a true mobility of one.

Since trivial solutions always exist, the existence criteria obtained by the present method represents a set of consistent equations. But all the equations in the system (representing the conditions
among the constant kinematic parameters) may not in general be independent. This is especially true when the number of unknowns in the equations is more or less than the number of equations. In such cases it may not be possible to examine the relationship between the parameters analytically.

Although the existence criteria obtained using Dimentberg's method is often complicated, the method has certain definite points in its favor. For example, it
a. provides necessary and sufficient conditions for the existence of overconstrained mechanisms;
b. assures finite mobility to the newly discovered overconstrained mechanisms;
c. shows clearly that, in general, the mobility of overconstrained mechanisms is a function of the twist angles, link lengths, constant displacement angles and the constant offset distances;
d. permits the computation of the mechanism proportions from the existence criteria;
e. permits the introduction of different forms of passive coupling conditions in kinematic pairs; and
f. enables one to obtain the closed form displacement relationships for the newly discovered mechanisms which can be utilized for their type determination, kinematic analysis and synthesis.

The present study shows that the mobility of space mechanisms is a field of continued interest and challenge. In the coming years, the following important areas of research appear to offer great promise: 1. The development of a unified method for determining the existence of multi-loop mechanisms. This unified method utilizes passive coupling technique to allow derivation of results algebraically and screw systems theory to allow determination of results geometrically so as to express the criteria as both necessary and sufficient conditions among the constant kinematic parameters of the overconstrained mechanism in explicit form.
2. Use of this unified method to formulate the necessary and sufficient existence conditions of multi-link, multi-loop mechanisms with one, two and three general constraints.
3. Examination of the types of motion displayed by these overconstrained mechanisms.
4. Practical applicabilities of newly discovered overconstrained mechanisms.
5. Investigation of mathematical functions for which these mechanisms are best suited for function generation, threedimensional path generation and rigid body guidance. Because of the nature of the problems, the proposed investigation is expected to deal with an unusually high level of algebra and geometry.

BIBLIOGRAPHY

1. Grübler, M. "Das Kriterium der Zwanglaüfigkeit der Schraubenketten, "Festschrift, 0. Mohr Zum. 80, Geburtstag, Berlin, W. Ernst. u Sohn, 1916.
2. Grübler, M. Getrieblehre. Eine Theorie des Zwanglaufes und der eben Mechanismen. Berlin, Springer, 1917/ 1921.
3. Grübler, M. "Über råumliche kinematische Ketten kleinster Gliederzahl, sprach Geheitmrat, " Z. VDI., Bd. 71, 1927, p. 165.
4. Delassus, E. "Sur les Systemes Articulés Gauches, Premiere Partie," Annales de 1'Ecole Normale de Paris, 1900.
5. Delassus, E. "sur les Systemes Articulés Gauches, Deuxieme Partie, " Annales de l'Ecole Normale de Paris, 19 (3), 1902.
6. Delassus, E. "Les Chaînes Articulees Fermees et Deformables a Quatre Membres." Bull. Sci, Math., 46 (2), 1922.
7. Malytcheff, A. P. "Analysis and Synthesis of Mechanisms with the Viewpoint of Their Structure." Izvestya Tomskoro of Technological Institute, 1923.
8. Bricard, R. "Memoir sur la theorie de l'octaedre Articule." J. Math. Pures. Appl. . Liouville, 1897, pp. 113-148.
9. Bricard, R. "Lecons De Cinematique, Tome I, Cinematique Theorique," Paris, 1926.
10. Kutzbach, K. "Mechanische Leitungsverzweigung, ihre Gesetze und Anwendungen. "Masch-Bau, Betrieb, Bd. 8, 1929, pp. 710-716.
11. Kutzbach, K. "Bewegliche Verbindungen Vortrag, gehalten auf der Tagung für Maschinen Elemente." Z. VDI, Bd. 77, 1933, p. 1168.
12. Kutzbach, K. "Quer-und winkelbewegliche Wellunkupplungen," Kraftfahrtechn, Forsch-Arb., Heft. 6, Berlin, 1937.
13. Kutzbach, K. "Quer-und winkelbewegliche Gleichganggelenke für Wellenleitungen." Z. VDI., Bd. 81, Nr. 30, July, 1937.
14. Artobolevski, I. I. Teoria Mehanismowi Masin. Gosudarstv. Izdatl Tehn-Teori。 Lit, Moscow, 1953. -
15. Dobrovol'ski, W. W. Teoria Mehanismow, Maschgis, Moskau, 1953.
16. Sharikov, V.I. "Theory of Screws in the Structural and Kinematic Mechanisms." Trudi Inst. Mashinoved, Akad. Nauk. SSSR. 22, 85/86, 1961, Pp. 108-136.
17. Vionea, R. P. and Atanasiu, M. C. "Geometrical Theory of Screws and Some Applications to the Theory of Mechanisms." Revue de Mechanique Appliquee, Vol. 7, No. 4, 1962, pp. 845-860.
18. Myard, F.E. "Contribution a la géométrie des systemes articules." Bull. Soc. math. France, Vol. 59, 1931, pp. 183-210.
19. Goldberg, M. "New Five-Bar and Six-Bar Linkages in ThreeDimensions." Trans. ASME, Vol. 65, No. 6, August, 1943. pp. 649-661.
20. Harrisberger, Lee and Soni, A. H. "A Survey of ThreeDimensional Mechanisms With One General Constraint. " ASME Mechanism 9th Conference, Paper No. 66-MECH44.
21. Soni, A. H. "The Existence Criteria of One-General Constraint Mechanisms." Doctoral Dissertation, Oklahoma State University, Stillwater, Oklahoma, May, 1967.
22. Soni, A. H. Discussion on the paper: "Displacement Analysis of Spatial Five-Link Mechanisms Using (3x3) Matrices
With Dual-Number Elements." Journal of Engineering for Industry, August, 1969, pp. 921-923.
23. Soni, A. H. and Harrisberger, L. "Theory of Identifying the Existence of General Constraints." VDI Mechanisms Conference, West Germany, April 3-4, 1968.
24. Soni, A. H. and Harrisberger, L. "Existence Criteria of Mechanisms." Rev. Roum. Sci. Techn.--Mec. Appl., Vol. 14, No. 2, 1969, pp. 373-394.
25. Soni, A. H. and Harrisberger, L. "Existence Criteria of SixLink, Six-Revolute Space Mechanism." Proceedings of the Second International Congress on Theory of Machines and Mechanisms, Warsaw, Poland, September, 1969.
26. Soni, A. H. and Pelecudi, C. "Determination vectorielle des equations generales de mouvement des mechanismes tridimensionnels." Conference Nationale de Mecqnique Appliquee, Bucarest, June, 1969.
27. Soni, A. H. "Existence Criteria of an Overconstrained R-P-R-C-R Five-Link Spatial Mechanism." Proceedings of 3rd World Congress for the Theory of Machines and Mechanisms, Kupari, Yugoslavia, Vol. C., Paper C-14, 1971, pp. 179-188.
28. Robertson, G. D. and Soni, A. H. "Enumeration of Spatial Mechanisms With or Without General Constraints." Communications of the 3 rd World Congress for the Theory of Machines and Mechanisms, Kupari, Yugoslavia, Vol. F, Paper F-30, 1971, pp. 405-418.
29. Dimentberg, F. M. and Yoslovich, I. V. "A Spatial FourLink Mechanism Having Two Prismatic Pairs." Journal of Mechanisms, Vol. 1, 1966, pp. 291-300.
30. Hunt, K. H. "Prismatic Pairs in Spatial Linkages." Journal of Mechanisms, Vol. 2, 1967, pp. 213-230.
31. Hunt, K. H. "Note on Complexes and Mobility." Journal of Mechanisms, Vol。3, 1968, pp. 199-202.
32. Hunt, K. H. "Screw Axes and Mobility in Spatial Mechanisms Via Linear Complex." Journal of Mechanisms, Vol. 3, 1967, pp. 307-327.

33．Waldron，K．J．＂The Constraint Analysis of Mechanisms．＂ Journal of Mechanisms，Vol．1，1966，pp．101－114．

34．Waldron，K．J．＂Application of the Theory of Screw Axes to Linkages Which Disobey the Kutzbach－Grübler Constraint Criterion。＂ASME 9th Mechanisms Con－ ference，1966，Paper No。66－MECH－36．

35．Waldron，K．J．＂A Family of Overconstrained Linkages．＂ Journal of Mechanisms，Vol．2，1967，pp．201－211．

36．Waldron，K．J．＂Hybrid Overconstrained Linkages．＂Journal of Mechanisms，Vol．3，1968，pp．73－78．

37．Waldron，K．J．＂Symmetric Overconstrained－Linkages．＂ Journal of Engineering for Industry，February，1969， pp．158－164．

38．Dimentberg，F．M．＂A General Method for the Investigation of Finite Displacements of Spatial Mechanisms and Certain Cases of Passive Joints．＂Purdue Translation， Purdue University，May， 1959.

39．Dimentberg，F．M，＂The Determination of the Positions of Spatial Mechanisms．＂（Russian）Akad．Nauk．，Moscow， 1950.

40．Dimentberg，F．M．The Screw Calculus and Its Applications in Mechanics，Izdatel＇stvo＇Nauka，＂Glavnaya Redaktsiya，Fiziko－Matemicheskoy Literatury， Moscow， 1965.

41．Pamidi，P．R．＇Existence Criteria of Overconstrained Mechanisms With Two Passive Couplings．＂Doctoral dissertation，Oklahoma State University，Stillwater， Oklahoma，May， 1970.

42．Broyden，C．G．＂Quasi－Newton Methods and Their Application to Function Minimisation．＂Mathematics of Computation， Vol．21，No．99，July 1967，pp．368－381．

43．Pamidi，P．R．，Soni，A．Ho，and Dukkipati，R．V．＂Existence Criteria of an Overconstrained R－R－R－P－R Five－Link Spatial Mechanism．＂Proceedings of the 3rd World Congress for the Theory of Machines and Mechanisms， Kupari，Yugoslavia，Vol。D．，Paper D－13，1971， pp．189－198。
44. Soni, A. H. and Harrisberger, L. "Design of a Spatial Four Link Mechanism With or Without Passive Constraint." Journal of Mechanisms, Vol. 4, 1969, pp. 337-348.
45. Soni, A. H. and Harrisberger, Lee. "The Design of the Spherical Drag-Link Mechanism. " ASME.9th Mechanism Conference, Paper No. 66 -MECH-10.
46. Pelecudi, C. and Soni, A. H. "Compatibility Conditions as the Existence Criteria of Three Dimensional Mechanisms." Rev. Roum. Sci. Techn. Mec. Appl., 1970.
47. Harrisberger, L. "A Number Synthesis Survey of ThreeDimensional Mechanisms." J. Eng. Ind., May 1965, Trans. ASME, Vol. 87, pp. 213-220.
48. Huang, M. and Soni, A. H. "Application of Linear and Nonlinear Graphs in Structural Synthesis of Kinematic Chains." ASME 12th Mechanism Conference, 1972, Paper No. 72 -MECH-48. Accepted for publication in Trans. of ASME, Journal of Engineering for Industry, 1973.
49. Huang, M. "Application of Linear and Non-Linear Graphs in Structural Synthesis of Kinematic Chains." Doctoral dissertation, Oklahoma State University, Stillwater, Oklahoma, May, 1972.
50. Kolchin, N. I. "An Attempt to Construct an Extended Structural Classification of Mechanisms and Structural Table Based on It." Transactions of the 2nd All-Union Conference on the Basic Problems of the Theory of Machines and Mechanisms, Moscow, 1960, pp. 85-97.
51. Ogino, S. and Watanabe, K. "Study on Spatial Four-Link Chain Having Four Cylindrical Pairs." Bulletin of JSME, Vol. 12, No. 49, February, 1969, pp. 97-113.
52. Dukkipati, R. V. and Soni, A.-H. "Displacement Analysis of RPSRR, RPSRR Mechanisms." Proceedings of the 3rd World Congress for the Theory of Machines and Mechanisms, Kupari, Yugoslavia, Vol. D., Paper D-4, 1971, pp. 49-61.
53. Freudenstein, F. and Roth, B. "Numerical Solution of Systems of Nonlinear Equations." Journal of the Association for Computing Machinery, Vol. 10, 1963, pp. 550-556.
54. Altmann, F. G. "Raumgetriebe." Feinwerktechnik, Vol. 60, No. 3, 1956, pp. 1-10.
55. Möbius, A. F. "Ueber die Zusammensetzung unendlich kleiner Drehungen. " Crelle's Journal, Vol. 18, 1838, pp. 189-212。
56. Freudenstein, F. and Sandor, G. N. "Kinematics of Mechanisms." Mechanical Design and System Handbook, H. A. Rothbart, Ed., Mc-Graw-Hill, New York, 1964.
57. Assur, I. W. Izledowanie ploskich sterjenwych mechanismow s totschiki zrenia ich struktury i classificatzia. Izdatelstwo, AN, SSSR, 1952.
58. Beyer, R. Technische Raumkinematik. Springer-Verlag, Berlin, 1963.
59. Brand, L. "Vector and Tensor Analysis." John Wiley \& Sons, New York, 1962.
60. Chace, M. A. "Mechanism Analysis by Vector Mathematics." Trans. Seventh Conf. Mechanisms, Purdue University, 1962, pp. 100-113.
61. Freudenstein, F. and Kiss, I. S. "Type Determination of Skew Four-Bar Mechanisms." J. Eng. Ind., February, 1969, Trans. ASME, Vol. 91, pp. 220-224.
62. Gilmartin, J. J. and Duffy J. "Limit Positions of Four-Link Spatial Mechanisms--2. Mechanisms Having Revolute, Cylindric and Prismatic Pairs." Journal of Mechanisms, Vol. 4, 1969, pp. 273-281.
63. Kraus, R. "Über neue Entwicklungsmo̊glichkeiten der graphischen statik und ihre Leistungsfåhigkeit. " Z. VDI., Bd. 92, Nr. 9, March, 1950, p. 207.
64. Maxwell, E. A. General Homogeneous Coordinates in Space of Three Dimensions. Cambridge University Press, 1967.
65. Reuleaux, F. The Kinematics of Machinery. Dover Publications, Inc., New York, 1963.
66. Rasche, W. H. "Classification and Kinematic Analysis of 3-Link Screw Mechanisms." Bull. Virginia Polyt. Inst., Eng'g Expt. Sta., Series No. 58, 38, No: 1, November, 1944, 17 pp .
67. Alt, H. "Die praktische Bedeutung der Räumgetriebe." Z. VDI., Vol. 73, 1929, pp. 188-190.
68. Altman, F. G. "Über raümliche sechsgliedrige Koppelgetriebe." Z. VDI., Vol. 96, 1954, pp. 245-249.
69. Beyer, R. "Space Mechanisms." Trans. Fifth Conf. Mechanisms, Purdue University, 1958, pp. 141163.
70. Bromwich, T. J. I'a. "The Displacement of a Given Line by a Motion on a Given Screw. " The Messenger of Mathematics, Vol. 30, pp. 41-51, Macmillan, London \& Cambridge, 1900-01.
71. Chace, M. A. "Solutions to the Vector Tetrahedron Equation." J. Eng. Ind., May, 1965, Trans. ASME, Vol. 87, pp. 228-234.
72. Sarrus, P. T. 'Note sur la transformation des mouvements rectilignes alternatifs, en mouvements circulaires et reciproquement." Co.R.Acad. Sci., Paris, Bd. 36, 1853, pp. 1036-1038.
73. Semple, J. G. and Roth, L. Algebraic Geometry. Oxford University Press, London, England, 1949.
74. Chasles, M. 'Note sur les proprietes generales du systeme de deux corps" Bull. Sci. mathematiques Ferussac, Vol. 14, 1830, pp. 321-326.
75. Altman, F. G. "Zur maßsynthese der Raumgetriebe." Maschinenbautechnik, 1957, p. 93.
76. Uicker, J. J., Denavit, J., and Hartenberg, R. S. "An Iterative Method for the Displacement Analysis of Spatial Mechanisms." J. Appl. Mech., June, 1964, Trans. ASME, Vol. 86, pp. 309-314.

77．Wallace，D．M．＂Displacement Analysis of Spatial Mechanisms With More Than Four Links．＂Doctoral Dissertation， Columbia University， 1968.

78．Altman，F。G．＂Sonderformen räumlicher Koppelgetriebe und Grenzen ihrer Verwendbarkeit．＂Z．Konstruction 4， 1952，pp．97－106．

79．Woo，L．and Freudenstein，F．＂Application of Line Geometry to Theoretical Kinematics and the Kinematic Analysis of Mechanical Systems．＂IBM New York Scientific Center Technical Report No．320－2982，November，1969，p． 103.

80．Altman，F．G．＂Zur Zahlsynthese der råumlichen Koppel－ getriebe。＂Z。VDI．，93，1951，pp．205－208．

81．Yang，A．T．＂Application of Dual－Number Quaternion Algebra to the Analysis of Spatial Mechanisms．＂Doctoral Dissertation，Columbia University， 1963.

82．Yang，A．T．and Freudenstein，F．＂Application of Dual－ Number Quaternion Algebra to the Analysis of Spatial Mechanisms．＂J．Appl．Mech．，June，1964，Trans． ASME，Vol．86，pp．300－308．

83．Yang，A．T．＂Displacement Analysis of Spatial Five－Link Mechanisms Using（3x3）Matrices With Dual－Number Elements．＂J．Eng．Ind．，February，1969，Trans． ASME，Vol．91，pp．152－157．

84．Altmann，F．G．＂Råumliche fünfgliedrige Koppelgetriebe．＂ Konstruktion，Vol．6，No．7，pp．254－259， 1954.

85．Chace，M．A．＂Vector Analysis of Linkages．＂J．Eng．Ind，， August，1963，Trans．ASME，Vol．85，pp．289－297．

86．Dobrjanskyj，L．and Freudenstein，F．＂Some Applications of Graph Theory to the Structural Analysis of Mecha－ nisms．＂J．Eng．Ind．，February，1967，Trans．ASME， Vol．89，pp．153－158．

87．Denavit，J．and Hartenberg，R．S．＂A Kinematic Notation for Lower Pair Mechanisms Based on Matrices．＂Journal of Applied Mechanics，Vol．22，Trans．ASME，Vol．77， June，1955，pp．215－221．
88. Denavit, J. "Description and Displacement Analysis of Mechanisms Based on (2x2) Dual Matrices." Doctoral Dissertation, Northwestern University, 1956.
89. Denavit, J. and Hartenberg, R. S. "Approximate Synthesis of Spatial Linkages," J. Appl. Mech., March 1960, Trans. ASME, Vol. 82, pp. 201-206.
90. Macmillan, R. H. "The Freedom of Linkages." Mathematical Gazette, 1956, pp. 26-37.
91. Manolescu, N. and Manafu, V. "On the Determination of the Degree of Mobility of Mechanisms." Bulletin of Polytechnic Institute, Bucharest, Vol. 25, No. 5, 1963, pp. 45-66.
92. Moroshkin, I. F. "On the Geometry of Compounded Kinematic Chains." Soviet Phys. -Doklady 3, 2, 1958, pp. 296-272. (Translation of Doklady Akad. Nauk SSSR (N.S.) 119, 1, 38.41. March-April, 1958, by Amer. Inst. Phys., Inc, , New York.)
93. Popov, A. F, "Bases of the Theory of Contour Construction of Kinematic Chains and Their Applications for the Determination of the Degree of Mobility." Nauk. Zap., L'vovsk. Politekhn. In-ta., No. 43, 1956, pp. 158-166.
94. Pisarev, M. N. "Problem of Mechanical Linkages of Different Families." Sb. Statei Vses. Zaoch. Politekhn. In-ta., No. 14, 1956, pp. 90-97.
95. Pisarev, M. N. "Regarding the Number of Links in Mechanisms Relating to Simple Closed Kinematic Chains." Trudi Gor'kovsk Politekhn. In-ta, 14, 1, 1958, pp. 8891.
96. Phillips, J. R. and Hunt, K. H. "On the Theorem of Three Axes in the Spatial Motion of Three Bodies." Australian J. Appl. Sci。, Vol. 15, No. 4, December 1964, pp. 267287.
97. Lifshits, Y. G. "Theory of the Structure and the Classification of Plane and Spatial Groups of Mechanisms." Trudi Rostovsk. -na-Danu. In-ta s. kh mashinostr. . No. 6, 1954, pp. 47-62.
98. Kotelnikov, A. P. "Screw Calculus and Some Applications to Geometry and Mechanics." Annals of the Imperial University of Kazan, 1895.
99. Ladopoulou, P. D., "On the Mobility of Polyhedra." (in Greek with summary in French), Bull. Soc. Math. Grece, 1947-1948, Vol. 13, No. 1, 2, 3, pp. 51-126.
100. Bennett, G. T. "A New Mechanism." Engineering (London), December 4, 1903, pp. 777, 778.
101. Bocher, M. Introduction to Higher Algebra. The Macmillan Company, New York, 1907.
102. Borofsky, S. Elementary Theory of Equations. The Macmillan Company, New York, 1950.
103. Cayley, A。 "On the Six Coordinates of a Line." Trans. Cambridge Philos. Soc., Vol. 11, 1863-69, pp. 290323.
104. Kraus, R. Grundlagen des Systematischen Getriebeaufbau. Berlin, Verlag Technik, 1952.
105. Freudenstein, F. "Note on the Type Determination of Spherical Four-Bar Linkages." (Russian) Akad. Nauk., Moscow, 1965.
106. Franke, R. "Vom Aufbau der Getriebe." Deutscher Ingenieur, Di̛sseldorf, 1951, pp. 97-106.
107. Goldstein, H. Classical Mechanics. Addison Wesley, Cambridge, Massachusetts, 1957.
108. Bugaievski, Bogdan, and Pelecudi. "Contribution to the Classification of Spatial Mechanisms." Acad. Repub. Pop. Romane, Rev. Mecan. Appl., Vol. 2, 1957, pp. 157-170.
109. Boden, H. "Zum Zwanglauf gemischt råumlich-ebener getriebe." Maschinenbau Technik, Heft. 11, 1962. p. 612 .
110. Goldstein, A. A. Constructive Real Analysis. Harper and Row, New York, 1967.
111. Kraus, R. "Getriebelehre." Verlag Technik, Berlin, 1951.
112. Ball, R. S. A Treatise on the Theory of Screws. Cambridge University Press, 1900.
113. Beggs, J. S. Advanced Mechanism. Macmillan, New York, 1966.
114. Henrici, O. "The Theory of Screws." Nature, Vol. 42, No. 1075, June 5, 1890, pp. 127-132.
115. Hain, K. Applied Kinematics. McGraw-Hill, New York, 1967.
116. Kraus, R. "Zur Zahlsynthese der råumlichen Mechanismen." Getriebetechnik, 8., 1940, pp. 33-39.
117. Soni, A. H. "Structural Analysis of Two General Constraint Kinematic Chains and Their Practical Applications." J. of Eng'g for Industry, February 1971, pp. 231-238.
118. Davies, T. H. and Crossley, F.R.E. "Structural Analysis of Plane Linkages by Franke's Condensed Notation. " Journal of Mechanisms, Vol. 1, 1966, pp. 171-183.
119. Pamidi, P. R., Soni, A. H., and Dukkipati, R. V. "Necessary and Sufficient Existence Criteria of Overconstrained Five-Link Spatial Mechanisms With Helical, Cylinder, Revolute and Prism Pairs." ASME l2th Mechanisms Conference, Paper No. $72-\mathrm{MECH}-47$. Accepted for publication in Trans. ASME, Journal of Engineering for Industry, 1973.
120. Soni, A. H., Dukkipati, R. V., and Huang, M. "Closed Form Displacement Relationships of Single and Multi-Loop Six-Link Spatial Mechanisms." ASME 12th Mechanisms Conference, Paper No. $72-\mathrm{MECH}-50$. Accepted for publication in Trans. ASME, Journal of Engineering for Industry, 1973.
121. Harrisberger, L. and Soni, A. H. "A Survey of ThreeDimensional Mechanisms With One General Constraint." ASME 9th Mechanisms Conference, 1966, Paper No. 66-MECH-44.
122. Dukkipati, R. V. "Existence Criteria of Four-Link Mechanisms." MAE 6010 Report, School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, Oklahoma, May 1971.
123. Chandler, J. P. "STEPIT," Program No. 66, QUANTUM Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, Indiana,
124. Hooke, R. and Jeeves, T. A. "Direct Search Solution of Numerical and Statistical Problems." J. Assoc, for Computing Machinery, Vol. 8, No. 2, April 1962, pp. 212-230.
125. Poinsot, L. "Sur La Composition . . . Des Aires." Journal de L'Ecole Pölytechnique, Vol. 6, 1806, pp. 182-205.
126. Soni, A. H. "Existence Criteria of an Overconstrained Spatial Mechanism With Three Revolute Pairs and One Spherical Pair." ASME llth Mechanisms Conference, Paper No. $70-\mathrm{MECH}-72$.
127. Dukkipati, R. V. and Soni, A. H. "Existence Criteria of Overconstrained Six-Link Spatial Mechanisms With Helical, Revolute and Prism Pairs." Forthcoming paper for publication in Journal of Engineering for Industry.

APPENDIX A

EXISTENCE CRITERIA OF THE SIX-LINK
 R-R-C-C-C-R-C MECHANISM WITH NON-ZERO KINK-LINKS

This appendix deals with the calculations necessary to derive the existence criteria of the six-link, two-loop R-R-C-C-C-R-C mechanism with general proportions mentioned in Chapter IV.

Referring to Figures 27 and 30 , the same equations (4-38) and (4-39) are written down. Now let the translations s_{1}, s_{2} and s_{6} be constant at all positions of the mechanism. Since s_{6} does not appear in equation (4-38), equation (4-40) remains the same.

Separating equation (4-39) into primary and dual parts, with the aid of equations (4-20) through (4-22) and then eliminating the angle θ_{6} from these primary and dual parts, we get an equation of the form

$$
\begin{gather*}
A_{4}\left(t_{1}\right) t_{2}^{4}+A_{3}\left(t_{1}\right) t_{2}^{3}+A_{2}\left(t_{1}\right) t_{2}^{2}+A_{1}\left(t_{1}\right) t_{2}+A_{0}\left(t_{1}\right) \\
=0 \tag{A-1}
\end{gather*}
$$

where $\quad t_{1}=\tan \left(\theta_{1} / 2\right)$

$$
t_{2}=\tan \left(\theta_{2} / 2\right)
$$

Figure 30. R-R-C-C-C-R-C Space Mechanism Obtained From the Mechanism in Figure 27 by Making $s_{2}=s_{2 k}=$ a Constant and $s_{6}=s_{6 k}=a$ Constant
and

$$
\begin{gather*}
A_{i}\left(t_{1}\right)=A_{i 4} t_{1}^{4}+A_{i 3} t_{1}^{3}+A_{i 2} t_{1}^{3}+A_{i 2} t_{1}^{2}+A_{i 1} t_{1}+A_{i 0} \\
i=0,1,2,3,4 \tag{A-2}
\end{gather*}
$$

The constants in equation (A-2) involve only the constant kinematic parameters of the mechanism in Figure 30. The equations (4-40) and (A-1) represent two different forms of displacement relationships for the same mechanism. They should, therefore, have at least one root in common between them. This gives the condition (102):
$\left|\begin{array}{ccccc}A_{4}\left(t_{1}\right) & A_{3}\left(t_{1}\right) & A_{2}\left(t_{1}\right) & A_{1}\left(t_{1}\right) & A_{0}\left(t_{1}\right) \\ 0 & A_{4}\left(t_{1}\right) & A_{3}\left(t_{1}\right) & A_{2}\left(t_{1}\right) & A_{1}\left(t_{1}\right) \\ B_{2}\left(t_{1}\right) & B_{1}\left(t_{1}\right) \\ 0 & \left.B_{1}\right) & B_{0}\left(t_{1}\right) & 0 & 0 \\ 0 & \left.B_{1}\right) & B_{1}\left(t_{1}\right) & B_{0}\left(t_{1}\right) & 0 \\ 0 & 0 & B_{2}\left(t_{1}\right) & B_{1}\left(t_{1}\right) & B_{0}\left(t_{1}\right) \\ 0 & 0 & B_{2}\left(t_{1}\right) & B_{1}\left(t_{1}\right) & B_{0}\left(t_{1}\right)\end{array}\right|=0$

Equation (A-3) is a function of only the variable t_{1}. Expanding and simplifying it, we get

$$
E_{16}{ }^{t_{1}}{ }^{16}+E_{15}{ }^{t}{ }_{1}^{15}+\ldots+E_{1} t_{1}+E_{0}=0
$$

or in short,

$$
\begin{equation*}
\sum_{i=0}^{16} E_{i} t_{1}^{i}=0 \tag{A-4}
\end{equation*}
$$

Equation (A-4) consists of only the variable t_{1} (or θ_{1}) describing the position of the mechanism in Figure 30 and must be satisfied at all positions of that mechanism. This equation must hold good at all values of the variable t_{1}. Thus, equating the coefficients to zero, we have,

$$
\begin{equation*}
E_{i}=0 \quad i=0,1,2, \ldots, 16 \tag{A-5}
\end{equation*}
$$

Condition (A-5) represents seventeen equations among the twenty-one constant kinematic parameters of the mechanism in Figure 30 (namely, the eight link lengths $a_{76}, a_{65}, a_{52}, a_{17}, a_{34}$, a_{41}, a_{23} and a_{12}; the eight twist angles $\alpha_{76}, \alpha_{65}, \alpha_{52}, \alpha_{17}, \alpha_{34}$, α_{41}, α_{23} and α_{12}; the three constant offset distances $s_{1}, s_{2 k}$ and $s_{6 k}$ of the revolute pairs at A, B, and F; and the two constant displacement angles Φ_{1} and ψ_{1} at the two ternary links at joints A and B). These seventeen equations provide the necessary conditions for the existence of an $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}$ mechanism with general proportions.

APPENDIX B

EXISTENCE CRITERIA OF THE SIX-LINK R-C-C-R-C-C-R AND R-C-C-R-C-C-P MECHANISMS

This appendix deals with the procedure for obtaining the existence criteria of six-link, two-loop R-C-C-R-C-C-R, R-C-C-R-C-C-P mechanisms with general proportions from the displacement relationships of the parent $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ mechanism mentioned in Chapter IV.

Existence Criteria of the Six-Link
R-C-C-R-C-C-R Mechanism

Consider the R-C-C-C-C-C-C mechanism shown schematically in Figure 27. This mechanism reduces to an $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{R}$ mechanism if the translational displacements s_{4} and s_{7} of the cylinder pairs at D and G are forced to be constant at all positions of the mechanism (Figure 31).

By considering the loop-closure condition of the mechanism in Figure 27 for loop 1 (ABCDA) and outer loop (ABEFGA), the following dual relationships can be obtained:

Figure 31. R-C-C-R-C-C-R Space Mechanism Obtained From the Mechanism in Figure 27 by Making $s_{4}=s_{4} k=$ a Constant and $s_{7}=s_{7 k}=$ a Constant

$$
\begin{align*}
& F_{1}\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)=\left(S \hat{\alpha}_{23} S \hat{\alpha}_{41} S \hat{\theta}_{2}\right) S \hat{\theta}_{1}-\left[S \hat { \alpha } _ { 4 1 } \left(S \hat{\alpha}_{12} C \hat{\alpha}_{23}\right.\right. \\
& \left.\left.\quad+C \hat{\alpha}_{12} S \hat{\alpha}_{23} C \hat{\theta}_{2}\right)\right] C \hat{\theta}_{1}-C \hat{\alpha}_{34}+C \hat{\alpha}_{41}\left(C \hat{\alpha}_{12} C \hat{\alpha}_{23}\right. \\
& \left.\quad-S \hat{\alpha}_{12} S \hat{\alpha}_{23} C \hat{\theta}_{2}\right)=0 \tag{B-1}\\
& f_{1}\left(\hat{\theta}_{2}, \hat{\theta}_{4}\right)=C \hat{\alpha}_{14} C \hat{\alpha}_{43}+S \hat{\alpha}_{14} S \hat{\alpha}_{43} C \hat{\theta}_{4}-C \hat{\alpha}_{32} C \hat{\alpha}_{21} \\
& \quad-S \hat{\alpha}_{32} S \hat{\alpha}_{21} C \hat{\theta}_{2}=0 \tag{B-2}\\
& f_{3}\left(\underline{(\hat{\theta}}_{1}, \hat{\theta}_{2}, \hat{\theta}_{7}\right)=\left[\left(S \hat{\alpha}_{17} C \hat{\alpha}_{76}+C \hat{\alpha}_{17} S \hat{\alpha}_{76} C \hat{\theta}_{7}\right) S \hat{\theta}_{1}\right. \\
& \left.\quad+S \hat{\alpha}_{76} S \hat{\theta}_{7} C \hat{\theta}_{1}\right]\left(S \hat{\alpha}_{52} S \hat{\theta}_{2}\right)+\left[S \hat{\alpha}_{76} S \hat{\theta}_{7} S \hat{\theta}_{1}\right. \\
& \left.\quad-\left(S \hat{\alpha}_{17} C \hat{\alpha}_{76}+C \hat{\alpha}_{17} S \hat{\alpha}_{76} C \hat{\theta}_{7}\right) C \hat{\theta}_{1}\right]\left(C \hat{\alpha}_{52} S \hat{\alpha}_{21}\right. \\
& \left.\quad+S \hat{\alpha}_{52} C \hat{\alpha}_{21} C \hat{\theta}_{2}\right)+\left(C \hat{\alpha}_{17} C \hat{\alpha}_{76}-S \hat{\alpha}_{17} S \hat{\alpha}_{76} C \hat{\theta}_{7}\right) \\
& \left(C \hat{\alpha}_{52} C \hat{\alpha}_{21}-S \hat{\alpha}_{52} S \hat{\alpha}_{21} C \hat{\theta}_{2}\right)-C \hat{\alpha}_{65}=0 \tag{B-3}
\end{align*}
$$

Let the translational displacements s_{4} and s_{7} be now made constant for varying values of θ_{1}. Denoting the constant values of s_{4} and s_{7} by $s_{4 k}$ and ${ }_{7 k}$ respectively, and eliminating the angle θ_{7} from the primary and dual parts of Equation ($\mathrm{B}-3$), with the aid of equations (4-20) through (4-22), a polynomial of the form

$$
\begin{align*}
& \sum_{m, n=0}^{8} p_{m n j} t_{1}^{m} t_{2}^{n} s_{2}^{j}=0 \tag{B-4}\\
& \text { for } j=0,1,2,3,4
\end{align*}
$$

can be obtained, in which

$$
t_{1}=\tan \left(\theta_{1} / 2\right)
$$

$$
t_{2}=\tan \left(\theta_{2} / 2\right)
$$

and

$$
\begin{align*}
& p_{m n j}=p_{m n j}\left(a_{\ell k}, \alpha_{\ell k}, s_{1}, s_{7 k}, \Phi_{1}, \Phi_{2}, \psi_{1}\right) \\
& \text { for } \quad \ell k=17,76,65,52,21 \tag{B-5}
\end{align*}
$$

Similarly, by eliminating the angle θ_{2} from the primary and dual parts of equation (B-1), a polynomial of the form

$$
\begin{align*}
& \sum_{m=0}^{8} q_{m j} t_{1}^{m} s_{2}^{j}=0 \tag{B-6}\\
& \text { for } j=0,1,2,3,4
\end{align*}
$$

can be obtained, in which

$$
\begin{align*}
& q_{m j}=q_{m j}\left(a_{\ell k}, \alpha_{\ell k}, s_{l}\right) \tag{B-7}\\
& \text { for } \quad \ell k=23,41,12,34
\end{align*}
$$

Also eliminating the angle θ_{4} from the primary and dual parts of equation ($B+2$), a polynomial of the form

$$
\begin{align*}
& \sum_{m=0}^{4} R_{m j} t_{2}^{m} s_{2}^{j}=0 \tag{B-8}\\
& \text { for } j=0,1,2
\end{align*}
$$

can be obtained, in which

$$
\begin{align*}
& R_{m j}=R_{m j}\left(A_{\ell k}, \alpha_{\ell k}, s_{4 k}\right) \tag{B-9}\\
& \text { for } \ell k=41,34,23,12
\end{align*}
$$

Eliminating t_{2}, between equations ($B-4$) and ($B-8$) by Sylvester dialytic method (102),

$$
\left|\begin{array}{llllllllllll}
U_{0} & U_{1} & U_{2} & U_{3} & U_{4} & U_{5} & U_{6} & U_{7} & U_{8} & 0 & 0 & 0 \\
0 & U_{0} & U_{1} & U_{2} & U_{3} & U_{4} & U_{5} & U_{6} & U_{7} & U_{8} & 0 & 0 \\
0 & 0 & U_{0} & U_{1} & U_{2} & U_{3} & U_{4} & U_{5} & U_{6} & U_{7} & U_{8} & 0 \\
0 & 0 & 0 & U_{0} & U_{1} & U_{2} & U_{3} & U_{4} & U_{5} & U_{6} & U_{7} & U_{8} \\
V_{0} & V_{1} & V_{2} & V_{3} & V_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & V_{0} & V_{1} & V_{2} & V_{3} & V_{4} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & V_{0} & V_{1} & V_{2} & V_{3} & V_{4} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & V_{0} & V_{1} & V_{2} & V_{3} & V_{4} & 0 & 0 & 0 & 0 \tag{B-10}\\
0 & 0 & 0 & 0 & V_{0} & V_{1} & V_{2} & V_{3} & V_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & V_{0} & V_{1} & V_{2} & V_{3} & V_{4} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & V_{0} & V_{1} & V_{2} & V_{3} & V_{4} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & V_{0} & V_{1} & V_{2} & V_{3} & V_{4}
\end{array}\right|
$$

in which

$$
\begin{align*}
& \dot{U}_{n}=\sum_{m=0}^{8} p_{m n j} t_{l}^{m} s_{2}^{j} \tag{B-11}\\
& V_{n}=\sum_{m=0}^{2} R_{m j} s_{2}^{m} \tag{B-12}
\end{align*}
$$

Expanding and simplifying equation ($\mathrm{B}-10$), a polynomial of the form,

$$
\sum_{m, n=0}^{32} B_{m n} t_{1}^{m} s_{2}^{n}=0
$$

can be obtained, in which

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{mn}}=\mathrm{B}_{\mathrm{mn}}\left(\mathrm{a}_{\ell \mathrm{k}}, \alpha_{\ell \mathrm{k}}, \mathrm{~s}_{1}, \Phi_{1}, \Phi_{2}, \psi_{1}, \mathrm{~s}_{4 \mathrm{k}}, \mathrm{~s}_{7 \mathrm{k}}\right) \\
& \text { for } \quad \ell \mathrm{k}=12,23,34,41,17,76,52,65
\end{aligned}
$$

Eliminate s_{2}, between equations ($B-6$) and ($B-13$) by Sylvester dialytic method. The result will be a determinant of 36 th order and hence the diagonal term of the determinant is of the order of $32(8)+$ $4(32)(=384)$ in the half tangent of the input angle θ_{1}, or symbolically,

$$
\begin{equation*}
\sum_{m=0}^{384} W_{m} t_{1}^{m}=0 \tag{B-15}
\end{equation*}
$$

in which

$$
\begin{equation*}
\mathrm{W}_{\mathrm{m}}=\mathrm{W}_{\mathrm{m}}\left(\mathrm{a}_{\ell k}, \alpha_{\ell k}, \Phi_{1}, \Phi_{2}, \psi_{1}, \mathrm{~s}_{1}, \mathrm{~s}_{4 \mathrm{k}}, \mathrm{~s}_{7 \mathrm{k}}\right) \tag{B-16}
\end{equation*}
$$

and

$$
\ell k=12,23,34,41,17,76,65,52
$$

Equation ($\mathrm{B}-15$) is a function of only the variable θ_{1}. This equation must hold true at all values of the variable angle θ_{1}. Hence equating the coefficients of equation ($\mathrm{B}-15$) to zero, gives

$$
\begin{equation*}
\mathrm{W}_{\mathrm{m}}=0 \quad \mathrm{~m}=0,1,2, \ldots, 384 \tag{B-17}
\end{equation*}
$$

Condition (B-17) represents 385 equations among the 22 constant kinematic parameters of the mechanism in Figure 31 (namely the
eight link lengths $a_{12}, a_{23}, a_{34}, a_{41}, a_{17}, a_{76}, a_{65}$, and a_{52}; the eight twist angles $\alpha_{12}, \alpha_{23}, \alpha_{34}, \alpha_{41}, \alpha_{17}, \alpha_{76}, \alpha_{65}$, and α_{52}; and the three kink-links $s_{1}, s_{4 k}$ and $s_{7 k}$ and the three constant displacement angles Φ_{1}, ψ_{1}, and Φ_{2}). These 385 equations provide the necessary conditions for the existence of an $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{R}$ mechanism with general proportions.

$$
\begin{gathered}
\text { Existence Criteria of the Six-Link } \\
\text { R-C-C-R-C-C-P Mechanism }
\end{gathered}
$$

The existence criteria of an $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{P}$ space mechanism can be obtained from the displacement relationships of the R-C-C-C-C-C-C space mechanism. The R-C-C-C-C-C-C mechanism in Figure 27 reduces to an $R-C-C-R-C-C-P$ mechanism, if the rotational displacement θ_{7} and the translational displacement s_{4} of the cylinder pairs at G and D respectively are forced to be constant at all positions of the mechanism (Figure 32).

The existence criteria of this mechanism can be obtained in the same manner as that of the $R-C-C-R-C-C-R$ mechanism. It can be shown that the number of conditions for this mechanism are lower than that of the $R-C-C-R-C-C-R$ mechanism, because the variable angle θ_{7}, which has to be eliminated, is kept constant in the present case.

From the primary part of equation ($B-3$), a polynomial of the form,

Figure 32. R-C-C-R-C-C-P Space Mechanism Obtained From the Mechanism in Figure 27 by Making $s_{4}=s_{4 k}=$ a Constant and $\theta_{7}=\theta_{7 \mathrm{k}}=$ a Constant

$$
\begin{equation*}
\sum_{m, n=0}^{2} M_{m n} t_{1}^{m} t_{2}^{m}=0 \tag{B-18}
\end{equation*}
$$

can be obtained, in which

$$
\begin{aligned}
& M_{m n}=M_{m n}\left(\alpha_{i j}, \Phi_{1}, \psi_{1}, \Phi_{2}, s_{1}, \theta_{7 k}\right) \\
& i j=17,76,52,21,65
\end{aligned}
$$

and t_{1} and t_{2} are the same as in equations (B-5). Equations (B-6)
and ($B-8$) remain unchanged for this mechanism since these equations do not involve θ_{7} or $\mathrm{s}_{7}{ }^{\circ}$

Eliminate θ_{2} between equations ($B-18$) and ($B-8$) by Sylvester's dialytic method,
$\left|\begin{array}{llllll}U_{0} & U_{1} & U_{2} & 0 & 0 & 0 \\ 0 & U_{0} & U_{1} & U_{2} & 0 & 0 \\ 0 & 0 & U_{0} & U_{1} & U_{2} & 0 \\ 0 & 0 & 0 & U_{0} & U_{1} & U_{2} \\ V_{0} & V_{1} & V_{2} & V_{3} & V_{4} & 0 \\ 0 & V_{0} & V_{1} & V_{2} & V_{3} & V_{4}\end{array}\right|=0$
in which

$$
U_{n}=\sum_{m=0}^{2} M_{m n} t_{1}^{m}
$$

and V_{n} is the same as in equation ($\mathrm{B}-12$).

Expanding and simplifying equation ($\mathrm{B}-19$), another polynomial of the form

$$
\sum_{m=0}^{8} N_{m} t_{1}^{m} s_{2}^{j} \quad j=0 \text { to } 4
$$

can be obtained, in which

$$
\begin{aligned}
& N_{m}=N_{m}\left(a_{\ell k}, \alpha_{\ell k}, s_{4 k}, s_{1}, \theta_{7 k}, \Phi_{1}, \psi_{1}, \Phi_{2}\right) \\
& \text { for } \quad \ell k=17,76,52,21,65,41,34,23 .
\end{aligned}
$$

The polynomial equation in one variable θ_{1} can be obtained by eliminating s_{2} between equations ($B-20$) and ($B-6$) by the Sylvester dialytic method. The result will be a determinant of 8 th order in which each diagonal element is a polynomial of 8 th order in t_{1}. Hence the diagonal term of the determinant is of the order of $8 \times 8(=64)$
in the half-tangent of the input angle θ_{1}, namely

$$
\begin{equation*}
\sum_{j=0}^{64} P_{j} t_{l}^{j}=0 \tag{B-22}
\end{equation*}
$$

where

$$
\begin{align*}
& P_{j}=P_{j}\left(a_{\ell k}, \alpha_{\ell k}, s_{1}, s_{4 k},{ }_{7 k}, \Phi_{1}, \Phi_{2}, \psi_{1}\right) \tag{B-23}\\
& \text { for } \quad \ell k=17,76,52,21,65,41,34,23 .
\end{align*}
$$

The above equation (B-22) must be valid for varying values of the variable t_{1}. Its coefficients must, therefore, vanish. This gives

$$
\begin{equation*}
P_{j}=0 \quad j=0,1,2, \ldots, 64 \tag{B-24}
\end{equation*}
$$

Condition (B-24) represents 65 equations among the 22 constant kinematic parameters of the mechanism in Figure 32, namely (the eight link lengths $a_{17}, a_{76}, a_{65}, a_{52}, a_{21}, a_{41}, a_{34}$, and a_{23}; the the eight twist angles $\alpha_{17}, \alpha_{76}, \alpha_{65}, \alpha_{52}, \alpha_{21}, \alpha_{41}, \alpha_{34}$ and α_{23}; the four constant displacement angles $\Phi_{1}, \Phi_{2}, \psi_{1}$ and ψ_{2}; and the two constant offset distances (kink-links) s_{1} and $s_{4 k}$).

These 65 equations provide the necessary conditions for the existence of an $R-C-C-R-C-C-P$ mechanism with general proportions.

APPENDIX C

EXISTENCE CRITERIA OF THE SIX-LINK

MECHANISMS

In this appendix, Dimentberg's passive coupling technique has been employed to obtain the existence criteria of the six-link, twoloop R-P-C-P-C-P-C and R-P-P-C-C-P-C space mechanisms. These criteria are obtained by considering only the primary parts of the displacement relationships of the six-link, two-loop $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ -C-C-C space mechanism. They, therefore, lead to conditions on only the twist angles and constant displacement angles of the mechanism considered and are independent of their link lengths and constant offset distances.

Derivation of the Existence Criteria

The existence criteria of the R-P-C-P-C-P-C, and R-P-P-C-C-P-C mechanisms can be obtained from the displacement relationships of an $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ mechanism.

Consider the R-C-C-C.-C-C-C space mechanism shown schematically in Figure 27. By suppressing the rotational freedom

[^1]of the cylinder pairs at the joints B and F, it is possible to examine the conditions for the existence of two prismatic pairs in this mechanism at all positions of the mechanism.

By considering the loop-closure condition of the mechanism in Figure 27 for loop 1 (ABCDA) and outer loop (ABEFGA) in three different ways, the following dual displacement relationships can be obtained.

$$
\begin{align*}
& f_{1}\left(\hat{\theta}_{4}, \hat{\theta}_{2}\right)=C \hat{\alpha}_{41} C \hat{\alpha}_{34}+S \hat{\alpha}_{41} S \hat{\alpha}_{34} C \hat{\theta}_{4}-C \hat{\alpha}_{23} C \hat{\alpha}_{12} \\
& \quad-S \hat{\alpha}_{23} S \hat{\alpha}_{12} C \hat{\theta}_{2}=0 \tag{C-1}\\
& F_{1}\left(\hat{\theta}_{2}, \hat{\theta}_{3}\right)=\left(S \hat{\alpha}_{34} S \hat{\alpha}_{12} S \hat{\theta}_{3}\right) S \hat{\theta}_{2}-\left[S \hat{\alpha}_{12} C \hat{\alpha}_{34}\right. \\
& \left.\left.\quad+C \hat{\alpha}_{23} S \hat{\alpha}_{34} C \hat{\theta}_{3}\right)\right] C \hat{\theta}_{2}-C \hat{\alpha}_{41}+C \hat{\alpha}_{12}\left(C \hat{\alpha}_{23} C \hat{\alpha}_{34}\right. \\
& \left.\quad-S \hat{\alpha}_{23} S \hat{\alpha}_{34} C \hat{\theta}_{3}\right)=0 \tag{C-2}\\
& F_{1}\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)=\left(S \hat{\alpha}_{23} S \hat{\alpha}_{41} S \hat{\theta}_{2}\right) S \hat{\theta}_{1}-\left[S \hat { \alpha } _ { 4 1 } \left(S \hat{\alpha}_{12} C \hat{\alpha}_{23}\right.\right. \\
& \left.\left.\quad+C \hat{\alpha}_{12} S \hat{\alpha}_{23} C \hat{\theta}_{2}\right)\right] C \hat{\theta}_{1}-C \hat{\alpha}_{34}+C \hat{\alpha}_{41}\left(C \hat{\alpha}_{12} C \hat{\alpha}_{23}\right. \\
& \left.\quad-S \hat{\alpha}_{12} S \hat{\alpha}_{23} C \hat{\theta}_{2}\right)=0 \quad \tag{C-3}\\
& F_{3}\left(\underline{\hat{\theta}}_{2}, \hat{\theta}_{6}, \hat{\theta}_{1}\right)=\left(S \hat{\alpha}_{17} S \hat{\alpha}_{52} S \hat{\theta}_{2}\right) S \hat{\theta}_{1}-S \hat{\alpha}_{17}\left(C \hat{\alpha}_{52} S \hat{\alpha}_{21}\right. \\
& \left.\quad+S \hat{\alpha}_{52} C \hat{\alpha}_{21} C \hat{\theta}_{2}\right) C \hat{\theta}_{1}+C \hat{\alpha}_{17}\left(C \hat{\alpha}_{52} C \hat{\alpha}_{21}\right. \\
& \left.\quad-S \hat{\alpha}_{52} S \hat{\alpha}_{21} C \hat{\theta}_{2}\right)-\left(C \hat{\alpha}_{76} C \hat{\alpha}_{65}-S \hat{\alpha}_{76} S \hat{\alpha}_{65} C \hat{\theta}_{6}\right)=0 \tag{C-4}
\end{align*}
$$

$$
\begin{align*}
& f_{3}\left(\underline{\hat{\theta}}_{2}, \underline{\hat{\theta}}_{6}, \hat{\hat{\theta}}_{5}\right)=\left[\left(\mathrm{S}_{52} \mathrm{C} \hat{\alpha}_{21}+\mathrm{C} \hat{\alpha}_{52} \mathrm{~S} \hat{\alpha}_{21} \mathrm{C} \underline{\hat{\theta}}_{2}\right) \mathrm{S} \underline{\hat{\theta}}_{5}\right. \\
& \left.+S \hat{\alpha}_{21} S \underline{\hat{\theta}}_{2} C \underline{\hat{\theta}}_{5}\right]\left(S \hat{\alpha}_{76} S \hat{\theta}_{6}\right)+\left[S_{21} \hat{\alpha}_{2} S_{-5}\right. \\
& \left.-\left(S \hat{\alpha}_{52} C \hat{\alpha}_{21}+C \hat{\alpha}_{52} S \hat{\alpha}_{21} C \underline{\hat{\theta}}_{2}\right) C \hat{\theta}_{5}\right]\left(C \hat{\alpha}_{76} S_{65}\right. \\
& \left.+S \hat{\alpha}_{76} \mathrm{C} \hat{\alpha}_{65} \mathrm{C} \hat{\theta}_{6}\right)+\left(\mathrm{C} \hat{\alpha}_{52} \mathrm{C} \hat{\alpha}_{21}-\mathrm{S} \hat{\alpha}_{52} \mathrm{~S} \hat{\alpha}_{21} \mathrm{C} \hat{\theta}_{2}\right) \\
& \left(\mathrm{C} \hat{\alpha}_{76} \mathrm{C} \hat{\alpha}_{65}-\mathrm{S} \hat{\alpha}_{76} \mathrm{~S}_{\hat{\alpha}_{65}} \mathrm{C} \hat{\theta}_{6}\right)-\mathrm{C} \hat{\alpha}_{17}=0 \tag{C-5}\\
& F_{3}\left(\underline{\hat{\theta}}_{2}, \hat{\theta}_{6}, \underline{\hat{\theta}}_{7}\right)=\left(S \hat{\alpha}_{17} S \hat{\alpha}_{65} S \underline{\hat{\theta}}_{7}\right) S \hat{\theta}_{6}-S \hat{\alpha}_{65}\left(C \hat{\alpha}_{17} S \hat{\alpha}_{76}\right. \\
& \left.+S \hat{\alpha}_{17} C \hat{\alpha}_{76} C_{\underline{\theta}_{7}}\right) C \hat{\theta}_{6}+C \hat{\alpha}_{65}\left(C \hat{\alpha}_{17} C \hat{\alpha}_{76}\right. \\
& \left.-\mathrm{S} \hat{\alpha}_{17} \mathrm{~S} \hat{\alpha}_{76} \mathrm{C}_{\hat{\theta}_{7}}\right)-\left(\mathrm{C} \hat{\alpha}_{52} \mathrm{C} \hat{\alpha}_{21}-\mathrm{S} \hat{\alpha}_{52} \mathrm{~S} \hat{\alpha}_{21} \mathrm{C} \hat{\theta}_{2}\right)=0 \tag{C-6}
\end{align*}
$$

Observe that equations ($\mathrm{C}-2$) and ($\mathrm{C}-3$) are similar in form to equation (4-26), equations ($C-4$) and ($C-6$) are similar in form to equation (4-35), and equations (C-5) and (C-1) are similar in form to equations (4-37) and (4-28) respectively.

Note that each of the equations (C-1) through (C-3) relates the dual displacement angle $\hat{\theta}_{2}$ to a second dual displacement angle, and equations (C-4) through (C-6) relates the dual displacement angles $\hat{\theta}_{2}$ and $\hat{\theta}_{6}$ to a third dual displacement angle.

Let the displacement angles θ_{2} and θ_{6} at the cylinder pairs at B and F^{\prime} be now made constant at all positions of the mechanism. Denoting the constant values of θ_{2} and θ_{6} by $\theta_{2 k}$ and $\theta_{6 k}$ respectively, the primary parts of equations ($\mathrm{C}-1$) through ($\mathrm{C}-6$) give respectively,

$$
\begin{align*}
& A_{c} C \theta_{4}+A_{n}=0 \tag{C-7}\\
& B_{s} S \theta_{3}+B_{c} C \theta_{3}+B_{n}=0 \tag{C-8}\\
& C_{s} S \theta_{1}+C C_{c} C \theta_{1}+C_{n}=0 \tag{C-9}\\
& D_{s} S \theta_{1}+D_{c} C \theta_{1}+D_{n}=0 \tag{C-10}\\
& E_{S} S \underline{\theta}_{5}+E_{c} C \underline{\theta}_{5}+E_{n}=0 \tag{C-11}\\
& F_{s} \underline{\theta}_{7}+F_{c} \underline{\theta}_{7}+F_{n}=0 \tag{C-12}
\end{align*}
$$

and

The constants in equations (C-7) through (C-12) involve only the constant kinematic parameters of the mechanism and are defined in Table XIV.

Note that each of the equations ($C-7$) through ($C-12$) contains only one variable and must be valid at varying values of that variable. This is possible only if their coefficients vanish. This gives

$$
\begin{align*}
& A_{c}=A_{n}=0 \\
& B_{s}=B_{c}=B_{n}=0 \\
& C_{s}=C_{c}=C_{n}=0 \\
& D_{s}=D_{c}=D_{n}=0 \tag{C-13}\\
& E_{s}=E_{c}=E_{n}=0
\end{align*}
$$

and

$$
F_{s}=F_{c}=F_{n}=0
$$

Examination of equations ($\mathrm{C}-13$) shows that the following cases are possible.

TABLE XIV
CONSTANTS FOR USE IN EQUATIONS (C-7) THROUGH (C-13)

$$
\begin{aligned}
& A_{c}=S \alpha_{41} S \alpha_{34} \\
& A_{n}=\mathrm{C} \alpha_{41} \mathrm{C} \alpha_{34}-\mathrm{C} \alpha_{23} \mathrm{C} \alpha_{12}-\mathrm{S} \alpha_{23} \mathrm{~S} \alpha_{12} \mathrm{C} \theta_{2 k} \\
& \mathrm{~B}_{\mathrm{s}}=\mathrm{S} \alpha_{34} \mathrm{~S}_{12}{ }_{12} \theta_{2 \mathrm{k}} \\
& \mathrm{~B}_{\mathrm{c}}=-\mathrm{C} \alpha_{12} \mathrm{~S} \alpha_{23} \mathrm{~S} \alpha_{34}-\mathrm{C} \theta_{2 \mathrm{k}} \mathrm{~S} \alpha_{12} \mathrm{C} \alpha_{23} \mathrm{~S} \alpha_{34} \\
& \mathrm{~B}_{\mathrm{n}}=-\mathrm{C} \theta_{2 \mathrm{k}}\left[\mathrm{~S} \alpha_{12}\left(\mathrm{~S} \alpha_{23} \mathrm{C} \alpha_{34}\right)\right]-\mathrm{C} \alpha_{41}+\mathrm{C} \alpha_{12} \mathrm{C} \alpha_{23} \mathrm{C} \alpha_{34} \\
& C_{s}=S \alpha_{23} S \alpha_{41} S \theta_{2 k} \\
& C_{c}=-\left[\mathrm{S} \alpha_{41}\left(\mathrm{~S} \alpha_{12} \mathrm{C} \alpha_{23}+\mathrm{C} \alpha_{12} \mathrm{~S} \alpha_{23} \mathrm{C} \theta_{2 k}\right)\right] \\
& \mathrm{C}_{\mathrm{n}}=-\mathrm{C} \alpha_{34}+\mathrm{C} \alpha_{41}\left(\mathrm{C} \alpha_{12} \mathrm{C} \alpha_{23}-\mathrm{S} \alpha_{12} \mathrm{~S} \alpha_{23} \mathrm{C} \theta_{2 k}\right) \\
& D_{S}=S \alpha_{17} \mathrm{~S} \alpha_{52} \underline{S}_{2 k} \\
& \mathrm{D}_{\mathrm{c}}=-\mathrm{S} \alpha_{17}\left(\mathrm{C} \alpha_{52} \mathrm{~S} \alpha_{21}+\mathrm{S} \alpha_{52} \mathrm{C} \alpha_{21} \mathrm{C} \theta_{2 \mathrm{k}}\right) \\
& \mathrm{D}_{\mathrm{n}}=\mathrm{C} \alpha_{17}\left(\mathrm{C} \alpha_{52} \mathrm{C} \alpha_{21}-\mathrm{S} \alpha_{52} \mathrm{~S} \alpha_{21} \mathrm{C} \underline{\theta}_{2 k}\right)-\left(\mathrm{C} \alpha_{76} \mathrm{C} \alpha_{65}-\mathrm{S} \alpha_{76} \mathrm{~S} \alpha_{65} \mathrm{C} \theta_{6 k}\right) \\
& \mathrm{E}_{\mathrm{s}}=\mathrm{S} \alpha_{76} \stackrel{\mathrm{~S}}{-6 \mathrm{E}}^{\left(\mathrm{S} \alpha_{52} \mathrm{C} \alpha_{21}+\mathrm{C} \alpha_{52} \mathrm{~S} \alpha_{21} \mathrm{C} \underline{\theta}_{2 k}\right)+\mathrm{S} \alpha_{21} \underline{\mathrm{~S}}_{-2 k}\left(\mathrm{C} \alpha_{76} \mathrm{~S} \alpha_{65}\right.} \\
& \left.+\mathrm{S} \alpha_{76} \mathrm{C} \alpha_{65} \mathrm{C} \theta_{6 \mathrm{k}}\right) \\
& E_{c}=S \alpha_{76} S \theta_{6 k}\left(S \alpha_{21} S \theta_{2 k}\right)+\left(C \alpha_{76} S \alpha_{65}+\mathrm{S} \alpha_{76} \mathrm{C} \alpha_{65} \mathrm{C} \theta_{6 k}\right) \\
& -\left(\mathrm{S} \alpha_{52} \mathrm{C} \alpha_{21}+\mathrm{C} \alpha_{52} \mathrm{~S} \alpha_{21} \mathrm{C} \underline{\theta}_{2 \mathrm{k}}\right) \\
& \mathrm{E}_{\mathrm{n}}=\left(\mathrm{C} \alpha_{52} \mathrm{C} \alpha_{21}-\mathrm{S} \alpha_{52} \mathrm{~S} \alpha_{21} \mathrm{C} \underline{\theta}_{2 \mathrm{k}}\right)\left(\mathrm{C} \alpha_{76} \mathrm{C} \alpha_{65}-\mathrm{S} \alpha_{76} \mathrm{~S} \alpha_{65} \mathrm{C} \theta_{6 k}\right)-\mathrm{C} \alpha_{17}
\end{aligned}
$$

TABLE XIV (Continued)

$$
\begin{aligned}
& F_{s}=S \alpha_{17} S \alpha_{65} S \theta_{6 k} \\
& F_{c}=-S \alpha_{65} \mathrm{C} \theta_{6 k} \mathrm{~S} \alpha_{17} \mathrm{C} \alpha_{76}-\mathrm{C} \alpha_{65} \mathrm{~S} \alpha_{17} \mathrm{~S} \alpha_{76} \\
& F_{n}=-\operatorname{S} \alpha_{65} \mathrm{C} \alpha_{17} \mathrm{~S} \alpha_{76} \mathrm{C} \theta_{6 k}+\mathrm{C} \alpha_{6 k} \mathrm{C} \alpha_{17} \mathrm{C} \alpha_{76}-\mathrm{C} \alpha_{52} \mathrm{C} \alpha_{21}+\mathrm{S} \alpha_{52} \\
& \\
& \mathrm{~S} \alpha_{21} \mathrm{C} \theta_{2 k}
\end{aligned}
$$

1. $\quad C \theta_{6 \mathrm{k}}<|1|, C \theta_{2 \mathrm{k}}<|1|$ (That is, $\theta_{6 \mathrm{k}} \neq \mathrm{mm}, \theta_{2 \mathrm{k}} \neq \mathrm{m} \pi$, $\mathrm{m}=0,1,2, . .$.$) .$

The only real solution possible in this case is given by

$$
\begin{align*}
& \alpha_{12}=\alpha_{23}=\alpha_{34}=\alpha_{41}=0 \\
& \alpha_{76}=\alpha_{65}=\alpha_{52}=\alpha_{17}=0 \tag{C-14}
\end{align*}
$$

Equation ($\mathrm{C}-14$) shows that the kinematic axes are all parallel to each other. An R-P-C-C-C-P-C mechanism satisfying this condition, however, represents only a trivial solution since it yields a planar configuration in which the revolute and cylinder pairs remain locked.
2. $\quad C \theta_{6 k}=|1|, C \theta_{2 k}=|1|$ (That is, $\theta_{6 k}=m \pi, \theta_{2 k}=m \pi$, $\mathrm{m}=0,1,2, . .).$.

This gives

$$
\begin{aligned}
& \alpha_{12}+\alpha_{23}=\mathrm{n} \pi \\
& \alpha_{41} \pm \alpha_{34}=\mathrm{n} \pi \\
& \alpha_{17}=0 \\
& \alpha_{76} \pm \alpha_{65}=\mathrm{n} \pi
\end{aligned}
$$

and $\quad \alpha_{52} \pm \alpha_{21}=n \pi$

$$
\begin{equation*}
\text { for } n=0,1,2, \ldots \tag{C-15}
\end{equation*}
$$

3. $\quad C \theta_{6 \mathrm{k}}<|1|, C \theta_{2 \mathrm{k}}=|1|$ (That is, $\theta_{6 \mathrm{k}} \neq \mathrm{m} \mathrm{\pi}, \theta_{2 \mathrm{k}}=\mathrm{m} \pi$, $m=0,1,2, \ldots$.

This gives

$$
\begin{align*}
& \alpha_{12}-\alpha_{23}=\mathrm{n} \pi \\
& \alpha_{41} \pm \alpha_{34}=\mathrm{n} \pi \\
& \alpha_{76}=\alpha_{65}=\alpha_{17}=0 \tag{C-16}\\
& \text { and } \alpha_{52} \pm \alpha_{21}=\mathrm{n} \pi \\
& 4 . \quad \mathrm{C} \theta_{6 k}=|1|, \mathrm{C} \theta_{2 k}<|1| \quad \text { (That is, } \theta_{6 k}=m \pi, \theta_{2 k} \neq \mathrm{m} \pi \\
& m=0,1,2, \ldots) .
\end{align*}
$$

This gives

$$
\begin{align*}
& \alpha_{41}=0 \text { or } \pi \\
& S \alpha_{12} \mathrm{~S} \alpha_{23} \mathrm{C} \theta_{2 k}-\mathrm{C} \alpha_{12} \mathrm{C} \alpha_{23} \pm \mathrm{C} \alpha_{34}=0 \\
& \alpha_{17}=0 \\
& \alpha_{76} \pm \alpha_{65}=\mathrm{m} \pi \\
& \text { for } \mathrm{m}=0,1,2, \ldots \tag{C-17}
\end{align*}
$$

Substitution of the relations given by equations (C-15) and (C-16) in the displacement equations of the parent $\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ mechanism (120) show that cases 2 and 3 give a prismatic pair at joint D in addition to prismatic pairs at joints B and F. These solutions, therefore, given an $R-P-C-P-C-P-C$ mechanism (Figure 33). They also show that the axes of the revolute and cylinder pairs are parallel to each other.

Figure 33. R-P-C-P-C-P-C Space Mechanism Obtained From the Mechanism in Figure 27 by Making $\theta_{2}=\theta_{2 k}=$ a Constant and $\theta_{6}=\theta_{6 k}=$ a Constant

Similarly, case 4 gives a prismatic pair at joint C in addition to the prismatic pairs at joints B and F. It, therefore, gives an R-P-P-C-C-P-C mechanism (Figure 34). It also shows that the axes of the revolute and cylinder pairs are parallel to each other.

The above results thus lead to the conclusion, that in an R-C-C-C-C-C-C mechanism, when one cylinder pair in loop 1 (path ABCDA in Figure 27) is reduced to a prismatic pair, another cylinder pair in that loop is also reduced to a prismatic pair. This result agrees with that by Dimentberg and Yoslovich (29) in the case of single loop, four-link mechanisms. Further, the axes of the revolute and cylinder pairs in both the loops are then parallel to each other.

Figure 34. R-P-P-C-C-P-C Space Mechanism Obtained From the Mechanism in Figure 27 by Making $\theta_{2}=\theta_{2 k}=$ a Constant and $\theta_{6}=$ $\theta_{6 k}=$ a Constant

APPENDIX D

COMPUTER PROGRAM

The following computer program is used for solving the system of nine consistent nonlinear algebraic equations representing the existence conditions of the $\mathrm{R}-\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{R}-\mathrm{C}$ and $\mathrm{R}+\mathrm{R}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{P}-\mathrm{C}$ mechanisms. The program is that developed by Chandler (123) based on function minimization technique. Its usage is given as part of the listing.
 /*ROUTE PRINF HOLD
// EXEC FORTGCLGREGICN.GO= 100 K , TIME, GD=30

c	*	
*		
c		TO SYNTHESILE THE SIX-LINK,THO-LOOP R-R-C-C-C-R-C SPACE mechanism from the existence criteria
c	*	
c		
		description of parameters
c		
c		n - number of independent variables
c	*	np - Convergence monitor
c		NP $\quad 0$ HILL NOT PRINT
c		nn- - TOTALL Print every iteration
c		
c		DELTA - CURRENT STEP SİEE
c		f- Minimum step size
c		ROW - REDUCTION FACTOR FOR STEP SILE, < 1
c	*	x - current base point
c		$x_{\text {x }}$ - LOMER bound of SEARCH domain
c		Xf - UPPER BOUND of Search domain
c		
c		
c		usage reouires the following data caros
c		
c		
c		
c	*	CARDS 5,6,7- LDMER BOUND VALUES FOR XLIN) WITH 7010.0
c		subroutines required
c		Subroutine patrn
c		SUBROUTINE FUNK
c	*	SUBROUTINE STEPIT SUBROUTINE MERIT
c	*	
		general remarks
c		
c.		VECTORS X(N), XL(N), XR(N) CONSISTS OF THE N PARAMETERS IN
c		
c	*	THIST ANGLES - ALPHA 12, ALPHA 23, ALPHA 34, ALPHA 41,
c		ALPHA 65, ALPHA 76, ALPHA 52,ALPHA 17
c	*	
c	*	ALL THIST ANGLES ARE MEASURED IN DEGREES AND KINK-LINKS
c		
c	*	IF REQUIRED SOME OF THE VARIABLES CAA BEE FIXED BY
c	*	Setting the corresponoing maskin) equal to 1 in the
	*	Subroutine patrn ictions in the main prigram and in
c	*	
¢	*	WITH.SLIGHT MODIFICATIONS IN THE MAIA PRCGRAM AND IN
c	*	SYNTHESITING the six-link, two-Loop r-R-C-C-r-p-c
c	*	mechanism
	*	Peferences
	*	
c	*	Chandler, J.p.," stepit, program no. st, guantum chemistay
¢	*	PROGRAM EXCHANGE", DEPARTMENI TF CHFMISTRY, INOIANA UNI VERSITY, 8 LIOMINGTON, INDIANA,4 440 L
	*	
¢		
	*	
6	*	

${ }_{*}^{*}$ *

IMPLICIT REAL * 8 ($A-\mathrm{H}, \mathrm{O}-\mathrm{Z})$
DIMENSION X(20), XL(20), XR(20),OP(9)
DIMENSION XX $1201, \times \times \times(20)$

соммоN/00/01,02,03,04,05
PI $=3,14159265358979300$
RAD $=1 / 180.0$
$D E G=180.1 P I$
read input data
READIS, 13001 N,NP,NN, DELTA,F,ROU
READ $(5,55)(X)(1), 1=1,20)$
$R E A D(5,55)(X 1(1), 1=1,20)$
READ $(5,55)(X L(1), T=1,20)$
READ $(5,55)(X R(1), I=1,20)$
55
1300

c
c
c

print the input data
1000 WRITE (6,1000)

1010
 WRITE(6.1200)
WRITE(6.1020$)$
 J4X', X4AX', 5x, '1'
WRITE 16,12001

HRITETG,1010)
DO $1055,1=1,10$
 WPITE $(6,1200)$
WRITE(6,1010)
1035 continue
1040 FRTHE(6.1040) FTheatil/1/1
 WRITE (6, 12101


```
    WRITEG6.10501
1070 WRITE(6,1070),
    WRITETG,1050)
{0B0 MRITE(6,1080) X(12),XE(12),XR(12)
    WRITE (6.1210)
    IRITE(6.1050)
    WRITE(6.1040
    WRITE(6,1010)
1090 FORMATI39X.'1',* LINK-LENGTHS I',
```



```
    J'xMax',5x,01','
        WRITE (6,1200)
        DO 1110 11=1,8
        =12+11
    WRITE(6,1100)MAME2(11),X(L),XL(L),XR(L)
```



```
    WRITE(6.1200)
    110 MRITELG,1O
    CONTINUE
    D056 I=1,10
    XL(1)=xLII*RAD
    xR(I)=xR(I)*RAD
c
                    call patrn to minimile the function y
    00 22.t=1.10
    XR(I)=XR(II*DEG
    x(II=x\II*DEG
c
    OP(1)=01
    OP(2)=02
    OP(3)=03
    MP(5)=05
    QP(7)=07
C
                    print fae final values of the variables
C WRITE16,2000)
2000 format(iHI,52X.0FINAL values of the variables',1,iH,52X,29(:-*),/
    MN/1
    MWRTTE{6.1010)
    WRITE(6,1020)
    WRITE(6,1200)
    MRITE[6,1010)
    O0 10T5 J=1,10
    WRITE{6,1200)
1075
        WRITEt6.1010)
01,02.03..........09 are the nine existence conoitions
```



```
WR!TE(6,2.050
WRITE(6,1.050)
```

WRITEIC. 1060
WRITE(6,1070) X(11),XL(11),XR(11)
KRITEIG,12210
WRITE(6,1050) x(12),XL(12),XR(12)
WRITEEO.1080)
WRITE(0.1210)
WRITE(6,1050)
WRITE(6,1010)
WRITEE6.1090)
WRITE(6,1200)
00 1330 [1=1, %
L=1241!
WRITE(6,1200)
WRITEIG.1200
30 CONTINNE
WRITEI6,1040)
l
print the final values df the existence conditions
WRITE(6,2020) (L,OP{L),t=1,9)
jormat(48x,'FIMAL VALUES OF the existence conoitions',1/!(55x,'equa
$$
\begin{subarray}{c}{\mathrm{ JTION ',12,', ',011.4./1'}}\\{\mathrm{ STOP }}\end{subarray}
$$
STOP
C
SUGROUTINE PATRN (N,NP,DELTA,F,XL,XR,Y,XX,RON,NN
C INTERFAGE RUUTINE TO MAKE STEPIT LDOK LIKE gATRN.
INTERFACE RUUTINE TO MAKE STEPIT LOOK LIKE OATRN. . STATE UNIVERSITY.
IMPLICIT REALL*(A-H,O-2)
DIMENSION XL(20), XR(20:,\times\times(20)
COMACM /CSTEP/ X(20),XHAX{201,XMIN(20),DELTX(20),OELMN(20),
X ERR(21,20),CHISO,NV,NTRA,MATRX,MASE(20)
COMMCN FROUS' NFMAX,NFLAT,JVGRY,MXTRA
external funk
NV=N
NV=N
NFRAC=NN
MOOL J=1,NV
OELTX(JI=OELTA
OELMN(J)=F
XMAX(J)=XR(J)
1 X{J)=xx(J)
CALL STEPIT {FUNK)
call stepit to minimize chiso.
Y=-CHISQ RETURN Y AND Xx^JI.
M,
METURN
c

```
```

non
subroutine funk
interface routine to make merit look like funk.
IMPLICIT REAL*8(A-H,O-2)
* EOMRON CSTEP/ XI201,XHAX(201,XHIN(201,OELT
CALL MERIT I X,YI
CHHSO=-Y
REND
l
SUBROUTINE KERIT (X,Y)
ROUTIHE TO CALCULATE THE MERIT FUNCTION Y DEFINED
AS THE SUM OF THE SOUARES OF THE NINE EXISTENCE
CONDITIONS OL,O2,03,......a9 FOR THE S
IMPLICIT REAL *S (A-H,J-Z)
DIMENSION X(20); xx{20), x\timesx(20),xL(20),\timesR{20)
COMMON/OQ/01,02,03,04:05,06,07,08,09
COMMON/OO/01;02,03,04
c
AL12=x(1)
AL23=x(2)
CL34=x(3)
AL65=\times(5)
AL76=x(6)
AL21=-AL12
P1=x(9)
C1=x(10)
S2*x(12)
S2=x(12)
A23=x(14)
A34=x(15)
A41=x(16)
476=x(18)
A52=x(191
A17=\times{20!
c
CHECK FOR IERD OENOMINATOR
DO 43 I=1,10
l
x(1)=x(I)+.05
48 X(I)=XII)
IF(XIII.EQ.PI) 60 10 47
x(1)=x!!)

```
subroutine funk
interface rout ine to make merit loox like funk.

CALL MER
CHI SOER
RETURN
ENO

SUBROUTINE MERIT ( \(X, y\) )
ROUTIHE TO CALCULATE THE MERIT FUNCTION Y DEFINED CONDITIONS \(12,02,03, \ldots \ldots\).....a9 FOR THE SM
TWO-LOOP R-R-C-C-C-R-C SPACE MECHANISM
IMPLICIT REAL *B (A-H.J-2)
DIMENSION \(\times(20), \times \times(20), \times \times \times(20), \times L(20), \times R\{20)\)
PI \(=3.141592653589793\)
c

\section*{AL12=xi11
AL23 \\ \(A L 34=x(3)\)
\(A L 41=x(4)\) \\  \\ AL21=-AL12
AL17 \(17(8)\) \\ P1=x(9)
C1 \(=x(10)\) \\ \(52 \times x(12)\) \\ \(412 \times x(13)\)
\(A 3\)
\(A\) \\ \(434=x(15)\)
\(441=x(16)\) \\ \(76=x 181\)
\(452=\times 191\) \\ A17=X(20)}
\(c\)
\(c\)
\(c\)

\(x\{1=\times(1)\)
\(60 \$ 052\)
CONTINUE
x(1)=x111
x(1)=x!!
```

 601051
 xIII $511+.05$
CONTIMUE
1F(XII).EQ.1.5*PI) GO TO 49
$\times 11=x 11$
60 10 53
49 XiIJ=x(IIt. 05

```
\(c^{43}\)
CONSTANTS FOR USE IN EQ. 14 -4 11 SUMMARISED IN TABL
lx of The thesis
    \(2002=A 41 *\) CAL41*SAL \(23+A 23 *\) CAL23*SAL \(*\)
    \(0001=51 * S A L 23 * S A L 41+S 2 * C A L 12 * S * L 23\)
    \(0001=S 1 * S A L 2 * S A L 41+\$ 2 * C A L\)
\(0000=S 2 * S A L 12 * C A L+5 A L 23\)
    0022*S2*SAL23*SAL41 +51 CCAL12*5AL23
    \(001=-A 2\) 3*CAL23*CAL 12+A12*SAL12*SAL 3
    \(E O 2 D=-A 12 * C\) AL \(12 * C A L 42 * S A L 23-A 23 * C A L 41 * C A L 23 * 5 A L 12 * A 41 * S A L 41 * S A L 12\)



    \(822=E 001-E 000-F O 61+F\)
\(B 21=-2 *\) (E002-F0021
    \(82=-2 . *(E 002-F 002)\)
\(B 20=-E 001-E 000+F 001+F 000\)
\(B 12=-2=*(0001-D 000)\)
    0001-D0001
    \(811=4, * 0002\)
\(810=2 * *(0001+00001\)
    \(B 02=-E 001+E 000-F 001+F 000\)
    BO1 \(=2 . *(E 002+F O O 21\)
    \(B 00=E 001+E 000+F O O 1+F 000\)
                                    conistants for use in tazle xi the these are
summarised in table \(x\) in thie thesis
    \(\mathrm{J1*A76*CAL65/SAL} 76+A 65 * C A L 76 / S A L 65\)
\(U 2=A 76 * C A L T 6 / S A L 76+A 65 * C A L 65 / S A L 65\)


\(22=A L 52-A L 21+A L 17\)
\(2=12\)
\(F 2=11-U 2 * O C D(22)-\{A 52-A 21+A 17) * O S I N(22)\)
\(C 3=A L 21+A 17\)
\(23=A L 21+A L 17\)
\(G 0=2 * * S A L 52 *\)
CT17 \(=\) OCOS(AL17)/DSIN(AL17
CT76=COS (AL 76 )/DSIN(AL76

G1=4**SALI7*SAL52*(A17*CT17-A76*CT76-A65*C) \(65+A 52 * C T 52)\)
\(24=A L 21-A L 17\)
\(G 2=-2 * * S A L 52 *\)
G2=-2:*SALS2*1S1*SAL27-S2*DSIN:24)
\(26 \times A L 52+A L 17\)
\(27=A L 52+A L 21-A L 17\)
\(H 0=U 1-U 2 * O C O S 12\)
H0=U1-U2*DCOS(25)-(A52+A21+A17)*OS in(25)
\(H 1=2 \cdot * S A L 17 *(S 1 * D S I N 126)+S 2 * S A L 52)\)
\(H 2=U 1-U 2 * O C O S(27)-(A 52+A 21-A 17) * D S I N(27\)
CONSTANTS FOR USE IN EQ. (4-43) AND TABCE XIT.
\begin{tabular}{l}
\(\mathrm{X} 1=5 \mathrm{P} 1 / \mathrm{CP1}\) \\
\(\times 2=5 \mathrm{Cl}\) \\
\hline
\end{tabular}
\(\mathrm{X} 2=5 \mathrm{SCl} 1 / \mathrm{CCL}\)
\(Y 1=2 * * 0 * X 1-F 1 * X 1 * X 1+F 1-2 . * F 2 * X 1\)
\(Y O \approx F 0 * X 1 * X 1 * F\)

\(W 2=-G 0+G 1 * \times 1-G 2 * \times 1 * \times 1\)
\(W 1=-2 . * G 0 * 1+G 1 * x 1 * \times 1-G 1 * 2 * G 2 * x\)
\(W 0=-G 0 * x_{1} * x_{1}-G 1 * x_{1}-G 2\)
\(28=H 0-H 1 * x_{1}+\mathrm{H}_{2} * \mathrm{X}_{1} * \mathrm{Xl}_{1}\)
\(29=2 * * O * X_{1}-H 1 * X_{1} * 1+H 1-2 * * H 2 * X_{1}\)
\(210 * H 0 * X 1 * X 1+H 1 * X 1+H 2\)
22-X2*×2*Y2+X2*W2+28
\(A 21=\times 2 * \times 2 * Y 1+\times 2 * W 1+29\)
\(A 20=x 2 * \times 2 * Y 0 \times x 2 * 40+210\)

\(A 11=2 * * 2 *(29-Y 1)+W 1 *(x 2 * \times 2-1.1\)
\(A 10=2 * \times 2 *(10-Y 0)+0 *(X 2 * \times 2-1\),
\(A 02=Y 2-X 2 * W 2+X 2 * X 2 * Z 8\)
\(A 1=Y 1-X 2 * W 1+X 2 * 2 * 2\)
\(A 00=Y 0-\times 2 * W 0+X 2 * \times 2 * 210\)
```

constants for defining the nine existence conoitions
Q1, $12, \ldots . .$. Qq of table xil

```
\(A 00=Y 0-\times 2 * W 0+X 2 * \times 2 * 110\)

XB1=A12*A22*B02*B12
\(X B 2=-A 12 * A 12 * B 02 * B 2\)
\(\times B 3=-A 02 * A 22 * B 12 * B 12\)
\(\times 84=A 02 * A 12 * B 12 * B 22\)
XB5 \(=\mathrm{A} 22 * \mathrm{~A} 22 * B C 2 * B 02\)
X \(85=-\times 85\)

\(X B 7 *-A 02 * A 02 * B 22 * B 22\)
\(x 71=A 11 * A 22 * B 02 * B 12+A 12 * A 21 * B 02 * B 12+A 12 * A 22 * B 01 * B 12 * A 12 * A 22 * B 02 * B 1\)
\(\times 71=\)
\(\times 72\)
\(\times 73\)
\(\times 7\)
1
\(\times 72=-(2,0 * A 11 * A 12 * 802 * * 22+A 12 * A 12 *(801 * B 22+802 * R 211)\)
\(x 73=-1(A 01 * A 22+A 02 * A 21) * B 12 * B 12+2.0 * A 02 * A 22 * B 1 * B 12)\)
x74*AO1*A12*B12*B22+A02*A11*B12*B22*A02*A12*B11*B22*A02*A12*B12*B2
\({ }^{11} \times 75=-12.0 * A 21 * A 22 * B 02 * B 02+2.0 * A 22 * A 22 * B 01 * B 021\)
\(x 75=-12.0 * A 21 * A 22 * B 02 * B 02+2.0 * A 22 * A 22 * B 01 * B 02)\)
\(x 76=2.0 *(A 01 * A 22 * B O 2 * B 22+A 02 * A 21 * B O 2 * B 22+A 02 * A 22 * B O 1 * B 22+A 02 * A 22 * B\) 102*8211
\(x 77=-12.0 * A 01 * A 02 * B 22 * B 22+2.0 * A 02 * A 02 * B 21 * B 221\)
X \(611=A 10 * A 22 * B 02 * B 1.2+A 12 * A 20 * B 02 * B 12+A 12 * A 22 * B 00 * B 12+A 12 * A 22 * B 02 * B\) 110


11*B02*B11+A21*B01*B12
\(\times 61=\times 611+\times 612\)
X621 \(=2.0 * A 10 * A 12 * B 02 * B 22+A 12 * A 12 *(B 00 * B 22+B 02 * B 20)\)
\(622 * A 11 * A 11 * B 02 * B 22 * A 12 * A 12 * B 01 * 321+2 \cdot 0 * A 11 * A 12 *(B C 1 * B 22+902 * R 211\)
\(x 62=-(x 621+\times 622)\)
\(631=(A 00=A 22+A 0\)
\(x 632=A 01 * A 21 * B 12 * B 12+A O 2 * A 22 * B 11 * B 11+2 * O * B 11 * B 12 *(A 01 * A 22+A 02 * A 211\)
\(\times 63 \approx-(\times 631+X 632)\)
\(\times 641=A 00 * A 12 * B 12 * B 22+A 02 * A 10 * B 12 * B 22+A 02 * A 12 * B 10 * B 22 * A 02 * A 12 * P 12 * \mathrm{H}\)
120 ( 120
\(X 642 * A 01 *\{A 11 * B 12 * B 22 * A 12 * B 11 * B 22 * A 12 * B 12 * B 2.1)\)
\(11 * B 12 * * 21+A 1 * B 11 * B 2)\) \(1+A 11 * B 11 * B 221\)
 1A21*B02*B02+4.0*A21*A22*B01*BA2

 \(11 * B 02 * 821+A 21 * B 01 * B 221\)
\(\times 66=2,0 * 1 \times 651+\times 6021\)
X67*-12.0*A00*A02*B22*B22+2.D*A02*A02*B20*B22+AC1*AO1*P22*B22+AO2* 1A02*B21*B21+4.0*A01*A02*B21*B221
X511*A12*A21*B01*B11+A11*A22*BO1*B11+A11*A21*H02*B11+A11*A21*AO1*
112
\(\times 5\)
X513=B00*1A1*A22*B12*A12*A21*B12*A12*A22*B11)+B10*(A11*A2?**OZ +A \(12 * A 21 * B 02+A 12 * A 22 * B 01\)
X521=2.0*A11*A12*B01*B21+A11*A11*(B01*B22+B02*B21)+2.0*A10*(A11*RO 12*B22+AL2*B01*B22+A12*B02*B211
\(\times 522=000 * 12=0+411 * A 12 * 022+A 12 * A 12 * B 2\) \(12 * 8011\)
52 \(2=-(\times 521+\times 522)\)
 \(1 * 8121\)
(533*2.0*B10*(A01*A22*B12*A02*A21*812+A02*A22*B11)
\(\times 53=-(\times 531+\times 532+\times 533)\)
\(122 \times 542=A 00 *(A 11 * B 12 * B 22+A 12 * B 11 * B 22+A 12 * B 12 * B 21)+A 10 *(A 01 * 甘 12 * B 22+A O\) \(12 * B 11 * B 22+A 02 * B 12 * B 21)\)
\(\times 543 * B 10 *(A 01 * A 12 * B 22+A O 2 * A 11 * B 22+A 02 * A 12 * B 21) * B 2 C *(A O 1 * A 12 * B 12+A ~\)
\(12 * A 11 * B 12+A 02 * A 12 * B 11\)
\(\times 54=\times 541+\times 542+\times 543\)
X55*A21*A22*BO1*BO1*A21*A21*BO1*BO2+A2O*(A21*BO2*BO2 + 2.0*A22*BO1*\(1021+800 * 12.0 * A 21 * A 22 * B 02+A 22 * A 22 * B 011\)
\(\times 561=A 02 * A 21\) 122
\(\times 562=4004{ }^{1}\) 12*B01*B22+A02*B02*BR11) \(\times 563=B 00 *(A 01 * A 22 * B 22+\)
\(12 * A 21 * B O 2+A 02 * A 22 * B D 01)\)
\(\times 56=2=0 *(\times 561+\times 562+\times 563)\)

\(1221+820 * 1402 * A 02 * B 21+2.0 * A 01 * A 02 * B 221\)
\(\times 57=-2.0 * \times 57\)
\(x 411 \times A 10 * A 20 * B 02 * * 12+A 10 * A 22 * B 00 * B 12+A 10 * A 22 * B 02 * B 1 C\)
\(X 42\)
\(X 413=A 11 * A 21 *(B 00 * B 12+B 02 * B 101+A 11 * B 01 *(A 20 * B 12+\Delta 22 * B 101+A 11 * B 11 * 1\) \(1 A 20 * B 02+A 22 * B 001\)
X414*A21*B01*A \(A 10 * B 12+A 12 * B 10)+A 21 * B 11 *(A 10 * B 02+A 12 * B 00)+B 01 * B 11 *\) X4 \(=\times 411+x_{4} 12+\times 413+\times 414\)
\(\times 41=\times 411+\times 412+\times 413+\times 414\)





\(X 451 \approx A 20 * A 20 * B 02 * B 02+A 22 * A 22 * B 00 * B 00+4.0 * A 20 * A 22 * B 00 * B 02\)






\(\times 11\)
\(\times 312 \times A 12 *(A 21 * B 00 * B 10+A 20 * B 01 * B 10 * A 20 * B 00 * B 111)+A 22 * \mid A 11 * B 00 * B 10 * A 1\) \(10 * B 01 * B 10+A 10 * B 00 * B 11)\)
\(x 313=B 02 *(A 11 * 220 * B 10+A 10 * A 21 * B 10+A 10 * A 20 * B 111 * B 12 * \mid A 11 * A 20 * B 00+A 1\)



\(10 * 3011(\times 321+\times 322+\times 3231\)
\(\times 32=1\)
\(\times 331=(400 * A 21+A 01 * A 20)\)
1031
\(x 332 * A 02 * A 21 * B 10 * B 10+2.0 * A 20 * B 10 * B 111+A 22 *(A 01 * B 10 * B 10+2.0 * A 00 * B 1\)
\(10 * B 11)\)
\(10 * 8332=0.0 * B 12 *(A 01 * * 20 * B 10+A 00 * A 21 * B 10+A 00 * A 20 * B 11)\)
\(\times 33=-(x 331+\times 332+\times 333)\)
\(x\)
120
120


 \(\times 361=A 00 * A 21 * B 01 * B 21+A 01 * A 20 * B 01 * B 21+A 01 * A 21 * B 00 * B 21+A 01 * A 21 * B 01 * B\) \begin{tabular}{l}
\(x 362 * A 02 * 1 A 21 * B O O * 820+A 20 * B 01 * B 20+A 20 * B 00 * B 21)+A 22 *(A 01 * B 00 * B 20+A O\) \\
\hline
\end{tabular}

\(\times 36=2.0 *(\times 361+3362+\times 363) 1+01 * A 01 * 820 * B 21+A 02 * 1401 * B 20 * 820 * 2.0 * A 00\)


\section*{}

112
\(\times 212=A 11 *(A 21 * B 00 * B 10+A 20 * B 01 * B 10+A 20 * B 00 * B 11)+A 10 *(A 20 * B O 1 * B 11+A\) ?
\(11 * B 00 * 11+A 21 * B 01 * B 10)\)

 \(\times 23=-1 \times 231+\times 2321\)
\(\times 241=A 02 * A 10 * B 10 * B 20+A 00 * A 12 * B 10 * B 20 * A 00 * A 10 * B 12 * A 20 * A 00 * A 10 * B 10 * B\) 122 242*A01*(A11*B10*B20*A10*B11*B20*A10*B10*B21)*AOC*(A10*B11*日21+A1
( A \(20 * B 01 * B 01+4.0 * A 20 * A 21 * B 00 * B 011\)
\(\times 261=A 02 * A 20 * B O O * B 20+A 00 * A 22 * B 00 * B 20+A 00 * A 20 * B 02 * B 20 * A 00 * A 20 * B O O * B\) \(2262=A 01 *(A 21 * B 00 * B 20+A 20 * B 01 * B 20 * A 20 * B 00 * B 21)+A 0 C *(A 20 * B O 1 * B 21+A 2\) \(1 * B 00 * B 21+A 21 * B 01 * B 20)\)
\(\times 26=2.0 *(\times 261+\times 262)\)
 X11-A11*A2 0*B00*B10+A10*A21*B00*B10*A10*A20*B01*B10+A10*AZO*R00*B1
 11 \(\times 15 \times-2.0 *(A 20 * A 21 * B 00 * B 00+A 20 * A 20 * B 00 * B 01)\)
 11
\(\times 16 \times 2.0 * \times 16\) \(\times 17=-2.0 *(A 00 * A O 1 * B\)
\(X 01=A 10 * A 20800 * B 10\)
\(X 02=-A 10 * A 10 * B O 0 * B 20\) \(X 01=A 10 * A 20 * 800 * B 120\)
\(X 02=-A 10 * A 10 * B 00 * B 20\)
\(X 03=-A 00 * A 20 * B 10 * B 10\) \(X 04=A 00 * A 10 * B 10 * B 20\)
\(\times 05=-A 20 * A 20 * B 00 * B 00\) \(\times 07=-A 00 * A 00 * B 20 * B 20\)

Q1, Q2,....09 ARE THE NINE EXISTENCE CONDITICNS
FOR THE SIX-LINK, TWO-LODP R-K-C-C-C-R-C


```

x VEC.trial,xsave,chi,ox,otvEC,SALVO,xOSC
X CHIOS,Q,RELAC,HUGE,RATIO,CDLIN,CMPMX, ACK,FACUP,DELDF
DOUBLE PRECISION RZERO, RHALF, RUNIT,RTHO, DELX, XPLUS,COMPR
X A,SUR,P,CHSAV,CHOLD,SAVE,ADX +CHIME,DENOM,DEL,DXZ,DXU,
OCL,DCU;ANUM,CINDR,AVEC,SUMO,SUNV,COSIN,COXCM,
CHDAR,STEPS,FAC,OSORT,OSQRT

```
the dimensions of all vectors and matrices (as opposed to arrays)

If ERRRSS ARE TO BE CALCUAATEO BY SUBROUTINE STERR, HOWEVER, THEN
ERR MUST BE DIMENSIONED AI LEAST ERRINV, MAXINV, MOSQHI)
xOSC 11,11 , SALYOI1, AND CHIOSI11, DELETE THE OSCILLATION SEARCH
ISEE COMMENT CAROS BELOW1, AND SUPPLY A DUMAY SUBROUTINE STERR.
ISEE COMMENT CARDS BELDM: ANO SUPPLY A DUMAY SUBROUTINE STERR•
CR, USE SUBROUTINE STT
TKE COLINEARITY CHECK.

OIMENSION VEC\{20),TRIAL\{20),XSAVE(20),CH1(20),DX(20)
OIMENSION OLVEC(20),SALVO(20),XOSC(20.5),CHIOS(5,.JFLAT(20)
if unlabeiled common and single prec is ion are used, subroutine stept
is then written entirely in a.n.s.i. staneard basic fortran.
    COMMON TCSTEPI X(20),XMAXI20),XMIN(20), DELTXI 20), DELMN(20),
    COMMON /FRODO/ NFMAX, NFLAT,JVARY, NXTRA
SET THE LIBRARY FUNCTION FOR SIMGEE PRECISION (SQRT) OR FOR
OXTEANAL OR INTRINSIC,
THE ONLY SUBROUTIIES CALIEO ARE FUNX, STERR, AND OATSH.
STERR COMPUTES THE ERRGR MATRIX ERR, IF MATRX IS NCNZERO.
THE STATEMENT CALL DATSH(NSSW, JUMP) AMETURNS JUMP \(=1\) IF
IF NO SENSE SWITCH IS TO BE USED, SUPPLY A DUMMY RCUTINE FOR OATSW.
    OSORTIOI = OSORTCCI
    STEPTIO
STEPTIO2
STEPTIOS
***********************************STEPT104
SEt fixed ouantities ....

\section*{\(\mathrm{XH}=6\)}

KTYPE \(=8\) A
NSSW=6
HUGE \(=1 . E 37\)
NVMAX \(=20\)
MOSO \(=5\)
STCUT=10.
COL IN \(=0.99\)
CuPMX \(=999\)
wh... logical unit number of the printer
kTyPE ... CONSQLE TYPEWRITER UNIT
nssw ... tegmination sense shitch number
huge ... a very large real number
numax ... maximum value of nv
moso ... marchimum depth of oscillaticn
stcut ... ratid of step sile decrease
colin ... colinearity tclerance
CMPMX ... UPPER BCUNO ON COMPR
micomp ... maximua number of cycles
\(\begin{array}{ll}\text { STEPT } & 64 \\ \text { STEPT } & 65 \\ \text { STEPT } & 66\end{array}\) STEPT 66
STEPT 67
STEPT \(\begin{array}{ll}\text { STEPT } & 67 \\ \text { STEPT } & \\ \text { STEPT } & 8\end{array}\) STEPT 68
STEPT 69
STEPT
70 STEPT 70
STEPT
STEPT STEPT 71
STEPT 72 STEPT 72
SEPT 73
STFPT 74 \begin{tabular}{l} 
STEPT 74 \\
STEPT \\
STET \\
\hline
\end{tabular} STEPT 75
STEPT 76 STEPT 76
STEPT 77 STEPT 77
STEPT 78
STEPT 79
STEPT STEPT 79
STEPT
BO STEPT BG
STEPT 81 \(\begin{array}{ll}\text { STEPT } 81 \\ \text { STEPT } & 82 \\ \text { STFPT } & 83\end{array}\) STEPT
STEPT 83
STEPT 84
STEPT STEPT 83
STEPT 84
STEPT 85 STEPT 85
STEPT 86
STEPT 87 STEPT 86
STEPT 87
STEPT STEPT
STEPT 88
STEPT 89
STEPT STEPT 89
STEPT 90
STEPT 91
STEPT 92 STEPT 91
STEPT 92
STEPT STEPT 92
STEPT 93
STEPT 94 \begin{tabular}{l} 
STEPT 94 \\
STEPT 95 \\
\hline
\end{tabular} STEPT 95
STEPT 96
STEPT
97
STEP 96
STFPT 97
SEPT 98 \begin{tabular}{l} 
STEPT 98 \\
STEPT 99 \\
\hline 9
\end{tabular} STEPT 99
STEPTIOO STEPTIO1
STEPTIO2 STEPTIO1
STEPT102
STEPTIO3 STEPTIO3
STEPT104
STEPTIOS STEPT106 STEPTIOT
STEPTIOB
STEDTIO STEPTIOB
STEPTIO9
STEPT10 STEPTIIO STEPTII1
STEPT11
STEPTI1 STEPT112
STEPT113 STEPT114
STEPTI
STE STEPT115 STEPT116
STEPT117 STEPT118 STEPT 118
STEPT 119
STEPT 120 \begin{tabular}{l} 
STEPT 121 \\
STEPT 122 \\
\hline
\end{tabular} STEPT123 STEPT 124
STEPT 125
STEPT12 STEPT126
STEPT127
STEPT STEPT129



\begin{tabular}{|c|c|c|}
\hline & juary \(=0\) & Stept 32 g \\
\hline & IFIJock 1630,630,62 & \\
\hline 620 & Jock \(=0\) JVARY =1 & STEPT330 \\
\hline \multirow{3}{*}{0} & jvaryai nflag ... counter useo in seiting jelagi & STEPT332 \\
\hline & NFIAG \(=1\) & STEPT 333 \\
\hline & IF(Xf(1)-XMIN(1) \(1650,640,640\) & STEPT 336 \\
\hline \multirow[t]{2}{*}{640
650} & IF(xti)-XMAXIT11660.660.650 & STEPT 335 \\
\hline & NFLagznflact & STEPT366 \\
\hline 650 N & \(\mathrm{cos}^{\text {c }} \mathrm{ra} 880\) & STEPT 337 \\
\hline \multirow[t]{3}{*}{600} & Call funk & STEPT338 \\
\hline & NFAFP+1 & STEPT 339 \\
\hline & JVARY \(=1\) & STEPT340 \\
\hline \multirow[b]{3}{*}{670} & chime=chiso save dio value of chiso for interpolaito &  \\
\hline & IFICHISO-CHOLDI \({ }^{\text {a }}\) O,670, 6AO & STEPT 343 \\
\hline & mflagenflag \({ }^{\text {a }}\) & STEPT 344 \\
\hline \multirow[t]{3}{*}{\({ }^{6} 860\)} & Step x(1) the other way. & Stedi 365 \\
\hline & xPLUS \(=x\) (I) & STEPT346 \\
\hline & xif) Save-oxali & STEPT 34 \\
\hline & 1F(X)(1)-XMin(1) 1 820,690,690 & STEPT 348 \\
\hline \multirow[t]{4}{*}{\[
\begin{array}{r}
690 \\
700 \\
c \\
\mathrm{~N} \\
\mathrm{~N}
\end{array}
\]} &  &  \\
\hline &  & STEPT350 \\
\hline & jVARY=1 & Stepr 352 \\
\hline & IFICHISO-CHOLOM840,710,720 & Stept 353 \\
\hline \multirow{5}{*}{720} & NFLAGENFLAGt2 & STEPT 354 \\
\hline & tFiNfLAG-31730,800,820 & \\
\hline & perform parabolic interpclation. & STEPT356 \\
\hline & Check for zero cenominator, eit. & STEPT 357 \\
\hline & & STEPT 358 \\
\hline \multirow[t]{3}{*}{} & trichiso-chineitio. \({ }^{\text {a }}\) & STEPT359 \\
\hline & OEMOM=1CHISO-CHOLDI-ICHOLO-CHIMEI & STEPT360 \\
\hline & IFIOENOM1 150, 820, 750 & STEPT361 \\
\hline \multirow[t]{4}{*}{} &  & STEPT 382 \\
\hline & vectilatrim mifadx & STEPT 363 \\
\hline & xthesavertrialtil & STEPT 364 \\
\hline & If (xil)-SAVE1770,760,770 & STEPT 365 \\
\hline \multirow[t]{2}{*}{760 ch} & Chisoechald & STEPT 366 \\
\hline & \({ }^{\text {cos io }}\) CALI funk & STEPT
STEPT 369
Sti \\
\hline \multirow[t]{2}{*}{770} & CALL FuNk & STEPT369 \\
\hline & IFICHISQ-CHOLOP180,790,790 & STEPT370 \\
\hline \multirow[t]{2}{*}{780} & choldichtso & STEPT371 \\
\hline &  & STEPT372 \\
\hline \multirow[t]{3}{*}{190} & telalitimblero & STEPT374 \\
\hline & vectilarzero & STEPT 375 \\
\hline & 60 T0 820 & STEPI376 \\
\hline \multirow[t]{2}{*}{800} & jFlatilimi & STEPT 377 \\
\hline & VECLIIIE-R2ERD & STEPT 378 \\
\hline \multirow[t]{2}{*}{820
830
80
N
N} & x(1) & STEPT379 \\
\hline &  & STEPT 380
STEPT3R1 \\
\hline \multirow[t]{2}{*}{\[
{ }^{c} 8400
\]} & ifincirc-nativi960,i840,1840 flip oxili for more efficient operation. & Steren \({ }_{\text {STEPT }}^{\text {STR }}\) \\
\hline & 0xt1) \(=0 \times(1)\) & STEPT383 \\
\hline \multirow[t]{3}{*}{\[
\begin{array}{lll}
C & A & \text { lon } \\
C & A & A N C \\
C &
\end{array}
\]} & Ouer value ce chisa has been found, STEP, Dovele the step shze, & STEPTY 3 St \\
\hline & repeat as cong as chiso decreases; up to mxstp times. & Strpizar. \\
\hline & & Stifptab7 \\
\hline \multirow[t]{3}{*}{850 NC
D
Ns} & \(\mathrm{NCIRC=0}\) & STEPT \({ }^{\text {398 }}\) \\
\hline & DEt=0x(1) & STEPT389 \\
\hline & NSTP*O & STEPT390 \\
\hline \multirow[t]{2}{*}{860} & Chimerchato & Stere \\
\hline & VEC(II)VEC(I) +0EL/ADX & STEPI 393 \\
\hline
\end{tabular}
```

 NSTP=NSTOTRIALTM+0EL
 M70 IF(NSTP-MXSTP)870,940,940
 70 DEL=ACK*DEL
 \
 \:
 M
 N NFNF+1
 c
00 OX2=SAVE-XPLUS
OXU=KIT-SAVE
\,
M10
M(II=SAVE+DEL
920
IFICHISO-CHOLO)930,950,950
930 CHOLOOCHISOLO,930,950,98
VEC(1)=VEC(1)+OEL/AOX
940 JOCK=196
c
\90\{F(N21P)970,990,990
980 JFINACK-117440,1740.990
C 980 FFINACK-1)1440.1740.99
990 AVECNEEC11)
1000 AVEC=-AVEC (HU)IO,10,1020,1020
¢ ¢
1020 DX(1)=ACK*AOX
M OLVECIH=OLVECH1//ACK
IFENSCHOSO,1050,1030
lol
1050 IFTNTRACH1D80,10,00,106
M070 FORMAT 1OH STEP SIIEL3.14H INCREASED TO E13.5)

```
```

************************************)

```

```

FIDST CHECK THE COLINE ARITY DF VEC ANN OLVEC., SINCE THESE ARE
1080 SUMORRYERO
\
1090 SUMV=SUMV+VEC(J)**2

```



1130 IF NACK-NACTVII \(1430,1140,1140\)
1140 if

NONZR \(=0 \quad \mathrm{~J}=1, \mathrm{NV}\)
00
1180
PFVECJ111190.1180, 1170
TO NONRENONZR+1
CONTNUE
simon says, take as many gint steps as possible...
1190 IF(MOSO)1370,1370,1200
\begin{tabular}{c}
1200 IFONOSOI \\
CONTINE \\
\hline
\end{tabular}
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

remove the statement surboundeo by x-s further on.
kl... pointer for oscillation check
\(k L=1\)
store osctliation information.


c Ifinosc-111370.1240.1220 ine stack of osctllation information is


    \(C H 10 s(K-1)=\mathrm{CHIOS}\)
\(001230 \mathrm{~J}=1, \mathrm{NV}\)






1260 CDXCMzR LERD







1550 IFiMASKISII 1590.1550 .1590 \(1400 \times 1\) KI \(\times\) XIJ)


40 TR1AL (J)
IFICHESO-CHOLO11450,1520,1520
снвах \(=\) CHDIL

 MRIETKKH14901 XSAVETJI,J=1, NVI



* \({ }_{60} \begin{gathered}\text { 32H calls to } \\ \text { to } 2130\end{gathered}\) the chise subroutine.
\({ }^{C} 2110\) HRITEIKH. 2120

\({ }^{c} 2130\) WRITEKK, 2050 (COXES), J=1,NV)
```

c 2140 knitel set shitch for termination.

```
\(c_{2150 \text { juary }}^{2100}\) call funk hith the best set of xiss.
    CAR FUNK
FFCHSOCHSAVI2170,2170.2160



2220 matomatrx-100



2260 returh \(\quad\) set the step shefs fcr subroutine sterp.
2270 fac-ritenatimatrx-10

C
    CALL STERR (FUNK,KH,NSSH, OX,NF, XSAVE, TRIAL)


    CALLING STEPT.

        Dant NFMAK/1000000/, NFLAT/1
ENO SHROUTINE DATSM CNSSK, JUMPI
\({ }_{c}^{c}\) dumar vers ion of subrdutine datsh call shitches permanentiy off.
            JUMP \(=2\)
RETUR
SUR


    sierr computes an approximate error matrix for a ncnlinear
    Sierr computes an approximate error matrix for a nentinear
fiting probleq.
the values computed are often poor approximations. ther should be
```

cmecked using subroutine fido.
NPUT UANTMIES..... Funk,KM,NSSH,dx,NF,x
OUTPUT QUANTMIES...: NF,ERR
OXISI ARE THE STEP SILES FOR APPROXIMATING THE DERIVATIVES OF CHISO
MITH RESPECT TO XIJ BY FINITE DIFFERENCES.
M,
X SECND,CHOLD, RZERO,RUNIT,TENLN,SNOET, DETLN, ABER,DENOM
OIMENSION DXI2O1,XSANEI20).TRIALI20)
COMMON/CSTEP/ X(201,XMAX(20),XMIN(201,DELTX(20),DELHN(201.
COMMON/CSTEP/ X(20),XNAX(201,XNIN(201,DELT,
OSORT(O)=DSORT(O)
M
DXDEFF.001
oxdef ... default value for dx
MXDEF=00
MRERO*O:
M
c
M, 5030 J=1,NV

```

```

50100 OX Sl=0\times0\&F
S020 Ox[J)=-0x(J)
M
CHOLD=CH15O

```

```

5060 FRITEEK\# (500%)(DXIJ)
Compute the tsrmmetrici matrix of secono partial derivatives of
compute the diagonal partials first.
5070 D0, 5090 I=1,NV
MDO 5080 J=1,2
cALL FUN
SECND(L,J)=CHISO
5080 D\times(I)=-0\times(II)
S080 X(1)=XSAVE(1)

```




5540 DENOMA-DENOM
5550 TRIALI JITERRII, JIJOENOM

\begin{tabular}{c}
C \\
C 5 SOR RETURN \\
ENO STERR \\
\hline
\end{tabular}
\(/ / /{ }^{\text {GO.SYSIN }}\) ED

TABLE XV
PARAMETERS OF SPHERICAL SIX-LINK R-R-R-R-R-R-R MECHANISM
" EXISTENCE CRITERIA OF SIX-LINK,TWO-LJJP R-R-C-C-C-R-E SPALE MECTANISM *

\section*{INITIAL VALUES OF THE VARIABLES}
\begin{tabular}{lrr} 
N & \(=\) & 20 \\
NP & \(=\) & 0 \\
NN & \(=\) & 99005 \\
DELTA & \(=\) & \(0.5000-01\) \\
\(F\) & \(\pm\) & \(0.1000-04\) \\
ROW & \(=\) & \(0.500 D 20\)
\end{tabular}


TABLE XV (Continued)


\section*{TABLE XV (Continued)}

ENT ER SUBRQUTINE STEPIT. COPYRIGHT 1965 J. P. Chand LER. PAYSICS DEPT., INOIGNA UNIVERSITY.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline MASK & \[
\begin{aligned}
& =0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0
\end{aligned}
\] \\
\hline x & \[
\begin{aligned}
& 0.1484001 \\
& 0.2094001 \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.209 \% 01 \\
& 0.0 \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.3316001 \\
& 0.0
\end{aligned}
\] & \[
0.3840001
\] & \[
\begin{aligned}
& 0.9599000 \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.3054001 \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 3.1257001 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.5445001 \\
& 3.5
\end{aligned}
\] & \[
\begin{aligned}
& 0.1222001 \\
& 5.5
\end{aligned}
\] \\
\hline XMAX & \[
=\quad \begin{aligned}
& 0.6283001 \\
& 0.6283001 \\
& 0.5000001
\end{aligned}
\] & \[
\begin{array}{ll}
0.62830 & 01 \\
0.50000 & 01 \\
0.50000 & 01
\end{array}
\] & \[
\begin{aligned}
& 0.6283001 \\
& 0.5000091
\end{aligned}
\] & \[
\begin{array}{ll}
0.02830 & 01 \\
0.53000 & 01
\end{array}
\] & \[
\begin{array}{ll}
0.62830 & 01 \\
0.50000 & 01
\end{array}
\] & \[
\begin{array}{ll}
0.62830 & 01 \\
0.50000 & 01
\end{array}
\] & \[
\begin{array}{lll}
0.62830 & 21 \\
0.50000 & 01
\end{array}
\] & \[
\begin{aligned}
& 3.6283091 \\
& 0.5305001
\end{aligned}
\] & \[
\begin{aligned}
& 3.0283001 \\
& 3.53390 \quad 91
\end{aligned}
\] \\
\hline XMIN & \[
=\quad \begin{aligned}
& 0.0 \\
& 0.0 \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0.0 \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 3.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0.0
\end{aligned}
\] & \[
\begin{aligned}
& 0.0 \\
& 0.0
\end{aligned}
\] \\
\hline deltx & \[
\begin{aligned}
& \quad 0.50000-01 \\
& 0.51000-01 \\
& 0.50000-01
\end{aligned}
\] & \[
\begin{aligned}
& 0.50000-01 \\
& 0.50000-01 \\
& 0.50000-01
\end{aligned}
\] & \[
\begin{aligned}
& 0.50000-01 \\
& 0.50000-01
\end{aligned}
\] & \[
\begin{aligned}
& 0.50000-01 \\
& 0.50000-01
\end{aligned}
\] & \[
\begin{aligned}
& 0.50000-01 \\
& 0.50000-01
\end{aligned}
\] & \[
\begin{aligned}
& 0.50000-01 \\
& 0.50000-01
\end{aligned}
\] & \[
\begin{aligned}
& 3.50990-01 \\
& 0.50030-31
\end{aligned}
\] & \[
\begin{aligned}
& 0.50000-01 \\
& 3.53350-31
\end{aligned}
\] & \[
0.50000-01
\] \\
\hline DELMA & \[
\begin{aligned}
& \quad 0.10000-04 \\
& 0.10090-04 \\
& 0.10000-04
\end{aligned}
\] & \[
\begin{aligned}
& 0.1000 \mathrm{D}-04 \\
& 0.1009 \mathrm{D}-04 \\
& 0.10000-04
\end{aligned}
\] & \[
\begin{aligned}
& 0.10000-04 \\
& 0.10030-04
\end{aligned}
\] & \[
\begin{aligned}
& 0.10000-04 \\
& 0.1000 \mathrm{D}-0 .
\end{aligned}
\] & \[
\begin{aligned}
& 0.10000-04 \\
& 0.10000-04
\end{aligned}
\] & \[
\begin{aligned}
& 0.10000-04 \\
& 0.10000-04
\end{aligned}
\] & \[
\begin{aligned}
& 0.10000-37 \\
& 0.10000-34
\end{aligned}
\] & \[
\begin{aligned}
& 3.13530=04 \\
& 0.10000-04
\end{aligned}
\] & \[
\begin{aligned}
& 0.10000-04 \\
& 0.10000-34
\end{aligned}
\] \\
\hline 20 VAR & R IABLES, 20 ACTI & VE. & MTRX \(=0\) & NC & OMP \(=5\) & NFMAX & 97595 & VFLAT & \(=1\) \\
\hline RATIO & = 0.1000 02 & ACK \(=\) & 0.200001 & COL & . 0.9903 & 00 & COMPR \(=0.4\) & 01000 & \\
\hline
\end{tabular}
BEGIN MINIMIZAT ION....
terminated when the step slees becane as small as the delmntd).

152 FUNCTION COMPUTATIONS

FINAL VALUES OF XIII....
\begin{tabular}{|c|c|c|c|c|}
\hline 0.14835298641952001 & 0.20943951023932001. & 0.33161255787882001 & J.383972435438750 01 & 0.95993108859688000 \\
\hline 0.30543261909911001 & 0.125063706143590 01 & 0.544542726622230 O1 & 0.12217304763965031 & 3.237437515237320 01 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\hline
\end{tabular}

\section*{TABLE XV (Continued)}

\section*{FINAL Values of the variables}


TABLE XV (Continued)

final values of the existevce conditions
EQUATIINN \(1=0.0\)
EQUATION \(2=0.0\)
EQUATION \(3=0.0\)
EQUATION \(4=0.0\)
EQUATION \(5=0.0\)
EQUATION \(6=0.0\)
EQUATION \(7=0.0\)
EQUATION \(8=0.0\)
EQUATION \(9=0.0\)

\section*{TABLE XVI}

\section*{PARAMETERS OF SPACE SIX-LINK R-R-C-C-C-R-C MECHANISM}

\section*{INITIAL VALUES OF THE VARIABLES}
\begin{tabular}{lrr} 
N & \(=\) & 20 \\
NP & \(=\) & 0 \\
NN & \(=\) & 99000 \\
DELTA & \(=\) & \(0.5000-01\) \\
F & \(=\) & \(0.100 D-16\) \\
ROW & \(=\) & 0.500000
\end{tabular}


TABLE XVI (Continued)


\section*{'TABIAE XVI (Continued)}


TERminated hHen the step sizes became as small as the delignijo.

62152 fUACTICN COMPUTATIUNS

FINAL VALUE OF CHISO = \(0.139439223729020-10\)

\section*{TABLE XVI (Continued)}

\section*{final values of the vakiables}



TABLE XVI (Continued)

final values of the exi stence conditions
EQUATIUN \(2=-0.23770-06\)
EQUATIUN \(2=-0.81720-06\)
EUUATIUN \(3=-0.30070-06\)
EUUATIUN \(4=0.16270-05\)
EUUATIUN \(5=0.6722 D-06\)
EQUATION \(6=-0.21110-05\)
EUUATIUN \(7=-0.91660-06\)
EQUATION \(8=0.20230-05\)
EQUATION \(9=-0.76680-06\)


Figure 35. Proposed Six-link, Two-loop R-R-C-C-C-R-C Overconstrained Mechanism ( \(F=1\) ). The Parameters for This Mechanism Are Given in Table XVI. The General Motion of This Mechanism Consists of Two Rotations and Three Translations.

\section*{VITA \({ }^{\gamma}\)}

Rao Venkateswara Dukkipati
Candidate for the Degree of
Doctor of Philosophy

\title{
Thesis: EXISTENCE CRITERIA OF SINGLE AND MULTI-LOOP MECHANISMS WITH ONE GENERAL CONSTRAINT
}

Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Bhyravapatnam, India, in January 1945, the son of Annapurnamma and Nagabhushanam Dukkipati.

Education: Graduated from Zilla Parishad High School, Indupalli, India, in 1960; received the Bachelor of Engineering degree in Mechanical Engineering from Sri Venkateswara University, Tirupati, India, in 1966; received the Master of Engineering degree in Mechanical Engineering (Machine Design) from Andhra University, Waltair, India, in 1968; received the Post Graduate Diploma in Applied Statistics from Andhra University, Waltair, India, in 1968; received the Diploma in Hindi from Andhra University, Waltair, India, in 1969; received the Master of Science degree in Mechanical Engineering from the University of New Brunswich, Fredericton, Canada, in 1971; completed the requirements for the Doctor of Philosophy degree at Oklahoma State University in May, 1973.

Professional Experience: Graduate Teaching and Research Assistant at the College of Engineering, Andhra University, India, from June, 1966, to December, 1968, under the University Grants Commission of India Junior Research Fellowship; Graduate Teaching and Research Assistant, Department of Mechanical Engineering, University of New Brunswick, Canada, from September, 1969 to December, 1970, supported by National Research Council of Canada; working part time as Graduate Research Assistant at the School of Mechanical and Aerospace Engineering, Oklahoma State University, supported by National Science Foundation, from January, 1971 to May, 1973.

Professional Organization: Associate Member of the American Society of Mechanical Engineers; Associate Member of the Institution of the Chartered Engineers, India.```


[^0]:    ${ }^{l}$ Numbers in parentheses denote the references given in the Bibliography.

[^1]:    $+\quad$ -

