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CHAPTER I 

INTRODUCTION 

Background and Purpose of Obtaining 

Existence Criteria 

The concept of mobility was something of a mystery until it was 

:mathematically formulated by Griibler (l, 2, 3) 1 in 1884, Delassus 

(4, 5, 6) in 1900, Ma1ytcheff (7) in 1923, Bricard (8, 9) in 1927, aQd 

Kutzbach (10, 11, 12, 13) in 1929. 

Given an arbitrary arrangement of rigid bodies connected by 

kinematic jo:j.nts, Griibler 1 s mobility criteria will determine the num-

ber of degrees of freedom or rp.obility of the system. Artobolevski 

and Dobrovolskii (14, 15) proposed more general mobility criteria 

which attempt to account for the existence of a number of overcon-

strained linkages. Shal;'ikov (16) t;tsed the theory of screws to study 

the classification and existence of such linkag~s. Shar~kov's method 

is geometrical in nature and it has its limitations. Voinea and 

Atanasiu (17) have examined the mobility of linkages by considering 

1 
Numbers in parentheses dep.ote the references given in the 

Bil:>liogrq.phy. 
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the relationship between the classical theory of screws and line geom-

etry. This study, though incomplete, has influenced many of the later 

studies in this area. 

Myard (18) and Goldberg ( 19) derived overconstrained linkages 

by combining Bennet linkages in such a manner that one or more mem-

bers become requndant. 

The existence of overconstrained linkages has also been studied 

by Son.i (20, 21, 22, 23, 24) and by Soni and Harrisberger (25, 47). The 

basic tool used is the 3 x 3 screw matrix. The method consists in 

e~amining the residual coefficient matrix (RCM) of a linkage. The 

rank of RCM is directly related to the mobility of the linkage. The 

number of columns is related to the number of general constraints. 

The number of passive constraints or idle freedoms is represented by 
' 

the difference between the number of rows and the number of columns, 

Vsing this procedure, Soni (21) has investigated the existence criteria 

of linkages with one general constraint by examining some .of the six .. 

link, six revolute mechanisms. The properties of the RCM also per .. 

mit it to be used as a basis for the classification of mechanisms (21). 

An alternate approach to the study of mechanism mobility is 

based on the use of vector algebra. A general method for obtaining 

the compatibility conditions of mechanisms by using this method has 

been proposed by Soni and Pelecudi (26, 46). 



Moroshkin's (92) approach is based on the number of closed 

loops in a mechanism. In this method, transformation equations are 

used to describe the basic geometry of a mechanism. The number 

3 

·of independent transformation equations., which is also the ·rank of 

the system of equations, is determined by the configuration of the 

mechanism. The mobility of the mechanism is related to the number 

of degrees of freedom in all the joints and the rank of the system of 

the tr ansfovma ti on equations. 

Another method is based on the classical theory of screws. A 

detailed aGcount of the theory has been given by Ball (112) in 1900. 

An e;x-\:ellent review of the theotly has also been given by Henrici 

(114). Sharikov (16), Voinea and Atanasiu (17) have employed this 

theory to e~amine the mobility of the mechanii:;;ms. In thi!il method, 

a ;mechanism is J."egarded as a group or a collect:ion of screws in 

space. The screws define a screw system whose order is determined 

by the configuration of the mechanism and the ·pitch values of the 

screws, The mobility of the mechanism is related to the total number 

of s<;:rews in the mechanism and the o.rder of the screw system formed 

by them. 

Myard (18), Goldberg (19), Voinea and Antansiu (17), and 

Dimentberg and Yoslovich (29) a1'e among those who have ·proposed 

vari,ous linkages with two general constraints. Using the five-bar 

linkage. (SH) proposed by Voinea and Atanc;i.siu (17) as a basis, Hunt 



(30, 31, 32) and Waldron (33, 34, 35, 36, 37) have recently proposed a 

class 0£ linkages derivable from this linkage for instantaneou.s 

mobility. Waldron has also proposed some single and multi-loop 

linkages by combining t}l.e known Delassu.s overconstrained three and 

four-link mechanisms. 

4 

The various methods described above for examining the mobility 

of mechanisms have contributed eonsiderably to a better understand­

ing of the nature of space mechanisms. However, all these methods 

suffer from one serioµs shortcoming, that they are all ei:isentially 

dealing qnly with ini;tantaneous or transitory mobility a.r;i.d not with 

finite mobility. This feature makes these methods unsuitable for 

e~amining the e.xiistence critel.'ia of mechanisms in which there are 

conditionei imposed not only on the twist angles, but also on the other 

constant kinematic parameters. This drawback is over~ome by the 

passive coupling method developed by Dimentberg and fi:rist introduced 

by him in 1948 (38, 39, 40). In this method, the existence criteria of 

an overconstrained mechanism are obtained from the displacement 

relationships of an appropriate zero family mechanism (20, 21, 47) by 

imposing suitable passive coupling conditions on the latter, by making 

some of the joints passive. The method not only assures finite 

mobility, bl.lt is also capable of yielding the necessary conditions for 

the existence of the derived mechanism. 



For finite mobility, one would therefore prefer to adopt the 

passiv~ coupling technique proposed by Dim~ntberg (38, 39, 40), 

Dimentberg 's passive coupling approach was extended by Pamidi (41) 

to develop the existence criteria of 5R spatial mechanism with two 

passive constraints. Further extension of the work led Soni, Pamidi 

and Dukkipati (42, 43) and Soni (27) to develop the necessary and 

sufficient existence criteria of four and five ,..link mechanisms with 

one and two passive couplings. Design procedures of mechanisms 

with a passive coupling are also recently proposed by Soni and Harris -

berger (44, 45, 46), 

The successful application of Dimentberg's technique to study 

passive coupling conditions of single loop four and five-link mecha-

nisms with various types of pairing conditions (consisting of R, P, H, 

2 
C and S pairs) by Pamidi (41), Soni, Dukkipati and Pamidi (42, 43 ), 

and Soni (27) makes it possible to further extend its application to 

study passive coupling conditions of six-link, single and multi-loop 

spatial mechanisms. A systematic investigation of these mechanisms 

hc;i.s been greatly hindered so far by the non-availability of closed-

form displacement relationships of spatial six.,.link mechanisms. 

However, the results recently obtained by Soni and Dukkipati (120) 

make it possible to obtain the existence criteria of these mechanisms 

by using Dimentberg' s passive coupling technique. 

2 . 
Throughout this study, R, P, H, C, and Sare used to denote 

the revolute, prism, helical, cylinder and spherical pairs respectively, 
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The concept of general constraints suggests that tP,ere are· cer .. 

~ain specific geometrical condiUons which :must be imposed on a multi ... 

loop kinematic chain if it is to have one degree of freedom. According 

to the mobility criteria of Artobolvski and Pobrovolskii ( 14, 15) and 

Voinea ci.nd Atanasiu (17) that one general constraint is defined by a 

specific orientation of the axes of the pairs along with some specific 

geometrical relationship between the constant kinematic parameters 

of the cha in. 

The mobility c;riteria permits us to enumerate all possible 

si.q.gle and multi ... 1oop mechanisms with or without p2',ssive couplings. 

For example, when there are no general constrainti;i, Soni and 

Har:i:-isberger (21, 23, 24) showed that there are one type and 28 dif ... 

feren-t kinds of single-loop, six-link mechanisms with one general 

constraint. A systematic enumeration by Soni and Robertson (28) 

showed the ·possible existence of nearly 350 constrained kinematic 

chains possessing one general constraint. In a similar way, when 

there are no general constraints (m = 0), Huang and Soni (48) showed 

that there are seven different types and 494 different kinds of six .. link, 

two .. loo:p single degree of freedom space chains which do not have 

general constraints. In a similar way, Huang and Soni showed that 

there could exist a maximum of 4 different types and 287 different 

kinds ~£ si:xi .. link, two ... loop single degree of freedom mechanisms 

with one general constraint, and twp different types and 119 kinds of 



si~·link, two ... loop single degree of freedom mechanisms with two 

general constraints, and one type ap,d 36 different kinds of six .. link, 

two ... loop single degree of freedom mechanisms :rieqµiring three 

general constraints for mobility. 

A systematic enumeration of the six ... link, two loop space kine ... 

ma tic ~hains with Zero general constraint shows (48) the pos sthle·· 

existence of nearly 365, 025 constrained kinematic chain$. A similar 

survey by Soni and, Huang enumerated the possible existence of 

146, 313 constrained kinematic chains possessing one general con .. 

straint, 31, S09 <::on.strained kinematic: chains posses sing two general 

constraints and 2, 430 constrained kinematic chains possessing three 

general constraints. Thus there ie a possibility for the exietence of 

180, 252 constrained kinematic chains possei;sing either 1, 2 or 3 

gcirneral constraints. The necei;;sary and sufficient existence c;:rite:ria 

for these mechanisms are not yet known. 

The objective of the preeent study is to investigate the mobility 

an.d the existence of single and multi ... loop mechanisms with one 

genel'al constraint. Linkages with two passive couplings are repre .. 

sentative of the class of two-.loop linkages, It is proposed to extend 

Dimeqtl;>erg's theory of passive coupling and the 3 x 3 matrices with 

d,ual .. numl:;>er elements to develop a generalized approach to del'ive 

the existence criteria of multi~loop overconstrained mechaniems. 

Using this method it is proposed to investigate the existence of 

7 



six-link, one and two .. loop linkages with one general constraint and 

having lower kinematic pairs. The proposed method, besides being 

useful in the study of the mobility and existence of linkages, will also 

facilitate the closed form displacement relationships for the newly 

discovered mechanisms which can be utilized for their type determi­

nation, kinematic analysis and synthesis, 

Specifically, the objectives of the present study are: 

8 

1. To obtain the existence criteria of si:x;-.link, single .. loop, 3H+3P 

space :rp.echap.isms. Besides explaining the existence of known 

five and six-link mechanisms, the derived criteria $hould also 

reveal the existence of other mechanisms. 

2. To obtain the existence criteria of six .. link, two-loop, R .. R-C­

C-C-R .. C, R .. R .. C ... C-C ... P-C, R.,.C .. C ... R-C-C .. R, and R-C-C-

R .. C ... C .. P $pace mechanisms. The derived criteria should 

faciHtate the investigation of the existence of such mechanisms. 

In the next chapter, the Dimentberg's passive coupling method 

employed for the above purpose is discussed in detail. In the remain­

ing chapters, the results of the objectives mentioned above are pre­

sented, 

DE;?finitions and Explanation of Terms 

Some of the definitions of existence criteria used in this study 

are described below: 



l ~ Me<,;ihanism: A plosed kinematic chain in which one of the l:j.nks 

n~ed is called a rnechaq.ism • 

. 2. Mobilitx: The mobiUty of a mechanism is the number of inde­

pendent quantities required to specify its motion completely. 

~. Constrained Motion: A mechanism with mobility one is said 

to haye a. constra.in~d motion. 

4, Constrained Mechanism: A mechanism with one d,egree of 

freedom (den0ted b,y 11F = l" mechanism) is ~eferred to as 

constrain~d mechanism. 

5. t]ncc,>nstraine2: Mecha.nitiim: A mechanism with mµlti .. degree of 

freedom is referred to as an unconst11ained mechanism. 

6. Structure: A mechanism with zero degree of freedom is 

referll'ed to as a str'Uct\,l.re. 

7. Kinematic ?air: A kinematic pair can be defined as a 

(frictionless) joint which connects, and at the same time, 

constrains the lfelative motion between two dgid bodies. 

Geometdcally, one may imagine a pair as two mating profHes, 

known as pairing elements or male and f e:r;nale elements. 

9 

81 De&ree of ~ree~om of a .~inematic ;ea~l': The degree of freedom 

of a kinematic pair is the number of independent variables 

necessary to specify the relative position of two links cqnnected 

by the pair. 
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9. Lower and higher kinematic pairs: If a male element of a 

kinematic pair makes, with its female ·element, either area or 

surface contact, the kinematic pair is called a lower kinematic 

pair. Examples of lower kinematic pairs include a revolute 

pair, a prism pair, a helical pair, a cylinder pair, a spherical 

pair~ etc. 

If, h0wever, male and female elements of a kinematic 

pair make either a line contact or a point contact, then this 

kinematic pair is called a higher kinematic pair. Examples of 

higher kinematic pairs are a cam-pair,, a sphere-plane pair, 

etc. For a complete description and classification see 

reference (21 ). 

Lower kinematic pairs are efficient for transmitting 

higher forces. Higher kinematic pairs are used primarily 

for building motion transmitting devices rather than force 

transmitting devices. 

10. Linkage configuration: The configuration of the mechanism, 

or linkage configuration, at a given instant during motion, is 

completely specified by the spatial polygon defined by the axes 

of the mechanism. 

11. Constant kinematic parameters of a mechanism: The constant 

kinematic parameters of a mechanism are the link lengths, the 

twist angles, the constant offset distances (kink-links) and the 
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constant displacement angles. These parameters are constant 

fo:r a given mechanism and remain unchanged during its motion. 

12. Variable kinematic parameters of a mec:;hanism: The variable 

kinematic parameters of a mechanism are the variable off set 

dil'ltances (t:17anslations) along its pair axes and the variable 

displacement angles. These parametel;'s are not constant for 

a given mechanism, but vary during its motion, 

D. Finite mobility: A mechanism is said to have finite mobility 

when it is capable of executing motion over a finite range. Thus, 

for example, a spherical four.,link, four ... revolute mec;ihanism 

has a finite mobility 0 f one. 

14. Transitory or instantaneous mobility: A mechanism is said 

to have tranl'litory or instantaneous mobility when it is capable 

of executing motion over only an infinitesimal range. Thus, for 

example, q. spherical four-link, four helical mechanism (equal 

pitch values) has a transitory or instantaneous mobility of 

one (32). It may also be noted that instantaneous mobility at 

all instants may often lead to finite mobility (30, 35), 

15. True mobility: A mechanism is said to have true mobility when 
' 

it has finite mobility with all the freedoms in all of its joints 

active. Thus, for example, a plane four-link, four r~volute 

mechanism has, ex0 ept at its locking positions, a trl,le mobility 

of one, but a five-link H-P-P .... P-P space mechanism does not 
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have true mobility since its helical pair remains permanently 

locked, In the present study, a mechanism hi said to ''exist" 

when it has a true mobility of one. 

16. Zero family mechanisms: Consider a two-loop, six .. link space 

mechanism, Let pk denote the number of kinematic pairs of 

class k in which the degree of freedom is k and I:pk =7, Then 

,I:pk denotes the total number of degrees of freedom permitted 

at j.ll the joints. When I:pk = 13, any rCilndom combination 0£ 

constant kinematic parameters will, in general yield a two-

loop mechanism with mobility one. 

Similarly, let £. denote the number of degrees of fre(tdom 
l 

permitted at the ith joint of a single ... ioop space mechanism. 

Then the total number of degrees of freedom permitted at all 

the joints is denoted by I:f.. When.r:f. = 7, any random combi..,. 
l l 

nation of constant k~nematic parameters will, in general, yield 

a single-loop mechanism with mobility one. 

Such mechanisms in which there are no conditions imposed 

on the constant kinematic parameters are called zero family 

mechanisms. The 1R+6C mechanism, the 4R+3S mechanism, 

and the 1R+3P+3E mechanism are some examples of zero family 

mechanisms. 

1 7. Overconstrained mechanism: Consider a two-loop, six-link 

space mecqanism. When .I: k pk< 13, a random combination of 
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constant kinematic parq.meters will, in general, yield a 

configuration which is a structure. Two-loop mechanisms 

with t k pk < 13 can exist with mobility <;me only when their 

constant kinematic parameters satisfy certain definite mathe ... 

matical relationships~ 

In a similar way when :E f. < 7, a random combination of 
. 1 

coni;;tant kinematic parameters will, in general, give a single-

loop configuration which is a structure .. 

Hence, such mechanisms in which conditions are imposed 

on the constant kinematic parameters are called overco1;1.strained 

mechanisms. 

18. Nq.mber, of ;eassive couplings: The number of passive couplings 

Cp in an overconstrained mechanism with two loe>ps is given by 

the simple relationship 

c = 13 - :Ekp 
p k 

where I:kpk denotes the total number of degrees of freedom 

permitted at all the joints of the six-link two-loop overcon-

strained space mechanism. 

'l'he number of passive couplings C in an overcon­
p 

strained mechanism with one loop is given by the simple 

relations Mp 



where tkpk denotes the total number of degrees of freedom 

permitted at all the joints of the six~link single .. loop overcon.., 

strained space mechanism. 

19. Existence criteria of an overconstrained mechanism: For the 

present stµdy, the existence criteria of an overconstrained 

mechanism den0tes a set(s) of conditions that are necessary 

for its existence. These conditions are equations relating to 

14 

the constant kinematic parameters of the mechanism, An over.,.. 

constrained mechanism of the prescribed type satisfies all of the 

conditions forming the existence criteria simultaneously. 

20. C!osure conditions: Closure conditions al'.le algebraic equations 

between the parameters of a linkage which give the conditions 

required by the closure of a loop in a linkage. 

21, Passtv.e freed,oms: Passive freedoms are the destroyed free.,.. 

doms of the pairs as a result of certain geometric constraints 

(passive constraints). In practice th,e passive freedoms and 

also the redundant freedoms, may be kep in the mechanism 

rather than eliminating them by replacing the pairs possessing 

the passive .freedoms with pairs of lower class. This is pre~ 

£erred to have ease in design, operation, and lubrication. 



CHAPTER II 

DIMENTBERG'S PASSIVE COUPLING METHOD 

ILLUSTRATED FOR A SPATIAL FIVE-LINK 

H .... H-P-P ... H MECHANISM 

Nature of Dimentberg' s Method 

Dimentberg in 1948 introduced the method of passive coupling 

a.l;'l.d illustrated the method of obtaining the existence criteria of a 

number of overconst:i;oained four-Hnk :mechanisms (29, 3$, 39, 40). 

Waldron (33, 34, 35, 36, 37), Ogino and Watanabe (51) however ap­

parently unaware of the work of Dimentberg have recently ui;;ed dual .. 

number algel?ra to study the mobility of a spatial foµr-link chain with 

four cylinder pairs and have come-up with certain overconstrained 

fol;lr~link mechanisms. 

The use of Dimentberg's method for obtaining the existence 

criteria of an ovel:'const!'ained mechanism involves the following 

three steps: 

1. Select a Parent Mechanism, It is, in general, possible to 

derive an overconstrained mechanism from more than one 

parent mechanii:;m. 

15 



Thus, for example, the four-link RSRR mechanism can 

be derived from either the RSCR mechanism or thf:' RSRC 

mechanism. 

2. Develop the closed-form disph.t;:ement relationships between 

independent and dependent displacement variables of the 

parent mechani i;;m. 

16 

If the parent mechanism has no helical pa.irs, the dis­

placement relationships are algebraic in nature. If the parent 

mechanism has helical pairs, the displ;;i.cement relationehips arE> 

c;omplicated in nature. 

3, Impose the reql,J.ired paesive coupling conditions on the parent 

mechanism s·o ail to obtain the desh·ed overconstrained mecha­

nism. Thus, for example, passive coupling cqndition is ·impoeed 

on the <:!ylinder pair of the parent four-link RSCR mechanism. in 

order to obtain the RSRR overconstrained mechanism. When 

the displacement relationships involved are algebraic in nature, 

this step very often involves examination of the conditions for 

common roots between two algebraic polynomials or between 

successive sets of two polynomials. The results obtained lead 

to conditions on the coni:;tant kinematic parameters of the parent 

mechap,ism and provide the necessary c;;ondition,s for the 

existep,ce of the desired overconstrained mechanii:;m. 



17 

Example 

In this section, the Dimentberg method of passive coupling 

technique is demonstrated to obtain the existence criteria of an 

H-H ... P-P-H five-link mechanism. This is done by considering a five-

link H-H-C-C-H mechanism. as the parent mechanism. 

An H-H-C-C-H five-link space mechanism with general pro-

portions is shown in Figure 1, with helical pairs at joints A, B, E 

and c;ylinder pairs at joints C and D. The instantaneous c::onfi,guration 

of the H-H .. C-C-H mechanism as shown in Figure 1 is oompletely 

defined by two sets of five dual angles (38), each as follows: 

1. Between adjacent pairing axes: 

,.. 
Ci. = Ci. + e a. 

l. l. l. 
(i = 1, 2' . . . , 5) (2-1) 

where Ci. (i = 1 to 5) are the twist angles and a. (i = 1 to 5) are 
l. l. 

the kinematic link lengths. Note that, by definition, e2 = 0, 

2. Between adjacent ~ommon perpendiculars: 

,.. 
e. = e. + es. 

l l l 
(i = 1, 2' . • . , 5) (2-2) 

with s. = p. e. 
l l. l. 

(i = 1, 2, 5) (2 ... 3) 

where 9. (i = 1 to 5) are the angular displacements at the kine-
. l 

rnatic pairs, s. (i = 1 to 5) are the translaHonal displacements 
l 

along the kinematic axes, and p. (i = 1, 2, 5) are the finite 
l 

pitch vaL\:1.es of the helical pairs. 
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© 

® 
Figure 1. Five-link H-H-C-C-H Space Mechanism 



In equatioP. (2-2), the five angles, 9. (i = 1 to 5) and the two 
l 
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sliding co:i;np<ments a.l<;>ng the cylindric axes (s 3 and s 4 ) c;:;onstitute the 

seven independent linkage Vfiriables; among them El 1 is the input angle 

;. ,.. 
and 9 5 is the out:put angle. The five dual angles, ot. (i = 1 to 5) in 

l 

equation (2 .. 1) and the three finite pitch values of the helical pairs 

(p 1, p 2, p 5 ) constitute the thirteen real parameters necessary to 

specify an H-H-C .. C.,.H mechanism of general proportions. 

Consider the H ... H-C-C-H five .. link space mechanism shown 

schematically in Figure 2. This mechanism reduces to an H ... fI ... p .. p.,. 

H mechanismt as shown in Figure ;3, if the rotational displacement 

angles e3 and 0 4 at the two cyHnder pairs remain constant at all 

positions of the mechanism. 

The dual .. matrix loop closure equation for the H-B .. C..,.C-H 

mechanism shown in Figure 2 is given by (120) 

= [I] ( 2 ,.4) 

where 
... ,.. 1 

ce. se. 0 
l l 

"' "' 
[e i J3 = -Se ce. 0 

i l 

0 0 1 

1In this equation and in all the subsequent equations and tables 
throughout this study, C and S denote the cosine and sine of the 
respective angles, 



Figure 2. H-H-C-C-H Space Mechanism 

Figure 3. H-H-P-P-H Space Mechanism Obtained From 
the Mechanism in Figure 2 by Making 93 = 
93k = a Constant and 94 = 94k = a Constant 

20 
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1 0 0 

(" 

[et\)1 = 0 
(" "' 

CCt!i Sex. 
1 

,. ,,. 
0 -Sex, CO'. 

1 1 

and 

1 0 0 

[I] = 0 1 0 

0 0 1 

By arranging the loop-closure c;ondition of the mechanism in 

three different ways, the following relationships can be obtained. 

f(e 5 , e4 , e3 ) = [(s;4 c;5 + c;4 s;5 ce 5 )se4 

+ s;5 se 5 ce4J (S~2 se3 ) + [s&5 se5 se4 

(2 ... 5) 

(2-6) 
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f(e4, 93, e2) = [(s&3 c;4 + c;3 s&4 ce4)se 3 

+ sQ.4 se4 ce3] (s&l se2) + [sQ.4 se4 se3 

(2 - 7) 

N0te that each of the above equations relates the dual displace-

ment angles e3 and 9 4 at the two cylinder pairs to a third dual dis-

placement angle. 

Let the rotational displacement angles 9 3 and 0 4 ;;i.t the two 

cyUnder pairs be n.qw held constant at all positions of the mechanism, 

Denoting these consta.o.t vall,les by e3k and 9 4k respectively, the 

primary parts of Eqs. (2-5), (2-6) and (2,..,7) give 

A. Ce + A z O c 1 n 

B se 5 + B ce5 + B = o 
s c n 

c se 2 + c ce2 + c = o 
s c , n 

(2-8) 

(2-9) 

(2-10) 

The constants used in the above equationa are functions of the 

constant kinematic parameters ai, Q'i and the constant displacement 

angles e3k and 9 4k of the mechanism are defined in Table I. 

Note that each of the equations (2-8), (2 .. 9) and (2-10) contains 

only one variable and must hold true at varying values of that variable. 

Their coefficients must, therefore, vanish. This give El 
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TABLE I 

CONSTANTS FOR USE IN EQUA'l;'IONS (2 .. S) THROUOH (2 .. 11) 

A :; Set SO! 
c 1 5 
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A ::;. A = 0 
c; n 

B 1=B =B =0 s c; n 
(2- 11) 

C =C =C =O 
s c n 

The above equations provide the necessary conditions for the existence 

of an H .. H .. P-P ... a mechanism. However, it is possible to further 

simplify the concUtions given by Eqs. (2-11). ·For example, examina-

tion 0£ Eqs. (2 ... 11) yields the foHowing relationships: 

Ol =Ol =0 
l 5 

(2 ... 12) 

and 

+ 1 = 0 (2-13) 

Equation (2-12) shows that the axes of the three helical pairs 

are parallel to one another. Equation (2 ... 13) is a definit€!1 closure 

condition relating the twist angles Q'2, 0t3 and O! 4 of the mechanism 

with the constant displacement angles e3k and e 4k at the two pris­

matic pairs (Figure 3). The H-H""P-P-H linkage is shown in Figure 

4, 

·Note that the resulti; hav~ been obtained by considering only 

the primary parts of the dual displacement rE;ilationships of the 

parent H .. H ... C-C-H mechanism. Hence, the results will remain 

unaffected even if one or mol,"e of the helical pairs are replaced by 
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Figure 4. 

® 

H-H-P-P-H Space Mechanism (30, 
35, 119) 

25 
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revoh;i.te pairs, Note further that the results obta~ned are independent 

of the link lengths involved. Hence, if one of the link lengths is taken 

to be z~ro, the results will apply with equal validity to four-lip.k 

mechanisms derivable from the above five ... link mechanism (29). The 

results obtained in the present example for the H-H-P~P-H mecha­

nism also confirm the results obtaip.ed by Hunt (30), Waldron (35), 

Pamidi (41 ), and Pamidi, Soni and Dukki:pati (119). The results of 

Hunt and Waldron were obtained by considering the SH and 6H mecha­

nisms of Voinea and Atanasiu (1 7) which are themselves overcon., 

strained mechanisms. The results of Pamidi, Soni anc;l Dukkipati 

were obtained by considering the more general zero family mecha­

nisms, thus guaranteeing full-cycle mobility. Also, in addition to 

the parallelism of the axes, the existenc~ derived in the present 

study gives definite closure conditions to be satisfied by the constant 

kinematic parameters of the respective mec}lanism. 

Scope of Dimentbe rg' s Method 

Dimentberg has employed his method in those cases in which 

the translational freedqm of a cylinder pair is made passive (29, 38, 

39, 40). The method has been shown equally applicable to the cases 

in which the rotational freedom of a cylinder pair is made passive by 

Soni (27), Pamidi (41 ), and Dukkipati (122). Pamidi obtained the 

existence criteria of R-P-C-P and R-C-P ... P mechanisms by imposing 
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passive coupling conditions on the rotational freedom of the output 

cylinde:t:" pair of an R-C-C ... C mechanism. Soni (27) obtained the 

existence criteria of an R-P-R-C-R five-link overconstrained mecha-

nism from the parent R ... C-R-C-R mechanism. Dukkipati (122) 

(')btained the existence criteria of an R-S.,.P-R four,,.link overcon-

strained mechanism by imposing passive coupling on the rotational 

freedom at the cylinder pair .of the parent R-S-C-R mechanism. 

Extension of Dimentberg's method to five-link mechanisms led 

Pamidi, Soni and Dukkipati (119) to obtain the existence criteria qf 

the five .. link, five revolute mechanism,· R-R ... R, ... P .. R. mechanism, 

and 3H+2P, 2H+3P mechanisms. 

Dimentberg's method also holds true for the case in which the 

entlr,e freedom of a kinematic pair is made passive by Pamidi (41) 
~-

and Dukkipati (122). The joint thus becomes locked and no motiqn is 

·pas sible at that joint. The results obtained are in agreement with 

those obtained by Dimentberg and show that it is possible to obtain 

an overconstrained mechanism from more than one parent mechanism. 

The extensions to Dimentberg's method as demonstrated by 

Soni, Pamidi and Dukkipati illustrate the immense scope of the method 

and show that the method can be employed to handle a variety of 

passive coupling conditions. The objective of the present study is to 

extend Dimentberg's method to single and multi-loop si.x;-link mecha-

nisms. 
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Passive Coupling Conditions Considered in 

Single-Loop Mechanisms in the 

Present Study 

The passive coupling conditions considered in single~loop 

mechanisms in the present study are confined to those cases in 

which a .passive coupling is imposed on a cylinder pair in orde11 to 

obtain a prism pair. This involves examination of only the primary 

part of the various dual displacement relationships of the parent 

mechanism. 

The caises proposeQ. are summarized in Table II and fall intq 

the following single category. 

1. J?aseive coupling in a cylinder pair to obtain a prism pair. 

Thus; passive coupling is imposed on the cylinder pair of the 

parent 3H+2P+lC space six-link mechanisms in order to reduce~ 
' 

it to a prism pair of the overconstrained 3H+3P space mecha-

nisms (see cases 1, 2, and 3 in Table II). 

Passive Coq.pling Conditions Considered in 

Two-Loop Mechanisms in the 

Present Study 

The passive coupling conditions considered in two-loop 

mechanisms; in the present study are confined to those cases in 

which the required displacement relationshtps are algebraic in 



Case 

1 

2 

3 

TABLE II 

PASSIVE COUPLING CONDITIONS CONSIDERED IN SINGLE-LOOP 
MECHANISMS IN THE PRESENT STUDY 

Kinematic pair 
selected for in­
ducing passive 
coupling condi­
tion 

c 

c 

c 

* 

(H: Helical pair, P~ Prismatic pair"' C: Cylinder pair) 

Kinematic pair 
obtained because 
of passive coupling 
condition 

p 

p 

p 

Parent mechanism 
examined for in­
ducing passive 
coupling condi­
tion 

* H-C-P-P-H-H 

H-C-P-H-P-H 

H-C-H-P-H-P 

Overconstra ined 
mechanism ob­
tained because 
of passive coupling 
condition 

H-P-P-P-H-H 

H-P-P-H-P-H 

H-P-H-P-H-P 

Considered 
in 

Chapter III 

Here and throughout, this abbreviation refers to the sequence of kinematic pairs joining 
the links of a spatial mechanism, starting with the fixed link~ See Figure 5. 

N 

'° 
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Figure 5. Schematic Repres:entation of Six-link, Single-loop 
Space Mechanism (L: fi = 7) 
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nature. 'l'he cases considered are summarized in Table III and fall 

into the foll0wing three categodes: 

1. Passive coupling in two cylinder pafrs (one in each loop) to 

obtain the revolute pairs (see cases 1, 3, and 4 in Table IIU. 

2. Passive coupling in two cylinder pairs (one in each loop) to 

obtain one revolute pair and one prism pa~r (s<!'e cases 2 and 

5 in Table III). 

3, Passive coupling in two cylinder pairs (one in each loop) to 

obtain two prism pairs (see cas~ 6 in Table III), 
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Case -
1 
2 
3 
4 
5 
6 

TABLE III 

PASSIVE COUPLING CONDITIONS CONSIDERED IN TWO-LOOP 
MECHANISMS IN THE PRESENT STUDY 

Kinematic pairs 
(one from each 
loop) selected 
for inducing pas-
sive coupling 
conditions 

C-C 
C-C 
C-C 
C-C 
C-C 
C-C 

{R: Revolute pair, P: Prismatic pair, G: Cylinder pair) 

Kinematic pairs 
obtained because 
of passive coupling 
conditions 

R-R 
R-P 
R-R 
R-R 
R-P 
P-P 

Parent mechanism Overconstrained 
examined for in­
ducing passive 
coupling condi­
tions 

1 
R-C-C-C-C-C-C 
R-C-C-C-C-C-C 
R-C-C-C-C-C-C 
R-C-C-C-C-C-C 
R-C-C-C-C-C-C 
R-C-C-C-C-C-C 

me-chanism ob­
tained because of 
passive coupling 
conditions 

2 
R-R-C-C-C-R-C 
R-R-C-C-C-P-C 

3 R-R-C-C-C-R-C 
R-C-C-R-C-C-R 
R-C-C-R-C-C-P 
R-P-C-P-C-P-C 
R-P-P-C-G-P-C 

Considered 
in 

Chapter IV 

Appendix A 
Appendix B 

1Here and throughout, this abbreviation refers to the sequence of kinematic pairs joining the 
links of a six-link, two-loop spatial mechanism of Stephenson type, starting with the fixed link. See 
Figure 6. 

2 one kink-link assumed zero. {Special form of Case 3.) 

3Non- zero kink-links. (General proportions.-~ 
w 
N 



Figure 6. Schematic Representation of Six-link, Two-loop 
Space Mechanism of Stephenson Type 

' (L: fi = 13) 
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CHAPTER III 

EXISTENCE CRITERIA OF SINGLE ... LOOP 

MECHANISMS 

Displacement Relationships for Obtaining 

the Existence Criteria 

The use of Dimentberg's method for obtaining the existence 

criteria of overconstrained mechanisms requires the displacement 

relationships of the appl."opriate parent mechanisrr,i.s. The required 

relationships can always be obtained by i;iuitably arranging the loop­

closure condition of the parent mechanism, 

Consider a general single-loop, six-link space mechanism 

consisting of helical, revolute, prismatic and cylinder pairs com­

bined in such a way that the sum of the degrees of freedom in all the 

joints is equal to seven (Figure 7). Such a mechanism would 

necessarily have to have one cylinder pair .. If the type of the re­

maining five pairs and the location of all the six pairs in the mecha­

nism are properly chosen, this mechanism will serve as a parent 

mechanism for any overconstrained mechanism with one pressure 

coupling. 
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Figure 7. General Six-link, Single-loop Space Mechanism With 
Helical,, Revolute, Prismatic and Cylind~r Pairs 
(L: fi = 7) 
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The instantaneoµe configuration of the mechanism in Figure 7 

is compl~tely defined by two sets of six dual angles, each as follows: 

1. Between adjacent pairing axes: 

"' · ex. = °'t + e a. 
1 . 1 

(3 .. 1) 

where °'i (i = 1 to 6) are the twist angles and ai (i = 1 to 6) are the 

link lengths. These twelve quantities are constant for any given 

mechanism. ·Note aho, that by definition, 

e~ = O • 

Z, Between adjacent commo11-·perpendi9ulars: 

"' e. = e. + e: s. 
). 1 . 1 

(3 ... z) 

where e. (i = 1 to 6) are the angular displacements at the kinematic 
l 

pairs and s. (i = l to 6) are the translations along the kinematic 
1 

axes. These quantities may be variable or l"emain c;:onstant depending 

upon the type of kinematic pairs used in the mechanism, ·Fol! instance, 

in a prismatic;; pai:r, the angular displacement r~mains c:;onstant, while 

in a revolut e ·pair, the translation along the axis is constant. · In a 

helical pair, the translation along the axie and the angular disphi.ce ... 

ment both vary in such a way that their ratio is always constant and 

equal to the ·pitch. In a cylinder pair, the translation along the axis 

and the angular displacement both vary and are independent of each 

other. 

The dua1 ... matdx loQp~closure equation of th~ spatial sixor-link 

mechanism in Fi~ure 7 is given by (lZO): 
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A ~ A A A ~ A A ~ ~ 

[etl]l [e1]3 [et2]1 [e2J3 [G¥3]1 [a3]3 [et4]1 [e4]3 [et5]1 [95]3 

[ ~ 6J1 [a 6] 3 = [I] (3-3) 

where 

1 0 0 

[;)1 
" " = 0 Cet. Set. (3 .,.4) 

1 1 

" 
0 -Set. Cet. 

1 1 

1 0 0 

[I] - 0 1 0 

0 0 1 

and 
,., 

"' ce. se. 0 
1 1 

,., 
" 

.,.. 
[9)3 = -Se. ce. 0 

1 1 
(3 .. 5) 

0 0 1 

Three arrangements of Eq. (3-3) are useful in the study of 

~xistence c;riteria. 

1. The relationship involving two adjacent dual displacement 

angles and the two dua,1 displacement angles opposite to both of 

them. 

In this arrangement of Eq. (3-3), six matrices are used on 

either side of the equality sign. Thus, for instance, 

(3 ~6) 
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Simplifying the above equation by using relations (3 .. 4) and 

(3 -5) and equating the "33" elements of the resultant matrix equation, 

we get 

(3- 7) 

,.. 
Note that Eq. (3 ... 7) involves the ac;ljacent displacement angles e1 and 

96 and the displacement angles 93 and e 4 opposite to both of them. 

Cyclic permutation permits Eq. (3-7) to be written in six dif.,. 

ferent ways. It is, therefore, poi:; sible to get si~ equations of the 

form (3- 7) involving different combinations of two adjacent angles 

and the two angles opposite to both of them. 

2. Relationship involving three adjacent dual displacement 

angles and the dual displacement angle opposite to all three of 

them. 

In this arrangement of Eq. (3-3), seven matrices are used 

on <;!ne side of the equality sign and five matrices on the other. Thus, 

we have, for instance, 
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I\ A A A A 

[94J3 [0!3]1 [93J3 [0!2)1 [e2]3 

(3 -8) 

SimpUfying Eq. (3-8) by using relations (3 .. 4) and (3-5) and 

equating "33" elements of the resultant matrix equation, we get 

A "". A I\ A I!\ A A I\ A A 

+ ce 1 ce6 (-Sot 1 Cot6 Cots Sot4 ) + ce 1 (Sot1 sot6 Sots Set4 ) 

+ ca 6 (-C~ 1 s&6 c&S S~ 4 ) + ( .. c& 1 c&6 sQ.S s& 4 )] 

(3-9) 

Note that Eq. (3-9) involves the three adjacent displacement.a.p.gles 

A "' ,.. A 

el. 96, and 9s and the displacement angle 93 opposite to au of them. 

Cyclic permutation allows Eq. (3-9) to be written in six differe.p.t 

ways. It is, therefore, possible to obtain six equations of the form 

(3-9) involving diffe:rent combinations of three adjacent angles and a 

fourth displacement angle opposite to them. 

3. Re!ationship involving four adjacent dual displacement angles. 

In this arrangement of Eq. (3-3), nine matrices are used on 

one side of the equality sign and three matrices on the other. The 
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important point to note is that the matrix on the side containing three 

matrices involves only the constant kinematic parameters of the 

mechanism, Thus, we have, for instance, 

(3 .. 10) 

Note that the central matrix [;5r 1 on the right hand side involves 

only the constant kinematic parameters of the mechanism. 

Simplifytng the above equation by using relations (3 ... 4) and 

(3 .. $) and eqqating the 1'33" elements of the resultant matrix, we get 
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(3-11) 

Note that Eq. (3 ;.11) involves the four adjacent dual displacement 

Cyclic permutation allows Eq. ( 3-11) to be written in six 

different ways. It is, therefore, pas sible to obtain six equations 

of the form (3-11) involving different combinations of four adjacent 

dual displacement angles. 

Observe that Eqs. (3-7), (3-9) and (3-11) are all dual equations. 

Each of them, therefore, represents two scalar equations. Since 

six equations of the form (3-7), six equations of the form (3-9), and 

six equations of the form (3-11) are possible, a total of thirty-six 

scalar equations are available. These thirty .. six equations make it 

possible to obtain the existence criteria of all mechanisms with one 

passive coupling (and also many mechanisms with one or more 

passive couplings with number of links equal to or less than six). 



Existen<;;e Criteria of the Six-Link 

3H+3P Mechanisms 

In the following sections, the Dimentberg' s passive coupling 

technique has been employed to obtain the existence criteria of the 

six .. link 3H+3P mechanisms. These criteria are obtained by con ... 

sidering only the primary parts of the displacement relationships 
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of the appropriate parent mechanisms. Th~y. therefore, lead to 

conditions on only the twist angles and constant displacement angles 

of the mechanisms considered and are indepenc;J.ent of their link 

lengths and constant offset distances. 

In a 3H+3P mechanism, the three three revolute pairs may be 

either adjacent to each other or be separated by one or two pris­

matic pairs. All possible types of 3H+3P mechanisms are, there .. 

fore, represented by the following mechanisms: 

i) H .. P .. P-P-H-H Mechanism 

ii) H-P-P-H-P-H Mechanism 

iii) H-P-H-P-H-P Mechanism 

Existence Criteria of the Six-Link 

H-P-P-P-H-H Mechanism 

The existence criteria of an H-P-P-P-H-H mechanism can be 

obtained from the displacement relationships of an H""C-P-P .. H-H 

mechanism. 



43 

Consider ~he H-C-P-P-H-H mechanism with general propor-

tions shown schematically in Figure 8, with helical pairs at joints 

A, E, and F, cylinder pairs at joint B, and prismatic pairs at joints 

0 and D. The instantaneous configuration of the H-C ... P .. P-H .. H 

mechanism as shown in Figure 8 is completely defined by the two 

sets of six dual angles, each as follows: 

1. Between adjacent pairing axes: 

,., 
ot. = ot. + e a. 

1 1 1 
(i = 1, 2, ..• , 6) (3 -12) 

where ot. (i = 1 to 6) are the twist angles and a. (i = 1 to 6) are the 
1 1 

kinematic link lengths. 

2. Between adjacent common perpendiculars: 

" e. = e. + e s. 
1 1 1 

(i = 1, 2, • , 6) (3-13) 

with s. = p. e. 
1 1 l 

(i = 1, 5, 6) 

where e. (i = 1 to 6) are the angular displacements at the kinematic 
1 

pairs, s. (i = 1 to 6) are the translational displacements along the 
1 

kinematic axes, and p. (i = 1, 5, 6) are the finite pitch values of the 
1 

helical pairs. 

In equation (3-13), the four angles, e. (i = 1, 2, 5, 6) and the 
1 

three sliding components along the axes of the cylinder and prism 

pairs, s. (i = 2, 3, 4) coni;ititute the seven linkage variables; the six 
1 

,., 
dual angles, ot. (i = 1 to 6) i,n equation (3-12), the two constant dis-

1 

placement angles of the prism pairs at joints C and D, 9. (i = 3, 4) 
1 
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® 
Figure 8. Six-link H-C-P-P-H-H Space Mechanism 



in equation (3-13), and the three finite pitch values of the helical 

p~irs, p. (i:;:: 1, 5, 6) constitute the seventeen real parameters 
l 

necessary to specify an H-C-P-P-B-H mechanism of general pro-
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portions. This mechanism reduces to an B-P-P-P-H-H mechanism 

if the displacement angle e2 at the cylinder pair remains constant 

at all positions of the mechanism (Figure 10). 

By considering the loop-closure condition of the mechanism 

in Figure 9 in three different ways, the following relationships can 

be obtained ( 120): 

(3-14) 



Figure 9. H-C-P-P-H-H Space Mechanism 

Figure 10. H-P-P-~:bl..:.H Space Mechanism Obtained 
From the Mechanism in Figure 9 by 
Making 92 = e2k = a Constant 
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,.. ,.. ,._ "° A ,.,. A 

- ce Ca!... SOI ce - Ce SOI COi ... 
2 t., 3 3 2 2 3 

(3-15) 
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(3 .. 16) 

Observe that Eq. (3,,.14) is similar in form to Eq. (3-9) and 

Eqs. (3 .. 15) and (3~16) are similar in form to Eq. (3-11). Note also 

that each of the above equations relates the dual displacement angles 

ez, 93 , and e 4 to a fourth dual displacement angle. The displac'e-

ment angles 9 3 and e4 at the prismatic pairs are constant. 

Let the displacement angle 92 at the cylinder pair be now held 

constant at all positions of the mechanism. Denoting the constant 
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value of e2 by a2k, the primary parts of Eqs. (3-14), (3.,.15), and 

(3-16) give 

A sa + A ca + A = o 
s 6 c 6 n 

(3-17) 

B -sa + B ca + B = o 
s 1 c 1 n 

(3-18) 

c sa5 + c ca5 + c = o 
s c n 

(3-19) 

The constants in the above equations involve the constant 

kinematic parameters and are defined in Table IV. 

Observe that each of the equations (3,..17) thrqugh (3'1"19) contains 

only one variable and must hold true at varying values of that variable. 

This is possible only if their coeHicients vanish. This gives 

A =A =A =0 s · c n 

B =B =B =0 
s c n 

c .= c = c = 0 s c n 

(3-20) 

Examination of Egs. (3-20) gives the following relationships: 

ot5 = ot6 = o (3 -21) 



TABLE IV 

CONSTANTS FOR USE IN EQUATIONS (3-17) THROUGH (3-20) 

Ac, = S0:'6 SO:'S 

An= ce2k [se4k se 3k (SQ'4 ca2 sa1 ) + ce4k ce3k(-sa4 CQ'3 C0:'2 SQ'1) 

+ ce4k (SQ'4 Sa3·Sa2 SO:'l) + ce3k (-CQ'4 SQ'3 Cot2 SQ'l) 

+ (..,CQ'4 ca3 SQ'2 sa1 )] + se 2k [Se 4k ce3k (SQ'4 Sot1 ) 

+ ce4k se3k (S014 Cot3 Sot1 ) + se3k (CQ'4 Sot3 SQ'1 )] 

+ [se4k se 3k (Sot4 Sei2 Cei1 ) + ce 4k ce3k (-Sot4 Cot3 SOl2 C0t1) 

+ ce4k (-S0!4 Sot3 C0:'2 Ceil)+ ce3k ( ... C0t4 SQ'3 Sot2 CQ'l) 

+ (C0t4 CQ'3 C0:'2 C0tl )] .. C0t6 C0t5 

B 8 ·= ~ sa4 sa6 ( ... ce 2~ se4k c0 3k - ce4k C0t3 se3k 

+ seZk C0t2 se3k se 4k - seZk CO!z ce 4k C0t3 ce3k 
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+ se 2k ce4k S0t3 ) + S0t6 C0t4 (ce 2k S0t3 se3k +. se2k C0t2 sa3 ce3k 

+ se 2k s012 s013 ) 

B 0 = ... s016 Sa 4 c011 (-se2k se 4k ce3k - se 2k ce 4k ca3 se 3k 

- ce 2k ca2 se 4k se3k + ce 2k c012 ce 4k C0t3 ce 3k 

.. ce 2k S0t2 ce4k s013) + sa6 s014 s011 (-SQ'2 se4k se 3k 

+. s012 ce 4k c013 ce 3k + c012 ce 4k s013 ) 



TABLE IV (Continued) 

+ S0!6 C0!4 C0!1 (Se2k S0!3 se3k - ce2k C0!2 S0!3 ce3k 

... ce2 S0!2 C0!3) - S0!6 C0!4 SO!l (-S0:'2 S0!3 ce3k + C0:'2 C0:13) 

Bn = -C0:16 s0:14 S0:11 (-se2k se4k ce3k - se2k ce4k C0:13 se3k 

- ce2k c0:12 se 4k se3k + ce2k c0:12 ce 4k c0:13 ce3k 

.,. ce 2k s0:12 ce 4k s0:13 ) - c0:16 s0:14 c0:11 (-s0:12 se4k se 3k 

. I 

+ C0!6 C0:'4 SO!l (S92k S0!3 se3k - C9·2k c~2-.s0:13_ ce-3k 

- ce2k 80:'2 C0!3) + C0:'6 C0:'4 CO:'l (-S0!2 S0:13 ce3k + C0:'2 C0!3) 

.. C0:1 S 

cs:;: - se2k s0:1s s0:11 (-Ce3k ce4k + se3k c0:13 se4k) 

- ce2k S0:11 s0:1s c0:12 (-se3k ce4k - ce3k c0:13 se 4k) 

+ ce 2k s0:11 s0:12 s0:1s (-S0:13 se4k) + c0:11 sa5 sa2 (Se 3k ce4k 

+ ce3k c0:13 se 4k) + ca1 Sas ca2 sa3 se 4k 

cc= - se 2k Sas sa1 (-Ca4 se 4k - se 3k ca3 ca4 ce4k + se 3k SCl!4 ) 

- ce 2k sa1 sa5 ca2 (-se 3k C0!4 se4k + ce3k c0:14 ce4k 

- ce3k sa3 sa4 ) + ce2k s0:1 1 Sas sa2 (S0t3 ca4 ce4k + ca3 S0t4 ) 

... ca1 Sas sa2 ( ... se 3k C0t4 se4k + ce3k C0!3 c0:14 ce4k 

Sl 



TABLE IV (Continued) 

... ce3k SQl3 SQ' 4) .,. CQI 1 SOis CQl2 (SQl3 CQ'4 ce4k 

+ CQl3 SO! 4 

en= se 2k Ser1 Gers (Ce 3k ser4 se 4k + se3k CQl3 SQl4 ce4k 

+ se 3k Ser3 C0!4 ) + ce 2 Ser 1 CerS Cer2 (Se 3k SQ'4 Se4k 

- ce 3k CQl3 sQ'4 ce4k - ce3k sa3 ca4 ) .. 

... ce2k sa1 Cas S012 (-S0!3 S0!4 ce4k + C0!3 ca4 ) 

+ CQll Gas S0!2 (S93k Sa4 se4k - Ci93k C0!3 S0!4 ce4k 

S2 

- ce3k S0!3 Ca4) + CQll COis C0!2 ( .. S0!3 S0!4 ce4k + C0!3 C0!4) ... CQl6 
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(3 .. 22) 

The c;i.bove relationships provide the necessary conditions for 

the existence of an H.,..P-P-P-H-H mechanism. Eq. (3.,.21) shows 

that the axes of the three helical pairs are parallel to each other. 

Eq,. (3 .. 22) is a closure-condition relating the twist angles a 1, 0!2 , 

O! . ' 3 
an,.d O! 4 of the mechanism with the constant displacement angles 

e2k' e3k, and 9 4k at the three prismatic pairs (Figure 10). 

Existence Criteria of the Six .. Lin~ 

H-P-P .. H .. P-H Mechanism 

The existence criteria of an H-P ... P ... H-P .. H mechanism can be 

obtained from the displacement relationehips of an H.-C ... P .. H-P..,.H 

mechanism. 

Consider ·the H-C-P-H-.P-H space mechanism shown 

schematically in Figure 11, with helical pairs at joints A, D,, and 

F, cylinder pairs at joint B, and prism pairs at joints C and E. The 

instantaneous configuration of the H-C-P-H-P-H mechanism as shown 

· in Figure· 11, is completely defined by the two sets of six dual-angles, 

each as follows: 

I. Between acljacent pairing axes: 

,. 
OI~. = OI. + e a. 

l l l 

. 
(i = 1 to 6) (3-23) 
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® 
Figure 11. Six-link H-C-P-H-P-H Space Mechanism 
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where ex. (i = 1 to 6) are the twist angles and a. (i = 1 to 6) are the 
1 1 

kinematic link lengths. 

2, Between adjacent common perpendiculars: 

"' a. = e. + es. 
1 1 1 

(i = 1 to 6) (3-24) 

with s. = p. a. 
l l l 

(i = 1, 4, 6) 

where 9. (i = 1 to 6) are the angula11 displacements at the kinematic 
l 

pairs, s. (i = 1 to 6) are the translational displacer;nents along the 
l 

kinematic axei;, and p. (i = 1, 4, 6) are the finite pitch values of the l . 

helical pairs. 

In Eq. (3-24), the four angleE?, 9. (i = 1, 2, 4, 6) and the three 
1 

sliding components along the axes of the cylinder and prism pairs 

(s 2., s 3 , and s 5) constitute the seven linkage variables of the 

" H-C-P-H-P-H mechanism. The six dual angles o:. (i = 1 to 6) in 
l 

Eq. (3 ... 23) and the two constant displacement angles e3k and e5k of 

the prismatic pairs at joints C and E and the three finite pitch 

values of the helical pairs (p 1, p 4 , p 6 ) constitute the seventeen real 

parameters necessc;i.ry to specify an H-C-P-H-P-H mechanism of 

general proportions. 

Consider the H-C-P .. H-P-H space mechanism shown 

schematically in Figure 12. This mechanism r,educes to an 

H-P-P-H,..P-H mechanism if the displacement angle e2 at the 

cylinder pair remains constant at all positions of the mechanism 

(Figure 13). 



Figure 12. H-C-P-H-P-H Space Mechanism 

a.,,cr!, 0.5 ,ac5 

~~""""""~~9&:"1"1,...,spe F® 
a., ' ac& 

Figure 13. H-P-P-H-P-H Space Mechanism Obtained 
From the Mechanism in Figure 12 by 
Making e2 = 92k = a Constant 
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By considering the loop-closure condition of the mechanism 

in Figure 12 in three different ways, the following relationships can 

be obtained (120): 

(3-25) 

A A ,.. A A A I'\ A A A A 

+ ce 3 ce 2 (-Scc3 Ccc2 CCt'l Scc6 ) + ce3 (Scc3 Scc2 Scc1 SCt'6 ) 

+ ce 2 (-c;3 s;2 c;1 s;6) + (.c&3 c&2 s&1 s~6 )] 

(3-26) 



SS 

A I\ A A A A A A A 

- ce 3 cQ'3 ses se 4 + ce 3 cQ'3 ces cQ'4 ce4 

- ce 3 s;.3 ceS s;,4 ) + ce 2 s;,1 s;,5 S~2 (-s;,3 SSS se4 

(3-27) 

Note that Eq. (3-2S) is similar in form. to ,Eq. (3-7), Eq. (3-26) 

is similar in form to Eq. (3-9) and Eq. (3-27) is similar in form to 

Eq. (3-11). Note also that each of the above ·equations relates the 

,.. ,.. "" 
dual displacement angle ez, e3' and es to a fourth dual displacement 

angle. The displacement angles e3 and es of the prism pairs are 

. constant. Let the displacement angle e2 at the cylinder pair be now 
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made constant at all positions of the mechanism. Denoting the 

constant value of e2 by 9Zk' the primary parts of Eqs. (3,.25), 

(3-26), and (3-27) give 

D 896 + D ce6 + D = 0 s c n 
(3-28) 

(3-29) 

F s Se 4 + F c Ce 4 + F n = 0 (3-30) 

The constants used in the above equations involve the constant 

kinematic parameters of the mechanism and are defined in Table V. 

Observe that each of the equations (3-28) through (3-30) contains 

only one variable and must hold true at varying values of that vari.,. 

able. This is possible only if their coefficients vanish. This gives 

D =D =D =0 
s c n 

E=E=E=O 
s c n 

(3 .. 31) 

F =F =F =O 
s c n 

Equation (3-31) represents the necessary c;:onditions for the 

existence of H-P-P-H-P .. H mechanism. It is, however, possible to 

further simplify the conditions given by Eq. (3-31). For example, 

examination of Eq. (3-31) together with the constants of Table V 

show that the following case is possible: 

(3.,,32) 

(n = 0, 1 ~ 2, ... ) (3-33) 



TABLE V 

CONSTANTS FOR USE IN EQUATIONS (3-28) THROUGH (3..,31) 

D 8 = - seSk S016 SOl4 

DC = (CeSk SOl6 COis SOl4 + SOl6 SOis COl4 

Dn = (se3k se2k 80!3 SOil - ce3k (Ce2k SOl3 C012 SOil + S0!3 SOl2 COil )] 

+ ( .. ce2k COl3 S012 SOI l + C0!3 CO!z COi l) - (Ce Sk COl6 Sots S0! 4 

+ C016 COi S COi 4 ) 

E 8 = (se 3k ce 2k (S013 s0!6 ) + ce 3k se 2k (SCt'3 C012 S016 ) 

+ se 2k (CCt'3 _ sCt'2 s0!6 ) 

E 0 = [se 3k sa 2k (S013 Cct1 s0!6 ) + ce 3k ce 2k (-SOl3 COl2 Cct1 S016 ) 

+ ce3k (S013 SO!z SOil SQl6) + ce2k (-COl3 SOl2 COil SCt'6) 

+ ( ... COl3 C012 SOI 1 S016 )] 

En= [se 3k se 2k (S013 SOl1 C016 ) + ce 3k ce 2k ( .. Sot1 SOl3 COl2 :c0!6 ) 

+ ce3k (-SOl3 SO!z COil C016) + ce2k (-COl3 80!2 SOil C016) 

t (C013 C012 COil C016 )] - COis C014 

F s = - se 2k SOis SOl1 (-ce3k ce 4k + se 3k COl3 sa 4k) 

... ce 2k SOl1 SOl5 COl2 (-se 3k ce4k - ce 3k c013 se 4k) 

+ ce 2k SOl1 SOis SOl2 (-SOl3 se4k) - COl1 SOis SOl2 (-se3k ce 4k 
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TABLE V (Continued) 

- ce3k Cet3 se4k) - Cet1 Sets Cet2 ( .. sQ'3 se4k) 

Fe= - se2k Set5 Set1 (.,.cet4 se4k - se 3k COl3 Cet4 ce 4k + se3k Set4 ) 

~ ce2k Set1 SOl5 CCt'2 (-se 3k CQl4 se4k + ce3k c°"3 COl4 ce4k 

- ce3k Set3 Set4 ) + ce 2 Set1 Sets SOl2 (Set3 Cet4 ce4k 
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+ Cet3 Set4) - Cetl Sots Sot2 (-Se3k Cot4 se4k + ce3k COl3 Cot4 ce4k 

- ce3k Sot3 S014) - Cotl Sots Cet2 (SCt'3 COl4 ce4k + COl3 S014) 

F n = se 2k SOl1 COl5 (ce 3k SOl4 se4k + se 3k COl3 SOl4 ce4k 

+ se 3k SOl3 CCt'4 ) + ce2k SOl 1 c&s Cet2 (Se 3k SOl4 se4k 

... ce3k COl3 sCt'4 ce4k - ce3k SOl3 C0'4 ) -

- ce2k SOil COis SOl2 (-Sot3 SOl4 ce4k + COl3 C014) 

+ COl1 COl5 sOl2 (se 3k SOl4 se4k - ce 3k COl3 SOl4 ce4k 

- ce3k SQ'3 C014) + CO!l CO!s COIZ (-SOl3 S0:'4 ce4k 

+ COl3 Cet 4 ) - C0!6 



a.Q.d 

[se 3k se2k Sa3 Sal - ce3k (C0 2k Sa3 Ca2 Sa1 

+ Sa3 Sa2 ca1 )] + (-Ce 2k Ca3 Sc:v2 Sc:v1 

+ cc:v3 ca2 ca1) = o 
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(3 .. 34) 

The above relationships provide the necessary conditions for 

the existence of an H-P-P-H-P-H space mechanism. Equations 

(3 ... 32) and (3-33) show that the axes of the three helical pairs ane 

pa·rallel to each other. Equation (3 .. 34) is a closure condition relating 

the twiat angles Cl' 1, a 2 , and c:v3 of the mechanism with the constant 

displacement angles e2k' e3k' and e5k at the th:ree prismatic pairs 

(Figure 13). 

Ex.istence Criteria of the Six ... Link. 

H-P-H .. ]?-H .. P Mechanism 

The existence criteria of an H ... P .. H-P ... H-P mechanism can be 

obtained from the displacement relationships of an H-C~H-P-H-P 

mechi;l.nism i:;hown in Figure 14, with helical pairs at joints A, C, 

and E, cyUnder pair at joint B, and prism pairs at joints D and F. 

The instantaneous configuration of the H-C ... H-P .. H-P mechahism as 

shown in Figure 14 is completely defined by the two sets of six dual 

angles, each as follows: 

1. Between adja'cent pairing axes: 
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Figure 14. Six-link H-C-H-P-H-P Space Mechanism 
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" Qll = QI + e a. 
i l 

(i = 1 to 6) (3-35) 

where QI, (i = 1 to 6) are the twist angles and a. (i = 1 to 6) are the 
l l 

kinematic link-lengths. 

2. Between adjacent common perpendiculars: 

e. = e. + e s. 
l l l 

( i = 1 to 6) (3-36) 

with s. = p. e. 
l l l 

(i= 1, 3, 5) 

where e. (i = 1 to 6) are the angular displacements at the kinematic 
l 

pairs, s. (i = 1 to 6) are the translational displacements along the 
l 

kinematic axes, and p, (i = 1, 3, 5) are the finite pitch values of the 
l 

helical pairs. 

InEq. (3-36), the four angles, 9. (i = 1, 2, 3, 5), and the three 
l 

sliding components along the axes of the cylinde't' and prism pairs 

(s 2 , s 4 , s 6 ) constitute the seven linkage vari,ables of the H-C-H-P­

H-P mechanism. The six dual angles;, (i = 1 to 6) in Eq. (3-35) and 

the two constant displacement angles e 4k and e 6k of the prismatic 

pairs at joints D and F and the three finite pitch valµes of the heLical 

pairs (p 1 i 1?3 , p 5 ) constitute the seventeen real parameters necessary 

to specify an H-C-H-P-H-P space mechanism of general proportions. 

Consider the H-C-H-P-H-P space mechanism shown 

schematically in Figure 15. This mechanism reduces to an 

H-.P-H-P-H-P mechanism if the displacement angle e2 at: the 

cylinqer pair remains constant at all positions of the mechanism 

(Figure 16). 



a., , Qr. 

Figure 15. H-C-H-P-H-P Space Mechanism 

Figure 16. H-P-H-P-H-P Space Mechanism 
Obtained From the Mechanism 
in Figure 15 by Making 92 = 
e2k = a Constant 
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By considering the loop .. closure condition of the mechanism 

in Figure 15 in three different ways, the following dual displace-

ment relationships can be obtained ( 120): 

I\ /le A A I\ /Iii /ti I\ A 

+ ce3 (-Cot4 ·Sot3 Cot2 S0! 1) + (-C0!4 ca::3 Sot2 Sot1)] 

I\ ~ " " " I\ l!io A I\ + ce3 ( .. CCl'4 SCl'3 SCl'2 Cot 1) + (CCl'4 CCl'3 Cot2 CCl'1)] 

fll. A A A I\ 

,.. CCl' 6 Cc~ 5 + SQ/6 SCl' 5 C 0 6 = 0 (3-37) 

F 2 ( e 6, e 5 , e 4 , e 2) = Ge 4 [Se 6 Sa 5 ( s& 6 Ca 4 sci 3 ) 

+ Ca 6 C 95 ( -S& 6 C~ S Ca 4 s& 3 ) + C § 6 (sci 6 Sa S sci 4 sci 3 ) 

(3 .. 38) 
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(3-39) 

Observe that Eqs. (3-37) through (3-39) are similar in form to 

Eq. (3-9). Note also that each of the above equations relates the dual 

,.. ,.. ... 
displacement angles 92· e 4' and 96 to a fourth dual displacement 

angle. The displacement angles 9 4 and 06 at the prismatic pairs 

are constant for all positions of the mechanism. 

Let the displacement angle. 92 at the cylinder pair be now held 

constant at all positions of the mechanism. Denoting the constant 

value of 9 2 by e2k, the primary parts of Eqs. (3 ... 37), (3.,38), and 

(3-39) give respectively= 

H s03 + H ce3 + H = o 
s c n 

(3-40) 

r se 5 + r ce5 + r = o 
s c n 

(3-41) 

and J se 1 + J ce + J = o 
s c 1 n 

(3-42) 



The constants in the above equations involve the constant kinematic 

parameters of the mechanism and are defined in Table VI. 

Observe that each of the equations (3-40) through (3-42) 

contains only one variable and must hold true at varying values of 

that variable. This is possible only if their coefficients vanish. 

This gives: 

H =H =H = 0 
s c n 
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I = I = I = 0 ( 3-43) 
s c n 

and J = J = J ~ 0 
s c n 

Equations (3-43) represents the necessary conditions for the 

e:x:istence of H-P-H ... P-H .. P mechanism. It is, however, possible 

to further simplify the conditions given by Eq. (3-43). For 

e:x:ample, examination of Eq. (3-43) together with the constants of 

Table VI show that the following case is possible: 

O!l ± 0!2 =PTT 

0!3. ± O! 4 = PTT 

0!5 ± 0!6 = prr 

(p = 0, 1 , 2' . . . ) (3-44) 

Equations (3-44) give the necessary conditions for the existence 

of an fI-P-H ... P-H-P mechanism.· All these conditions show that the 

axei;; of the helical pairs are parallel to one another and the axes of 

the prism pairs are randomly oriented. 



TABLE VI 

CONSTAN'J'S FOR USE IN EQUATIONS (3 .. 40) THROUGH (3.,43) 

H 6 = C9Zk [Se4k (Sa4 Caz Sa1J + S9Zk [ca4k (Sa4 Ca3 Sa1 ) 

+ (Ca4 Sa3 Sa1 )] + se4k Sa4 Saz Ca1 

He= ceZk [ce4k (-Sa4 Ca3 Caz Sa1 ) + (-Ca4 Sa3 Caz Sa1 )] 

+ seZk [Se4k Sa4 Sa1] + [ce4k ( ... Sa4 Ca3 Saz Ca1 ) 

+ (-Ca4 Sa3 Saz Ca1)] 

Hn = ce2k [ce4k (Sa4 Sa3 Saz Sa1 ) + (-Ca4 Ca3 Saz Sa1 )] 

+ ce4k (-Sa4 Sa3 Caz ca1 ) + (Ca4 Ca3 Caz Ca1) - C0!6 COis 

+ Sa6 Sas ce6k 

I 6 = ce4k [se6k (Sa6 ca4 SC'l!3 )] + se4k [ce6k (Sa6 Cas sa3 ) 

+ C0:'6 SO'S S0:'3] + se 6k S0:'6 SQ' 4 C0:'3 

Ic = ce4k [ce6k (-S0:'6 CO'S Ca4 Sa3 ) + (-Ca6 SO'S COl4 Sa3 )] 

+ se4k [se6k S0:'6 sa3 ] + [ce6k (-S0:'6 Cas sa4 c0:'3 ) 

+ (-Ca6 Sas Sa4 Ca3 )] 

In= Ce4k [Ce6k Sa6 Sas SE¥4 Sa3 - Ca6 CaS S0:14 S0!3J 

+ [ce6k (-Sa6 sa5 C0:'4 ca3 ) + (Ca6 Cas ca4 ca3 )] - Caz Ca1 

+ SQ!2 sa1 ce2k 
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TABLE VI (Continued) 

J s = ce6k [8e2k 80:'2 CQ/6 8015] + 5e6k [ce2k 8012 CQ/1 8Ql5 + c012 s011 8015] 

+ 5e2k 8Cl'2 8016 CCl's 

Jc= ce6k [ce2k (-8Ql2 CQll CQ/6 8Cl'5) + ( .. CQl2 8Qli GQ/6 8Cl'5)] 

+ 896k [892k 8Cl'2 8Cl'5] + [ce2k (-8Cl'2 CQll 8Ql6 CQ/5) 

+ (-CO:'z 8~1 8Ql6 CCl'5)] 

Jn= ce6k (Ce2k (SCl'2 8~1 80!6 SQIS) + (-CQIZ CQll SQ/6 SO:'s)] 

+ [ceZk (-SQ/2 SQll CQ/6 CQIS) + (CQ/2 CQll CQ/6 CQIS)] - CQ/4 C0:'3 

+ SQI 4 SQ/3 ce 4k 



Summary and Extension of the Results 

to Other Mechanisms 

The existence criteria derived in the above sections clearly 

show that the six-link, single loop 3H+3P mechanisms can exist 
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only when the axes of the helical pairs are parallel to one another. 

$ubstitution of the existence criteria of 3H+3P mechanisms derived 

in the above sections into the displacement relationships of the re­

spective paren.t mechanisms show that these mechanisms have two 

degrees of freedom. Note that the results have been obtained by 

considering only the primary parts of the displacement relationships 

. of the respective parent mechanisms. Hence, the results will 

remain unaffe.cted even if one or more of the helical pairs are re­

placed by revolute pairs. Such a replacement yields 1'8 different 

types of overconstrained mechanisms with helical, revolute, and 

prism pairs. The results are, therefore, equally valid for the six­

link 3R+3P, 2R+lH+3P, and 2H+lR+3P mechanisms. Using the 

developed exi.stence criteria, it becomes possible to write the 

existence conditions of the 18 mechanisms with one passive 

coupling, These 18 mechanisms and their existence conditions 

are described in Table VII. 

Note further that, the results obtained are independent of 

the link lengths involved. Hence, if one of the link lengths is taken 

to be zero, the results will apply with equal validity to .five-link 
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TABLE VII 

EXISTENCE CONDITIONS OF OVERCONSTRAINED SIX-LINK 
SPATIAL MECHANISMS WITH HELICAL, REVOLUTE, 

AND PRISM PAIRS (ONE PASSIVE COUPLING) 

Parent 
Case Mechanism 

,. .... 

1 H,..C-P-P-H-H 
2 R-C ... P-P-R-R 
3 H-C-P-P-R-R 
4 R-C-P-P-R-H 
5 R ... C ... P-P-H-H 
6 H-C-P-P-.H-R 

7 H-C-P .. H-P-H 
8 R-C-P-R-P-R 
9 R-C-P-H-P-R 

10 H-C-P-R-P .. R 
11 R-C-P .. R-P ... H 
12 ·H-C-P-R .. P-H 
13 R-C-P,..H-P-H 
14 H-C-P .. H-P-R 

15 H-C .. H-P-H-P 
16 R-C-R-P-R-P 
17 H-C .. R .. P-R-P 
18 R-C-H-P-H-P 

1Mobility two (F 

2s . . ee Figure 17 . 

3s . ee F:i,gure 19. 

4See Figure 21. 

Overconstrained 
Mechanism1 

H-P-P-P-H-H 
2 

R-P-P-P-R-R 
H-P-P.-P-R-R 
R-P-P-P-R-H 
R-P-P-P,.H-H 
H-P-P-P-H-R 

H-P-P-H-P-H 
3 

R-P-P-R-P-R 
R-P-P-H-P-R 
H-P-P-R-P-R 
R-P-P .. R-P-H 
H-P-P-R-P-H 
R .. P-P-H-P-H 
H-P-P-H-P-R 

H-P-H-P-H-P 
4 

R-P-R-P-R .. P 
H-P-R-P-R-P 

= 2 ). 

Existence 
Criteria 

. Ax.es of helical and revolute 
parallel to one another and 
should satisfy Eq, (3-22) 

Axes of helical and revolute 
pairs parallel to one . 
another and should satisfy 
Eq. (3 .. 34) 

Axes of helical and revolute 
pairs parallel to one 
another 
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mechanisms derivable from the above six-link mechanisms. Simi .. 

larly, the criteria for four-link mechanisms derivable from the 

above six-link mechanisms can be obtained by taking two link lengths 

zero. Examples of five-link mechanisms deduced from the derived 

exhtence criteria of the above six-link mechanisms are shown in 

Figures 18, 20, and 22. The results of five-link mechanisms ob­

tained in this manner also confirm the results obtained by Pamidi, 

Soni, and Dukldpati (1.19), Hunt (30)~ and Waldron (35). The results 

of Hunt and Waldron were obtained by considering the SH and 6H 

mechanisms of Voinea and Atanasiu (17), which are themselves over­

constrained mechanisms. The results of Soni, Pamidi, and Dukki­

pati, and also in the present study, on the other hand, have been 

obtained by considering the mo.re general Z·ero family mechanisms, 

Further, in addition to the parallelism of the axes, the present 

results also give definite closure conditions that must be satisfied 

by the several constant kinematic parameters of the respective 

mechanisms. 



® 

Figure 1 7. 

® 

Six-link H-P-P...,P-H-H Overconstrained Space 
Mechanism (F = 2). Case 1 in Table VII 
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Figure 18. Five ... link H-P-P-R-H Overconstrained 
Space Mechaµism Obtained From the 
H-P-P-P-HJH Mechanism in Figure ... 
17 by Making Q'2 = 0 and p5 = O. 
(30, 35, 119) 
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® 0 

® 

® 
Figure 19. She-link H-P-P-:H-P-H Over­

constrained Space Mecha­
nism (F == 2}. Case 7 in 
Table VII 
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0 
0 

® 
Figure 20. Five-link H-P-P-H­

p Overconstrained 
Space Mechanism 
(F = 1) Obtained 
From Figure 19 
by Making cl-5 = 0 
(30, 35, 119) 
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® 
Figure 21. Six-link Fi-P-Fi_p_Fi_p Overconstrained 

Space Mechanism (F o 2). Case 15 in Table VII 
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® 

® 
Figur'e 22~ Five-link H-H-P-H-P Over­

constrained Space Mecha­
nism (F = 1) Obtained 
From the H-P-H-P-H-P 
Mechanism in Figure 21 
by Making a1 = o. (3 o, 
35, 119) 
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CHAPTER IV 

EXISTENCE CRITERIA OF TWO-LOOP 

MECHANISMS 

In this chapter, the Dimentberg passive coupling technique 
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has been employed to obtain the existence criteria of the six-link, 

two-loop R-R-C-C-C-R-C (one kink.link zero) and R-R-C-C .. C-P ... C 

mechanisms. These criteria are obtained from the displacement 

relationships of the parent six-link, two-loop R-C-C-C-C-C-C 

mechanism (120). The procedure for obtaining the existence criteria 

of R-R ... C-C-C-R-C, R-C-C-B,.-C .. C-R, and R-C-C ... R-C-C-P mecha .. 

nisms .from the parent R .. C-C-C-C ... C-C mechanism with general 

proportions is consider~d in Appendixes A and B. Appendix C deals 

with the conditions for the existence of two prism pairs in a two-

loop mechanism. 

Displacement Relationships for Obtaining 

the Existence Criteria 

The use of Dimentberg's method for obtaining the existence 

criteria of overconstrained two-loop mec;hanisms requires the dis­

plac;ement of the appropriate parent mechanism. The required 
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relationships can always be obtained by suitably arranging the loop-

closure conditions of the parent mechanism. 

Consider a general six-link, two-loop spatial mechanism of 

Stephenson type in Figure 23, with revolute pair at joint A and 

cylinder pairs at joints B, C, D, E, F, and G. Note that the sum 

of the degrees of freedom in all joints of the mechanism is thirteen. 

The mechanism has four binary links (AB, CD, EF, and FG) and 

two ternary links (AGD and BCE). 

Definitions of a Spatial Ternary Link 

The geometrical configuration bounded by three non ... parallel 

a.nd non-inter sec ting lines in space and a set of three uniquely 

drawn common perpendiculars .. -one between ec:i,ch two lines--is 

defined as a spatial ternary link. The three lines are defined as 

the axes of the ternary link; the three dual angles specifying the 

relative positions of the axes are called the sides of the ternary 

link. The three dual angles specifying the relative positions a>f the 

common perpendiculars are defined as the angles of the spatial 

ternary link. 

Figure 24 shows a spatial ternary link A' A-B 'B-C 'C whose 

three axes A' A, B 'B, and C 'c are respectively specified by unit 

line vectors ; 1 , ; 2 , and ; 3 . The three unit line vectors g, y, and 

" o are respectively coaxial with the common perpendiculars AB', 



5 ©/e 

Figure 23. General. Six-link, Two-loop R-C-C­
C-C-C-C Space Mechanism of 
Stephenson Type 
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BC', and C 'A. The directions of the six unit line vectors forming 

the spatial ternary link may be chosen arbitrarily provided the sense 

of the dual angles is consistent with the directions of the unit line 

vectors. 

In Figure 24, the directions are chosen in accordance with the 

following convention: 

1. Designate AA', BB', and CC' as axes 1, 2, and 3 respectively. 

2, ~, y, and 5 are directed from axes 1 to 2, 2 to 3, and 3 to 1 

respectively. 

,., "' ,. 
3. The directions of s 1, s 2 , and s 3 are chosen in such a way that 

the six unit line vectors of the spatial ternary link are so 

directed as to form a closed loop in space. 

Thus, one m~y write the three sides of the spatial ternary 

link as 
,., 
s = s + eb 

,., 
y = y + e c (4-1) 

,. 
0 = 5 + e d 

where S, y, and 5 are the twist angles and b, c, and d are the 

kinematic link lengths. 

The three angles of the spatial ternary link are 

,. 
11=11+ eu 
,., 
x = x + e q ' (4-2) 

,., 
s = s + ev 
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where 'T1, x, and s are the constant rotational displacement angles 

and u, q, and v are the constant offset distances. 

Using 3 x 3 matrices with dual number elements, the loop 

closure condition of the ternary link in Figure 24 is given by 

(4-3) 

where 

,,.. ,,.. 
Cs Ss 0 

" " " [sJ = -Ss Cs 3 0 

0 0 1 

1 0 0 

... ,.. ,.. 
[ y] 1 = 0 Cy Sy 

0 "' -Sy: " Cy 

,,.. ,.. 
Cx Sx 0 

[xJ3 = -Sx Cx 0 

0 0 1 

1 0 0 

,.. ,.. ,.. 
[S]l = 0 cs SS 

,,.. ,,.. 
0 -SS cs 

,,.. 
" Cil Sil 0 

,,.. ,.. ,,.. 

['T1]3 = -Sil c11 0 

0 0 1 
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1 0 0 

[8] 
,.. 

" = 0 C5 S5 
1 

,,., ,.. 
0 -Sa Co 

and 

1 0 0 

[I] = 0 1 0 

0 0 1 

(4-4) 

In the case where the three axes A' A, B 'B, and C 'C in Figure 

24 intersect at one point, say 0 (i.e., A~, B ', and C' coincide at O), 

the spatial ternary link is reduced to a spherical ternary link as 

shown in Figure 25; it is a configuration bounded by three arcs AB, 

:SC, and CA on the surface of a sphere of unit radius, with 0 as its 

center. Since the axes are intersecting, all the dual parts in Eqs. 

(4-1) and (4-2) become zero. Thus, the three sides of the spherical 

ternary link ABC are represented by 13, y, and S and the three angles 

are 11, X• and s. 
If the three axes in Figure 24 are parallel, then the spatial 

ternary link A' A-B 'B-C 'C becomes a planar ternary link, the pl;::tne 

P on which it lies is perpendicular to the three axes as shown in 

Figure 26, Since the axes are parallel, 13, y, and o in E:q. (4-1) 

are equal to zero,. Thus the sides of the plane ternary link A 'B 'C' 

are represented by the pure dual numbers eb, ec, and ed. With the 
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Figure 25. A Spherical Ternary Link 
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I 

I 
Figure 26. A Plane Ternary Link 



thr·ee common perpendiculars lying in the same plane, s 1 ~ s 2 , and 

s 3 in Eq. (4-2) vanish and the angles are represented by the real 

numbers 'Tl, x, and ~. 

· Surp.marizing a spatial ternary link is completely specified by 

the relative positions of its three axes which in general, are non-

parallel and non-intersecting. If the axes are intersecting, one 

obtains a epherical ternary link; if parallel, one obtains a plane 

terriary link. 

The relative positions of the three axes of a spatial te.rnary 

link s 1, s 2 , and s 3 may be expressed in te!1'ms c;>f its three sides 

A A A I\ A 

S, y, and S and three angles 'f1, x, and ~. However, these six. dual 

:numbers are not indepe'ndent of one another--given any three of the 

six dual-numbers, the remaining ones can be determined by the 

·closure condition of the ternary link. Thus, a ~patial ternary link 

can be completely specified by any thr·ee out of its six elements- -

three sid,es and three angles. 
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The constant displacement angles 'Tl, x, and .~, and the constant 

offset distances q., q, and v of a spatial ternary link in Figure 24 for 

a given set of twist angles (S~ v~ o) and link lengths (b, c, d) can be 

derived in the following manner. 

Equation (4-3) can be expressed as 

[~J = [~r1 (4-5) 

where 
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(4 .. 6) 

s-i.nce [~] is an orthogonal matrix, [~ r 1 is identical to its transposed 

·matrix, When the matrix products are carried out~ the dual.-matrix 

loop equation for the spatial ternary link becomes: 

" " " " " " " " 1 0 0 k4 c~ - (k2 Cy - SS Sy Sil) s~ 

" " k 1 C ~ - ~k 3 Cy + SS Sy C ~) S ~ 0 cs So ::::: 

" " " " " " " 0 -So Co L 2 S~ +SS Sx c~ 

A A I\ A"'""' A 

... k4 s~ - (k2 Cy - SS Sy Sil) c~ 

"',..,.. "'" 
L 1 s11 + Sy c11 sx 

h A "' A ;.,, 

cs ex - SS Sy Cx (4- 7) 

where 

L 1 = s§ Cy + c ~ Sy Cx 
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Equating the elements "33" of both members of Eq. (4- 7), 

we have 

c8 = c~ Cy SS Sy Cx (4-8) 

where all the dual angles are already defined in Eqs. (4.,1) and (4-2). 

The primary part of Eq. (4-8) can be written as 

C _ CS Cy - Co 
X - SS Sy . (4-9) 

The value of Cos x corresponding to a set of twist angles (S, y, o) 

can be computed from Eq. (4.,,9). However, there are two ways to 

assemble such a ternary link since the angle X is double-valued. The 

dual-part of Eq. (4-8) gives the constant offset distance q for a given 

set of S, y, 5 and b, c, d. 

- -d s 0 + b SS Cy + c Sy cs + ex (b cs Sy + c Cy SS) 
q - Sx SS Sy (4-10) 

To solve for the remaining ternary link parameters, we equate 

the corresponding dual elements 11 13 11 , "23", "31", and "32" of both 

members of Eq. (4- 7). Separate the resultant equation into two parts 

from which we mc;i.y solve for: 

(4-11) 

- Ll So (4-12) 

(4-13) 
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.:L S6 
2 

(4-14) 

u = 
-b L4 s11 + c (L3 s11 - Cy Sx C11) - q Sy (CT1 Cx -S11 sx CS) 

L 1 c11 - Sy sx s11 

(4-15) 

b(L3 s~ - cs sx c~) - c L 4 s~ '1" q ss (ex c~ .. sx s~cy) 
v = 

L 2 c~ - ss sx s~ 

(4-16) 

where 

L 1 = SS Cy + CS Sy Cx 

L 2 = cs Sy + s s Cy Cx 

(4-1 7) 
L 3 = s s sy - c e cy ex 

L 4 = CS Cy - SS Sy Cx 

Thus th.e four parameters 11, ~, u, and v are uniquely determined 

from Eqs. (4-11) through (4-17). 

The instantaneous configuration of the si:;ic-link, two-loop, 

R ... C-C-C-C-C-C mechanism, schematically shown in Figure 27, 

is completely defined by two sets of dual angles, each as follows: 

1. Between adjacent pairing axes: 

,.. 
Cl! •• = Cl! •• + e a .. (4 .. 18) 

lJ lJ 1J 

where &, . is the dual angle between axes i and j, Cl! •• are the twist 
lJ lJ 

angles and, a .. are the link lengths as shown in Figure 27. 
lJ 



Figure 27. Six-link, Two-loop R-C-C-C-C-C-C Space 
Mechanism 
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2. Between adjacent common perpendiculars: 

" 0. = e. + es. 
1 1 1 

(4 .. 19) 

where e. (i = 1 to 7) are the angular displacements of links, s. 
1 ·l 

(i = 2 to 7) are the linear displacements at the cylinCler joints, and 

i;i 1 is the constant of£set distance (kink-link) measured along the axis 

of the revolute pair. 

There are 13 variables in Eq. (4-19), e1 is the input angle at 

the revolute pair A and 9., s. (i = 2 to 7) are the other linkage vari.,. 
1 1 

ablei;;. The 20 quantities in Eq. (4..;18), et .. and a .. (ij = 12, 23, 34, 
lJ lJ 

41, 17, 76, 65, 52, 53, 47) and the constant offset distance s 1 in 

Eq. (4 .. 19), cqnstitute the 21 constant reci.l linkage parameters 

necessary to specify completely a six-link, two-loop space mecha-. 
nhm of Stephenson type with general proportions. The loop-closure 

condition of the mechanism can be written in three ways, one for 

each loop. It is to be noted that the mechanism has only two inde-

pendent lGops. Since e,, s . (i = 1 to 7) iire not independent of 9. 
-i. -1 1 

" and s. (i = 1 to 7) respectively, the relationship between 9. and 
1 -1 

.... 
El. can be obtained. Thus 

1 
,,. 
e.=9.+es. 
-1 -1 -1 

.... 
e 
-1 

" e 
-3 

(4-20) 
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,.. ,.. ,.. 
e = - 'TT + e - ~ 3 -4 4 (4-Zl) 

,. ,.. ,.. 
!5 = 05 + W3 - TT 

,.. ,.. 
!6 = 96 
,. ... ,.. 
a = e --7 7 ~2 t TI 

where 

,.. 
~ = ~. + e p. ( i = 1, 2, 3) 

i l l 

,.. (4-22) 
w. = w. + € C, (i = 1, 2, 3) 

1 1 1 

A A A " 

Note that ~i (i = 1, 2, 3) are the angles and 0:117 , a 74, 11'41 are the 

sides of the ternary link AGD and w. (i = 1, 2, 3) are the angles and 
1 

~23 , &35 , ~SZ are the sides of the ternary link BCE in Figure 2~. 

The parameters of the six-link, two-loop R ... Q-C-C-C-C-C space 

mechanism of Stephenson type a.re described in Table VIII. 

Using (3 x 3) matrices with dual number elements, closed 

form displacement relationships of the mechanism are derived by 

Soni,· Du.kkipati, and Huang (120), 

Loop 1 (ABCDA) 

The loop-closure condition of the mechanism in Figure 27 for 

the loop 1 (ABCDA) is given by (120): 

= [I] (4 ... 23) 

where 



TABLE VIII 

PARAMETERS OF SIX-LINK, TWO-LOOP R-C-C-C-C-C-C 
SPACE MECHANISM OF STEPHENSON TYPE 
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Constant Kinematic Parameters Var.iable Kinematic Parameters 

Independent Parameters: 

Kinematic Links: 

aij (ij = 12, 23, 34, 41, 17, 76, 
65, 52, 53, 47) 

Twist Angles: 

ct. • ( ij = 12, 2 3, 3 4, 41, 1 7, 7 6, 
lJ 6 5, 52, 53, 47) 

Kink-Link: s 1 

Total: 21 

Dependent Parameters: 

Rotational Displacement Angles: 

e. (i = 1 to 7) 
1 

Translational Displacements: 

s. (i = 2 to 7) 
1 

Total: 13 

Constant Displacement Parameters: 

iJi., *. ( i = 1 to 3) 
1 1 

Kink-Links: 

p. , c. ( i = 1 to 3) 
1 1 

Total: 12 
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;. ;. 

ca. se. 0 
l l 

;. ,.. ;. 

[ei]3 = -Se. ce. 0 
l l 

0 0 0 

1 0 0 

... ... ... 
[O! .. ]1 = 0 CO! .. SO! .. 

lJ lJ lJ 
... ... 

0 -SO! .. CO!,. 
lJ lJ 

and 

1 0 0 

[I] = 0 1 0 (4~24) 

0 0 1 

Two arrangements 0£ Eq. (4-23) are ueeful in the stµdy of 

~xistence criteria. 

1. Relationship involving the adjacent dual displacement angles. 

In this arrangement of Eq. (4-23), five matrices are used on 

one side of the equality sign and three matrices on the other. Thu$, 

we have, for instance, 

(4-25) 

Simplifying the above equation by using relations (4-24) and equating 

the 1133 11 elements of the resultant matrix equation, we get 
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(4-26) 

Note that Eq. (4-26) involves the two adjacent dual displacement 

Cyclic permutation permits -Eq. (4-26) to be written in four 

different ways. It is, therefore, possible to get four equations of 

the form (4-26) involving different combinations of two adjacent 

angles. 

2. Relationship involving two displacement angles opposite to 

one another. 

In this arrangement of Eq. (4-23), three matrices are used on 

one side of the equality sign and five matrices on the other. The 

important point to note is that the central matrix on the side con-

taining three matrices involves only the va.riable kinematic param .. 

eters of the mechanism. Thus, we have, for instance, 

"' 
Note that the central matrix [e 1 ]3 on the left hand side only 

involves the variable kinematic parameters of the mechanism. 

Simplifying .Eq. (4-27) by using relations (4-24) and equating 

the "33" elements of the resultant matrix equation, we get 
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(4-28) 

Cyclic permutation allows Eq. (4-28) to be written in two different 

ways. It is, therefore, possible to obtain two equations of the form 

(4-28) involving different combinations of two opposite displacement 

angles. 

Loop 2 (DGFECD) 

The dual-matrix loop closure equation for loop 2 (DOFECD) is 

given by 

[e4J3 [&4111 [e7J3 [&1·611 [e6J3 [&6511 [e5J3 [&5311 

[e3J3 [&34)1 = [I) (4-29) 

Two arrangements of Eq. (4-29) are ui:ieful in the study of existence 

criteria. 

1. Relationship involving two adjacent dual displac;ement angles 

and the dual displacement angle opposite to both of them. 

In this arrangement of Eq. (4-29 ), five matrices are used on 

either side of the equality sign. Thus, we have, for instance, 

(4-30) 

Simplifying the above equation by using relations (4-20), (4-21), 
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(4-24) and equating the "33" elements of the resultant matrix. equation, 

we get 

(4 ... 31) 

' ~ 
Note that Eq. · {4-31) involves the adjacent displacement angles e6 

A ~ 

and e7 and the displacement angle ! 3 opposite to both of them. 

Cyclic permutation permits Eq,. (4 .. 30) to be written in five 

different ways. It is, therefore, pas sible to get five equations of 

the form { 4-31) involving different combinations of two adjacent 

angles and the angle opposite to both of them, 

2. ·Relationship involving three adjacent dual displacement 

angles. 

In this arrangement of Eq. {4-29), seven mat:ric'es are used 

on one side qf the equality sign and three matric;:es on the other. 

The important point to note is that the central matrix on the side 

containing .three matrices involves only the constant kinematic param-

eters of the mechanism. Thus, we have, for instance, 

(4 .. 31) 
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Note that the central matrix [Q/65 ] 1-l on the right hand side involves 

only the constant kinematic parameters of the m~chanisrn. 

Simplifying Eq. (4-31) by using relations (4-24) and equating 

the "33" elements of the resultant matrix equation, we get 

(4-32) 

Note that Eq. (4-32) involves the three adjacent displacement angles 

e 3' 9 4' and e 7' 

Cyclic permutation allows Eq. (4-31) to be written in five 

different ways. It is. therefore, possible to obtain five equations of 

the form (4-32) involving different combinations of three adjacent 

angles. 

Loop 3 or Outer Loop (ABEFGA) 

The loop-closure condition of the mechanism in Figure 27 for 

loop 3 is given by 

[a 1 J3 [~11J1 re 7J3 r~16J1 [e6J3 [~65J1 [e 5J3 [~52J1 

[e 2]3 [~21 Jl = [I] (4-33) 



102 

Two arrangements of Eq. (4-33) are useful in the study of existence 

criteria. These arrangements are similar to tl;le loop 2 considered 

above. 

The first is the arrangement of five matrices on either side of 

the equality sign. Thus, we have, for instance., 

(4-34) 

Simplifying the above equation by using relations (4-24) and equating 

the "33 11 elements of the resultant matrix equation, we get 

(4-35) 

"' Note that Eq. (4-35) involves the adjacent displacement angles ,.2_ 6 

"' "' and ,.2. 7 and the displacement angle ,.2_ 2 opposite to both of them. 

Cyclic permutation allows Eq. (4-34) to be written in five 

different ways. It is, therefore, possible to get five equations of 

the form (4-35) involving different combinations of two adjacent 

angles and the angle opposite to both of them. 

The second is the arrangement of seven matrices on one side 

of the equality sign and the three matrices on the other. Thus, we 

have, for instance, 
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(4-36) 

Simplifying Eq. (4-36) by using relationships (4.,.24) and equating the 

11 33 11 elements of the resultant matrix equation, we get 

A 1' ;.. I\ A A. I\. A I\ 

£3 (!l' !2' !7) = [(SO:'l 7 C0:'76 + CCt'l 7 S0:'76 C!6) s~l 

+ Srx76 Se 7 Ce l] [Srx52 Se 2] + [Srx76 Se 7 se 1 

+ 8~52 c;.21 ce 2) + (c;.11 c~76 -· 

- s;,17 S~76 Ce 7) (C;,52 C~21 • S~52 S~21 ce 2) 

(4 ... 37) 

,., 
Note that Eq. (4-37) involves the adjacent displacement angles 9 . -1 

and !z and the displacement angle ! 7 opposite to both of them. 

Observe that equations (4-26), (4-28), (4-31), (4-32), (4-35), 

and (4-3 7) are all dual equations. Each of them, therefore, repr~-

sents two scalar equations. Since four equations of the form (4-26 ), 

two of the form (4-28), and five each of the form (4 ... 31), (4-32), 

(4 ... 35 ), and (4-3 7) are possible; a total of fifty-two scalar equations 

are available. These fifty-two scalar equations make it possible to 

obtain the existence criteria of all mechanisms with one general 

constraint or two passive couplings. 



EJ1;iste.r;ice Criteria of the Six ... Link 

R-R-C ... C-<;:-R-C Mechanism 

104 

In this section, the Dimentberg passive coupling method has 

been used to obtain the existence criteria of an R ... R-C .. C-C,..R .. C 

mechanism with one kink-link zero from the displacement relation­

ships of the parent R.-C-C-C-C-C ... C mechanism. The procedure 

for obtaining the existence criteria of the R-R-C-C .. C ... R-C mecha .. 

nism with non-zero kink ... links is given in Appendix A. 

Derivation of the Existence Criteria 

ConaidE:ir the six-li.n.k, two-loop R .. C-C .. C .. C-C-C space 

mechanism shown schematically in Figure 27. Note that the offset 

distance at the revoh,ite pair at A ii;; constant. If the translational 

displacement s 2 at the cyHnder pair at B remaini;; coni;;tant and 

the translational displacement s 6 at the cylinder pair at F reduces 

to zero at all positions of this mechanism, then it :reduces to an 

R .. R.,.c ... c .. c ... R .. C mechanism as shown in Figure 28, 

By eonsid,ering the loop-closure condition of the mechanism 

in Figure 27 in two different ways, one from loop 1 (ABCDA) and 

the other from outer loop (ABEFGA), the following displacement 

relationships can be obtained: 



Q.I 'CIC17 

Figure 28. R~R-C-C-C-R-C Space Mechanism Obtained 
From the Mechanism in Figure 27 by 
Making s 2 = s 2k = a Constant and s6 = 0 
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(4 .. 38) 

(4 .. 39) 

Note that Eq. (4-38) is similar in form to Eq. (4-26) and Eq. (4-39) 

is similar to Eq. (4-35). Now, let the translation s 2 become con-

stant equal to s 2k and the translation s 6 be zero at all positions of 

the mechanism. Using equations (4-20), (4 .. 21) and (4-22) the dual 

part of Eq. (4 .. 38) becomes 

(4-40) 

where 

(4-41) 



The constants in Eqs. (4-41) involve only the constant kinematic 

paramet~r s 0£ the mechanism and are defined in Table IX. 

Eliminating the angle e 6 from the primary and dual parts of 

Eq. (4-39) using Eqs. (4 .. 20) through (4-22), we get 
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(4-42) 

where 

A2 (tl) = A22 t~ + A21 tl + A20 

Al (tl) = Al2 t~ +All tl + AlO 

Ao (tl) = A02 t~ + AOl tl + Aoo 

(4"r""43) 

The constants in Eqs. (4-43) are defined in Table XI. !£ an 

R-R-C-C-C .... R-C mechanism of the type under consideration is to 

exieit, the quadratic equations (4-40) and (4-42) must have at least 

one common root. This gives the condition (102): 

Bz (tl) Bl (tl) B 0 ( tl) 0 

0 B2 (tl) Bl (tl) BO(\) 

= 0 (4-44) 

A2 (tl) Al (tl) AO (tl) 0 

0 A2 (tl) Al (tl) AO (tl) 

Equation (4-44) is a function of only the va:dable t 1 . Expanding and 

simplifying it, we get 

c 8 t~ + c 7 t~ + , .. + c 1 t 1 + c 0 = o 

or in short, 



TABLE IX 

CQNS'rANTS FOR USE IN EQUATION (4-41) 

D002 = a41 C0!41 S0!23 + a23 C0!23 Set41 

DOOl = 8 1 Set23 Set41 + 8 2k Cetl2 Set23 

DOOO = 8 2k Setl2 CC¥41 SC¥23 

E002 = 8 2k Set23 SC¥41 + 8 1 CC¥12 SC¥23 

EOOl = ""az3 Cet23 CC¥12 + al2 Setl2 SC¥23 

EOOO = .. al2 CC¥12 CC¥41 SC¥23 .. a23 CC¥41 CC¥23 SC¥12 

+ a 41 Set 41 SC¥ 12 SC¥23 

F 002 = 8 1 SC¥41 SC¥23 

F 001 = -a41 CC¥41 CC¥23 + a23 SC¥23 Set41 

F 000 = a34 SC¥34 • CC¥ 12 (a 41 SC¥ 41 C0!23 + a23 SC¥23 CC¥ 41) 

'" a12 SO!l2 CC¥41 Ca23 

B22 = EOOl - Eooo - F 001 + F 000 

B21 = -2 (E002 - F 002) 

B20 = -EOOl - Eooo + F 001 + F 000 

Bl2 = -2 (DOOl - Dooo) 

Bl 1 = 4 D002 
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TABLE IX (Continued) 

BIO = 2 (DOOl + Dooo) 

B02 = .. EOOl + Eooo .. F 001 + F 000 

BOl = z (EQ02 + F 002) 

Boo = EOOl + Eooo + F 001 + F 000 
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TABLE X 

CONSTANTS FOR USE IN TABLE XI 



TABLE XI 

CONSTANTS FOR tJSE IN EQUATION (4""43) 
AND TABLE XII 

Yz = F 0 - F 1 xl + F 2 x~ 

y 1 = 2 F x - F x~ + F - 2 F x 
01 11 1 21 

y 0 = F 0 x~ + F 1 xl + F 2 

w = -2 G x + G x2 - G t 2 G2 x 1 1 0 1 1 1 1 
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TABLE XI (Contim;~ed) 

A 01 = y 1 - x w + x 2 z . 2 1 2 1 
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8 
\ ti - 0 l Ci 1 .., ' i = o, 1, 2, •.. , 8 (4~45} 

i=O 

The constants in the above eguation are defined in Table XII. Equa-

tion (4 .. 45) must hold good at all values of the variable t 1 . Its 

coefficient must, therefore, vanish. Thus, we have 

c. = 0, 
1 

i = 0, 1, 2, •.. , 8 (4-46) 

Conqition (4.,.46) represents nine equations among the 20 con-

stant kinematic parameters of the R .. R-C-C ... C-R-C mechanism in 

Figure 28 (namely, the 8 link-lengths a 76 , a 65 , a 52 , a 17 , a 34, 

a 41 , a 23 , and a 12 , the 8 twist angles 0!76 , a65 ~ a 52 , a 17 , a 41 , 

oi34, a23 ~ and a 12 , the 2 constant offset distances s 1 , s 2k of the 

revolute pairs A and B, and the 2 constant displacement angles 

~land w1 at the two ternary Links at jc:>ints A and B). These nine 

equations pr~vid,e the nee es sary conditions for the existence of a 

six .. link two-loop R .. R.,.C-C-C .... R-C mechanism with constant offset 

distances at the revolµte pairs at A anc;l, B and zero offset distance 

at the revolute pair at F ~ 

On Obtaining R ... R ... C-C.,.C-R-C Me<;:hanism 

From the Derived Criteria 

The exi$tence criteria derived in the previous section can be 

used to obtain the con$tant kinematic parameters 9f the R,.,R.,..C-C.,.C-

R-C mechanism. 



TABLE XII 

COEFFICIENTS FOR USE IN EQUATION (4 .. 45) 

0 8 = A12 A22 B02 B12 + (ZA02 A22 - A~2) B02 B22 "' A02 A22 B~2 

+ A02 A12 B12 B22 - A~2 B~2 ""A~2 - B~2 

0 7 = .,A.12 A22 (BOl B12 t B02 Bll) +(All A22 +A12 A21) B02 B12 

+ (ZA02 A22 - A~ Z) (BOl B22 + B02 B21) + z (AOl A22 

+ Aoz A21 - All A12) B02 B22 ... 2 A02 A22 Bll B12 

... (AOl A22 + A02 A21) B~2 + Aoz A12 (Bll B22 + B12 B21) 

+ (AOl A12 + A02 All) B12 B22 .,. z (A22 B02 (A21 Boz 

+ A22 BOl) + A02 B22 (AOl Bzz + A02 B21 )] 
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0 6 = A12 A22 (BOO Bl2 + B02 BlO + BOl Bll) + (AlO A22 + Al2 Azo 

+All A21) B02 Bll +(All A22 + Al2 A21) (BOl Bl2 + B02 Bll) 

+ (ZA02 A22 ., A~2) (Boo B22 + B~z Bzo + BOl B21) 

+ [z (Aoo A22 + A02 A20 + AOl A21 - AlO Al2) ... A~l] B02 B22 

+ Z(AOl A22 + A02 A21 - All Al2) (BOl B22 + B02 B21) 

., A02 A22 (ZBlO B12 + B~l) - (Aoo A22 + A02 A20 

+ AOl A21) B~2 .. Z(AOl A22 + A02 A21) Bll B12 

+Aoz A12 (BIO Bzz + B12 B20 + Bll B21) + (Aoo A12 
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TABLE XU (Continue~) 

+ A02 Al 0 + AOl All) B 12 B22 + (AOl Al z + Aoz All )(Bll B22 

+BIZ BZl) .. A~z (ZBOO Boz + B~l) - (ZAzo Azz + A~I) B~z 

- 4 Az1 Azz BOl B02 - A~2 (ZBZO Bzz + B~l) - (ZAOO Aoz 

+ A~l) B~z - 4Ao1 Aoz BZl BZ2 

cs= AIZ Azz (Boo Bu + BOI BIO)+ (AIO AZI +All A20) B02 BIZ 

+ (All Azz +, Al2 A21) (Boo BIZ + B02 BlO + BOI Bll) 

+ (AIO Azz + AlZ Azo +All AZI) (BOl BIZ+ Boz Bll) 

+ (ZA02 A22 ,,. A~2) (Boo B21 + BOl B20) + Z(Aoo A21 + AOl A20 

... AIO A.ll) B02 B22 + Z(AOI Azz + Aoz A2I ,. All AIZ)(Boo Bzz 

+ Boz Bzo + 13 oI BZI) + [Z (Aoo A22 + A02 A20 + AOI A;o 

.. AIO AlZ) - A~l] (BOI Bzz + B02 BZI) - ZAoz A2Z BIO Bll 

- (Aoo AZI + AOI Azo) B~z - (AOI A2Z + Aoz AZI) (ZBIO BIZ 

+ B~l) .. Z(Aoo A22 + Aoz A20 + AOI AZI) Bll Bl2 

+ A02 AIZ (BIO BZI + Bll B20) + (Aoo All + AOl AlO) BIZ B22 

+ (AOl Al2 +A02 All) (BIO B22 +BIZ B20 + Bll B2I) 

+ (Aoo AI2 +.A02 AIO + AOl All) (Bll B22 +BIZ B2I) 

- 2 [A~2 Boo BOI + A20 AZI B~2 + A21 A22 (Z Boo B02 + B~l) 



TABLE XII (Continued) 

+ (ZA20 A22 + A~l) BOl B02] .. 2 [A~2 B20 B21 + Aoo AOl Biz 

+ AOl A02 (ZB20 B22 + B~l) + (ZAOO A02 + A~l) B21 B22] 
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TABLE XI~ (Continued) 

+ A~l) (ZB20 B22 + B~l) 



TABLE XII (Continued) 

+ (ZA20 A22 +A~l) Boo BOl + A20 A21 (ZBOO B02 + B~l)] 

- Z[A~o B21 B22 + AOl A02 B~o + (ZAOO A02 + A~l) B20 B21 

+ Aoo AOl (ZB20 B22 + B~l )] 

G2 = AlO A20 (Boo B12 + B02 BIO+ BOl Bll) + (AlO A22 +A12 A20 

+All A21) Boo BlO + (AlO A21 +All A20) (Boo Bll 
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+ BOl BIO)+ (ZAOO A20 - A~o) (Boo B22 + B02 B20 + BOl B21) 

+ [Z(Aoo A22 + A02 A20 + AOl A21 ... AlO A12) - A~l] Boo B20 

+ (Aoo A21 + AOl A20 - Al 0 Al 1) (Boo B21 + BOl B20) 

,.. Aoo A20 (ZBl 0 Bl 2 + B~ 1) - (Aoo A22 + A02 A20 

+ AOl A21) B~o - Z(Aoo A21 + AOl A20) BIO Bll 

+ Aoo AlO (BIO B22 + Bl2 B20 + Bll B21) + (Aoo Al2 + A02 AlO 

+ AOl All) Bl 0 Bzo + (Aoo All + AOl Bl 0) (B 10 B21 + Bl 1 B20) 

- A 2 20 (ZBOO B02 + B~l) - (ZA20 A22 + A~l) B~o 

- 4Azo A21 Boo BOl - A~o (ZBZO B22 + B~l) ... (ZAOO Aoz 

+ A~l) B~o - 4Aoo AOl B20 B21 

GI= AlO A20 (Boo Bll + BOl BIO)+ (AlO A21 +All A20) Boo BIO 

+ (ZAOO A20 ,.. A~o) (Boo B21 + BOl B20) + Z(Aoo A21 



TABLE XII (Continued) 

+ AOl A20 .. AlO All) Boo B20 - ZAOO A20 BIO Bll 

.. (Aoo A21 + AOl A20) B~ 0 + Aoo Al 0 (Bl 0 B21 + Bll B20) 

+ (Aoo All +AO! AlO) BIO B20 - Z[A20 Boo (A21 Boo 

+ A20 BOl) + Aoo B20 (AO! B20 + Aoo B21 )] 

co= AlO A20 Boo BIO+ (ZAOO A20 - A~o) Boo B20 - Aoo A20 B~o 

+ Aoo Al 0 Bl 0 B20 - A~o B~o - A~o B~o 
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l£ the constant kinematic parameters are regarded as unlrnowns, 

it is possible to soLve thts system of equations (4 .. 46) for the µnknowns. 

The algebrak equations (4-46) describing the exii;;tence criteria of 

the mechanism are sufficiently complex to prevent from presenting 

any simplified geometric.: descriptions. In fact, the complexity ex.,. 

tends far enough to prevent from presenting simplified explicit 

resuHs in order to facilitate direct computations of the mechanism 

parameters. Hence it is not practical to solve the equations analyti-

caLly. Instead, a nunie:rical search technique (123) is J?referred to 

solve ~or the constant kinematic parameters. 

The numerical method used in the present study for solving the 

system of 9 consistent nonHnea:r alg~braic equations :representing the 

existence conditions of the R .,,R-C .. C -C-R-C mechanism is that 

developed by Chandler (123). The listing of the computer program 

is given in Appendix D. Let 

. . . x ) = 0 
n 

i=l,2, .•. ,9 (4 .. 47) 

represent a system of nonlinear equations in n un.knowns where x 1 , 

x 2 , ... , xn a:t"e the 20 unknowns (link lengths a 76 , a 65 , a 52 • a 17 , 

a 41 , a 23 , a 34, and a 12 , and twist angles a 76 , a 65 , a 52 , a 17 , a 41 , 

a 34/ a 23 , and a 12, constant offset distances s 1 and s 2k, and the two 

constant displacement angles ~ 1 and 1)r 1 at the two ternary links). 



An objective function: 

Y = I f~ (xl, x2, ... , x2 o) 

i=l 

is defined and is minimized such that Y ~ O. 
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It is impo;rtant to note that the equations given by (4 .. 47) repre-

sents only necessary conditions fo.r the existence of R .. R ... C-C .. C .. R-C 

mechanism. ·The conditions a.re not sufficient because satisfaction 

of tqe criteria does not itself guarantee q.n R-R .. C .. C-C-R-C space 

mechanism. This is because Eqs. (4 .. 46) also have solutions that 

c;orrespond to spherical and planar mechanisms. Such solutions are 

called here trivial solutions. See, for instanc;:e Table XV in Appendix 

D. 

The triviality and non-triviality of the solutiqns of Eqs. (4-47) 

can be checked py substituting the values of the constant kinematic 

parameters in the original displac;ernent relation!'lhips of the parent 

R-C-C .. C..,C .. C-C mechanism (120). A non,...trivial solution will give 

constant offset distanc;:e at the cylinder pq.ir B, and zero offset dis-

tance at the cylinder pair F at all po!'litions of the pc;tl;"ent mechanism 

without, at the same time, affecting its true mobility. A trivial 

solution will not meet these requirements. 

Using the proposed numerical technique, the following 

solution is obtained: (See Table XVI and Figure 35 in Appendix D.) 



Twist .. Angles: 

0 
Q'12 :;: 70. 000 

0 
Q'23 = o. 0 

0 
Ct'34 = 70. 000 

0 
Ct'41 = o. 0 

0 
0!65 = 0, 120 

0 
ct76 = 70. l 00 

0 
ct52 = 180, 000 

0 
ctl 7 ::; 180, 008 

Constant Displacement Angle$; 

0 
~l = 30.00 

0 
w1 = 80. oo 

Kink - Links: 

s = o. 4 11 
1 

S = 0 4" 2k • 

Link-Lengths: 

a ,: 2. 00 11 

12 
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a ·= 
34 

2. 5 11 

a41 = 3. 0 11 

a65 = 10, 0" 

= 10. 0 11 

a52 - O. 511 

a = 0 5 11 
1 7 • 

Substitution of these parameters in the displa<;:em~nt relationships 

qf R ... R .. C-Q .. C .... R ... C mech~nism (120) shows zero translation s 6 and 

constant translation s 2k at the cylinder pairs F and B respectively. 

From the eJ[tensive search carried out using this numerical 

technique, it shows that the system of Eqs. (4-4 7) appear to have 

narrow range of solutions fo?' the R ... R-C ... C-C-R-C mechanism. 

Existence Criteria of the Six.Link 

The six-link~ two-loop R-R-C-C..,C-P ... C mechanism can be 

derived, like the R ... R ... C-C-C ... R .. C mechanism, from the parent 

R .. C,..C-C,..C-C ... C mechanism. 

In this section, the Di:rnentberg method has been used to 

obtain the existence criteria of the R~R-C-C-C-P.,.C mechanism 

with constant offset distances at its revo1ute pairs and constant 

displa1=ement angle at the prismatic pair from the displacement 



•, 
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r·elationshipe of an R ... c .. c ... c-c .. c .. c mech~nism. 

Consider the R .. c ... c .. c .. C-C-C space mechanism shown scbe ... 

maticaUy in Figure 27. If the translational displacement s 2 at the 

cylinder pair a..t B and the rotational displacement s 6 at the cylinder 

pair at F remain constant at all poE!litions of this mechanism, then it 

redu<:ies to an R-R-C-C .. C-P-C mechanism as shown in Figure 29, 

By considering the loop-closure condition of the mechanism in 

Figure 27 in two different ways, one from loop 1 (ABCDA), the other 

fl"om outer loop (ABEFGA), the following relationships can be 

ab'tained. 

A I\ A I\ A•~ A A A 

F 1 (91, 92) = (SCl'23 S~41 802) SE\ ,. [SCl'41 (Sr.vl2 CQ'23 

F 
3 

+ cCil2 s,;23 ce2)] eel ., ccl-34 + cQ.41 (C~l2 cQ.23 

= 0 

(4-48) 

(4"l'49) 

Note that Eq. (4.,.48) is the same as Eq_. (4 ... 38) and Eq. (4-49) is the 

same as Eq, (4 ... 39). 

Now, let the translational dis·placement s 2 become constant 

and the rotational displacement e6 be also constant at all positions 

of the mechanism. 



Figure 29. R-R-c:;-C-C-P-C Space Mechanism Obtained 
From the Mechanism in Figure 27 by 
Making s 2 = s 2k = a Constant and 96 = 
96k = a Constant 
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The dual part of Eq. (4-48) after simplification using Eqs. 

(4-20) through (4-22) becomes 

126 

B z ( t l ) t~ + Bl ( t l ) t 2 + BO ( t l ) = 0 ( 4-5 0) 

where 

and B2 (tl) = B22 t~ + B21 tl + B20 

Bl (tl) =BIZ t~ + Bll tl +BIO 

B 0 (t 1 ) = B 0 2 t~ + B 01 t 1 + B 0 0 

(4-51) 

Not~ that Eq. (4-50) is the same as Eq. (4-40) and the constants 

in Eqs. (4 ... 51) ~nvolve only the constant kinematic parameters of 

the mechanism and hence are defined in Table IX. 

Denoting the constant value of the angle e 6 by 9 6k , the 

primary part of Eq. (4-49) becomes 

where 

M 2 (t1 ) t~ + M 1 (t1 ) t 2 + M 0 (t1 ) = 0 

M2 (tl) = M22 t~ + M21 tl + M20 

M 1 ( t 1 ) = M 12 t~ + M 11 t 1 + M 1 0 

M 0 ( t 1 ) = M 0 2 t~ + M 01 t 1 + M 0 0 

(4-52) 

(4-53) 

The constants in Eqs, (4-53) also involve only the constant kine­

matic parameters of the mechanism and are defined in Table XIII. 

The quadratic equations (4-50) and (4 ... 53) represent two dif­

ferent forms of displacement relationships for the same mechanism. 



TABLB XIIl 

CONSTANTS FOR USE IN EQUATIONS (4 .. 53) 

A002 = SC!l 7 SC!52 Cljrl c~l - Sljrl SO!l 7 $0!52 CC!21 S1j.rl 

AOOl = .. SQ'l 7 SQ'52 Cljrl s~l + c~l SO!l 7 S0!52 C0!21 Sljrl 

Aooo = Cal 7 S0!52 S0!21 Sljr 1 

B002 = ... SO!l 7 S0!52 S1j.rl c~l ... 8~1 Cljrl SO!l 7 Sa52 C0!21 

B 001 = S ~ 1 SO! 1 7 SO! 5 2 S !Jr 1 + C 1j.r 1 C ~ 1 SO! 1 7 SO! 5 2 C Ct' 21 

B 0 0 0 = CO! 1 7 SO! 5 2 SO! 21 Cw 1 

C002 = S~l SO!l 7 C0!52 S0!21 

COO 1 = C ~ 1 SO! 1 7 Ol' 5 2 SO! 21 

cooo = CO!l 7 C0!52 C0!21 ,., C0!76 C0!65 + SC!76 S0!65 ce6k 

M22 = BOOl - Booo ,.. COOl + cooo 

M21 = -Z B002 + 2 C002 

M20 = -BOOl - Booo + COOl + cooo 

Ml2 = - 2 AOOl + 2 Aooo 

Mll = 4 A002 

MlO = 2 AOQl + 2 Aooo 
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TABLE XIII (Continuec;i) 

M02 = rBOOl + BOOO .,. COOl + COOO 

MOl = 2 3 002 + 2 C002 

Moo = BOOl + Booo + COOl + cooo 
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They should, therefore, have at least one root in commo.n between 

them. 

The condition using Sylvester dialytic eliminant then 

becomes 

Bz (tl) Bl ( tl) BO (t1) 0 

0 Bz (tl) Bl (tl) BO (tl) 

= 0 
M2 (tl) Ml (tl) MO (tl) 0 

0 M2 (tl) Ml (tl) MO (tl) (4-54) 

It sho\llQ. be noted that Eq,. (4 .. 54) is a function of only the variable 

Expanding and simplifying the above equation, we get 

or in short 

Equation (4 ... 55) is exac;:tly similar in form to E;q. (4 ... 45). Its 

coefficients R. (i = 0 tQ 8) can be obtained from the cqefficients 
l 

of Eq. (4 ... 45) replacing the constants A .. by M ... 
lJ lJ 

(4-55) 

Equation (4 .. 55) must hold true at all values of the variable 

e1• Its coefficients must, therefore, vanish (102). Thus, we have 

R. = O, 
l 

i ::; 0, 1, 2, •.. , 8 (4-56) 
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Condition (4-56) represents nine equations among the l 7 constant 

kinematic parameters of the R-R ... C-C-C-P-C mechanism in Figure 

29 (namely, the fou~ link lengths a 12 , a 23 , a 34, and a41 , the eight 

twist angles 01 12 , 01 23 , 0/41 , 01 52 , 01 76 , and 0/65 , the three constant 

displacement angles 9 6k, ~ 1 , and ¢ 1, and the two constant off set 

d~stances s 1 and s 2k). The nine equations provide the necessary 

conditions for the existence of a six ... link, two-loop R-R ... C .. C ... C-P-C 

mechanism with constant offset distances at the reyolute pairs at A 

and B, and constant displacement angle at the prismatic pair at F. 

On Obtaining R ... R .. c .. c..,C ... P-C Mechanism 

From the Derived Criteria 

T):l.e existence criteria obtained above can be utUized to obtain 

the constant kinematic parameters of an.R-R-C-C,..C ... P-C mecha­

nism with constant offset distance at revolute pair B and constant 

displacement angle ci.t the prismatic pair at F, 

Considering the constant kinematic parameters as unknowns, 

the 9 equations given by condition (4-56) can be represented as 

i = 1 to 9 

The above equc;1.tion represents a system of nine consistent nonlinear 

equations in the 1 7 unknown constant kinematic parameters of the 

mechanism. However, the high nonlinearity of the equations once 

again emphasizes the c;:omplex nature of the investigation and shows 



that the presenting of simplified explicit expressions for direct 

computation of the mechanism parameters is a problem by itself. 
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Like Eqs. (4-47), the above equation also has trivial solutions. 

As in the case of the R-R-C-C ... C-R-C mechanism, the triviality or 

non.,.triviality of a solution can be checked by substituting the values 

of the constant kinematic parameters in the original displacement 

relationship of the parent R-C-C-C-C-C-C mechanism (120). A 

non-trivial solution will give constant rotational displacement (9 bk) 

at the cylinder pair F and constant translational displacement (s 2k) 

at the cylinder pair B, at all positions of the mechanism, without at 

the same time, affecting its true mobility. 

In an effort to obtain an overconstrained mechanism (non­

trivial solution) over one thousand sets of mechanism parameters 

(initial guess values for the computer program) were tried, but 

none yielded an R .... R-C-C-C-P-C space mechanism. Perhaps the 

parameters of the overconstrained R-R-C-C-C-P-C mechanism 

lie in a very narrow band of range, q.nd can be d,iscovered only by 

an extensive E?earch. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The present work-is devoted to explo:dng the application 0f 

Dimentberg 's pase?ive coupling technique and studying existenc;:e 

criteria of single and multi-loop mechanisms. In this study, the 

existence crit1,9ria of overconstrained mechanisms with one gener~l 

constraint and consisting of helical, revolute, cylinder and pris­

matic pairs have been obtained by using Dimentberg's passive 

coupling method. This represents the first attempt in using this 

method to single and two'l"loop, six.,.link mechanisms after its use­

fulness in the case of four .. link mechanisms was firi;;t demonstrated 

by Dimentberg, five-link mechanisms by Soni and Pamidi. 

The mechanisms considered in this study are the six-link, 

single-loop 3H+3P mechanisms, two~loop R-R-C-C-C .. R-C, 

R-R-C-C'i"C .. P-C mechanisms~ two,.loop R .. R-C-C-C-R ... C, 

. R ... R-C ... C-C-P-C, R-C.,.C-R-C-C-R and R-C-C-R-C-C-P mecha-

nisms. The results obtained in the case of single-loop 3H+3P 

mechanisms confi:rim the findings of other investigators. The exis­

tence criteria .of the two-loop mechanisms obtained in the study are 

new. 

1 ~ ?. 

"''•.'. 



The principal results of the investigation ar~ as follows: 

1. The existence criteria of the six-link 3H+3P mechanisms 

obtained in the study show that these mechanisms (and others 

obtained by extending the results)' exist if and only if the axes 

of the helical (and/or revolute) pairs are parallel to one 

another. When the axes of the helical (and/or revolute) 

pairos are ,parallel it was found that these mechanisms will 

have two degrees of freedom. When one of the link lengths 

is taken to be zero, the results will apply with equal vc:1.lidity 

to five-link mechanisms derivable from the above six-link 

mechanisms. This confirms the results that were obtained 

by Hunt and Waldron by considering the H-H .. H .. H-H and 
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}I .. H-H .. H .. H .. H-mechqnisms of Voinea and Atanasiu; Soni, 

Pamidi, and Dukkipati by considering the H-C-H-C-H and 

H-C-.C-H-H mechanisms. The results in the present study 

have, however, been obtained by considering the more general 

zero family mechanisms and give, besides the parallelism of 

the axes, the definite closure conditions to be satisfied by the 

constant kinematic parameters of the mechanism concerned. 

2. The existence criteria of the six-link, two-loop R .... R-C-C-C­

R .. C mechanism with one zero offset distance were obtained 

;as a set of 9 nonlinear algebraic equations in the 20 constant 

k~nematic parameters of the mechanism. The number of 



independent equations, however, is suspected to be less than 

9 because of the method of elimination µsed. The derived 

criteriq. make it possible to investigate the existence of 

R-R-C-C-C-R-C mechanism. The algebraic expressions 

describing the existence criteria of the mechanism are suf­

ficiently complex to prevent from presenting any simplified 

geometric descriptions. In fact, the complexity extends far 

enough to prevent from presenting simplified explicit results 
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in order to. facilitate direct computations of the linkage param­

eters. A numerical technique based on direct search technique 

was proposed to solve for the parameters of the R-R-.C..,C-C­

R-C mechanism. The proposed numeric;al technique is 

iHustrated by :presenting an illustrative example of an 

R-R-C-C-C ... R-C overconstrained mechanism. 

3. The existence criteria of the six-link, two-loop R-R-C-C-C­

P-C mechanism are obtained as a set of nine nonlinear equations 

in the 17 constant kinematic parameters of the mechanism. 

These equations make it possible to investigate the existence 

of R ... R-C-C-C-P-C mechanisms. However, the high non­

linearity of the equations once again emphasizes the complex 

nature of the investigation and shows that presenting simplified 

explicit expressions for direct computation of the linkage 

parameters is a problem by itself. Hence numerical approach 



appears to be the only route. The proposed numerical 

technique is tried using the derived existence cdteria to 

obtain a compatible set of constant kinematic parameters of 
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the R .. R-C-C-C-P-C mechanism, bu.t none yielded a non-trivial 

solution. 

The present study provides a general mathematical approach 

to obtain the existence criteria of six.,.link, single and two-loop 

space mechanisms for a variety of passive couplings and/or general 

constraints. All the required displacement relationships (see, for 

instance, Chapters III and IV) for obtaining the existence criteria of 

six-link mechanisms for a variety of passive coupling conditions 

are developed. The displacement relationships are derived in dual 

form. They are valid for six-link, single and two-loop parent mecha­

nisms consisting of helical, revolute, prism and cylinder pairs. 

By using the derived displacement relationships and Diment­

berg' s passive coupling method the existence criteria conditions for 

the following .cases are also studied. (Appendixes A, B and C) 

1, The existence criteria of the six-link, two-loop R-R-C-C-C-

R .. C mechanism with general proportions are shown to be a set 

of seventeen conditions among the twenty-one constant kine­

matic parameters of the mechanism. 

2, The existence criteria of the six-link, two-loop R-C-C-R-C-C,.. 

R mechanism of general proportions are shown to be a set of 



385 conditions among the 22 constant kinematic parameters 

of the mechanism. 

3. The existenc;e criteria of the six-link, two-loop R-C-C.-R-C­

C-P mechanism of general proportions are shown as a set of 
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65 conditions among the 22 constant kinematic parameters of the 

mechanism. 

4. It was shown that, in an R-C-C-C-C-C-C six-link, two-loop 

space mechanism, when one cylinder pair in loop 1 is reduced 

to a prismatic pair, another cylinder pair in that loop will 

aha reduce to a prismatic pair. This result agrees with that 

by Dimentberg (29) in the case of four-link, single-loop R-C-C­

C . mechanism. It was. also shown that the existence criteria 

of the six-link, two-loop R-P-C-P-C-P.,.C and R-P-P-C-C-P-C 

mechanismi:; (Appendix C) requires the axes of the revolute 

and cylinder pairs in both loops parallel to each other and the 

axes of the prism pairs are randomly oriented. 

Except in very simple cases, the solution of the derived exis­

tence criteria conditions can be regarded as a problem by itself. 

Thus, for instance, the existence criteria of the R-C-C-R-C-C-R 

mechanism (Appendix B) with general proportions are expected to 

lead to 385 conditions among the 22 constant kinematic parameters 

of the mechanism. It can be seen that errors are apt to be introduced 

if such high order and large number of equations are not carefully 
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handled. Again, the examination of the resultant c;:onditions in order 

to obtain a compatible set of constant kinematic parameters presents 

a task of fqrmidable proportions. 

The concept of general constraints in mobility criteria for 

single or multi .. loop mechanisms suggests there are certain geo­

metrical conditions which must be imposed on a kinematic chain if 

it is to have one degree of freedom, The exact nature of this general 

c1;mstraint is not completely known (121). The mobility criteria pre­

dicts only the possible existence of mechanisms under the classifica­

tion of general constraints. The nature and significance of general 

constraints can be realized only when all the kinematic chains under 

the specific general constraint domain are virtually explored for 

mobility. This is possible when general mathematical models for 

each type and kind of mechanism (48) are developed in terms of all 

of its constant kinematic parameters. By studying the degenerate 

cases and by exploring relationships between all the basic parameters, 

we .can identify the general constraint criteria for mobility. The 

pres~nt work is another attempt in achieving this objective. It is 

then possible to construct physical models of most of these mecha­

nisms and identification of the geometric conditions which create the 

general c;onstraints. The possible components of general motion 

µnder the concept of general constraints can then be identified. Thus, 

for instance, for the case of one general constraint the components 



of general motion can be either 3 rotations and 2 translations or 2 

rotations and 3 translations. 
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A previous study on the existence criteria of single-loop over­

constrained four and five-link mechanisms (29, 38, 39, 40, 27, 41, 

122, ll 9) and also the present stl,ldy on six-link, single and two-loop 

mec:hanisms reveals certain important points. These points are 

presented below: 

l, When the displacement relationships involved are algebraic in 

nature the Dimentberg method ultimately leads to one or more 

polynomial equations. The complexity and the order of these 

polynomials can be reduced by considering the entire spectrum 

of loop equations available by arranging the loop clos'lJ,re condi­

tion in various ways rather than by considering just a few of the 

available equations. 

2. The primary part of a dual equation contains only the primary 

parts of its component terms. The dual part of a dual equation, 

however, involves both the primary and the dual parts of its 

component terms. The dual part of any dual equation is, 

therefore, always more complicated than its primary part. 

When passive coupling is imposed on a cylinder pair to reduce 

it to a prism pair (Chapters II and III), restrictions are put 

on only the rotation at the C pair and thus one has to deal with 

the primary parts of the concerned displacement relationships. 
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But when passive coupt\ng is imposed on a cylinder pair to 

reduce it to a revolute pair, restrictions are placed on only 

the transla.tion (see, for instance, Chapter IV) at the cylinder 

pair anq thus one has to deal with the dual parts of the con­

cerned displacement relationships. Thus the analytical work 

involved in reducing a cylinder pair to a .pdr:imatic pair is 

always much less complicated than in reducing that cylinder 

pair to revolute pai:r. 

3. When the displacement relationships are algebraic in nature, 

the Dimentberg method often involves examination of the com­

mon roots between two polynoniials or successive sets of two 

polynomials. In such cases, it is necessary to consider only 

on~ common root between the equations involved. It is however 

pos siqle to consider more than one corp.mon root between these 

equations. ·The resultant conditions, however, represent only 

special cases of the more general case obtained by considering 

only one common root. When two equations have more than 

one common root, it implies that they have at least one 

common root. 

4, If the parent mechanism contains helical pair, the derived 

existence criteria remain less complicated in nature if only 

the rotations at the helical pairs are involved, Thus in the 

present stl.;ldy, the existence criteria of the two-loop 



mec;:hanisms are less complicated ln nature because the 

parent mechanism considered do not have any helical pairs. 
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5. When the existence criteria involve twist angles and constant 

disJ?lacement angles they can generally expected to be simple. 

In such cases, it is possible to examine the relationship 

between the equations analytically. This is illustrated in the 

examples of Chapters II and III. 

When the existence criteria involve link lengths, kink .. 

lengths in addition to twist angles and constant displacement 

angles, it may then become difficult to e.xamine the relation .. 

ships between the constant kinematic parameters of the 

derived mechanism analytically, In such cases the suitable 

numerical method is to be used to solve for the parameters 

of the newly disc0vered overoonstrained mechanism from the 

derived criteria. 

6. The derived criteria represents only necessary conditions for 

existence of a mechanism considered. The conditions are not 

sufficient because the criteria does not by itself guarantee an 

overconstrained mechanism of the desired type. The criteria 

is expected to provide trivial solutions that give mechanisms 

without a true mobility of one. Trivial solutions can be one of 

two types: 



(1) A sol~tion becomes trivial if the constant kinematic 

parameters yield an overconstrained mechanism with 

mobility greater than one. (See., for instance, Chapter 

III) 

(2) A solution becomes trivial if the constant kinematic 

parameters yield an overconstrained mechanism of a 

higher family, that is, an overconstrained mechanism 

having more than the required number of passive 

couplings. (See, for instance, Appendix C) 
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The triviality and non-triviality of a solution can be examined 

by substituting the values of the constant kinematic parameters in 

the original displacement relationships of the parent mechanism. 

If the mobility is two or more, the variable kinematic parameters 

in the parent mechanism become indetel"minate unle es 2 or more 

variables are specified. 

A locked joint is indicated by the fact that a pair variable 

corresponding to that joint becomes constant. The case represents 

a non-trivial solution only when either of the above conditions is 

present and gives an overconstrained mechanism of the desired 

type with a true mobility of one. 

Since trivial solutions always exist, the existence criteria 

obtained by the present method represents a set of consistent equa­

tions. But all the equations in the system (representing the conditions 



among the constant kinematic parameters) may not in general be 

independent. This is especially true when the number 0£ unknowns 

in the equations is more or less than the number of equations. In 

such cases it may not be possible to examine the relationship be­

tween the parameters analytically. 

Although the existence criteria obtained using Dimentberg' s 

method is often complicated, the method has certain definite points 

in its favor. For example, it 

a. provides necessary and sufficient conditions for the 

existence of overconstrained mechanisms; 

b. assures finite mobility to the newly discovered over­

constrained mec;:hanisms; 

c, shows clearly that, in general, the mobility of over­

consbained mechanisms is a function of the twist 

angles, link lengths, constant displacement ai;igles and 

the constant offset distances; 

d. permits the computation of the mechanism proportions 

from the existence criteria; 

e. permits the introduction of different forms of passive 

coupling conditions in kinematic pairs; and 
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f. enables one to obtain the closed form displacement 

relationships for the newly discovered mechanisms which 

can be utilized for their type determination, kinematic 

analysis and synthesis. 
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The present study shows that the mobility of space mechanisms 

is a field <!>f continued interest and challenge. ln the coming years, the 

following important areas of research appear to offer great promise: 

1. The development of a unified method for determining the exis .. 

tence of multi-loop mechanisms. This unified rn~thod utilizes 

passive coupling technique to allow derivation of results 

algebraically and screw systems theory to allow determination 

of results geometrically so as to express the criteria as both 

necessary and sufficient conditions among the constant kine .. 

matic parameters of the overconstrained mechanism in 

eJq>lic;:it for~. 

z. · Use of this unified method to formulate the necessary and 

sufficient existence c:=onditions of multi-link, multi-loop 

mechanisms with one, two and three general constrainte. 

3. Examination of the types of motion displayed by these over­

const:rained mechanisms. 

4, ·Practical applicabilities of newly discovered overconstrained 

niechanis:ms. 

5. Investigation of mathematical functions for which these 

mechanisms are best suited for function generation, three­

dimensional path generation and rigid body guidance. 

Because of the nature of the problems, the proposed investi-

gation is expected to deal with an unusually h.igh level of algebra and 

geometry. 
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APPENDIX A 

EXISTENCE CRITERIA OF THE SIX-LINK 

R-R-C-C-C-R-C MECHANISM WITH 

NON - ZERO KINK - LINKS 

This appendix deals with the calculations necessary to derive 

the existence criteria of the six-link, two-loop R-R-C-C-C-R-C 

mechanism with general proportions mentioned in Chapter IV. 

Referring to Figures 27 and 30, the same equations (4-38) and 

(4-39) are written down. Now let the translations s 1, s 2 and s 6 be 

constant at all positions of the mechanism, Since s 6 does not appear 

in equation (4-38), equation (4 .. 40) remains the same. 

Separating equation (4-39) into primary and dual parts, with the 

aid of equations (4-20) through (4-22) and then eliminating the angle 

96 from these primary and dual parts, we get an equation of the 

form 

where 

A4 (t1 ) t~ + A 3 (t1 ) t~ + A 2 (t1 ) t~ + A 1 (t1 ) t 2 + A 0 (t1 ) 

= 0 

t 1 = tan (9 1 /2) 

t 2 = tan (9 2 /2) 
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(A-1) 



Figure 30. R-R-C-C-C-R-C Space Mechanism Obtained From 

the Mechanism in Figure 27 by Making Sz ::: szk ::: 
a Constant and s6 == s 6k = a Constant 
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and 

i = 0, 1, 2, 3, 4 (A-2) 

The constants in equation (A-2) involve only the constant 

kinematic parameters of the mechanism in Figure 30. The equations 

(4.40) and (A .. l) represent two different forms of displacement 

relationships for the same mechanism. They should, therefore, 

have at least one root in common between them. This gives the 

condition (102): 

A4 (tl) A3(tl) Az(tl) Al (tl) AO (tl) 0 

0 A4(tl) A3(tl) AZ (tl) Al (tl) AO(tl) 

B2(tl) Bl (tl) BO(tl) 0 0 0 

= 0 
0 Bz(tl) B 1 ( tl) BO(tl) 0 0 

0 0 Bz(tl) Bl(tl) BO(tl) 0 

0 0 0 Bz (tl) B 1 (tl) BO(tl) 

(A-3) 

Equation (A-3) is a function of only the variable t 1 • Expanding and 

simplifying it, we get 

or in short, 
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(A-4) 

Equation (A,.4) consists of only the variable t 1 (or e 1 ) describing the 

position of the mechanism in Figure 30 and must be satisfied at all 

positions of that mechanism. This equation must hold good at all 

values of the variable t 1 . Thus, equating the coefficients to zero, 

we have, 

E. = O 
l 

i = 0, 1, 2, ••. , 16 

Condition (A-5) represents seventeen equations among the 

twenty-one constant kinematic parameters of the mechanism in 

(A-5) 

Figure 30 (namely, the e.ight link lengths a 76 , a65 , a 52 , a 17 , a 34 , 

a 41 , a 23 and a 12 ; the eight twist angles ot76 , ot65 , ot52 , ot17 , ot34 , 

ot41 , Ct' 23 and ot 12 ; the three constant offset distances s 1 , s 2k and 

s 6k of the revolute pairs at A, B, and F; and the two constant dis-

placement angles (p 1 and ~ 1 at the two ternary links at joints A and 

B). These seventeen equations provide the necessary conditions for 

the existence of an R-R-C-C-C-R-C mechanism with general 

proportions. 



APPENDIX B 

EXISTENCE CRITERIA OF THE SIX-LINK 

R-C-C-R-C-C-RANDR-C-C-R-C-C-P 

MECHANISMS 

This appendix deals with the procedure for obtaining the 

existence criteria of six-link, two-loop R-C-C-R-C-C-R, 

R..,C .. C-R ... C-C-P mechanisms with general proportions from the 

displacement relationships of the parent R-C-C-C-C-C-C mecha­

nism mentioned in Chapter IV. 

Existence Criteria of the Six-Link 

R-C-C-R-C-C-R Mechanism 

Consider the R-C-C-C-C-C-C mechanism shown schematically 

in Figure 27. This mechanism reduces to an·R-C-C-R-C-C-R 

mechanism if the translational displacements s 4 and s 7 of the cylinder 

pairs at D and G are forced to be constant at all positions of the 

mec::hanism (Figure 31 ). 

By considering the loop-closure condition of the mechanism 

in Figure 27 for loop 1 (ABCDA) and outer loop (ABEFGA), the 

following dual relationships can be obtained: 

160 
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Figure 31. R-C-C-R-C-C-R Space Mechanism Obtained From 

the Mechanism in Figure 27 by Making s4 = s4k = 
a Constant and s 7 = s 7k = a Constant 
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(B-1) 

(B-2) 

f'o A A I'\ A I'\ A A ,.., 

f3 (!1' !2' e 7) = [(SO!l 7 C0!76 + CCl!l 7 SCl!76 ce 7) 8!1 

+ s&76 Se 7 CS l] (S2'52 se 2 ) + [s&76 SS 7 se 1 

(B-3) 

Let the translational displacements s 4 and s 7 be now made con .. 

stant for varying values of 91 . Denoting the constant values of s 4 and 

s 7 by s4k and s 7k respectively, and eliminating the angle e7 from the 

primary and dual parts of Equation (B-3), with the aid of equations 

(4 .. 20) through (4-22), a polynomial of the form 

8 

l (B-4) 

m, n=O 

for j = 0, 1, 2, 3, 4 

can be obtained, in which 
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and 

for tk = 17, 76, 65, 52, 21 (B-5) 

Similarly, by eliminating the angle e2 from the primary and dual 

parts of equation (B-1), a polynomial of the form 

f qmj t :U s J = 0 (B-6) 

m=O 

for j = 0, 1, 2, 3. 4 

can be obtained, in which 

(B-7) 

for tk = 23, 41, 12, 34 

Also eliminating the angle 6 4 from the prima.ry and dual parts of 

equation ( B,. 2), a polynomial of the form 

(B-8) 

m=O 

for j = 0, 1, 2 

can be obtained, in which 

(B-9) 

for tk = 41, 34, 23, 12 

Eliminating t 2 , between equations (B-4) and (B-8) by Sylvester 

dialytic method (102), 
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uo u1 uz u3 u4 us u6 u7 us 0 0 0 

0 uo v uz u3 u4 us u6 u7 us 0 0 
1 

0 0 uo u1 uz u3 u4 ·u 
s u6 u7 US 0 

0 0 0 uo u1 uz u3 u4 us u 6 u7 us 

VO v1 vz v3 v4 0 0 0 0 0 0 0 

0 VO v1 vz v3 v4 0 0 0 0 0 0 

0 0 VO vl vz v3 v4 0 0 0 0 0 

0 0 0 VO v1 vz v3 v4 0 0 0 0 

0 0 0 0 VO v1 vz v3 v4 0 0 O· 

0 0 0 0 0 VO vl vz v 3 v4 0 0 

0 0 0 0 0 0 VO v1 vz v3 v4 Q 

0 0 0 0 0 0 0 VO vl vz ~a v 

= 0 (B-10) 

in which 

8 
sj m (B-11) u =I p t n _·,c mnj 1 2 

m:;:O 

2 

v = l R 
m 

(B~12) 
mj sz n . ·'"' 

m=O 
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Expanding and simplifying equation (B-10), a polynomial of the 

form, 

32 

l (B-13) 

m, n=O 

can be obtained, in which 

(B-14) 

for 1.k = 12, 23, 34, 41, 17, 76, 52, 65 

Eliminate s 2 , between equations (B-6) and (B-13) by Sylvester 

dialytic method, The result will be a determinant of 36th order and 

hence the diagonal term of the determinant is of the order of 32(8) + 

4(32) (= 384) in the half tangent of the input angle e1 , or symbolically, 

in which 

and 

384 

1 
m=O 

W tm = 0 
ml 

1.k = 12, 23, 34, 41, 17, 76, 65, 52 

(B-15) 

(B-16) 

Equation (B-15) is a function of only the variable e1. This 

equation m.ust hold true at all values of the variable angle e1 . Hence 

equating the coefficients of equation (B-15) to zero, gives 

w = 0 
m 

m = 0, 1, 2, • . • , 3 84 (B-17) 

Condition (B-1 7) represents 3 85 equations among the 22 constant 

kinematic parameters of the mechanism in Figure 31 (namely the 
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eight link lengths a 12 , a23' a34~ a41' al 7' a76' a65' and a 52 ; the 

eight twist angles O! 12 , 0!23' 0!34' O! 41' O! 1 7' ot76' 0!65' and, 0!52; and 

the three kink-links sl, s 4k and s 7k and the three constant displace-

ment angles q; 1, tJ,r 1 , and q; 2 ). These 385 equations provide the 

rieces sary conditions for the existence of an R -C-C-R-C-C-R 

mechanism with general proportions. 

Existence Criteria of the Six-Link 

R-C-C-R-C-C-P Mechanism 

The existence criteria of an R-C-C .. R-C-C-P space mecha­

nism can be obtained from the displacement relationships of the 

R-C-C-C-C-C-C space mechanism. The R-C-C-C-C-C-C mecha­

nism in Figure 27 reduces to an R-C-C-R-C-C-P mechanism, if the 

rotational displacement 9 7 and the translational displacement s 4 of 

the cylinder pairs at G and D respectively are forced to be constant 

at all positions of the mechanism (Figure 32). 

The existence criteria of this mechanism can be obtained in 

the same manner as that of the R-C-C-R-C-C-R mechanism. It can 

be shown that the number of conditions for this mechanism are lower 

than that of the R-C-C-R-C-C-R mechanism, because the variable 

angle 9 7 , which has to be eliminated, is kept constant in the present 

case. 

From the primary part of equation (B-3), a polynomial of the 

form, 



Figure 32. R-C-C-R-C-C-P Space Mechanism Obtained From 

the Mechanism in Figure 27 by Making s4 = s4k = 
a Constant and 97 = 97k = a Constant 
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= 0 (B-18) 

m,n=O 

can be obtained, in which 

ij = 1 7, 7 6' 5 2, 21 , 6 5 

and t 1 and t 2 are the same as in equations (B-5). Equations (B-6) 

and (B-8) remain unchanged for this mechanism sin<::e these equations 

do not involve e7 or s 7 • 

Eliminate e2 between equations (B-18) and (B-8) by Sylvester's 

dialytic method, 

uo u1 U2 0 0 0 

0 uo u1 u2 0 0 

0 0 uo u1 u 
2 

0 

0 0 0 uo u1 u2 

VO vl v2 v3 v4 0 

0 VO v1 v2 v3 v4 

in which 

2 

Un= l M 
m 

t 
mn 1 

m=O 

and V is the same as in equation (B-12). 
n 

= 0 

(B-19) 
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Expanding and simplifying equation (B-19), another polynomial of 

the form 

8 

I Nm t~ sJ j = 0 to 4 (B-20) 

m=O 

can be obtained, in which 

(B-21) 

for .tk = 17, 76, 52, 21, 65, 4i, 34, 23, 

The polynomial equation in one variable e 1 can be obtained by 

eliminating s 2 between equations (B-20) and (B-6) by the Sylvester 

dialytic method. The result will be a determinant of 8th order in 

whi<;:h each diagonal element is a polynomial of 8th order in t1 , Hence 

the diagonal term of the determinant is of the order of 8 x 8 (= 64) 

in the half-tangent of the input angle el, namely 

(B .. 22) 

where 

(B-23) 

for .tk = 17, 76, 52, 21, 65, 41, 34, 23. 

The above equation (B-22) must be valid for varying values of 

the variable t1 . Its coefficients must, therefore, vanish. This 

gives 

p = 0 
j 

j = 0, 1, 2, . . . ' 64 (B-24) 



Condition (B-24) represents 65 equations among the 22 constant 

kinematic parameters of the mechanism in Figure 32, namely (the 

eight link lengths a 17 , a 76 , a 65 , a 52 , a 21 , a41 , a 34 , anda2 ~; the 
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the eight twist angles °'17' °'76' °'65' °'52' °'21' °'41' °'34 and °'23; 

the four constant displacement angles ~ 1, ~ 2 , w1 and 1(r 2; and the two 

constant offset distances (kink-links) s 1 and s 4k). 

These 65 equations provide the necessary conditions for the 

existence of an R-C-C-R-C-C .. P mechanism with general proportions. 



APPENDIX C 

EXISTENCE CRITERIA OF THE SIX-LINK 

R-P-C-P-C-P-C, R-P-P-C-C-P~C 

MECHANISMS 

In this appendix, Dimentb~rg 's passive coupling technique has 

been employed to obtain the existence criteria of the six.link, two­

loop R-P-C .... P.,C-P-C and R-P-P .. C-C-P .. C space mechanisms. 

These crite·ria are obtained by considering only the primary parts of 

the displacement relationships of the six .... link, two-loop R-C .. C-C­

C-C-C space mechanism. ·They, the·.refo.re, lead to conditions on 

only the twist angles and constant displacement angles of the mecha­

nism considered and are independent of their link lengths and con ... 

stant offset distances. 

Perivation of the Exi:;;tence Criteria 

The existence criteria of the R-P-G-P-C-P-C, and R.,.P..,.P-

C-C .... P-C mechanisms can be obtained from the displacement relation­

ships of an R-C-C-C .. C-C-C mechanism. 

Consider the R .. C-C .. C-C-C-C space mechanism shown 

schematically in Figµre 27. By suppressing the rotational freedom 

1 71 
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of the cylinder pairs at the joints B and F, it is pas sible to examine 

the conditions for the existence of two prismatic pairs in this mecha-

nism at all positions of the mechanism. 

By considering the loop-closure condition of the mechanism in 

Figure 27 for loop 1 (ABCDA) and outer loop (ABEFGA) in three 

different ways, the following dual displacement relationships can be 

obtained. 

(C-1) 

F 1 (e2' e3) = (S&34 sQil2 se3) se2 - [S~l2 c&34 

+ cQ.23 s&34 ce3)] ce2 - c&41 + c&l2 (C&23 c&34 

(C-2) 

(C-3) 

(C-4) 
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(C-5) 

+Sal 7 Ca76 Ce 7) ce6 + Ca65 (C&l 7 Ca76 

- s& 1 7 s& 7 6 c e 7) - ( c & 5 2 c& 21 - s& 5 2 s& 21 c e 2) = 0 

(C-6) 

Observe that equations (C-2) and (C-3) are similar in form to 

equation (4-26), equations (C-4) and (C-6) are similar in form to 

equation (4-35), and -equations (C-5) and (C-1) are similar in form 

to equations (4-37) and (4-28) respectively. 

Note that each of the equations (C-1) through (C-3) relates the 
,., 

dual displacement angle 02 to a second dual displacement angle, and 

equations (C ... 4) through (C-6) relates the dual displacement angles 

,., ... 
e2 and 06 to a third dual displacement angle, 

Let the displacement angles e2 and e6 at the cylinder pairs at 

B and F be now made constant at all positions of the mechanism. 

Denoting the constant values of e2 and e6 by e2:k and e6k respectively, 

the primary parts of equations (C ~ 1) through (C-6) give respectively, 



174 

A ce +A = o 
c 4 n 

(C-7) 

B se3 + B ce3 + B = 0 (C-8) 
s c n 

c se + c ce + c = o s 1 c · 1 n (C-9) 

n se 1 + n ca 1 + n = o 
s - c - n 

(C .. 10) 

E Se + E ce + E = 0 
s -5 c -5 n 

(C-11) 

and F se 7 + F Ce 7 + F = 0 (C-12) 
s - c - n 

The constants in equations (C- 7) through (C-12) involve only 

the constant kinematic parameters of the mechanism and are defined 

in Table XIV. 

Note that each of t4e equations (C-7) through (C-12) contains 

only one variable and must be valid at varying values of that variable. 

This is possible only if their coefficients vanish. This gives 

A =A = 0 
c n 

B =B =B =0 
s c n 

c - c = c = 0 
s c n 

(C-13) 
D = D = D = 0 

s c n 

E = E = E = 0 
s c n 

and F ·- F = F = 0 
s c n 

Examination of equations (C-13) shows that the following 

cases are possible. 



TABLE XIV 

CONSTANTS FOR USE IN EQUATIONS (C ... 7) THROUGH (C-13) 

Ac= Scr41 Scr34 

An= CCt'41 CCt'34 - CCt'23 CCt'l2 - SCt'23 SCt'l2 ce2k 

Bs = SCt'34 scr12 se2k 

B c = -CCt' 12 SCt'23 SCt'34 - ce 2k SCt' 12 CQ'23 SCt' 34 

Bn = ... ce2k [SCt'l2 ($Ct'23 CCt'34)] - CCt'41 + Ol'12 CCll23 Ca34 

Cs = Sa23 Sa 41 se2k 

Cc= - [SCt'41 (SCt'l2 GCt'23 + Cal2 Sa23 ce2k)] 

Cn = -Ccx34 + Ca41 (CCt'l2 Ca23 ... Sal2 Sa23 C92k) 

D s = SCt' 1 7 Sa 5 2 S ! 2k 

De·= -SCt'l 7 (Ca52 Sa21 + Sa52 Ca21 C92k) 

175 

Dn = Cal 7 (Ca52 Ca21 - Sa52 Sa21 C~2k) - (C0176 Ca65 -Set76 Sa65 C96k) 

Es·= SCt'76 S.2_6k (Sa52 Ca21 + Cet52 Sa21 C!2k) + SCt'21 Se 2k (CCt'76 SQ'65 

+ SCt'76 CCt'6s ce6k) 

EC = SCt'76 89 6k (SCt'21 5!2k) .+ (Cet76 Sa65 + Sa 76 Cet65 ce6k) 

... (Sa52 CCt'21 + Ca52 Sa21 C!_2k) 

En= (Ca52 Ca21 .,. Sa52 Sa21 C~2k)(Ca76 Ca65 ... Sa76 Sa65 C96k) - Cal7 



TABLE XIV (Continued) 

F s ·= 5°"11 8°"6s 596k 

F c = .. s°"65 Ce6k 5o.il 7 Ca76 - Ca65 5al 7 5a76 

F n = -Sa65 Cal 7 5°"76 ce6k + Ca6k Cal 7 Ca76 - Ca52 C°"21 + 50!52 

50!21 C.§."Zk 
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m = 0, 1, 2, ... ). 

The only real solution possible in this case is given by 

(C-14) 

Equation (C-14) shows that the kinematic axes are all parallel 

to each other. An R-P-C-C-C~P-C mechani~m satisfying this 

condition~ however, represents only a trivial solution since it 

yields a planar configuration in which the revolute and cylinder 

pairs remain locked. 

m = o, 1, 2, ..• ). 

This gives 

Ot = 0 
17 

for n = 0, 1, 2, (C-15) 

3. C8bk < 111, C9Zk = Ill (That is, e6k f. mTT, 9Zk = mTT, 

m = 0, 1, 2, ... ). 



This gives 

0!12 - 0!23 = nrr 

0!41:I:0!34 = nrr 

and 0t52 :l: 0!21 = nrr 

4. ce6k = I 1 I, ce 2k < I 1 I (That is, e6k = mrr, e2k ~ mrr, 

m = 0, 1, 2, ... ). 

This gives 

O! = 0 Qr TI 
41 

for m = 0, 1, 2, 

178 

(C-16) 

(C-1 7) 

Substitution of the relations given by equations (C-15) and (C-16) 

in the displacement equations of the parent R-C-C-C.,.C-C .. C mecha-. 

nism (120) show that cases 2 and 3 give a prismatic pair at joint D 

in addition to prismatic pairs at joints B and F. These solutions, 

therefore, given an R ... P-C-P-C-P-C mechanism (Figure 33), They 

also show that the axes of the revolute and cylinder pairs are parallel 

to each other. 



Figure 33. R-P-C-P-C-P-C Space Mechanism Obtained From 
the Mechal').ism in Figure 27 by Making e2 = 9zk = 
a Constant and 06 = 96k = a Constant 
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Similarly, case 4 gives a prismatic: pair at joint C in addition 

to the prismatic pairs at joints B and F. It, therefore, gives an 

· R-P-P-C-C-P.,C mechanism (Figure 34). It also shows that the 

a.x;es of the revolute and cylinder pairs are parallel to each other. 

The above results thus lead to the conclusion, that in an 

R .. C .. C-C-C-C~C mechanism, when one cylinder pair in loop 1 

(path ABCDA in Figure 27) is reduced to a prismatic pair, another 

cylinder pair in that loop is also reduced to a ;prismatic pair. This 

resµlt agrees with that by Dimentberg and Yoslovich (29) in the case 

of single loop, four ... link mechanisms. Further, the a.x:es of the. 

revolute and cylinder pairs in both the loops are then parallel to 

each other, 



a.,,,~., 

E 

§5,§5 © 
Figure 34. R-P -P-C -C-P -C Space Mechanism Obtained 

From the Mechanism in Figure 27 by 
Making 9z = e2k = a Constant and 96 = 
96k = a Constant 
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APPENDIX D 

COMPUTER. PROGRAM 

The following computer program is used for solving the system 

of nine consistent nonlinear algebraic equations representing the 

e~istence conditions of the R~R-C.,.C-C-R-C and R.,,R-C-C-C-P-C 

mechanism:;;. The program is that developed l;>y Chandler (123) based 

on function minimization technique. Its usage is given as part of the 

listing. 
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llOVR79 JOB ( Ln?l,44'-6~~38&,201,•DUKKIPATI t ,CLASS=A 
/*ROUTE PR I ~T HOLD 
II EXEC FORTGCLG,REGICN .• GO•LOOK,TIME.G0=30 
llFORT.SYSIN DD* 

c *********•··························································· c • • 
c • • 
c • 
c • 
c • 
c • 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
r 
c 
c 
c 
c 
c 

• • 

• • 
* 

• 

• 
* 
* 
* 

. 
• 

* • • • 

TO SYNTHESIZE THE SIX-LINK,TWO-LOOP R-R-C-C-C-R-C SPACE 
MECHANISM FRO~ THE EXIST ENCE CR IT ER IA 

DESCRIPTION OF PARAMETERS 
N - NUMBER OF INDEPENDENT V·ARIABLES 
NP - CONVERGENCE MONITOR 

•O WILL NOT PRINT 
•I Will PRINT EVERY ITERATION 

NN - TOTAL NUMBER OF ITERATIONS OR FUNCTION EVALUATIONS 
DELTA - CURRENT STEP SIZE 
F - MINIMUM STEP SIZE 
ROW - REDUCTION FACTOR FOR STEP SIZE, < I 
X - CURRENT ~ASE POINT 
XL - LOWER BOUND OF SEARCH DOMAIN 
XR - UPPER BOUND OF SEARCH DOMAIN 

USAGE 
REQUIRES THE FOLLOWING DATA CARDS 

CARD l - N,NP1NN,OELTA1F1ROW WITH 31513020 •. 0 
CARDS 2,3,4 - INITIAL VALUES FOR XINI WITH 7010.0 
CARDS 5,6,7 - LOWER BOUND VALUES FOR XUNI WITH 7010.0 
CARDS 8,9,10 -UPPER BOUND VALUES FOR XR(NI WITH 7010.0 

SU~ROUTINES REQUIRED 
SURROUl I NE PATR N 
SUBROUTINE FUNK 
SUBROUTINE STEPIT 
SUBROUTINE MER IT 

GENERAL RE~ARKS 
VECTORS X(Nl,XLINl,XRINI CONSISTS OF THEN PARAMETERS IN 
THE FOLLOWING ORDER , 
TWIST ANGLES - ALPHA 12,ALPHA 23,ALPHA 34,ALPHA 41, 
ALPHA 65,ALPHA 761ALPHA 52,ALPHA 17 
KINK-LINKS - Pl,Cl 
LINK-LENGTHS - Al2,AZ3,A34,A4l,A65,A76 9 A52,Al 7 
ALL TWIST ANGLES ARE MEASURED IN DEGREES AND KINK-LINKS 
ANO LINK-LENGTHS ARE •EASURED IN INCH UNITS 
IF REQUIRED SOME OF THE VARIABLES CA~ BE FIXED BY 
SETTING THE CORRESPONDING MASK(NI EQUAL TO l IN THE 
SUBROUTINE P ATRN 
WITH ·SLIGHT MODIFICATIONS IN THE MAI~ PRCGRAM AND IN 
THE SUBROUTINE •ERIT THIS PROGRAM CAN ALSC BE USED FCR 
SYNTHESlllNG THE SIX-LINK,TWD-LOOP R-R-C-c-c-P-C 
MECHANISM 

REFERENCES 
CHANDLER,J.P., " STEPIT,PROGRA~ N0.66,QUANTU~ CHEMJSTKY 
PROGRAM EXCHANGE" 1 0EPARTMENl ~F CHFMISTRY,INOIANA 
UNtVERSITY,BLOOMINGTO~rINOtANA,41401 

HOOKE,R.,ANO JEEVES 1 T.A. 1 11 DIRECT SEA-R.CH SDlUTION OF­
NUMERICAL ANO STATISTICAL PROBLEMS "• J,ASSOC. FOR 
CO"PUTING M~CHINERYrNO.Z1VDl.B1APR.lq62,PP.212-230 

• • 

. 
• • 
• • 
* 
* • . 
• 

• 

. 
• 

c 
c 
c 
c 
c 

c 
( 

c 
c 
( 

• • • ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

IMPLICIT REAL • 8 IA-H,O-ZI 
Dl~ENSION NA~El(2,LOl,NAME2181 
DIMENSION X(201,XL1201,XRl201,QPl91 
DIMENSION xx1201,xxx1201 
DATA. NAME l/'ALPH 1 , 1 A l2'1 1 ALPH 1 1 1 A 23' 1 1 A·LPH 1 1 'A 34 1 , 1 ALPH•, 

J 1 A 41 1 ' 1 ALPH• ,. A 65 1 • 1 ALPH'' •• 76 1 ' 1 ALPH 1 ' I A 52 I' 1 ALPH 1 'I A 17'. 'PH 
JI ' , 1 1 1 ,•s1 1 1 ,' 1 / 

DA·TA NAME2/ 1 A 12 1 ,•A 23•,•A 34•,•• 4l', 1 A 65 1 9 1 A 76•,•A sz•,•A 17' 
J I 

COMMON/QQ/Ql,Q2,Q3 1 Q4,Q5,Q6 1 Q7,Q8,Q9 
Pl =3.14l592b53589793DO 
RAD•Pl/180.0 
DEG• 180, /PI 

READ INPUT OATA 

REA0(5,13001 N,NP,NN,OELTA,F,ROW 
READ (5,551 (X II 1.l•l,201 
READ (5,55J lXLCJl,Jsl,ZO) 
READ (51551 CXR(IJ,I=l,201 

55 FORMATl7D!O.OI 
1300 FORMAT(315,3D20.0I 
1310 FOR~ATC57X, 1 N = 1 1110,/, 

J57X,'NP = 'tllO,/, 
J57X, 'NN "" 1 ,110,/, 
J57X1 10ELTA = 1 1010.31!1 
J57X, 'F = 1 ,010.3,/, 
J57X, 1 ROW = 1 1010.31///I 

PRINT THE INPUT DATA 

WRITE (b,10001 
1000 FORMAT(1Hl,30X, 1 " EXISTENCE CRITERIA OF SIX-LINK 1 T~C-LOUP ~-Q-~ -l­

JC-R-C SPACE MECHANISM "'1/////,SlX1' INITIAL VALUES OF THE VAPIABL 
JES 11/.IH 1SlX132P-IJ,//n 

WRITEC61l310J N,NP,NNrOELTArFrROW 
wR!TE(b,10101 

1010 FORMAT(3qX, 1 f 1 1l4f'- 1 11'l'13(13·(·1 - 1 ),'i') .1 
WRITElb,12001 
WRITEl6,l020l 

1020 FORMA-TC39X, 1 i•.1x, 1 TWIST ANGLES 1•,&x,•x•,t:ix,•1•,4x,•XMIN 1 ,'J;(,•t'• 
J4X,·X~Ax•,5x, 1 1 • I 

WRITE (6,12001 
1200 FORMAT( 39X, I 1 1 ' l4X,. t •, 31 L3X, I I' I I 
1210 FOR~AT(38X,•1•.12x,•1•,3(13x,•1•1J 

WRITElb,10101 
DO 10~5 J~l.tO 
WRITEl6,1030t INAMEUK,JJ 1K=l,21rXIJI 1XUJ) ,XRIJJ 

1030 FORMAT(3qX,'l 1 ,3X,2A4,,X,'l',3(1X,Oll.4rlX,'l 1 1 l 
WP l TE ( &, 12001 
WR.li~(b,1010) 

!03o CONT l WE 
..rf( fT EC6, 1040 J 

1040 F:1l{lil!AT(////) 
WRIT El b, 1 050 I 

1050 FORMAT(38X, 1 l 1 ,12( 1 -'t, 1 11 ,3113('-'11'!'I 
WPITE 16.12101 
WRlTEl&,10601 

1060 FORMAT{38X1'1 KINK ll"JKS 1•,r,x,•x 1 ,6X, 1 J•,4x,•x~1r-.•,sx.,•1••,4x,•xMO. 

JX',SX,'1 1 1 
WRITEl6.1210 I 

I-' 

00 
LN 



llRITEl6~10501 
llRITEf6,10701 Xllll,XLllll,XRllll 

1070 FORMATn·ax.• ••• sx .. Sl. ,5x.• 1•,311x.011.4,1x •• ,. II 
WRITE 16.12101 
llRITEl6110501 
llRITEl6ol0801 Xl121,XLl121tXRl121 

1080 FDRMATi38X,•l•.sx.•s2•,5X1 1 i 1.311X1011.4.lX1'1'11 
llRITE 16,12101 . 
WRITEl6110501 
llRITEl6·,101tOI 
llRITEl6,10101 
WRITEl6110901 

1090 FORMATt39x, 1 11 • 1 ·LINK-LENGTHS 1•. 
·J . 6x.~x•,6x,•t•.~x, 1 xM1N•,sx,•1•,4x, 
J•XMAx•,sx, 1 1• 

llRITE 16112001 
WRITEl6ol·0101 
DO 1110 11•1•8 
L•lZ+U 
i1RITEl6,llOOINAMEZllll1XILl,XLILl,XRILI 

1100 FORMAT I 39X ..... 5X1Alt15X1 1 '"3nx,·DU.401X1 1 1•11 
WRITEl6tl2001 . 
ilRITEl6•10101 

1110 CONTINUE 
DO 56 1•1110 

~~::;!~~:;mAo· 
56 XR II I •XR II I •RAD 

c 
C CALL PATRN TO MIN·liotlZE THE FUNCTION Y 
c 

PATRNI N 1NP1DEL TArF .xL .xR. v. x,Row. NNI· 

22 
c 

CALL 
DD 22· I•l.10 
XLlllaXLlll•DEG 
XRll l•XRlll•Oi:G 
X 111 •XI ll•DEG 

011021113,. ....... 09 ARE THE NINE. EXISTENC.E CONDITIONS c 
c 

c 
c 
c 

"QPUl-111 
QPl21•Q2 
QPl3 laQ3 
QPl41•Q4 
QPl51•05 
QPl61 -06 
QPl71•Q7 
QPIBl•QB 
OPl91•09 

PRINT TME FINAL VALUES OF THE VARIABLES 

llRITEl61200DI 
2000 FORMATllHl,52X.'FIN.AL VALUES OF THE VARIABLES 11/olH .szx.z91•-• 1.1 

Jiii . 
WRITEl6,l0101 
WRHEl6. tcize1 
WRITEf6,12DOI 
llRITEl6110101 
DO 1075 J•l110 . 
llRITEl611030J INAMEl!K,Jl,K•l 0 ZloXIJl,XLIJl,XRIJI 
WRITEl6rl20DI 
llRITEl6r10101 

1075 CONTINUE 
llRITEl6r 10401 
WR!TEl611·0501 
WRITEl61l2lOI 

c 
c 
c 

c 
c 
c 
c 

lllUTEl6110601 
llRITEl6rl0501 
llRITEfl>,10701 Xllll,XLI 111.XRHll 
WRHEl6rl2101 
WIUTEl6t10501 
WRITE(6,10901 Xl121tXLl121tXRl121 
WRITEi6,1ZlOI 
WRITEf6,10501 
llRITEl6110401 
llRITEl6t 10101 
llRITEU, 10901 
WRITEf6, 12001 
WRHEl6t 10101 
DO 1330 11•1 oB 
L•l2•11 
.liRITEl6t llOOINAMEZI !I l1XI LI 0 Xllll ,xRILI 
WIUTEl6tl2001 .· 
WRITEl6tl0101 

1330 CONnNUE 
.11RITEl6ol0401 

P.RINT THE FINAL VALUES Of THE .EXISTENCE CONDITIONS 

llRITEl6t2D201 IL.OPILl1L•l,91 
2020 FORl!ATl1t8X,•FINAL VALUES OF THE EXISTENCE CCNO!TIDNS' 1/// 

J ,1s5x, 1 EOUA 
JTION '•12t' .• '1Dlle4•/U 

STOP 
ENO 

.SUBROUTINE PATRN i NtNPtDELTA,F 0 XL 1 XR,Y,xX,ROW,NNI 
c 
C fNTERFACE JtOUTiNE TO llAKE STEPIT LOOK LIKE PA·TRN. 
~ J. P. CHANDLER, ,CDf!PUTER StlENCE DEPT., OKLAHOMA STATE ·UN.IVERSITY. 

c 
c 

c 

c 

c 
c 

. !'"LICIT REAl•BIA-H,O-ZI 
DIMENSION XLl201,XRl201,XX(201 
COllllQN /CSTEP/ x120·1.xMAXIZOI ~XMINI 201.0EL TXl20 ltOELMNI 201, 

x ERRI 2ltlOJ ,CHl so.NY1NTRAC,llATRX,llASKI 201 
COMMON /FRODCll NFNAX1NFLAT,JVXRYtNXTRA . 
EXTERNAL FUNK 

NV•N 
NTRAC•NP 
NFMAX•NN 
DO l J•l1NV 
llASKIJl•O 
OELTXIJl•OELTA 
DELM"llJl•F 
XMINIJl•XLIJI 
XMAXIJl•XRIJI 
XIJJ•XXIJI . 

CALL STEPIT IFUNKI 

Y•-CHl~O 
OD 2 J•l1NV 

2 XXIJl•XIJI 
RETURN 
ENO 

MOVE VARIABLES INTO STE~IT COMMON. 

CAll STEPIT TO MINIMIZE CHISQ, 

RETURN Y AND XXIJI, 

....... 
ocf 
~ 



c 
c 
c 
c 

SUBROUTINE FUNK 

C INTERFACE ROUTINE TD MAKE MERIT LOOK LIKE FUltKe 
c 

c 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

IMPLICIT REAL*BIA-H,D-ZI 
COMMON /CSTEP/ XIZOl,XMAXl201rXMIN(201rDELTXl201r0ElMNl201o 

X ERRl21 r201,CHISO,NYr NTRACrMATRX rMASKI 201 

CALL NERIT I Xr YI 
CHISO•-Y 
RETURN 
ENO 

SUBROUTINE MERIT IXrYI 

ROUTlffE TO CALCULATE THE MERIT FUNCTION Y DEFINED 
AS THE SUM Of THE SQUARES OF THE NINE EXISTENCE 
CONDITIONS Ql 1 02r03r••••••Q9 FOR THE SIX-LINK, 
TWO-LOOP R-R-c-c-c-R-C SPACE MECHANISM 

IMPLICIT REAL •a IA-H,J-ll 
REAL •8 DA8S,DSIN 0 0COS,OTAN 
DIMENSION x1201,xx12D1.xxx1201.xLIZOloXRl2UI 
CDMMON/OQ/Olr02r03r04o05,Q6,Q7,QB,09 
Pl•3el41592653589793 

All2•X( 11 
AL23•Xl21 
AL34•X(31 
.U4l•Xl41 
AL65•XI 51 
Al76•X(61 
AL52•Xf71 
AL21•-All2 
All 7•Xl81 
Pl•Xl91 
Cl•XllOI 
Sl•XUll 
S2•Xll21 
Al2•Xll31 
l23•Xll'tl 
A34•XI 151 
A4l•Xll6 I 
A65•Xll71 
A76•Xll8 I 
A52•XU91 
l2l•-Al2 
ll 7•Xl201 

c 
C CHECK FOR ZERO DENDMINATOP 
c 

DO 43 l•lolO 
IFIXlll.EQ •• 5•Pll GO TO 48 
X!ll•Xlll 
GO TO 52 

48 X{ll•Xlll+.05 
52 CONT I 'lUE 

IFIXlll.EQ.Pll GO TO 47 
Xlll•XIII 

GO TO 51 
47 Xlll•Xlll+.05 
51 CONTINUE 

c 

c 
c 
c 
c 

c 
c 
r 
c 

IFIXlll.EQ.l,5•Pll GO TO 49 
Xlll•Xlll 
GO T053 

49 Xlll•Xtll+,05 
53 CONTINUE 
43 CONTINUE 

SAL12•0SUIAL12 I 
SAl23•0SINIAL23l 
SAL 34•DSJ NI AL34 I 
SAL4l•DSINIAL4ll 
SAL65•DSINIAL651 
UL 76•0SINIAL 761 
SAL52•0SINCAL521 
SAL2l•DSINIALZ11 
SAll 7•0SINIAll 7 I 
CAL12•0COSIAL121 
CAL23•DCDSIAL231 
CAL34•DCDSIAL341 
CAL4l•DCOSIAL411 
CAL65•DCOSIAL651 
CAL76•DCOSIAL761 
CAL52•0COSIAL521 
CAL2l•DCOSIAL211 
CAL17•DCOSIAL171 
SPl•DSINIPlf2.I 
SCl•OSINIC112. I 
CPl•DCOSll'l/2.1 
CCl•OCOS!Cl/Z,I 

CONSTANTS FOR USE IN EQ.14-411 SUMMARISED IN TABLE 
IX Of TH£ THESIS 

0002•A4l•CAL4l*SAl23+A23•CAl23*SAL4l 
D00l•Sl$SAL23•SAL41+S2•CAL12•SALZ3 
DOOOnSZ•SAL12"CAL4l•SAi.23 
EOOZ•S2•SALZ3•SAL4l+Sl•CAL12*SAL23 
E001•-AZ3~CAL23•CAL12+Al2•SAL12•SAL23 
EODO•-Al2•CAll2*CAL41•5Al23-A23•CAL4l*CAL23•S4ll2+A4l•SAL4l•SALl2 

J •SAL23 
F002•Sl•SAL4l•SAL23 
f0Gl•-A4l•CAL4l•CAL23+A23•SAL23•SAL4l 
FOOO•A34•SALl4-CAL12•1A4i•SAL4l•CAL23+A23•SAl23*CAL4ll-Al2*SAL12 

J *CAL4l*CAL23 
822•EOOl-EOOO-FOCl+FOOO 
821•-2,•IEOOZ-FOOZI 
820•-EOOl-EOOO+FOOl •FOOO 
812•-2.•10001-00001 
811•4.•0002 
810•2.•CDOOl+OOOOI 
802•-EOOl+EOOO-FOOl+FOOO 
80l•Z.•IE002+F0021 
BOO•EOOl+EOOO+fCOl+FOOO 

CONSTANTS FOR USE IN TA~LE XI • THESE ARE 
SU~MARISED IN TABLE ·X IN THt THESIS 

Ul•A76•tALb5/SAL76+A65•CAL76/SAL65 
U2•A76$CAL76/SAL76•h65*CAL65/S4l65 
ZO•AL52-AL21-AL17 
FO•U1-u2~ocos1zo1-1AS2-A21-Al71•0Sl~l701 

ll -AL ~2-AL21 
Fl•-Z.•SlLi7*(Sl•OSINIZll+SZ*S4L5ZI 

,_. 
00 
U1. 



c 
c 
c 
c 

c 
c 
c 
c 

Z2=AL5Z•ALZL+ALL7 
FZ•U l·UZ*DCOSI Z2 I-I A52·A2 l+Al 71 •0SI N.l ZZ I 
C3•AL2LUU7 
GO•Z.•SAL52•1 Sl•SAL17+S2*0SINI Z31 I 
CT17•0COSI All 71/DSINIALl71 
CT76•0COSI AL 761/DSINIAL761 
CT65•0COSIAL651/0SINIAL651 
CT52•DCOSI AL 521 /DSINI AL 521 
Gl•4o •SALl 7•SAL52•1 Al T•CTl 7•A76•CT76·A65•CT65+A52•CT5Z I 
Z4•AL21·All 7 
G2=·2.•SAL52•1SI•SALl 7· S2•DSINI Z41 I 
Z5•AL52+AL21+AL17 
Z6•AL 52+AL 17 
Z7•AL5Z+AL21·ALl7 
HO•Ul-U2•DCOS 1n1-1A52+A21+Al11 •os1N.I ZS I 
Hl•Z .•SAll 7•1 Sl•DS.l NI Z6 J+SZ•SAL52 I 
HZ•Ul·UZ•DCOS I Z71·1 A52+A21·Al Tl•DSlllll Z7 I 

CONSTANTS FOR use IN e~. 14-431 AND TABLE Xii. 
THESE ARE SUMMARISED IN TABLE XI OF THE THESIS 

Xl•SPl/CPl 
X2•SCl/ttl 
Y2•FO·Fl•Xl+F2*Xl•Xl 
Vl•Z .•FO*Xl•F.l•XL•Xl +Fl•2 .•FZ•Xl 
YO•FO•Xl*Xl+Fl*Xl+F2 
W2•·GO+Gl•X1·G2•Xl•Xl 
Wl••2.•GO•Xl+Gl•Xl•Xl·Gl+2.•G2•Xl 
WO•·GO•Xl•Xl·Gl*Xl-G2 
Z8•HO•Hl*Xl+H2•Xl•Xl 
Z9•2 .•HO•Xl·Hl•Xl•Xl+Hl-2o•H2•Xl 
ZlO•HO*Xl•Xl+Hl•Xl+HZ 
A22•X2*X2•Y2+XZ•WZ+Z8 
A21•XZ•X2•Yl +X2*Wl+Z9 
A20•XZ*X2•YO+X2•WO+Z 10 
Al2•2o*X2*1Z8·Y2 l+W2*1XZ•X2·1. I 
Al1•2.•X2•1 Z9-Yl l+Wl•I x2•x2-1.1 
Al0•2.•x2•1z10-vo1+wo•1x2•x2-1.1 
A02•Y2·X2•WZ+X2•X2•Z8 
AOl•Yl·X2•Wl +X2•X2•Z9 
AOO•YO•XZ•WO+X2U2*Z l 0 

CONSTANTS FOR DEFINING THE NINE EXISTENCE CONDITIONS 
Ql,Q2, ••••• Q9 OF TABLE XII 

X8l•Al2*A22•B02•812 
XB2•·Al 2•Al2.•B02•822 
XB3•-A02•A22•B12•B12 
X84•A02•Al2*Bl2•B22 
XBS- A22•A22•802•B02 
X85•·X85 
XB6•2.0•IAOZ•A22•B02•B221 
X87•·AOZ•A02•822•822 
X71= All •A22•B02•B12 +Al2 •A21 •B02•812•A12•A22•80l •Bl 2+A 12 •A2 2•eo2•Bl 

11 
X72•-( 2. O*Al l*A12•B02•B22•Al2•Ai2• 1 BOl•82Z•eo2•e2111 
X73=-llAOl•A22+A02*A211•B12•812+2.0•A02*A22•811*8121 
X74•AOl•A12•B12•822+A02•All•812*BZ2+A02•A120Bll*B22+A02•A12•Bl2*B2 

11 
X75•· l2o O•A2 l*A22•B02•802+2o O*A22*A22•BOl•B02 I 
X76•2.0•IAOl•A22•B02•B22+A02•A2l•B02•B22+A02•A22•BOl•B22+A02•A22•B 

102•8211 . 
X77•·12 • O*AOl•A02•~22•B22+2oO•A02•A02•B2 l•B22 I 
X6 l l •Al O•A 22*B02•8 l.2+Al 20A20•B02•812+A12•AZ Z•BOO•Bl 2+A 12.•AZ 2*B02*B 

110 
X61\j~\\~\~~l•B02*B12+A2Z•BOl•Bl2+A22•B02•Blll+A12*1A22•BOl*Bll+A2 

wgJTEl6,12101 

1 l•BOZ•Bl l+AZl•BOl•Bl2 I 
X6l•X61 l+X612 
X62l •2o O•Al O•Al 2-.SO 2•82 2+A l2•Al 2• l·BOO•B2 2+802•820 I 
X6ZZ•Al l•Al l•B02•B22+Al2*Al2•BOL•BZl+2oO•A l l*Al Z• I BCI *B22•802•R2 I 1 
X6Z•·IX62l+X6221 . 
X63l•IAOO•A22+AOZ*A20l•Bl2•Bl2+2.0•A02•A22•BlO*Bl2 
X632•ADl*AZl*BlZ•Bl 2+ADZ*A22*Bl l•Bl l+2.0•Bl l•Bl2•1 A01•A22•A02*A2 l I 
X63•·IX631+X6321 . 
X64l•AOO•Al2•812•B22+A02*AlO•BlZ•B22+AOZ•A12•BlO•B22+A02•Al2•Pl2•h 

120 
X642•ADl•IAll•Bl2•B22+AIZ•Bll*B22+Ai2•Bl2*B211+A02•1AlZ•Rll•R2l+Al 

11•812•B2l+All*Bll•B22 I . 
X64•X64l+X642 
X65•· I 2 • O•AZ OU2Z•BOZ•B02+2. O•AZZ•AZZ •BOO•B02+AZ2 *Ac 2 •e DI •BO 1+421 • 

l AZ l•BOZ•B02+4 • O•A 2 l *A 2 2 •BGl• 8021 
X66l•AOO•A22*B02•B22+A02•AZO•B02•B22+AD2•A22•8DD•R22+AOZ•A22*B02•B 

120 
X662•AOl•IA2l•B02•822+A22•8Dl•B22+A22•B02•B2ll+A02•1A22•8Dl•RZl+A2 

ll•B02•82l+A2l•BDl•B221 
X66•2.0•IX661+X6621 
X67•·12.0•AOO•A02•822•822+Z.O•A02•AOZ•B20•B22+ACl•ADl•P22•822+A02* 

uo2•a21•B21+4. ouo1uo2•a21•B221 
X511•A12•A2l•BOl•Bll+All•A22*80l•Bll+All•A2l*AD2•Bll+All•A2l*BOl*H 

112 
X512•AlO•IA2l•B02•812+A22*BOl•Bl2+A22•B02*8111+A20•1All•BO?•qlz+Al 

12•801•812+A12*B02•Blll 
X513•BOO•lall•A22•812+Al2*A2l*Bl2+Al2•A22*Blll+Bl0*1All*A2l*RO<+Al 

12U2 l•B02+Al2•A22•8Dl I 
X51•X5ll+X512+X513 
X521•2o O•A11•Al2•B01•B2 l+All •A11* I BOl•B22+B02•821 I +2 • O*AlO• I Al I •BO 

12•822+AIZ•BOl•B22+A 12•B02•821 I 
X522•BOO•l2.0•All•A12•B2Z+Al2•A12•B211+820•12.0•All•A12•BU2+Al7*Al 

12•8011 
X52•·1 X521+x522 I 
X531•1AOZ•A2l+A01•A221•Bll•Bl1+2.0•AOl*A2l•Bll•Bl2 
X532•AOO•I A21•812•812+2 .O•A22*Bl l*Bl2 I +A20• IAOl•Bl2*Bl2+2. OOA02•B I 

11•8121 
X533•2.0•BlD•IAOl•A22•812+A02*A21*Bl2+A02•A22•Blll 
X53••1X53l+X532+X5331 . 
X54l•AllZ•A 11•Bl1•82l+AO l*Al2•Bl l•B2l+A0l*Al l*Bl2•B21+AO l•Al l*Bl l*'I 

122 . 
X542•AOO*I All•BlZ*B22+Al2•Bl1.•B22-+.AL2•B 12*8211010•1 A01 *Bl2•B22 +AO 

12*Bll•B22+A02•812•B211 . 
XSO•BlO•I AOl•Al2•B22+AOZ•Al 1*822+A02•A12•821 I +82C• I AO l*All*B 12 +40 

12•Ul•Bl2+A02•AL2*Bll I 
X5lt•X51tl+X542+X543 
X55• A21•A22•801•801 +A2l·•A21 •80l •802 ... 20 •I A21 •B02•B02 +2. O•AZ Z•RO l *" 

102 I +800•12.0•A21•A22•802+A22•A22•BOll 
X55••Z.O•X55 
X56l•A02*A2l•B01•82l+AOl•A22•BOl•B2 l+A01•A2 l•B02•B2 l +AO l *A2 l*RO l •R 

122 
X562•AOO*I A2l•B02•B22>A22•801*B22+A22•B02•821 I +A20• I A01•B02•R22 +AO 

12•B01*822+A02•802*B211 
X563•800•IAOl•A22*822+A02•A2l•B22+A02•A22•B211+B2C*IAOl•A22•BO"•AJ 

12•A21•802+A02•A22•B011 
X56= 2.0•1 X561 +X562+X563 I 
X57=AOl•A02•B21*82l+AOl•AOl•B21•B22+AOO•IAOl•B22•B2<+;.0•A02•B2l•R 

1221+B20•tA02•A02•B21+2.0•AOl•A02*8221 
X57=·2.0*X57 
X4ll•Al0•A20•802*B 12+A lO•A22•BOO•B lZ+A 10*A2 2•B02*A IC 
X4l2•Al2•A20•800•B l Z+Al 2•A20•B02•Bl0+A l 2•A22•BOO•B10 
X413•All*A21•1800*B12+802*8101+All•BOl*IA20•912+A22•BlOl+All•All•I 

1A20*802+A22•BOOI 
X414•A21•80l•IA10*Bl2+Al2•810l+A21*8ll*IA10•B02+Al2•BOOl+qol•Bll•I 

IA lO•AZZ+A l2*A20I+A1l•A21•B01•B11 
X4l•Hl l+X412+x413+X414 

...... 
00 
CT' 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE STEPITIFUNKI 

STEPT 7.D A.N.S.!. STANDARD FORTRAN JA~UARY 1973 
COPYRIGHT 1965 -- J. P. CHANOl..ER, PHYSICS DEPT., INOIANA UNIVERSITY. 

!PRESENT ADDRESS •••• COMPUTER SCIENCE DEPT., 
OKLAHOMA STATE UNIVERSITY, STILLWATER, OKLAHOMA 740741 

STEPT !FORMERLY CALLED STEPJTI FINDS LOCAL MINIMA OF A SMOOTH 
FUNCTION OF SEVERAL PARAMETERS. 

-STEPIT iS A PHLEGMATIC HETHOO OF SOLVING A PROBLE ... -
J. H. BURRILL, JR,, -360 STEPIT - A USER-S MANUAL-

THIS SOURCE DECK AND A WRITE-UP ARE AVAILABLE AS PPOGRAM NO. bb FROM 

QUANTUM CHEMISTRY PROGRAM EXCHANGE 
DEPT. OF CHEMISTRY, INOIAN' UNIVERSITY 
BLOOMINGTON, INDIANA ~7401 

c •••••••••• * ••••••••••••••• * •• -•••••• 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

INPUT VARIABLES ••••• FUNK., NV, NTRAC ,MATRX ,MASK ,X ,X,.AX ,XMIN, 
DELTX,DELllN,NFMAX,NFLAT 

CHtso.x,ERR OUTPUT VARIABLES ••• , 

FUNK 

NV 
NTRAC 

MATRX 

CHISO 
MASKI JI 
XIJI 
XMAXIJI 
XMINIJI 
DEL TXIJ I 
DEU•NIJI 

ERRIJ,KI 

NF MAX 
NFL AT 

JV ARY 

l'IXTRA 

THE NAllE OF THE SUBROUTINE THAT COMPUTES CHISQ 
GIVEN x111,x121 ..... xlNVI IAN EXTERNAL 
STATEMENT IS REQUIRED IN THE CALLING PROGRAM 
FOR EACH SUCH SUBROUT! NE I 

THE NUMBER OF PARAMETERS, X 
•O FOR NORMAL OUTPUT, •+l FOR TRACE OUTPUT, 

•-1 FOR NO OUTPUT 
•O FOR NO ERROR CAL CUL A Tl ON, • lOOH! FDR ERROR 

CALCULATION USING STEPS·iO••M TIMES LARGER 
THAN TME LAST S.TEPS USED JN THE MINIMIZATION 

THE VALUE OF THE FUNCTION TD BE MINl141ZED 
NONZERO IF XIJI IS TO BE HELD FIXED 
THE J-TH PARAMETER 
THE UPPER LIMIT ON XIJI 
THE LOWER LIMIT ON XIJI 
THE INITIAL STEP SIZE FOR XIJI 
THE LOWER LIMIT !CONVERGENCE TOLERANCE! DN THE 

STEP SIZE FOR XIJI 
RETURNS THE ERROR MATRIX IF -MATRX- IS NONZERO 

(ALSO USED FOR SCRATCH STORAGE! 
THE MAXIMUM NUMBER OF FUNCTICN COMPUTATIONS 
NONZERO IF THE SEARCH IS TO TERMINATE WHEN All 

TRIAL STEPS GIVE IDENTICAL FUNCTION VALUES 
STEPT SETS JVARY NONZERO If XIJVARYI IS THE ONLY 

XIJI THAT HAS CHANGED SINCE THE LAST CALL TO 
FUNK !THIS CAN BE USED TO SPEED UP FUNK! 

USED SY SUBROUTINE SIMPLEX BUT NOT BY STEPIT 

• • * * • • • * * * • • • * • • • • • • * * • • * • • * • * • • • * * 
EXTERNAL FUNK 

C THE FOLLOWING STATEMENTS CONVERT STEPT TO DOUBLE PRECISION. 
C STEPT CONTAINS NO MIXED MODE STATEMENTS, NO MATTER WHETHER THE 
C VARIABLES BEGINlllNG WlYH A-H ANO 0-Z ARE TYPE REAL CR ARE TYPE 
C DOUBLE PRECISION. 
c 
C DOUBLE PRECISION x,xH~X,XMINoOELTX,OELHN,ERR,CHISQ, 

STEPT Z 
STEPT 3 
STEPT 4 
STE:PT 5 
STEPT b 
STEPT 1 
STEPT S 
STEPT 9 
STEPT 10 
STEPT 11 
STEPT 12 
STEPT 13 
STEPT 14 
STEPT 15 
STEPT lb 
STEPT lT 
STEPT 18 
STEPT 19 
STEPT 20 
STEPT 21 
STEPT 22 
STEPT 23 
STEPT 24 
STEPT 25 
STEPT 26 
STEPT 27 
STEPT 28 
STEPT 29 
STEPT 30 
STE1'T 31 
STEPT 3Z 
STEPT 33 
STEPT 34 
STEPT 35 
STEPT 36 
STEPT 37 
STEPT 38 
STEPT 39 
STEPT 40 
STEPT 41 
STEPT 42 
STEPT 43 
STEPT 44 
STEPT 45 
STEPT 46 
STEPT 47 
STEPT 4S 
SHPT 49 
STEPT 50 
STEPT 51 
STEPT 52 
STEPT 53 
STEPT 54 
SHPT 55 
STEPT 56 
SH:PT 57 
STEPT 58 
SHPT 5<1 
STEPT bO 
STEPT bl 
SHPT 6Z 
STEPT 63 

C X VEC,TRIAL,XSAVE;CHl,DX,OLVEC,SALYO,XOSC, 
C X CHIOS,Q,RELACoHUGE,RATIO,CO!.IN,CMPMX,ACK,FACUP,DELDF 
C DOUBLE PRECISION RZERO,RHALF,RUNIT,RTWO,DELX,XPLUS,COMPR, 
c x A.sua,P,CHSAV,CHOLD,SAVE,ADX,CHIME,DENOM,DEL,OXZ,DXU, 
c x ocz, ocu,ANUM,C !NOR ,AVEC, SUMO,SUMV ,coSIN,COXCI'. 
C X CHBAK,STEPS,FAC,QSQRT,DSQRT c . 
C TliE DIMENSIONS OF All VECTORS ANO MATRICES IAS OPPOSED TO ARRAYSI · 
C ARE NV, EXCEPT FOR •••• 
C ERR INV,MOSQI, XOSClNVt HOSOI ,CHIOSC MOSQI • 
C IF ERRORS tRE TO RE CALCULATED SY SUBROUTINE STERR, HOWEVER, THEN 
C ERR MUST SE DIMENSIONED AT LEAST . ERRINY,MAXINV,MOSOll • 
c TO REDUCE STORAGE ·To A MINIMUM, SET MOSQ•O, REDIMENSIDN ERRll.11, 
c xoscu,11. SALVO(ll, AND CH!OSllJ, DELETE THE OSCILLATION SEARCH 
C IS.EE COMMENT CARDS BELOWI, AND SUPPLY A DUMMY SUBROUTINE STERR, 
c OR, use SUBROUTINE STP. llHICH HAS THESE DELETIONS PLUS DELETION OF 
C TKE COLINEARITY CHECK. 
c 

c 
c 
c 
c 

c 
c 
c 
c 
(. 

c 
c 
c 
c 
c 
c 
c 

c 

DIMENSION VECl20l,TRIALl2DloXSAVE120l,CHll201,DXIZOI 
DIMENSION OLVECl201tSALVOl201,XOSCIZ0,51,CHIOSl51,JFLATl201 

IF UNLABELLED COMMON ANO SINGLE PRECISION ARE USED, SU8ROUTINE STEPT 
IS THEN WRITTEN ENTIRELY IN A.N.S.I. STANDARD BASIC·FORTRAN. 

COMMON /CSTEPi Xl20 I oXMAXl201,XMINl20 I ,OEl TXI 20 I ,DEL MN I 2DI, 
• ERRl21,201,CHISO,NV 0 NTRACoMATRX,MASKl201 

' COMMON /FROOO/ NFMAX,NFLAT,JVARY,NXTRA 

SET THE LIBRARY FUNCTION FOR SINGLE PRECISlON ISQRTI OR FOR 
DOUBLE PRECISION IDSORTI. NO OTHER FUNCTIONS ARE USED, EITHER 
EXTDNAL OR INTRINSIC. 
THE ONLY SUllROUTINF.S CALLED ARE FUNK, STERR, AND OATSW. 
STERR COMPUTES THE. ERROR MAT·RIX ERR, IF MATRX IS NCNZERO. 
THE STATEMENT CALL OATSWINSSW,JUMPI RETURNS JUMP•l IF 
SENSE SWITCH NUMBER -NSSW- IS ON, ANO JUMP•Z IF IT IS OFF, 
IF NO SENSE SWITCH IS TO BE USED, SllPPLY A DUMl'Y RCIHINE FOR OATSW. 

OSORTIQl•DSQRTIQI 
OSORTIOl•SORTIOI 

c • • • • • • * • • * • • • * • • • $ • * • • * • • • • • • • • • • • • 
c . 
C SET FIXED OUANTITIES 
c 
C KW ••• LOGICAL UNIT NUMBER OF THE PRINTER 

c 

c 

c 
c 
c 

c 
c 

c 
c 

c 

KW-=6 

KTV'PE•F..4 

NSSW¥6 

HUGE•l.E37 

NVMAX,.20 

MOSQ•5 

STCUT•lO. 

COLIN•0.99 

C~PMX= .. 999 

KT\'PE ••• CONSOLE TYPEWRITER UNIT 

NSSW TERMINATIO~ SENSE SWITCH NUMBER 

HUGE ••• A VERY LARCE REAL NUMBER 
!DEFAULT VALUE FOR XMAX ANO -XMINI 

NVMAX ••• MAXIMUM VALUE CF NV 

MOSO ••• ~AXIMUM DEPTH OF OSCILLAT!CN 
SEARC>i 

HCUT 

COLIN 

C'4PMX 

JiCOMP 

RATIO OF STEP SIZE DECREASE 

COllNEARITY TOLERANCE 

UPPER SOUND. ON conR 

'4AXIHUk NUMBER OF CYCLES 

STEPT b4 
STEPT b5 
STEPT b6 
STEPT 67 
STEPT 68 
STEPT b9 
STEPT 70 
STEPT 71 
STEPT 72 
STEPT 73 
STEPT 74 
STEPT 75 
STEPT 76 
STEPT 11 
SHPT 78 
STEPT 79 
S TEPT 80 
STEPT Sl 
STEPT sz 
STEPT 83 
STEPT S~ 

STEPT 85 
STEPT Bb 
STEPT 87 
STEPT SS 
STEPT 89 
STEPT 90 
S.TEPT 91 
STEPT 92 
STEPT q3 
STEPT 94 
STEPT 95 
STEPT 9b 
STEPT 97 
STEPT 98 
SiEPT 99 
STEPTlOO 
STEPTlOl 
STEPTl02 
STEPT103 
STEPH04 
STEPT105 
STEPT106 
STE PT 107 
STEPTlOB 
STEPT109 
STEPTllO 
STEPTlll 
STEPTl12 
STEPT113 
STEPT114 
STEPT 115 
S TEPT lib 
STEPTll 7 
STEPT!IB 
STEPT119 
ST EPT 120 
STEPTlZI 
STEPT122 
STEPT123 
STEPT 124 
STE PT 125 
STE PT126 
STEPT 127 
STEPTlZB 
STEPT129 I-' 

00 
00 



NCOMP•4 

ACK"'2•0 

FACUPz4. 

MXSTP:z5 

OELDF ... 01 

RZER02 0. 
RH.t.LF•.5 
RUN IT cl. 
RTWO:z2. 
R TEN•lO. 

WITHOUT ATTEMPTI,._G A GIANT STE:P 
INCOMP.LE.l DISABLES Tt-tE COLINEARITY 
Cl"IECKI 

ACK •••. FIATIO OF STEP SIZE INCREASE 

FA.CUP • • • IF MORE TkAN FACUP STEPS ARE 
TAKEN, THE STEP SIZE IS INCREASED 

°MXSTP ••• LOG21MAXtMUM f\UMBER OF STEPSJ 

DELOF ••• OEFAULT VALUE FOR DEL TXtJI 

c 
c•••••••••••••*••••••••••••••••••••• c 
C NO REAL CONSTANTS ARE USED BEYOND THIS POI NT• 
C CHECK, SOME INPUT QUANTITIES, AND SET THEM TO STANDARD VALUES IF 
C DESIRED. FIRST, MAKE SURE THAT THE TERMINATlOf\ SENSE SWITCH IS OFF. 
c 

JUMP•2 
CALL DATSW CNSSW,JUMPJ 
IFCJUMP-lt 10, 10140 

10 WRITECKTYPE,20INSSW 
ONLY USAGE OF THE CONSOLE TYPEWRITER ..... 

20 FORM&Tr/23H TURN OFF SENSE SWITCH 12//lH I 
30 CALL OATSW INSSW,JUMPI 

IF{JUMP-1130,30,40 

40 KWIT..,.0 
IF INVI 440,¥t0, 50 

50 IFtNV-NVMAXt60t60t440 

_60 RELACzRUNIT 
70 RELAC,..llELAC/RTEN 

XPLUS•RUNIT+RELAC 
If I XPLUS-RUN IT J 80 ,8 O, 70 

80 IFfNCOMPl';iQ,9D,100 
90 NCOMP=l 

100 JVARV•O 

NACTV><O 
DO 260 l><l ,NV 
SALVO II l><RZERO 
IF I MASKI II )260, UO, 260 

KWIT ••• TERMINATION SWITCH 

COMPUTE RELACt THE RELATIVE ERROR OF THE 
MACHINE ANO PRECISION BEING USED. 
RELAC IS USED IN SETTING OELMNIJJ TO 
A DEFAULT VALUE. 

NACTV ••• NUMBER OF ACTIVE XIJI 

CHECK THAT DELTXllJ IS NCT NEGLIGIBLE. 
110 IF{OElTXllll120,l40,120 
120 XPLUS=XC I l+OEl TX( I I 

I FC XPLUS-X I I I J 130.140, 130 
130 XPLUS•Xlll-OELTXlll 

IF ( XPLUS-XC I J 1170,140, l 70 
140 IFCXCl1}150,l60,150 
150 OELTXll),.DELOF*XllJ 

GD TO 170 
160 OELTXIU•OELDF 
170 IF CDEL"!Nf It I 190, 180, 200 

lAO ~~l...~.~ll l~.Q~t.VH.J.l!~~J-A~. 

STE PT 130 
STEPTl H 
STEPT 132 
sr;::PT 133 
STEPT134 
STEPT135 
STEPT136 
STEPT 137 
STEPT138 
STE PT 139 
STE PT 140 
STEPT141 
STEPT1't2 
STEPT143 
STEPT1't4 
STEPT145 
STEPT 146 
STEPT147 
STE PT 148 
STE PT 149 
STEP.f150 
STEPT151 
STEPT 152 
STEPT153 
SrEPTl'54 
SHPT155 
STEPT156 
STEPT157 
STEPT158 
STE PT 159 
STEPT 160 
STEPT 161 
STEPT162 
STE PT 163 
STEPT164 
STE PT 165 
STEPT166 
STE PT 167 
STEPT168 
STE PT l69 
STEPT 170 
STEPT 171 
STE PT 172 
STEPT173 
STEPTl 74 
STEPT 175 
STE PT 176 
STEPT 177 
STEPT178 
STEPT179 
STEPT 180 
STEPT181 
STEPT182 
STEPT 183 
STE PT lA4 
STEPT185 
STEPTHlb 
5TEPT187 
5TEPT188 
STE PT 189 
STE PT 190 
SffPrl91 
STEPTlCJ2 
SHPT193 
STEPT 194 

~~~~~l~~ 

IFtDELMN( I I I l90t200t200 
190 OELMNI 11•-0ELMN( 11 
200 IF( UIAXll )-XM IN( I J 1210, 210,220 
210 X .. AXI Il•HUGE 

XM IN (I J :z-HUGE 
220 NACTVzNACTY+l 

STfPT 1% 
ST~PTlQ7 

STF.PT 19A 
SHPT 199 
STE PT 200 

X( I Jz.U4A.Xl {XM IN( JI ,Al"I Nl IXMAXtl I, XI I 111 
STEPT201 
STE PT 202 
STEPT203 JFfX( I 1-XMAXI I I 1240,240,230 

230 XI I I •XMAX( II 
240 IFIX( 11-XMIN( II 12501260,260 
150 X(IJ•XMlN(IJ 
260 CONTINUE 

COMPUTE COMPR. THE PROBABILITY THAT THE COSINE OF THf ANGLE 
RETWEEN TWO RANDOM DIRECTIONS EXCEEDS CONPR IS APPROXIMATELY 
ll-COLINlt2 • 

COMPRrRZERO 
IFINACTV-114401310,270 

270 A=NACTV 
SUB" I\ TWO/CA-PUN IT J 
P=RTWO* (RUNlT /QSQRT (A I/ CR UNI T-RHALFUSUB t-RUNIT I 
C0"4PR• ( RUNI T-1 RUNI T-COL IN I ••sue J. (RUN IT •P• I RUN IT-CCL IN I I 

IF I COMPR) 280, 290, 290 
280 COMPR:-COMPR 

COMPR., AM IN l ( CMPMX, ABS< CO~PP I J 

290 IFICOMPR-CMPMX13101310,300 
300 COMPR•CMPMX 

310 IFINTAACl400,320,320 
320 WJtlTECKW,3301 
3"30 FORMA'rC56HlENTER SUBROUTINE STEPT. COPYRIGHT 1965, J. P. 

* //l9H INITIAL VALUES • ._ •• /lH I 
WRI TEIKWt 3401 IMASKI J J ,J•l ,NVJ 

340 FORMAH/lOH MASK s 91I6,6Xl/l4X9112JJ 
WRI TECKW, 35011XIJ1 r J•l t NYI 

350 FORMATl/IOH X s 9El2.4/C lOX 9EI2.4J I 
WRI TEIKW,360 I ( XMAX( JI ,Jzl rNY I 

360 FORMAH/lOH XMAX • 9El2.41110X 9El2.41) 
WRITE(KW,3 701 ( XMINI J) ,J .. l ,NYJ 

370 FORMATl/lOH x~rN - 9El2.4/110X 9El2.i.JJ 
WR JTE IKW, 3 80IfDELTX(J11 J• l,NYI 

380 FORM&T(/lOH DELTX • 9El2.4/110X 9El2.411 
WRITE IKW,390 I <DELMNI J), J,. t ,NY I 

390 FOR"1AT(ll0H DEL'tN • 9El2.4'/ClOX 9El2.4}) 
400 CALL FUNK 

CHSAV•CHISO 
CALL FUNK 

STEPT204 
STEPT205 
5Tf PT206 
STEPT207 
STEPT2C..8 
STE PT 20Q 
STEPT 210 
STEPT2ll 
STEPT212 
SHPTZI 3 
STFPT 214 
STEPT215 
STEPT21~ 

STEPT217 
SHPT7.IA 
STEPT219 
STEPT220 
STfPT 2.?l 
STEPT222 
STEPT22'.' 
STFPT224 
ST!;:PT22') 
STEPT 226 
STE PT 227 

ChA~DL E>l. S TEPT? 2~ 
STE PT 229 
STEPT?.30 
STEPT23l 
STEPT 232 
STfC)T?13 
ST[PT234 
STEPT235 
STE PT 23ft 
STEPT 237 
STE PT 23A 
STE PT 23<:i 
STEPT240 
STE PT 241 
STEPT242 
STEPT243 
STEPT244 

NF ••. NUMBER OF FUf'.lCTICN CALLS STEPT245 
Nf .. 2 STEPT24b 
IF l CHISQ-CHS AV 1410 143 O, 410 STEP,.. 24 7 

410 WAJTEIKW,420JCHSAV,CHISQ,NF SHPT24A 
420 FDRMATl//131/59H WARNING •••• CHISQ IS NOT A REPRODUCIBLE FUNCTrONSTEPT24'1 

•OF XIJI. l/5X 8HCHSAV • E22.14,5X 8HCHISQ • E2Z.14 1 5X5HNF "' J5J STEPT250 

430 JOCK=l 
IF INTRA( 1470,450,450 

440 KWTT=l 

JOCK ••• SWITCH USED IN SETTING JVARY 

450 WR I TE{ KW, 460 I rw,NACTV,MATFIX' NCO"IP,NF"!AX I "+Ft AT t 

* ~EL AC, S TCUT r ACK, C'Jll N,C OMPR, Cl-!T SQ 
460 FORMAH//lX 13,llH VARIABLES,Jl,BH •CTIVE.10X7f-•lo'ATRX "'14,IOX 

7HNCO"IP =J2,lOX7Hl\iFMAX ::f8rl'JX7HNFLAT •1211 
BH RELAC =El0.3,RX71-4STCUT =El0.3,8X5HAf:K =El0.3,8X 
7~CrJLIN =El0.3,8X7HC~t4!:'R. =qQ.3///{l!i_Cl-!I$0.:=Ett:i.9~//. 

STEPT251 
STEPT252 
STE PT 25; 
STEPT251.o 
STE PT 25'1 
')T[PT 256 
SHPT257 
STFPT 25fl 
STEPT 259 
STEPT260 
STEPT 2bl 

....... 
00 

'° 



c 
c 

c 

• 23H BEGIN MINIMIZATION •••• STEPT262 
STEPT261 470 IFIKWITl480,4801214B 

480 1FlNTRAC15101SlD1490 STEPT264 
490 WRITEIKW,5001 
500 FORMATC/l6012H •l//10X29HTRACE .. AP OF THE l'INIMUAT ION lllH I 

STE PT 265 
STEPT 266 
STEPT267 
STEPT268 
STEPT269 
STEPT270 
STEPT27l 
STEPT272 
STEPT273 
STEPT274 
STEPT271_; 

510 00 520 I•l1NV 

VECC I l:o:RZERO 

520 OXll l•OELTXI 11 

CHDLO:o:CHJSQ 

NOSC•O 

VECIJI ••• CURRENT VECTOR OF ff.JMSER OF 
STEPS IN XI JI 

DXCJI CURRENT STEP sue FOR XIJ I 

CHOLO BEST PREVIOUS VALUE Of CHIS~ 

NDSC CURR.ENT DEPTH OF THE OSCILU.TlOt.il STEPT276 
JNFORMATIOt.il STEPT27T 

STEPT278 

c •••••• . . . . . . . . . . . . . . . . .... STEPT279 
STEPT2$0 
STEPT281 
STEPTZ82 
STEPT 283 
STEPT284 
STfPT21!15 
STEPT21!16 
STEPT2fH 
STEPT 281!1 
STEPT21!19 
STEPT290 
STE PT 291 
STEPt292 
STEPT29J 
STE.PT291t 
STEPT295 
STEPT296 
STEPT297 
STEPT298 

c 
c 
c 
c 
c 
c 
c 

c 

VARY THE PARAMETERS ONE AT A TilillE. 
THIS IS THE STARTING POINT USED EACH TIME THE STEP SIZE IS REDUCED 
OR A SUCCESSFUL GIANT STEP IS COMPLETED. 

NCIRC ••• NUMBER OF CONSECUTIVE XIJI 
W[THOUT SIZEABLE CHANGES 

530 NCIRC•O 
NZIP ••• ~UMBER OF CONSECUTIVE CYCLES 

WITHOUT l GIANT STEP 
NZ IP•O 

"'IA.IN DO LOOP FDR CYCLING THROUGH THE VARIABLES. 
FIRST TRUL STEP WITl:f EACH VAAU~LE IS ~~P~A!!• 

NACK ••• NUMBER OF ACTIVE XIJI CYCLED 
THROUGH 

540 NACK•O 
DO 1710 l•l1NV STEPT299 

JFLATIJI ••• NONZERO IF CHANGING X.IJI DID STEPT300 
NOT CHANGE CHISQ STEPT101 

JFLATI 11•0 

DlVECII l•VECC 11 
VEC I Jl:o:RZERO 

TRIAL(ll•RZERO 
IF IMASK I 1115450, 560, 550 

550 VECl 1 J•-RZERD 
JFLATlll•l 
GO TD 1750 

560 NACK•NACK+l 

ADX•DXI I J 
IFI ADXI 570,5801580 

570 ADX•-ADX 
580 SAVEoiX( 11 

XPLUS:o:SAVE+DXI I J 

OLVECfJI ••• OLD VECTOR Of NUlill8ER Of 
STEPS IN X( JI 

TRULCJI ••• CHANGE IN X(JI 

AOX-lBSIDXC I I J 

CHECK THAT DXI 11 IS NOT NEGLIGIBLE. 

IF( XPLUS-SAVE J 59016001590 
590 XPLUS2SAVE-D>tl I) 

IFI XPLUS-SAYE 161016001610 
600 JFLATII 1•2 

GO TO BIO 
STEP XfIJ. 

STEPTJ02 
STEPT!03 
STEPT304 
STEPT105 
STEPT106 
STEPT307 
STEPT308 
STEPT109 
STEPTllO 
STE PT 311 
STEPT312 
STEPT313 
STEPT314 
STEPT315 
STEPT 316 
STEPT317 
STEPTlll!I 
STEPT319 
STEPT320 
STEPT121 
STEPT322 
STEPT323 
STEPT324 
STEPTJ2i; 

_ 610 l(!JJ_,.J}~~t-Qll.IJ I 
STE"PT126 
SJf:PT327. 

JVAR't'•O 
JFCJDCK 16301 630,620 

620 JOCK•O 
JVAR't'•I 

SHPT 32.IJ 
STE PT '!'9 
STEPTBO 
STF.PT 331 

NFLAG ••• COUNTER USED IN S·ETTING JFLAb(JICiTEPT332 
630 NFLAG•l 

f.flX( 11-XMINI I 11650,640,640 
640 IFtx( 11-XMAU I 1166016601650 
650 NFLAG•NFLAG+3 

GO TO 1!180 
660 CALL FUNK 

NF:o:NF+l 
JVAR't'•I 

STEPT333 
STEPT334 
STEPT131J 
STEPT"'36 
srs:-pr 337 
STEPT11R 
STEPT339 
STEPTJ40 

SAVE OLD VALUE OF CHISQ FOR INTERPOLATION. STEDB41 
CHIME::rCHI SQ 
IF ICHISQ-CKlLDJ 850,670, 680 

670 NFLAG•NFlAG+l 
STEP XllJ HIE OTHER WAY. 

680 XPLUS•Xf II 
XIIJ•SAVF.-DXlll 
IFCX CI 1-XMINt 11182016901690 

690 IFIX( IJ-XMAXI 111100,100.a20 
700 CALL FUNK 

r.!F•NF+l 
JVAR't'•I 
JF(CHJSO-CHOLOl 840, 7101 720 

710 NfLAG•NfLAG+l 
720 IF(NFUG-3t13D,80D,820 

PERFORM PARABOLIC INTERPCLATION. 
CHECK FDR ZERO CENO,.INATOR, E:TC. 

730 1FtCHISQ-CHIMEJ740,82D.t74D 
71t0 ·DENOM•I CHI SO-CHOLDl-C CHOLO-CHIME I 

IFIOEN01111750,820, 750 
750 TR ULll l•DXC I J•CCHI SO-CHIME I l(RTWO•DENOM I 

VECI !J•TIH Al ( 11 IADX 
XI I l•SAVE+TRUlf I J 
IFIXf I 1-SAVEl710, 760, 770 

760 CHI SO•CHOLD 
GO TO 7410 

770 CALL FUNK 
f-tF•NF+l 
IFICHISO-CHOLDI 180, 790, 790 

780 CHOL D-CHISO 
JOCK•l 
GO TO 830 

790 TRIALlllsRZERO 
veer I l•RZERO 
GO TO 820 

800 JFLATlll•l 
RIO VECI 11•-RZERO 
820 XI 1 l•SAVE 
830 NCIRC•NC IRC+l 

IFI NC tRC-NACTVJ9601 l8o\01 l81tO 

STE PT J42 
STEPT3oltl 
STEPT344 
STEPT345 
STE PT 346 
STE~Tlo\7 

STEPT348 
STEPT"349 
STEPT150 
STE PT J51 
'HEPT152 
STE PT 3'53 
STE PT 354 
STEPf35'5 
STEPT356 
STE PT 357 
STE PT 358 
STEPT35,q 
~TEPT360 
STEPT36l 
STEPT362 
STE PT 363 
STEPT364 
STEPT36'5 
STEPT166 
STEPT3'17 
STEPT3MI 
STEPT"36q 
STEPT'7Q 
STEPT371 
STE PT 372 
STEPT373 
STEPB74 
STEPTHS 
STEPT376 
STEPT377 
STEPT378 
STE PT HQ 
STEPT 390 
STE PT 3U 

FLIP DX II I FOR MORE EFFICIENT OPERATIDr>h STEPT3R2 
840 DXlll•-DXlll 

A LOWER VALUE OF CHJSO HAS BEEN FOUND. STEP, DOUBLE THE STEP Silt', 
ANC REPEAT AS tONG AS CHtSQ DEC~EASES, UP TO MXSTP TI"1ES. 

850 NCIRC•O 
DEL•DXI 11 
NSTP•O 

860 CHHl!E•CHOLO 
CHOLIJ•Ct-flSO 
VHt tl"'VF.Cfll+DH/AOX 

ST'!:PT3R~ 
STEPTll!.4 
STf P! 1A-; 
SHPT 3f.ll· 
STfPT3R7 
ST[PT388 
STEPT l$Q 
STE PT 390 
STEPTlql 
SHPT 1Q2 
STEPT193 

I-""" 
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0 



TRtAt.11 l•T-RIA.ll l l+DEL 
l\ISTP•NSTP+l 
IF INSTP-MXSTP 1870,940,940 

870 DEL•ACK•DEL 
l(PLUS•SAVE 
SAVE:oXI 11 
XI I l•SAVE+DEL 
IFUI 11-XMINtl 11950.,880,880, 

880 1FUIU-XMAXC111890,B90,950 
890 CALL FUNK 

l\IF..,.NF+l 
IFlCHTSO-CHOLDI 860,900,900 

900 OX'Z•SAVE-XPlUS 
DXU•XI I I-SAVE 
OCZ•CHOLD-CHIME 
DCUzCHI SQ-CHOLD 
DENOM•DCZ•oxu-ocu•oxz 
IFI DENOMI 9101950,910 

PERFORM PARABOLIC JN'TERPOLATION. 

910 DEL• I DCZ•DXU••2+ocu•oxz••2111 RTWO•DENOMI 
Xctl•SAVE+Del -
1 FCXC ll-SAVEl9Z0,960,920 

920 CALL FUNK 
NF•NF+l. 
IF I CHISQ-CHOLD 1930, 950, 950 

930 CHOL.O•CHISQ 
TR IAU 11 •TQ IALC 11 +DEL 
VECI J )zVEC ( 11 +OEL/AOX 

940 JOCK•l 
GO TO 960 

950 XI I I •SAVE 

960 IFINZIPl•no,970,990 
cno IFINCOMIP-119B0,980,1740 
980 fFINACK-lll'740.174D,990 

990 AVEC•VECI 11 
IFIAVEC 11000, 1010, 1010 

1000 AVEC•-AVEC 

DO NDT INCREASE THE STEP SJZE PREMATURELY. 

AVEC•AHS I VEC 1111 

1010 IF UVEC-FA.CUPl1080, 1020,1020 c . 
f: INCREASE THE STEP sue. 

1020 OXC I J •ACK•AOX 
VECI I l•VECC I J /ACK 
OLVEC.CI l"'OLVECI ll/ACK 
IFINDSC, 1050 1105011030 

1030 DO l01t0 Jsl,NOSC 
1040 ERR( I1Jl•ERRI I 1Jl/ACK 
lO'iO [FCNTRACI 1080, 1080, 10.60 
1060 WRITEIKW110701I1DXI I I 
1070 FORMATtlOH STEP. SIZEl311"H ll\ICREASED TO E13.51 

c c •••••••••••••••••••••••••••••••• 
c 
C STEP ALONG A RESULTANT DIRECTION, IF POSSIBLE. 
C FIRST CHECK THE COllNE'ARlTY OF VEC AND OLVEC. ·SINCE THESE ARE 
C NIJJ.113ERS OF STEPS, THE TEST JS SCALE-INVARIANT• 
c 
C CHECK THE C.OLINEARlTY OF VEC: AND OLVEC. 

1080 SU"4D•RlERO 
SUMVzRZERO 
DO 1090 Jzl,NV 
SUMOi=SUll40+0LVEC.C Jl••2 

1090 SU,_V•SUM'Vt-VECIJ1**2 
IFI SUMD•SUMV 1171t0,l 740, 1100 

STEPT194 
STEPT395 
STFPT 396 
·sTEPT397 
STEPT398 
STEPT399 
STEPT400 
STEPT-401 
STEPT402 
STEPT403 
STEPT40+ 
STEPT405 
STEPT406 
STEPT407 
STEPT408 
STEPT409 
STEPT410 
STEPT411 
STEPT412 
STEPT413 
STEPT414 
STEPT4U 
STEPT416 
STEPT417 
STEPT418 
STEPT419 
STEPT420 
STEPT421 
STEPT422 
STEJIT423 
STEPT424 
STEPT42'S 
STEPTit26 
STEPT1t27 
STEPT428 
STEPT42CI 
STEPT"°30 
STEPT431 
STEPT432 
STEPT433 
STEPT434 
STEPT435 
STEPT436 
STEPT437 
STEPT43R 
STEPT439 
STEPTlt40 
STEPT441 
STEPT442 
STEPT443 
STEPTit44 
STEPT4"'5 
STEPT446 
STEPT447 
STEPT448 
STEPT44'9 
STEPT450 
STEPT451 
STEPTltS2 
STEPT453 
STEPT454 
STEPT455 
STEPT456 
STEPT457 
STEPT458 
STEPT459 

c 

1100 SUMO•~SQRTISUMOI 
StH1V=OSQRT I SUfllV I 
CDS I N•RZ ERO 
DO 1110 J•t.NV 

1110 COSlN•COSIN+lOLVECCJI /SUMOl•IVECCJ l/SU"4V I 
I f(N Z IP.,...NCOMP 1112011150, 1150 

1120 IFINZIP-ll17401ll30,ll40 
1130 IF lNACK-NACTVtl 740, 114011140 
1140 'IFI COSIN-COMPP.11740, 1150, 1150 
1150 IFIYEC(l111160,11401ll60 
1160 fllONZR•O 

DO 1180 J•l ,NV 
IF IVECIJ 111170, 1180, 1170 

1170 NONZR•NONZR+l 
1180 CONTINUE 

IF CNO"IZR-21171tO,1190, 1190 

r. SIMON SAYS, TAKE AS MANY GU.NT STEPS AS POSSIBLE ••• 
c 

1190 IFIMDSQl1370,1370,l200 
1200 CONT JffUE 

c 
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
c 
C TO DELETE THE OSCILLATION SEARCH SECTION, SET fi!OSQ•O, REMOVE All 
C STATEMENTS BETWEEN THIS POINT ANO THE NEXT COM,,.ENT CARO OF X-S, AND 
C ltE,.OVE THE STATE'4ENT SURROUl\IDEO BY X-S FURTHER ON. 

c 
c 
c 

c 

c 

.. 
Kl ••• POINTER FOR OSCILLATION CHECK 

KL•l 
STORE OSCILLATION INFORMATION~ 

NOSC•NOSC+l 
IF(NOSC- .. OSQI 1240, 1240, 1210 

1210 NOSC•MOSQ 
If CNOSC-111370, 1240, 1220 

THE STACK OF OSCILLATION INFORMATION IS 

1220 DO 1210 K•2,NOSC 
CHJOSlK-1 l=CHIOSUC:I 
DO 1230 J•l,NV 
xoscr J,K-1 l=XOSCCJ,KI 

1230 ERRIJ,K-ll•ERRIJ,KI 

1240 DO l 2tj0 J=l ,NV 
XOSCI J1NDSCJ •Xf JI 

1250 ERRIJ,NOSCl•VECCJl/SUMV 
CHIOSINOSCJzCHQLO 

FULL. PUSH IT DOWN, THROWING AWAY 
THE OLDEST ITEM. 

ADO THE NEW ITEM. 

IF INDSC-ZI l:no, 1260, 1260 

C SEARCH FOR A PREVIOUS SUCCESSFUL GIANT STEP IN A D-IRECTION MORE 
C NEARLY PARALLEL TO THE DIRECTIOl\I OF THE PROPOSED STEP THAN WAS THE 
C IllllMEOIATELY PREVJOUS ONE. THIS MAY MEAN TttAT THE 'tlRECTIONS OF THE 
C GIANT STEPS OSCILLATE PERIODICALLY <ZIG-ZAGJ. TRY GIGANTIC 
C: fOSCILLATIONI STEPS Of DECREASING PERIOD, THEN ORDINARY GIANT STEPS. 
c 

1260 COXCNzRZERO 
00 1270 J•l1NV 

1270 COXCMl:oCOXCM+EPRI J ,NOSCI *ERRIJ ,NDSC-11 
"-'AH•NOSC-1 

1280 DO 1310 K•Kl, NAH 
l\IRETR•NAH-K 
CDSIN•RZERO 
DD 12C10 J•t.NV 

1290 COSINsCDSI N+ERR IJ 1NOSCI •ERR (J,KI 
IFIK-l\IAHl1300113201 l320 

STEPT460 
STF'PT46l 
STEPT4~:? 

STEPT46' 
STEPT461t 
STEPT46'i 
STE-PT"°66 
STEPT467 
STEPT468 
STEPT46Q 
STEPT~10 
STEPT471 
STEDT472 
STEPT473 
STEPT474 
STEPT47'i 
snPr1t16 
STEPT4 71 
STEPT478 
STEPT47q 
STEPT480 
STEPT4Bl 
STEPT482 
STEPT41!'3 
STEP!48'9 
STEPT495 
STEPT4R6 
STEPT487 
STEPT48R 
STEPTltRq 
STEPT4QO 
ST£PT4ql 
STEPT492 
STEPT4Q°" 
5TEPT4Q4 
STEPT4q5 
STFPT49f.> 
STEPT407 
STEPT49R 
STEPT4QQ 
STEPT500 
STEPT501 
STfPT50l 
STEDT'503 
STEPT50"­
STEPT'i05 
STEPT506 
STEPT507 
STEPT".i08 
STEPT".iQ9 
STE'PT510 
STEPT5ll 
SJEPT512 
STE PT 511 
STEPT514 
STEPTi;15 
STFAT516 
STEPT517 
STEPT'ilR 
STEPT'51Q 
STEPT".i20 
STFPT521 
STEPT522 
SHPT523 
STEPT'i24 
STEPT525 

I-" 

'° I-" 



1300 l'FfCOStN-COXCMl13lO,l320,1320 
1310 CONTINUE 

GO TO 1370 
1320 KLzK+l 

IF fNTRACI 1350, 1350, 1330 
1330 NT•NOSC-K 

WRI TEIKW,l340)NT ,COXCM, COSIN 
131t0 FORMATl/lX8H••••••••5X26HGIGANTIC STEP WITH PER mo 12, 

* 35H BEING ATTEMPTED. COXCM, COSIN "' 2El3.41 
1350 DO 1360 JsI ,NV 

SALVO(J),,,TRIALI JJ 
1360 TRJAL(J)sX(JJ-XOSCtJ,KI 

CHBAK•CHIOS( Kl 
GO TO 1380 

c 
cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
c 
C PERFORM GIANT STEPS OP GIGANTIC COSCILLATIONI STEPS. 
c 

1370 CHBAKzCHtf U 
c NRETR ••• NUMBER OF OSCILLATION PERIODS 
c 
c 

c 
c 

c 

NRE.TR .. -1 

1380 NGUN""O 
1390 DO 1440 J•l,NV 

XSAVEIJJ,.,XIJ) 

YET TO BE TESTEC lz-1 IF A GU.NT STEP 
IS BEING TRIEDI 

NCHAN... NUMBER OF GUNT OR GIG.l.NTrC 
STEPS COMPLETED 

IFOIASK(J 1114.40, 1400, l41t0 
1400 XIJl•X(Jl-+TRIAL{JI 

X ( JJzAMAXl (AM INl 0(( J 1 r X~AX I JI I ,XMINC JI I 
IF lXI Jl-XMAX( JI )1420, 1420, 1410 

!.410 X(JJcXMAXf:JI 
1420 fFI X( JJ-XMINI JI '1430, 14-40, 1440 
1430 )(IJl"'XMINIJI 
1440 TRIAUJJ:..lCK•TRU.l(JI 

JOCK•O 
JVARY•O 
CALL FUNK 
NF•NF+l 
IF(CHlSO-CHOLOl 1450, 1'520t 1520 

·l't50 CHBAKsCHOLO 
CHOLO'-"Ct-fISQ 
NG 1.1.NsNGU.N+l 
IF (NT RAC 11390, l 390, 1"60 

1460 IFINGUN-1JH·10,1470, 1500 
1470 WRJTE(KW, llt80ICHBAK,NF, (VECt JI ,Jzl, 11 
14130 FORMAT(//8H CHISO zfl6.B,8X4HNF zl71f5Xl6HND. OF STEPS "" 9Ell.3/ 

* 12lX9Ell.311 
WRITEfKWr 149011 XSAVE( JI ,J .. l ,NVI 

l4qO FORMAT(9H xrn •••• /11X9El3.511 
1500 WP I TE (KW.15101CH1 SQ,NF1 (X ( JJ ,J,,.l ,NV I 
1510 FORHAT(/8H CHJSQ -sE16.B,8XltHNF •11/9H X(Il •••• /ClX9El3.51) 

GO TO 1390 
C DO NOT INTERPOLATE AFTER AP\ U"lSUCCESSFUL 
C GIANT STEP. 

1520 IFINGUN1l600.l60011530 
C PERFORM PARABOLIC INTERPOLATION. 
r 

1530 OEN.JM= ACK*CHBAK-1 AC K+RUNI TI *CHO LO +CH I SO 
IFIDENOMll5401l600, 1540 

1540 ttNORz I l.CK**2*CHBAK-I ACK**2-RUNJT I •CHOLO-CHJSQI /( RTWO•ACK•DENOMI 
DO 1590 Jal ,NV 
I F04AS1<1JI11590, 1550, 1590 

1550 X.(...tl_-=_XS_AV_E.lJ.J.+_C.lN.DJl•llU.~I JI 

STEPT526 
STE PT !!:27 
STEPT528 
STEPT529 
Sf'EPT530 
STEPT531 
STEPT532 
STEPT533 
STEPT534 
STEPT535 
STEPT536 
STEPT5~7 
STEPT538 
STEPT539 
STEPT540 
STEPT54l 
STEPT542 
STEPT543 
STEPT544 
STEPT 545 
STEPT546 
STEPT'547 
STfPT548 
STEPT549 
STEPT550 
STEPT551 
STEPT'552 
STEPT553 
STEPT554 
STE'PT555 
STEPT556 
STEDT551 
STEPT558 
STEPT559 
STEPT560 
STEPT56l 
STEPT562 
STEPT563 
STEPT564 
STEPT565 
STEPT566 
STEPT561 
STEPT56ft 
STEPT56q 
STEPT510 
STEPT571 
STEPT572 
STEPT573 
STEPT514 
STEPT575 
STEPT57" 
STEPT577 
STEPT578 
STEPT579 
STEPT5~0 

STEPT5Bl 
STEPT'5R2 
STEPT583 
STEPT584 
5TEPT585 
STEPT586 
STEPT587 
STEPT588 
STEPT'589 
STEPT590 
'iTEPTCiQ} 

c 
c 
c 

XIJl•AMAXllA"4INl IXI Jh Xfo'AXCJJ I ,XMINC JJ > 
IF IX ( JJ-Xlliill.XtJI tl51011570, l lj60 

1560 XIJl,.XMAXtJ) 
1570 lFIX(Jl-XMINCJJ 11580,1590,1590 
1580 XIJl•XMIN(JI 
1590 CONTINUE 

JOCK•O 
JYARY""O 
CALL FUNK 
NF•NF•l 
IFICHISQ-CHDLDI 1610, 1600, 1600 

1600 DO 1610 J•leNV 
TRI ALIJ l•SAL VO( JI 

1610 XCJl•XSAYE(JJ 
IF INTRA.Cl 1640, 16.ftO, 1620 

1620 W~ITE(KW,l6301CHOLO,NGIAN 
1630 FORMATl/8H CHISQ sEPJ.8,7H AFTER13,13H GIANT STEPS. 

WRJTE(KW, l't90> (XI JJ ,J=l ,NVI 
1640 I F(NGIANl165011650, 1700 
1650 CONT!NUE 

x xxx xx)( xx xxx xx xxxxxx xx xx xx )I. x xx xx xx x 

S'rEPT592 
STEPT5Q3 
STEPT5Q4 
STEPri;q5 
STEPT590 
STEPT5Q7 
STEPT59A 
STEPT5qo 
STF.PT6QO 
STEPT601 
STEPT602 
STEPT601 
STEPT'>04 
STEPT60'5 
STEPT606 
STEPT607 
STEPT60B 
STEPT609 
STfPTblO 
STEPT6l l 
STf PTblZ 
STEPTnll 
STEPTl!:IH 

c IF THE OSCILLATION SEARCH rs DELETED. DELETE THE FCLLOWING ST A H:M~NT. STF.PTf>l 5 
( ST[PT6lt:i 

IF I NR ETR) l 7201 1660, 12 BO <;Tf PT617 
( 

c 
( 

'-.HPTt>l ~ 
X X X X X X X X X X X X X X )( X X X X X X X X X X X X X X )( X X X X X <;, T f PT 6 l q 

ST!;PT62(1 
c IF All GIGANTIC STEPS WERf UNSUCCE.SSFUl • STEPT621 
c 

1660 IFCNRETR 11720, 137011720 
c 

1670 CHOLO•CHISO 
JOCK•l 
IF INTRl.C H 70C, l 7001 1680 

1680 STEPSsNGIAN 
STF.PS•STF.PSt-C INDR 
WRI TEIKW11690ICHOLD, STE PS 

1690 FORMATl/SH CHISQ ""El6.8,7H 
WRJ TE (KW, 149011 X( JI ,Jzl ,NVJ 

1700 lf(NRETR1530,1710,1710 

TRY A Gt.lNT STEP. 

AFTEREll.3,13H GIANT STEPS. 

1110 CONTINUE 
c A SUCCESSFUL GIGANTIC STEP HAS OCCU-tRtO. 

c 
c 

c 

( 

GO TO 530 

l 720 NOSC:.NOSC-1 
IF INOSC J 1730,1740, l 740 

1730 NOSC""O 
1740 CHI I I l•CHOLD 
1750 CONT rnue 

CA.LL OATSW INSSW,JU"'IPI 

AN UNSUCCESSFUL GIANT STEP HAS OCCURF<t:n. 
DELETE ITS OSCILLATION lNFOPMATIO,.,,. 
NOSC::"'IAXO I NOSC-1, 01 

RETURN IF THE SENSE SWITCH JS ON. 

IF I JU,..P-112110, 2110, l 760 

1160 IFINF-NFMA.XJ177011770,2090 
i710 C:ONTINUE 

c ENO OF THE ~AI N DO LOOP. 

ANOTHER CYCLE Tl--IR(lUGH THE VARIABLES HAS BEEN rc"'PLETFD. 
PRINT ANOTHER LINE Of- TRACES. 

<\TEPT 62? 
STEPTA7 ! 
STEPT6~" 

STEPH17.'5 
ST:PTb?n 
STEPT6Z7 
STFPTO?A 
SHPr,.,79 
SHPT!-, lO 
ST~ I-' T '> '\ 1 
STf PT(->32 
sn Pro~ . ._ 
STECH"i-. l4 
STEPT635 
STl;PT~l~ 

STEPT617 
ST"EPT03P. 
STEPT63<i 
STEPT,.,40 
STEPTn4l 
STEPT~42 

STFPT64'.' 
STEPT,C.,44 
ST(DTfi45 
STEPT~4~. 

STfPTQ47 
SH.PT 648 
STE:DTl',4q 
STf PT~50 
<;jTEPT6i; I 
STE:PT 652 
STEPT651 
Hf PT054 
STEPT655 
STEPT65h 
'>Ti:PT657 

...... 

'° N 



c 

IFI NTRAC 11790 r l 790r 1780 
1 780 W~ ITE IK Wr 1480 )CHO LO, NF, ( VEC CJ I r J .. l rNV I 
1790 IFINlIPl18301lB0011B30 
1800 tFINTRACllB30rl830rl810 
1810 WRITE IKW_, 14C)0)1 XI JI rJ"'l-rNVI 

WRITElKW,lB201 
1820 FORMAT( lH I 
1830 NZIP,.NZIP+l 

GO TO 540 

C A NEW BASE POINT HAS BEEN FOUND. PRINT THE Rffl'AINING TRACES. 
c 

c 

1B40 IFINTRACH860,l860, 1850 
1B50 WRt TE (KW, 1480 ICHOlO rNF, I VECC JI , J• l 1 11 

WRITE (KW .1490 I I XI JI• J•l ,NVI 

C OECPEASE THE SIZE OF THE STEPS FOR All VARIABLES. 
c 

1860 CONTINUE 
c 

CALl 0.lTSW (NSSW,JUMPI 
RETURN IF THE SENSE SW ITCH IS ON• 

I Fl JU~P-112110,2110r 1870 
c 

1870 lF I NF-NF MAX I l 880, 1B80,2090 

STEPT658 
STEPT65q 
STE PT MO 
STEPT66l 
STEPT662 
STEPT663 
STEPT664 
STEPT665 
STEPT666 
STEPT667 
STEPT668 
STEPT66'1 
STEPT670 
STEPT67l 
STEPT672 
STEPT673 
STEPT674 
STEPT675 
STEPT676 
STEPT677 
STEPT678 
STEPT67q 
STEPT680 
STEPT681 

C CHECK 
1880 NGATE•l 

DO 1930 J•l,NV 
IFIMASKIJ 111'9'30, 1890, 1930 

WHETHER All ABStDXfJll .LE. DELMNCJJ.STEPT61!2 
STEPT683 
STEPT684 
STEPT685 

c 
1890 ADX,.OXI JI 

JFI AOXI l qoo, 1'910, 1910 
1900 ADX•-AOX 

AOX•ABSI OX( J 11 

1910 lfUOX-DElf4NIJI 11930,1930,1920 
1920 NGATE"'O 
1930 OX{Jl,..OXIJl/STCUT 

IFINGAT E H970, 1970, 1940 
l91t0 IFl"'lTRACl2150.1950,lC)50 
1950 WRITE-IKW1l%OJ 

STEPT686 
STEPT687 
STEPT6M 
STEPT6!9 
STEn6qO 
STEPT6'1l 
STEPT6'12 
STEPT693 
STEPT694 
STEPT695 

1960 FOR~AT(/l/65H TERMINATED WHEN 
•E OFLMNIJI. 1 

t;O TO 2150 

THE STEP SIZES BECAp.lf AS SMALL -AS THSTEPT6C)6 
STEPT697 
STEPT69A 

C CHECK THE JFLATIJI. 
!CHO IFINFLATl2060,2060,1980 
1980 JFLMN:z5 

00 2010 J•l,NV 
IF I MASK I JI 12010 tl 990, 2:010 

l 9'90 IF t JFLA T( J 1-JFLMN 12000. ZO 10, 2010 
2000 JflMNzJfLATIJI 
2010 CONTINUE 

I ff J FLlllN-112060, 2020, 2020 
2020 tFCNT~AC>2150,2030,2030 
2030 Wlt.ITEIKWr20401 
2040 FORMATl///49H TERMINATED WHEN THE FUNCTION VALUES AT All TRIAL 

• 23H POINTS WER.E IDENTICAL. I 
WRITE IKW,20501 lDXIJ I, J .. l, NVI 

J050 FOF!:M.lTl/l/23H CURRENT STEP SIZES •••• IJ(LX'9El3.51J 
GO TO 2150 

2060 If{ NT RAC I 530, 53012070 
c PRINT THE DXIJI AND SEARCH sn"'E MORE. 
c 

c 

2070 WRITEIKl111t2080JIOXIJJ,Jzt,NVJ 
?.080 FORHATfl/6011XlH•tll26H STEP SIZES REDUCED TO •••• IJl1X9El3.511 

GO TO 530 

2090 WRITEIKW12lOOINFM.lX 
2100 FORM AH ///46H ABNORMAL TERMtNAT ION.••• ,..ORE THAN Nftl!AX !7, 

S.TEPT699 
STEPT700 
STEPT70l 
STEPT702 
STEPT703 
STEPT 704 
STEPT705 
STEPT706 
STEPT707 
STEPT70e 
STEPT 709 
STEPT710 
STEPT7ll 
STEPT712 
STEPT713 
STEPT71-'t 
STEPT71'S 
STEPT7l6 
ST[PT717 
STEPT7l8 
STEPT71q 
STEPT720 
STEPT721 
STEPT722 
STEPT723 

* 31H CALLS TO THE CHI SQ SUBROUTINE. I S TEPT 724 
GO TO 2130 STEPT725 

C STEPT726 

2110 WRITEIKW,21201 STEPT727 
2120 FORMAT( ///42H SUBROUTINE STEP.IT TER"IINUEO BY OPERATOR.- I STEPT728 

C STEPT72Q 

2130 WRITEIKW120501tDXfJJ,J•l 1NVI STfPT730 
C SHPT731 
C SET SWITCH FOR TERMlt-IATtONe STEPT732 

Zl'tO KWIT•l STEPT73l 
C CAll FUNK WITH THE BEST SET OF X IJI. STEPTH4 

2150 JVARY.,.0 STfPT735 
CALL FUN!(. STEPT736 
IF( C HtSQ-C HSAV I 2170, 217 01 2160 STE-PT 737 

2.160 WR t TE ltcW,420}CHSAV ,CHI SQ,NF S TE:PT 738 
2170 IF CNTRAC 12210, 2180. 2180 SHPT 13q 
2180 WRITEIKW121901NF1IX(Jl,J•l,NVI STEPT740 
2lqO FORM.lTCl/lXI5 1 23H FUNCTION COP4PUTATIONS STEPT741 

• ///lOX2'tHFINAL VALUES OF XfJl •••• lll lX5E22.141 I STEPT742 
WRtTEIKWt22001CHISQ STF.PT743 

2200 FORMAH//2'tH FINAL VALUE OF CHISQ "'EZ2.lltf/I STEPT744 
2210 rFIKW1Tl226012Z20,2260 STFPT745 

C fillATOzJ.lBStMATRX-1001 ST!:PT 746 
2220 MATO,.MATRX-100 STFPT747 

I Fl MUD 12230r2240r 2240 SHPT 748 
2230 ~ATO•-MATD <;TFPT749 
2240 IFIMAT0-5012250,2250,2260 ST(PT750 

C STFPT751 
C SKIP ERROR Cl.lCUlATICN IF ANY 1"ASKtJt.NE.O.<;TEPT7'S.? 

2250 I Fl NACTV-NV 12260 1227012260 S P'PT 75 3 
2260 RETUR"I STFDT 7'54 

C SET THE STEP SIZES FCR SUBROUTINE STER?. STFPT755 
2270 FA.C•RTEN••CM.lTRX-1001 STE PT 756 

DO 2280 l•l,NV STf PT757 
22BO OX( I l*FAC•DXI II STF:PT 758 

C C.lll STERR TO COMPUTE AN APPROXIMATE STf PT7'19 
C ERROR MATRIX. STE-P!760 
C STEPT76l 

CALL STERR (FUNK,KW,NSSW,DX,NF,XSAVEtTRIALI STE-PT762 
GO TO 2140 STEPT763 

C END STEPT. SffPT764 
ENO ST.EP1'76'S 
BLOCK DATA FRDBLOKI 

c 
C BLOCK DATA SUBPROGRAM FOR STEPIT1 SIMPLEX, AND STP. 
C Ell.llllINATE IF COMMON IS UNLABfllEO, A.ND SET THE VARIABLES AEFOR.E 

C CALL ING STE PT• 
c 

C0'4MON /FRODO/ NFMAX,NFlAT,JVARYrNXTRA 
DATA NFMlX/1000000/, NFlAT/l/, NXTRA./O/ 
END 
SUBROUTINE O.lTSW (NSSW1JUMPI 

DUMMY VERSION OF SUBROUTINE OATSW Ull SWITCHES PERMANENTLY OFF J. 

JUMPz2 
RETURN 
f"D 
SUBROUTINE STERR (FUNK,KW,NSSW,OX,NF,XSAVE,TRIALI 

STERR 1.0 A.N.s.r. SU.NOARO FORTRAN JANUARY 1973 
J. P. CHANDLER. COfritPUTER SCIENCE DEPT., OKLAHOMA SHTE UNIVER.SITY 

STERR COMPUTES AN APPROXIMATE .ERROR MATRIX FOR A tiCNLINEAR 
FITTING PRC!BL EM. 
THE VALUES COMPUTED ARE OFTEN POOR APPROXIMAT ICNS. THFY SHOULD Bf: 

FROBLOKZ 
FR08LOK3 
fR(\BlOK.4 
FROBLOK5 
FD.OflLOKfi 
FROBLOK7 
FROBL Ql(B 
FROBLOK.Q 
DLJ"'MYSWl 
'JUM.llllY SW2 
OUM~Y S\ol1 
OUMMYSWlt 
OU"l~YSW5 
OU~"'!Y<;Wt. 

DUMMY SW7 
S T':RR 1 
')T"::i:P 
S TERQ 
STER!<. 
STE KP 
STfROl 
S Tf'R!.' 
5 T!:;-R!l 

,_. 
-.!) 

w 



CHECKED USl~G SUBROUTINE FIDO. 

INPUT OUAr-.TITIES •• ••• FUNK1KW,NSSW1DX1NF1X 
r. OUTPUT QUANTITIES.... NF,ERR 
C SCRATCH STORAGE•••••• XSAYErTRtAL 

OXlJI ARE THE STEP SIZES FOR APPROXIMATING THE DERIVATIVES OF CHISO 
WITH RESPECT TO XlJI BY FINITE DIFFERENCES. SEE STEPT FOR 
DEFINITIONS OF ALL OTHER QUANTlHES. 
)(MAX, Xl"llN, AND MASK ARE IGNORED IN STERR. 

STERR. q 
STEU 10 
STERR 11 
STERR 12 
STERR 13 
STERR 14 
STERR 15 
STERR 16 
STERR 17 
STERR 18 
STERR 19 

c 
c 
c 
c 
c 
c 
c 
c 
c 
r 

DOUBLE PRECISION x.XMAX,XfHN,DEL TX,DELMN,ERl\,CHISQ,OX, TRIAL ,xs.uie, STERR 20 
X SECND,tHOLO,RZER01RUNIT1TENLN1SNDET1DETLN1ABER1DENOM STERR 21 

DOUBLE PRECISION P 1 AP 10 10SORT,OSORT,QLOG,DLCG,OXnEF,RTWD STEltlt 22 

c 
c 

DIMENSION OX( 201 ,XS AVE I 201' TRIAL tzot 
OIMENSIO"f SECNDC2,2t 

CO~MON /CS TEP/ Xt20 I 1XMAXI 20 I 1XMHHZO I 1DEL TX( 20 I ,OELMNI 201, 
• ERR ( 211-201,( HI S01NY1 NTRAC ,MATRX ,MASKI 20) 

COMMON /FROOO/ NFMAX,~LAT,JVARY,NXTRA 

QSORT 10 l•OSQR f( QI 
QSORT(Q)•SQRTCOI 
OLOGI QI •DLOGI 01 
OLOGC Ol•ALOGIQI 

DXOEF •,, DEFAULT VALUE FDR OX 
DXOEF,.,,001 
RlERO"'O• 
itUNIT,.l. 
RTwo .. 2. 
TENLN•2.303 

00 5030 J•l,NY 
(FCDXC JI 15020.5000, 5030 

5000 OXCJl,.DXDEF•X(J) 
IF (DX I J 115020 150101 5030 

5010 OX( J) •DXDEF 
GO TO 5030 

5020 OXIJl•-DXIJJ 
50JO XSAVF.fJJzXfJI 

CJ.LL FUNK 
f\IF•NF+l 
CHOLO•CIHSQ 
IFINTIUC J 5070,5040, 5040 

5040 W~ITEIKW,5050) 
5050 FORMATl41HlSIZES OF INCREMENTS 

WRITE(KWeS0601IDXIJI1 J•l1NYI 
TO BE USED BELOW •••• I 

5060 F0Rf1ATl/flX'9E13.5tJ 
c 
C COMPUTE THE ISYMMETRICI MATRIX OF SECOND PART I Al DER IYAT IVES OF 
C CHISO WITH RESPECT TO THE XIJI. 
c 
r COMPUTE THE DIAGONAL PARTIALS FIRST. 

5070 00 5090 Jzl,NY 
JV.IRYzO 
00 5080 Jzl,2 
XI I JzXSAYEU l+OX C 11 
CALL FUNK 
~f::tNFH 

JVARY•I 
SECND{ 1, Jl=CHISO 

'5080 DXf I 1:11:-DXf11 
XI It =XSAYEC I I 

<;090 ERRC l 1 I I =I I SECNOI 11l1-CHOLOJ-CCHOLO-SECNDIl121 I I /OX I ! ''U2 

STERR 21 
STERR 24 
STER.R 25 
STERR 26 
STERR 21 
STERR 28 
STER.It 2Cf 
STER.It 30 
STERR 31 
STERR ~2 
STERR 33 
STERR 34 
STERR 35 
STE.RR 36 
STERR 37 
STERR 38 
STERR )Q 

STERR 40 
STERR 41 
STERR: 42 
STEltR ,..-, 
STERR 44 
STERR 45 
STERR 46 
STERR 47 
STERR 48 
STERR 4-9 
STER.A: 50 
STERR 51 
STERR 52 
STERR 53 
STERR 54 
STERR 55 
STERR 56 
STERR 57 
STERR 58 
STERR 59 
STEAR 60 
STERR 61 
STERR ~2 
STERQ 63 
STERR 64 
STERR 65 
STERR 66 
STERR 67 
STEA:R 68 
STERR 6'1 
'\TFRR 70 
STERR 7l 
STERR. 72 
SfFRR 73 
ST!:RP: 14 

c 

c 

I FINY-2 I 5H01510015l00 
5100 DO 5130 1•2tNY 

IM•l-1 
on 5130 J•t.1111 
DO 5120 K•l12 
Xllt•XSAYEIIl+DXI II 
JVARY•O 
DO 51t0 L•l1Z 
XI Jl•XSAYEf JI +DXIJJ 
CALL FUNK 
NF•NF+l 
JVARY•J 
SECNDI K, l I •CHISQ 
XIJl•XSAVEIJI 

5110 DXIJl 2 -0XCJI 
XI I l•XSAVEI I I 

JU"'P•Z 
CALL OATSW INSSW,JUMP) 

COMPUTE THE OFF-OUGCNAL PARTIALS. L:SE A 
REDUNDANT FOUR-POINT PULE FOR GREATER 
RELIARILITY. 

RETURN IF THE SENSE SWITCH IS ON. 

I Fl JUJitP-115580, 5580, 5120 

5120 OXI 11 •-0XI I J 
5130 ERR( I ,J),. I I SECNOll, 11-SECNDC 11211-CSECNDI 2, II-SEC.NOi 212111/ 

• (RTWO•DXI llH:TWO•DXI JI I 

C END OF THE DERIVATIVE COMPUTATIC.t.I 
5140 IFINTRAC)518015l5015150 
<;150 WRITE(KW,51601 
5160 FORMATll//l/4SH MATRIX OF THE SECOND PARTIAL DERIVATIVES •••• /lH 

DO 5170 1•1,NY 
<;170 WR I TECKW,50601 CERRI I ,JI 1J•l1 ti 

c 

c 

5190 00 5190 t•t,NY 
DO 5190 J•l, I 
IFCERC!:C J,JI 151901520015190 

5190 CONTINUE 
GO TO 5220 

5200 WRITEIKW,52101 
5210 FORMATl////46H THE A90VE MATRIX CONTAINS ONE OR MORf ZEROES. F 

51H PERHAPS A LARGER VALUE OF -MATRX- SHOULD BE TRIED, 
31H TO SEE IF THEY ARE LEGITIMATE. I 

c ................................ . 
c 
C INVERT THE MATRIX OF SECOND PARTIAL DERIVATIVES USING THE GAUSS-
C JOPOAN METHOD ff. L• BAUER AND C. REINSCl-lr P, 45 IN -llNEAP ALGEBRA-
C RY J. H. WILKINSON ANO C. REINSCH (SPRI~GER-VERLAG, 197111. 
C ONLY Tl-IE LOWER TRIANGLE OF ERR IS USED OR ALTERED. 
c 

o;zzo OETLN::tRZERO 
SNOE T=RUNI T 

NOTPO=O 
00 5350 KK•l ,NY 
K.a::NY+l-KK 
P=ERR(l,11 
AP=P 
IF IP 1'lZSO,5230, 5260 

5230 WP(TEIKW,52401 

NOTPO ••• •l IF THE MATRIX IS NOT 
POSIT I YE DEFINITE 

5240 FORMATl///l27H ERROR MATP:IX IS SINGULAR. 
HH PERHAPS -lllATRX- SHOUl.D RE INCREASED. /l//lh I 

SH!lll. 75 
STER~ 76 
STERR 11 
STERR 78 
STERR JQ 
STERR 80 
STERR 81 
STERR R2 
STERR 83 
STERR 84 
STERQ A5 
STERR AoJ, 
STER.I! tf' 
STE'RR .qe 
STERR ffq 
STFRR '10 
STERR 91 
STERR qz 
STFRP Q3 
STEPP q4 
STERR 'l'i 
STERR % 
STERR q7 
CjTfRll (H' 
STERR QQ 

STERR 100 
SJERO 101 
STfF\~ 102 
sru~·10._ 

STfRR I 04 
SHRR 10"' 
STFFiR lOfJ 

I ST ERP 107 
STERR 108 
STfRRJOq 
STERR l l'l 
STERRlll 
STERR112 
STERR Ill 
STFRR 114 
STERRllS 
STERR llf<, 
STERR117 
STERR llR 
STERRllQ 
STERR120 
STERR 121 
STEPP.122 
STERRl21 
STERR 124 
STERR 125 
STERR 12b 
STERRl.27 
STfWR12~ 
STfRQ 129 
STERR DO 
STfRRl31 
STER~ l ,;> 
<;TFRR!H 
SHRR134 
STfRQl'"'> 
C..T,..RR 136 
ST':Ul!l37 
SHRR. l3R 
!:>T':RR 139 
SP"RQ 140 

I-' 

'° ~ 



GO TO 5580 
5250 NOTPO•l 

SNOET•-SNOET 
AP .. -AP 

5260 DETLNzOETLN+QLOGI AP l/TENLN 
IF I NV-2 I 53 20, 52 70, 5270 

'5270 00 5310 Jz21 NV 
Q,,.ERR(J,1) 
If( J-K I 5290, 52qo' 52 80 

5280 XSAVEIJl,,.Q/P 
GO TO 5300 

5290 XSAVEIJlz-Q/P 
·5300 00 5310 L•2•J 
5 310 ERR ( J-1, L-11 •ERR ( J, l} +Q•XSAVE (LI 
5320 ER.RC NV, NVb•RUN IT/·P 

IFCNV-215350,533015330 
5330 00 5340 J•21NV 
5340 ERRCNV,J-11-=XSAVECJI 
5350 CONTINUE 

c 
C••••••••••••••••••••••••••••••••••• 
c 
C PRINT THE ERRORS ANO CORRELATIONS, A.NO RETURN. 
c 

1FINOTPD15 380, 5 380, '5360 
5360 WRITEIKW,53101 
5370 FORMA.Tt////44H THE ERROR MATRIX IS NOT POSITIVE DEFINITE. 

• 37H PfRHA.PS -MATRX- SHOULD BE DECREASED. I 
'5380 IFINTRACl5'41Cl,5390,5390 

STERR 141 
$TERR142 
STERR 143 
STERR 144 
STERR 145 
STERR l-'46 
STERR147 
STEPR 148 

. STERR14q 
·STERR.150 
STERR151 
STERR 152 
STERRlSl 
STERR lSlt 
STERR 155 
STERR 156 
STERR151 
STERR 158 
STERR.159 
STERR 160 
STERR 161 
STERR 162 
STERR 16"3 
STERR16'4 
STERR 16'5 
STERR 166 
STERR167 
STERR.168 
STERR16q 

c 
c 
c 

5390 WRITEIKW,5'4-00JDETLN,SMJET 
'5400 FrlRMUI ////51H ALOGlOIMAGNITUDE OF 

El3o5tlOX22HSlGN OF DETERMINANT 

STERR 110 
DETER"llNANT CF ABOVE MATRIXJ • STER"-171 
• F~.11 STERR172 

STERR173 

c 

5410 DO 5480 fzt.NV 
DO 5420 J•l, I 
ERR( l tJ I zERR( I 1 J J•RTWO 

THE ERROR MATRIX IS TWICE THE JNVERSE OF STERR.174 
THE MATRIX OF SECOND OERIV.l.TIVES. STERR17'5 

RETURN THE FULL MATRIX. 

STERR 176 
STERRl 77 

5420 ERRfJ,ll•ERRCI,JI 
c 

STHRl 78 
STERR17q 
STERRlAO 

XS AVE (JI •SIGN( SQRTI ABS( ERRI I, I I JI ,ERR I I, 11JSTERR181 
ABER•ERRI I, 1 J 
1FIAl!IER.J5'43 O, 5'480, 51t't0 

<;1,30 ABER•-ABER 
5440 A8ER•QSQRTI ABER I 

IF IERRI I, I I IS'tS0,5460,5480 
51,50 ABER•-ABER 
5460 WRITEIKW,54701ERRII,l I 
5470 FORMAT! ///50H NEGATIVE OR ZERO MEAN SQUAl"E E~RCP ENCOUNTERED ••• 

• 3XE16.8/37H PERHAPS -MATJIX- SHOULD RE DECK.EASED. ///lH J 
5'480 XSAVE 11 l•ABER 

IF I NTRAC 155!)0, 54qo, 54qo 
5'490 WRITEIKW,55001 
5500 FDRIU. Tl /l///20H SU NOA.RO ERP ORS•••• I 

WR.I TE IKW, 5060 I (XS AV El JI ,J:ml ,NVI 

tFINV-1 l55S015"iB0,5'510 
5510 WRIHfKW,1552'0J 
5520 FORM.l.Tl/l/l/45H LOWEil TR!ANGLE OF THE CORRELATTCfl: "IATRIX ••• • /lH 

DO 5570 J.,2,NV 
JMzI-1 
on5560J"'-i,!"' 
DEf\IQM:zXSAVl:{ l l*XSAVEIJI 
IF I OEf\101'1I5"i40 1 5 530, 5S50 

5'530 TR1Al IJ)•d~.lERO 
GO TO 5560 

STERRU2 
STERR.183 
STERR 184 
STERR1A'5 
STERR 186 
STERR Un 
STERR 188 
STERR18q 
STER~ lqO 
STEPPlql 
~,TEPRlq2 

ST~RP 1q3 
STERR194 
STERRlq5 
STFPRl'H> 
STERR197 
STFRRlq8 

I STERR 1 qq 
STERR ZOO 
~TfRR 201 
STERR202 
STERR201 
STERR204 
SH-RR20~ 

STERR201'> 

55-40 DENOM•-DENa-. 
5550 TRl.IL(J)zERRCl1JilOENOM 
5560 CONTINUE 
5570 WRITEIKWr5060tlTfUALI Jt ,J•l, IMI 

c 
5580 RETUR,., 

C ENO STER.R:. 
ENO 

//GO.SYSIN DD • 
II 

STERP207 
STERR208 
STFRRZOq 
STFR.~ itO 
STERA2'll 
STFRR 712 
STF~ll.?l"l 

STfQQ2l4 

...... 

'° \.11 



TABLE XV 

PARAMETERS OF SPHERICAL SIX-LINK 
R-R-R-R-R-R-R MECHANISM 

196 

" EXISTENCE CRITERIA OF SIX-LINK,TWO-LJJP ~-R-c-e-c-~-= SP4;5 MECiANISM " 

INITIAL VALUES OF ·THE VAR IASL ES _________________ , ________ j. ___ _ 

N = 20 
NP = 0 
NN = 9900'.) 
DEL n. :::: O.SOOD-01 
F :c 0. lOOD-04 
ROW :::: o .sopo n 

1--------------1-------------1-------------1-------------1 
l I I I I 
I TWIST ANGLES I X I XM1N.. 1.. X:.tAX I 
I I I I l 
1--~-----------1-------------1-------------1-------------1 
I ALPHA 12 I 0.85000 02 I O.'l I ,.36000 03 J 
I I ! I I 
1-------~------1-------------1-------------1-------------1 
I ALPHA 23 I 0.12000 03 l 0 .J I :> .36'lno '.)3 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I ALPHA 34 I 0.19000 03 I 0 .'l I J .36300 03 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I ALPHA 41 I 0.22000 03 1 0 .J I ') .36000 03 I 
I I l I I 
1--------------1-------------1-------------1-------------1 
l ALPHA 65 I 0.55000 02 I ~.'.) I '.l.36'l00 03 I 
I I i I I 
1--------------1-------------1-------------1-------------1 
I ALPHA 76 I 0.17500 03 I O.J I 0.36000 J3 I 
I I I I • 
1-----~~-------1-------------1-------------1-------------1 
I ALPHA 52 I 0.12000 02 I o.o I 0.36000 JJ I 
I I I l I 
1--------------1-------------1-------------1-------------1 
I ALPHA 17 t O. 31200 03 I O. '.) I 0 .Jf:tOOD '3 I 
I I I I I 
1--------------1-------------1-------------·-------------1 
I PHI 1 I 0.10000 02 t o.o I 0.36000 J3 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I SI 1 I 0.12000 03 I o.o I o.36000 03 I 
I I I I I 
1--------------1-------------1-------------J-------------1 
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TABLE XV (Continued) 

1------------1-------------1-------------1-------------1 
I I I I I 
I KINK LINKS i X I XMIN I XMAX I 
J l I I l 
1------------1-------------1-------------1-------------1 
I Sl I o.o I o.o I 0.50000 01 I 
I I I I I 
1------------1-------------1-------------1-------------1 
I s2 I o.o I o.o I o.5000) 01 J 
I I l I J 
J------------1-------------1-------------1-------------1 

1-~-----------1-------------1-------------1-------------1 
I LINK-LENGTHS I X I XMIN I XHAX I 
I I ! I I 
1--------------1~------------l-------------1-------------l 
I A 12 I o.o I o.o I 0.50:>00 )l I 
I I I I I 
1--------------1-------------1-------------1-------------J 
I A 23 I o.o I o.o I 0.50'.)0D Jl I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I A 34 I o.o l o.o I 0.50000 01 I 
J I I I I 
1--------------1-------------1-------------1-------------1 
I A 41 I o. o I o. o _ J o. 5 OOOl o 1 t 
I 1 I I I 
1--------------1-------------1-------------1-------------1 
I A 65 I o.o I o.o J o.soooJ 01 I 
I J I I I 
1--------------1-------------1-------------1-------------1 
I A 76 I o.o I o.o J o.5000) 01 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I A 52 I o.o I o.o I o.5000) 01 I 
I I I I l 
1--------------1-------------1-------------1-------------1 
I A 17 I o.o I o.o I o.5000) 01 I 
I I I I I 
1--------------1-------------1-------------1-------------1 



TABLE XV (Continued) 

ENTER SUBRQUTINE STEPIT. COPY~IGHT 1965 J. P. CHANDLER, P~YSICS DEPT., INOIANA UNIVERSITY. 

11\llTIAL VALUES •••• 

MASK 

XMIN 

OELTX 

DELHN • 

0 
0 
0 

Oo 148.U 01 
Oo2D9"0 01 
o.o 

0 .62830 01 
0.6200 01 
o.50000 01 

o.o 
o.o 
o.o 

0.50000-0l 
0 .5)000-01 
0.50000-01 

0 .10000-0 .. 
0.100?0-0 .. 
0.10000-0 .. 

0 
0 
0 

o. 209't0 01 
o.o 
o.o 

0.62810 01 
o. 50000 01 
o. 50000 01 

o.o 
o. 0 
0 .o 

o. 50000-01 
0.50000-01 
0.50000-01 

0.10000-04 
0.10000-0• 
0.10000-0 .. 

20 VARIABLES, 20 A~TIVE. 

0 
0 

o. 33160 01 
o.o 

o. 62830 01 
0.50000 n 

o.o 
o. 0 

o. 50000-01 
o. 50000-01 

0.10000-04 
O.lOOJ0-04 

Ml TRX • 0 

0 
0 

o. 38400 01 
o. 0 

0.1>2830 01 
0 .50000 01 

o.o 
o.o 

0.50000-01 
o. 50000-01 

o. 10000-04 
0 .10000-0 .. 

0 
0 

0.95990 00 
o. 0 

o. 62830 01 
0.50000 01 

o.o 
o.o 

o.50000-01 
o. 50000-01 

0.10000-0'o 
0.10000-0'o 

NCOHP • 5 

0 
0 

0.30HO 01 
o.o 

0.6.2830 01 
o. 50000 01 

o.o 
0 .J 

0.50000-01 
o. 50000-01 

0.10000-0• 
0.10000-0• 

NFHAK • 

0 
0 

) o 12570 01 
J.O 

0.6283 0 )1 

o. 50000 01 

o.o 
) .o 

J .snoo-01 
0 .500JD-Jl 

0.10000-04 
0.10000-04 

o. 54450 01 
) . ) 
J,bZ830 )I 
0.5JOJO JI 

o.o 
o.o 

O. 50000-? I 
J.5)))0-ll 

J.IJJJD-04 
o. 10000-04 

~FLlT 

RA TIO • 0.1000 02 ACK • 0.2000 01 COLll>I • 0.990) 00 COHPR " O. 4010 00 

CHISQ • O.O 

BEG IN HIN IMIZATIONoo•• 

TERMINATED WHEl>I THE STEP SIZES BECAME AS SHALL AS THE OELHNIJJ. 

152 FUNCTION COMPUTATIONS 

FINAL VALUES Of XIII•••• 
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0 
0 

o. 12220 01 
J.J 

).62830 01 
J.5JJOO JI 

o.o 
o. 0 

o. 50000-01 
J.50000-01 

0.10000-04 
0.10000-)4 

o.11oa15z9a1>1tl952D 01 
0.305432bl9099?10 01 
o.o 

o. 2094395102393ZO 01· 
0.125663706143590 01 
o.o 

0.331612557878920 01 
o. 544542726622230 01 
o.o 

) • 383972435438750 01 
0.122173047639600 01 
o.o 

0.95993108859688) 00 
J.ZJ9'39SIJ23H20 01 
o.o 

o.o o.o o.o o.o o.o 

Flf>IAL VALUE Of :~ISQ = O.O 
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TABLE XV (Continued) 

FINAL VALUES Of THE VARIABLES 

1--------------1-------------l-------------1-------------1 
I TWIST ANGLES I X I l<MIN I XMAX I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I ALPHA 12 I 0.85000 02 I o.o I 0.36000 03 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I ALPHA 23 I 0.12000 03 I O.O l 0.3b000 0 3 I 
I I I I I 
1--------------1-------------1-------------1-------------l 
J ALPHA 34 I O. l 9000 03 I o. 0 I o. 36000 03 I 
I I l I I 
1--------------1-------------1-------------1-------------1 
I ALPHA 41 I 0.22000 03 I o.o I 0.3600J 03 I 
I I I I I 
l--------------1-------------1-------------1-------------1 
I ALPHA 65 I 0.55000 02 I o.o I 0.3600J 03 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I ALPHA 76 l 0.17500 03 I o.o I 0.3600J 03 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I ALPHA 52 I 0.12000 02 I o.o I 0.36000 03 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I· ALPHA 17 l 0 .31200 03 I O .o I o. 36000 03 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I PHI 1 I 0.10000 02 I o.o I 0.36000 03 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I SI l I 0.12000 03 I o.o I 0.36000 03 I 
I I I I I 
1--------------1-------------1-------------1-------------1 

1------------1-------------1-------------1-------------1 
I I I I I 
I KINK LINKS I X I XMIN I XMAX I 
1------------1-------------1------------1-------------l 
I Sl I o.o I o.o I 0.50000 01 I 
I I I I I 
1------------1-------------1-------------1-------------1 
I s2 l o.o I o.o I o.soooo 01 I 
I I I I J 
1------------1-------------1-------------1-------------1 
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TABLE XV (Continued) 

1--------------J-------------1-------------1-------------1 
I LlNK-LENGTHS I x I XMIN I X~AX I 
I I I l I 
1--------------1-------------1-------------1-------------1 
I A 12 I O.:l I o.o I 0.50000 01 t 
I I I I I 
1--------------1-------------J-------------1-------------1 
I A 23 l o.o I O.J I J.50000 01 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I A 34 I o.o J O.:l I o.50000 01 I 
J I l I I 
1--------------1-------------1-------------1-------------1 
I A41 I o.o I O.J I 0.50000011 
I I I I I 
1--------------1-------------1-------------1-------------1 
I A 65 I o.c l o.J I 0.50000 :ll I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I A 76 I o.o I o.o I 0.50000 Jl I 
I I I J I 
1--------------1-------------1-------------1-------------1 
I A 5 2 l o. o l 0. ') I o • 5 0 0 o D H I 
' I I I I 1--------------1-------------1-------------1-------------1 
I A 17 I o.o I o.o I o.50000 }l I 
l I I I I 
1--------------1-------------1-------------1-------------l 

FINAL l/ ALLJ ES OF THE EXISTE'llCE CONDITIONS 

EQ UA TliJ.N 1 = o.o 

EQUATION 2 = o.o 

EQUAT 10114 3 = o.o 

EQUATI 0111 4 = o.o 

EQUATION 5 = o.o 

EQUATION 6 o.o 

EQUATION 7 0. !) 

EQUATION 8 = o.o 

E QUAH ON 9 = o.o 
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TABLE XVI 

PARAMETERS OF SPACE SIX-LINK 
R-R-C-C-C-R-C MECHANISM 

"EXISTENCE CRITERIA OF SIX-LIN~,TWO-LOQP R-R-C-C-C-R-C SPACE MECHANISM" 

INITIAL VALUES OF THE VARIABLES 

N 
NP 
NN 

20 
0 

99000 
o.5000-01 
0.1000-16 

= o.5000 00 

DEL TA = 
F 
ROW 

1--------------1-------------1-------------1---~--------J 
I i l I I 
l TWIST ANGLES t X l XMIN I XMAX l 
I l I I I 
t--------------1-------------1-------------1-------------l 
I ALPHA 12 I 0.70000 02 I 0.70000 02 I 0 .70000 02 l 
l I l l I 
j--------------1-------------1-------------1-------------1 
j ALPHA 23 I O.O I O.O l O.O I 
I I l I I 
1--------------1-------------1-------------1-------------1 
I ALPHA 34 l 0.70000 02 I 0.70000 02 I ~.70000 02 I 
I 4 I I I 
1--------------1-------------J-------------1-------------1 
J ALPHA 41 I O.O l o.o I o.o I 
I I l I I 
j--------------1-------------1-------------1-------------1 
I ALPHA 65 I O.dOOOO 02 I 0 .o l 0 .~bOOIJ 03 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I ALPHA 76 I 0.12000 03 I O.O I 0 .~6000 03 l 
I I I I I 
1--------------1-------------1-------------1-------------1 
I ALPHA 52 I 0.20000 03 I O.O l 0.3bOOD 03 I 
I I J l I 
1--------------1-------------i -------------1------:-------1 
l ALPHA 17 J 0.11100 03 I O.O I 0.36bOu O~ I 
I l l I I 
l---~----------1-------------1-------------1-------------1 
I PHI l I 0.35000 02 i 0.30000 02 I 0.30000 03 I 
I I I l I 
1--------------1-------------1~------------1-------------J 
I s I 1 I o. 85000 02 j o. a.oooo 02 I 0.::10000 03 I 
I I I . I J 
1--------------1-------------1-------------1-------------1 
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TABLE XVI (Continued) 

J------------j-------------1-------------1-------------1 
I I I I l 
J K.1NK Ll:\I\~ l I( l X.Mlr\j l xMAX I 
I J I I l 
1------------1-------------1-------------1-------------J 
I s l I o • l 2 O OD o l I o • 4 O o oo o C I o. l o o o u IJ 2. I 
I l I J I 
J------------1-------------1-------------1-------------J 
I :)2 j 0.10000 00 I 0.40000 OC I O.lOOOu 12 I 
l l I l I 
1------------1-------------1-------------1-------------1 

·--------------1-------------i-------------l-------------J 
J l li\iK-LENli THS I X j X.Mll\i I XMAJ<. I 
i I i l l 
1--------------1-------------1-------------1-------------1 
I A l~ I 0.20000 Ol J 0.20000 Oi I o.1oor;u 02 I 
J I I • I 
j--------------1-------------1-------------1-------------1 I A l3 1 o.11~ou 01 1 o.112ou 01 1 o.1ooou J2 1 
I I I l l 
1-~------------J-------------J-------------1-------------1 
j A 34 J U.2SJOD 01 I 0.25000 01 I 0.10000 02 j 

l I l I i 
1--------------1-------------1-------------1-------------1 
l A 41 I C. 30000 01 I O. jQCOD 01 J O. lOO'JJ 02 1 
J I I I I 
1--------------1-~-----------J----~--------1-------------1 
I A 65 I 0.40000 01 I o. soooo oo l 0.1000.J 02 j 
I I i I ~ 
1--------------1-------------1-------------1-------------1 
I A To I O.JSOOJ 01 I 0.50000 00 i O.l000J 02 I 
I I J I I 
1--------------1-------------1-------------j-------------1 
I 1-i. 52 I O.oOOOD Ol I 0.5000u 00 j C.lOCOJ 02 ' 
I I I I J 
j--------------j-------------1-------------1-------------1 
I A l7 l 0.4300U Ol' O.'.>OOOU oc J 0.10000 02 I 
I J I I I 
j--------------j-------------1-------------1-------------1 
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TABLE XV I (Continued) 

~~TEil. SUOOUTINE SfEPITo tOPYll.IGIJT 191>5 Jo P, CHANOl.E~, FHVSIC$ llEPT., ll<DIANI. IJl'llVFRSITYo 

il;ITIAL VALUES ... • 

OSK I I 1 0 0 0 0 0 
0 II 0 1 I 1 0 0 
(I 0 

o.uuo 01 o. 0 0.12220 01 o.o 0,119.SD 01 0,2.09•D 01 0 .34910 01 O.L9l70 01 O. 6lO;>O) 00 
O.Hl4D 01 0.12000 01 0, 7000D 00 o. 20000 01 0.1 TZOO 01 O,HOOO 01 0 .~OOOD 01 o.40000 01 0. 3SCOO OJ. 
0.60000 01 o.-uo00 01 

•MU 0 .12.ZtD 01 o.o 0.12.UO 01 o.o C, 6Z.831J (II O.U1311 O! Cl .6Z6JD 01 0 .625.31.l 0 I o.tz&~ll Cl 
0.62830 01 0.10000 oz O, IOOOD 02. o .roooo oz. 0.10001> 02 0.10000 oz 0.10000 oz. o.1ocao oz. o. 10000 Ci!. 
0.10000 02. 0.10000 02. 

•MIN O. IZl~D 01 o.o o.1uzo 01 o.o o.o o.o o.o o. 0 O, 5 ~ >•D 00 
0.139~1> 01 ii. 40000 00 0.40000 00 o. 20000 01 o.r 1200 01 O·,HOOD 01 ~.lOOOU 01 O. SCC'-il 00 0.50001J 00 
0 50001> 00 0 .soooo 00 

llEL TX a .50001>-0I o. 50000-01 o. 50001)•01 O, 5000D-OI o. 50000-01 o. 50300-01 ,.50030-JI ) ,5)JJ[l-JI :>.50001J-,11 
o.50000-01 0,500)D-Ol 0,500)0-01 o .soooo-01 o.soooo-01 o. 50000-01 (), 50000-0! O, ~)O~U-l! "· lj)'J,J-)1 
o. 50000-01 o. 50000-01 

lJflMtl .i.10000-u 0 .10000-16 0.10000-1' 0 .10000-1' 0.10000-l• 0.10000-1' r. 1000~-" 0.10000-16 o.1nrn-U 
0.10000-16 0.10000-l• 0.10000-16 0.10000-ll 0.10030-1' 0.10000-1' 0.10000-•• 0.10000-16 o.1~00-l6 
0 .100()0·1' O .10000-U 

20 VAR !AULl:;',, 12 Acrrve. .. AU.It 111 0 Nl:OMP m 5 NFMAX • 9~000 NfLAf . l 
•ATlD • c.1000 02 ACic. • o. 2000 01 CDL IN • 0 ,9900 00 C~~PR • o ... 01u 00 

CHI SQ • O.lH09Ul.P 10 

oEGIN MINl~IZAlltlN .... 

ff RMI NA !EU WHEN THE STEP SIZES llECAME AS SMALL AS THE DELHN I JI• 

6ll5l FU~CTICN tOHPUIATIUllS 
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TABLE XVI (Continued) 

flNAL VALUES Of THE VAKIABLES 

1--------------1-------------1-------------1-------------1 
I TwlST ANGLES J X I XMI~ I XMAX I 
I I I J I 
1--------------1-------------1-------------1-------------· 
I ALPHA ll I o. 70000 02 I O. 70000 02 I 0. 70000 02 I 
I I l I I 
1--------------1-------------1-------------1-------------1 
I ALPHA 23 I O.O I O.O I O.O I 
I I I I I 
1--------------1--------~----1-------------1-------------1 
I ALPHA 34 i 0. 70000 02 I O. 70COD 02 I O. 7000u 02 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I ALPrlA 41 j O.O J O.O I o.o I 
I I I . I I 
1--------------1-------------1-------------1-------------1 
I ALPHA o5 I O.l208u 00 I O.O I 0.36000 03 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I ALl'HA lb I 0.70100 02 I o.o I 0.3eOOD 03 l 
I I I l l 
j --------------1------------- J------------- I -----·--------1 
I ALPHA ')2 I O.ld00L.) 03 I o.o I 0.3o00u 03 I 
I I I I I 
l--------------1-------------1-------------1-------------1 
I ALPHA 17 I 0 .ltlOOO 03 I 0 .o I 0.36000 0 3 I 
I I I I I 
1--------------1-------------1-------------1-------------1 
I PHI l I 0 .JOOOD 02 J 0..10000 02 I 0.36000 03 I 
l I I I I 
J--------------1-------------1-------------1-------------1 
J SI 1 I o.aooou 02 J OodOOOC 02 I 0.3bOOiJ 03 I 
I I I I I 
1--------------1-------------1-------------1-------------1 

1------------1-------------1-------------1-------------1 
I I I I I 
I KINK Ll~KS I x I XM!N I XMAX I 
1------------1-------------1-------------1-------------1 
I ~l I o.~OOOD 00 J 0040000 OC I 0.10000 02 I 
I I I I I 
1------------1-------------1-------------1-------------1 
1 s2 I o .40000 oo 1 o·.4ooou oo 1 0.10000 02 J 
I I I I I 
1------------1-------------1-------------1-------------1 



205 

TABLE XVI (Continued) 

J-------.-------1-------------1-------------1------------J 
j L. lNK-L. ENGTHS ' X J XMlN I XMAX J 
I I I I I 
·--------------1-------------1-------------1-------------· I A 12 J 0.20000 01 1 o.~oooo 01 1 o.1ooou 02 1 
I . I I I J 
1--------------1-------------1-------------1-------------1 
I A 23 I 0.11200 01 I 0.11200 01 I 0.10000 02 I 
I J I I I 
J --------------1-------------1------------.;_ I ------·-------1 
I A 34 I 0.25000 01 I 0.25000 01 I 0.10000 02 I 
I . I I I I 
1--------------1------------~1-------------1-------------1 
I A 1tl I 0.10000 01 I 0.3000C 01 I 0 .10000 02 I 
I I I I I 
1-------------1 ---·----------!-------- ----- l-------------1 
I A 65 I 0.10000 02 I 0.50000 oo I 0.10000 02 I 
I I I I J 
1--------------1-------------1--~----------1-------------1 
I A 76 I 0.10000 02 I o.50000 00 I 0.10000 02 I 
I J I I l 
1--------------1------------1-------------1-------------1 
I A52 I 0.50000001 0.50000001 0.10000021 
l I I I I 
1--------------1-------------1-------------1-------------1 
I Al7 I o.50000001 o.50001JOO,J 0.10000021 
4 I I r I 
1--------------1-------------1-------------1-------------1 

FINAL. l/AL.UES OF THI: EXlSTl:NCE CONDITIONS 

E1.tUATIUN l = -0.2.H70-06 

E"IUAT lUN 2 .: -0.81720-06 

Et;iUAf ION 3 = -o. 31:1070-06 

El.ILIA TI ON 4 = 0.16270-05 

ElolUAT ION 5 = 0 .67220-06 

E~UATI ON 6 = -o. 21110-05 

EWUAT IUN 7 = -0.91660-06 

EQUATION 8 = 0,20BD-05 

EQUATION 9 = -0.76680-06 



x 

Figure 35. 

z 
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© 

Proposed Six-link, Two-loop R-R-C-C-C-R-C 
Overconstrained Mechanism (F = 1 ). The 
Parameters for This Mechanism Are Given 
in Table XVI. The General Motion of This 
Mechanism Consists of Two Rotations and 
Three Translations. 
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received the Master of Engineerin~ degree in Mechanical 
Engineering (Machine Design) from Andhra University, 
Waltair, India, in 1968; receiveq the Post Graduate 
Diploma in Applied Statistics from Andhra University, 
Waltair, India, in 1968; received the ·Diploma in Hindi 
from Andhra University, Waltair, India, in 1969; 
received the Master of Science de~ree in Mechanical 
Engineering from the University of New Brunswich, 
Fredericton, Canada, in 1971; completed the require­
ments for the Doctor of Philosophy degree at Oklahoma 
State University in May, 1973. 



Professional Experience: Graduate Teaching and .Res~arch 
Assistant at the College of Engineering, Andhra University, 
India, from June, 1966, to December, 1968, under the 
University Grants Commission of India Junior Research 
Fellowship; Graduate Teaching .and Research Assistant, 
Department of Mechanical Engineering, University of 
New Brunswick, Canada, from September, 1969 to 
December, 1970, supported by National Research Council 
of Canada; working part time as Graduate Research 
Assistant at the School of Mechanical and Aerospace 

·Engineering, Oklahoma State University, supported by 
National Science Foundation, from January, 1971 to 
May, 1973. 

Professional Organization: Associate Member of the American 
Society of Mechanical Engineers; Associate Member of the 
Institution of the Chartered Engineers, India. 


