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PREFACE

If as Bing [5] suggests, ''topology may be regarded as an offshoot
of geometry," then the definition of the convex metric by Menger [18]
in 1928 must be regarded as the beginning of one of the most perceptive
and profitable attempts to linkhitswith its origin. ¥For the property
of metric convexity together with completeness provides, as Menger [18]
showed, that every two points in the space are endpoints of an arc
along which distances are additive. The existence of these arcs, so-
called "segments" in a metric sense, along with the notions of lines
[8], parallels [8], and angles [21] that are also definable in abstract
metric spaces, gives to these complete convex metric spaces an unmis-
takable euclidean flavor.

In proving the existence of segments in complete convex metric
spaces, Menger [18] in effect showed that if a compact space admits a
convex metric9 then the space must be locally connected, hence a Peano
continuum., Then he posed the well-known Konvexierungsproblem: Does
every Peano continuum admit a convex metric? This problem, which
claimed the attention of several eminent mathematicians over a period
of two decades, was finally answered in the affirmative by Bing [7]
in 1949. In the pursuit of the Konvexierungsproblem, and in the after-
math of its solution, there grew up a rich body of techniques and
results that include partitioning [7], grille decomposition [19],
characterization theorems [25], and metric extension theoréms [4],

Subsequently, a start has been made in extending these techniques
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and results to non-compact spaces; notably, in 1955 Tominaga and

Tanaka [24] obtained an affirmative answer for the Konvexierungsproblem
for more general spaces by means of partitioning locally connected
generalized continua., Here it should be noted that, since a convex
metric on a compact space is complete, its most natural counterpart

in the more general case is not merely a convex metric, but a complete
convex metric. Thus, for example, the Konvexierungsproblem for the
more general spaces is the question: Does each locally connected
generalized continuum admit a complete convex metric?

The present paper can best be considered as a continuation of the
process mentioned above as having already begun, that of generalizing
to a non-compact setting some of the results obtained originally for
convex metrics on Peano continua; hence the title, "Complete Convex
Metrics for Generalized Continua," In particular, the core of this
dissertation lies in a series of theorems generalizing a result of
Bing [4]_0n the extension of a convex metric to the union of two Peano
continua. The rest of the paper is logically related to this core of
results, either in providing material to be used in proving it or
in furnishing applications of it. Chapter I lays the conceptual foun-
dation by providing definitions, by stating some of the previously
obtained results that are of interest to this paper, and by giving a
few revealing applications of these results. The next three chapters
cover independently three topics that are necessary to asccomplish the
goal of the paper. Chapter II presents three particular types of com-
plete convex metrics in preparation for some straightforward applica-
tions of the extension theorems; this material is placed early in the

thesis because of the rich variety of examples of complete convex
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metric spaces that accompanies it., In Chapter III the segmented convex
metric is introduced for its usefulness in the proof of the extension
theorems; it is discussed at some length, and its crucial role is shown
in a result dealing with closed balls as Peano continua. A certain
natural topology for the union of two spaces is discussed in Chapter IV;
the choice and properties of this topology become crucial in general-
izing»the extension theorem of Bing [4] to possibly non-compact set-
tings. The extension thebrems themselves are now proved in Chapter V.,
These theorems are applied in Chapter VI to characterize certain
classes of locally connected generalized continua by the variety of
complete convex metrics they admit, using those types of convex metrics
that were discussed in Chapter II. The results of the paper are sum-~
marized and a few suggestions for further research are given in

Chapter VII.

All the results of this paper, including theorems, corollaries,
and examples, will share a common sequence for numbering; the two
numbers, separated by a period, that accompany a result are the number
of the chapter where it first appears and its order within that chapter,
respectively. Each later reference to this result will give these two
identification numbers enclosed in parentheses. Single numerals in
parentheses refer to formulas displayed and numbered in the text; this
sequence of numbers will be re-initiated at the beginning of each
chapter, Numbers enclosed in square brackets refer to the bibliography
at the end of the paper. The "proofs" for some of the examples are not
so much proofs as they are constructions, with only the non-obvious
assertions in them receiving actual proofs. The simplest examples, as

well as those results that are found in the literature, are stated



without any proof at all. Conversely, where a proof is given, then the
result is the author's, although some of the results proved in Chapter I
and possibly elsewhere are doubtless well known as part of the "folk-
lore" of the subject.
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CHAPTER I
PRELIMINARY CONCEPTS

This paper will be devoted to the study of properties of complete

convex metrics on locally connected generalized continua.
Topological and Metric.8pades

Terminology and notation that is not defined in this paper is
assumed to have the meaning assigned py Hall and Spencer [13];
Dugundji [11], Whyburn [26], or Moore [20].

A topological space consisting of a set M with a topology T
is denoted by (M, T), or more briefly by M when the topology is
clear from context. Similarly a metric space induced by a metric ‘D
on a set M may be denoted by (M, D) or, when appropriate, simply
by M, If T and T' are two topologies on the same set, then T
is said to be stronger than T', and T' weaker than T, if T'
is a subset of T, denoted by T'C T. A sequence is denoted by
<x >, whereas the union of all of its points is {x : n =1, 2y ...},

The following metric conventions will also be observed.

Definition 1.1. Let (M, D) be a metric space.:
(i) If peM and & > 0, then D(p;6) = {x ¢ M: D(p,x) < 6}
is called an "open ball," and D(p;é) = {x € M: D(p,x) < &}
is called a "closed ball."”

(ii) If AOVM £ @, then D(A) = sup {D(x;y): =x, ¥y ¢ AN M},



(iii) If ANMZZ and BN M £F, then
D(A,B) = inf {D(x,y): x e ANM, y e BN M},
(iv) If NCM, then "D restricted to N" is the metric F
defined by F(x,y) = D(x,y) for all points x, y & N.
(v) If D' is another metric on the set M, then the statement
"D and D' are equivalent" means that (M,D) = (M,D');
if NC M, then the statement "D and . D' agree on N"

means that D(x,y) = D'(x,y) for all points x, y ¢ N,

Certain concepts that are defined with respect to a particular
metric D, such as linearity, segment, ball, and convexity, wiil
often appear with the name of the metric prefixed to them, as D
linearity, D segment, D ball, and D convexity. However, when
the identity of the metric is clear from the context, the name of the
metric may be omitted in a discussion of such concepts. Similarly,
D(x,y) will be abbreviated to xy when the identity of the metric D

is understood.
" Linearity

The notion of linearity in a metric space underlies the

definition of convexity.

Definition 1.2. A set in a metric space is linear if it is isometric
to a subset of the real line El; that is, if (M, D) is the given
metric space, NUT M ig linear if there exists a function L : N - E1
such that D(x,y) = |L(x) - L{y)| for every pair of points x; y € N,

A segment is a linear arc, and the notation BE denotes some segment

whose endpoints are p and q.



The following criterion of linearity is due to Menger [18].

Theorem 1.3. A metric space with more than four points is linear if

and only if every three point subset is linear.

The necessity for the space in (1.3) to have more than four

points is seen from the following example.

Example 1.4, Let the four point set {a, b, ¢; d} be metrized in
such a way that ab = bc = cd = da = ac/2 = bd/2. Then every three

point subset is linear, but the space is not linear.

The criterion of (1.3) reduces many linearity arguments to the
consideration of finite sets of points, and the following two results

are then useful.

Theorem 1.5, If a set X in a metric space has n > 2 points, then
X is linear if and only if X may be represented as

X = {xl, Xo5 ooy xn}, where

In case X 1is linear, the subset {xl, xn} is uniquely determined.

Proof: To prove necessity, suppose X 1is linear and has n > 2
points. Then there exists an isometry L : X - Elg Since L(X)
is a set of n real numbers; let X be the point of X such that
L(xi) is the ith number of IL(X) in the usual order for El9 for

i=1y voo9 n. Then X = {xl, X voos xn} and also

29
L(xl) < L(XZ) < oo < L(Xn)” from which follows the desired formula,



In this case, the uniqueness of the set {xl, xn} is a result of the

1

The proof of sufficiency consists of induction on n with the

fact that x x> X; % s for {i, 3} # {1, n}.

following induction hypothesis: "If B = {bl, by veos bn} is a set

2’
of n > 2 points such that

n-1l
PPy = 2 PiPin
i=1
holds, then the function L : B = El, defined by L(bi) = byb,  for

i=1, .., n, is an isometry and moreover

holds for every m, 2 < m < n." This hypothesis is clearly true
when n = 2.

Supposé the induction hypothesis holds for some value k > 2.

Then let B, . = {xl, Xy0 eees xk+l} be a set of k+l points with
k
R TS ZE:xixi+1° (1)
i=1
Since
X.X < XX + XX (2)

1"k+1l - "1k k" k+1

holds by the triangle inequality, it follows that



n

inxiﬂ S X% ()

can be obtained by substituting (1) into (2) and subtracting XX
from both sides. But
k-1
X %541 2 X% (4
i=1

follows from the triangle inequality. Thus, (3) and (&) yield

If now the set Bk = {xl, X59 esod Xk} is defined, the induction
hypothesis for n = k yields the fact that L : Bk - El, defined by

L(Xi) = XqX; for i =1, ...y ks is an isometry and moreover

m-1
*¥*m = inxi+l (5)
i=1
holds for every m, 2 < m < k. Thus, (5) and (1) together yield
m-1
Xlxm = ZE:XiXi+l’ 2c<m<k ~1.
i=1

X, for i =1; ...y k + 1,

If L' : B - El is defined by L'(x.) = x
i 171

k+1

then L' extends L. Hence, in order to verify that L' is an

it suffices to show x.x

isometry on B k41

= |L'(x,) - L'(x
J

k+l k+l)]



for 1 < j<k. Since

k
X X, +XX
173 k+1 ZE: *5 %541

holds by a double application of the triangle inequality, and since

k
:g:xixi+1 = X%
i=1

holds by (1), substitution then yields xli + XJXk+1 X %, .- But

this inequality with the triangle inequality results in the equalities

Xlxj + x x k] = X1Xk+l and ijk+1 = Xlxk+1 - xlxj. From this latter

equality and the definition of L', it follows that

= L'(x,p) - L'0xy) = |G- Li(x, )] Thus L' isan

* 5% k+1 k+1

isometry, and the induction hypothesis holds for n = k + 1. The

proof of sufficiency is therefore given by the induction principle. I

n=1
Theorem 1,6, If X)X = :§ZX1X1+1’ (6)
i=1
then
k-1
*i¥ia (7)
isj
and
3 -1 n-1
10 =/ Fi¥ia Y 5% T :g:xixi+1 (8)
i=1 i=k

hold for any 1 < j <k < n.

Proof: Let 1 < j< k< n. The generalized triangle inequality is



k-1
X ¥y S :E:Xixi+l’ (9)
isj
as well, as
- oL j_l n-l
X)Xy S zg:xixi+1 and - X%, < ZE:XiXi+1°
il ink

By adding these last two inequalities member by méﬁber and subtracting

from the respective members of (6), the inequality

is obtained. This final inequality, along with (9), yields (7).
Formula (8) now follows by subtracting (7) from (6), member by

member. |
'Betweenness and 'Metric: Convexity
Closely related to the notion of linearity is that of betweenness.

Definition 1.7. If a, b, r@nd ¢ are three distinct points of a

metric space, then b is a between point of a and ¢, written

abc, 1if ac = ab + be. The statement '"abc on E;" means that
the three points a, b, and ¢ lie on de and that abe holds.
A between point ;b of a and ¢ 1is a midpoint of a and ¢ if

ab = be.
The following two theorems are proved by Blumenthal [8].

Theorem 1.8. In a metric space the simultaneous conditions pgr and

prs are equivalent to pgs and qrs; and if pgr holds, then both



gpr and grp are false.

Theorem 1.9. In a metric space, the set Ealj a; is a segment 5;

if and only if pgr.

The definition of convex metric employed in this paper is the
original definition, first given by Menger (18], and more recently
used by Moise [19], Lelek and Nitka [17], and others. The other
variety of convex metric, which is called "midpoint convex" in this

paper; is employed by Bing [7], Tominaga and Tanaka [24], and others.

Definition 1.10. A metric for a metric space is convex (midpoint

convex) if every two points in the space have a between point (mid-
point). A subset of a metric space is said to be convex (midpoint
convex) if the metric restricted to that subset is convex (midpoint

convex) .

Example 1.11. The usual metric for n-dimensional euclidean space. En,
when restricted to the set of points with all rational coordinates, is

both convex and midpoint convex.

While a midpoint convex metric is necessarily convex; the following

examﬁle shows that the converse is not true.

Example 1.12. The usual metric of E' restricted to (0, 1) U (2, 3)

is convex, but not midpoint convex.

The addition of completeness to the convexity of a metric space
produces strong topological properties, as the following theorem, due

originally to Menger [18], shows.



Theorem 1.13, In a complete convex metric space, there is a segment

joining any pair of points.,

Corollary 1.14, If pqr holds in a complete convex metric space, then

for any segment a; there is a segment 5; containing a;.

Proof: Assuming the hypothesis and a; as given, by (1,13) there also
- -exists some segment Ba. By (1.9), the set 5& L)a; is a segment

e

Since a segment between any two points contains a midpoint of them,
then by (1.13) a complete convex metric is also midpoint convex; that
is, a complete metric is convex if and only if it is midpoint convex.
Since this paper is concerned primarily with complete metrics, for most
of the results it will not matter that there are two definitions of
convexity.

The following example shows that the converse of (1.13) is false.

Example 1.15. Let (a, b) be any proper open interval of El, and

let D be the euclidean metric restricted to (a, b). Any two points

are joined by a D segment, yet D is not complete,

One proof of (1.13), due to Aronszajn [2], is given by Blumenthal [8,
p. 41] in a form that may be modified slightly to give the following

stronger result.

Theorem 1.16. If p and q are two points of a complete convex
metric space and if 1L 1is a linear set consisting of p, q, and be-

tween points of p and g, then there is a segment Baﬂ containing L.
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Continua

In this dissertation the two kinds of continua about to be defined,

will be used extensively.

Definition 1.17. A Peano continuum is a compact, connected; locally

connected metric space. A generalized continuum is a locally compact,

connected, separable metric space.

Theorem 1.18. The property of being a Peano continuum, and the property
of being a (iocallyvconnectéd) generalized continuum, are topological

properties.
Proof: Every defining condition in (1.17) is a topological property. I

Peano continua, also called Peano spaocasg, Peano curves,; and continuous
curves, are very common in the literature. The following character-
ization, known as the Hahn-Mazprkiewicz theorem, is classical; for

one proof, see [13].

Theorem 1.19. A Hausdorff space S 1is a Peano continuum if and only
if there is a continuous mapping of the closed interval [0, 1] of

E1 onto S.

Example 1.20. With the usual metric for En, each closed ball is a

Peano continuum,

Since Peano continua are separable spaces, it follows that a
locally connected generalized continuum may be regarded as a "general-
ization" of a Peano continuum, obtained by relaxing the condition of

compactness to that of local compactness. Characterizations of
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locally connected generalized continua will be given in the following
section and in Chapter III. The remaining examples and theorem in
this section are intended to provide illustrations of locally connected

" generalized continua.

Il

Example 1.21. In E° with the usual metric, each open ball, as well

as E" itself, is a locally connected generalized continuum,

Example 1.22, If f is a continuous function whose domain is a
connected subset of/ El, the graph of f 1is a locally connected

generalized continuum.,

Proof: Each connected subset of E1 is a locally connected generalized
continuum, and the graph of a continuous function is homeomorphic to

its domain [13].

Theorem 1.23., Let M be a dendrite and E its set of endpoints,
The subspace M N E is a locally connected generalized continuum if

and only if E 1is closed in M,

Proof: The definitions here and the elementary properties that follow
from them are given by Whyburn [26]. First, suppose that E is closed
in M, Then, since M ~E is an open subset of the compact metriec
space M, ﬁ ~E is a locally compact, locally cbnnected? separable
metric space. Since M is arcwise connected and a point of E must
be an endpoint of any arc in M on which it lies, then M ~E 1is also
arcwise connected. Thusy; M N~ E is a locally connected generalized
continuum.

On the other hand, suppose that E is not c¢losed in M. Then

there is a sequence <en> of distinct points of E that converges
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to a point p in M ~E, Let U be any open set in M that contains
p. Then, since M is locally arcwise connected, there is a connected
and arcwise connected open set V such that p € VC U. There is some
point ej in V, hence the arc A in M from p to ej lies in V
also. Since the set A \-{ej} contains a sequence <ai> of points
that converges to ej, and since A \.{ej}C: US~E;, then USNE
contains the infinite set {ai: i=1,2, ...} of points which has

no accumulation point in M N~ E. S8Since U 1is arbitrary; then M ~E

is not locally compact, hence not a generalized continuum., ]

Convex Métrics on Continua

One immediate result of (1.13) is that every space that admits a
complete convex metric is both connected and locally connected; in fact,
it is arcwise connected and uniform;y locally arcwise connected [22].,
Therefore, a compact space that admits a convex metric must be a Peano
continuum. The converse to this state%ent was an open question until

proved in 1949 by Bing [7]. Hence, the.following characterization of

Peano continua is a result of the work of Menger [18] and Bing [7].

Theorem 1.24, A compact space is a Peano continuum if and only if it

admits a convex metric.

iﬁing's result was generalized in 1955 to locally connected generalized

continua by Tominaga and Tanaka [14], as follows.

Theorem 1.25. Every locally connected generalized continuum admits a

complete convex metric.

Of fundamental importance to this dissertation is the following
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generalized Bolzano-Weierstrass theorem of Lelek and Mycielski [16].

Theorem 1.26. Every closed and bounded subset of a locally compact,

complete convex metric space is compact,

The following theorem shows that the spaces to which (1.26) applies
are precisely the locally connected generalized continua. Hence, the
following parallel is established to the characterization (1.24) of

Peano continua,

Theorem 1.27. A locally compact space is a locally connected general-

ized continuum if and only if it admits a complete convex metric.

Proof: Necessity is given by (1.25). For sufficiency, let M be a
locally compact space with a complete convex métric D, Then M 1is
connected and locally connected [22]. Since by (1.26) each closed ball
is compact and thus separable, and since M is a countable union of

such closed balls, then M is separable. Therefore, % is a locally

connected generalized continuum. I

The requirement of local compactness cannot be omitted in the
"sufficiency" part of the proof of (1.27), as the following example

shows.

Example 1.28. The space Lp, 1 <p<« or in fact any infinite
dimensional Banach space with metric given by the norm, is a complete

convex metric space which is not locally compact [27].

The proof of (1.27) provides an apt illustration of the usefulness
of (1.26), although, as will be seen in (3.12), this tool is actually

not required for the above result. Another application of (1.26) can
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be seen in the following theorem, which states roughly that every non-
compact, locally connected generalized continuum with a complete convex

metric contains an isometric copy of the closed ray [0, =) of El°

Theorem 1.29. Let p be any point of a locally connected generalized
continuum M with a complete convex metric D. If M is not compact,
then there is a subset Rp of M 'containing p that is isometric
with the closed ray [0, ) of El; moreover,; there is é closed

retraction of M onto Rp°

Proof: Since M is not compact, then by (1.26) M cannot be D
bounded. Therefore, for each non-negative integer n the set

Cn = {x: px = n} contains some point ro. Since Cn is closed and

bounded, it is compact by (1.26). By (1.13) there is a segment 5;;
for each positive n, and for each O < m < n the segment 5;£
intersects Cm in exactly one point qn,m' It is noted that

n-1

zg:qn,iqn;i+l = pr ~for each n. (10)
i=0

Since Cl is compact,; some subsequence <qn(i),l> of <qn91>

converges to a point p of C,. Denote p by p.; and assume for
1 1 0

an induction hypothesis that for 1 < j <k; a point pj of Cj has

been chosen such that

P
!
[

b:p

iPiqa = PPy

e
il
O

and that p, is the limit of a subsequence of <q_ .>. In particular,
J Ny J

there is a subsequence <q_, ,»> of <g
n', n9

e > that converges to Py s

k
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where n' > k+2 for each 1. Since Ck+l is compact,; the subsequence

<qn',k+l> has a subsequence <qn”9k+l> that converges to a point

Py Of Ck+l' Since by (10) and (1.6) the point A ) 15 @

between point of p and q_, for each n", and since the
n',k+l

sequences <qn",k> and <qn",k+1> converge respectively to Py and

pk+l’ then e

k
PPpi1 = PP * PPy = Zpipiﬂ’
i=0
and the induction argument is completed. Therefore, there is a

sequence D = Pns Pys Pss coo of points of M such that

for each positive integer n.
The set Rp is now constructed from <pn> by induction on n,
There is a segment 551 by (1,13). If for 1 <k it is assumed that

there are segments Eii CZBEé (C eoo C:EE%, then since holds;

PP Pra
by (1.14) it follows that there is a segment 55k+1 containing Eiko

By induction there is therefore an infinite sequence of segments,

—_— — = ¢
pplepZC° - Corpp, C.oo v Let

If £ Rp -~ Bl is defined by f(q) = pq, it is seen from the

construction of <pn> and Rp that f(Rp) is the c¢closed ray [0, ).
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Moreover, since any two points r and s of Rp lie together in some
segment 555, then either pr + rs = ps or ps + sr = pr, and in
both cases [f(r) - f(s)] = |pr = ps] = rs. Hence, f is an isometry.
Now define g :M =R by ga) = £ (pg). Since D and £t
are both continuous functions, so is g. Moreover, since g is just
the identity on Rp, then g 1is a retraction of M onto Rpc
Suppose now that H is a closed subset of M such that g(H) has an
accumulation point t in Rpo If & =pt+ 1, then H N D(p;6)
is compact, and the continuity of g insures that g(H N D(p;6)) is
also compact. The inclusion g(H) N D(t;1) C g(HE N D(p;6)) follows
from the fact that D(p,g(u)) = D(p,u) holds for each u of M,
Thus, since t is an accumulation point of g(H) N D(t;1), then t

is also an accumulation point of the compact set g(H N D(p;6)); in

particular, t is in g(H). Therefore, g is a closed mapping. I

Example 1.30. The retraction constructed in the proof of (1.29) may

not be open.

Proof: Let M be the planar set composed of the union of the closed
unit disc and the strip [0, ®) X [-1, 1] in E°, and let D be the
restricted euclidean metric, If p 1is the origin, then Rp must be
the non-negative axis. If g has a negaiive abscissa and is one unit
from p, then g has no local basis consisting of sets whose images,

under the retraction defined above,; are open. 1

The obvious parallelism between the characterizations (1.24) and
(1.27) of Peano continua and locally connected generalized continua by
the admission of complete convex metrics, suggests that certain other

results that have been proven for Peano continua,might‘be generalized
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to locally connected generalized continua, especially where the
complete convex metrics play a part. The main objective of this
8issertation is to prove results for locally connected generalized
continua that parallel the follawing metric extension theorem of

Bing [4].

Theorem 1.3, If Ml and M2 are intersecting Peano continua whose

topologies agree on their intersection, and if Dl is a convex metric

for Mllj M2 that extends D..

for Ml, there is a convex metric D 1

3



CHAPTER II

VARIETIES OF COMPLETE CONVEX METRICS

Since by (1.13) every two points of a complete convex metric
space are joined by a segment, it might be supposed, out of analogy
with euclidean space, that much of the classical theory of convexity
would transfer easily to such spaces. However, such is far from the
truth. Although it is not the purpose of this dissertation to
investigate the possibilities of generalizing the theory of convexity
in this way; as has been done in part by Blumenthal [8] and Rinow [21],
it should become evident from the material now to be presented that
complete convex metric spaces may depart drastically from the familiar
euclidean geometry. But to illustrate non-euclidean pathologies that
appear in complete convei metric spaces is only a secondary purpose of
this chapter. The primary purpose is to lay a foundation for appli-
cations of the extension theorems of Chapter V; this will be done by
introducing three varieties of complete convex metrics from the
literature. A certain number of examples and results of an expository
nature will be in order here, since "the literature concerning
relationships between [these three] properties of convex metric spaces
is not satisfactory," according to Lelek [15]. But again, the major
objective of the present chapter is to provide preliminary results to

be used in applications of the extension theorems.

18
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Definitions and Characterizations

The following definition is due to Lelék and Nitka [17]; these

properties are also discussed by Rolfsen [22].

Definition 2.1. A metric is said to satisfy condition (a), (B), or
(v), respectively, if for any points p, q, r and s of the space
it holds that:

(a) If prq and psqs then {p; q; ry s} is linear.

(B) If pgr and pgs, then {p, qsy rs; s} is linear.

(¥) If par énd spq, then {p; q; ry 8} 1is linear,
A complete convex metric on a space; as well as the space itself; is
said to be:

(i) Strongly convex (SC) if it satisfies condition (a).

(ii) Without ramifications (WR) if it satisfies condition (B).

(iii) Without edges (WE) if it satisfies condition (¥).

Moreover, if a metric is both SC and WR, it is described as being

SC-WR,; and so for other combinations of these three properties.
A simple but useful result is the following.

Theorem 2.2. Let (p, gs Ty s} be a linear set in a metric space.
(i) If prq and psq, then either pg = ps + sr + rq or
PQ = Pr + r's + sq. |
(ii) If pqr and pgs, then either pr = pq + gs + sr or
psS = pq + Qr + rs.

(iii) If pgr and spg, then sr = sp + pg + Qr.

Proof: Since the set (p, g, Ty s} is linear, the metric space can

be assumed to be El with the usual metric. The conclusions are
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then apparent, [

The conditions defining SC, WR, and WE metrics in (2.1) provide
little geometrical insight into these properties. The conditions given
in the following three characterization theorems, in addition to aiding

the geometrical intuition, prove to be quite useful in the sequel.

Theorem 2.3. In a complete convex metric space (M, D), the following
statements are equivalent:

(i) The metric D satisfies condition (a), hence is SC.

(ii) Every pair of points of M has a unique midpoint.

(iii) Between every pair of points of M is a unique segment.
Proof: It is shown that (i) - (ii) - (iii) - (i),

(1) - (i1) If M is SC, then let m and m' be midpoints of the
two points p and q. Since pmgq and pm'q both hold, then the set
{py my m', @} is linear by condition (a), hence without loss of
generality pq = pm + mm' + m'q holds by (2.,2.i). Since also

pm = mq = pq/2 = pm' = m'q holds, then mm' = O implies that m = m°,

(ii) = (iii) If S and S' are both segments from p to q with

S # 8', then there are points u, v of S[1S$' such that the subarcs
of 8 and S' from u to v are independent arcs. But since each
one of these subarcs is a segment from u to v by reason of the
restricted isometries, then each contains a midpoint of u and v,
Thus, u and v have more than one midpoint, contradicting (ii),

Therefore, S = S',

(iii) - (i) Let prq and psq hold for two points p and q.



Then by (1.,14), points r and s each lie on a segment from p to
q,» and by (iii) this segment is uniquely pq. Thus, it holds that
{p, r+ s, q} CPq, =and the linearity of {p, r, s, q} follows from

that of pg. I

Theorem 2.4, In a complete convex metric space (M, D), the following
statements are equivalent:
(i) The metriec D satisfies condition (B), hence is WR,
(ii) If pgrs par',; and qr = qr' hold, then r = r' follows,
(iii) Whenever q is a midpoint of p and r, and also of p
and r', then r =r'.

(iv) If pq CprMN ps holds, then pr U ps is a segment,
Proof: The plan of the proof is to show (i) - (ii) - (iii) - (iv) - (i)

(1) - (i1) If (i) holds, let q satisfy the hypothesis of (ii).
Then by dopdition (B), pqr and pqr' imply that {p, q, r, r'} is
a linear set, and by (2.2.ii) it follows that pr' = pq + gr + rr’
without loss of generality. But qr‘z gqr' implies by the triangle
inequality that pr' = pq + pr' + r'r > pr' + r'r > pr. Since

pr > pr' similarly, it follows that pr' = pr' + r'r = pry; hence

r'r = 0, Therefore;, r = r',.

(ii) - (iii) Points p; @, rs and r' ‘that satisfy the hypothesis
of (iii) must also satisfy the hypothesis of (ii), since qr = pq = gqr'.

Therefore, (iii) follows.

(iii) - (iv) Suppose that pq C pr () ps holds. It is first shown
that 5;\v15E caennot contain two independent arcs joining two points

x and y of EF(W SE. For suppose there were two such arcs,; where
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without loss of generality x oprecedes y on 5; from p to r,
Then, since there is a segment Ea in 5; r\5E, it must be that

p #x. If 5; is the subsegment of 5; joining p and x, and if xs
is the subsegment of EE ‘jqining'_x and s, then since pxs holds,
it follows from (1,9) that px UXxs is a segment from p to s.

If & = min {px, xy/2} and C = {z: xz = 6}, then px, xs, and

the subsegment ;5 of 5; intersect € in the points p's, s', and
r', respectively. Then p'xr' and p'xs', along with the fact that
b = p'X = xr' = xs', show that x 1is a midpoint of both p', r' and
p', s'. Hence by (iii) it follows that r' = s', a contradiction
since & < xy. Therefore, 5; LJEE cannot contain two independent
arcs joining two of the points of 5; F\EE.

Thus, let q' be the last point of 5;, from p to ry, that
lies on EE. Since there is a point q such that 5& C:B;‘W Egg then
p # q'. Moreover, by the previous paragraph, the subsegment 5;'
of pr is also a subsegment of ps. In the case that r £ q' # s,
let & = min {pq', q'r, q's} and C = {z: q'z = 6}. Then C inter-
sects 5; LJEE in exactly three points p'; r', and s', where p'
is on pq's r' is on the subsegment q'r of pr, and s' is on
the subsegment ETE of Eg, Therefore q' 1is a midpoint of both
p's r' and p',; s, and by (iii) it foliows that r; = s', Hence,
5;[J'55 contains two independent arcs joiﬂing q' to rt o= sy in
contradiction to the conclusion of the preceding paragraph.

Therefore, it must happen that either q' =r or q' = s, in
which case Ea“ is either 5; or ;E, and §?|vJ§§ is either SE

——

or pr.
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(iv) - (1) Let pgr and pgs hold in M, By (1.13) there is a
segment 5&, and by (1.14) there are segﬁents 5; and EE such
that EE'C:E;(W 55. Therefore; since by (iv) the set 5? LJEE is a
segment, the subset {p, q;, ry s} is linear. Thus, D satisfies

condition (B) and is SC. I

Theorem 2.5. In a complete convex metric space (M, D), the following
statements are equivalent:

(i) The metric D satisfies condition (), hence is WE,

(ii) If wxy and xyz hold, then wz = wx + Xy + yz follows,

(iii) If wxy and xyz hold with wx = yz, then it follows that

il

WZ = WX + Xy + yZ.
(iv) If wxy and xyz hold with wx = yz and m is a midpoint
of x and y, then m is a midpoint of w and =z.

(v) If x is a midpoint of w and m, y 1is a midpoint of m
and %z, and m is a midpoint of x and y, then m is a
midpoint of w and =z.

(vi) If it holds that sq N\ pr = pq, then sqlUpr is a segment

from s to r.

Proof: The theorem will be proved by showing that (i) - (ii) - (iii) -

(iv) = (v) = (i) and that (i) = (vi) - (i),

(1) - (ii) If it holds that wxy and xyz, then (i) by condition
(¥) implies that {w, x, y, 2z} is linear. By (2.2.iii), it follows

that w2z = wx + Xy + yZ.

(ii) -» (4ii) Statement (iii) has a stronger hypothesis than (ii), but

the same conslusion,
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(iii) - (iv) If wxy and xyz hold with wx = yz and m is a
midpoint of x and 7y, then (iii) implies wz = wx + xy + yz. Since
m is a midpoint of x and y, it holds that xy = xm + my with

xm =my, Hence wz = wx + Xm + my + y2 = wm + mz holds with

WM = WX + XM = my + yZ = mz, Therefore, m is a midpoint of w

and z.

(iv) = (v) Let x be a midpoint of w and m, y a midpoint of
m and 2z, and m also a midpoint of x and y. Then wxm and
xmy hold. By (1.14), there is a segment §§ containing m, If xm
is a subsegment of §§, then since wxm holds, by (1.,14) again there
is a segment wm containing xm. Let n be the midpoint of x and
m in xm. Since wxm and xmy hold with wx = xm = my, and n is
a midpoint of x and m, then from (iv) it follows that n 1is a
midpoint of w and y. Thus, because of wny, wxn on WE, and
nmy on §§9 there follows WYy = wn + NIy = WX + X0 + nm + My = WX + XY;
that is, wxy.

An argument similar to the one in the preceding paragraph shows
that xyz. &ince it holds that wxy, xyz, wx =xm =my = yz, and
m is a midpoint of x and ¥y, then by (iv) it follows that m is a

midpoint of w and z.

(v) - (1) Let pgr and spq hold, and suppose that the set

{ps g, ry» s} is not linear. By (1.13), there is some segment 9,
and by (1.14); there are segments Ea and 5; containing Ba. The
gset X = {h ¢ Egz hqr or h = q} is non-empty, since pgr holds.
Moreovery, X is closed in EE; for suppose h is the limit of a

sequence of points <h > in X ~ {q}. Then from the continuity of
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the metric it follows that

hr = lim h r = lim (hnq + qr) = lim h g +qr = hq + gr,
n— n-ee n-eo

so that h e X. Therefore, since X 4is closed, then X intersects
EE in a first point Py from x to q. It follows that
PoT = Pyd + ar and sp = sp, + p,p and also that p, # s; for if
P, = S, then sr = sp + pq + qr, that is, {ps g» ry s} would be
linear, contrary to assumption. In a similar manner, the set
Y = {k ¢ prt spk or k = p} intersects pr in a last point g
from p to r, with sq, = sp +pq,, qr = qq, + qqTs and g, £ r.
Therefore, if EE and Ega are contained in EE, and if a; and
'Bab are in pr, then sp U EEO and ESEAL)E? are segments Eab

and pors respectively, by (1.19). Moreover, if Pyl 1S a subsegment

of 's?{o, then

P = (Poap N 59 U (e N Pag)

il

sp: Podg = Po¥ + xqo} U {x € pr: Podp = PoX + x4}

{x € sq: pyp = pyx + xp} U {x & pq: Py = DX + xqo}

x e

i

fl

Ulx & ars qaqy = ax + xq;)

{x e pya: pp = pox + x}U{x e ppa:  pgy = px + xq,)

]

Ulx e ar: aqy = ax + xqo}

{xe Ppdé PpP = PpX +Xp or pq, = px + xqo}

Uflx e qgr: Podp = PoX * X4}

it

{x e Ppd: Pplp = Ppo¥ + qu} U {x € qr: Podg = PoX + xqo}

i

(520 N T8 U Gty N3

f

Podg [ Por-

Hence, not only does C:EEO hold, but also poqo(: Pyt
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Let 556 C:EEO and 95T C:por, and define the set

E = {e > 0: there are points a_ e spy, b_eqyr with

aspo = qobs = €3 aspbe]u

The set E is non-empty, since O € E, and is bounded above by
min {sp09 qorJ. Therefore the number P = sup E existss; and there is

a sequence <sn> of E such that for every n and

8n hS En+l

lim g = P.
n
n—m

Let a, and bn denote a_ and bs s, respectively, and let a and
n n

b denote the points of EEO and qpT s respectively, such that

apy = qob = B, Then

lim aa = lim (apo - anpo) = 1lim (B = sn) = 0,

n-ooo n—’°° , n—’°°

and similarly

]
o

1lim bb
n

n—m

By the triangle inequality, anbn < aa + ab + bbn. Henge,

ab = lim (a_a + 2ab + bb_) > lim a b_ = 1lim (a_p + pb_) = ap +pb.
n n - nn n n

n—»ee n—>o° n-—->"

Therefore; ab = ap + pb holds. If it were the case that a = s,
then would follow sb = sp + pb and B > 0, from which it could be
concluded that b € ¥ and qobr on 5;9 coﬁtradicting the definition
of q,. Hence; a £ s and similarly b £ r.

Let 26 = min {sa, ab, br}; and let w and 2z be tﬁe points

of sa C:E;b and br C:qor, respectively, such that wa = bz = 6.
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Let m be the midpoint of Py and q, that lies on Poldge Let x
be the midpoint of w and m in Eab, and let y be the midpoint
of m and z that lies in p,r. Since it is true that

wm = wa + ap, + pym = mq, + qob + bz = mz, then it must hold that

xm = wm/2 = mz/2 = my. Moreover, am = ap, + Pom = mq, +~qOb = mb
holds. The relationship amb is shown from the equation

ab = ap + pb = apy + PoP + Py + qOb = ap, + Podp * qob = ap, + pym +
mg, + qob = an + mb, Therefore;, m is a midpoint of a and b,
from which it follows that am = mb = ab/2 > 0. Thus it must be that

Xm

wn/2 = (wa + am)/2 = (& + am)/2 < (am + am)/2 = am, hence that

am

]

ax + xm holds for {a, x, m} CZEEO-” Similarly, mb = my + yb
‘holds, Since amb; %hen ab = am + mb = ax + xm + my + yb, from
which it follows by (1.6) that xy = xm + my, or xmy. Thus, m is
a midpoint of i and y, since xm = ym was shown previously. In
summary, X 1is a midpoint of w and m, y is a midpoint of m and
z, and m is a midpoint of x and y. From (v) it féllows that

m is also a midpoint of w and z. Hence, wz =wm + mz =

Wpo + pOm + mqo + qOZ = Wpo + poqo + qOZ = wpo + pop + pqo + qOZ
holds, implying wpz. But Wpy = wa + apy = b + B = qob + bz = q.z

holds, and the inequality WP, = G2 > B contradicts the definition

0
of B, In this way, the assumption that {p, q; r; s} is not linear

is shown to be false, and (i) is proved.

(1) - (vi) Suppdse sq ) pr = pq holds. If p = s then pq = sq
implies that sq Upr = pq U pr = pr. If q = r, then similarly
sqU pr = sq holds. It may therefore be assumed that p #Z s and

q #r, and it follows from sq N\ pr = pq that spq and pqr. By (i)

therefore, the set {p, q, r, s} is linear, and from (2.,2) it follows
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that sr = sp + pq + qr holds, and in particular spr from (1.6).
If sp Csq, then sqUopr =spUpqUpr = sp\ U pr follows. Thus

by (1.9), it follows that sq U pr is a segment from s to r.

(vi) = (1) Let spq and pgr hold, and by (1.13) pick some
segment pq. From (1.,14), there are segments sq and pr such that
5a C:EE'F\E; holds. To show actual set equality, suppose that there
is a point u of (sgq ~ pq) N (pr ~ pg). Then upq and‘ pau both
hold, a contradiction to (1.8). Therefore, it must be that

pq = 8q N\ pr. By (vi) it follows that sq Upr is a segment, and

therefore the subset {p, q; r, s} is linear. Hence, (i) holds. I

Examples

The independence of the properties SC, WR, and WE is a natural
area for investigation, once they have been defined and characterized.
For example, the question could be raised, Is every SC-WR metric also
WE? To this question no answer has yet appeared in the literature,
although Lelek [15] suspects that the answer is negative. If this
were indeed the case, then the negative answer, together with the
following examples, would show that these properties are entirely
independent of one another in the sense of logical implication. But
before these examples are presented, it will be convenient to define

a particular metric, following Busemann [10].

Definition 2.6, Let (M, E) be a metric space, each two points of
which are joined by at least one arc of finite length with respect to
the metric E. For points x # y; define D(x,;y) to be the infimum

of the lengths of all arcs joining x and y. Then D is a metric
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on the set M, called the geodesic metric obtained from X, When M

is a subset of euclidean space, then by "the geodesic metric on M"
is meant that one obtained from the usual euclidean metric restricted

to M,
Example 2.7. The usual metric for EY is SC-WR-WE,

Example 2.8. The geodesic metric on the union in E"  of three
euclidean segments sharing precisely one common endpoint is SC-WE,

but not WR,

Example 2.9. The geodesic metric on the 2-sphere 82 is WR but is

neither SC nor VWE.

Example 2,10, - If the metric of (2.9) is restricted to the part of
32 that lies in the non-negative x and y half-spaces, then it is

WE-WR, but not SC,

Example 2.11. If a euclidean segment has in common with the space
of (2,10) exactly one of its endpoints, the resultant geodesic metric

is WE but is neither SC nor WR,

Example 2.12. The geodesic metric on the union in E2 of the unit

circle and the segment [1, 2] X {0} is neither SC, WR, nor WE,

It should be noted that the metrics for the examples of (2,7) through
(2,12) are all convex, and since the spaces are compact, the metrics
are also complete.

The final example in this section is related to an interesting
phenomenon in the literature. Busemann [10] has shown that in a

locally connected generalized continuum with a SC-WR metric which
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satisfies the additional property that for every two points x and y
there exists a point =z with xyz, then any two points uniquely
determine a '"straight line," that is,; a subspace isometric to El.
Moreover, in such a space a "perpendicular" can be constructed from a
point to a "straight line"™ if and only if the closed balls are convex.
The convexity of the closed balls thus becomes a rather significant
point. Glynn [12] poses the question whether in a Peano continuum
with an SC metric, the closed balls are necessarily convex. The
following example answers Glynn's question in the negative. A further

result on the convexity of balls will be given in (6.3).

Exgmple 2.13. A 2-cell admits a complete convex metric that is SC

but neither WR nor WE,; having closed balls that are not convex.

Proof: Define the 2-cell C = {(p,0): 0 < p < cos @, =.73 <@ < ,73}
by using polar coordinates in EZ, as Figure 1 illustrates on the
following page. The set C 1is composed of "ridge sections"

R(@,r sr,) = {(ps®): rjcos @< p<r,cos® or r

1 2 2

rl cos 0}, defined for all -,73 <0< .75 and for all O0<r

cos @ < p<

10 T S L

Set C 1is also composed fo Yarch sections"™ of the form

Alr, @, 92) = {(ps@®): p=rcose, 6 <6<6, or 8, <06}

defined for all O <r <1 and for all =-.73 < @l, e, < .73, The

2

arclength L of these sections,; with respect to the euclidean metriec
I °]ls is given by the expressions

L(R(@grlgrz)) = ]rl cos 8 - r, cos 8| = ]rl - rZ! cos 6, and

]

! S —\/r2 cos” 6 + r° sin° 6 46| = r lo, - o
°

L(A(r,Ql,@Z)) alo
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E_—(cos .73, .73)

Arch
section

(0, 0) (1, 0)

Ridge
section

NI (cos .73, -.73)

Figure 1. The Space C of (2.13)

The metric D may now be defined on C X C as follows:

n

if x=1ys D(xyy) = 0;

if x £y, D(xsy)

n
n
inf {:ZJL(Si): the 8, are alternately non-

i=1 /

i

degenerate ridge sections or non-degenerate arch
sections with endpoints 1 and 9 such that

X

it

I y = Q,° and qi = pi+l for all

i =21, 2 sooy =13 for all n =1y 25 ool

The section 8, may also be designated (S:.Lg P, qi) when it is
desired to specify its endpoints.

The following assertions are now to be proved.
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(i) If x#y and <Si>1iq~ is a finite sequence of ridge

1
sections and arch sections with endpoints P, and 4y respectively

such that x = Pyr ¥ =4 and a; = P59 for i =1, 25 sc0as N=l,
nl

j.1 @as in the definition of D

then there is a finite sequence <Si>

such that -n' < n holds, along with
n' . n
n n
) sy Ccl ) s, eand ZE:L(S!) < zg:L(S.).
> i 3~ i i’ = i
i=1 i=1
(ii) lx = yll < D(xsy) for all x, y € C.

(iii) D is a metric on the set C.

(iv) If 0<r <r, <1 and -.73<6,, 89

then it holds that

5 < .73 with 91 £ @29

L(A(rl, o, s 92)) + L(R(o 19 r2)) < L(R(el, rys re))

2 b
+ L(A(re, @19 92)),

(v) If 0<r,r, <1 and -73<6),0,< .73 with r, #£r,,

2
then it holds that
+ L(R(Ga, T, re))o

(vi) If 0<r,r, <1 and -.73<6,,0,< .73 with 0, £6,

and r) + T, # 0, then it holds that .

L(R(ng T rz)) < L(A(rlg o, 92)) + L(R(92, Ty r2))

+ L(A(ra, o 92)).
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(vii) Each non-degenerate ridge section is the unique D segment

hd

joining its endpoints.
(viii) Each non-degenerate arch section is a D segment,

(ix) Each non-degenerate arch section is the unique D segment

joining its endpoints.

(x) If x = (rl cos 6., 6.) and y = (r. cos 9., 92) with

1’71 2 2

r; <r, and O A 6,5 then A(rl, 6, 92) R(Qa, Ty r2) is a

D segment §§.

(xi) The D segment given in (x) is the only one joining the two

points x and Y.

(xii) D 4is equivalent to the usual planar metric restricted to

the set C.
(xiii) D is SC.
(xiv) D 1is not WR.
(xv) D is not WE,
(xvi) The closed ball D((0, 0); cos .73) is not convex.

(i) This assertion is obvidus geometrically, and its pPoof can
be formalized by means of an induction argument on n. The sequence
n . . , y-nt
<(Si9 P, qi)>i=l is reduced down to <(Si’ P qi)>i:l by repeated

applications of the following two-step process: (1) omit all
degenerate sections; (2) consolidate all adjacent sections of the

same type.
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(ii) Since the length of any arc from x to y will at least

equal the usual distance |[x = ylL and since the union of any finite

sequence <Si>2— of sections as in the definition of D(x,y) must

1

contain some arc A from x to y with

n

L(a) < :g:L(Si),

i=1

then it follows that [lx - y|/< D(x,y) holds.

(11ii) It is immediate from (ii) and from the defifnition of D that
D(x,y) = O if and only if x = y. Symmetry is observed from the
definition of D. The triangle follows in a straightforward manner

from (i).

(iv) If o, < 8,,

function for =-.73 <x < .73, it follows that the inequalities

then since cos x - x 1is a strictly decreasing

cos O, - 8, < cos 91 - @

5 5 cos 92 - cos ©

lg l<92-’gl, and

(r2 - rl) (cos ©. - cos @l) < (r2 - rl) (92 - ©8,) all hold, Thus,

2 1

r ]@l - 921 + (r2 - rl) cos 6, < (r2 - rl) cos 8, + r, ]91 - 92| (1)

must hold. If e, > @29 then =6, < =@

1 1 59 so that @1 and 92 may

be replaced in (1) by their negatives, and (1) is again obtained.

(v) Ir ry < rss then ]Ql - 92] < 2(,73) < 2 cos .73 < cos Ql
+ cos ©,, hence (r2 - rl)lOl - 92| < (r2 - rl)(cos 6, + cos @2)7 so
r, ‘@l - @2| < 'ra - rll cos @l +rg l@l - 92| + [r2 - rl‘ cos 6, (2)
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must hold, If r,<r and 6 £ ©,: then (2) is again established

2'. If r, < r1 and Gl = @2g

r, |@1 - 92‘ = 0 establishes (2),

by r, ]91 - 921 <ry 191 -6 then

(vi) Let w = (r1 cos 6., Ql), X = (r1 cos 0., 92),

1
y = (r2 cos 8., @a)g and % = (r2 cos 8., Gl). Since 6, £ 6, holds

and A(rlg e, , 92) is not a euclidean segment, then it follows that

1

Hw - x1] < L(A(r19 e, 92))o Hence,

1

Ry, 7 2)) = Hw -zl < llw-xll+ lx-yl+ly-zl

< L(A(rl, e

X 92)) + L(R(ga, rys ra)) + L(A(ra, o, @2))°

(vii) This assertion follows from (ii), since non-degenerate ridge

segments are unique euclidean segments.

(viii) Let x = (r cos 65 91) and y = (r cos 6,5 92) with r >0

and 0, # ©,. It will be shown that if the finite sequence

<(Si’ D, 5 qi)>?~ is as in the definition of D(x,y) with n > 1, then

1

n

LA(r, 0, 6,)) < ZL(Si)g (3)
i=1

This is established by induction., If n = 2, then there is no finite
2

jo1 @s in the definition of D(x,y), since

sequence <(Si9 D, 9 qi)>
such a sequence would have to include one non-degenerate ridge section;

that is, (3) holds vacuously for n = 2. In the case that n = 3, if

<(Sis Ps o qi)>gw is as in the definition of D(x,y), then as before

1

there must be more than one ridge section; that is, S and S are

1 3
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non-degenerate ridge sections and S, 1is a non-degenerate arch section.

2
Assertion (v) shows that (3) holds for n = 3.

Suppose it has been shown that (3) holds for k - 1 > 3. Let

<(Si’ qi)>§_ be as in the definition of D(x,y). Since there are

1
ridge sections in this finite sequence, there are also arch sections
A(s, a, B) with s £ r, and even s < r without loss of generality.

let s. = min {s: A(s; a, B) = Si for some i =1, 2y co.y k}. Then

0
A(509 qo, BO) = Sj for some 1 < j < k, Sjnl = R(aog 5y sl) for
some s, < s, and Sj+l = R(BO’ S 52) for some s, < s,; without
loss of generality let Sy < S5e The k -~ 1 term sequence
Sl, S2i o009 Sj_29 A(Sl‘i a’oi BO)’ R(BO, 819 52), Sj+29 o009 Sk

satisfies the hypothesis of (i), hence there is a finite sequence

t
ATy ags bi)>1i‘_ as in the definition of D(x,y) with k' <k -1

1

and
k'
ZL(T.)

1
i:}

j=2 k

< ZL(si) + L(A(s, ags B)) + L(R(B,, sy4 5)) + ZL(SiL
i=l i=1

From (v) it follows that

L(A(Slg s BO)) < L(§j‘l) + L(Sj) + L(Sj+l) *‘L(R(BO9 Sy 82))9 thus

k! k

L(T,) < L(s.).
ZE: i Z§: i

i=l iz:l
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But the induction hypothesis yields

k!
L(A(ry 015 6,)) < ZE:L(Ti),

i=1
so that

k
L(A(r, 0, s 92)) < :§:L(Si)

i=1

must follow,

The induction is therefore complete, and shows that if the finite
séquence <(Si’ P, s qi)>§~1 is as in the definition of D(x,y) but

distinct from <(A(r, @

1 92), X, y)>, then it holds that

k_
L(A(r, el, 92)) < :§:L(Si).
i=1

Hence, D(x,y) = L(A(r, 6 92)) =r 'Ql - 6,1 follows. Moreover, if

N

z = (r cos 8, €) 1is any point of A(r, 6, @2), then © 1is between

1

@l and @2 inclusively, so that the foregoing argument may now be

applied to show that

D(x;z) + D(z,y) = r !91 -6l +r |6 - 92! =r ]Ol - 92| = D(x,y);
that is, A(r, o, @2) is a D segment xy.
(ix) Let x = (r cos 0, Qi) and y = (r cos 929.92) ‘w1th

Ql £ @2. It was shown in (viii) that A(r, Ql, 92) is a D segment.

Let z = (p cos ¥, @) be a point that does not lie on A(r, o, @2)0
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If p=r, then @ does not lie between 91 and @29

the distances D(x,z) = A(r, Ql, @) or D(z,y) = A(r, &, 92) exceeds

so that one of

D(x,y), hence D(x,z) + D(z,y) > D(x,y). If p <1, then

D(x,2) + D(z,y)

]

P !Ql - @ + (r -~ p) cos 6, ; p |g -~ QZI + (r = p) cos o,

>(r -p) cos 6, +p |91 -292‘ + (r - p) cos @

1 2

> r lel - 921 = D(x,y)
holds by the real triangle inequality and by (v). If p>r, then

D(x,z) + D(z,y)

r lQl -@l +(p=~-r) cos@ +r ]92 ~-@l +(p=-=1) cos @

v

r l@l - 92l +2(p=-r)cosdg

>r l@l -06.] = D(x,y)

N

holds by the real triangle inequality.
Thué%in any case, 2z 1is not a between point of x and Y.

Therefore, A(r, © ,‘92) is the unique D segment ;§.

1
(x) The method is induction on n, with the induction hypothesis
given as follows: if <(Si, Py s qi)>? ; 1is a finite sequence as in

the definition of D(x,y), then

n
L(A(rys 65 6,)) + L(R(6,, rys r,)) < :E:L(si)
=1

holds if n > 25 with strict inequality holding for n > 3. If n =2

and S17 S. is as in the definition of D(x,y), and if it is not

2

true that S1 = A(rlg Ql, 92) and 82 = R(@Z, Ty rz), then it must
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hold that Sl = A(rl, e, 92) and 82 = A(rz, Gl, 92). Whichever

form 8, 52 may take, statement (iv) insures that

L(A(r., G, 92)) + L(R(e

1' "1 2' T
should be noted that (iv) does imply strict inequality if S

10 7)) < L(s,) + L(8,) holds, and it

1 82 is
not A(rl, 91, 92), R(O2’ rs r2).

Suppose that for k - 1 > 2 the induction hypothesis holds; and

let <(S., p;, qi)>li‘_l be as in the definition of D(x,y). It may be

assumed that Gl < 92, since inequalities given in (iv), (v), and (vi),

as well as the present line of argument, do not depend essentially on
a particular order for 91 and 6. Let p; = (pi cos ¢i° ﬂi) for

= 8

=75 P 2°

i= 19 29 EEE k9 and let pk+1

Suppose that <Si>li{__l contains a ridge section that goes left;

that is, suppose p, < p, holds for some i. Then either of two
i i=1

cases could hold., In the first case, r < pi for some i,

2 = Pra1

Let py = max {pi: i=1y2 eoey K}. Thén Py = pj > Pi for some

is the ridge section R({, .)
g ¢J9 pj_l9 pJ 9

index j. Therefore, Sjwl

S. is the arch section A(p, . - and S, is the ridge

section R(¢j+lg pj9 pj+2), with p:j - pj+l > pj+2° Without loss of
generality it may be assumed that pj-l < pj+2° Then the k =1 term
Sequence 519 ©c00 9 Sj°29 A(pj_l’ gjﬁ ¢j+l)9 R(¢j+l9 pj¢19 pj+2)9 Sj+29

2005 S, satisfies the hypothesis of (i). Therefore, there is a finite

1

sequence <S£>?_ as in the definition of D(x,y) satisfying

1

k' §=2

LS € ) L) + WACp, 1, Bas B1,00) + LRI04 bo 1y by))
i=1 i=1



+ L(8.)

for some k' <k - 1. Thus by the induction hypothesis, it holds that
k!
LA(ry,s 0,5 8,)) + L(R(6,, ry4 ,)) < :§:L(si).

R i=1

But by (v), it must hold that

< L(R( 50 Py J) + Lalp., &, 1)) + L(K( ))
.5 P 5410 P; Py ¢J9 8., ¢ A Py Py
= L(Sj_l) + L(Sj) + L(sj+1).
Thus, it follows that
k' k
L]
LACr,, 6, 8,)) + L(R(e,, vy 2)) € ) L(8)) < » LS,
i=1 i=1
In the second case, it happens that pi>5 r, = pk+l holds for each i,

Let Py = min {pi: p; < P5_ps i =1, oeey k+1}. The preceding set is

non-empty since <8, >§ 1 does contain a ridge section that goes left.

Then Py = pj < p»_l holds for some 1 < j< k + 1., In fact, since

sjml is the ridge section R(¢ ' Py pj 1) and Sj must be the arch

section A(p s ¢ ¢j+1 then it must hold that Jj < k and sj+l

must exist as a ridge section R(& ) with pj < pj+1.

j+1* Py Py

The argument now proceeds as in the first case in showing that



b1

k
L(A(r,s 6y, 6,)) + L(R(6,, 1), T,)) < Zmi).
i=1

k

S
uppose that <8, >l -1

contains an arch section going downj; that

is, suppose ¢i < ¢i—l holds for some i. Then the proof proceeds
by use of (vi) in two cases, exactly as the preceding proof for ridge

sections procceded by use of (v) in its two cases; and the result is

k
L(A(rl, Ny 92)) + L(R(ng o r2)) < :§:L(si),
i=1

Finally, suppose that all ridge sections go right and all arch
sections go upj; that is, suppose that pi—l < pi and gi-l < ¢i
hold for all i =2, ..oy k +1. Since k -1 > 2, there is a first
arch section S A(p 9 ﬂ ﬂ with pj > pl =Ty, for this will
be the section follow1ng the first ridge section Sj 1= R(¢j9 P57 P )

J
with pj~l < pj. Of coursey; Jj > 2 must hold.

It

2, define S'

il

If 3 A(p 1 ¢ ¢3+1 ; define

); and define

L]

S! = 8, for =4, ..., k ~1, Then the finite sequence
i i+l
<Si>§:i is as in the definition of D(x,y),; and by the induction

hypothesis it follows that

k-1 k
L(ACrps 01, 8,)) + L(R(9,, rpy 7)) € ) L(8) < D (s,
i=1 i=l

holds, since (iv) implies
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L(84) + L(8))
= L(A(pj__l, ¢j, ¢j+1>) + L(R(¢j+1', Py1 pj)) + L(R(¢j+1, Py \pj+2))

< L(Sl) + L(Sa) + L(SB).

If 3< J =k, define Si = Si for 1 =1, v0oy J - 3 in the

case that j = 4; define
' . - . .
Ss2 = Sj-zlJ A(pj_l’ ¢j’ ¢j+1) = A(pj-l’ ¢j~2’ ¢j+1)’ and define

' ' = - L3
Sj-l R(¢j+l’ Psy pj). Then it happens that the finite sequence
<si>§:i is as in the definition of D(x,y), and by the induction

hypothesis it follows that

k-1 k
L(A(r{y 61, 6,)) + L(R(6,, 1y, rB)) < :E:L(Si) < :E:L(Si)
i=1 i=1

must hold; since (iv) implies
1 !

L(Sj_z) + L(s! 3)

= L(Sjmz) + L(A(pj_l, ¢j, ¢j+1)) + L(R(¢j+1, Pyy pj))

< L(Sj_z) + L(Sj_l) + L(Sj).

If 2< Jj <k, then define Si = Si for i =1, se.y J =3 in

the case that J > L; Qgefine
1 — _ . .

Vo _ _ : .
S Si+2 for i = jy c0.y k =2 1in the case that k > j + 2.

Then <S{>kj2 is as in the definition of D(x,y), and it follows from

i=1

the induction hypothesis that
k=2 k
’ '
LA(rys 6,4 9,)) + L(R(8,, xpy 7)) € ) TAS]) < ) L8y
i=1 i=1
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holds, since (iv) implies

l)
= L(Sj-E) + L(A(pj—l’ ¢_]’ ¢J+l)) +L(R(¢j+19 pj-vl’ PJ)) + L(sj+l)

L(s" ) + L(s!'
j=2 J=

< L(Sj_z) + L(Sj_l) + L(Sj) + L(Sj+l).

Therefore, the induction is complete, with the result that if

X = (rl cos 6., 91) and y = (r2 cos 6, 92) with r) < r, and

@ £6 , then

n

L(A(r,, 04 0,)) + L(R(0,, 1., T,)) < ZL(Si)
i=1

holds for any finite sequence <Si>?_ as in the definition of D(x,y)

1

besides the finite sequence A(rl, 91, 92), R(Oz, rs r2)o Hence,

D(x,y) = L(A(rl, 6 @2)) + L(R(QZ’ Ty rz))

= I IQ

1 - 92) + (r2 - rl) cos ©

1 2

Moreover, from this fact and from (vii) and (viii) it follows easily

that A(rl, 6 s 92) L}R(OZ, Ty r2)) is a D segment xy.

(xi) To prove the uniqueness of the above segment, let
X = (rl cos 6, @l) and y = (r2 cos 6,, 92) with r, <r, and

N # 92° By (x), it holds that A(rl, 6, 92) tJR(Oz, Ty r2) is a

D segment xy. Let z = (p cos @, #) be a point not lying on

A(rlg 0,5 @2) L}R(OZ, rys rz)o If p<r then it holds that

l’

D(xsz) + D(z,y)

=p | - @l[ + (rl - p) cos 6, +p g - 92] + (r2 - p) cos 6,
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> (rl - 9) cos 6, +-J'p l@2 - Oll + (rl ~ p) cos 6, + (rz— rl),COS'Qa
> rllga - éll + (r2 - rl) cos 9, = D(x,y)

by the real triangle inequality and (v). If r, < p<r,, then

D(x,z) + D(z,y)

]

ry g - Qll + (p = rl) cos'@ + p 192 - g + (r2 - p) cos 6,

>rllﬁ-gll+rl,QZ-¢I+(p-.I'1)COSO +(I‘2-p)cosg

2 2

= D(XaY)

v

ry |®2~— Ql] + (r2 - rl) cos 6,

holds by (v) and the real triangle inequality. If r_, < p; then

2

D(x,z) + D(z,y)

i

ry g - @ll + (p - rl) cos @ + ré(lﬁ - 92] + (p - rz) cos @

ry |7 - Ql] +(p -1r,) cos § + (ré - rl) cos f§ + r, g - 92]
+ (p - r2) cos @
>ry 1B -0l +(p-r)) cosf+r |F-6,]+(r,-r)coss,

+ (p - r2) cos @

Iv

ry ]OZ - Oll + (r2 - rl) cos 6, + 2 (p - r2) cos @

> D(ng)

holds by (v) and the real triangle inequality.
In any case, D(x,z) + D(z,y) > D(x,y) holds, so that =z cannot
be a between point of x and y. Thus, the D segment

r.) is unique as xy.

(xii) Let x = (r1 cos 6, , Ol) and y = (r2 cos 6,5 92) be

distinct points of C,; with rl < rye It was shown by (ii) that

D(x,y) > ﬁ,x -y ll. It is now shown that D(x,y) < (k/V2) llx -y,

where k =T/ (2 cos .73). From either (x) or (viii) it follows that
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D(x,y) =r, |6, - 92| + (r2 - rl) cos © Since t < T/2 sin t holds

171 1
for all 0 <t <T/2, then |6 -6, <1.46 implies that

o3 =651 < /2 sin !Ol -0 Moreover, since 1 < cos 6 / cos .73,

2"

r [Ql - 92] <k r, cos 6, sin !Ql -0 (4)

1 1 2’

must hold.

Now, in the case that cos Qé - cos 91 cos (6, - Gl)'z 0, then

2

cos 6. + cos 6, cos (6, - Ol) < 2 cos 8, holds; hence

2 1 2 2
2 2 2
cos” O, - cos” 6, cos (92 - Ql)
< 2cos 6, [cos 8, - cos 6, cos (6, - Ql)] (5
is obtained upon multiplication by cos Oé ~ CcOS Ql cos (92 - @l)o
Ify on the other hand, it happens that cos %é - cos Gl cos (92 - @l)s 0

holds, then cos O, + cos 8, cos (e, - Ql) > 2 cos 6,, and again (5)

2

is obtained upon multiplication by cos 92 ~ COoS Ql cos QQjﬁfﬁQl);

that is, (5) holds in either case. When (5) is multiplied through by

the corresponding members of r2 <

1 ST Tos there results the inequality
2 2 2 2
ry [cos 92 - cos Ol cos (92 - Ol)]
<2r r,cos 92 [cos 6, - cos Gl cos (92 - Ol)]u

By distributing the multiplications over the differences and by adding

2 2 2 : 2 2 2
r| cos” 6, cos (92 - Ol) -2r) r,cos o, + r| cos o, to both
members, the inequality
2 2 2 2 v 2
r, cos 92 -2 ry T, cos 92 + rl cos 92
% r2 0052 6. -2 r 0os 6, cos © coé (6., = 9.)
= 2 12 ¢ 1 2 2" "1
2 2 2 '
+ r] cos Ol cos (92 - Ol)
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is obtained, which may be rewritten as

= 2 P
5 = fl) cos 92 < [r2 cos 92 - r, cos Ol coSs (92 - @l)] .

Therefore, since k > 1, this last inequality becomes

(r2 - rl) cos 6, < k Ir2 cos 8, - r; cos 9, cos (92;‘ Ql)l. (6)

2 2 1

Inequalities (4) and (6) add to the inequality

; sin |91 - 92|

+ ]r2 cos O, - r; cos 8, cos (92 - @l)]]° (7)

D(x,;y) <k [rl cos ©

But since (1/2) (s + £)° < &% + t° holds for all real s and t,

. 2
(1/2) [rl cos 6, 51n|9l - 92| + |r2 cos 6, - r; cos &, cos(@2 - Ql)lj

2 3 2 . 2 2 2
<y d?s 6, sin (@1 - 92) + r, cos 6,

2 2 205 o7
-2 r, r, cos 91 cos 92 cos (Ql - 92) + r] cos Ol cos (@1- @2)
2 2 2 2
= rl cos Ql + r2 cos 92 -2 rl r2 cos Ol cos 92 coSs (91 - 92)
2 2 2
= (rl cos Ql - r, cos 92)
. . 2
+ (rl cos @l sin Ol - r, cos 92 sin 92)
2

= {lx -yl

is obtained.

This last inequality, combined with (7), yields the fact that
D(x;y) < k/JE-llx - v |ls completing the proof that D is equivalent to

the usual planar metric restricted to C.

(xiii) Since C is compact under the usual planar metric; then by

(xii) it is shown that (C, D) is compact, and in particular, D is
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complete. Moreover, since (vii), (ix), and (xi) combine to show that
for every two points of C there is a unique D segment joining them,

then D is SC according to (2,3).

(xiv) The metric D 1is not WR, for let r = 1/1.73%. Since the

point (r, O) is on the segmeqt Alr, -.73, o) U R(O, r, 1), which is

Tr cos 73, =.73) (1, 0), and since D((r cos .73, =.73), (r, 0))

¥ &

L(A(r, =73, 0)) = .73 r = .73/1.73 =1 - r = L(R(O, r 1))

i

D((r, 0), (1, 0)), then (r, O) is the midpoint of the points

(r cos .73, -.73) and (1, 0), Similarly, €r, 0) is the midpoint of
the points (r cos .73, .73) and (1, 0). Hence by (2.4), D is not

WR.

(xv) Neither is D a WE metric, for let p = (cos .73, .73),
q = ((cos .73)/2, 973),. r = ((cos .73)/2, -.73), s = (cos .73, =.73).
Then prNgs ¥ A(1/2, -.73, .73) = qr, but pr Ugs # A(1, -.73, .73)

= ps. Thus, by (2,5), D is not WE.

(xvi) The points (cos .73, =.73) and (cos .73, .73) 1lie in the
closed ball D((0, 0)3 cos .73), but their midpoint (1, O) does not.
Similarly, it may be shown that any closed ball centered at the
origin, unless of course it is the entire set C, cannot be D

convex. |
SC and WE Metrizability
The following result is due to Borsuk [9].

Theorem 2.14., Every compact space which admits an SC metric is

contractible.
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Corollary 2.15. No ‘n-sphere s* in En+l admits an SC metric.

Proof: According to Brouwer's Theorem, " is not contractible (11].

Hence, (2.14) applies. I

In regard to (2.14), Krakus and Trybulec [14] have given an
example of a non-compact, non-~contractible metric space with unique
segments; that is, one whose metric satisfies condition (2.3.iii).
Moreover, they left as an open question whether or not there exists a
non-contractible space with an SC metric. No answer to their question
has thus far appeared in the literature. The following theorem
provides a partial answer to this question, in the case of locally

compact spaces, while generalizing (2.14).

Theorem 2.16. Every locally compact space that admits an SC metric

is contractible.

Proof: Let D be an éC metric for the locally compact space M. Fix
any point p € M, and define a function H : M X [0 1] - M as
follows: for (y, t) € M X [0, 1] there exists a unique point

z ¢ M such that pz = (t) py and zy = (1 - t) py; let H(y, t) = z.
It follows that H(y, 0) = p and H(y, 1) =y for each y e M.

To show that H 1is continuous, let <(yn, tn)> be a sequence of
points in M X [0, 1] that converges to a point (y, t). Then <y
and <tn> converge to y and t, respectively. Since the set

{yn: n=1, 2y ...} 1is bounded, there exists a number & > O such
that {yn: no=1, 2 20} CD(p;8). If z = H(yn, tn) for each n,
then pz = (tn) py, < py, < 6 holds, so that {zn: n=1, 2, sl

is contained in D(p;&), which by (1,26) is a compact set. Iet
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Z = H(y, t)., If <zn> does not converge to z, then there is some
e > 0 and a subsequence <Zn.> of <zn> such that the set . -
i
{zn.: i =1, 2, ...} is contained in D(p;&) ~ D(z3e), which is
i
also a compact set. Thus, <Zn.> has a convergent subsequence, and
i
for simplicity it may be assumed that <Zn.> itself converges to some
i

point z' in D(p3;6) ~ D(z;e); in particular, it must be that z' £ z.

But since <(yn vty )> converges to (y; t) and D is continuous, then
i i

' — [3 — o —- o B
pz' = }1m pz = %1m (tn.) Py, = (t) vy
im0 i i-se0 i i

and
z2'y = lim z y = lim (1 - tn_) Py, = (1 - t) py.
i T4 100 i i
Thus, by the definition of H it must be that z' = H(y, t) = 2z, a
contradiction. Hence, <zn> converges to z, and H is continuous
and consequently a homotopy from the constant map p to the identity

map on M. Therefore, M is contractible. I

It is immediate from (2.15) that there is no SC metric for a
simple closed curve. In fact, Glynn [12] has shown that a Peano
continuum in E2 admits an SC metric if and only if it does not
separate Eza It is natural to ask whether results analogous to this
and to (2.15) hold for WE metrics. The following theorem is of some
interest along this line, and is useful in proving some of the results

of Chapter VI.

Theorem 2.17. There is no WE metric for a simple closed curve.



Proof: It suffices to show that there is no WE metric for the unit

circle Sl in the complex plane. Let D be a convex metric for Sl.

Suppose that there is some point of Sl that is not a between point

of any two points of Sl, and for simplicity assume that this is the

point 1. Define p = exp [i(f7/2n)] and q, = exp [i(2w - T/2n)],

for n=1,2, ... . Since <pn> and <qn> both converge to 1, then
iiz D(pn, qn) = 0.

But since no segment q can contain 1, then the segment p g
en Pnin n.n

must be uniquely {exp (i8): T/2n < © < 241 - /2n}, so that the

]

points i and -1 are in p.d, for each n. Therefore, the

presence of the bound D(pn, qn) > D(i, -i) > O contradicts the above

limit. Hence, the point 1 and every other point of Sl is a

between point of some other two points of Slu

Suppose that D is WE. Define

& = sup {0 < a < 2 {elg: 0<6<a} is a segment f%om 1 to e'%).

By the preceding paragraph such a's exist, so that & > 0 is well
defined. Let <an> be a sequence of increasing positive numbers

whose limit is ©&. Since

= 1im D(1, &™™8) > D(1, ¢'°1) > 0

n-—m

D(1, e°)

holds; then & < 27. But since e16 is a between point of some two

points of Sl, there are values 0 < 61 < b <L 62 < 2w such that
61 <6< 62} is a segment from the point e161 to elbau

There is an integer n such that 61 < an < b, 50 that the set

(1°;
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< 6.} = {elg: b, <8< ah} is a

i6
F 2 1

-
O
N
O
N
Q
—
-
X

Lo
A

o

10n to elbl. Since D is assumed to be WE, then
16 . , 165
by (2.5) the set {e"": 0 < 6K 62} is a segment from 1 to e R

segment from e

contradicting the defini%i@n of &. Hence, D is not WE, [



CHAPTER III

SEGMENTED CONVEX METRICS AND LOCALLY

CONNECTED GENERALIZED CONTINUA

In proving that a certain metric D is complete and convex, it is
often possible to conclude that every two points lie on a D segment,
before it cén be proved that D 1is completeo This is the case in the
proof of certain of the extension theorems in Chapter V. Therefore, it
becomes quite useful to have at hand a collection of properties of
metric spaces that satisfy the condition that every two points are
joined by a segment. This present chapter provides a few elementary
results on such metric spaces. Additionally, these metrics are found
to characterize locally connected generalized continua among the
locally compact spaces and to identify certain Peano continua that are

contained within the locally connected generalized continua.
Definition and Examples

Definition 3.1. A metric D 1is said to be segmented convex if every

two points in the space are joined by a D segment.

It is observed that the segmented convex metrics occupy an
intermediate position between the convex metrics and the complete
canvex metrics, in that every segmented convex metric is convex,; and
by (1.13) every complete convex metric is segmented convex., The

following two examples sharpen the distinctions between these three
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metrics.

Example 3.2. The usual metric of El restricted to the space of
rationals is a convex metric, and this space does not admit a segmented

convex metric,

Example 3.3. Not every space that admits a segmented convex metric

must also admit a complete convex metric.

Proof: Every normed linear space can be given a segmented convex
metric, namely, the metric obtained from the norm. But there are
normed linear spaces that are not topologically complete, for let Q
be the space of rationals in El. By the Baire category theorem, @Q
is not topologically complete [11]. Yet, Q can be embedded iso-
metrically as a closed subset of a normed linear space [1]. Therefore,
since the property of topological completeness is inherited from a
space by each of its closed subsets, the normed linear space N is

not topologically complete [11]. I
A Condition Sufficient for Segmented Convexity

A natural question is the following: Under what conditions must
a given convex metric be also segmented convex? One answer is given

below in (3.5).

Lemma 3.4. For any two points x and y of a midpoint convex metric
space, there is a midpoint convex, linear set L(x,y) consisting of

X, ¥, and between points of x and y.

‘Proof: It is assumed for simplicity that xy = 1. Define the set

A={m2™: m=0,1, vees 2535 n=1,2, ...}, which is the set of



Sk

all dyadic rationals in the interval [0, 1]. If M denotes the given
space, an isometry f : A -+ M will be defined such that £{0) = x,
f(1) =y, and f(A) will have the properties required of IL{x,y).

[+ ]
A sequence <fn>n— of isometries is now defined by induction.

0)

Define : {0, 1} » M by fO(O) = X, fo(l) = y. Suppose that for

fO
. . -n . =N
n=0~0; ..oy k the isometries fn : {0, 277, ooy 1 2 5 veey 1} = M

have been defined such that fn extends f for all positive n.

n-~1’
. =k=1 . =k~-1
Deflne fk+l H {Og 2 9 ocoog 1 2 9 eo0o9 l} - M by
f (z) = £ (z) if =2 is in the domain of f,; and if =z = i 2®k=l
k+1 k k’
. . . . k-1’
is not in the domain of f then both (i - 1) 2 and

k?

(i +1) o7k~l  re in the domain of £ s, 5o that f. _(z) 1is defined

k k+1
. . . . k-1

by choice to be some midpoint of fk((l -1) 2 ) and

f (1 +1) 2_k—1) Then f extends f Further, f is an
k ° k+1 k*® ! k+1

X . ~—k-1 . =k=-1 . . .
isometry, for let i 2 and Jj 2 be two points in the domain

. . . . . k+1
of fk+l’ where without loss of generality 0< i< j<2 - There
: 51 s 1 3 s11 k+l
are even integers 0 <i' < i" < j' < j" <2 such that

i=(i' +i")/2 and j = (3% + j")/2 hold, which may be found by
taking i' = i" =i if i is even and i' =1i -1, i" =1 +1

if i is odd, and similarly for j. Since, for example, 1' is even,

then 1if 2—k~1 is in the domain of fk. Moreover, the definition of

f implies that f k-1 ~k=1,

k+1 a2

. . . .
K is a midpoint of fk+l( it 2

~k=1)

and fk+1(i" 2 ¢ 1f these last are actually distinct points, and

similarly for Jjs j's and j'". Therefore,
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=g (ir 2 ¢ (g 2

=g (10 2™ g G 2™ wog (i 2T £ (5 27
£ 5, (50 27 1 (gn 2™

= fk+1(i' 27k-1y fk+1(i" o7kl £, (1" o7k-1y fk+l(j' o7kl
* fk+l(j' 2“k—l) fk+l(j" 2—k“l)

~g G2 e G ™D v e 2™ g Gin 2
wg, G2 r (2 e (2D g (2T
* 503 27T g G 2T

holds since f, is an isometry. Now, (1.6) implies that

fk+l<i Z-k@l) fk+l(j 2~kml)
=f, .G 27Ky £, (1" o~k1y £, (i o7k NEL o-k-1y
+ T (3 27 fresn (3 2™
S (i -i) 27 g —am 2EL (g - g 2R
= (3 -1) 27F

holds since fk is an isometry and, for example,

. =k=1 cw o=k=ly _ . o-k-1 cy o=k-1
fk+1(1 2 ) fk+l(1 2 ) = [fk+l(1 2 ) fk+l(1 2 )1/2
- [f (i 275Dy £ (an 27K Dy3 0
k k
o [(i - iv) 278 Ly J (a2 gy 7R
holds by the definition of i' and i". Thus, f is an isometry.

k+1
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Hence; the nested sequence <fn> of isometries is inductively defined.
Let f = {fn: n =0, 1y oeo}. Since fn+l extends fn for
-each n, then f 1is well defined as a function. The domain of ¢
is the union of the domains of the functions fng which is the set A,
To show that f : A - M is an isometry, let p and g be two points
of A, For some n the points p and q are in the domain of the
isometry f , so that f(p) £(q) = fn(p) fn(q) = |p - q/ holds, and
f is thus an isometry. Therefore, the set L(x,y) = f(A) is linear.
Since f(0) = x, f(1) =y, and any point of A N {O; 1} is a between
point in El of O and 1, then L(x,y) consists of x, y, and
between points of x and y. Finally, let s and t be two points
of L(x,y). The dyadic rationals f-l(x) and f‘l(y) have a midpoint

u in A, hence f(u) is a midpoint of s and t. Therefore, L(x,y)

is midpoint convex. [

Theorem 3.5, If in a locally compact metric space every two points

have a unique midpoint,; then the metric is segmented convex.

Proof: Let p and gq be two distinct points of the space (M, D).
By (3.4) there is a linear set L consisting of p, q, and between
points of p and gq, and containing a midpoint of every two of its
points., Let g : L - El be an isometry, where it may be assumed
without loss of generality that g(p) < g(q), and furthermore
glp) = 0. Since g(gq) = pq holds with pq = pz + zq for each 2z in
L, then g(L) C [0, 1]. Moreover, since L is midpoint convex, then
g(L) is midpoint convex also, and therefore is dense in [0, pqJ.

1

Denote by L the closure of L, and define G : L —» E by

G(z) = pz for =z in L. Then G extends g, for is 2z is any
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point of L, G(z) = pz = |g(z) - glp)| = g(z) holds. If x and y
are any two points of i, there are sequences <xn> and <yn> of
points of L such that

X = 1lim <xn>, y = lim <yn>

n-—> ) # Smarnd

hold. From the continuity of the metric, it follows that

lG(y) - G(x)]

it

lpy - px| = |lim py - 1lim px | = lim [py_ - px_|

n—m n—bOO n—»oo

= 1im x = XY¥.
nyn J
n—uco

Therefore, G 1is an isometry. Since G 1is continuous and since
G(xn) is a point of [0, pq]l for each n, it follows that

G(x) = 1im G(x )
n

n-—ree

is a point of [0, pq] also. Thus, G(L) C [0, pql. Note also that
G(L) = g(L) is demse in [0, pq].

Suppose the number 6 = sup {a e [0y pql: [0y a] CG(I)) is less
than pgq. Then & cannot be in G(L), for assume that G(d) = &
holds for some d e L ™ {q}. Since the space is locally compact, there
is a number O < e < dq such that 5(d;8) is compact, hence the
closed subset LM D(d;e) is also compact. Since G is continuous,
then G(L MND(d;e)) is a compact subset of [0, pd]. Moreover,
G(T N D(d3e)) is dense in [0, pdl N [6 - €, 6 + €] = [a, & + €],
where o = max {O, & - ¢}, since there is a subset A of G(L)
which is dense in [a, & + g], with G_l(A) C D(dje). Therefore,

G(L N D(d5e)) = [a, & + €] must hold. But then [0, & + &] C G(T)

holds, contrary to the definition of &. Thus ©& 1is not in a(L),
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and in particular, O < & < pg holds since G(p) # 6.

It is now shown that since 0 < & < pqg holds, then & must be
in G(f), contradicting the preceding conclusion. For now, the
definition of & dimplies that [O, 6) C G(L), and a subset of G(TL)
is dense in (&, pgl. There is thus a decreasing sequence <Bn> of
points of G(I) such that 6 < Bn < 26 holds for each n, and

6 = 1lim Bn.

n—m

Thus, an = 206 = Bn is a point of [O, ) for each n. Hence, for
each n there are points s, and tn of L such that G(sn) = o

and G(tn) = Bn. Let dn be the unique midpoint of s_ and tn for

[>]

_anzﬁn—ﬁ =t t_, and

each n. Then since s_s
n+l n+l 'n

=
n n+l n+1l

Since Sntn = Bn - an = (Bn - Bn+l) + (Bn+l - an+l) + (o

nsn+luksn+ltn+l + tn+ltn = SnSn+l + Sn+ldn+l + dn+ltn+l *+ tn+ltn

= Sndn+l + dn+1tn with Sndn+l = Snsn+l + sn+ldn+l = dn+ltn+l + tn-e-ltn

= 8

i

d .t by (1.6); then d

is the midpoint 4 of s and t_;
n+l n n n n

n+1l

that is, dn = dl holds for each n. Since

lim s d; = lim s d = (1/2) 1lim st = (1/2) 1im (Bn - an) = 0,
n-° N0 n—o N~
then
dl = 1lim Sn
n-m

holds; that is, 4, € 1. Moreover, since = d.t then

1 514y = d4%ys
G(dl) = (al + Bl)/Z = &, Therefore, 6 g G(L) holds, a contradiction.

The foregoing argument has shown that & = pgq must hold, so that

[0, pa] = G(L)., Therefore, L 1is a segment pg, and D is segmented

convex, l
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The converse of (3.5) is not true, as (2.9) shows. Moreover,
(3.2) shows_that local compactness cannot be omitted from the hypothe-
sis, and (1.12) shows that "midpoint" cannot be replaced by "between
point.," The following example completes the discussion of the above

theorem.

Example 3.6. The uniqueness of the midpoint in the hypothesis of (3.5)

cannot be omitted.

Proof: This example is constructed in E2 from the unionrof a certain
collection of right isosceles triangles, each denoted aABC; where C
is the hypoteneuse and A and B are the equal sides. Moreover,

each hypoteneuse C will have slope O or =1: if the slope is O,
then A and B will lie above C with A to the right of B;

if the slope of C is =1, then A and B will lie to the left of

C with A horizontal, This convention will hold for each aABC
under discussion. Let |S| denote the usual length of any line
segment S. For a line segment S8 with slope O or <1, define
N(S) = {aABC: C C S, midpoint of C = midpoint of S, |c] = [s] 2™
for some integer n > 2}. Finally, if (xlg yl) and (xag y2) are

points in E2 identified by their cartesian coordinates, let

[(xl9 yl)9 (x2s ya)] denote the line segment joining them.,
To construct the space of the example,; let AO = [(1, 0), (0, )1,
BO = [(-1, 0), (0, 1)1, CO = [(<1, 0), (1; 0)]. Define collections

Q; of triangles as follows: Q = {AAOBOCO} LJN(CO), and recursively
Q, = U{N(A): AABC & Qh_l} for integers n > O, For each n > O,
let Q; = U {aABC: AABC ¢ Qn}, and define P = U{ng 1=05 1y 4ues

n }. The set N = L){Pn: n =vO,9 1, ...} is illustrated in Figure 2.
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(0, 1)

(-1, 0) coﬁ (0, 0) (1, 0)

Figure 2. The Set N of (3.6)

A metric E is now defined inductively on N as follows., If x

and y are points of C then E(x,y) = |lx = y]l, where || -]

q?
is the usual norm for E2u If points x and y 1lie together on
AUB for some aABC ¢ Qy, then E(x,y) = B(p(x)sp(y)), where p(z)
is the perpendicular projection of 2z to COa At this point, E has
been defined on each side of each triangle of Qb; moreover, since
every two points of PO are joined by a polygonal arc in PO whose
line segments are subarcs of sides of triangles aABC ¢ Qb, then for
such arcs, arclength is well defined by summing lengths of contiguous
line segments in the arc, length here being taken with respect to the
metric E, to the extent that it has been defined. Thus, for any

two points x and y of PO, define

E(x,y) = inf {E 1length of T: T is a polygonal arc in PO from
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x to y}. Then the triangle inequality holds for E, and E, is a

metric on PO. Moreover, given any two points of PO there is

actually a shortest polygonal arc T in PO joining them, as can be

verified from the geometry of PO'

The definition of E proceeds by induction,; under the hypothesis

that E has been defined on Pn° For any aABC ¢ Q E has

n+l’

already been defined for points of C; since C C:Pno Define E on

AUB by E(x,y) = E(p(x),p(y)) as above. Then each side of each

AABC ¢ Q has E defined on it. Since P is arcwise connected
n+l n+l

by polygonal arcs and; as above,; arclength of polygonal arcs is well

defined, let BE(x,y) = inf {E length of T: T 1is a polygonal arc

in P from x to y} for any two points x and y of P

n+l n+l’
Again the triangle inequality holds; so that E is a metric on Pn+l°
Moreoever,;, it is true that, given any two points of Pn+l§ there is
a shortest polygonal arc¢ T in P joining them. Also,; a shortest

n+l

polygonal arc in (Pn9 E) remains a shortest polygonal arc between its
endpoints in (Pn+lg E), again by appeal to the geometric construction

of P that is, E on P agrees with its previous definition

n+l; n+l

on Pn' Define E on N as the union of E on each PnQ when the
induction principle has been applied. The triangle inequality for
each Pn insufes_the triangle inequality for ® on N, so that E
is a metric on N. Moreover, since polygonal segments are preserved
under the induction process, then between any two points x and y
of N +there is a segment §§ that is a polygonal arc, so that in
particular, E 1is a segmented convex metric on N,

Define K = {p: p is a midpoint of A or C, aABC ¢ Q, for

some n =0, 1, ...}; the points of K are shown as dots in Figure 2.
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Let M=N~ K, and let D be the metric E restricted to M,
Then (M, D) is a metric space, the space of interest in the present

example, The following assertions are now proved.
. % . * .
(i) If q e MN Q, and D(gs3e) M Qyp = @, then D(gse) CP..

(ii) There exists a basis for (M, D) consisting of sets Gq

which are arcs or simple triods, but without their endpoints.,

(iii) D 4is equivalent to the metric given by the norm || -]}

restricted to M.
(iv) (M, D) is locally compact.
(v) (M, D) is not connected.
(vi) D is midpoint convex, but not segmented convex.

(i) The proof is given by induction on all n > m to show that
D(qg;e) N Q; =@, If n=m+1, this fact is given as hypothesis,
If D(gje) N Q; =@ for some k > m, suppose there is a point

r € D(q3;e) N Q;+l' Since E 1is segmented convex, there is an E
segment E; in Ny thus a;<::E(q;s)° The point r 1lies in

(AUB) ~ C for some aABC ¢ Q since D(gje) N Qi = @. But since

k+1"*
q £AUB, then (ANC)Tqr or (BNC)T qr, and without loss of
generality let AN C = {s} C:Q;, Since s £ K, then s e D(qje).
But s e C C:Q;, hence D(q;s)fw Q; # @, contrary to the induction
hypothesis. Therefore, by induction it has been demonstrated that
D(gse) N (M~ P ) =Dlase) N (UQRT,;~ QF: 1 =mn, 41, o))

= U{D(q3e) N (Q;+l\~ Qz): i=mn, ntly ...} =@, hence D(gje) CPF,.

(ii) At each point g ¢ M a local basis of sets Gq is construc-

ted consisting of sets of the required form. Let g e M and e > O,



63

There is a smallest n such that q ¢ Pn. Suppose that n = O. Then
q e QS ~ K. If yeCy> {(0;, 0)}, two cases may arise. The first
case is that q € AUB for some &ABC € N(CO). If this is true,

‘let t. be the first point of the arc A UB, ordered from gq, such

0
that tO € Ql. Since C] = ]Col 2 2—n+l for some =n > 2, then
D(q;8) N Q% = @, where & = min {e, qt, 2 %1y gince it holds that

D(q35) C:Pl = Qg, it follows that Gq = D(g;6) is a simple triod
with ramification point g, but without its endpoints. The second
case that may arise is that q is not in A \UB for any triangle

AABC ¢ N(CO)° Then there is a first point tl of [q; (0, O)I,

ordered from g, such that t, € A for some 4ABC ¢ N(Co)o There is

1
also a number o > O such that D(qja) N AABC = @ for every triangle

AABC g N(AO)., If & = min {e; qt,, a}; then D(q;&) ) Q*l‘ = @, hence

1
D(q;b)(::ng Actually, Gq = D(q3;6) is an arc in AA_ B C lacking

000’
its endpoints. If it happens that q e A > (CO\J K) for some
AABC ¢ QO, then a demonstration similar to the preceding, but with
distances properly scaled, shows that for some O < 6 < e the ball
Gq'z D(q;6) is either an arc or a simple triod with ramification
point q, but lacking its endpoints,; where D(q;86) C P,. If
qg e BN (AUC) for some AABC ¢ Qyo> then define the number
& = min {e, one-half the D length of B}. Then in this case,
Gq = D(q;6) N [B~(AUC)] is a D neighborhood of g, being an
arc without its endpoints.

If n>1, then qe P ~ P Hence, q ¢ (AUB) ~ C for

1

some AABC ¢ Qn, since C C:Pn~ Thus, there is some number

x
O < B<e such that D(q3B) N C = @, hence D(g3;8) M P, =% holds.

A demonstration similar to that of the preceding paragraph now shows
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that there is an open set Gq CD(q;6) containing q such that

Gq r\(Pn+l‘\ P .) is either an arc or a simple triod with ramifi-

n-l
cation point gq, but without its endpoints, and quW Q;+2 = @. Thus

g CP NP
q n+

s so that G =G N (P ~ P ). Hence, the
1 n-1l q q n+

1 n-1

induction is complete.

(iii) For a set Gq as given in (ii), let Eq denote its closure
in (N, E), and let & = min {D(gse): e 1is an endpoint of EA}.
Since D(qgse) < llq - e |l for each such endpoint e, and by the
construction of Gq the cartesian ball Gé = {x e M: | q - X Il < 8}
is a subset of Gq’ then |} 1] restricted to M is stronger than

D. On the other hand, the set Gé is open in (M, D), as is any

of the usual spheres about q with radius less than ©&. Therefore,

D is stronger than the metric of ”°]] restricted to M, so that

the two metrics are equivalent on M.

(iv) Each of the basis sets Gq is locally compact in the usual

planar topology, hence by (iii) is locally compact in (M, D).

(v) For each n, each triangle »ABC ¢ Q is'a simple closed
¢urve that is separated by the omission of midpoints of C and A

into a "left side" and a '"right side." In precise terms, the left side
of AABC is the component of AABC ~ K which contains B, and the
right_side of AABC 1is the component of AaABC ~ K which contains

AV C, Then there is a decomposition M = L\va, .where

L = U{left side of AABC: AABC ¢ Qn, n=0,1, o?f} and

R = U{right side of AABC: A#BC €Q, n=0,1, ...}. To show that
LNR = @, suppose £hat, on the contrary, there is a point x of M

which 1is both in the left side of some AABC ¢ Qn and in the right
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side of some AA'B'CT ¢ Qm, where m < n holds without loss of
generality., If m=n, then x ¢ C(1C', where without loss of
generality C C C'. But by the orientation and naming of the sides
of these triangles, x 1s in the left side of AABC if and only if
X 1is in the left side of ALK'B'C', and a contradiction is reached.
If n=m+1, then AABC ¢ N(A') and x € C CA'. Again a contra-
diction arises from the geometry of M. If n>m + 1, then the fact
that x ¢ Q; F\sz is itself a contradiction, for Q;(W Q: =,
Hence, LM R = 4. Moreovgrs the following property of the sets Gq
holds from their particular construction: If q &£ L; then Gq 1L,
and if q € R, then Gq‘: R. This last property shows that L and

R are actually separated sets in M, so that M is not connected.

(vi) Since every space that admits a segmented convex metric is
connected, then (v) implies that (M, D) cannot admit a segmented
convex metric. However; D is now shown to be midpoint convex. As

a preliminary case; it is shown that two given points x and 2z
lying together on a line segment in N have a point in "M +that is

a midpoint of them. Since each line segment in N lies on a side of
some AABC ¢ Qn for some n, then it is true that x and =z lie
on one of the sides of some AABC., It should be noted that on line
segments; the E midpoint and the euclidean midpoint coinecide. If
Xy 2z € B, then since B UM, then also the euclidean midpoint of

x and 2z 1is in M, which is a D midpoint of x and z. If

xy, z2 € C and if the euclidean midpoint of x and 2z 1is not the
midpoint of C, then the euclidean midpoint of x and z is not in
K, hence is a D midpoint of x and 2z. If x, 2 € C and the

euclidean midpoint of x and =z is the midpoint of C, then N(C)
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is contained in Q and there is some aA'B'C’' ¢ N(C) such that

n+l’
C'C[x, z]. Let {y} =A'MNB'. Then the point y 1lies in M, and
D(x,y) = B(x,y) = E(x,p(y)) = E(x,y") = E(y",z) = E(p(y),2) = E(y,2)
= D(y,z) and _E(xgyf)'z E(x,2)/2 = D(x,2)/2, where y' is the
midpoint of C. Hence, y 1is indeed a D midpoint of x and =z,
Now, let x and 2z be any two points of M. Since x, z €N,
there is a polygonal arc in N which is an E segment Xz, There-
fore, the E midpoint y of xz is also an B midpoint of x and
z, If y£K, then y is also a D midpoint of x and z. If
y € K; then y cannot be at the junction of two non-parallel line
segments in xz. Thus, y 1is a non-cut point of some non-degenerate
line segment [p, q](::EZ, There is some AABC ¢ Qh for some n,
such that y is the midpoint of C and C C[ps; ql. Let e and e
denote the endpoints of C, and let {y'} =A(\B. As in the
preceding paragraph, it may be shown that y' is an E midpoint of
e and e'; it is also true that y' ¢ M and tﬁat the equalities
E(p,y) = E(ps;y") and E(y,q) = E(y';q) hold. Without loss of
generality E(x,z) = E(x,;p) + E(p,;q) + E(g,z) holds, so that
E(x,2) = E(x,p) + E(p,y) + E(y;q) + E(q,z) = E(x,p) + E(psy*) + E(y*',q)
+ E(gsz) holds, and E(x,z) = E(x,;y') + E(y*,z) .holds by (1.6). Also,
since B(x,2)/2 = E(x,y) = E(x,p) + E(p,y) = B(x,p) + E(pgy“) holds,
then the triangle inequality implies E(x,z) > E(x,y'), and similarly
E(ng) > E(y‘z) holds. Since E(x,z) = E(x,y') + E(y',z) holds, this
implies E(x,y') = E(x,z)/2 = E(y*',2z), and y' is an E midpoint of
x and z. Since y' €M, then y' is alsq a D midpoint of x
and z., Therefore;, D is midpoint convex, and the demonstration

is complete. I



67

Property 8 and Peano Continua i
The following definition is given by Whyburn [26].

Definition 3.7. A point set P 1in a metric space is said to have
property S provided that for each g > O, P is the union of a finite

number of connected sets, each of diameter less than g,

Whyburn [26] has shown that every locally connected generalized
continuum has property S locally; in fact, at each point there is
a local basis of connected open sets having property S. It follows
that every locally connected generalized continuum has a basis of
connected open sets whose closures are Peano continua, since the
closure of a set with property S is locally connected [26]. If a
locally connected generalized continuum is given a segmented convex
metric, it is possible to specify exactly which open balls have
property S and which closed balls are Peano continua. This result,
and a useful corollary in the case that the segmented convex metric

is complete, are the main results of this section.

Theorem 3,8, In a locally connected generalized continuum with a
segmented convex metric D, if for a point p and a number € > O
the closed ball D(pje) is compact, then D(pje) has property S

and D(p3e) is a Peano continuum.

Proof: In order to show that D(pje) has property S, it is necessary,
for a given a > O, to show that D(pje) is a finite union of
connected sets, each of diameter less than o. If e < /2, then
D(pje) itself is connected and of diameter less than a. Therefore,

1t may be assumed that
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0<o/2<c¢ (1)
holds. Let p be a number with the property that

e -a/b<p<e (2)
holds, and let

B =min {(e - p)/2, a/8}. (3)

For each point x of D(pje) there is a number O < B, < B such
that 5(X;BX) is compact, since the space is locally compact. The
remainder of the p;oof is suggested by a proof scheme given by Hall
and Spencer [13; p. 216]. Since {D(X;Bx): x € D(pje)} 1is an open
cover of the compact set 'B(p;e), it contains a finite subcover F of

5(p;s)w Let S19 S soey Sn denote the elements of F that

29
intersect D(pjp). For any points x ¢ Si and y € Sifw D(psp), it

holds that px < py + y3x < p +2B< p+ € -~ p = €. Therefore,

i o .
D(pap)(::gzi Siq D(Si) < 2B, and Si(: D(p3e) for i =1, o005 n.(4)

For i =1, ...y n define C, to be the set of all points of D(pje)
that lie, along with a point of Si’ in a connected subset of D(p;s)
whose diameter does not exceed o/4. Note that since D(Si) < a/k
holds by (3) and (4), and since Si is connected, then SiC: Cin

If x and y are any two points of Ci, there are points x' and
y' of 8, such xx' < o/ and yy' € o/k. Thus, the inequality

xy < xx' +x'y' +y'y < /2 + D(8;) < 3a/% < o holds, and therefore
D(Ci) < a. Furthermore, the set C, is connected, since it consists

of the connected set Si and a collection of connected sets each

intersecting Sio
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To show that D(pj3e) is the union of the sets c; it suffices
to show that D(pje) is contained in that union, since C. C D(pse)
holds for each i. ILet x be any point of D(pje). If x e D(p;p);

then from (4) it follows that

n n
x e \UJ S; C:k\) Ce
i=1 i=1

Therefore, assume x £ D(pjp); that is, assume

0<p<opx<e. (5)
If & = px - € + p, it will now be shown that

0<8&<p<px (6)

holds, If px < o/l were true, then combining (2) with (5) would
yieTd & - o/4 < p < px < a/k; hence e < /2, contradicting (1).
Thus, it must hold that a/4 < px. This inequality, combined with one
form of (2), yields & - p < o/4 < px, hence 0 < &, Also,; it follows
from (5) that & =px -~ e+ p<e=¢€+ p=p<px holds, establishing
inequality (6).

If px is a segment from p to x, then px CD(p3e). By (6)
there is a point y of EE such that py = 6. By (6) again, the
point y lies in D(pj;p), hence from (4) there is some ball Sj that
contains y. The diameter of the subsegment ;E of EE is given by
yX = pX -py = px - 6 =g -~ p < a/4 by use of (2). Thus, by virtue of
the connected set §§, the point x belongs to Cj' This completes
the proof that D(pj;e) is the union of the sets C,e

Therefore, D(pje) has property S, and it follows that D(pje)

is a Peano continuum. I
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Corollary 3.9. In a locally connected generalized continuum with a
complete convex metric, each open ball has property S and each closed

ball is a Peano continuum.

Proof: Since by (1.13) a complete convex metric is segmented convex,
and by (1.26) each closed ball is compact, then (3.8) applies to give

the desired result. I

Corollary 3.10. Every locally connected generalized continuum is the

image of the closed ray [0, ) of El under a continuous mapping.

Prpof: Let M Ye a locally connected generalized continuum, which by
(lg25) admits a complete convex metric D. Pick a point p of M.
By_(3.9), every closed ball 5(p;n) is a Peano continuum, hence by
(1.17) there is a continuous mapping fn of the closed interval

[2n, 2n + 1] onto D(psn), for n =0y 1y o.. . Since M is
arcwise connected, let g, be a continuéus map of [2n + 1, 2n + 2]
into M with gn(2p +1) = fn(2n + 1) and gn(En + 2)4?-fn+1(2n + 2),
for n=0y 1y ¢coo » Then f = kJ{fn\J g 0= Oy 1y c0.) is a

continuous mapping of [0O; ) onto M. I
The following example shows that one converse to (3.8) is not true,

Example 3.11. There is a locally connected generalized continuum M
with a segmented convex metric D, a point p & My and a number
g > 0, such that the open ball D(pje) has property S, yet the

closed ball D(pje) is not compact:

Proof: In E29 define M = [(~=», 0) X El] U {0} X (-1, 1)] and let

D be the geodesic metric on M. Then the point p = (0, 0) and any
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number € > 1 satisfy the requirements. I

Characterizations of Locally Connected

Generalized Continua

One characterization of locally connected generalized continua
was given in (1.27), by means of complete convex metrics. That result

is included in the following theorem.

Theorem 3.12. For a space M, the following statements are equivalent,
(i) M 1is a locally connected generalized continuum.
(ii) M is a locally compact space that admits a complete convex
metric.
(iii) M 1is a locally compact space that admits a segmented convex
metric.
(iv) M is a connected Hausdorff space with a countable basis of

connected open sets whose closures are Peano continua.

Proof: The proof of (i) = (ii) is given by (1.25), and (ii) - (iii)
follows from (1.13). For (iii) - (iv) it is noted that if M is a
locally compact space with a segmented convex metric D, then M is
locally separable and connected, hence separable by a result of
Sierpiriski [23]. Thus, let {pi: i=1,2; ...} Dbe a countable

dense subset of M. For each i there is a local basis

{D(pi;b)s b e Ui} at p,, where U, = {6 >0: 6 is rational and
‘b’(pi;b) is compact}., Further, the set {D(pi;b): 6eU,,i=ly 2, .00}
is a countable basis for M, and each 'D(pi;é), for © ¢ Ui, is a

connected open set whose closure; by (308), is a Peano continuum,

Therefore, (iv) is &stablished from (iii), For the proof of (iv) - (i),



it is simply noted that a space satisfying (iv) is a separable,
locally connected, locally compact, and metrizable space since it is

regular and second countable [11]. I
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CHAPTER IV
THE UNION TOPOLOGY
Definition and Elementary Properties

For reasons that are to be made more specific at the beginning
of Chapter V, the main results of this paper require a certain
topology to be specified for the union of two topological spaces.
The most important properties of this union topology are given by
the results of the present chapter. It is noted that a topological
space consisting of a topology T on a set M is designated by

(M, T), or simply by M when the topology is clear from context.

Theorem 4.1. Let (Ml’ 71) ard (M2, 7;) be two topological spaces
whose topologies agree on le\ M,. Let Ty = {R‘:.MI\J M,
R F]Ml eT., R rlMa € 7&}. Let 7} be a topology on the set

MllJ M2 such that both (Ml, 71) and (M, 7;) are subspaces of

2
T »
(MlkJ M, 7})° hen ’Tb is a topology on the set MlkJ M, that

is stronger than ’Tég and both (Mlg'71) and (M29 7;) are

subspaces of (M1LJ M29 Tb)o

Proof: It is first shown that ’Tb is indeed a topology on the set

U i = i =
Ml M2° Since (Ml\J Ma)fw Mi Mi I3 7; for 1 1l, 2, then
MU M, e Tb“ Since @ e'T; for i =1, 2, then @ ¢ Tb° If

A is any index set and Ra £ 76 for every o g &, then

73



74

[UR: aea}INM, = U{R NM,: aeclA)leT. since RN M, ¢ T
a 1 a 1 1 [4 8 1 1

for each aegdA, i =1, 2. Thus U{Ra: a e &) ¢ TO by definition

of Tb° Similarly, if R, and R, are members of T.s then

Rlﬂ Mi and Raﬂ Mi are members of Ti,, _hence :«-(le R2) N Mi €

T;s for i =1, 2; hence, er\Ra s’T’O° Thus, T, 1is a topology

0
on the set MlLJ M2.

It is now shown that (Mi, 71) is a subspace of (Ml\J M, 76),
where 1 = 1 without loss of generality. Let '712 denote the
subspace topology on Ml(\ M2 induced from T., which by hypothesis
is the same as that induced from ’Tég For any set R 3'71, there

is a set P ¢ T, such that R F\M2 = le\ PeT In particular,

2 12°
since Pl”\Ml CR, then (RUP) F\Ml =R g 71. But similarly

RN M2CP9 so that (RU P) N M, =Pe ’T2. Thus it follows that
RUP ¢ 7., and the equation (RU P)N M, =R shows that R is

a member of the subspace topology on M, induced from ‘Tbo On the

1
other hand, let Q be any member of 76 restricted to Mlg that is,
Q = Ml(\ S for some 8 ¢ TBQ Since S € T., then Q is a member

of ’Tio This completes the proof that <M19 71) is a subspace of
(U My, T

To show that 'Té C:76, let R ¢ 7%0 Since (Mlg 71) and
(M29 7;) are subspaces of (MlkJ M2,'7%), then RN Ml € 71 and
R F\M2 €

75. |

so that R ¢ 760 Therefore, T. is stronger than

2° 0

For the remainder of this chapter the definitions and notation
introduced in (4.1) will be assumed, although for future reference
the reader will be reminded of these in the hy%otheses of the

theorems, The main fact stated in (4,1) is that 76 is the
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strongest topology for MlLJ M2 that leaves Ml and M2 as sub-

spaces.

Corollary 4.2. If Ml C:Ma, then 76 = 7; = 7;0

Proof: Since in this case (M2, 7&) is required to be a subspace

of both™ .(Ma, 7‘3) and (M2, 76), then ’ro = ’Té = 7;

Theorem 4.3, With the notation of (4,1), if Ml\ M2 and M2\ Ml

i | ). , -
are separated sets in (Ml’J M29 7}), then 75 = Te

converse, if 7b = 7% and leW M2 is closed in both Ml and M

AN ~ i
then M, \ M, and M, M, are separated sets in (Ml\J Mz, 75).

As a partial

29

Proof: Assume first that Ml‘\ M2 and Mz‘\ Ml are separated sets

in (Mlkj M297g). To show that 7% = 76,

that T CT;. Let R eT, and p € R. By the definition of 7.,

R r\Ml € Ti and RN M2 € 7éo Since for i =1, 2 the space

it suffices by (4.1) to show

(Mi’ 7;) is a subspace of (Ml\J M., 73), there is a set R, ¢ 7%
such that RifW M, =R r\Mi, In the case that p ¢ le\ M,, then
psRﬂ%ﬂ%C%fmzf% Further, since %ﬂRQﬂ%C
R,AM =RNM CR, then RNR, = [RNRINMIY

[(R;MN B)NMJCR, In the case that p lies outdide of M N M,
then without loss 6f generality let p 1lie in M, N M_. Since

1 2

My N M, and MyN M

isaset Q 7T} with p e Q and Q N (M, M) = g, Thus

are separated sets in (MlkJ M29 7}), there

Pe Rlﬂ Q e 7., and since Q CM,, then RN Q= R, N (QﬁMl) =
QNERN Ml)C: R. Hence, regardless of where the point p lies,
there is an element of 7% that contains p and is contained in

R. Therefore R ¢ 7%, hence 76 = 720
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For the partial conversey assume that ’TO = T. and that MI(W M2

3
. . T _
is closed in both (Ml, 71) and (M2, 2)o Then Ml‘\ M, e Tb = 7;
and M, > M, e 76 = 7} by the definition of 'Tbo Since My~ M,
and Mz‘\ Ml are disjoint members of 'Ts, then these sets are

separated in (MlkJ Ma,'T%). I

Corollary 4.4. If M, and M, are both open in 7% or both closed

in Té, then 76 = 7;.

Proof: @Given either hypothesis,; then M) M, and M, M1 will

be disjoint sets that are both closed or are both open in ’r39
hence separated sets in (MlLJ M2,'75)° The conclusion follows

by (4.3). I

Corollary 4.5. If M, and M, are compact and 7% is Hausdorff,

then Tb = 750

Proof: If the hypothesis holds, then M, and M2 will both be

1
closed in 'T%, and (4.4) gives the conclusion. [

The next two examples show why the converses to the two state-

ments of (4.3) cannot be proved,

Example 4.6. The sets M.\ M, and Mz‘\ M

1 5 need not be separated

1
in (M1UM29 76)o

Proof: Let M1 be the set of all rational numbers in the interval
fo, 1) C:El, and let M2 = (0, 1) C Elm Let 71 and 7; be the
subspace topologies induced from the usual topology for Elo Then

T, is not the usual topology on MlLJ M, = [0; 1); for the set

[,xi 2 i=1, 2, 000} is in T., where §Xi>; is any sequence
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of irrational numbers in M2 that decreases to 0O, However, it is

true that {0} = Ml‘\ M. is a 'Tb limit point of M2‘\ M for

19

hence there is a rational

2
let 0 eQ e Tbo Then QN Ml R
O0<r<1 such that r ¢ Q. Thus r e QN M, € T., so that there

must be an irrational p in QN M, also, showing that Q F\(M2~\ Ml)

is not empty. I

Example 4.7. The sets M~ M, and M,~ M, may be separated in

(Mlkj Mzg 7%) and yet glfw M2 may not be closed in either M1

or Mao

Proof: Let M, =[0,2) and M, = (1, 3] in E', and let T,

and ’Té be the subspace topologies induced from the usual topology,

Then M, \ M, and M,~ M, are separated sets in [0, 3] with the

usual tOpolégy9 but (1, 2) is closed in neither ”Tl nor 'TEQ |

If MI(\ M is a closed subset of both M and M then

2 1 2°

’Ml\\ M2 and M2‘\ M1 are disjoint members of T., hence separated

sets in (MlkJ M2’ '75)o In particular, if M1 and M2 are disjoint

sets, then M, and M, are separated sets in (MlkJ M29‘Tb)o

However, as the following example shows, even this situation need

not compel '75 to be identical with 760

Example 4,8, It may happen that T% # T, even when M, and M,

are disjoint.

Proof: Let Ml be the portion of the unit cirele in the cartesian

plane consisting of all points with non-negative ordinates, and

let M2 be the remainder of the unit cirele. If 'Té is the usual

topology of B2 restricted to Mlkj M,s then ’Tb is strictly
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stronger than 7%. This follows from the last statement of (4%.3)

by contraposition; since Ml*\ M2 and M2‘\ Ml are not separated

sets in 'Téo I

Conditions on 7} have been given in (4.2) through (4.5)
which ensure that 73 must be identical with 76. The following
theorem furnishes a condition on Ml and M2 which ensures the

existence of some topology T} that is different from 760

Theorem 4,9, With the notation of (4.1), suppose that 71 and 7é
are both Tl topologies, If for i =13 2 the set Mi contains
some point that is not in the 71 closure of lew M29 then there
is some topology T on the set Mlkj M2, different from 7.,

such that (Ml’ 71) and (Mz, 7;) are subspaces of (Mlkj M, .

Proof: Let Qi be the set of all points of Mi that are not in
the 'T} closure of le\ M2, and pick points p; € Qiq i=1,2.

Define T = {R C:MlLJ M2: R F\Ml € RN M, e 729 and p, € R

1
if and only if P, € R}. Since the requirement in this definition
that involves the simultaneous inclusion or exclusion of the points
12 is preserved under arbitrary unions and intersections, then it
can be shown exactly as in the proof of (4,1) that T is a topology
on the set Ml\J M2° To see that ’Tb £ T, it suffices to note that
Ql € 71 and Qifw M2 = @, hence Ql € Tb; but since P, © Ql
while p, ¢ Qs then Q ¢ T.

For the proof that (Ml,'Tl) is a subspace of (MlkJ M, ™,
let R e 710 As in the proof of (4.1) it can be shown that there is

a set Pe’l’z such that (RUP)ﬂM:L:R and (RUP)ﬂMszQ

If b, € R, then since P € Q2 € Tos it follows that Py and P,
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both lie in RUP L}on Moreover, since (RUPU Qz) F\Ml =
[(RUP)ﬂMl]U[QzﬂMl] =RU¢=ReTl and (RUPURQ)NM, =
[(RUP)N M2] LJ[Q2fW M2]

]

PU Q, E'Tég then RUPU Q, € T

by the definition of 7. If p is not in R, then since (M5 T2)

is a Tl space, the set P \-{p2] is 'Té open. Hence, [RU (P \-{pz}]
AM =[RUPINM, =ReT; and [RUP@N{p,DINMK, =P~ {p,}
s'7é. But since p, is not in R U (p \~{p2]) and p, is not in

RU (P ‘~{p2}), then R U (P \~{p2}) € T. Thus, regardless of the
position of the point 12 relative to the set R, there is an

element of T whose intersection with M. is the set R; that is,

1

the subspace topology on M, induced from T 1is stronger than '71@

1
Since, conversely, R f\Ml € 71 holds for any set R ¢ 7? then

(M., T.) is indeed a subspace of (M. U M_,T). The similar state-
1 1 1 2

ment is true for (Mz, 7}). I
The following simple result is quite useful in the sequel.

Theorem 4,10, With the notation of (4,1), suppose a point x lies

in Qlf\ ng where Ql e'Ti and Q2 € 7;° Then x 1is 'Té interior

to Ql\J an

Proof: Assume the hypothesis, and further suppose that x _is not ¥

’Tz interior to QlLJ Qz. Then there is some net <xa> that is '7;

convergent to x, yet X, lies outside Ql\J Q2 for each index «a.
Since this net is in MlLJ M,, there is a subnet <XB> of <xa$

such that, without loss of generality, xa e M for each B. Since

1

x isin M, and (Ml, 71) is a subspace of (MlL) M, 7;), then

ﬁxﬁﬁ is 'Ti convergent to x. But since Ql £ 71, then ?x > is

B
eventually in Ql, contrary to the fact that the net fxa} lies in
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the complement of QlkJ Q2. Hence, x must be ’Té interior to

Qa1
Results More Closely Related to

Generalized Continua

Up to this point; Chapter IV has defined the union topology and
demonstrated some fundamental results concerning it. This much is
only to be expected, since in Chapter V the very statements of the
extension theorems assume a familiarity with this topology. The three
theorems now to be proved, however, are of a different nature than the
foregoing, for these in essence will contribute the proofs of '"neces-
sity" and of "sufficiency" in (5.4) and (5.6), respectively, the two
main theorems of this dissertation. Because of this purpose, the
following three theorems relate more closely to generalized continua

than did the preceding ones.

Theorem 4,11. With the notation of (4.1), let le\ M2 be closed in

72 and let the 7T, boundary of M N M,

(Mls'Ti) and (M2, 7&) are locally compact, and if 7, is Hausdorff,

be closed in Tl“ If both

then (Mlu 1»129 TO) is locally compact.

Proof: Pick any point x in MlLJ M,. For each i with x in M,
there is some open T, neighborhood R, of x such that the 7;
closure of Ri is 7; compact, hence also 76 compact. If =x 1is
in M, M, the set Q, =R,N M~ M) isa T, (and T )
neighborhood of x whose 'Té (and 'Tb ) closure is compact. If x
is in Ml{W M2, then the fact that x is in Rl{W R, implies by

(4,10) that some 7’0 neighborhood R of x 1lies in RIU 329 S0
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that R 1is conditionally compact. If x is in M, N\ M then

1 2°

Ml\\ B is a ’71 neighborhood of x, where B is the 7; boundary

of Ml\J MZD Also, S = (MI(\ MZ) \ B is 'TE open and Q, =
leW (Ml‘\ B) is a 71 neighborhood of x whose closure is compact.

Since 8 is a subspace of (Ml’ 7&), then Qlf\ M, = Qlf\ S is

2

open in 8, hence Ql(\ M2 is 7; open. Therefore Ql is in

and '(Ml\J M, 76) is locally compact, I

o!

The following example relates both to the preceding theorem and

to the one which follows it,

Example 4,12, There are locally connected generalized continua Ml

and M, in the plane with le\ M2 closed in M but with

2 2°

(MILJ M, 76) neither locally compact nor first countable.

Proof: Let M. = El'X (=, 0] and M, = (=, 0) X‘El be given their

1 2

respective subspace topologies Ti and 7é as subsets of E2° First
it is shown that the space (Mlkj M, 76) is not locally compact at
the point p = (0, 0)., If U is any Tb neighborhood of p, then
U contains a segment [-g, €] X {0} for some e > 0, since U\ M,
is a member of 7i° Each point p = (-g/n, 0) is Té interior to

U, since P, € unN M2 € where n =1, 2, ... » Thus, for each n

59
there is a number & > O such that q = (-e/n, 6 ) e U, If

Q = { q ¢ 0= 1y 25 000} and V =UNQ, then V is a set
containing p but no point q, and furthermore V F\Ml =T F\Ml € Ti
while V F\MZ = (U F\MZ) ~Q € 7; since Q 1is 7é closed. Thus,

p 1is not a 76 accumulation point of €, but neither is any other

point of MlkJ M2° Hence @ is an infinite subset of U with no

accumulation point, so that the 7b closure of U 1is not compact.
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Therefore, (MlLJ MZ,'Tb) is not locally compact at the point p.
Similarly, it could be shown that (MlU M, To) is not first
countable at p. More simply, however, the following theorem shows

that (MlLJ M2, 76) is not first countable, since the 7% boundary

(-, 0) X {0} of er\ M2 is not '7& closed. |

Theorem 4,13, With the notation of (4,1), let B be the 7} boundary
of le\ MZO If (MlLJ M29 76) is both Hausdorff and first countable,

then BN M, s Ti closed.

Proof: If (Ml\J Ma,'Tb) is Hausdorff and first countable and some

point p of le\ B is a 7T, accumulation point of BN M let

1 1’

<Un> be a countable local 76 base at p. For each positive integer
n there is some point b in B F\(Ml(W Un), hence there is also a
point ¢ in U N (M2~\ Ml)' The set C = { c,t n=1,2 cool

is a 'Té closed subset of M.~ M

5 1v SO that U = MllW (Ma‘\ C) is

a ’TO neighborhood of p. But this is impossible, since U contains

no set Un. I

Theorem 4,14, With the notation of (4,1), let the space Ml have a

complete metric Dl’ In order that (MlkJ M2, Tb) be a connected

space and admit some metric D, that extends D it is necessary

3 1’
that lew M, be a non-empty subspace of both M, and M, which is
closed in M2, and that the M2 boundary of Ml(T M2 be closed in
Ml°

Proof: In order for the space (Ml\J M2, 76) to be defined, it is

necessary that lew M2 be a subspace of both Ml and M2. Since

(MlkJ M23 76) is connected; then by (4.3) it follows that Ml(\ M2 is
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non-empty. If leﬂ M2 is not closed in MZ’ there is a point p of

MZ‘\ Ml and a sequence <pn> of points in le\ M2 such that <pn>

converges in M, to p. Therefore, it holds that

2

lim DB(pn,p) = 0,

n-*e

and <pn> is thus a D, Cauchy sequence which converges in M, to

1 1
some point gq of Ml' Hence, in topology Tb the sequence <pn>
converges to the two distinct points p and g5 contradicting the

fact that ’Tb is Hausdorff. Since erﬁ M2 must therefore be closed

in M29 then (4,13) shows that the M2 boundary of le\ M2 must
also be closed in Mlo 1



CHAPTER V
EXTENSION OF COMPLETE CONVEX METRICS
Background

In 1949 Bing [4] proved that if M. and M

1 are intersecting

2

Peano continua whose topologies agree on their intersection, and if

is a convex metric for M., there is a convex metric D for

1 = = = =3 —=

Mlki EZ that extends 210 In the present chapter the compactness of

1o

Ml and M2 is deleted; and the question is addressed: if M& and

EZ are intersecting locally connected generalized continua whose

topologies agree on their intersection, and if 21 is a complete

convex metric for M., under what conditions will there Eg a complete

—

convex metric D, for ﬂllg EZ that extends D.? In (5.4) a necessary

3 1

and sufficient condition for the existence of D, 1is obtained by

3

specifying two topological properties of the intersection Ml(W MZ;

actually, in this result the space Ml is not required to be a
locally connected generalized continuum, but merely any space with a
complete convex metric Dl° In order to establish this result, several
others must first be obtained.

Before this program is begun, however, a word of explanation is
due on what is meant by referepces to the space MlLJ M2° In the case
of Bing's extension theorem (1.31) that was cited at the beginning of

this section, a topology for Ml\J M, was not specified for the

2

84
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following reason: according to (4.5) there is only one possible

Hausdorff topology on the set Ml\J M2 that leaves M, and M, as

1 2

subspaces; namely, the topology To discussed in Chapter IV. If, as

will be the case in the present chapter, the spaces Ml and M2 are

not required to be compact, there is in general more than one topology
on the set Ml\J M2 for which Ml and M2 are subspaces, as (4.9)
clearly shows, It is for this reason that, for the results that are
now to be proved, a topology must be specified on the set Ml\J M2.
Accordingly, the convention is hereby adopted that whenever "Ml\J M2"
is written without further explanation, the topological space

(Ml\J MZ’ Tb) is intended. There will be no need to consider any

other topology on the set MlU MZ'

Extension Theorems (Y

The first extension theorem to be proved provides a sufficient
condition for a complete convex metric to be extended to the union of

two spaces.

Theorem 5.1, Let Ml be a space with complete convex metric Dl and

let M2 be a locally connected generalized continuum with complete

convex metric D whose intersection with M., 1is a non-empty,; compact

2’ 1
subspace of both Ml and MZ' Then for any & > O and for any two
non-empty subsets C and H of M2 with DZ(CgH L)(Ml(W MZ)) > 0,
there is a complete convex metric D3 for Ml\J M2 that extends D17

satisfies DB(C'H) > ¢, and has the property that if DB(ng) <VD2(X9y)

then x and y have a D, Dbetween

for points x, y of M2 ~ M 3

19

point in Mlo
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Proof: Let & = DZ(C,H LJ(erﬂ M2))' The proof follows the general
pattern of the proof of the extension theorem of Bing [4]. There is
a real-valued function F(x), x > 0, satisfying the following con-
ditions: F(x) > sup {Dl(pgq); Py q € le\ M, Dz(pgq) < x} holds
for all x > 0, F(x) approaches O as x approaches O from the
right, F'(x) is a continuous non-increasing function which exceeds

both ¢g/6 and 1; and the improper integral

o
/ F'(x) dx
0

exists for all o > 0. Such a function is obtained exactly as in [4];
in fact, several statements asserted in this proof are restatements of
faets used in [43, and thus are left unproven here. For every two
points x, y of M2 let A(x,;y) be the set of all D2 rectifiable

arcs C from x to y that lie, except for possibly their endpoints,

in M2 N Ml and for which the (possibly improper) Riemann integral

fc F'ID,(p(s) M)] ds

exists. Here, s denotes D2 length along C from a fixed endpoint

and p(s) is the point of C whose D2 distance along C from the

fixed endpoint is s. If x 1lies in MZ*\ Ml’

such that D,(x,y) = D,(x,M;) holds, and Xy isa D

y 1is a point of M1

5 segment from

x to y, then the integral

L F'[D,(p(s) M, )] ds
Xy
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exists and has the value F[Dz(X°Ml)]' For all points x, y of M2

with A(x;y) # @, 1let

Do(x,y) = inf {Jé F'[Dz(p(s),Ml)] ds: C e A(x,y)}.

If Do(x,y) exists for two points x and y then Do(xgy) > Da(x,y)

holds, and Do(x,y) > Dl(x,y) holds if x and y are points of M.

Define D, on the set Ml\J M2 as follows: if xy, ¥y € M., then

3

Ds(x,y) = Dl(x,y); if xeM and ye M~ M19

19

then define

Alasy) # 2}

D3(x9y) = D3(y,x) = inf {Dl(x,a) + Do(a,y): aeM,

if x, ¥y e MyN M then D3(X’Y) is the minimum of Do(xgy) and

19
inf {Do(x,a) + Dl(agb) + Do(b,y): as b e M, Alxsa) £ 0 # Albsy)}s

if x =y, then D3(x,y) = 0. It follows as in [4] that D3 is a

metric on the set MlkJ M2 whose restriction to M. 1is equivalent

2

to D Since also D is the restriction of D to M then both

2° 1 3 1’
Ml and M2 are subspaces of (MIKJ M2, DB)' The proof is now com-

pleted by proving assertions (i) through (vii).
(1) (M UM, D) = (M UM, To).

(ii) If x is in Mz‘\ Ml and y 1is a point of Ml such that

Da(xgy) = D2(X9Ml)’ then Do(xgy) = inf {Do(xga): a e M19 Alxqa) £ B},

(iii) For every point x of M DB(X’MI) > DZ(X’Ml) holds.

29

(iv) Every closed and D, bounded subset of M, 1is compact.

3

(v) D, is complete and convex.

3

(vi) D3(09H) > e.
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(vii) 1If D3(x,y) < D2(x,y) holds for points x, y of M~ M,

then x and y have a D3 between padint in Ml'

(1) It has been noted that M1 and M2 are subspaces of

(M1\J M29 DB)D It is now shown that Ml ~ M2 and M2~\ Ml are

separated sets in (MlkJ M D3)° To this end, let x & Mo\ M2 and

V€ M2~\ Ml; then DB(X’y) = inf {Dl(x,a) + Do(a,y): ae Ml’
Alas;y) # @)}, For any point a ¢ M, with Ala,y) # 4 it must hold

that a € leW M hence Dl(x,a) + Do(agy) > Dl(x,a) > Dl(x,leW M2)

29
.and Dl(xga) + Do(a,y) > Do(agy) > Dz(a,y) > D2(M1(W Mz,y)o Upon

taking infima, it is seen that D3(x,y) > Dl(x,erW M2) > 0 and also

D3(x;y) > D2(M1(W Mzgy) > 0 by reason of the compactness of MIIW M.

Therefore, it follows that D3(x,M N M) > D (xM M M) >0 and

2

DB(Ml‘\ Ma,y) > DZ(leW Mz,y) > 0 both hold, and the sets Ml‘\ M2

and sz\ M1

from (4,3) that (MlkJ MZ, D3) = (MILJ MZ, 7b)°

are indeed separated in (MILJ M, D3)° It follows now

(ii) With x and y as given in (ii), it suffices to show that
for any point a in Ml with A(x;a) #@ and for any C e A(x;a),
F'[D (q(s);M.)] ds < / F'[D (p(s),M )] ds (1)
;5; 2 1 = L 2 1

holds, where xy is a D. segment from x to y, q(s) is the point

2

u of xy with Da(ygu) = s, and p(s) is the point of C whose D,

distance along C from a is s. In fact, inequality (1) shows that

Dy (x53) =/§§ F'[D,(q(s),M)] ds
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holds, being obtained by setting a = y.

Let o and B be the D2 lengths of §§ and C, respectively.

Since Da(p(s),Ml) < Da(p(s),a) < s and F' is monotone non-

i

increasing, then F'[Da(q(s),Ml)]‘ F'(s) < F'[Dz(p(s)9Ml)] holds for

0 < s < B. Further, since 0 < a Da(x,Ml) < B holds, then

a B
f F'[‘Da(q(S)’Ml)] ds SJF'[Dz(p(S)’Ml)] ds
0 0

follows by elementary properties of improper integrals,; and is the

desired inequality (1). Thus, (ii) is proved.

(iii) Pick a point x e M,, where for (iii) it may be assumed that
x 1is in M2‘~ Ml' Let y be a point of Ml' such that

Da(xgy) = DE(X’Ml) and let 2z be any point of M Then from (ii)

1
and the definition of D_, it holds that

3
DB(X'Z) = inf {Do(x,a) + Dl(a,z): aem, &(x,a) £ @)
> inf {Do(x,a): ae Ml’ Alx,a) #£ @) = Do(x,y)

> D2(X9y) = %(X«;Ml).

Since z is arbitrary in M., it follows that DB(X’MI) 2 D (x,M)).

l,
(iv) By (iii), every closed and D3 bounded subset of M2 is
also D2 bounded, hence is compact according to (1.26).
(v) The convexity of D3 is proved by applying the local

compactness of M2 in much the same way that compactness is used in

the proof of Bing [4]. To show that D3 is complete, let <x,> be

a D3 Cauchy sequence in Ml\J MZ' If some subsequence <yj> of

<xi> lies in Ml’ then <yj> is D, Cauchy since D, extends D..

1 > 1
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, to which <x.> must
1 i

also converge. If no subsequence of <xi> lies in -Ml’ then it may

Hence, <yj> converges to some point y in M

be assumed that the entire set W = {Xi: i=1,2, ...} is contained

in MZ'» Since <xi> is a D3 Cauchy sequence, then W is D3
bounded. Hence, the M2 closure W of W is a closed and D3
bounded subset of M2 which, according to (iv), is compact. Therefore,

D, restricted to W is complete, and <xi> converges to some point

3

in W, Thus, D, is a complete metric.

3

(vi) Let x eH and yeC. Then y e M,N M, since the given

1
inequality D2(C,H L)(erw M2) > 0 implies that C M = g, If

X € lew M2, then by the definition of D it is given that

3‘)
DB(x7y) = inf {Dl(xga) + Do(a,y): aeM, Ala,y) # #}. For any point

a M with Aa,y) # @ the inequality Dl(xga) + Do(a,y) > Do(agy)
> (e/6) D(a:y) > (&/6) D,(C,HU (M, M M,)) = & holds by the definition
of &. Therefore, DB(x,y) > € holds in this case.

If, however, X g Ma\\ M, holds, then either DB(ng) = Do(xgy)

Alx,a) #

1
or Dj(x,y)_z inf {Do(x,a) + Dl(a,b) + Do(b,y): a) b eM,
##£Aby)}. If DB(ng) = Do(x,y), then as above, it holds that

DB(xgy) - Do(x,y) > (g/8) Da(xgy) >e. If DB(xgy) equals the above

infimum, then for any points a, b ¢ M, with A(x,a) £ @ # A(b,y) it

1
follows as before that the inequality
DO(Xga) + Dl(agb) + Do(b,y) > Do(b,y) > (g/6) D2(b9y) > ¢ holds, and
therefore DB(ng) 2> E.

Since in any case DB(x,y) > € holds, then DB(C9H) > €.

(vii) With x and y as given in (\_rii).i then D3(x9y) cannot

equal DO(XQy) since Do(x9y) > DZ(x,y)a Therefore, it must be that
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DB(xsy)'z inf {Do(x,a) + Dl(a,b) + Do(b,y): a, b e Ml’ AMx,a) £#8 #£
A(byy)}. The existence in Ml(W M2 of a D3 between point of x and

y now follows, exactly‘as in the original proof of Bing 4], from the

compactness of le\ M.. |

5
The following example shows that a comﬁlete convex metric on a
locally connected generalized continuum need not have the property
that every compact subset is contained in a compact subset on which the
metric is convex. It is shown in (5.3), however, that the space in
question can be remetrized with a complete convex metric for which the

stated property holds,

Example 5.2. There is a ocne dimensional locally compact space X in
E2 containing three points and having a complete convex metric D
that is not convex on any compact subset of X which contains those

three points.

Proof: Using cylindrical coordinates in EB, for each odd m let
g

pi = (1, (2n+l)T/3, 1-2"™) and for each even m let
pE = (1, 2n/3, 1-2™™), n=0y1,2 and m =0, 1, ... - Construct

the euclidean segments [p;pg+l] for all m and for all (i, j) =
(05 0), (0, 2), (1, 0), (1, 1), (2, 1), and (2, 2). If X is the
union of all such segments and if D is defined to be the geodesic
metric on X, themn D 1is a complete convex metric. _Moreover, the
only D convex subsets of X containing the three points pg, pég
and pé are dense in the space X. The space (X, D), shown in

Figure % on the following page, is one dimensiocnal and can be embedded

in the plane z = O by projecting alomg lines through (0, 0, 1), I
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(0, 05 1)

Figure 3. The Set X of (5.2)

Theorem 5.3. Let M be a locally connected generalized continuum
with complete convex metric D. Then for any point p of M, there
is a complete convex metric E for M that is convex on B(p;n) and
has the property that if D(p,x) = n then E(x,D(pin = 1/2)) > 1,

for each positive integer n.

Proof: For each non-negative integer n, it follows from (3.9) that
the set Pn = B(p;n) is a Peano continuum. Moreover; for n > 1 the

two sets Cn = {x: D(pyx) =n} and Hn— = {x: D(p;x) =n - 1/2}

1
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are compact and disjoint. By (5.,1) there is a convex metric El- for

P, such that E (C,,H)) >1 if C  # @, By repeated use of (5.1),

P

® 00

a sequence El’ E29 0o Of convex metrics respectively for Pl’ 5

may be defined inductively so that E extends E  and the
n+ n

1
inequality En(Cn,Hn_l) > 1 holds whenever C_ £@. If E is the
union of all these metrics En' the conclusion of the theorem is

given by the following statements (i) through (iv).

(i) E is a segmented convex metric for the space M, E is
convex on each Pn9 and E(Cn,ﬁ(p;n - 1/2)) > 1 holds whenever n > 1

and C_ £ @.
n
(i1) E(Cngp) >n holds whenever n > 1 and Cn'# a.
(iii) EBvery E bounded set is D bounded.
(iv) E is complete.

(1) It is clear that the metric E is segmented convex, that E
is convex on each Pn, and that E(Cn’Hn-l) >1 holds for n > 1,
since E extends each of the complete convex metrics Eno Now for any
point x in Cn let xz be an E segment from x to any point =z
(in D(psn - 1/2). Then xz meets H , in at least one point y,
so that E(x;z) = E(x,y) + E(y,z) > E(y,z) > E(Cnanwl) >1
demonstrates that E(Cn,ﬁ(p;n -1/2)) > 1.

The metric E induces the same topology as D, for an arbitrary
D ball D(x;e) is contained in some D(pjn). Since En is a metric
for the space Pn’ then E(x;6) C D(x;e) for some & > 0. Since E

is segmented convex, any point =z of E(x;6) that lies outside Pn

must be Joined to x by a segment. Xz that contains a point y of
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ChfW En(xgﬁ)9 in contradiction'to the choice of &, Hencey; it holds
that E(x;6) = E (x;6) C D(x;e).

Now le? E(x;e) be an arbitrary E ball, where x 1is in Pn=l
for some =n, Since Eh is a metric for the space Pn, there is a

number O < & < 1 such that D(x36) ) Pn C:En(x;e) holds. But the

choice of & insures D(x;b) C:P£, so that D(x;6) C:En(x;e) C E(xse).

(ii) Statement (ii) is implied by (i) in the case n =1 and
follows by induction for general n, by use of (i) and E segments

having p as one endpoint.

(iii) Let Q be an E bounded set. If a point x in Q lies
outside some Pi9 then a point y of Oi lies on some E segment
xp, and from (ii) it follows that E(x,p) > E(y,p) >1i holds. Since

Q@ is E bounded, it follows that € must lie in some Pn°

(iv) Claim (iv) now follows from (iii), since by (1,26) every

closed and D bounded set is compact. I

The following theorem can be regarded as the main result of this

dissertation.

Theorem 5.4. Let Ml be a space with a complete convex metric Dl

and let M2 be a locally connected generalized continuum. In order

for there to be a complete convex metric for MIKJ M2 that extends

Dl’ it is necessary and sufficient that Ml(\ M, be a non-empty

2

subspace of both Ml and M2 which is closed in M29 and that the

M2 boundary of MI(W M2 be closed in Ml'

Proof: Necessity is given by (4.1). For the proof of sufficiency, let
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p be any point of er\ M2 and let D be any complete convex metric

for M,. By (5.3) there is a complete convex metric D, for M,

whose restriction Dg to Pn = B(p;n) is convex, and which has the

property that if D(p,x) =n then Dz(x,ﬁ(p;n -1/2)) > 1 holds, for
nzl, 29 o0e ¢

Since le\ M2 is closed in MZ’ then MI(W Pl is compact.

Hence, (5.1) may be applied by replacing M,, D M,, and D, by M
and Dl respectively in the hypothesis; let Dl and Dl

1’ 2 0 3.

be the DO and D3 given respectively by the proof and conclusion.

(The sets € and H in (5,1) will not be used here.) Then Dé is

a complete convex metric for MlkJ Pl that extends Dl and has the

property that whenever Dé(x,y) < Dé(x,y) holds for two points x, y

l? l? 19

b, P

l’

then x and y have a Dl

of Pl‘\ Ml9 3 between point in Ml' It
is noted that Dé(u,v) > Dé(u,v) = D2(u,v) whenever Dé(ugv) is
defined,; and that if x 1lies in Pl‘\ Ml and y in Ml’ D%(ng)

is defined to be the infimum of sums Dé(x9a) + Dl(agy) for certain

points a in the Pl boundary of erﬁ Pl'

T1

3

metric for MlL)Pn which extends D). Again apply (5.1) by replacing

15 Dys My, end D, by MU P, Dg, P
n+l
0

of (5.1) gives that D

Proceeding inductively, suppose that D, is a complete convex

M and Dn+1 respectively,

n+l’ 2

and D;+l in place of DO and D3° The conclusion
n+l

3 is a complete convex metric for MlkJ P

with the property that whenever the inequality

and obtain D

+1

that extends Dn

39
n+l n+l .
D3 (x5y) < D, (x,y) holds for points x, y of P> (Ml\J Pn)’
then x and y have a D;+l between point in MlkJ P . Again, it
should be noted that Dg+l(ugv) > Dg+l(u,v) = D2(u,v) holds whenever

n+l . . . .
DO (uy,v) is defined. Further, for points x in Pn+1‘\ (MIKJ Pn)
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and y in MlkJ Pn, the value D;+1 is defined to be the infimum of
sums Dg+l(x,a) + D;(a,y) for certain points a in the P .. boundary

of (Mlkj Pn)fW P .- The induction principle is now applied.
Define D3 to be the union of the metrics D;, and for conven-

ience let PO = le\ P1 and Dg = D1° The following assertions (i)

through (vii) combine to show that D, is a complete convex metric

3

for the space M1\J M2 which extends Dla

(i) D3 is a segmented convex metric that extends D1°

(ii) Por points x in P, y in M

0 and for p > O, there is

1’
a point =z in leW P such that Dg(xgy) +p> DZ(x,z) + Dl(zgy)

holds. If x is not in M then 2 can be chosen in the Pn

1’
boundary of lew P ; hence in the M

5 boundary of erW Mzo

(iii) For points x in P y in M1U P (k =0y 15 000 3

n=1, 2; 0.)y and for p > 0, there is a point 2z in the set

n+k’

n+k

such that D3

(Mlkj Pk)(w Pn+ (x57) + p > D2(x,z) + D?(zvy) holds.,

k

(iv) D2 is equivalent to 'DB’ restricted to M2°

(v) D3 is a metric for the space MI\J M2°

(vi) PFor points t in Pn and v in M_~ Pn+ for some n > O,

2 1
there is a D3 between point u of t and v such that
D(psu) = n + 1/2 holds and Pn contains no D3 between point of u
and v,
(vii) D3 is complete.
(1) Claim (i) is immediate from the definition of D_, since

3
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n . .
each D, 1is a complete convex metric,

3

(ii) Let x be in ’Pn’ y in Ml’ and let p> 0 be given. If

x is in Ml’ then x itself may be taken for 2z since it is true

that Dg(x,y) = Dl(x,y). Therefore, with the assumption that x is

not in M the proof of (ii) is given by induction on n. If x

11
is in P1 N Ml’ then by the definition of Dé(x,y) there is a point

z on the P1 boundary of Ml(W'Pl such that the inequality

Dé(x,y) +p> Dé(x,z) + Dl(z,y) > D2(x,z) + Dl(z,y) holds, Proceeding

inductively, assume that (ii) holds for n = k and arbitrary p' > O,

and let x ¢ Pk+l N (MlkJ Pk) with p > 0. From the definition of

D§+l(x,y) there is a point 2' on the P, . boundary of
(Mlu Pk) N P, such that the inequality

D§+l(x,y) . 0/2> Dg+1(x,z') + Dg(z‘,y) > D2(x,z‘) + Dg(z',y) (2)
holds; If 2! ié in le\ Pk+l’ then 2z' is on the Pk+l boundary

of le\ P and since Dg(z',y) = Dl(z'ay) holds, inequality (2)

k+1’
shows that 2z = z' satisfies (ii). If, however, 2z' is not in Ml’
then 2' is in Pk' Thus, by the induction hypothesis for the points

z' and 'y, there is a point 2z on the Pk boundary of MI(W Pk’

hence on the Pk+1 boundary of le\ Pk+1’

Dggz',y) + p/2 > D2(z',z) + Dl(z,y) holds. By combining this last

such that the inequality

inequality with (2) and the triangle inequality, the desired inequality
in x, y, and z is obtained. Claim (ii) is now established by the

induction principle.

(iii) Assertion (iii) can be proved by the technique of double

induction on k and n, by using (ii) as the initialization k =0
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and an argument similar to the proof of (ii) to complete the induction.

(iv) To prove that D, and D3 induce the same topology on M

first let D3(x;e) be given with x a point of M

27
5 ‘Since by (1.26)
the set Bz(x;a) is compact, it is contained in Pn for some n.

But since Dg(x;s)(w M, is D> open, there is some & > & > 0 such

2

that Dg(x;é)CDg(x;s)ﬂMz holds. Since D,(x36) CP_, then
n

D2(x;6) = D2(x;6)CD3(x;a) holds.

5 ball, and first suppose

that x is in le\ M. Then there is some number g/2 > & > O such

Now let D2(x;s) be an arbitrary D

that Dl(x;b)fw M2(::D2(x;e/2)fw Ml holds. For any point y of
D3(x;6)(w M., there is by (ii) some point =z in Ml(\ M, such that
6 > Dz(ygz) + Dl(z,x) holds. Since 2z is thus in Dl(xab)fw M2,
then D2(x,z) < g/2 and the triangle inequality shows that y is in
D2(x;e)n Hence in this case, DB(x;é){W M2 C:Da(x;s) holds. If
instead x is in M2‘\ Ml’
that the compact set 52(x;B) is in Mz‘\ M

there is some number g/2 >8>0 such

and in some P , so
1 n

that D2(X§B) = Dg(xsﬂ). Since D; and Dg are equivalent on Pn,

there is some number B > a > O for which Dg(x;a)(w M, CIDz(x;B)°

Since any point y of DB(x;a)fﬁ M2 lies in Pn+k for some k > 1,

by (iii) there is a point 2z of (Ml\J Pn)(W P . satisfying

k
a > Dz(y’Z) + Dl;'(z,x)o Thus; 2z lies in D;(x;a)(w M2 and hence in

D2(x;B)9 so that as above the triangle inequality places y in the
ball D2(x;8)°l Therefore D3(x;a)f1 Mz(: Da(x;s) holds; and (iv)

is established.

(v) Statement (v) follows from (4.3), since M. and by (iv)

1

also M, are subspaces of (MlkJ M., D ), once it has been shown

2 3



that Ml ~ M2 and M2 ~ M1 are separated sets in (Mlkj M2, DB)'

Since lew M2 is closed in M,, for each point x of M, M

2 2 1

there is some € > O for which D2(x;s) C:Ma‘\ M,. If there were
some point y in DB(x;e)(W M, (ii) would provide a point z in
M, for which & > Da(x,z) + Dl(z,y), contrary to the choice of .
Hence,; the ball DB(X;E) lies in M ‘Q/M » and therefore the set

2 1
M2\~ M1 is actually D3 open. Now let y be in Ml‘\ M2, and
denote by B the M, boundary of le\ M,. Since B 1is closed in
M., then Dl(y;b) C:Ml‘\ B holds for some & > O, If some point

x of Dz(y;b) were in M.\ M

5 1+ ‘there would be according to (ii)

some point =z of B satisfying & > D2(x,z) + Dl(zgy), contrary

to the choice of &. Therefore, the ball DB(y;b) must lie in M
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13
and the sets Ml‘\ M2 and M2‘\ M1 are thereby D3 éeparated.

(vi) Suppose that points t in P and v in M, Pn+1 have
no D3 between point that satisfies the conditions given in (vi),
Since D3 is segmented convex, for every point t' in Pn there is
clearly some D3 between point u' of t' and v 1lying in the set
C = {x ¢ M2: D(pyx) = n + 1/2}. 1In particular, points t; =t and

v have a between point Uy in €. Since by assumption there must

be a between point t2 of u1 and v which lies in Png it follows

that Dy(t.v) = Dy(t;suy) + D (uj,t;) + D (£,4v) holds. In fact,

it is possible to define points t of Pn and also

19 t2’ 000

Ups Uss oo of C inductively, gatisfying

k
Ds(tgv) = Z[DB(tisui) + DB(ui“tiﬂ)] + DB(tk+1“v)-
i=1
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for each k. Therefore, the series

zg:[DB(ti,ui) + DB(ui’ti+l)]
i=1

converges, implying that DB(Pn’C) = 0. But this is impossible, since

Pn and C are disjoint compact sets. Thus, (vi) is established.

(vii) To show that D3 is complete, let <x > be a D3 Cauchy

sequence. It may be assumed that <xk> lies entirely in M2~\ Ml

and has no subsequence that lies entirely in one of the sets Pna In

fact, if x lies in P~ Pn -1 for each k, it may be assumed

n
k k
Suppose that for only a finite set of indices

k

that nk + 1 < nk+l°

k the points x,_ and X4l have a D, between point in Ml. It may

k 3

be assumed, in fact, that this set of indices is empty. Then for each

k, (vi) shows that there is some D between point u of x and

3 k

X such that D(p,u) = n + 1/2 holds and Pnk contains no D3

between point of u and x Since lies outside Pn +1°

k

there is a D3 between point v of u and X satisfying

D(p,v) = n, + 1, and moreover Pn contains no D3 between point
' k

of u and v, Thereforeg u and v can have no D, between point

3

in the set MlkJ Pn . Because of this fact and the particular con-
k ny +1
struction of the metrics D3k and D,

. _ nk+l
ity DB(xk’xk+l) > DB(u,v) = D3 (u,v) > D

holds, and <xk> cannot be D3 Cauchy.

Hence, there must be a subsequence <xk > of <x
i

the points xki and in+l have a D3 between point y; 1in M

Then <yi> isa D

k+l° Xpeal

it follows that the inequal-

np+1

5 (u,v) = D2(u,v) > 1

k> for whlch

1°

1 Cauchy sequence that converges to some point vy
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in Mlq Since for each k and i it holds that
DB(xkgy) < DB(xk’xk.) + DB(Xk.’yi> + DB(yi“y)
i i
< DB(xk°in> + DB(in'in+1) + Dl(yisy)s

it follows that <xk> converges to y. Therefore, the metric D3 is

complete. |

The justification for stating the next corollary is its likeness
to the following classic theorem of Bing [6] on the extension of a

general metric: if a closed subspace Ml of a metric space M2 has

a metric D,

then 21 can be extended to a metric for Mao

Corollary 5.5. If a closed subspace M1 of a locally connected

generalized continuum M, has a complete convex metric D then

2 1’

D caﬁﬁbe extended to a complete convex metric for M

1 2

Proof: Not only is the intersection lew M ='M1 closed in M_,

2 2

but its boundary is also. Thus, (5.4) gives the desired extension of
D1v to a complete convex metric for the space MIQJ M2, which by
(4,2) is just M2. |

The condition given in (5.4) as being necessary and sufficient
for metric extension actually-proves to be a sufficient condition to
ensure that Ml\J M2 is a locally connected generalized continuum
whenever M1 and M2 are. Thus, (5.4) is iﬁcluded in the following,

in the case that Ml is a locally connected generalized continuum.

Theorem 5.6. Let M, and M2 be locally connected generalized

continua. In order for MltJ M2 to be a locally connected generalized
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continuum and for a given complete convex metric for M, to extend to

1

a complete convex metric for MlKJ M2, it is necessary and sufficient

that Ml!W M. be a nonempty subspace of both M

5 1 and M2 which is

closed in M., and that the M_ boundary of leW M

> > be closed in M.,

2 1

Proof: Necessity is given by (5.4). For sufficiency, assume that

leW M2 is a non-empty subspace of both Ml and M2 which is closed

in M2 and that the M2 boundary of leW M2 is closed in Mln By

(5.4), a given complete convex metric fo; Ml does extend to a complete

convex metric for Ml\J M Since by (1.25), it is true that the space

20
Ml does admit a complete convex metric, then by the previous statement,
the space Ml\J M2 admits some complete convex metric also. Moreover,

since .by (4.11) the space Ml\J M, must be locally compact, then by

(1.27) it must be a locally connected generalized continuum. [

In connection with (5.6), it should be noted that for locally connected

generalized continua Ml and Ma,

locally connected generalized continuum does not, according to (4.7),

the fact that Mlk) M2 isa

imply that Mlﬂ M. is closed in M2, although by (4.13) this fact

2

does imply that the M. Dboundary of leW M

5 is closed in M.,

2 1



CHAPTER VI

CHARACTERIZING CILASSES OF LOCALLY CONNECTED

GENERALIZED CONTINUA

In 1966 Toranzos [25] used the extension theorem of Bing [4],
along with three varieties of convex metrics, to characterize dendrites,
arcs, and simple closed curves among the Peano continua. For example,

Toranzos [25] proved that a Peano continuum is a dendrite if and only

if each convex metric for it is SC. It is the purpose of Chapter VI

to prove analogous theorems for complete convex metrics on locally
connected generalized continua, using the corollary-to the main exten-
sion theorem (5.4), along with the three varieties of complete §onvex
metrics discussed in Chapter ITI: 8C, WR, and WE. It is noted that,
although the three varieties of metrics used in this chapter do not
correspond exactly to the three varieties used by Toranzos [25], yet
analogues to dendrites, arcs, and simple closed curves are among the
classes of locally connected generalized continua identified in the
results of this chapter.

The following theorems characterize classes of locally connected
generalized continua by using all possible combinations of the proper-
ties 8SC, WR, and WE, beginning with the use of these properties one at

a time.

Theorem 6.1. A locally connected generalized continuum contains no

simple triod if and only if every complete convex metric for it is WR,
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Proof: For a contrapositive proof of necessity, let D be a complete
convex metric for a locally connected generalized continuum M, and
assume that D is not WR. Then by (2.4), there are four distinct
points x, y, y', 2z in M such that xz = zy = zy' = (1/2) xy =
(1/2) xy'. By (1,13), there exist segments xz, zy, zy'. Moreover,
x 1is in neither 25 nor E;', since xy > zy and .xy' > zy' hold.
Thus, there is some number g > O such that D(x3e) is disjoint from
zy Uzy', and if t is a point chosen from D(x;e) () xz that is
distinct from x, then the sub-segment xt of xz lies in D(xje).
Since t # z, then Xz vt = AU B, where A and B are separated
sets containing x and 2z, respectively. If V = EE\v}E§\J'E§',
then VNt =AU®U2zyUZzy') holds, where again A and
B LJE?lVJE§' are separated sets, since A Cxt CD(xje) holds. Thus
the set V? having t as a cut point, cannot be a simple closed
curve [20]. But since x, y, and y' are non-cut points of V,
then V is not an arc. Thus V, hence also M, must contain a
simple triod [20].

The proof of sufficiency is also given by contraposition. Suppose
a locally connected generalized continuum M contains a simple triod
T. Then there exist four points x, y, y', 2 and arcs Xz, Zy, 2¥'
that intersect pairwise only at 2z, such that T = £ U £y U 23'.
The triod T ‘is homeomorphic to a triod T' in E2 composed of three
equal line segments which intersect pairwise only at a common endpoint

me

of each, The geodesic metric on T is convex, and by the homeomor-

phism with T induces a convex metric DT for T such that =z is

the midpoint of both x, y and x; y'. By (5.5), the metric Dp

extends to a complete convex metric D for M, and under D also
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the point 2z is a midpoint of both x, y and x, y'. Thus by (2.4),

D is not WR. [

Theorem 6.2. For a locally connected generalized continuum M, the
following statements are equivalent:
(i) M contains no simple closed curve.
(ii) Every complete convex metric for M is SC,
(iii) Every complete convex metric for M is WE.
(iv) Every complete convex metric for M is SC-WE.
(v) Every complete convex metric for M has the property that
every closed ball contains every segment between every pair

of its points.

Proof: The plan of the proof is to show that (ii), (iii), (iv), and

(v) are separately equivalent to (i).

(1) - (ii) Let M satisfy (i); and let D be a complete convex
metric for M. OSuppose that for some two points p and q of M

there are two distinct D segments A, and A2 from p to q.

1

Then Alkj A_ would contain a simple closed curve, contradicting

2
the hypothesis [20]. Hence, between every two points of M there is

a unique D segment, and by (2.3) the metric D is SC.

(ii) - (i) Let M Dbe a locally connected generalized continuum
containing a simple closed curve C. A homeomorphism from the unit

circle in E2 onto C induces a complete convex metric DC for C

that is not SC, namely, the metric induced from the geodesic metric on

the unit circle., By (5.5), DC can be extended to a complete convex

metric D for My and D is not SC.
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(i) » (iii) With M as in (i), let D be a complete convex metric
for M. Suppose that sq N\ pr = pq holds in M., If p=s or if

g = r, then EE L)f; is the segment 5; or Ea, respectively.

If p#s and q £r, then sqUopr is at least an arc from s to
q. But since in M it holds that any arc joining two points is
unique, then sq U pr is the segment sr known by (1.13) to exist [20].

By (2.5), it follows that D is WE,

(iii) -» (i) Since the geodesic metric for the unit circle in B is

not WE, then the above proof of (ii) - (i) suffices in this case also.

(i) - (iv) This implication is just the conjunction of the two

assertions, (i) - (ii) and (i) - (iii), proved already.

(iv) - (i) Since (iv) - (iii) and (iii) - (i) both hold, then so

does (iv) - (i).

(1) = (v) With M as in (i), suppose.that there is some complete
convex metric D for M and some closed ball 5(p;e) containing two
points x and y for which some segment ;§ does not lie entirely
in D(pje). Since D(pje) is arcwise comnected, there is an arc A
from x to y that lies entirely in D(pje). Hence A # xy, so that

AU Xy must contain a simple closed curve [20]. This contradicts (i).

(v) = (1) Assume, for a contrapositive argument, that the locally
connected generalized continuum M contains a simple closed curve C.
Pick three points %y y, 2 of C and induce a metric DC for C via
a homeomorphism from the unit circle in E2 in such a way that x, y,

and z are the respective images of the points (0, 1); (15 0), and

(0, =1). By (5.5), extend DC to a complete convex metric D for M.
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The segment xz in C that does not contain y does not lie in the
set .Bc(y;ﬂ/E), although D(y,x) = D(y,z) = /2. Thus, (v) cannot

hold. I

Theorem (6,2) furnishes a simple condition that is sufficient for

the convexity of metric balls, which is stated as follows.

Corollary 6.3. Let M be a locally connected generalized continuum
which contains no simple closed curve. If D 1is a complete convex

metric for M, then every closed (and open) D ball is convex.

Proof: The conclusion is given by (i) - (v) of (6.2) for closed D
balls. But the fact that closed balls are convex implies the same for

open balls. I

Theorem 6.4. For a non-degenerate, locally connected generalized
continuum M,; the following statements are equivalent:

(i) M is homeomorphic to an interval of El.

(ii) Every complete convex metric for M is SC-WR.

(iii) Every complete convex metric for M is WR-WE.

(iv) Every complete convex metric for M is SC-WR-WE,

Proof: The proof follows (i) - (iv) - (iii) - (ii) - (4i).

(i) » (iv) If M is homeomorphic to an interval of El, let D be

a complete convex metric for M. Since M contains no simple closed
curve, then by (6.2) it follows that D is SC-WE, and since M con-

tains no simple triod, then D is WR by (6.1).

(iv) = (iii) This implication is a tautology.
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(iii) - (ii) This is established by (6.2).

(ii) - (i) Suppose (ii) holds. Let D be a complete convex metric
for M, let x and 2z be two points of M, and let ¥ denote the
midpoint of x and 2, which by (2.3) is known to be unique. Suppose
y' is a point of M distinct from ¥ sgch that xy' = xy holds.
Choose segments xy., yz, and yy' by (1.13). If either of the points
x or z lay on yy', then the set xy Uyz Uyy' would dontain a
simple closed curve. If neither x nor 2z 1lay on 5;“,‘ then the set
xy Uyz Uyy' would contain a simple triod. Since by (6,1) and (6.2)
both alternatives are impossible, then y itself is the only point of
M satisfying Xy = yz. 8Since M 1is a connected metric space in which
every two points have exactly one point equidistant from them, then
accofding to a theorem of Berard [3],. M is homeomorphic to an interval

of El° 1

Theorem 6,5. For a locally connected generalized continuum M, the
following statements are equivalent:
(i) M contains no simple closed curve, but does contain a simple
triod.
(ii) Every complete convex metric for M is SC but is not WR,
(iii) Every complete convex metric for M is WE but is not WR.

(iv) BEvery complete convex metric for M is SC-WE but is not WR,

Proof: It is shown only that (i) - (ii) holds, since (ii) < (iii) =

(iv) is entailed by (6.2), and (ii) - (i) follows from (6.1) and (6.2).

(i) - (ii) With M as in (i), let xzz L)x;t Llﬁgz be a simple

triod contained in M, where xgz is an arc from Xi to 2z and
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these arcs intersect pairwise only in the point z. If D is a com~
plete convex metric for M, then D is SC by (6.2). Since there are
no simple closed curves contained in M, then there is only one arc
joining any two points [20]. From this it follows that X;Z is the

unique segment x;z, and the arc x’;z U fJTz is the unique segment

X% g for i1 # j. Thus x) z(::x X, U X %3 holds, and the set

x x \J xlx3 = x’z L)x 7z L}x 7z is not a segment. Therefore, it follows

from (2.4) that D is not WR. I

Theorem 6.6, For a locally connected generalized continuum M, the
following statements are equivalent:
(i) M is a simple closed curve.
(ii) Every complete convex metric for M is WR but is not SC.
(iii) Every complete convex metric for M is WR but is not WE,
(iv) Every complete convex metric for M is WR but is neither

SC nor WE,

Proof: Since (iv) is just the conjunction of (ii) and (iii), the proof
is completed by showing that (ii) and (iii) are separately equivalent

to (i).

(i) - (ii) If M is a simple closed curve and D 1is a complete
convex metric for M, then D is WR by (6.1). But by (2.15), D

does not admit an SC metric., Hence, D cannot be SC.

(ii) - (i) If M satisfies (ii), then by (6.2) there is some simple
closed curve C contained in M. If there exists some point p in
M N~ Cy then there would be an arc joining p to C, hence there

would be a simple triod in M. Since this is prohibited by (6.1), it
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must be that M = C,

(i) = (4ii)  The proof of (i) - (ii) suffices here also, if "SC" and

"(2,15)" are replaced by "WE" and '"(2,17)", respectively.

111) —= \1 € prool o 11) = \1) can be useqas wil 11 replace
(iii) - (1) Th £ of (ii) - (i) b d; with "(ii)" replaced

by "(iii)", I

The space characterized by (6.6) is rather striking in that it is
the only one obtained in this chapter that must be compact. The locally
connected generalized continua that contain no simple closed curves
(6,2) and those that are homeomorphic to an interval of gt (6.4) . are
the possibly non-compact analogues to the dendrites and arcs, respec-

tively, that were characterized by Toranzos [25].



CHAPTER VII
SUMMARY AND PROSPECTS

This paper is an investigation of the properties of complete
convex metrics on locally connected generalized continua, and is
especially concerned with the question of metric extension, Tﬁe study
of convex metfics on Peano continua was begun in 1928 by Menger [18],
who posed the famous question, Does every Peano continuum admit a
convex metric? This question was answered affirmatively by Bing [4]
in 1949, buﬁ the notion of a convex metric continues to provide
material fof current research.

One of the current areas of research involving coavex metrics is
in the setting of spaces which, aside from compactness, enjoy the other
properties of Peano continua: these are the locally connected general-
ized continua. Complete convex metrics on locally connected generalized
continua seem to have many of the properties possessed by their counter-
parts in the compact setting, the convex metrics on Peano continua.
For example, in 1955 it was proved by Tominaga and Tanaka [24] that
every locally connected generalized continuum admits a complete convex
metric, In 1967, Lelek and Mycielski [16] showed that whenever a
locally connected generalized continuum is given'éhﬁbmplgte'conVme
metric, then every c¢losed and bounded set is compact. These last two
results, which were discussed in Chapter I, have been important tools

for the results of this paper.
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The primary aim of the dissertation has been to establish results
on the extension of complete convex metrics to the union of two spaces;
it was the author's intent to generalize a useful theorem of Bing [4]
concerning the extension of convex metrics to the union of two Peano
continua. In Chapter V, a necessary and sufficient condition for such
an extension was found by specifying two simple topological properties
of the intersection of the two spaces in question. In proving this
main result, it was discovered that a locally connected generalized
continuum admits not only a complete convex metric; but also one having
the property that every bounded set is contained in a compact; convex
set. Two consequences of the main extension theorem were given at the
end of Chapter V. One of these, analogous to the classic theorem of
Bing [6] on general metric extension, states that a complete convex
metric for a closed subspace of a locally connected generalized con-
tinuum can be extended to a complete convex metric for the entire space.
The second consequence shows that the properties required in the
author's main extension theorem on the intersection of two spaces are
sufficient to ensure that the union of the spaces is a locally
connected generalized continuum whenever both spaces are also.

The entire thesis is closely related to the main body of results
of Chapter V, in providing either preparatory material for proving it
or applications of it; nevertheless, a few results have emerged that
are of some interest in their own right. Chapter III provided three
theorems on segmented convex metrics that may be worthy of notice.
First, it was found that if a locally compact metric space has a unique
midpoint for every Pwo of its points, then the metric is segménted

convex. Second, in a locally connected generalized continuum with =
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segmented convex metric, every compact ball is a Peano continuum; in
the case that the convex metric is complete, this result yields the
useful corollary that every closed ball is a Peano continuum., And
third, the admission of a segmented convex metric by a locally compact
space was found to charactefize the locally connected generalized
continua in a theorem that concluded Chapter IIT. CQapter IV intro-
duced a particular topology on the union of two spaces, and a few
elementary properties were established; these became useful in proving
the extension theorems of Chapter V. In Chapter VI it was found that
locally connected generalized continua that are either without any
simple closed curves, without simple triods, or homeomorphic to an
interval of the real line, can be characterized by the admission of
complete convex metrics possessing some combination of the three
properties 8C, WR, and WE; these properties were investigated in
Chapter II.

Certain questions have arisen in the course of this research that
hopefully will prove to be of interest for further study. The out-
standing question of Chapter II is whether an SC-WR metric must also
be WE. The question of Krakus and Trybulec [14] remains unanswered,
.whether every space with an SC metric is contractible. This question
may also be restated with "SC'" replaced by "WE." Also, it might be of
interest to determine which of the plane continﬁa admit WE metrics?‘
much as Glynn [12] has done for SC metrics. In regard to Chapter V,
it might be profitable to investigate whether, in the main extension
theorem (5,4) or in the subsequent corollary, it is necessary to require
that the space M2 be locally compact, or whether it might suffice

that M2 be simply & space that admits some complete convex metric.
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