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PREFACE 

If as Bing [5] suggests, "topology may be regarded as a~ offshoot 

of geometry," then the definition of the convex metric by Menger [18] 

in 1928 must be regarded as the beginning of one of the most perceptive 

and profitable attempts to link it with its origino For the property 

of metric convexity together with completeness provides, as Menger [18] 

showed, that every two points in the space are endpoints of an arc 

along which distances are additive. The existence of these arcs, so-

called "segments" in a metric sense, along with the notions of lines 

[8], parallels [8], and angles [21] that are also definable in abstract 

metric spaces, gives to these complete convex metric spaces an unmis-

takable euclidean flavor. 

In proving the existence of segments in complete convex metric 

spaces, Menger [18] in effect showed that ~f a compact space admits a 

convex metric, then the space must be locally connected, hence a Peano 

continuumo Then he posed the ~ell-known Konvexierungsproblem~ Does 

every Peano continuum admit a convex metric? This problem, which 

c'laimed the attention of several eminent mathematicians over a period 

of two decades, was finally answered in the affirmative by Bing [?] 

in 1949. In the pursuit of the Konvexierungsproblem, and in the after-

math of its solution, there grew up a rich body of techniques and 

results that include partitioning [7], grille decomposition [19], 

characterization theorems [25], and metric extension theorems [4Jo 

Subsequently, a start has been made in extending these techniques 
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and results to non-compact spaces; notably, in 1955 Tominaga and 

Tanaka [24] obtained an affirmative answer for the Konvexierungsproblem 

for more general spaces by means of partitioning locally connected 

generalized continua. Here it should be noted that, since a convex 

metric on a compact space is complete, its most natural counterpart 

in the more general case is not merely a convex metric, but a complete 

convex metric. Thus, for example, the Konvexierungsproblem for the 

more general spaces is the question: Does each locally connected 

generalized continuum admit a complete convex metric? 

The present paper can best be considered as a continuation of the 

process mentioned above as having already begun, that of generalizing 

to a non-compact setting some of the results obtained originally for 

convex metrics on Peano continua; hence the title, "Complete Convex 

Metrics for Generalized Continua." In particular, the core of this 

dissertation lies in a series of theorems generalizing a result of 

Bing [4] on the extension of a convex met~ic to the union of two Peano 

continuao The rest of the paper is logically related to this core of 

results, either in providing material to be used in proving it or 

in furnishing applications of ito Chapter I lays the conceptual foun

dation by providing definitions, by stating some of the previously 

obtained results that are of interest to this paper, and by giving a 

few revealing applications of these results. The next three chapters 

cover independently three topics that are necessary to accomplish the 

goal of the paper. Chapter II presents three particular types of com

plete convex metrics in preparation for some straightforward applica

tions of the extension theorems; this material is placed early in the 

thesis because of the rich variety of examples of complete convex 
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metric spaces that accompanies it. In Chapter III the segmented convex 

metric is introduced for its usefulness in the proof of the extension 

theorems; it is discussed at some length, and its crucial role is shown 

in a result dealing with closed balls as Peano continua. A certain 

natural topology for the union of two spaces is discussed in Chapter IV; 

the choice and properties of this topology become crucial in general-

izing the extension theorem of Bing [4] to possibly non-compact set-
. 

tings. The extension theorems themselves are now proved in Chapter Vo 

These theorems are applied in Chapter VI to characterize certain 

classes of locally connected generalized continua by the variety of 

complete convex metrics they admit, using those types of convex metrics 

that were discussed in Chapter II. The results of the paper are sum-

marized and a few suggestions for further research are given in 

Chapter VII. 

All the results of this paper, including theorems, corollaries 1 

and examples, will share a common sequence for numbering; the two 

numbers, separated by a period, that accompany a result are the number 

of the chapter where it first appears and its order within that chapter, 

respectively. Each later reference to this result will give these two 

identification numbers enclosed in parentheses. Single numerals in 

parentheses refer to formulas displayed and numbered in the text; this 

sequence of numbers will be re-initiated at the beginning of each 

chaptero Numbers enclosed in square brackets refer to the bibliography 

at the end of the paper. The 11proofs11 for some of the examples are not 

so much proofs as they are constructions, with only the non-obvious 

assertions in them receiving actual proofs. The simplest examples, as 

well as those results that are found in the literature, are stated 
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without any proof at all. Conversely, where a proof is given, then the 

result is the author's, although some of the results proved in Chapter I 

and possibly elsewhere are doubtless well known as part of the "folk

lore" of the subject. 

I would like to express my appreciation, at least in this small 

way, to those who have helped in the preparation of this dissertation. 

To Professor John W. Jewett for arranging a graduate assistantship and 

securing National Science Foundation Traineeship GZ-1694, and to 

Mrs. Mary Bonner and Mrs. Cynthia Wise for their generous advice in the 

typing of the manuscript, I would like to render my thanks. I am 

grateful also for the interest and cooperation shown by my committee 1 

consisting of Professor E. K. McLachlan as chairman, Professors Marvin 

S. Keener and Donald E. Boyd, and especially I want to express my 

appreciation to my thesis adviser, Professor John M. Jobe, who has 

the rare ability to offer positive guidance in a way that offers both 

freedom and incentive to the student in the pursuit of his research. 

I would also like to acknowledge the kind attention of Professor A. 

Lelek of the University of Houston, with whom I have had the honor of 

communicating both by conver~ation and by correspondence on the subject 

of convex metrics. Special thanks are due to my wife Kathie and son 

Nathan for their continual patience and encouragement. And, if the 

full story were known, this final acknowledgment would be the most 

fitting of all~ "Blessed be the Lord, because He hath heard the voice 

of my supplications" (Psalm 28:6). 
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CHAPTER I 

PRELIMINARY.CONCEPTS 

This paper will be devoted to the study of properties of complete 

convex metrics on locally connected generalized continuao 

Topological and ,Metric .. spaces 

Terminology and notation that is not ~efined in this paper is 

assumed to have the meaning assigned b,Y Hall and Spencer [13], 

Dugundji [11], Whyburn [26], or Moore [20]. 

A topological space consisting of a set M with a topology 'T 

is denoted by (M, T), or more briefly by M when the topology f's 

clear from context. Similarly a metric space induced by a metric 'D 

on a set M may be denoted by (M, D) or, when appropriate, simply 

by M. If I and 'I' are two topologies on the same set, then I 

is said to be stronger than I', and I' weaker than I', if T' 

is a subset of I, denoted by T' C T. A sequence is denoted by 

<x >, whereas the union of all of its points is {x : n == l~ 2~ •ooL n n 

The following metric conventions will also be observedo 

Definition 1.1. Let (M, D) be a metric space. 

(i) If p E M and o > O, then D(p;6) = {x E M: D(p~x) < o} 

is called an "open ball," and D(p;o) = {x EM: D(p,x).::; o} 

is called a "closed ball. 11 

(ii) If An M /: ¢, then D(A) = sup {D(x,y): x~ y E A(\ M}. 
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(iii) 

(iv) 

(v) 

If AnM~¢ and B n M ~ ¢, then 

D(A,B) = inf {D(x,y): x r::. An M, y E B n M}. 

If NC M, then "D restricted to N" is the metric F 

defined by F(x,y) = D(x,y) for all points x, y E N. 

If D' is another metric on the set M, then the statement 

"D and D' are equivalent" means that (M,D) = (M,D'); 

if NC M, tpen the statement "D and . D' agree on N" 

means that D(x,y) = D'(x,y) for all points x, y E No 

2 

Certain concepts that are defined with respect to a particular 

metric D, such as linearity, segment , ball, and convexity~ will 

often appear with the name of the metric prefixed to them 9 as D 

linearity, D segment, D ball, and D convexityo However, when 

the identity of the metric is clear from the context, the name of the 

metric may be omitted in a discussion of such concepts. Similarly, 

D(x,y) will be abbreviated to xy when the identity of the metric D 

is understood. 

Linearity 

The notion of linearity in a metric space underlies the 

definition of convexity. 

Definition l.2o A set in a metric space is linear if it is isometric 

to a subset of the real line E1 ; that is, if (M, D) is the given 

metric space9 NC M i~ linear if there exists a function L : N ~ E1 

such that D(x,y) = IL(x) - L(y)I for every pair of points x~ y E No 

A segment is a linear arcj and the notation pq denotes some segment 

whose endpoints are p and q. 



The following criterion of linearity is due to Menger [18]. 

Theorem 1.3. A metric space with more than four points is linear if 

and only if every three point subset is linear. 

The necessity for the space in (1.3) to have more than four 

points is seen from the following example. 

Example 1.4. Let the four point set {a, b, c, d} be metrized in 

such a way that ab = be = c~ = da = ac/2 c bd/2. Then every three 

point subset is linear, but the space is not linear. 

The criterion of (1.3) reduces many linearity arguments to the 

consideration of finite sets of points, and the following two results 

are then useful. 

Theorem 1.5. If a set X in a metric space has n > 2 points, then 

X is linear if and only if X may be represented as 

n-1 

xl xn = L xixi+l • 
i=l 

In case X is linear, the subset {x1 , xn} is uniquely determined. 

Proof: To prove necessity, suppose X is linear and has n > 2 

points. Then there exists an isometry L: X-+ E1 • Since L(X) 

is a set of n real numbers, let x. be the point of X 
l 

such that 

L(x.) is the i th number of L(X) in the usual order 'for r 9 for 
l 

i =1 1 , . o o ~ n . Then and also 

L(x1 ) < L(x2) < .•• < L(xn),, from which follows the desired fbrm.ula. 
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In this case, the uniqueness of the set {x1 , xn} is a result of the 

fact that x1x > x.x. for {i, j} ~ {l, nL 
n 1 J 

The proof of sufficiency consists of induction on n with the 

following induction hypothesis: "If Bn= {b1 , b2 , ••• , bn} is a set 

of n > 2 points such that 

n-1 

= "b.b. 1 L 1 1+ 

i::::l 

1 
holds, then the function L : Bn - E , defined by L(bi) = bl bi for 

i = 1, ••. , n, is an isometry and moreover 

m-1 

= "b.b. 1 L i 1+ 

i=l 

holds for every m, 2 < m < n. 11 This hypothesis is clearly true 

when n = 2. 

Suppose the induction hypothesis holds for some value k > 2. 

Then let Bk+l = {x1 , x2 , ••• , xk+l} be a set of k+l points with 

4 

k 

xlxk+l= L xixi+l 0 

i=l 

(1) 

Since 

(2) 

holds by the triangle inequality, it follows that 



k-1 

L xixi+l S. xl xk 
i=l 

can be obtained by substituting (1) into (2) and subtracting xkxk+l 

from both sides. But 

k-1 

L xixi+l 2 xlxk 
i=l 

follows from the triangle inequality. Thus, (3) and (4) yield 

k-1 

L xixi+l = xlxk. 
i=l 

If now the set Bk = {x1 , x2 , ••• , xk} is defined, the induction 

5 

(3) 

( 4) 

hypothesis for n = k yields the fact that 1 
1 : Bk -+ E , defined by 

L(xi) = x1xi for i = 1, •.• , k~ is an isometry and moreover 

m-1 

xlxm = L xixi+l 
i=l 

holds for every m, 2 < m < k. Thusj (5) and (1) together yield 

If L' 1 is . Bk+l .... E . 
then L' extends L. 

m~l 

"\."""' x.x. 1 , 2 < m < k - 1. 6 l l+ 

i=l 

defined by L' (x.) for = xlxi l 

Hence~ in order to verify that 

i = lv 0 0 0 ., 

L' is an 

( 5) 

k + l~ 

isometry on Bk+l it suffices to show xjxk+l = 11' (x J - V (xk+l) 1 
J 



for 1 ~ j ~ k. Since 

k 

xlxj + xjxk+l ~ Ixixi+l 
i=l 

holds by a double application of the triangle inequality, and since 

k 

~x.x. 1. L.i J. J.+ 

i=l 

holds by (1), substitution then yields x1xj + xjxk+l ~ x1xk+l· But 

this inequality with the triangle inequality results in the equalities 

x1xj + xjxk+l = x1xk+l and xjxk+l = x1xk+l - x1xj. 

equality and the definition of L', it follows that 

From this latter 

xjxk+l = L'(xk+l) - L'(xj) = IL'(xj)- L'(xk+l)j. Thus L' is an 

isometry, and the induction hypothesis holds for n = k + 1. The 

proof of sufficiency is therefore given by the induction principleo I 
n-1 

6 

Theorem 106. If x1xn = Ixixi+l' (6) 

then 

and 

i=l 

k-1 

xjxk = I xixi+l 
i=j 

j-1 

xlxn "" L xixi+l 
i=l 

n-1 

+ x{k + L xixi+l 
i=k 

hold for any 1 ~ j < k ~ n. 

Proof: Let 1 ~ j < k < n. The generalized triangle inequality is 

(7) 

( 8) 



as wel.l. as 
'"\;, "- -

k-1 

x.xk < "\'x.x. 1 , 
J - L 1 1+ 

j-1 

xlxj ~ L xixi+l 
i:cl 

i=j 

and 

n-1 

xkx < "\' x.x. 1 0 

n - L 1 1+ 

i=k 

7 

By adding these last two inequalities member by me~ber and subtracting 

from the respective members of (6), the inequality 

k-1 

x.xk> "\'x.x. 1 J - L 1 1+ 
i=j 

is obtained. This final inequality, along with (9), yields (7). 

Formula (8) now follows by subtracting (7) from (6) 9 m~~ber by 

member. I 

Betweenness and'Metric Convexity 

Closely related to the notion of linearity is that of betweennesso 

Definition L?o If a, b, · a'nd c are three distinct points of a 

metric space, then b is a between point of a and c, written 

abc, if ac = ab + be. The statement "abc on de" means that 

the three points a, b, and c lie on de and that abc holds. 

A between point \,b of a and c is a midpoint of a and c if 

ab "" be. 

The following two ~heorems are proved by Blumenthal [8]. 

Theorem 1.8. In a metric space the simultaneous conditions pqr and 

prs are equivalent to pqs and qrs; and if pqr holds, then both 



qpr and qrp are falseo 

Theorem 1.9. In a metric space, the set pq U qr is a segment pr 

if and only if pqr. 

The definition of convex metric employed in this paper is the 

original definition, first given by Menger [18], and more recently 

used by Moise [19), Lelek and Nitka [17], and otherso The other 

variety of convex metric, which is called "midpoint convex" in this 

paper~ is employed by Bing [7], Tominaga and Tanaka [24)~ and otherso 

Definition 1.10. A metric for a metric space is convex (midpoint 

convex) if every two points in the space have a between point (mid

point). A subset of a metric space is said to be convex (midpoint 

convex) if the metric restricted to that subset is convex (midpoint 

convex). 

Example 1.11. The usual metric for n-dimensional euclidean space En, 

when restricted to the set of points with all rational coordinates, is 

both convex and midpoint convex. 

While a midpoint convex metric is necessarily convex~ the following 

exa\Ilple shows that the converse is not true. 

Example 1.12. The usual metric of E1 restricted to (09 1) U (2 9 3) 

is convex, but not midpoint convex. 

The addition of completeness to the convexity of a metric space 

produces strong topological properties, as the following theorem 1 due 

originally to Menger [18], showso 
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Theorem 1.13. In a complete convex metric space, there is a segment 

joining any pair of points. 

Corollary 1.14. If pqr holds in a complete convex metric space, then 

for any segment qr there is a segment pr containing qr. 

Proof: Assuming the hypothesis and qr as given, by (1.13) there also 

exists some segment pq. By (1.9), the set pq U qr is a segment 

. pr. I 

Since a segment between any two points contains a midpoint of them, 

then by (1.13) a complete convex metric is also midpoint convex; that 

is, a complete metric is convex if and only if it is midpoint convex. 

Since this paper is concerned primarily with complete metrics~ for most 

of the results it will not matter that there are two definitions of 

convexity. 

The following exa~p1e shows that the converse of (1.13) is false. 

Example 1.15. Let (a, b) be any proper -~pen interval of E1 , and 

let D be the euclidean metric restricted to (a, b). Any two points 

are joined by a D segment, yet D is not complete. 

One proof of (1.13), due to Aronszajn [2], is given by Blumenthal [8, 

p. 41] in a form that may be modified slightly to give the following 

stronger result. 

Theorem 1.16. If p and q are two points of a complete convex 

metric space and if L is a linear set consisting of p 9 q, and be-

tween points of p and q, then there is a segment pq containing L. 
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Continua 

In this dissertation the 'two kinds of continua about to be defined, 

will be used extensively. 

Definition 1.17. A Peano continuum is a compact, connected~ locally 

connected metric space. A generalized continuum is a locally compact, 

connected, separable metric space. 

Theorem l.18. The property of being a Peano continuum, and the property 

of being a (locally connected) generalized continuum, are topological 

properties. 

Proof: Every definingcondition in (1.17) is a topological property. I 

Peano continua, also called Peano spaoe~, Peano curves~ and continuous 

curves, are very common in the literature. The following character

ization, known as the Hahn-Mazµrkiewicz theorem, is classical; for 

one proof, see [13]. 

Theorem l.19. A Hausdorff space S is a Peano continuum if and only 

if there is a continuous mapping of the closed interval [O, 1] of 

E1 onto S. 

Example 1020. With the usual metric for En, each closed ball is a 

Peano continuum. 

Since Peano continua are separable spaces, it follows th~t a 

locally connected generalized continuum may be regarded as a "general

ization" of a Peano continuum, obtained by relaxing the condition of 

compactness to that of local compactness. Characterizations of 
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locally connected generalized continua will be given in the following 

section and in Chapter III. The remaining examples and theorem in 

this section are intended to provide illustrations of locally connected 

generalized continuao 

Example 1.21. In En with the usual metric, each open ball, as well 

as itself, is a locally connected generalized continuuma 

Example 1.22. If f is a continuous function whose domain is a 

connected subset of E1 , the graph of f is a locally connected 
I 

generalized continuum. 

Proof: Each connected subset of E1 is a locally connected generalized 

continuum, and the graph of a continuous function is homeomorphic to 

its domain [13]. 

Theorem 1.23. Let M be a dendrite and E its set of endpoints. 

The subspace M ' E is a locally connected generalized continuum if 

and only if E is closed in M. 

Proof: The definitions here and the elementary properties that follow 

from them are given by Whyburn [26]. First, suppose that E is closed 

in M. Then, since M 'E is an open subset of the compact metric 

• 
space M9 M' E is a locally compact, locally connecte~v separable 

metric space. Since M is arcwise connected and a point of E must 

be an endpoint of any arc in M on which it lies, then M' E is also 

arcwise connected. Thus, M 'E is a locally connected generalized 

continuum. 

On the other hand, suppose that E is not closed in M. Then 

there is a sequence ~> n of distinct points of E that converges 
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to a point p in M 'E. Let U be any open set in M that contains 

p. Then, since M is locally arcwise connected~ there is a connected 

and arcwise connected open set V such that p s VC U. There is some 

point e . in v, hence the arc A in M from p to e. lies in 
J J 

also. Since the set A ' {e.} contains a sequence <a.> of points 
J J. 

that converges to e . ' and since A ' {e .} CU ....... E~ then u 'E 
J J 

contains the infinite set {a.: i = 1, 2, oo•} of points which has 
J. 

no accumulation point in M' E. Since U is arbitrary~ then M 'E 

is not locally compact, hence not a generalized continuumo I 

Convex Metrics on Continua 

One immediate result of (lol3) is that every space that admits a 

v 

complete convex metric is both connected and locally connected; in fact 1 

it is arcwise connected and uniform+y locally arcwise connected [22]o. 

Therefore, a compact space that admits a convex metric must be a Peano 

continuumo The converse to this statement was an open question until 

proved in 1949 by Bing [7]. Hence, the following characterization 6f 

Peano continua is a result of the work of Menger [18] and Bing [7]. 

Theorem 1.240 A compact space is a Peano continuum if and only if it 

admits a convex metric. 

:Bing's result was generalized in 1955 to locally connected generalized 

continua by Tominaga and Tanaka [14], as follows. 

Theorem 10250 Every locally connected generalized continuum admits a 

complete convex metric. 

Of fundamental importance to this dissertation is the following 



generalized Bolzano-Weierst~ass theorem of Lelek and Mycielski [16]. 

Theorem 1026. Every closed and bounded subset of a locally compact, 

complete convex metric space is compacto 

The following theorem shows that the spaces to which (1.26) applies 

are precisely the locally connected generalized continuao Hence~ the 

following parallel is established to the characterization (lo24) of 

Peano continua. 

13 

Theorem 1.27. A locally compact space is a locally connected general~ 

ized continuum if and only if it admits a complete convex metric. 

Proof: Necessity is given by (lo25). For sufficiency~ let M be a 

locally compact space with a complete convex metric D. Then M is 

connected and locally connected [22]. Since by (lo26) each closed ball 

is compact and thus separable, and since M is a countable union of 

such closed balls, then M is separable. Therefore~ ~ is a locally 

connected generalized continuum. I 

The requirement of local compactness cannot be omitted in the 

"sufficiency" part of the proof of (1.27), as the following example 

shows. 

Example 1028. The space LP, 1 ~ p < 00 ~ or in fact any infinite 

dimensional Banach space with metric given by the norm~ is a complete 

convex metric space which is not locally compact [27]. 

The proof of (lo27) provides an apt illustration of the usefulness 

of (lo26), although~ as will be seen in (3.l2), this tool is actually 

not required for the above resulto Another application of Clo26) can 
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be seen in the following theorem, which states roughly that every non-

compact, locally connected generalized continuum with a complete convex 

metric contains an isometric copy of the closed ray [O, ~) of E1 • 

Theorem 1.29. Let p be any point of a locally connected generalized 

continuum M with a complete convex metric D. If M is not compact, 

then there is a subset R of M containing p that is isometric 
p 

with the closed ray [O, m) of E1 ; moreover, there is a closed 

retraction of M onto R • 
p 

Proof~ Since M is not compact, then by (l.26) M cannot be D 

bounded. Therefore, for each non-negative integer n the set 

c = {x: px == n} contains some point r n· Since c is closed and n n 

bounded, it is eompaet by (l.26). By (Ll3) there is a segment pr n 

for each positive n, and for each 0 < m < n the segment pr 
n 

intersects c in exactly one point qn,m" m 

n-1 

I qn,iqn;i+l == prn for each 

i:::O 

Since c1 is compact, some subsequence 

converges to a point p1 of c1 • Denote p 

an induction hypothesis that 'for 1 ~ j ~ k, 

been chosen such that 

k-1 

LPiPi+l Cl ppk 
i=O 

It is noted that 

n. (10) 

and assume for 

a point of has 

and that is the limit of a subsequence of <q ,>. 
n,J 

In particular, 

there is a subsequence <qn,,i?. of <qn 9k> that converges to pk' 
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where n' > k+2 for each i. Since Ck+l is compact7 the ~ubsequence 

<q , k 1> has a subsequence <q 11 k 1> that converges to a point n , + n 7 + 

of Since by (10) and (1.6) the point is a 

between point of p and qn'' ,k+l for each n", and since the 

sequences <q.11 k> 
n ' 

and <q " k 1> n ' + 
converge respectively to 

k 

PPk+l = ppk + pkpk+l ~ ~PiPi+l' 
i=O 

and the induction argument is completed. Therefore 7 there is a 

for each positive 

The set R 
p 

There is a segment 

of points of M such that 

n-1 

~pipi+l = ppn = n 
i=O 

integer n. 

is now constructed from <p > n by 

PP1 by (1.13). If for l < k 

induction on 

it is assumed 

and 

no 

that 

there are segments pp1 C pp2 c ... C ppk, then since ppkpk+l holds i 

by (1.14) it follows that there is a segment PPk+l containing ppk. 

By induction there is therefore an infinite sequence of segments, 

R 
p 

If i : R - E1 is defined by f(q) = pq, it is seen from the 
p 

construction of <p > and R that f(R) is the closed ray [O~ 00). 

n P P 
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Moreover, since any two points r and s of R lie together in some p 

segment ppn' then either pr + rs = ps or ps + sr == pr, and in 

both cases !f(r) - fCs) I ::: !pr - psi = rs. Hencej f is an isometryo 

Now define g : M-R by g(q) c f-1 Cpq). Since D and p 

are both continuous functions, so is g. Moreover, since g is 

the identity on R , 
p 

then g is a retraction of M onto R o 
p 

f-1 

just 

Suppose now that H is a closed subset of M such that g(H) has an 

accumulation point t in R • 
p 

If o = pt + 1 j then H n D(p;o) 

is compact, and the continuity of g insures that g(H n D(p;o)) is 

also compact. The inclusion g(H) n D(t;l) Cg(H n D(p;o)) follows 

from the fact that D(p,g(u)) = D(p,u) holds for each u of M. 

Thus, since t is an accumulation point of g(H) n D(t;l)9 then t 

is also an accumulation point of the compact set g(H n D(p;o)); in 

particular, t is in g(H). Therefore, g is a closed mappingo I 

Example 1.30. The retraction constructed in the proof of (lo29) may 

not be open. 

Proof: Let M be the planar set comppsed of the union of the closed 

unit disc and the strip [O, ~) X [-1, l] in E2 , and let D be the 

restricted euclidean metric. If p is the origin, then R 
p 

must be 

the non-negative axis. If q has a negative abscissa and is one unit 

from p, then q has no local basis consisting of sets whose images, 

under the retraction defined above, are open. J 

The obvious parallelism between the characterizations (lo24) and 

(1.27) of Peano continua and locally connected generalized continua by 

the admission of complete convex metrics, suggests that certain other 

results that have been proven for Peano continua.might be $eneralized 



to locally connected generalized continua, especially where the 

complete convex metrics play a part. The main objective of this 

aissertation is to prove results for locally connected generalized 

continua that parallel the folla'Wing metric extension theorem of 

Bing [4]. 
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Theorem 1031. If M1 and M2 are intersecting Peano continua whose 

topologies agree on their intersection, and if D1 is a convex metric 

for M1 , there is a convex metric tD3 for M1 U M2 that extends D1 o 



CHAPTER II 

VARIETIES OF COMPLETE CONVEX METRICS 

Since by (1.13) every two points of a complete convex metric 

space are joined by a segment, it might be supposed, out of analogy 

with euclidean space, that much of the classical theory of convexity 

would transfer easily to such spaces. However, such is far from the 

truth. Although it is not the purpose of this dissertation to 

investigate the possibilities of generalizing the theory of convexity 

in this way, as has been done in part by Blumenthal [8] and Rinow [21], 

it should become evident from the material now to be presented that 

complete convex metric spaces may depart drastically from the familiar 

euclidean geometry. But to illustrate non-euclidean pathologies that 

appear in complete convex metric spaces is only a secondary purpose of 

this chapter. The primary purpose is to lay a foundation for appli

cations of the extension theorems of Chapter V; this will be done by 

introducing three varieties of complete convex metrics from the 

literature. A certain number of examples and results of an expository 

nature will be in order here, since "the literature concerning 

relationships between [these three] properties of convex metric spaces 

is not satisfactory," according to Lelek [15]. But again, the major 

objective of the present chapter is to provide preliminary results to 

be used in applications of the extension theorems. 



.. 

Definitions and Characterizations 

The following definition is due to Lelek and Nitka [17]; these 

properties are also discussed by Rolfsen [22]. 

Definition 2.1. A metric is said to satisfy condition (a), (13), or 

(r), respectively, if for any points p, q, r and s of the space 

it holds that: 

(a) If prq and psq, then {p' q, r, s} is linearo 

( 13) If pqr and pqs, then {p' q, r, s} is linear. 

(~) If pqr and spq, then {p, q, r, s} is linear. 

A complete convex metric on a space, as well as the space itself9 is 

said to be: 

(i) Strongl;y convex (SC) if it satisfies condition (a). 

(ii) Without ramifications (WR) if it satisfies condition < 13L 

(iii) Without edges (WE) if it satisfies condition(~). 

Moreover, if a metric is both SC and WR, it is described as being 

SC-WR, and so for other combinations of these three propertieso 

A simple but useful result is the following. 

Theorem 2.2. Let {p, q, r, s} be a linear set in a metric space . 

(i) If prq and psq, then either pq = ps + sr + rq or 

pq = pr + rs + sq. 

(ii) If pqr and pqs, then either pr r:: pq + qs + sr or 

ps = pq +qr + rs. 

(iii) If pqr and spq, then sr = sp + pq + qr. 

Proof: Since the set {p 9 q, rg s} is linear, the metric space can 

be assumed to be El with the usual metric. The conclusions are 

19 
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then apparent. I 

The conditions defining SC, WR, and WE metrics in (2.1) provide 

little geometrical insight into these properties. The conditions given 

in the following three characterization theorems, in addition to aiding 

the geometrical intuition, prove to be quite useful in the sequel. 

Theorem 2.3. In a complete convex metric space (M, D), the following 

statements are equivalent: 

(i) The metric D satisfies condition (a), hence is SC. 

(ii) Every pair of points of M has a unique midpoint. 

(iii) Between every pair of points of M is a unique segment. 

Proof: It is shown that (i) ~(ii) ~(iii) ~ (i). 

(i) ~ (ii) If M is SC, then let m and m' be m;dpoints of the 

two points p and q. Since pmq and pm 1 q both hold, then the set 

{p, m, m', q} is linear by condition (a), hence without loss of 

generality pq pm+ mm' + m'q holds by (2.2.i). Since also 

pm = mq = pq/2 = pm' c m'q holds, then mm' = 0 implies that m ~ m9 • 

(ii) ~ (iii) If S and $' are both segments from p to q with 

S ~ S', then there are points u, v of S (] S' such that the subarcs 

of S and S' from u to v are independent arcs. But since each 

one of these subarcs is a segment from u to v by reason of the 

restricted isometries, then each contains a midpoint of u and v. 

Thus, u and v have more than one midpoint, contradicting (ii). 

Therefore, S = S'. 

(iii) ~ (i) Let prq and psq hold for two points p and q. 



Then by (Ll4), points r and s each lie· on a segment from p to 

q, and by (iii) this segment is uniquely pq. Thus, it holds that 

{p, r, s, q} Cpq, and the linearity of {p, r, s, q} follows from 

that of pq. I 
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Theorem 2.4. In a complete convex metric space (M, D), the following 

statements are equivalent: 

(i) The metric D satisfies condition(~), hence is WRo 

(ii) If pqr 1 pqr', and qr = qr' hold, then r = r 1 followso 

(iii) Whenever q is a midpoint of p and r 1 and also of p 

and r', then r = r'. 

(iv) If pq Cpr (\ ps holds, then pr Ups is a segmento 

Proof: The plan of the proof is to show (i) - (ii) - (iii) - (iv) - (i). 

(i) - (ii) If (i) holds, let q satisfy the hypothesis of (ii). 

Then by dopdition (~) 1 pqr and pqr 1 imply that {p, q, r, r'} is 

a linear set, and by (2,2.ii) it follows that pr' = pq + qr + rru 

without loss of generality. But qr~ qr' implies by the triangle 

inequality that pr 1 = pq +pr' + r 1 r ~ pr 1 + r'r ~pr. Since 

pr~ pr' similarly, it follows that pr' = pr' + r'r = pr 1 hence 

r'r = O. Therefore, r = r'. 

(ii) ... (iii) Points p, q, r, and r' 'that satisfy the hypothesis 

of (iii) must also satisfy the hypothesis of (ii), since qr= pq =qr'. 

Therefore 1 (iii) follows. 

(iii) - (iv) Suppose that pq C pr n ps holds. It is first shown 

that pr U ps cannot contain two independent arcs joining two points 

x and y of pr(\ ps. For suppose there were two such arcs, where 



22 

without loss of generality x precedes y on pr from p to r. 

Then, since there is a segment pq in p;; n ps 9 it must be that 

p f. x. If px is the subsegment of pr joining p and x, and if 

is the subsegment of ps joining- x and s, then since pxs holds, 

it follows from (1.9) that px uX'S is a segment from p to s. 

If b =min {px, xy/2} and c :::: {z: xz = 0}9 then px~ XS~ and 

the subsegment xy of pr intersect c in the points p I 9 s i 9 and 

r I 9 respectively. Then p'xr' and p'xs', along with the fact that 

XS 

b = p'x = xr' ~ xs', show that x is a midpoint of both pv 9 rrr and 

p', s'. Hence by (iii) it follows that r' = s', a contradiction 

since b < xy. Therefore, pr Ups cannot contain two independent 

arcs joining two of the points of pr n ps. 

Thus 9 let q' be the last point of pr, from p to r 9 that 

lies on ps. Since there is a point q such that pq C:pr n ps 9 then 

pf. q'. Moreover, by the previous paragraph, the subsegment pq' 

of pr is also a subsegment of ps. In the case that r f. qv f. s 9 

let b =min {pqv, q'r, q's} and C = {z: q'z = o}. Then C inter-

sects pr Ups in exactly three points pi ' r'' and 8 I I where p' 

is qn pq Q 9 r' is on the subsegment q'r of pr~ and SQ is on 

the subsegment q's of ps. The ref ore q' is a midpoint of both 

p' 9 rv and p', s', and by (iii) it foliows that r' = s'. Hence~ 

p; U Ps contains two independent arcs join;ing q' to r' = s 1 , in 

contradiction to the conclusion of the preceding paragraph. 

Therefore, it must happen that either q' = r or qv ~ s 9 in 

which case pqv is either pr or ps 9 and pr Ups is either ps 

or pr. 



(iv) -+ (i) Let pqr and pqs hold in M~ By (1.13) there is a 

segment pq, and by Clol4) there are segments pr and ps such 

that pq C prn ps. Therefore, since by (iv) the set Pi= Ups is a 

segment, the subset {p, q, r, s} is linear. Thus, D satisfies 

condition(~) and is SC. I 
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Theorem 2o5. In a complete convex metric space (M, D), the following 

statements are equivalent: 

(i) The metric D satisfies condition (r), hence is WE. 

(ii) If wx:y and xyz hold, then wz = wx + xy + yz follows. 

(iii) If wxy and xyz hold with wx = yz, then it follows that 

wz = wx + x:y + yz. 

(iv) If wxy and xyz hold with wx = yz and m is a midpoint 

of x and y, then m is a midpoint of w and z. 

(v) If x is a midpoint of w and m, y is a midpoint of m 

and z, and m is a midpoint of x and y, then m is a 

midpoint of w and z. 

(vi) If it holds that ~ n pr = pq, then sq U pr is a segment 

from s to r. 

Proof; The theorem will be proved by showing that (i) ... (ii) -+ (iii) .... 

(iv) -+ (v) -+ (i) and that (i) -+(vi) -+ (i). 

(i) ... (ii) If it holds that 

(r) implies that {w, x, y, z} 

that wz = wx + xy + yz. 

wxy and x:yz, then (i) by condition 

is linear. By (2.2.iii)? it follows 

(ii) ... (iii) Statement (iii) has a stronger hypothesis than (ii), but 

the same conslusion. 
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(iii) ... (iv) If wxy and xyz hold with wx ~ yz and m is a 

midpoint of x and y, then (iii) implies wz = wx + xy + yzo Since 

m is a midpoint of x and y, it holds that xy = xm +my with 

xm = my. Hence wz = wx + xm + my + yz = wm + mz holds with 

wm ""wx +:km= my+ yz = mz. Therefore, m is a midpoint of w 

and z. 

(iv) ... (v) Let x be a midpoint of w and m, y a midpoint of 

m and z, and m also a midpoint of x and Yo Then wxm and 

xmy hold. By Clol4), there is a segment xy containing mo If xm 

is a subsegment of xy, then since wxm holds, by (lol4) again there 

is a segment wm containing xm. Let n be the midpoint of x and 

m in xm. Since wxm and xmy hold with wx = xm =my, and n is 

a midpoint of x and m, then from (iv) it follows that n is a 

midpoint of w and y. Thus, because of wny, wxn on wm, and 

nmy on xy, there follows wy = wn + ny = wx + xn + nm + my = wx + xy; 

that is, W'X.yo 

An argument simil~r to the one in the preceding paragraph shows 

that xyzo Since it holds that wxy, xyz, wx = xm = my = yz, and 

m is a midpoint of x and y, then by (iv) it follows that m is a 

midpoint of w and z. 

(v) - (i) Let pqr and spq hold, and suppose that the set 

{p~ q, r, s} is not linearo By Clol3), there is some segment pq, 

and by (lol4), there are segments sq and pr containing pq. The 

set X "" {h e sq~ hqr or h "" q} is non-empty, since pqr holdso 

Moreover, X is closed in sq, for suppose h is the limit of a 

sequence of points <h > n 
in x "{q}. Then from the continuity of 



the metric it follows that 

hr = lim h r = lim (h q + qr) = lim h q + qr = hq + qr, 
n-.oo n n""'°" n n-- n 

so that h e: X. Therefore, since X is closed, then X intersects 

sq in a first point p0 from x to q. It follows that 

p0r = p0q + qr and sp = sp0 + p0p and also that p0 ~ s; for if 

p0 = s, then sr = sp + pq + qr, that is, {p, q, r, s} would be 

linear, contrary to assumption. In a similar manner, the set 

Y = {k e: pr: spk or k = p} intersects pr in a last point q0 

from p to r 9 with sq0 = sp + pq0 , qr = qq0 + q0r, and q0 ~ r. 

Therefore, if sp and p0q are contained in sq, and if qr and 

-are segments aq0 
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'pqb are in pr, then sp U pq0 and p0q U qr 

and p0r, respectively, by (1.19). Moreover, if p0q0 is a subsegment 

of then 

pOqO = ( Poqo n sp) U ( pOqO n pqO) 

= {x e: sp: p0q0 = p0x + xq0 } U {x e: pr: p0q0 = p0x + xq0 } 

= (x e: e:;q: p0p = p0x + xp} U {x e: pq: pq0 = px + xq0 } 

U {x e: qr: qq0 = qx + xq0 } 

U {x e: qr: ' qq0 = qx + xq0 } 

= {x e: p0q: p0p c p0x + xp or pq0 = px + xq0 } 

U {x e: qr: p0q0 "" p0x + xq0 } 

= {x e: p0q: p0q0 = p0x + xq0 } U {x e: qr: p0q0 = p0x + xq0 } 

"" (pOqO () Poq) U (pOqO n qr) 

"" pOqO () Por. 

Hence, not only does p0q0 C sq0 hold, but also p0q0 C p0r. 



and q0r C p0r, and define the set 

there are points a~ e: sp0 , b e: q r with ... e: 0 

a pb ). 
e; e: 

The set E is non-empty, since 0 e: E, and is bounded above by 
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min {sp0 , q01'}. Therefore the number 13 = sup E exists, and there is 

a sequence <e: > n 
of E 

Let a and b denote n n 

b denote the points of 

apo = qob = 130 Then 

such that 

lim e:n = 13. 
n--

a and b 
e; e:n n 

spo and qor' 

for every n and 

respectively, and let 

respectively, such that 

lim aa ::: lim (ap0 - a p ) = lim ( 13 - e:n) = o, 
n.- n n-oeo n 0 n-oeo 

and similarly 

lim bb = 0. n 
n-

By the triangle inequality, a b < a a + ab + bb • n n - n n Hence~ 

a 

ab = lim (a a + ab + bb ) > lim ab E lim (a p + pb ) = ap +pb. n n - nn n n n-- · n-.oo n-..oo 

Therefore, ab = ap + pb holds. If it were the case that a = s, 

and 

then would follow sb = sp + pb and ~ > O, from which it could be 

concluded that b e: Y and q0br on pr, contradicting the definition 

of Hence, a ~ s and similarly b f r. 

Let 20 ""min {sa 9 ab, br}, and let w and z be the points 

of 8; C sp0 and br C q0r, respectively, such that wa ""' bz = o. 



Let m be the midpoint of p0 and q0 that lies on Let x 

be the midpoint of w and m in sq0 , and let y be the midpoint 

of m and z that lies in p0r. Since it is true that 

wm = wa + ap0 + p0m = mq0 + q0b + bz = mz, then it must hold that 

xm = wm/2 = mz/2 = my. Moreover, am = ap0 + p0m = mq0 + q0b = mb 

holds. The relationship amb is shown from the equation 

ab = ap + pb = ap0 + p0p + pq0 + q0b c ap0 + p0q0 + q0b = ap0 + p0m + 

mq0 + q0b = an + mb. Therefore, m is a midpoint of a and b, 

from which it follows that am = mb = ab/2 2: o. Thus it must be that 

xm = wm/2 = (wa + am)/2 c (o + am)/2 S (am + am)/2 = am, hence that 

am = ax + :x:m holds for {a, x, m} C$q0 ., Similarly, mb = my + yb 
., 

holds. Since amb~ then ~b = am + mb = ax + xm + my + yb, from 

which it follows by (1.6) that xy = xm + my, or xmy. Thus, m is 

a midpoin~ of x and y, since xm = ym was shown previously. In 
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summary, x is a midpoint of w and m, y is a midpoint of m a.nd 

z, and m is a midpoint of x and y. From (v) it f~llows that 

m is also a midpoint of w and z. Hence, wz = wm + mz = 

wpO + Porn + mqO + qOz = wpO + pOqO + qOz = wpO + PoP + pqO + qOz 

holds 9 implying wpz. But wp0 c wa + ap0 = o + ~ = q0b + bz = q0z 

holds, and the inequality wp0 = q0z > ~ contradicts the definition 

of ~. In this way~ the assumption that {p, q 9 r, s} is not linear 

is shown to be false 9 and (i) is proved. 

(i) ... (vi) Suppdse Scin pr c pq holds. If p = s then pq =sq 

implies that sq U pr= pqU pr= pr. If q = r, then similarly 

sq U pr "" sq holds. It may therefore be assumed that p f: s and 

q ~ r, and it follows from sq(\ pr = pq that spq and pqr. By (i) 

therefore,. the set {p, q, r, s} is linear, and from (2.2) it follows 



that sr = sp + pq +qr holds, and in particular spr from (1.6). 

If sp C sq, then sq U pr = sp U pq U pr = sp U pr follows. Thus 

by (1.9), it follows that sq U pr is a segment from s to r. 

(vi) ~ (i) Let spq and pqr hold, and by (1.13) pick some 
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segment pq. From (1.14), there are segments sq and pr such that 

pq Csq n pr holds. To show actual set equality, suppose that there 

is a point u of (sq ' pq) n (pr , pq). Then upq and pqu both 

hold, a contradiction to (108). Therefore, it must be that 

pq = sq n pr. By (vi) it follows that sq U pr is a segment, and 

therefore the subset {p, q, r, s} is linear. Hence, (i) holds. I 

Examples 

The independence of the properties SC, WR, and WE is a natural 

area for investigation, once they have been defined and characterized. 

For example, the question could be raised, Is every SC-WR metric also 

WE? To this question no answer has yet appeared in the literature, 

although Lelek [15] suspects that the answer is negative. If this 

were indeed the case, then the negative answer, together with the 

following examples, would show that these properties are entirely 

independent of one another in the sense of logical implication. But 

before these examples are presented, it will be convenient to define 

a particular metric, following Busemann [10]. 

Definition 2060 Let (M, E) be a metric space, each two points of 

which are joined by at least one arc of finite length with respect to 

the metric E. For points x fo y, define D(x,y) to be the infimum 

of the lengths of all arcs joining x and y. Then D is a metric 



on the set M, called the ·geodesic metric obtained from E. When M 

is a subset of euclidean space, then by "the geodesic metric on M'' 

is meant that one obtained from the usual euclidean metric restricted 

to M. 

Example 2~7. The usual metric for En is SC-WR-WE. 

Example 208. The geodesic metric on the union in ~ of .three 

euclidean segments sharing precisely one common endpoint is SC=WE, 

but not WR. 

Example 2o9. The geodesic metric on the 2-sphere s2 · is WR but is 

neither SC nor WE. 

Example 2.10. If the metric of (2.9) is restricted to the part of 

s2 that lies in the non-negative x and y half-spaces, then it is 

WE-WR, but not SC. 

Example 2.11. If a euclidean segment has in common with the space 

of (2.10) exactly one of its endpoints, the resultant geodesic metric 

is WE but is neither SC nor WR. 

Example 2ol2. The geodesic metric on the union in E2 of the unit 

circle and the segment [l, 2] X {O} is neither SC, WR, nor WEo 

It should be noted that the metrics for the examples of (2o7) through 

(2ol2) are all convex, and since the spaces are compact, the metrics 

are also complete. 

The final example in this section is related to an interesti~~ 

phenomenon in the literature. Busemann [10] has shown that in a 

locally connected generalized continuum with a SC-WR metric which 
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satisfies the additional property that for every two points x and y 

there exists a point z with xyz, then any two points uniquely 

determine a "straight line," that is, a subspace isometric to E1 • 

Moreover 9 in such a space a "perpendicular" can be constructed from a 

point to a nstraight line" if and only if the closed balls are convex. 

The convexity of the closed balls thus becomes a rather significant 

point. Glynn [12] poses the question whether in a Peano continuum 

with an SC metric, the closed balls are necessarily convex. The 

following example answers Glynn's question in the negativeo A further 

result on the convexity of balls will be given in (603). 

Ex~mple 2ol3. A 2-cell admits a complete convex metric that is SC 

but neither WR nor WE, having closed balls that are not convex. 

Proof: Define the 2-cell C = {(p,G): 0 $ p $cos G, -073 $ G ~~ 073} 

by using polar coordinates in E2 , as Figure l illustrates on the 

following page. The set C is composed of "ridge sections" 

R(G,r1 ,r2) = {(p,Q): r 1 cos Q $ p $ r 2 cos Q or r 2 cos Q < p $ 

r 1 cos G}, defined for all -073 $ Q $ 073 and for all 0 $ r 1 ,.r2 $ L 

Set C is also composed fo '1arch sections'' of the form 

A(r, G1 , G2) c {(p,G): p = r cos Q, Ql $ Q $ G2 or 92 $ G $ G1 }9 

defined for all 0 $ r $ 1 and for all -073 $ 91 , 92 $ o73o The 

arclength L of these sections, with respect to the euclidean metric 

II 0 ll, is given by the expressions 

2 I"\ 2 . 2 I"\ cos ... + r sin ... 



Arch 
section 

Ridge 
section 

Figu,re 1. The Space C of (2.13) 

The metric D may now be defined on C X C as follows~ 

n 

if x /, y~ D(x 9 y) = inf {LL( Si): 

icl 

the S. are alternately non-
1 

I 
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degenerate ridge sections or non-degenerate arch 

sections with endpoints p. and q. such that 
1 1 

x ::: pi' y = qn' and q, = Pi+l for all 
1 

i = 1, 2, l\1' 0 0 ' n-1; for all n = li 21 0 0 0} 0 

The section Si may a~so be designated (Si9 pi' qi) when it is 

desired to specify its endpoints. 

The following assertions are now to be proved. 



(i) If x ~ y and <S.>~ 1 is a finite sequence of ridge 
1 1= 

sections and arch sections with endpoints pi a.lld qi re spec ti vely 

such that x = p1 , y = q , and q. = p. 1 for i = 1, 2, ••• , n=l, n 1 1+ 

n' then there is a finite sequence <Si>i=l as in the definition of D 

such that ., n' < n holds, along with 

n' n 

and "\ L( S ! ) < "\ L( S . ) • L 1 -L 1 

i=l ii::::l 

(ii) llx - Yll S D(x,y) for all x, y e; c. 

(iii) D is a metric on the set C. 
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(iv) If 0 S r 1 <r2 S1 and -.73 ,:5 91 , 92 S .73 with Ql ./:. G2 , 

then it holds that 

L(A(r1 , 91 , 92)) + L(R(92 , r 1 , r 2)) < L(R(G1 , r 1 , r 2)) 

+ L(A(r2 , 91 , 92)). 

(v) If 'o ~ r 1 , r 2 ,:::; 1 and -073 ,:5 91 , 92 ,:::; .73 with r 1 ~ r 2 , 

then it holds that 

L(A(r2 , 91 , G2)) < L(R(G1 , r1 , r 2)) + L(A(r1 , Ql' G2)) 

+ L(R(92 , r1 , r 2)). 

(vi) If 0 ,:5 r 1 , r 2 ,:5 l and -.73 S 91 , 92 ~ .73 with 91 ~ 92 

and r 1 + r 2 ~ O, then it holds that . 

L(R(G19 r1 , r)) < L(A(r1 , G1 , 92)) + L(R(92 , r 1 , r 2)) 

+ L(A(r2' 91' 92)). 



(vii) Each non-degenerate ridge section is the unique D segment 

joining its endpoints. 

(viii) Each non-degenerate arch section is a D segment. 

(ix) Each non-degenerate arch section is the unique D segment 

joining its endpoints. 

r 1 < r 2 and G1 fo G2 , then A(r1 , G1 9 G2) 

D segment xy. 
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(xi) The D segment given in (x) is the only one joining the two 

points x and y. 

(xii) D is equivalent to the usual planar metric restricted to 

the set C. 

(xiii) D is SC. 

(xiv) D is not WRo 

(xv) D is not WE. 

(xvi) The closed ball D((O, O); cos .73) is not convex. 

(i) This assertion is obvidus geometrically, and its p:t-oof can 

be formalized by means of an induction argument on n. The sequence 

<( s. 9 p. 9 q. )>~ 1 
1 1 1 1= 

is reduced down to n' 
<( s ! ' p ! ' q ! )>. 1 1 1 1 1= 

by repeated 

applications of the following two-step process: (1) omit all 

degener~te sections; (2) consolidate all adjacent sections of the 

same type. 



(ii) Since the length of any arc from x to y will at least 

equal the usual distance II x - y II, and since the union of any finite 

sequence n 
<S.>. 1 

1 1= 
of sections as in the definition of D(x~y) 

contain some arc A from x to y with 

n 

L( A) < L L( s i ) ' 

i=l 

then it follows that !Ix - Yll ~ D(x,y) holdso 

must 

(iii) It is immediate from (ii) and from the deffnition of D that 

D(x,y) = 0 if and only if x = y. Symmetry is observed from the 

definition of D. The triangle follows in a straightforward manner 

from (i). 

(iv) If 91 < 92 , then since cos x - x is a strictly decreasing 

function for -.73 ~ x ~ .73, it follows that the inequalities 

cos Q2 - G2 <cos Ql - G1 , cos 92 - cos Ql < G2 - Q1 , and 

Cr2 - r 1 ) (cos G2 - cos G1 ) < Cr2 - r 1) (g2 - 91 ) all holdo Thus, 

must hold. If G1 > G2 ~ then -Q1 < -G2 , so that G1 and 92 may 

be replaced in (1) by their negatives, and (1) is again obtainedo 

(v) If r 1 < r 2 , then !G1 - 92 1~2Co73) < 2 cos 073 ~ cos~\ 

+cos G2 , hence (r2 ~ r 1 ) IG1 - G2 l < Cr2 - r 1 )Ccos G1 +cos G2), so 



must holdo If r 2 < r 1 and Ql ~ Q2 , then (2) is again established 

by r 2 IQ1 - 92 1 < r 1 191 - 92 1. If r 2 < r 1 and 91 = 92 , then 

r 2 191 - G21 = 0 establishes (2). 
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y::: (r2 cos 92, Q2), and z = (r2 cos Ql' 91). Since Ql ~ Q2 holds 

and A(rl, Ql' 92) is not a euclidean segment, then it .follows that 

11 w - x II < L( A ( r 1 , Ql' Q2)). Hence, 

L(R( o1 , r 1 , r 2)) == II w - z II :5 II w :-- x II + II x - y II + II y = z II 

< L(A(r1 , 91 , G2 )) + L(R(G2 , r 1 , r 2 )) + L(A(r2 , G1 , 92)). 

(vii) This asse!tion follows from (ii), since non-degenerate ridge 

segments are unique euclidean segments. 

(viii) 

and 91 ~ G2 o It will be shown that if the finite sequence 

<(S., p., q.)>ni 1 is as in the definition of D(x,y) with n > 1, then 
1 l. l. ::: 

n 

L(A(r, G1 , G2 )) < ~L(Si). 
i=l 

(3) 

This is established by induction. If n = 2, then there is no finite 

2 sequence <(S. 9 p., q.)>. 1 as in the definition of D(x,y), since 
l. J. J. J.= 

such a sequence would have to include one non-degenerate ridge section; 

that is, (3) holds vacuously for n = 2. In the case that n = 3, if 

<(S.9 P·v qi)>? 1 is as in the definition of D(x,y), then as before 
l. J. 1= 

there must be more than one ridge section; that is, s1 and s3 are 
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non-degenerate ridge sections and s2 is a non-degenerate arch section. 

Assertion (v) shows that (3) holds for n = 3. 

Suppose it has been shown that (3) holds for k - 1 ~ 3. Let 

k <(S., p., q.)>. 1 be as in the definition of D(x,y). Since there are 
1 1 1 1= 

ridge sections in this finite sequence, there are also arch sections 

A(s, ex., ~) with s ~ r, and even s < r without loss of generality. 

Let so = min {s: A(s, ex.' 13) = s. for some i = 1, 2~ 0 0 0 ~ k}. Then 
1 

A(s0 , ~O' 130) = s. 
J 

for some 1 < j < k, sj-l = R(a0 9 so' sl) for 

some so < sl' and sj+1=RCl30' SO' s2) for some so < s2; without 

loss of generality let 81 .:5 s2. The k - 1 term sequence 

s1 , s2 , ••• , Sj_29 A(s1 , cx.0 , 130 ), R(~O' s1 , s 2), Sj+2 ' ooo' Sk 

satisfies the hypothesis of (i), hence there is a finite sequence 

<(T.' 
1 

k' 
ai.' b. )>. 1 1 1= 

as in the definition of D(x,y) with 

and 

k' 

L L(Ti) 

i=],. 

j-2 

< LL(Si) + L(A(s1 , a.0 , 130 )) + L(R(l30 , s1 , 

i=l 

From (v) it follows that 

k 

s 2 )) + L L(SiL 

i=l 



But the induction hypothesis yields 

so that 

must follow. 

k' 

L(A(r 9; Ql, Q2)) .S I L(Ti), 

i=l 

k 

L(A(r, Q1 , Q2)) < LL(Si) 

i:::l 
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The induction is therefore complete, and shows that if the finite 

sequence <(Si, pi' qi)>~=l is as in the definition of D(x,y) but 

distinct from <(A(r, 91 , 92), x, y)>, then it holds that 

k 

L(A(r, Q1 , 92)) < LL(Si). 

i:cl 

Hence, D(x,y) = L(A(r, Q1 , 92)) = r IQ1 - 92 1 follows. Moreover, if 

z = (r cos Q, Q) is any point of A(r, 91 , 92), then Q is between 

91 and 92 inclusively, so that the foregoing argument may now be 

applied to show that 

D(x,z) + D(z,y) = r !G1 - 91 + r IG - 92 1 Er 191 - 9 2 1 = D(x9y); 

that is, A(r, 91 , G2) is a D segment xy. 

(ix) Let x = (r cos 91 , 91 ) and y c (r cos 929 .G2) with 

Q1 I Q2· It was shown in (viii) that A(r, Ql' Q2) is a D segmento 

Let z = ( p cos ¢, ¢) be a point that does not lie on A(r, Ql' G2L 



If p = r, then ¢ does not lie between Ql and g2 'l so that one of 

the distances D(x,z) = A(r'l g1 , ¢) or D(z,y) = A(rs ¢9 92 ) exceeds 

D(x,y), hence D(x,z) + D(z,y) > D(x'ly). If p < r, then 

D(x'lz) + D(z'ly) 

= p J91 - ¢1 + (r - p) cos 91 + P 1¢ - 92 1 + (r = p) cos 92 

2: ( r - p) cos 91 + p 191 - 92 J + ( r - p) cos G2 

> r Jg1 - 92 1 = D(x,y) 

holds by the real triangle inequality and by (v). If p > r~ then 

D(x,z) + D(z,y) 

= r 191 - ¢1 + (p - r) cos¢+ r 192 - ¢1 + (p = r) cos¢ 

> r Jg1 - 92 1 + 2 (p - r) cos¢ 

> r J91 - 92 1 = D(x,y) 

holds by the real triangle inequality. 

Thus4 1n any case, z is not a between point of x and y. 

Therefore'l A(r, 91 , 92 ) is the unique D segment xy. 

(x) The method is induction on n, with the induction hypothesis 

given as follows: if <(S. 'l p., qi)>~ 1 is a finite sequence as in 
1 1 1= 

the definition of D(x'ly), then 

n 

L(A(r1 'l 919 92 )) + L(R(Q2 , r 1 'l r 2)) < ~L(Si) 
i=l 

holds if n 2: 2s with strict inequality holding for n 2: 3. If n ~ 2 

and S19 s2 is as in the definition of D(x,y), and if it is not 

true that s1 = A(r1 , G1 , 92 ) and s2 = R(92 , r 1 , r 2), then it must 



hold that s1 ~ A(r1 , G1 , 92) ~d s 2 = A(r2 , 91 , 92). Whichever 

form sl, $2 may take, statement (iv) insures that 

L(A(r1 , G1 , G2)) + L(R(G2 , r1 , r 2)) ~ L(S1 ) + L(S2) holds, and it 

should be noted that (iv) does imply strict inequality if sl, s2 is 

not A(r1 , 91 , 92), R(92 , r1 , r 2). 

Suppose that for k - 1 > 2 the induction hypothesis holds, and 
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let <(Si, pi, qi)>~=l be as in the definition of D(x,y). It may be 

assumed that 91 < 92 , since inequalities given in (iv), (v), and (vi), 

as well as the present line of argument, do not depend essentially on 

a particular order for gl and g2· Let pi a: (pi cos ~\' ¢i) for 

i = 1, 2, • 0 .. ' k, and let pk+l "" r2' ¢k+l = Q2. 

Suppose that k 
<S.>. 1 

l. l."' 
contains a ridge section that goes left; 

that is, suppose p. < p. l holds for 
1. J.-

some i. Then either of two 

cases could hold. In the first case, r2 :::i: pk+l < pi for some i. 

Let PM = max {pi: i = 1, 2, • 0. 9 k}. Then ~= pj > pj-1 for some 

index j. Therefore, Sj-l is the ridge section R(¢j, pj-l' pj), 

S j is the arch section A( p j, ¢ j, ¢ j+l), and Sj+l is the ridge 

section R(¢j+l' pj, pj+2), with pj :::i: pj+l > pj+2• Without loss of 

generality it may be assumed that pj-l ~ pj+2• Then the k - l term 

sequence s1 , ••• , Sj_2 , A(pj-l' ¢j, ¢j+l), R(¢j+l' Pj-l' Pj+2), Sj+2 ' 

••• , Sk satisfies the hypothesis of (i). Therefore, there is a finite 

k' sequence <Sf>i=l as in the definition of D(x,y) satisfying 

k' j=2 

L(Si_) ~ IL(Si) + L(A(pj-1' ¢j, ¢j+l)) + L(R(¢j+l' pj-1' pj+2)) 
i::l i=l 



k 

+ I L(S.) 
1 

i=j+2 

I 

for some k' ~ k - 1. Thus by the induction hypothesis, it holds that 

k' 

L(A(r1 , 91 , G2)) + L(R(G2 , r 1 , r 2)) < LL(Si). 

i~ 

But by (v), it must hold that 

L(A(pj-1' ¢j, ¢j+l)) +L(R(¢j+l' pj-1' pj+2)) 

< L(R(¢j, pj-l' pj)) + L(A(pj, ¢j, ¢j+l)) + L(R(¢j+l' pj9 pj~l)) 

+ L(R(¢j+l' pj-1' pj+2)) 

= L(Sj-l) + L(Sj) + L(Sj+l). 

Thus, it follows that 

k' k 

L(A(r1 , G1 , 92)) + L(R(G2 , t 19 r 2)) < ~L(Si) < ~L(Si). 
icl isl 

In the second case, it happens that Pi.~ r 2 = pk+l holds for each i. 

Let pm= min {pi: pi< pi-l' i = 1, ••• , k+l}. The preceding set is 

non-empty since k 
<S.>. l 1 1c 

does contain a ridge section that goes left. 

Then pm ~ pj < pj-l holds for some l < j < k + 1. In fact, since 

is the ridge section R(¢j, pj' pj_1), and Sj must be the arch 

section A(pj, ¢j 9 ¢j+l), then it must hold that j < k and Sj+l 

must exist as a ridge section R(¢j+l' Pj' pj+l) with Pj < Pj+l· 

The argument now proceeds as in the first case in showing that 



k 

L(A(r1 , 91 , g2)) + L(R(92 , r 1 , r 2)) < LL(Si). 

i=l 

k Suppose that <Si>i=l contains an arch section going down; that 

is, suppose ¢. < ¢. 1 holds for some 
1 1-

i. Then the proof proceeds 

by use of (vi) in two cases, exactly as the preceding proof for ridge 

sections proceeded by use of (v) in its two cases, and the result is 

k 

L(A(r1 , 91 , 92)) + L(R(92 , r 1 , r 2)) < ~L(Si). 
i=l 

Finally, suppose that all r~dge sections go right and all arch 

sections go up; that is, suppose that and ¢. 1 < ¢. 
1- - 1 

hold for all i = 2, ooo' k + 1. Since k - 1 ~ 2, there is a first 
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arch section Sj ~ A(pj, ¢j' ¢j+l) with pj > p1 = r 1 , for this will 

be the section following the first ridge section Sj-l = R(¢j, pj-l~ pj) 

with p. 1 < p .• Of course, j ~ 2 must hold. 
J- J 

If j = 2, define Si= A(pj-l' ¢j, ¢j+l); define 

S2_ = R(¢j+l' Pj-l' pj) U s3 = R(¢j+l' pj-l' pj+2 ); and define 

S! = S. 1 for i = 4, •.• , k - 1. Then the finite sequence 
1 1+ 

<Si>~:i is as in the definition of D(x,y), and by the induction 

hypothesis it follows that 

k-l k 

r 2 )) s LL(Sj_) < L L(Si) 

i=1 i=l 

holds, since (iv) implies 
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L(s:p + L(s2) 

= L(A(pj-l' ¢j, ¢j+l)) + L(R(¢j+l' pj-l' pj)) + L(R(¢j+l' pj~ 'Pj+2)) 

< L(S1) + L(S2) + L(s3). 

If 3 ~ j = k, define Si= Si for i = 1, .•. , j - 3 in the 

case that j = 4; define 

Sj_2 = Sj_2 LJ A(pj-l' ¢j' ¢j+l) = A(pj-l' ¢j_2 , ¢j+l); and define 

S '. 1 = R(¢. 1 , P. 1 , p.). Then it happens that the finite sequence 
J- J+ J- J 

<S '>k-l · · th defi'ni"ti'on f D( ) i i=l is as in e o x,y , and by the induction 

hypothesis it follows that 

k-1 k 

r 3)) ~ I L(S:i_) < I L(Si) 
i=l i=l 

must hold, since (iv) implies 

L(S~ 2 ) + L(S~ 1) 
J- J-

= L(Sj_2 ) + L(A(pj-l' ¢j, ¢j+l)) + L(R(¢j+l' pj-l' pj)) 

< L(S. 2) + L(S. 1) + L(S.). 
J- J- J 

If 3 ~ j < k, then define S.! = S. 
l. l. 

for i = 1 , ••. , j - 3 in 

the case that j ~ 4; define 

S 0• 2 = s. 2 U A(p. 1 , ¢., ¢. 1 ) = A(p. 1 , ¢. 2 , ¢. 1 ); and define 
J- J- J- J J+ J- J- J+ 

S! = S. 2 for i = j, ••• , k - 2 in the case that k ~ j + 2. 
l. 1+ 

Then <S~>~-12 is as in the definition of D(x,y), and it follows from 
l. ]_::::: 

the induction hypothesis that 

k-2 

L(A(r1 , 919 Q2 )) + L(R(92 , r 1 , r 2 )) ~ L L(Si_) 

i=l 



holds 1 since (iv) implies 

L(S~ 2) + L(S~ 1 ) 
J- J-

= L(Sj_2 ) + L(A(pj-l' ¢j, ¢j+l)) +L(R(¢j+l' pj-l' pj)) + L(Sj+l) 

< L(S. 2 ) + L(S. 1 ) + L(S,) + L(S. 1 ). 
J~ J- J J+ 

Therefore, the induction is complete, with the result that if 

x = (r1 cos g1 , g1 ) and y = Cr2 cos g2 , g2) with r 1 < r 2 and 

9 .j g , then 

n 

L(A(r11 Q11 G2)) + L(R(g2 , r 1 , r 2 )) < ~L(Si) 
i=l 

holds for any finite sequence <Si>~=l as in the definition of D(x 1 y) 

D(x,y) c L(A(r1 , Ql' 92 )) + L(R(g2 , r 1 , r 2 )) 

= r 1 !g1 - g2 1 + (r2 - r 1 ) cos Q2 • 

Moreover, from this fact and from (vii) and (viii) it follows easily 

(xi) To prove the uniqueness of the above segment, let 

x = (r1 cos Qlj G1 ) and y = (r2 cos 92 , G2) with r 1 < r 2 and 

G1 ft G2 o By (x), it holds that A(r1 , g11 G2 ) U R(G21 r 19 r 2 ) is a 

D segment XYo Let z = (p cos¢,¢) be a point not ~ying on 

A(r1 9 G1 ~ G2 ) U R(G2 , r 1 , r 2). If p < r 1 , then it holds that 

D(xjz) + D(ziy) 
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2: (r1 - p) cos 91 +JP IG2 - 91 1 + Cr1 - p) cos 92 + (r2- r 1 ) cos 92 

> r 1 192 - 911 + (r2 - r 1 ) cos 92 = D(x,y) 

by the real triangle inequality and (v). If r 1 Sp S r 2 9 then 

D(x,z) + D(z,y) 

= r 1 1¢ - Q1 1 + (p.:. r 1 ) cos¢+ p IQ2 -¢1 + Cr2 - p) cos 92 

> r 1 1¢ - Q1 1 + r 1 IQ2 - ¢1 + (p - ~1 ) cos Q2 + (r2 - p) cos 92 

2: r 1 !G2 -- G1 1 + (r2 - r 1 ) cos Q2 = D(x,y) 

holds by (v) and the real triangle inequality. If r 2 < Pw then 

D(x,z) + D(z,y) 

= r 1 1¢ - Ql I + ( P - r 1 ) cos ¢ + r2_, 1¢ - Q2 I + ( p - r 2 ) cos ¢ 

= r 1 1¢ - 91 1 + (p - r 2 ) cos¢+ (r2 - r 1 ) cos¢+ r 2 1¢ - g2 J 

+ (p - r 2 ) cos¢ 

> r 1 1¢ - G1 1 + (p - r 2 ) cos¢+ r 1 1¢ - Q2 1 + Cr2 - r1 ) cos G2 

+ (p - r 2 ) cos¢ 

2: r 1 IQ2 - G1 J + Cr2 - r 1 ) cos G2 + 2 (p - r 2) cos¢ 

> D(x~y) 

holds by (v) and the real triangle inequality. 

In any case, D(x,z) + D(z,y) > D(x,y) holds, so that z cannot' 

be a between point of x and y. Thus, the D segment 

A(r1 9 G1 7 G2) LJ R(Q2 9 r1 , r 2 ) is unique as xy. 

(xii) 

distinct points of C9 with r 1 S r 2 • It was shown by (ii) that 

D(xgy) 2: ll x - y II. It is now shown that D(x7y) S (k/-{2) II x ~ y II, 

where k =TI/ (2 cos .73). From either (x) or (viii) it follows that 



D(x,y) = r 1 !G1 - G2 ! + (r2 - r 1 ) cos G1 . Since t S 11/2 sin t holds 

for all 0 .:st s~/2, then IQl - G21s1.46 implies that 

!G1 - G2l 6 /2 sin !G1 - G2 !. Moreover, since 1 <cos G1 /cos 073, 

must hold. 

Now, in the case that cos Q2 - cos Qi cos (g2 - Q1 ) ~ O, then 

cos G2 + cos Ql cos (G2 - G1 ) .:S 2 cos G2 holds~ hence 

2 2 2 
cos g2 - cos gl cos (g2 - gl) 

_:s 2 cos G2 [cos G2 - cos G1 cos tg2 - G1 )J 

is obtained upon multiplication by cos Q~ - cos G1 cos (g2 - G1 )o 

( 4) 

( 5) 

Ifi on the other hand, it happens that cos 1~2 - cos G1 cos (G2 - G1 )s ·~.· 

holds, then cos G2 + cos G1 cos (g2 - Q1 ) ~ 2 cos G2 , and again (5) 

is obtained upon multiplication by cos G2 - cos G1 cos C~2 ,i)~: ... 91 ); 

that is 1 (5) holds in either case. When (5) is multiplied through by 

the corresponding members of there results the inequality 

2 2 2 2 r 1 [cos G2 - cos G1 cos (g2 - G1 )J 

< 2 r 1 r 2 cos G2 [cos G2 - cos Ql cos (g2 - G1 )Jo 

By distributing the multiplications over the differences and by adding 

2 
rl 

members, the inequality 

2 2 
- 2 r2 cos g2 

2 
rl r2 cos Q2 

< 2 2 - 2 r 1 r 2 r2 cos g2 

2 2 2 
+ rl cos '\ cos 

to both 

2 
; 

2 l•' 
g2 + rl c~os 

cos gl cos g2 cos (g2 = Ql) 

(g2 - gl) 
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is obtainedj which may be rewritten as 

Therefore, since k > 1, this last inequality becomes 

Inequalities (4) and (6) add to the inequality 

D(x 9y) ~ k [r1 cos Ql sin lg1 - g2 1 

+ Jr2 cos Q2 - r 1 cos Ql cos (g2 = Q1 )1J. (7) 

But since (1/2) (s + t) 2 ~ s2 + t 2 holds for all real s and t~ 

2 (1/2) [r1 cos G1 sinl91 - 92 1 + lr2 cos g2 - r 1 cos Ql cos(Q2 = 91 )JJ 

2 _\_ 2 2 2 2 
~ r 1 ~s Ql sin (g1 - Q2) + r 2 cos 92 

- 2 r 1 r 2 cos 91 cos 92 cos (g1 - 92) + ri cos2 91 cos2Ct1- Q;) 

2 2 2 2 = r 1 cos G1 + r 2 cos 92 - 2 r 1 r 2 cos 91 cos 92 cos (g1 = 92) 

2 2 2 (r1 cos G1 - r 2 cos Q2 ) 

+ Cr1 cos G1 sin Ql - r 2 cos 92 sin 92)2 

2 - II x - y II 

is obtained. 

"«. 

This last inequality, combined with (7)j yields the fact that 

D(x~y) ~ k/-/2 II x - y II» completing the proof that D is equivalent to 

the usual planar metric restricted to C. 

(xiii) Since C is compact under the usual planar metricj then by 

(xii) it is shown that (C~ D) is compact, and in particular, D is 



complete. Moreover, since (vii), (ix), and (xi) combine to show that 

for every two points of C there is a unique D segment joining them, 

then D is SC according to (2.3). 

(xiv) The metric D is not WR, for let r = 1/1.73. Since the 

point (r, O) is on the segment A(r, -.73, O) U R(O, r, 1), which is 

'(r cos ;73, -,73) (1, O), and since D((r cos .73, -.73), (r, O)) 

= L(A(r, -.73, 0)) = .73 r = .73/1.73 = 1 - r = L(R(O, r 1)) 

= D((r, O), (1 1 O)), then (r, O) is the midpoint of the points 

(r cos .73, -.73) and (1, O). Similarly, (r, O) is the midpoint of 

the points Cr cos .73, .73) and (1, O). Hence by (2.4), D is not 

WR. 

(xv) Neither is D a WE metric, for let p =(cos .73, .73), 

q = ((c,0s .73)/2, .73), r =((cos .73)/2, -.73), s =(cos .73~ -.73). 

Then prl\qs f:i',A(l/2, -.73, .73) =qr, but pr U qs I- A(l, -.731 .73) 

= ps. Thus, by (2.5), D is not WE. 

(xvi) The points (cos .73, -.73) and (cos .73, ,73) lie in the 

closed ball D((O, O); cos ,73), but their midpoint (1, O) does not. 

Similarly, it may be shown that any close.d ball centered at the 

origin, unless of course it is the entire set C, cannot be D 

convex. I 

SC and WE Metrizability 

The following result is due to Borsuk [9]. 

Theorem 2.14. Every compact space which admits an SC metric is 

contractible. 
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Corollary 2.15. No n-sphere Sn in En+l admits an SC metric. 

Proof: According to Brouwer's Theorem, Sn is not contractible [11]. 

Hence, (2.14) applies. I 

In regard to (2.14), Krakus and Trybulec [14] have given an 

example of a non-compact, non-contractible metric space with unique 

segments; that is, one whose metric satisfies condition (2o3.iii). 

Moreover, they left as an open question whether or not there exists a 

non-contractible space with an sb metric. No answer to their question 

has thus far appeared in the literature. The following theorem 

provides a partial answer to this question, in the case of locally 

compact spaces, while generalizing (2.14). 

Theorem 2.16. Every locally compact space that admits an SC metric 

is contractible. 

Proof: Let D be an SC metric for the locally compact space M. Fix 

any point p e: M, and define a function H : M X [O, l] - M as 

follows: for (y, t) e: M X [O, l] there exists a unique point 

z e: M such that pz "" ( t) PY and zy = (1 - t) py; let H(y, t) = Zo 

It follows that H(y, O) c p and H(y, 1) = y for each y e: M. 

To show that H is continuous, let <(y ' t )> be a sequence of n n 

points in M X [O, l] that converges to a point (y, t). Then <y > n 

and <t > converge to y and t, respectively. Since the set 
n 

{y : n = 1, 2, 0 •• } is bounded, there exists a number 0 > 0 such n 

that {y : n = 1, 2, ooe} CD(p;o). If z = H(y , t ) for each n n n n 

then pz == (t n) pyn ~ pyn ~ 6 holds, so that {z : n == 1, 2, o e o} n n 

is contained in D(p;o), which by (1.26) is a compact set. Let 

n, 



z = H(y, t). If <z > does not converge to z, 
n 

then there is some 

g > 0 and a subsequence <z > of <z > n. n such that the set .· 
1 

{z i = 1, 2, ••. } is contained in D(p;o)' D(z;g), which is n. 
1 

also a compact set. Thus, <z > has a convergent subsequence, and n. 
1 

for simplicity it may be assumed that <z > itself converges to some 
ni 

point z' in D(p;o) ' D(z;g); in particular, it must be .that z' ~ z. 

But since 

and 

<(y 
n. ' 

1 

t )> 
n. 

1 

pz' = 

z'y = 

converges to (y~ t) and D is continuous, then 

= lim (tn.) PYn. 
i....oc> 1 1 

= ( t) PY 

= lim (1 - tn.) PYn. 
i....oc> 1 1 

= (1 - t) py. 

Thus, by the definition of H it must be that z' = H(y, t) = z, a 

contradiction. Hence, <z > converges to z, 
n 

and H is continuous 

and consequently a homotopy from the constant map p to the identity 

map on Mo Therefore, M is contractible. J 

It is immediate from (2.15) that there is no SC metric for a 

simple closed curve. In fact, Glynn [12] has shown that a Peano 

continuum in E2 admits an SC metric if and only if it does not 

separate E2 • It is natural to ask whether results analogous to this 

and to (2.15) hold for WE metrics. The following theorem is of some 

interest along this line, and is useful in proving some of the results 

of Chapter VI. 

Theorem 2.17. There is no WE metric for a simple closed curve. 
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Proof: It suffices to show that there is no WE metric for the unit 

circle sl in the complex plane. Let D be a convex metric for s1. 

Suppose that there is some point of s1 that is not a between point 

of any two points of s1, and for simplicity assume that this is the 

point L Define pn = exp [i('i1/2n)] and qn == exp [i ( 2'\T - '11/2n)] , 

for n = 1, 2, . . . . Since <p > and <q > n n 

lim D(pn' qn) Q. 
n~ 

both converge to 1, 

But since no segment pnqn can contain 1, then the segment pnqn 

must be uniquely {exp (iG): '\T/2n ~ Q ~ 2'i'T - 1T/2n}, so that the 

points i and -i are in for each n. Therefore, the 

then 

presence of the bound D(p , q ) > D(i, -i) > 0 
n n -

contradicts the above 

limit. Hence, the point 1 and every other point of s1 is a 

between point of some other two points of s1 . 

Suppose that D is WE. Define 

6 = sup { 0 < a. < 2'fi: { iQ 
e : 0 < ~ < } · t f~ 1 to eia.}. '=' a. is a segmen r om 

By the preceding paragraph such a.'s exist, so that 6 > 0 is well 

defined. Let <a.> be a sequence of increasing positive numbers 
n 

whose limit is 6. Since 

D(l, ei6) = lim D(l, eiCT.ii) ~ D(l, eia.l) > 0 
n~ 

holds~ then 6 < 21T. But since i6 is a between point of some two e 

points of sl, there are values 0 < 61 < 6 < 62 < 2'\T such that 

{e iG 
61 :S: G ~ 62} is a segment from the point ei61 to io2 : e • 

There is an integer n such that 61 < a.n < b, so that the set 
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. '·· .. 

segment from e iCXn to i61 
e • Since D is assumed to be WE, then 

by (2.5) the set {e 
iQ 

0 < Q;< 62} is segment from 1 to i62 : a e ' - ......... 
·:'-· ·.~ .. 

i, 

contradicting the defini tli,;en of 6. Hence, D is not WE. I 



CHAPTER III 

SEGMENTED CONVEX METRICS AND LOCALLY 

CONNECTED GENERALIZED CONTINUA 

In proving that a certain metric D is complete and convex, it is 

often possible to conclude that every two points lie on a D segment, 

before it can be proved that D is complete. This is the case in the 

proof of certain of the extension theorems in Chapter V. Therefore, it 

becomes quite useful to have at hand a collection of properties of 

metric spaces that satisfy the condition that every two points are 

joined by a segment. This present chapter provides a few elementary 

results on such metric spaces. Additionally, these metrics are found 

to characterize locally connected generalized continua among the 

locally compact spaces and to identify certain Peano continua that are 

contained within the locally connected generalized continuao 

Definition and Examples 

Definition 3.1. A metric D is said to be segmented convex if every 

two points in the space are joined by a D segment. 

It is observed that the segmented convex metrics occupy an 

intermediate position between the convex metrics and the complete 

convex metrics~ in that every segmented convex metric is convex 1 and 

by (1.13) every complete convex metric is segmented convex. The 

following two examples sharpen the distinctions between these three 
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metrics. 

Example 3.2. The usual metric of E1 restricted to the space of 

rationals is a convex metric, and this space does not admit a segmented 

convex metric, 

Example 3.3. Not every space that admits a segmented convex metric 

must also admit a complete convex metric. 

Proof: Every normed linear space can be given a segmented convex 

metric, namely, the metric obtained from the norm. But there are 

normed linear spaces that are not topologically completei for let Q 

be the space of rationals in E1 • By the Baire category theorem, Q 

is not topologically complete [11]. Yet, Q can be embedded iso

metrically as a closed subset of a normed linear space [l]. Therefore 1 

since the property of topological completeness is inherited from a 

space by each of its closed subsetsi the normed linear space N is 

not topologically complete [11]. I 

A Condition Sufficient for Segmented Convexity 

A natural question is the following: Under what conditions must 

a given convex metric be also segmented convex? One answer is given 

below in (3.5). 

Lemma 3.4. For any two points x and y of a midpoint convex metric 

space, there is a midpoint convex, linear set L(x,y) consisting of 

x, y, and between points of x and y. 

Proof: It is assumed for simplicity that xy = 1. Define the set 

A= {m 2~n~ m = O~ l~ •• q 2n; n = li 2, ••• }, which is the set of 
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all dyadic rationals in the interval [O, l]. If M denotes the given 

space 9 an isometry f A ... M will be defined such that f(O) = x 1 

f(l) = y, and f(A) will have the properties required of L(x 9y). 
00 

A sequence <fn>n=O of isometries is now defined by induction. 

Define fo . {O, l} .... M by f 0(o) = X9 f 0(1) = y. Suppose that for • 

n=O~o••,k the isometries { -n 
f : O, 2 , 
n 

i 2 =n v o o • ~ 1 } ... M 

have been defined such that f extends f l' for all positive no n n-

Define fk+l {O, -k-1 i -k-1 l} ... M by . 2 ' 2 j ' 0 0 0 ' • 0 0 ' 

fk+l(z) = fk(z) if z is in the domain of fk; and if z = i 2-k~l 

is not in the domain of fk' then both (i - 1) 2 -k-1 and 

(i + 1) 2-k-l are in the domain of fk' so that fk+l(z) is defined 

(( ) -k-1) by choice to be some midpoint of f k i - 1 2 and 

fk((i + 1) 2-k-l). Then fk+l extends fk. Further, fk+l is an 

1. 2-k-l isometry, for let and -k-1 
j 2 be two points in the domain 

of fk+l' where without loss of 'generality 0 ~ i < j ~ 2k+lo There 

are even integers 0 < i' < i" < · 1 < ·11 < 2k+l - - _J_J_ such that 

i = (i' + i")/2 and j = (j 1 + j")/2 hold, which may be found by 

taking i ' "" i" "' i if i is even and i ' = i - 1 1 i" = i + 1 

if i is odd 1 and similarly for j. Since, for example, i 1 is even, 

then i I 2 -k-1 is in the domain of fk. Moreover, the definition of 

fk+l implies that fk+l(i 
2-k-l) is a midpoint of fk+l( i' 2-k-l) 

and f ( •II 2-k=l) 
k+l 1 ~ if these last are actually distinct points, and 

similarly for j 9 j 1 , and j". Therefore, 



fk+l ( i I 2-k-l) fk+l ( j" 2-k-l) 

= fk(i' 2-k-l) fk(j" 2-k-l) 

= fk(i' 2-k-l) fk(i" 2-k-l) + fk(i" 2-k-l) fk(j' 2-k-l) 

f ( , 1 '.)-k-,l) f ( ;rr 2-k-l) 
+ k J L k u 

= fk+l(i' 2-k-l) fk+l(i" 2-k-l) + fk+l(i" 2-k-l) fk+l(j' 2-k-l) 

+ f (.'I 2-k-l) f ( 'II 2-k-l) 
k+l J k+l J 

= fk+l(i' 2-k-l) fk+l(i 2-k-l) -+ fk+l(i 2~k-l) fk+l(i" 2=k=l) 

( 2 -k-l) ( 2-k .. l) ( -k-1) ( -k-1) 
+ fk+l i'' fk+l JI + fk+l j I 2 fk+l j 2 

( -k-1) ( 2-k-l) 
+ fk+l j 2 fk+l j'' 

holds since fk is an isometry. Now, (1.6) implies that 

f ( i 2-k=l) f ( . 2-k~l) 
k+l k+l J 

== fk+l (i 2-k-l) fk+l (i" 2-k-l) + fk(i" 2-k-l) fk( j' 2-k-l) 

+ f ( ., 2-k-l) f (. 2-k-l) 
k+l J k+l J 

=: ( i II - i) 2 -k-1 + ( j i - i fl) 2-k-l + ( j ~ j I ) 2-k-l 

= (j - i) 2-k-l 

holds since fk is an isometry and, for example, 

= [f (ii 2-k-l) f ( i" 2-k-l) ]/2 
k+l k+l 

[fk(i' 2-k-l) fk(i" 2-k-l)]/2 

= [(i" - i') 2-k-l]/2 = (i" - i) 2-k-l 
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holds by the definition of i' and i". Thus~ fk+l is an isometry. 



Hence9 the nested sequence <f > of isometries is inductively defined. 
n 

Let f = LJ {f : 
n 

n = O, l~ ••• }. Since f extends f for n+l n 

·each n, then f is well defined as a function. The domain of f 

is the union of the domains of the functions f 1 which is the set A. 
n 

To show that f A - M is an isometry, let p and q be two points 

of A. For some n the points p and q are in the domain of the 

isometry f , 
n 

so that f(p) f(q) = f (p) f (q) = IP - qi 
n n 

holdsi and 

f is thus an isometry. Therefore, the set L(x 1 y) = f(A) is linear. 

Since f(O) = x, f(l) = Yi and any point of A "- {09 l} is a between 

point in El of 0 and 1, then L(x,y) consists of X9 y, and 

between points of x and y. Finallyi let s and t be two points 

of L(xiy). The dyadic rationals f-1(x) and f-l(y) have a midpoint 

u in A, hence f(u) is a midpoint of s and t. Therefore 9 L(x 9y) 

is midpoint convex. I 

Theorem 3.5. If in a locally compact metric space every two points 

have a unique midpoint 1 then the metric is segmented convex. 

Proof: Let p and q be two distinct points of the space (M 9 D). 

By (3.4) there is a linear set L consisting of Pi q, and between 

points of p and q, and containing a midpoint of every two of its 

points. Let g L - E1 be an isometry, where it may be assumed 

without loss of generality that g(p) < g(q), and furthermore 

g(p) = O. Since g(q) = pq holds with pq = pz + zq for each z in 

L, then g(L) C [0 1 l]. Moreoveri since L is midpoint convex~ then 

g(L) is midpoint convex also, and therefore is dense in [0 9 pq]. 

Denote by 1 the closure of L, and define G : L - E1 by 

G(z) = pz for z in L. Then G extends g, for is z is any 
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point of L, G(z) = pz = jg(z) ~ g(p)I = g(z) holds. If x and y 

are any two points of 

points of L such that 

L, there are sequences <x > n 

x = lim <x >, 
n...oo n 

y = lim <y > 
n...oo n 

and <y > 
n 

hold. From the continuity of the metric 1 it follows that 

of 

!G(y) = G(x)I = IPY - pxl = llim py - lim px I = n n lim IPY ~ px I n n n-..oo n....oo 

= lim x y = xy. n n n...oo 

n....oo 

Therefore, G is an ieometry. Since G is continuous and since 

G(x ) is a point of [O, pq] for each n 1 it follows that 
n 

G(x) = lim G(x ) 
n-o00 n 

is a point of [0 9 pq] also. Thus, G(L) C [O, pq]. Note also that 

G(L) = g(L) is dense in [O, pq]. 

Suppose the number 6 =sup {a: e: [O, pq]: [O, a:] CG(L)} is less 

than pq. Then 6 cannot be in G(L), for assume that G(d) :o:: 6 

holds for some d e: L ~ {q}. Since the space is locally compact, there 

is a number 0 < e: < dq such that D(d;e:) is compact 1 hence the 

closed subset 1nD(d;e:) is also compact. Since G is continuous, 

then G(L nn(d;e:)) is a compact subset of [O, pd]. Moreo~er~ 

G(L n D(d;e;)) is dense in [O, pd] n [6 e;, 0 + e;] =[a:, 0 + e;], 

where a:= max {O~ 6 - e:}, since there is a subset A of G(L) 

which is dense in [a:, 6 + e:], -1 -with G (A) C D(d;e:). Therefore~ 

G(L(\D(d;d) =[a:, o + e;] must hold. But then [O, o + d CG(L) 

holds~ contrary to the definition of 6. Thus o is not in G(L), 
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and in particular, 0 < 6 < pq holds since G(p) p 6. 

It is now shown that since 0 < 6 < pq holds, then 6 must be 

in G(L)~ contradicting the preceding conclusiono For now 9 the 

definition of 6 implies that [O, 6) C G(L), and a subset of G(L) 

is dense in (6, pq]o There is thus a decreasing sequence <!3 > of 
n 

points of G(L) such that 6 < 13 < 26 holds for each n 9 and 
n 

6 = lim 13 • n n.....oo 

Thus~ a. = 26 - 13 is a point of [O~ 6) for each n. Hence~ for n n 

each n there are points s and t of L such that G(s ) = 0: n n n n 

and G(t ) = 13 • Let d be the unique midpoint of s and t for n n n n n 

each n. Then since s s ::::: a. - a. n n+l n+l n 
c 13n - f3n+l t: t t n+l n~ and 

since s t = 13 - a. = (13 n n n n n 

::: s s +· s t + t t = s s + s d + d t + t t n n+l n+l n+l n+l n n n+l n+l n+l n+l n+l n+l n 

= sndn+l + dn+ltn with sndn+l = 6 nsn+l + sn+ldn+l = dn+ltn+l + tn+ltn 

d n+l is the midpoint d of 
n 

that is 9 dn ~ d1 holds for each n. Since 

then 

= lim s d 
n n n-.oo 

= (1/2) lim s t 
n.....oo n n 

= (1/2) lim (13 =a.) - O, n n n...oo 

holds~ that is, d1 E Lo Moreover, since s1d1 ~ a1t 1 9 then 

G(d1 ) = Ca.1 + 131 )/2 = b. Therefore, 6 E G(L) holds9 a contradiction. 

'I'he foregoing argument has shown that 6 = pq must hold 9 so that 

[O, pq] = G(L)o Therefore, L is a segment pq 9 and D is segmented 

convex. I 
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The converse of (3.5) is not true, as (2.9) shows. Moreover, 

(3.2) shows that local compactness cannot be omitted from the hypothe-

sis, and (1.12) shows that "midpoint" cannot be replaced by "between 

point." The following example completes the discussion of the above 

theorem. 

Example 3.6. The uniqueness of the midpoint in the hypothesis of (3.5) 

cannot be omitted. 

Proof: This example is constructed in E2 from the union of a certain 

collection of right isosceles triangles, each denoted ~ABC$ where C 

is the hypoteneuse and A and B are the equal sides. Moreoveri 

each hypoteneuse c will have slope 0 or -1: if the slope is 

then A and B will lie above c with A to the right of B; 

if the slope of c is -1, then A and B will lie to the left 

c with A horizontal. This conve~tion will hold for each .o.ABC 

under discussion. Let !SI denote the usual length of any line 

segment s. For a line segment S with slope 0 or -1, define 

N(S) = {.o.ABC: cc s, midpoint of C = midpoint of lei = Isl 

Oi 

of 

~n 

2 

for some integer n ~ 2}. Finally, if Cx1 , y1 ) and (x2 i y2 ) are 

points in E2 identified by their cartesian coordinates, let 

[(x1 $ y1 )$ (x2 , y2 )J denote the line segment joining them. 

To construct the space of the example, let A0 = [(l, 0)9 (0, l)], 

B0 = [(-li O)i (Oi l)Ji c0 = [(-1, 0), (1, O)]. Define collections 

Qi of triangles as follows: Q0 = {6A0B0c0 } U N(C0), and recursively 

Q = U {N(A) g .o.ABC g Q 1 } for integers n > O. For each n ~ O, 
n n-

let Q* = U {e,.ABC: 6ABC g Q } , and define P = U { Q: : i = 0, 1 ~ ~ •• , . n n n 1 

n } . The set N = U {P : 
n 

n = O, 1, ••• } is illustrated in Figure 2. 



( -1 j 0) 

B \_ .. ,..... 
0 'V ~ 

(O, 1) 

Figure 2o The Set N of (306) 
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(1 i O) 

A metric E is now defined inductively on N as followso If x 

and y are points of CO' then E(xjy) = 11 x - Y II ~ where 11 ° II 

is the usual norm for E2
o If points x and y lie together on 

AUB for some ~ABC e: Qo i then E(x,y) = E(p(x)ip(y))i where p(z) 

is the perpendicular projection of z to co. At this point, E has 

been defined on each side of each triangle of Qo; moreover, since 

every two points of Po are joined by a polygonal arc in Po whose 

line segments are subarcs of sides of triangles AABC e; Q0 , then for 

such arcs 9 arclength is well defined by summing lengths of contiguous 

line segments in the arc 9 length here being taken with respect to the 

metric E 1 to the extent that it has been defined. Thus, fo~ any 

two points x and y of P0 i define 

E(x~y) = inf {E length of T~ T is a polygonal arc in P0 from 



x to y}o Then the triangle inequality holds for E, and E, is a 

metric on P0 • Moreover, given any two points of P0 there is 

actually a shortest polygonal arc T in P0 joining them, as can be 

verified from the geometry of P0 . 
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The definition of E proceeds by induction 1 under the hypothesis 

that E has been defined on P • 
n 

For any AABC £ Q l' n+ E has 

aiready been defined for points of Ci since C CP o Define E on 
n 

AU B by E(xiy) = E(p(x)jp(y)) as above" Then each side of each 

~ABC £ Q 1 has E defined on it. n+ Since p 
n+l is arcwise connected 

by polygonal arcs andi as above, arclength of polygonal arcs is well 

defined, let E(xiy) = inf {E length of T: T is a polygonal arc 

in p 
n+l 

from x to y} for any two points x and y of p 1. n+ 

Again the triangle inequality holdsi so that E is a roetric on p lo n+ 

Moreoever.s it is true thati given any two points of Pn+li there is 

a shortest polygonal arc 

polygonal arc in (P i E) 
n 

T in p 
n~ 

joining them. Also 1 a shortest 

remains a shortest polygonal arc between its 

endpoints in again by appeal to the geometric construction 

of p . 
n+l' that is, E on p 

n+l agrees with its previous definition 

on Pn. Define E on N as the union of E on each Pn~ when the 

induction principle has been applied. The triangle inequality for 

each P insures the triangle inequality for E on N, so that E 
n 

is a metric on No Moreover, since polygonal segments are preserved 

under the induction process, then between any two points x and y 

of N there is a segment ~y that is a polygonal arc, so that in 

particulari E is a segmented convex metric on No 

Define K = {p~ p is a midpoint of A or C, ~ABC £ Qn for 

some n ~ 0 9 1, •• o}; the points of K are shown as dots in Figure 2o 



Let M = N ' K, and let D be the metric E restricted to Mo 

Then (M, D) is a metric space, the space of interest in the present 

example. The following assertions are now proved. 

(ii) There exists a basis for (M, D) consisting of sets 

which are arcs or simple triods, but without their endpointso 

G 
q 

(iii) D is equivalent to the metric given by the norm II 0 II 

restricted to M. 

(iv) (M, D) is locally compact. 

(v) (M, D) is not connected. 

(vi) D is midpoint convex, but not segmented convex. 

(i) The proof is given by induction on all n > m to show that 

D(q;£) (\ Q* = ¢. If n = m + 1, this fact is given as hypothesis. 
n 

If D(q;£) (\ Q~ = ¢ for some k > m, suppose there is a point 

r £ D(q;c;) (\ Q~+l" Since E is segmented convex, there is an E 

segment qr in Ni thus qr CE( q; £). The point r lies in 
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(AUB) 'C for some LI.ABC£ Qk+l' since D(q;c;)(\ Q~ = ¢. But since 

q f. AU B, then (A(\ C) C qr or (B (\ C) C qr, and without loss of 

generality let A(\ C = {s} C Q~. Since s i K, then s £ D(qi£). 

But s £ CC Q~, hence D(q;c;) (\ Q~-/=. ¢, contrary to the induction 

hypothesis. Therefore, by induction it has been demonstrated that 

D(q;d n (M 'p) == D(qj£) n CU{Q~ l' Q':: i = n, n+l, coo}) 
n 1+ .1 

= U{D(q;d n (Q: i' Q~): i = n, n+l, ooo} = ¢, hence D(q;d Cpm· 
1+ 1 

(ii) At each point q £ M a local basis of sets G 
q 

is construe-

ted consisting of sets of the required form. Let q E M and £ > O. 



There is a smallest n such that q s P . Suppose that n = O. Then 
n 

q s Q~' K. If y s c0 ' {(O, O)}, two cases may arise. The first 

case is that q s AU B for some AABC s N(C0). If this is true, 

'let t 0 be the first point of the arc A U B, ordered from q, such 

that t 0 s Q1 . Since for some n 2: 2, then 

D( q ; o) n Q;'.: = ¢, 

D(q;o) C P1 "' Q~, 

{ -n+l} where b = min s, qt0 , 2 • Since it holds that 

it follows that G = D(q;b) 
q 

is a simple triod 

with ramification point q, but without its endpointso The second 

case that may arise is that q is not in AU B for any triangle 

6ABC ~ N(C0)o Then there is a first point t 1 of [q, (O, O)], 

ordered from q, such that t 1 s A for some AABC s N(C0)o There is 

also a number a> 0 such that D(q;a)n 6ABC = ¢ for every triangle 

AABC s N(Ao). If 6 = min {s, qtl' a}, then D(q;o) n Q~ = ¢~ hence 

D(q ;6) C Q;o Actually, G = D(q;o) 
q 

lacking 

its endpoints. If it happens that q s A' (C0 UK) for some 

AABC e Q0, then a demonstration similar to the preceding~ but with 

distances properly scaled, shows that for some 0 < b ~ s the ball 

G ~ D(q;o) is either an arc or a simple triod with ramification 
q 

point q, but lacking its endpoints, where D(q;o)C:: P1 . If 

q s B ' (AU C) for some h.ABC s Q0 , then define the number 

6 =min {s 9 one-half the D length of B}. Then in this case, 

G = D(q;o) n [B ' (AU C)] is a D neighborhood of q, being an 
q 

arc without its endpoints. 

If n ~ 1, then q s p ' p 1. n n+ 
Hence, q s (AU B) ' C for 

some AABC s Qn, since C C P 1 o Thus, there is some number 
n-

0 < 13 ~ s such that D(q; 13) n C = ¢, hence D(q;o) n P l = ¢ holdso n-

A demonstration similar to that of the preceding paragraph now shows 



that there is an open set G CD(q ;6) 
q 

containing q such that 

G n (P l ' P 1 ) is either an arc or a simple triad with ramifi-
q n+ n-
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cation point q, but without its endpoints, and G n Q* = ¢. 
q n+2 Thus 

G C P l' P l i so that G "' G n (P l' P 1 ). Hence, the q n+ n- q q n+ n-

induction is complet~ .. 

(iii) For a set G as given in (ii), let G denote its closure 
q q 

in (N 1 E), and let 6 =min {D(q~e): e is an endpoint of G }. 
q 

Since D(q9e) ,:; II q - e II for each such endpoint e, and by the 

construction of G the cart?sian ball G1 = {x e; M~ II q - x !I < 6} 
q q 

is a subset of G , then II • II restricted to M is stronger than 
q 

D. On the other hand, the set G' is open in (M, D), as is any q 

of the usual spheres about q with radius less than 6. Therefore, 

D is stronger than the metric of II • II restricted to M, so that 

the two metrics are equivalent on M. 

(iv) Each of the basis sets G is locally compact in the usual 
q 

planar topology 9 hence by (iii) is locally compact in (Mi D). 

( v) For each ni each triangle bABC e; Q is a simple closed 
n 

curve that is separated by the omission of midpoints of C and A 

into a "left side" and a "right side." In precise terms, the left side 

of AABC is the component of ~ABC ' K which contains B~ and the 

right side of AABC is the component of 6ABC ' K which contains 

An C. Then there is a decomposition M =LU R~ where 

L ::::: U {left side of .6ABC: b.ABC e; Q , n = 0, 1, ... } and 
n 

R = U{right side of .ci.ABC~ bABC e; Q ' n = O, 1, oo-}. To show that . n 

Ln R ~ ¢i suppose that~ on the contrary, there is a point x of M 

which is both in the left side of some .6.ABC e; Q and in the right 
n 



side of some .t::..A 1B1 C1 e; Q m' where m < n holds without loss of 

generalityo If m = n, then x E c n C'' where without loss of 

generality CCC'. But by the orientation and naming of the sides 

of these trianglesi x is in the left side of ~ABC if and only if 

x is in the left side of 6.A: 1B'C', and a contradiction is reached. 

If n "' m + 1, then L'.ABC e; N(A') and x e; C CA'. Again a contra-
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diction arises from the geometry of M. If n > m + 1, then the fact 

that XE Q* nQ* m n is itself a contradiction~ for 

Hence~ Moreo¥eri the following property of the sets G 
q 

holds from their particular construction: If q e; Lj then 

and if q E R, then G C R. 
q 

This last property shows that 

R are actually separated sets in M, so that M is not connectedo 

(vi) Since every space that admits a segmented convex metric is 

connected, then (v) implies that (M, D) cannot admit a segmented 

convex metric. Howeveri Dis now shown to be midpoint convex. As 

a preliminary casei it is shown that two given points x and z 

lying together on a line segment in N have a point in M that is 

a midpoint of them. Since each line segment in N lies on a side of 

some D.ABC e; Qn for some n, then it is true that x and z lie 

on one of the sides of some D.ABC o It should be noted that on line 

segmentsi the E midpoint and the euclidean midpoint cdincide. If 

x~ Z E Bi then since BC M, then also the euclidean midpoint of 

x and z is in M, which is a D midpoint of x and z. If 

x, z e; c and if the euclidean midpoint of x and z is not the 

midpoint of c, then the euclidean midpoint of x and z is not 

K, hence is a D midpoint of x and z. If x, z E C and the 

in 

euclidean midpoint of x and z is the midpoint of C, then N(C) 
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is contained in Q and there is some 6A'B'C' E N(C) such that n+l' 

C1 C[x 1 z]. Let {y}=A'nB 1 • Then thepoint y lies in M1 and 

D(x,y) = E(x,y) = E(x,p(y)) = E(x,y') = E(y',z) = E(p(y),z) = E(y~z) 

= D(y,z) and E(x 1y') = E(x 1 z)/2 = D(x 1 z)/2 1 where y' is the 

midpoint of c. Hence, y is indeed a D midpoint of x and Zo 

Now, let x and z be any two points of M. Since x, z E N' 

there is a polygonal arc in N which is an E segment xz. There-

fore, the E midpoint y of xz is also an E midpoint of x and 

Zo If y i K, then y is also a D midpoint of x and z. If 

y E K, then y cannot be at the junction of two non-parallel line 

segments in xz. Thus, y is a non-cut point of some non~degenerate 

line segment [p' qJ c~. There is some t:..ABC E Q for some n, 
n 

such that y is the midpoint of c and C' c [p, q]. Let e and 

denote the endpoints of C, and let {y'} = An B. As in the 

preceding paragraph, it may be shown that y' is an E midpoint of 

e and e'; it is also true that y 1 EM and that the equalities 

E(p 9y): E(p 1y 1 ) and E(y,q) = E(y' 9 q) hold. Without loss of 

generality E(x 1 z) = E(x,p) + E(p,q) + E(q,z) holds, so that 

e' 

E(x,z) = E(x,p) + E(p,y) + E(y 1 q) + E(q,z) = E(x,p) + E(p,y 1 ) + E(y' 1 q) 

+ E(q 1 z} holds 9 and E(x,z) = E(x,y') + E(y 1 1 z) , holds by (L6). Also, 

since E(x,z)/2 = E(x,y) = E(x 1p) + E(p,y) = E(x,p) + E(p 9y 0 ) holds, 

then the triangle inequality implies E(x,z) 2: E(x 9y 1 ), and similarly 

E(x,z) 2: E(y'z) holds. Since E(x,z) = E(x,y') + E(y 1 ~z) holds, this 

implies E(x,y') = E(x,z)/2 ~ E(y 1 ,z), and y' is an E midpoint of 

x and z. Since y 1 e; M, then y 1 is also a D midpoint of x 

and Zo Therefore, D is midpoint convex, and the demonstration 

is complete. I 
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Property S and Peano Continua 

The following definition is given by Whyburn [26]. 

Definition 3o7• A point set P in a metric space is said to have 

property~ provided that for each E > Oi P is the union of a finite 

number of connected sets 1 each of diameter less than E. 

Whyburn [26] has shown that every locally connected generalized 

continuum has property S locally; in fact, at each point there is 

a local basis of connected open sets having property S. It follows 

that every locally connected generalized continuum has a basis of 

connected open sets whose closures are Peano continua~ since the 

closure of a set with property Sis locally connected [26]. If a 

locally connected generalized continuum is given a segmented convex 

metric, it is possible to specify exactly which open balls have 

property S and which closed balls are Peano continua. This result, 

and a useful corollary in the case that the segmented convex metric 

is complete 1 are the main results of this section. 

Theorem 3080 In a locally connected generalized continuum with a 

segmented convex metric D, if for a point p and a number E > 0 

the closed ball D(p;e) is compact, then D(p;E) has property S 

and D(p;g) is a Peano continuum. 

Proof~ In order to show that D(p;e) has property s~ it is necessary, 

for a given a> 0, to show that D(p;g) ·is a finite union of 

connected sets~ each of diameter less than cro If E < a/2~ then 

D(p;E) itself is connected and of diameter less than a. Therefore, 

it may be assumed that 
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0 < a/2 ~ e: (1) 

holds. Let p be a number with the property that 

e: - a/4 < p < e: (2) 

holds, and let 

~ =min {(e: - p)/2, n/8}. 

For each point x of D(p;e:) there is a number 0 < ~ < ~ such x-

that D(x;~ ) is compact, since the space is locally compacto The 
x 

remainder of the proof is suggested by a proof scheme given by Hall 

and Spencer [13~ p. 216]. Since {D(x;~ ): x e: D(p;e:)} is an open x 

cover of the compact set D(p;e:), it contains a finite subcover F of 

D(p;e:). Let Sl9 s2, ••• , Sn denote the elements of F that 

intersect D(p;p). For any points x e: s1 and ye:s.nn(p~p), 
1 

holds that px Spy+ yx < p + 2~ ~ p + e: - p = e:. Therefore, 

n 

it 

D(p;p) CU 
i::l 

s. ' 1 
and S. C D(p;e:) 

1 
for 1, oooj n.(4) 

For i = l~ 0 0 0 ~ n define c. to be 
1 

that lie, along with a point of s. ' 1 

whose diameter does not exceed a/4. 

holds by (3) and (4)i and since s. 
1 

If x and y are any two points of 

the set of all points of D(p;e:) 

in a connected subset of D(p; E) 

Note that since D(S.) < a/4 
1 -

is connected, then s. cc. 0 

1 1 

c.' 1 
there are points x' and 

y' of S. such xx' < a/4 and yy' ~ a/4. Thus, the inequality 
1 

xy ~ xxu + x'yq + y'y < a/2 + D(S.) < 3a/4 <a holds, and therefore 
- 1 -

D(C.)<a. 
1 

Furthermore 9 the set c. 
1 

is connected, since it consists 

of the connected set S. and a collection of connected sets each 
1 

intersecting 



To show that D( p; e:) is the union of the sets C. it suffices 
1 

to show that D(p;s) is contained in that union, since C. C D(p;e;) 
1 

holds for each i. Let x be any point of D(p;s). If x E D(p;p), 

then from (4) it follows that 

c. Q 

1 

Therefore 1 assume xi D(p;p); that is, assume 
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0 < p .:S px < E • ( 5) 

If 6 = px - s + p, it will now be shown that 

0 < 6 < p .:S px 

holdso If px .:S a/4 were true, then combining (2) with (5) would 

yie~d s - a/4 < p .:S px .:S a/4, hence E < a/2, contradicting (1). 

(6) 

Thus, it must hold that a/4 < px. This inequality, combined with one 

form of(~), yields s - p < a/4 < px, hence 0 < 6. Also, it follows 

from (5) that 6 = px - s + p < E - E + p = p .:S px holds, establishing 

inequality (6). 

If px is a segment from p to x, then px CD(p;s). By (6) 

there is a point y of px such that PY = 6. By (6) again, the 

point y lies in D(p;p), hence from (4) there is some ball S, that 
J 

contains y. The diameter of the subsegment yx of px is given by 

yx = px -py = px - 6 = 
the connected set yx, 

the proof that D(p;E) 

€ - p < a/4 by use of ( 2) • Thus, by virtue of 

the point x belongs to c ,. 
J 

is the union of the sets C .• 
1 

This completes 

Therefore~ D(p;s) has property S, and it follows that D(p;s) 

is a Peano continuum. I 



Corollary 3.9. In a locally connected generalized continuum with a 

complete convex metric, each open ball has property S and each closed 

ball is a Peano continuum. 

Proof: Since by (1.13) a complete convex metric is segmented convex, 

and by (1.26) each closed ball is compact, then (3.8) applies to give 

the desired result. I 

Corollary 3.10. Every locally connected generalized continuum is the 

image of the closed ray [O, 00) of E1 under a continuous mapping. 
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Proof: Let M be a locally connected generalized continuum, which by 

(1.25) admits a complete convex metric D. Pick a point p of M. 

By (3,9), every closed ball D(p;n) is a Peano continuum, hence by 

(1.17) there is a continuous mapping f 
n 

of the closed interval 

[2n, 2n + l] onto D(p;n) 1 for n = O, 1, •••• Since M is 

arcwise connected 1 let gn be a continuous map of [2n + 1 9 2n + 2] 

into M with 

for n = o~ lj 

g (2n + 1) = f (2n + 1) and .n . n 

• • • • Then f = U { f U g ~ n n 

continuous mapping of [01 00) onto M. I 

n = 0 ~ 1 ~ ••• } is a 

The following example shows that one converse to (3.8) is not true. 

Example 3.11. There is a locally connected generalized continuum M 

with a segmented convex metric D, a point p E M, and a number 

E > O, such that the open ball D(p;E) has property S, yet the 

closed ball D(p~E) is not compac.t~ 

D be the geodesic metric on M. Then the point p ~ (O, O) and any 
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number e: > 1 satisfy the requirements. I 

Characterizations of Locally Connected 

Generalized Continua 

One charac~erization of locally connected ge111eralized continua 

was given in Clo2?), by means of complete convex metrics. That result 

is included in the following theorem. 

Theorem 3.12. For a space M, the following statements are equivalent. 

(i) M is a locally connected generalized continuum. 

(ii) M is a locally compact space that admits a complete convex 

metric. 

(iii) M is a locally compact space'that admits a segmented convex 

metric. 

(iv) M is a connected Hausdorff space with a countable basis of 

connected open sets whose closures are Peano continua. 

Proof: The proof of (i) ~(ii) is given by (lo25), and (ii) - (iii) 

follows from Clol.3). For (iii) - (iv) it is noted that if M is a 

locally compact space with a segmented convex metric D, then M is 

locally separable and connected, hence separable by a result of 

Sierpinski [23]. Thus9 let {pi: i = 1, 2, , •• } be a countable 

dense subset of M. For each i there is a local basis 

{D(p. ;o) ~ 
J. 

at where u. = {o > o: 
J. 

is rational and 

D(p. ;o) 
J. 

is compact}. Further, the set {D(p. ;o): bi;; U., i= 1, 2~ ••• } 
J. J. 

is a countable basis for M, and each D(p.;o), 
. J. 

for 0 e: ui, is a 

connected open set whose closure, by (3 0 8), is a Peano continuum. 

Therefore, (iv) is established from (iii). For the proof of (iv) - (i), 



it is simply noted that a space satisfying (iv) is a separable~ 

locally connected, locally compact, and metrizable space since it is 

regular and second countable [11]. I 
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CHAPTER IV 

THE UNION TOPOLOGY 

Definition and Elementary Properties 

For reasons that are to be made more specific at the beginning 

of Chapter V9 the main results of this paper require a certain 

topology to be specified for the union of two topological spaceso 

The most important properties of this union topology are given by 

the results of the present chaptero It is noted that a topological 

space consisting of a topology T on a set M is designated by 

(M, i), or simply by M when the topology is clear from contexto 

Theorem 4,1. Let (Ml, 'i_) and (M2 , ~) be two topological spaces 

whose topologies agree on M1 (\ M2 • Let to = {R C M1 U M2 g 

R n M1 € T1 , Rn M2 e: 'T2}. Let / 3 be a topology on the set 

M1 U M2 such that both (M1 , ~) and (M2 , 7'2) are subspaces of 

(M1 U M2 9 / 3). Then 1 0 is a topology on the set M1 U M2 that 

is stronger than / 3 9 and both (M1 ~ 'i) and (M2 9 / 2) are 

subspaces of (M1 U M2 ~ 7'0). 

Proofg It is first shown that To is indeed a topology on the set 

Ml U M2 o Since (Ml U M2) (\ Mi = Mi e: Ii for i = 1, 2, then 

M1U M2 € 10° Since ¢ e: /. for i ""1, 2, then ¢ e: 'o· If 
1 

A is any index set and Ra. €lo for every ct € N:, then 
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[ U {R g a. e; A}] (\ M, = U {R n M,: a. e; A} e; T. since R n M. e; /. 
a. J. a. J. 1 Ct 1 1 

for each a. e; A, i = 1, 2. Thus U {Ra: a e; A:} e; T0 by definition 

of T0 o Similarly9 if Rl and R2 are members of 1 0 i then 

R1 n M. and R2 n Mi are members of T.' _hence -(R1 n R2 ) n Mi e; 
J. J. 

Y, ~ for i = 1, 2; hence, R1n R2 e / 0 o Thus, Yo is a topology 
J. 

on the set M1 U M2 . 

It is now shown that (M.,/.) is a subspace of 
J. J. 

where i ::: 1 without loss of generality. Let 112 
denote the 

subspace topology on M1 n M2 induced from 11 0 which by hypothesis 

is the same as that induced from 1 2 • For any set R e; 7J., there 

is a set P e ~ such that R (\ M2 = M1 n P e t;,_2 • In particular, 

since P n M1 CR, then (RU P) n M1 = R e; ( 1 • But similarly 

Rn M2 Cp 9 so that (RU P) n M2 c: P e; T2 • Thus it follows that 

RU P e 10 , and the equation (RU P) n M1 = R shows that R is 

a member of the subspace topology on M1 induced from /'0 0 On the 

other hand, let Q be any member of "r0 restricted to M1 , that is, 

Q "'Ml n s for some s e; To. Since s e; TO' then Q is a member 

of 1 1 • This completes the proof that (M11 T1 ) is a subspace of 

CM1 U M2 t 10 L 

To show that / 3 Cla, let R e; fy Since (Ml~ / 1 ) and 

(M2 ~ ~) are subspaces of (M1 U M2 , ~), then Rn M1 e; ~ and 

Rn M2 e 12 s so that R e; r0 . Therefore 1 ~ is stronger than 

Ty I 

For the remainder of this chapter the definitions and notation 

introduced in (4ol) will be assumed 9 although for future reference 

. 
the reader will be reminded of these in the hypotheses of the 

theorems. The main fact stated in (4.1) is that 7c; is the 



strongest topology for M1 U M2 that leaves M1 and M2 as sub-

spaces. 

Corollary 4.2. If M1 CM2 , then 'ta=~= 73· 

Proof: Since in this case (M2 , 7'2 ) is required to be a subspace 

of both' (M2 , 13 ) and (M2 , / 0 ), then ,..,.-0 c:: ~ = '3· 

Theorem 4.3. With the notation of ( 4.1), if M1 "- M2 and M2 "- M1 

are separated sets in (M1 U M2 , 13), then T3 = 70. As a partial 

converse 9 if 7 0 == T3 and M1 n M2 is closed in both M1 and M2 , 

then M1 "- M2 and M2 ' M1 a:re separated sets in (M1 U M2 , / 3). 

Proof~ Assume. first that M1 '- M2 and M2 "'- M1 are separated sets 

in (M1 UM2 ~73). To show that 7,3 = 70, · it suffices by (4.1) to show 

that T0 C Ty Let R s 10 and p e: R. 

R n M1 s T1 and R n M2 s / 2 • Since for 

(Mi'~) is a subspace of CM1 U M2 , T3), 

such that R. n M. = Rn M.. In the case 
1 1 1 

By the definition of 

i = 1, 2 the space 

there is a set R. 
1 

that p s M1 n M2 ~ 

7c' 

s /3 
then 

p s Rn M1 n M2 C R1 n R2 s / 3 • Further, since (R1 n R2 ) n Mi C 

Ri n Mi = R n Mi CR, then R1 n R2 = [(R1 n R) n M1 ] U 

[(R1 n R2 ) n M2J C R. In the case that p lies outside of M1 n M2 i 

then with out loss of generality let p lie in M1 '-.. M2 • Since 

M1 "- M2 and M2 "'- M1 are separated sets in (M1 U M2 , '3), there 

is a set Q er3 with p e; Q and Q n (M2 "'- M1 ) = ¢0 Thus 

p e: R1 n Q e; f.y and since Q C M1 , then Rl n Q = R1 n ( Q n M1 ) = 

Q n (Rn M1 ) C R. Hence, regardless of where the point p liesi 

there is an element of '/3 that contains p and is contained in 

R. Therefore R e; 73, hence T0 = 73. 
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For the partial converse9 assume that 7'0 = T3 and that M1 n M2 

is closed in both (M1 9 1'1 ) and (M2 , 12 ). Then M1 " M2 e: T0 = ~ 

and M2 -...... M1 e: la "" f3 by the definition of ( 0 • Since M1 -...... M2 

and M2 -..... M1 are disjoint members of T3 , then these sets are 

separated in (M1 U M2 , / 3). I 

Corollary 4.4. If M1 and M2 are both open in '/3 or both closed 

in T3 , then T0 = ~· 

Proofg. Given either hypothesis9 then M1 '- M2 and M2 '- M1 will 

be disjoint sets that are both closed or are both open in '"(3 ~ 

hence separated sets in (M1 U M2 , / 3). The conclusion follows 

by C4o3L I 

Corolla.!:;[ 4.5. If M1 and M2 are compact and '13 is Hausdorff~ 

then 10 = 13. 

Proof: If the hypothesis holds9 then M1 and M2 will both be 

closed in 'T3, and (4.4) gives the conclusion. I 

The next two examples show why the converses to the two state-

ments of (4.3) cannot be proved. 

Example 4.6. The sets M1 " M2 and M2 " M1 need not be separated 

in (M1U M29 "a). 

Proof~ Let Ml be the set of all rational numbers in the interval 

[O~ 1) CE1 , and let 1 
M2 "" ( 0 9 1) C E • Let '1 and T2 be the 

subspace topologies induced from the usual topology for El• Then 

'lo is not the usual topology on M1 U M2 = [09 1) j for the set 

( xi i ::: 1, 2, 0 0 0} is in T0 9 where 1x.>' 1 I 
is any sequence 

'16 
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of irrational numbers in M2 that decreases to Oo However'I it is 

true that {O} = M1 '- M2 is a To limit point of M2 -..... M19 for 

let 0 e: Q e: T0 o Then Q n M1 e: '1' hence there is a rational 

0 < r < 1 such that r e: Q. Thus r e: Q n M2 e: 'T2 , so that there 

must be an irrational p in Q'n M2 also, showing that Q n (M2 '- M1 ) 

is not empty. I 

Example 4c 7. The sets M1 '- M2 and M2 '- M1 may be separated in 

(M1 lJ M2 , 'f3) and yet M1 I\ M2 may not be closed in either M1 

or M2 o 

Proof~ Let M1 =[0,2) and M2 =(1,3] in E1 , and let / 1 

and / 2 be the subspace topologies induced from the usual topology. 

Then Ml"- M2 and M2 ....__ Ml are separated sets in [O, 3] with the 

usual topology, but (1, 2) is closed in neither 11 nor T2. I 

If M1 n M2 is a closed subset of both M1 and M2 'I then 

· M1 "- M2 and M2 '-- M1 are disjoint members of 1 0 , hence separated 

sets in ( M1 U M2 , T0) o In particular, if M1 and M2 are disjoint 

sets, then M1 and M2 are separated sets in (M1 U M2 '1 / 0 ) o 

However, as the following example shows, even this situation need 

not compel T3 to be identical ~ith / 0 • 

Example 4.8. It may happen that T'3 ~ ~ 7 even when M1 and M2 

are disjoint. 

Proof~ Let M1 be the portion of the unit circle in the cartesian 

plane consisting of all points with non-negative ordinates 9 and 

let M2 be the remainder of the unit circle. If --r3 is the usual 

topology of E2 restricted to M1 U M2 '· then T 0 is strictly 



stronger than ,'3· This follows from the last statement of (4o3) 

by contraposi ti on~ since M1 '- M2 and M2 '- M1 are not separated 

sets in 1 3 0 I 

Conditions on '13 have been given in (4.2) through (4o5) 

which ensure that 1'3 must be identical with ~· The following 

theorem furnishes a condition on M1 and M2 which ensures the 

existence of some topology '/3 that is different from "ao 

Theorem 409. With the notation of ( 4ol) ! suppose that T1 and 12 
are both T1 topologies. If for i = 1, 2 the set Mo contains 

1 

some point that is not in the Yi closure of M1 n M2, then there 

is some topology I on the set M1 U M2 , different from / 0 , 

such that (M1 , ~) and (M2 , 'r2) are subspaces of (M1 U M2 , t)o 

Proof: be the set of all points of Mo 
1 

that are not in 

the /i closure of M1 n 
Define / = {RC M1 U M2 : 

M2 , and pick points pie; Qi' i = 1, 2. 

R n M1 e; 1'1 , R n M2 e; 12 ~ and pl e; R 

if and only if p2 e; R}o Since the requirement in this definition 

that involves the simultaneous inclusion or exclusion of the points 

pi is preserved under arbitrary unions and intersections, then it 

can be shown exactly as in the proof of ( 4.1) that I is a topology 

on the set M1 U M2 o To see that / 0 -/: /, it suffices to note that 

Ql e; Tl and Ql n M2 "" ¢~ hence Ql e; lo; but since P1 e; Ql 

while p2 ~ Q1 , then Q1 ¢ '/. 
For the proof that (M1 , T1 ) is a subspace of (M1 U M2 ~ 71, 

let Re:l;_o As in the proof of (4.1) it can be shown that there is 

a set p e; -(2 such that (RU P) n M1 =R and (R U P) n M2 "" P. 

If P1 e; R ~ then since P2 i;; Q2 e; T2' it follows that P1 and P2 



both lie in RU P U Q2 • Moreover, since (RU PU Q2) n M1 = 

[(RU P) n M1] U [Q2 n M1] = R U ¢ = R e: / 1 and (RU PU Q2 ) n M2 = 

[(Ru P) n M2] u [Q2 n M2] = p u Q2 e: '2' then Ru p u Q2 e: T 

by the definition of /. If p is not in R, then since (M2 ~ T2) 
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is a T1 space, the set P '- {p2 } is / 2 open. Hence~ [RU (P '- {p)J 

n M1 = [R LJ P] n M1 = R e: / 1 and [R U (P '- {p2 })] n M2 = P '- {p2} 

e: T2. But since P1 is not in RU (P---. {p2}) and P2 is not in 

R U (P '- {p2 }), then R U (P ' {p2 }) e: T. Thus, regardless of the 

position of the point pl relative to the set R, there is an 

element of /"' whose intersection with M1 is the set R; that is, 

the subspace topology on M1 induced from f"" is stronger than T'1 • 

Since, conversely, Rn M1 e: T'1 holds for any set R e: /', then 

(M1 , ~) is indeed a subspace of (M1 U M2 , TI. The similar state

ment is true for (M2 , T2 ). I 

The following simple result is quite useful in the sequel. 

Theorem 4.10. With the notation of (4.1), suppose a point x lies 

in Q1 n Q2 9 where Q1 e: / 1 and Q2 e: T;_. Then x is / 3 interior 

to Q.1 U Q.2 • 

Proof: Assume the hypothesis, and further suppose that x is not 

1 3 interior to Q1 U Q2 • Then there is some net <:x.CJ.,> that is 1 3 

convergent to x~ yet xa lies outside Q1 U Q2 for each index a. 

Since this net is in M1 U M2 , there is a subnet <xl1l> of <x ~.· ., a 

such that, without loss of generality, x 13 e: M1 for each 13. Since 

x is in Ml and (Ml, Ii_) is a subspace of (M1 U M2, '3), then 

·~13; is 11 convergent to x. But since Ql E Tl' then 4'.X13> is 

"' eventually in Ql, contrary to the fact that the net f cf lies in 



the complement of Q1 U Q2 • Hence, x must be T3 interior to 

Ql U Q2. I 

Results More Closely Related to 

Generalized Continua 

Up to this point, Chapter IV has defined the union topology and 

demonstrated some fundamental results concerning it. This much is 

only to be expectedi since in Chapter V the very statements of the 
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extension theorems assume a familiarity with this topology. The three 

theorems now to be proved, however, are of a different nature than the 

foregoing, for these in essence will contribute the proofs of "neces-

sity" and of "sufficiency" in (5.4) and (506), respectively 9 the two 

main theorems of this dissertation. Because of this purpose 9 the 

following three theorems relate more closely to generalized continua 

than did the preceding ones. 

Theorem 4oll. With the notation of ( 4.1), let M1 n M2 be closed in 

T2 and let the /'2 boundary of Ml n M2 be closed in '1· If both 

(Ml i '/l) and (M2, T2) are locally compact1 and if 'o is Hausdc>rff, 

then (M1 U M2 ~ T0 ) is locally compact. 

Proof: Pick any point x in M1 U M2 • For each i with x in Mi' 

neighborhood R. of x such that the 1i 1 
there is some open T'i 

closure of Ri is 1f. compact, hence also "a compact. If x is 

in M2 '- M1 , the set Q2 :::: R2 n (M2 -...... M1 ) is a / 2 (and T0 ) 

neighborhood of x whose 'T2 (and 10 ) closure is compact. If x 

is in M1 n M2 , then the fact that x is in R1 n R2 implies by 

( 4ol0) that some 'Y 0 neighborhood R of x lies in R1 U R2 ~ so 
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that R is conditionally compact. If x is in M1 ' M2 9 then 

M1 ""- B is a ! 1 neighborhood of X9 where B is the ';_ boundary 

of M1 U M2 o Also, s = (M1 n M2) '- B is '2 open and Ql -· 

R1 n (M1 ' B) is a '1 neighborhood of x whose closure is compacto 

Since s is a subspace of (Ml' Tl)' then Q1 n M2 = Q1 n s is 

open in s, hence Ql n M2 is ~ open. Therefore Ql is in Ya' 
and CM1 U M2 , / 0 ) is locally compact o I 

The following example relates both to the preceding theorem and 

to the one which follows it. 

Example 4.12. There are locally connected generalized continua M1 

and M2 in the plane with M1 n M2 closed in M2 , but with 

(M1 U M2 , T0 ) neither locally compact nor first countable. 

1 1 
Proof~ Let M1 = E X (~00 , O] and M2 = (-00 , O) XE be given their 

respei:::tive subspace topologies T1 and Y2 as subsets of E2 • First 

it is shown that the space (M1 U M2 , T0 ) is not locally compact at 

the point p = (O~ 0). If U is any To neighborhood of p 9 then 

u contains a segment [-e;' e;] X {O} for some e: > o~ since Un M1 

is a member of flo Each point p = ( =e;/n ~ O) is T2 interior to 
n 

Ui since pn e; U n M2 e: t;_ 9 where n = 1, 2, ThUS9 for each 

there is a number b > 0 such n that qn = ( =e:/n' b ) 
n 

e; u 0 If 

Q"" { qn n = l~ 29 0 0 0} and v = u' Q, then v is a set 

n 

containing p but no point qn' and furthermore v n M1 = u n M1 e: Tl 

while vnM = ( U n M2) ' Q e; '2 
2 

since Q is T2 closed. Thus, 

p is not a 'o accumulation point of Q, but neither is any other 

point of M1 U M2 • Hence Q is an infinite subset of u with no 

accumulation point, so that the. lo closure of u is not compactc 



Therefore, (M1 U M2 , T 0) is not locally compact at the point p. 

Similarly, it could be shown that (M1 U M2 , T0 ) is not first 

countable at p. More simply, however, the following theorem shows 

that (M1 U M2 , '10 ) is not first countable, since the 7'2 boundary 

(-00 , 0) x {O} of Ml n M2 is not '1 closed. I 
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Theorem 4ol3. With the notation of (4ol)• let B be the '12 boundary 

of M1 n M2 • If (M1 U M2 , 'T0 ) is both Hausdorff and first countable, 

then B n Ml ~s Tl closed. 

is Hausdorff and first countable and some 
. I 

point p of M1 n B is a 7j_ accumulation point of B n M1 , let 

<ur[> be a countable local T0 base at p. For each positive integer 

n there is some point bn in B n (M1 n Un), hence there is also a 

The set C = '{ c - n n = 1, 2, ••• } 

is a 1 2 closed subset of M2 ' M1 , so that U = M1 n (M2 '- C) is 

a '7'0 neighborhood of p. But this is impossible, since U contains 

no set U • I 
n 

Theorem 4.14. With the notation of (4.1), let the space M1 have a 

complete metric D1 • In order that (M1 UM2,10) be a connected 

space and admit some metric D3 that extends D1 , it is necessary 

that M1 n M2 be a non-empty subspace of both M1 and M2 which is 

closed in M2 , and that the M2 boundary of M1 n M2 be closed in 

Ml• 

Proof: In order for the space (M1 U M2 , T0 ) to be defined, it is 

necessary that M1 n M2 be a subspace of both M1 and M2 • Since 

(M1 U M2 , T0 ) is connected 1 then by ( 4.3) it follows that M1 I\ M2 is 



non~emptyo If M1 n M2 is not closed in M2 , there is a point p of 

M2 " M1 and a sequence <p > 
n 

of points in M1 n M2 

converges in M2 to p. Therefore, it holds that 

lim n3Cpn,p) = 0, 
n...oo 

such that <p > 
n 

and <pn> is thus a D1 Cauchy sequence which converges in M1 to 

some point q Hence9 in topology / 0 the sequence <p > 
n 

converges to the two distinct points p and qj contradicting the 

fact that T0 is Hausdorff. Since M1 I\ M2 must therefore be closed 

in M29 then C4ol3) shows that the M2 boundary of M1 /) M2 must 

also be closed in M1 o I 



CHAPTER V 

EXTENSION OF COMPLETE CONVEX METRICS 

Background 

In 1949 Bing [4] proved that if !i1 and !:!,2 ~ intersecting 

Peano continua whose topologies agree ~ their intersection, and if 

Q1 is a convex metric for !:!1 , there is a convex metric Q3 for 

!:!1 ~ !:!2 that extends Q1 o In the present chapter the compactness of 

M1 and M2 is deleted~ and the question is addressed: if !il and 

!:!2 are intersecting locally connected generalized continua whose 

topologies agree ~ their intersection9 and if Q1 is ~ complete 

convex metric for !:!19 un.der what conditions will there be~ complete 

convex metric Q3 for !i1 \J !:!2 that extends ~1? In C5o4) a necessary 

and sufficient condition for the existence of n3 is obtained by 

specifying two topological properties of the intersection M1 n M2 ; 

actually, in this result the space M1 is not requirep to be a 

locally connected generalized continuum, but merely any space with a 

complete convex metric D1 • In order to establish this result, several 

others must first be obtained. 

Before this program is begun, however, a word of explanation is 

due on what is meant by references to the space M1 lJ M2 • In the case 

of Bing's extension theorem (1.31) that was cited at the beginning of 

this section, a topology for M1 U M2 was not specified for the 
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following reason: according to (4o5) there is only one possible 

Hausdorff topology on the set M1 U M2 that leaves M1 and M2 as 

subspaces, namely, the topology 10 discussed in Chapter IV. If9 as 

will be the case in the present chapter, the spaces M1 and M2 are 

not required to be compact, there is in general more than one topology 

on the set M1 U M2 for which M1 and M2 are subspaces, as (4.9) 

clearly showso It is for this reason that, for the results that are 

now to be proved, a topology must be specified on the set 

Accordingly, the convention is hereby adopted that whenever 

is written without further explanation, the topological space 

"M U M " 1 2 

(M1 U M2 , r0 ) is intended. There will be no need to consider any 

other topology on the set M1 U M2 • 

Extension Theorems 

The first extension theorem to be proved provides a sufficient 

condition for a complete convex metric to be extended to the union of 

two spaces. 

Theorem 5.1. Let M1 be a space with complete convex metric D1 and 

let M2 be a locally connected generalized continuum with complete 

convex metric D2 , whose intersection with M1 is a non-empty, compact 

subspace of both M1 and M2 • Then for any e > 0 and for any two 

non-empty subsets C and H of 

there is a complete convex metric 

with 

for 

D/C,H U (M1 n M2)) > O, 

M1 U M2 that extends D1 , 

satisfies n3(C,H) ~ e, and has the property that if D3(x,y) < D2(x,y) 

for points x, y of M2 ' M19 then x and y have a n3 between 

point in M1 o 



Proof: Let o = D2(C,H U (M1 n M2)). The proof follows the general 

pattern of the proof of the extension theorem of Bing [4]. There is 

a real-valued function F(x), x > O, satisfying the following con-

ditions: F(x)?: sup {D1(p,q): p, q e M1 n M2 , D2(pjq) .S x) holds 

for all x .> 0, F( x) approaches 0 as x approaches 0 from the 

right, F 9 (x) is a continuous non-increasing function which exceeds 

both e/o and lj and the improper integral 
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exists for all a> O. Such a function is obtained exactly as in [4]; 

in fact, several statements asserted in this proof are restatements of 

facts used in [4], and thus are left unproven here. For every two 

points x, y of M2 let A(x,y) be the set of all D2 rectifiable 

arcs C from x to y that lie, except for possibly their endpoints, 

in M2 ' M1 and for which the (possibly improper) Riemann integral 

existso Here, s denotes D2 length along C from a fixed endpoint 

and p(s) is the point of C whose D2 distance along C from the 

fixed endpoint is s. If x lies in M2 ' M1 , y is a point of M1 

such that D2(x 9y) = D2(x,M1 ) holds, and x; is a D2 segment from 

x to y, then the integral 



exists and has the value F[D2(x9M1)J. For all points x, y of M2 

with A(x,y) ~ ¢, let 
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If D0(x,y) exists for two points x and y then D0(x,y) 2: D2(x,y). 

holds, and D0(x,y) ~ D1(x,y) holds if x and y are points of M1 • 

Define D3 on the set M1 U M2 as follows: if X9 y £ M1 , then 

D3(x,y) = D1(x,y); if x £ M1 and ye M2 ' M1 , then define 

n3(x,y) = n3(y,x) =inf {D1(x,a) + D0(a,y): a e M1 , A(a,y) ~ ¢}; 

if x, ye M2 ~ M1 , then n3Cx,y) is the minimum of D0(x,y) and 

inf {D0(x,a) + D1(a,b) + D0(b,y): a, be M1 , A(x,a) ~ ¢ ~ A(b,y)}; 

if x = y, then D3(x,y) = o·. It follows as in [4] that D3 is a 

metric on the set M1 U M2 whose restriction to M2 is equivalent 

to D2• Since also D1 is the restr~ction of D3 to M1 , then both 

M1 and M2 are subspaces of (~1 U M2 , n3). The proof is now com

pleted by proving assertions (i) through (vii). 

(ii) If x is in M2 ' M1 and y is a point of M1 such that 

D2(x,y) = D2(x 9M1), then D0(x,y) =inf {D0(x,a): a e M1 , A(x~a) ~ ¢}. 

(iv) Every closed and D3 bounded subset of M2 is compact. 

(v) D3 is complete and convex. 



(vii) If D3(x 9y) < D2(x,y) holds for points x, y of M2 ' M1 , 

then x and y have a D3 between point in M1 . 

(i) It has been noted that M1 and M2 are subspaces of 

(M1 U M2 ~ D3). It is now shown that M1 ' M2 and M2 ' M1 are 

separated sets in (M1 U M2 , D3). To this end, let x e; M1 ' M2 and 

ye; M2 ' M1 ; then n3(x,y) =inf {D1(x,a) + D0(a,y): a e: M1 , 
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A(a 9y) I ¢}. For any point a e: M1 with A(a,y) ~ ¢ it must hold 

that a e: M1 n M2 , hence D1 (x,a) + D0(a,y) 2: D1 (x,a) 2: D1 (x~M1 n M2) 

and D1 (x 9a) + D0(a,y) 2: D0(a 9 y) 2: D2(a,y) 2: D/M1 n M2 ,y). Upon 

taking infima 9 it is seen that D3(x,y) 2: D1(x,M1 n M2) > 0 and also 

D3(x 9y) 2: D2(M1 n M2 ~y) > 0 by reason of the compactness of M1 n M2 o 

Therefore, it follows that D3(x,M2 '- M1 ) 2: D1(x 9M1 n M2) > 0 and 

D3(M1 '- M2 ,y) 2: D2(M1 n M2 ,y) > 0 both hold, and the sets M1 ' M2 

and M2 " M1 are indeed separated in (M1 U M2 , D3). It follows now 

from ( 4.3) that (M1 U M2 , n3) = (M1 U M2 , 1 0) o 

(ii) With x and y as given in (ii), it suffices to show that 

for any point a in M1 with A(x,a) ~ ¢ and for any Ce: A(x~a), 

(1) 

holds, where xy is a D2 segment from x to y~ q(s) is the point 

u of xy with D2(y~u) = s, and p(s) is the point of C whose D2 

distance along C from a is s. In fact, inequality (1) shows that 
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holds, being obtained by setting a c y. 

Let a and ~ be the D2 lengths of xy and C, re.spec ti vely. 

Since D2(p(s)~M1 ) ~ D2(p(s),a) ~ s and F' is monotone non

increasing, then F'[D2(q(s),M1 )J = F'(s) ~ F'[D2(p(s),M1 )J holds for 

0 < s < ~. Further, since 0 < a = D2(x,M1 ) ~ ~ holds, then 

follows by elementary properties of improper integrals, and is the 

desired inequality (1). Thus, (ii) is proved. 

(iii) Pick a point x E M2 , where for (iii) it may be assumed that 

x is in M ' 2 Ml. Let y be a point of Ml such that 

D2(x~y) = D2(x,M1 ) and let z be any point of Ml. Then from (ii) 

and the definition of D3' it holds that 

n3Cx,z) =inf {D0(x,a) + D1(a,z): a E m1 , Ai(x9a)-/; ¢} 

>inf {D0(x,a): a E M1 , A(x,a)-/; ¢} = D0(x,y) 

~ D2 (x,y) = ~(x,M1 ). 

(iv) By (iii), every closed and n3 bounded subset of M2 is 

also D2 bounded, hence is compact according to (lo26)o 

(v) The convexity of n3 is proved by applying the local 

compactness of M2 in much the same way that compactness is used in 

the proof of Bing [4]. To show that D3 is complete, let <x.> be 
1 

a D3 Cauchy sequence in M1 U M2 • If some subsequence <y.> of 
J 

<x.> lies in ~l' then <y.> is Dl Cauchy since D3 extends Dl. 
1 J 
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Hence~ <y,> converges to some point y in Ml, to which <x,> must 
J 

also converge. If no subsequence of <x.> lies 
l 

be assumed that the entire 

Since <x,> 
1 

is a 

set w = {xi: i ::: 1 i 

D3 Cauchy sequence, 

l 

in Ml, then it may 

2, 0 ~ • } is contained 

then W 

bounded. Hence, the M2 closure w· of W is a closed and D3 

bounded subset of M2 

D3 restricted to W 

which, according to (iv)~ is compact. Therefore, 

is complete, and <x.> converges to some point 
1 

in W. Thus~ n3 is a complete metric. 

(vi) Let x e; H and y e; C. Then y e; M2 ' M1 since the given 

inequality D2(C,H U (M1 ('\ M2) > 0 implies that C n M1 = ¢0 If 

x e; M1 n M2 , then by the definition of D3 , it is given that 

D3(x,y) =inf {D1(x~a) + D0(a,y): a e; M1 , A(a,y) ~ ¢}. For any point 

a e; M1 with A(a,y) I¢ the inequality D1(x~a) + D0(a,y) ~ D0 Ca,y) 

> (e;/6) D2(a 9y) ~ (e;/6) D2(C,H U (M1 n M2)) = e; holds by the definition 

of 6. Therefore, n3(x,y) > e; holds in this case. 

Ifj however, x e; M2 '- M1 holds, then either n3(x~y) = D0(x9y) 

or n3Cx,y) =inf {D0(x,a) + D1(a,b) + D0(b,y): a, be M1 , A(x,a) ~ 

¢ ~ A(b~y)L If D3(x 9y) = D0(x,y), then as above, it holds that 

D3(x,y) = D0(x,y) ~ (e;/6) D2(x,y) ~ e. If n3Cx,y) equals the above 

infimum, then for any points a, b e; M1 with A(x,a) ~ ¢ ~ A(b,y) it 

follows as before that the inequality 

D0(x9a) + D1(a 9b) + D0(b,y) ~ D0(b,y) > (e;/6) D2(b~y) > e holds, and 

therefore n3Cx,y) ~ e;. 

Since in any case D3(x,y) ~ e holds, then D3(c~H) ~ e. 

(vii) With x and y as given in (vii), then n3(x 9y) cannot 
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D3(x~y)_ =inf {D0(x,a) + D1(a,b) + D0(b,y): a, be M1 , A(x,a) f ¢ f 

A(b,y)). The existence in M1 I\ M2 of a D3 between point of x and 

y now follows, exactly as in the original proof of Bing [4], from the 

compactness of Ml n M2 0 I 

The following example shows that a complete convex metric on a 

locally connected generalized continuum need not have the property 

that every compact subset is contained in a compact subset on which the 

metric is convex. It is shown in (5.3), however, that the space in 

question can be remetrized with a complete convex metric for which the 

stated property holds. 

Example 5.2. There is a one dimensional locally compact space X in 

E2 containing three points and having a complete convex metric D 

that is not convex on any co~pact subset of X which contains those 

three points. 

Proof: Using cylindrical coordinates in E3, for each odd m let 

n 
<1~ (2n+l)tr/3, 1-2-m) and for each let Pm = even m 

n (1, -m Construct Pm = 2n'TT/3 ~ 1~2 ) , n = 0 9 1, 2 and m = O, 1, 0 • 0 0 

the euclidean segments i j 
[pmpm+l] for all m and for all ( i' j) :::: 

(o, 0)9 (O, 2), (1, O), (1, 1)' (2, 1), and (2, 2). If ,x is the 

union of all such segments and if D is defined to be the geodesic 

metric on X, then D is a complete convex metric. Moreover, the 

only D convex subsets of X containing the three points 

1 and p0 are dense in the space X. The space (X, D), shown in 

Figure 3 on the follo~ing page, is one dimensional and can be embedded 

in the plane z o: 0 by projecting along lines through (O, O, 1). I 
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Figure 3. The Set X of (5.2) 
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Theorem 5o3. Let M be a locally connected generalized continuum 
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with complete convex metric D. Then for any point p of M, there 

is a complete convex metric E for M that is convex on D(p;n) and 

has the property that if D(p,x) z n then E(x,D(p;n - 1/2)) ~ 1, 

for each positive integer n. 

Proof: For each non-negative integer n, it follows from (3o9) that 

the set P a D(p;n) is a Peano continuum. Moreover, for n > 1 the n 

two sets C c {x: D(p,x) = n} and H 1 = {x: D(p,x) = n = 1/2} n n-



are compact and disjoint. By (5.1) there is a convex metric E1 _ for 

P1 such that E1 Cc1 ,~0 ) ~ 1 if c1 /:. ¢. By repeated use of (5.1), 
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a sequence E1 , E2 , •o• of convex met~ics respectively for P1 , P2 9 ooo 

may be defined inductively so that E 1 extends E' and the 
n+ n 

inequality En ( Cn ,Hn-l) ~ 1 

union of all these metri.cs 

holds whenever C /:. ¢. 
n 

If E is the 

E ' n 
the conclusion of the theorem is 

given by the following statements (i) through (iv). 

(i) E is a segmented convex metric for the space M, E is 

convex on each P , and E(C ,D(p;n - 1/2)) > 1 holds whenever n > 1 
n n -

and C /:. ¢. p. 

(ii) E(C ,p) > n holds whenever n > 1 and C i ¢. 
. n - n 

(iii) Every E bounded set is D bounded. 

(iv) E is c'omplete. 

(i) It is clear that the metric E is segmented convex, that E 

is convex on each Pn' and that E(Cn,Hn-l) ~ 1 holds for n ~ 1, 

since E extends each of the complete convex metrics E o n Now for any 

point x in c let xz be an E segment from x to any point z n 

in n(p;n - 1/2). Then xz meets H 
n-1 

in at least one point y, 

demonstrates that E(C ,D(p;n - 1/2)) ~ 1. n 

The metric E induces the same topology as D, for an arbitrary 

D ball D(x; e;) is contained in some D(p;n). Since E is a metric 
n 

for the space p ' then E(x;o) C D(x; E) for n 

is segmented convex, any point z of E(x;o) 

some o > O. Since E 

that lies outside P 
n 

must be joined to x by a segment: xz that contains a point y 9f 



C (\ E (x;6)9 in contradiction to the choice of Oo Hence 9 it holds n n 

that E(x;o) = E (x;o) C D(x;e:L 
n 

Now let E(x;e:) be an arbitrary E 

for some no Since E is a metric for 
n 

ball, where x is in p 
n=l 

the space p 
n' there is a 

number 0 < 6 < 1 such that D(x;o) (\ P CE (x;e;) holds.o But the n n 

choice of b insures D(x;o) C P , so that D(x;b) CE (x;e;) C E(x;e;). 
n n 

(ii) Statement (ii) is implied by (i) in the case n = 1 and 

follows by induction for general n, by use of (i) and E segments 

having p as one endpoint. 

(iii) Let Q be an E bounded set. If a point x in Q lies 

outside some pi~ then a point y of c. lies on some E segment 
J. 

xp, and from (ii) it follows that E(x,p) ~ E(y,p) ~ i holds. Since 

Q is E bounded~ it follows that Q must lie in some p . n 

(iv) Claim (iv) now follows from (iii), since by Clo26) every 

closed and D bounded set is compact. I 

The following theorem can be regarded as the main result of this 

dissertationo 

Theorem 5.4. Let M1 be a space with a complete convex metric D1 

and let M2 be a locally connected generalized continuum. In order 

for there to be a complete convex metric for M1 U M2 that extends 

D1 , it is necessary and sufficient that M1 (\ M2 be a non=empty 

subspace of both M1 and M2 which is closed in M2 ~ and that the 

M2 boundary of M1 ii M2 be closed in M1 • 

Proof~ Necessity is given by C4ol). For the proof of sufficiency, let 
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p be any point of M1 /\ M2 and let D be any complete convex metric 

for M2 • By (5o3) there is a complete convex metric D2 for M2 

whose restriction Dn to p = D(p;n) is convex, and which has the 
2 n 

property that if D(p,x) = n then D2(x,D(p;n - 1/2)) ~ 1 holds, for 

n :C 1, 2, oOo • 

Since M1 n M2 is closed in M2 , then M1 n Pl is compact. 

Hence, (5ol) may be applied by replacing M1 , D1 , M2 , 

D1 , P1 , and D~ respectively in the hypothesis; let Dl 
0 and 

be the D0 and D3 given respectively by the proof and conclusion. 

(The sets C and H in C5ol) will not be used here.) Then Dl 
3 

is 

a complete convex metric for M1 U P1 that extends D1 and has the 

1 1 property that whenever n3Cx,y) < D2(x,y) holds for two points x~ y 
1 of P1 "'- M1 9 then :it and y have a n3 

1 1 is noted that D0(u,v) ~ D2(u,v) = D2(u,v) 

between point in M1 . It 

1 whenever D0(u,v) is 

defined, and that if x lies in P1 "- M1 
1 

1 and y in M1 ~ n3(x,y) 

is defined to be the infimum of sums D0(x,a) for certain 

points a in the P1 boundary of M1 n P1 • 

Proceeding inductively, suppose that D; is a complete convex 

metric for M1UPn which extends D1 • Again apply (5ol) by replacing 

M1 9 D11 M2 , and D2 by Ml U pn' 
n p and Dn+l respectively 9 Dy n+l' 2 

and obtain Dn+l 
0 

and Dn+l 
3 

in place of DO and D3° The conclusion 

of (5ol) gives that Dn+l 
3 

is a complete convex metric for Ml U pn+l 
n that extends n3 , with the property that whenever the inequality 

n+lc ) n+l( ) D3 x~y < D2 x,y holds for points x, y of Pn+l "'- (M1 U Pn), 

then x and y have a D;+l between point in M1 U Pno Again, it 

n+l( ) n+l ) should be noted that D0 u~v ~ D2 (u,v = D2(u,v) holds whenever 

is defined. Further, for points x in Pn+l "- (M1 U Pn) 
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and y in M1 U P n, the value D~+l is defined to be the infimum of 

sums n+l( ) n D0 x,a + D3(a,y) for certain points a in the P boundary n+l 

of (M1 U P n) n P n+l. The induction principle is now applied 0 

Define to be the union of the metrics and for conven-

ience let Po = M1 n pl and DO 
3 = Dl. The following assertions (i) 

through (vii) combine to show that D3 is a complete convex metric 

for the space M1 U M2 which extends D1 • 

(i) D3 is a segmented convex metric that extends D1 o 

(ii) For points x in p 
n' y in Ml, and for p > 09 there is 

a point z in Min Pn such that D~(x,y) + p > D2Cx,z) + D1(z~y) 

holds. If x is not in Ml, then z can be chosen in the p 
n 

boundary of Ml n pn' hence in the M2 boundary of M1 n M2 o 

(iii) For points x in p 
n+k' y in Ml U pk (k = o~ l ~ 0 0 0 

n = 1, 2, 0 0 0) j and for p > o, there is a point z in the set 

(Ml U Pk) n pn+k such that n+k( ) D3 x,y + p > D2Cx,z) k + D3(z~y) holdso 

(iv) D2 is equivalent to 'D3 restricted to M2 o 

( v) D3 is a metric for the space M1 U M2• 

(vi) For points t in p and v in M ' p 
n+l for some n > O, n 2 

there is a D3 between point u of t and v such that 

D(p~u) "" n + 1/2 holds and p contains no D3 between point of u n 

and v. 

(vii) D3 is complete. 

(i) Claim (i) is immediate from the definition of D3 , since 
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each D~ is a complete convex metric. 

(ii) Let x be in ,Pn, y in M1 , and let p > 0 be given. If 

x is in M1 , then x itself may be taken for z since it is true 

that D~(x,y) = D1(x,y). Therefore, with the assumption that x is 

not in M1 , the proof of (ii) is given by induction on n. If x 

1 is in P1 ' M1 , then by the definition of n3(x,y) there is a point 

z on the P1 boundary of M1 l\'P1 such that the inequality 
1 1 . 

n3(x,y) + p > D0(x,z) + D1(z,y) ~ D2(x,z) + D1(z,y) holds, Proceeding 

inductively, assume that (ii) holds for n = k and arbitrary p' > O, 

and let x e; Pk+l '- (M1 U Pk) with p > O. From the definition of 

k+l ) n3 (x,y there is a point z' on the Pk+l boundary of 

( M1 U Pk) n P k+l such that the inequality 

(2) 

holds. If z' is in Ml n pk+l' then z' is on the pk+l boundary 

of Ml n pk+l' and since D~( z' ,y) = Dl ( z I ,y) holds, inequality (2) 

shows that z = z' satisfies (ii). If, however, z' is not in Ml, 

then z' is in Pk. Thus, by the induction hypothesis for the points 

z' and y, there is a point z on the Pk boundary of M1 il Pk, 

hence on the Pk+l boundary of M1 n Pk+l' such that the inequality 

D~(z' ,y) + p/2 > D2(z',z) + D1(z,y) holds. By combining this last 

inequality with (2) and the triangle inequality, the desired inequality 

in x, y, and z is obtained. Claim (ii) is now established by the 

induction principle. 

(iii) Assertion (iii) can be proved by the technique of double 

induction on k and n, by using (ii) as the initialization k = 0 
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• 
and an argument similar to the proof of (ii) to complete the induction. 

(iv) To prove that D2 and n3 induce the same topology on M2 , 

first let n3(x;e:) be given with x a point of 

the set D2(x;e:) is compact, it is contained in 

M2 • Since by (1.26) 

P for some n. 
n 

But since n;(x;e:) n M2 is D~ open, there is some e: > 6 > 0 such 

that D~(x;o) C n;(:x:;e) (I M2 holds. Since D2(x;6) C Pn~ then 

D2(x;o) ""D~(x;o) ~ n3(x;d holds. 

Now let D2(:x:;.d be an arbitrary D2 ball, and first suppose 

that x is in M1 (I M2 o Then there is some number e:/2 ~ 6 > 0 such 

that D1 (x;o) n M2 C D2 (x;e:/2) n M1 holds. For any point y of 

n3(x;o) n M2 , .there is by (ii) some point z in M1 (\ M2 such that 

6 > D2(y,z) + n1 (z,x) holds. Since z is thus in D1 (x;o).n M2 , 

then D2(x,z) < e:/2 and the triangle inequality shows that y is in 

D2(x;s). Hence in this case, n3(x;o) ('\ M2 C D2(x;e:) holds. If 

instead x is in M2 '- M1 , there is some number e:/2 ~ f3 > 0 such 

that the compact set D'2<x; 13) is in M " Ml and in some p ' so 2 n 

that D2(x; 13) = D~(x;(3). Since Dn 
2 

and Dn 
3 

are equivalent on p 
n' 

there is some number 13 ~ ex. > 0 for. ,which n;(x;a) n M2 C D2(x;l3). 

Since any point y of n3(x;cx.) (\ M2 lies in Pn+k for some k ~ 1, 

by (iii) there is a point z of (M1 U P ) (\ P k satisfying n n+ 

a> D2(y,z) + D~(z,x). Thus, z lies in D;(x;cx.) n M2 and hence in 

D2(x;(3)i so that as above the triangle inequality places y in the 

ball D2(x;e:). Therefore n3(x;a) n M2 C D2(x;e:) holds, and (iv) 

is established. 

(v) Statement (v) follows from (4.3), since M1 and by (iv) 

al so M2 are subspaces of ( M1 U M2 , n3) , once it has been shown 



that Ml'- M2 and M2 '- Ml are separated sets in (M1 U M2, D3). 

Since M1 n M2 is closed in M2, for each point x of M2' Ml 

there is some e: > 0 for which D2(x;e;) C M2 '- M1 • If there were 

some point y in n3(x; e;) n M1 , (ii) vtould provide a point z in 

M1 for which e: > D2(x,z) + D1(z,y), contrary to the choice of e:. 

Hence, the ball n3(x;e;) lies in M2 " M1 , and therefore the set 

M2 '- M1 is actually n3 open. Now let y be in M1 '- M2 , and 

denote by B the M2 boundary of M1 n M2 • Since B is closed in 

M1 , then n1 (y;o) C M1 " B holds for some o > O. If some point 

x of n3(y;o) were in M2 '- M1 , there would be according to (ii) 

some point z of B satisfying o > D2(x,z) + D1(z 9y), contrary 

to the choice of o. Therefore, the ball n3(y;o) must lie in M1 ~ 

and the sets M1 '- M2 and M2 '- M1 are thereby n3 separated. 

(vi) Suppose that points t in P n and v in M2 '- P n+l have 

no n3 between point that satisfies the conditions given in (vi)o 

Since n3 is segmented convex, for every point t' in P there is 
n 

clearly some n3 between point u' of t' and v lying in the set 

c = {x e: M2 : D(p9X) = n + 1/2). In particular, points tl = t and 

v have a between point ul in c. Since by assumption there must 
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be a between point t2 of ul and v which lies in p 
n~ it follows 

it is possible to define points t1 ~ t 2 , ooo 

u1 ~ u2 , •oo of C inductively~ satisfying 

k 

of P and also 
n 

n3<t~v) = Icn3<\~ui) + n3(uiv\+1 )J + n3(tk+ljv) 

i=l 



for each k. Therefore, the series 

co 

~[D3(ti~ui) + D3(ui,ti+l)] 

i=l 
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converges, implying that D3(Pn,C) = O. But this is impossible, since 

P and C are disjoint compact sets. Thus, (vi) is established. 
n 

(vii) To show that D3 is complete, let <xk> be a D3 Cauchy 

sequence. It may be assumed that <xi(' lies entirely in M2 ' M1 

and has no subsequence that lies entirely in one of the sets p . In n 

fact, if xk lies in p " p 
nk-1 

for each k, it may be assumed 
nk 

that nk + 1 < nk+l· Suppose that for only a finite set of indices 

k the points and have a D3 between point in M1 • It may 

be assumed, in fact; that this set of indices is empty. Then for each 

(vi) shows ~hat there is some petween point u of and 

xk+l such that 

between point of 

there is a D3 

D(p,v) = nk + 1, 

D(p,u) = nk +.l/2 holds and p contains no D3 nk 
u and xk+l 0 

Since xk+l lies outside p 
n +l' 

k 
between point v of u and xk+l satisfying 

and moreover P contains no n3 between point 
nk 

of u and v. Therefore, u and v can have no n3 between point 

in the set Because of this fact and the particular con-

struction of the metrics D~k+l and D2 , it follows that the inequal

D~k+1(u,v) ~ D~k+1 (u,v) = D2(u,v) > 1 ity D3(xk,xk+l) ~ D3(u,v) ~ 

holds, and <xk> cannot be Cauchy. 

Hence, there must be a subsequence <xk.> of <xk> for which 
l. 

the points xk. and x have a D3 between point Yi in M1 • 
1 

ki+l 

Then <y.> is a Dl Cauchy sequence that converges to some point y 
l. 
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in M1 o Since for each k and i it holds that 

it follows that <xk> converges to y. Therefore, the metric n3 is 

complete. I 

The justification for stating the next corollary is its likeness 

to the following classic theorem of Bing [6] on the extension of a 

general metric: if a closed subspace !!,1 of.§!. metric space !:!2 has 

a metric £1 , then £1 ~be extended to a metric for !'.12 o 

Corollary 5o5. If a closed subspace M1 of a locally connected 

ge~eralized continuum M2 has a complete convex metric D1 , then 

•' 
D1 can~be extended to a complete convex metric for M2 • 

Proof~ Not only is the intersection M1 f\ M2 = M1 closed in M2 , 

bu~ its boundary is also. Thus, (5.4) gives the desired extension of 

D1 to a complete convex metric for the space M1 U M2 , which by 

(4 0 2) is just M2 • I 

The condition given in (5.4) as being necessary and sufficient 

for metric extension actually proves to be a sufficient condition to 

ensure that M1 U M2 is a locally connected generalized continuum 

' 
whenever M1 and M2 are. Thus, (5.4) is included in the following, 

in the case that M1 is a locally connected generalized continuum. 

Theorem 5.6. Let M1 and M2 be locally connected generalized 

continuao In order for M1 U M2 to be a locally connected generalized 
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continuum and for a given complete convex metric for M1 to extend to 

a complete convex metric for M1 U M2 , it is necessary and sufficient 

that M1 n M2 be a nonempty subspace of both M1 and M2 which is 

closed in M2 and that the M2 boundary of M1 n M2 be closed in M1 o 

Proof: Necessity is given by (5.4). For sufficiency, assume that 

M1 n M2 is a non-empty subspace of both M1 and M2 which is closed 

in M2 and that the M2 . boundary of M1 n M2 is closed in M1 o By 

(5.4), a given complete convex metric fo~ M1 does extend to a complete 

convex metric for M1 U M2 • Since by (l.25)j it is true that the space 

M1 does admit a complete convex metric, then by the previous statement, 

the space M1 U M2 admits some complete convex metric also. Moreover, 

since ,·by ( 4.11) the space M1 U M2 must be locally compact, then by 

(1.27) it must be a locally connected generalized continuum. I 

In connection with (5.6), it should be noted that for locally connected 

generalized continua M1 and M2 , the fact that M1 U M2 is a 

locally connected generalized continuum does not, according to (4.7), 

imply that M1 n M2 is closed in M2 , al though by ( 4 .13) this fact 

does imply that the M2 boundary of M1 n M2 is closed in M1 • 



CHAPTER VI 

CHARACTERIZING CLASSES OF LOCALLY CONNECTED 

GENERALIZED CONTINUA 

In 1966 Toranzos [25] used the extension theorem of Bing [4] 9 

along with three varieties of convex metrics~ to characterize dendrites, 

arcs i and simple closed curves among the Peano continua. F.or example, 

Toranzos [25] proved that ~ Peano continuum is~ dendrite if and only 

if each convex metric for it is_§£. It is the purpose of Chapter VI 

to prove analogous theorems for complete convex metrics on locally 

connected generalized continua, using the corollary to the main exten

sion theorem (5o4)i along with the three varieties of complete convex 

metrics discussed in Chapter III: SC, WR, and WE. It is noted that, 

although the three varieties of metrics used in this chapter do not 

correspond exactly to the three varieties used by Toranzos [25Ji yet 

analogues to dendrites, arcs, and simple closed curves are among the 

classes of locally connected generalized continua identified in the 

results of this chapter. 

The following theorems characterize classe's of locally connected 

generalized continua by using all possible combinations of the proper

ties SC, WRj and WE, beginning with the use of these properties one at 

a time. 

Theorem 6 ol. A locally connected generalized continuum con,tains no 

simple tried if and only if every complete convex metric for it is WR. 

103 
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Proof: For a contrapositive proof of necessity, let D be a complete 

convex metric for a locally connected generalized continuum M, and 

assume that D is not WR. Then by (2.4), there are four distinct 

points x, y, y', z in M such that xz = zy = zy' = (1/2) xy = 

(1/2) xy'. By (lol3), there exist segments xz, zy, zy'. Moreover, 

x is in neither zy nor zy', since xy > zy and .xy 1 > zy 1 hold. 

Thus, there is some number g > 0 such that D(x;g) is disjoint from 

-ey U"ZY•' and if t is a point chosen from D(x; g) n xz that is 

distinct from x, then the sub-segment xt of xz lies in D(x; g). 

Since t .;:. z, then xz ' t =AU B, where A and B are separated 

sets containing x and z, respectively. If V = XZ U zy U ey I , 

then V ' t = A U (B U zy U zy') holds, where again A and 

BU zy U zy' are separated sets, since AC Xt C D(x;g) holds. Thus 

the set V, having t as a cut point, cannot be a simple closed 

curve [20]. But since x, y, and y' are non-cut points of V, 

then V is not an arc. Thus V, hence also M, must contain a 

simple tried [20]. 

The proof of sufficiency is also given by contraposition. Suppose 

a locally connected generalized continuum M contains a simple tried 

T. Then there exist four points x, y, y', z and arcs xz, zy, zy' 

that intersect pairwise only at z I such that T "" xz u z.y u zy'. 

The tried T 'is homeomorphic to a tried T' in E2 composed of three 

equal line segments which intersect pairwise only at a common endpoint 

of each. The geodesic metric on T' is convex, and by the homeomor

phism with T induces a convex metric DT for T such that z is 

the midpoint of both x, y and x, y'. By (5.5), the metric DT 

extends to a complete convex metric D for M, and under D also 
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the point z is a midpoint of both x, y and x, y'. Thus by (2o4), 

D is not WR. I 

Theorem 602. For a locally connected generalized continuum M, the 

following statements are equivalent: 

(i) M contains no simple closed curve. 

(ii) Every complete convex metric for M is SC. 

(iii) Every complete convex metric for M is WE. 

(iv) Every complete convex metric for M is SC-WE. 

(v) Every complete convex metric for M has the property that 

every closed ball contains every segment between every pair 

of its points. 

Proof: The plan of the proof is to show that (ii), (iii), (iv), and 

(v) are separately equivalent to (i). 

(i) .... (ii) Let M satisfy (i), and let D be a complete convex 

metric for M. Suppose that for some two points p and q of M 

there are two distinct D segments A1 and A2 from p to q. 

Then A1 U A2 would contain a simple closed curve, contradicting 

the hypothesis [20]. Hence, between every two points of M there is 

a unique D segment 9 and by (2.3) the metric D is SC. 

(ii) -+ (i) Let M be a locally connected generalized continuum 

containing a simple closed curve C. A homeomorphism from the unit 

circle in E2 onto C induces a complete convex metric DC for C 

that is not SC 9 namely, the metric induced from the geodesic metric on 

the unit circle. By (5.5)i DC can be extended to a complete convex 

metric D for M1 and D is not SC. 
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(i) - (iii) With M as in (i), let D be a complete convex metric 

for M. Suppose that sq n pr ::: pq holds in M. If p = s or if 

q = r, then sq U pr is the segment pr or sq' respectivelyo 

If ~ ~ s and q ;{: r, then sq U pr is at least an arc from s to 

q. But since in M it holds that any arc joining two points is 

unique, then sq U pr is the segment sr lmown by (Ll3) to exist [20]0 

By (2o5), it follows that D is WE. 

(iii) - (i) Since the geodesic metric for the unit circle in E2 is 

not WE, then the above proof of (ii) - (i) suffices in this case also. 

(i) -+ (iv) This implication is just the conjunction of the two 

assertions, (i)-+ (ii) and (i)-+ (iii), proved alreadyo 

(iv) -+ (i) Since (iv) - (iii) and (iii) - (i) both hold, then so 

does (iv) - (i). 

(i) -+ (v) With M as in (i), suppose.that there is some complete 

convex metric D for M and some closed ball D(p;g) containing two 

points x and y for which some segment xy does not lie entirely 

in D(p;g). Since D(p;g) is arcwise connected, there is an arc A 

from x to y that lies entirely in D(p;g). Hence A~ xy, so that 

AU xy must contain a simple closed curve [20]. This contradicts (i)o 

(v) -+ (i) Assume, for a contrapositive argument, that the locally 

connected generalized continuum M contains a simple closed curve C. 

Pick three points xi y, z of c and induce a metric DC for c via 

a homeomorphism from the unit cipcle in E2 in such a way that x, y, 

and z are the respective images of the points (Oi l)~ C1~ 0)9 and 

(O, ~l). By (5.5) 1 extend DC to a complete convex metric D for M. 
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The segment xz in C that does not contain y does not lie in the 

set .n0(y;11/2), although D(y,x) = D(y,z) = 'Il/2. Thus, (v) cannot 

hold. I 

Theorem (6,2) furnishes a simple condition that is sufficient for 

the convexity of metric balls, which is stated as follows. 

Corollary 6.3. Let M be a locally connected generalized continuum 

which contains no simple closed curve. If D is a complete convex 

metric for M, then every closed (and open) D ball is convex. 

Proof: The conclusion is given by (i) .... (v) of (6.2) for closed D 

balls. But the fact that closed balls are convex implies the same for 

open balls. I 

Theorem 6.4. For a non-degenerate9 locally connected generalized 

continuum Mi the following statements are equivalent: 

(i) M is homeomorphic to an interval of El. 

(ii) Every complete convex metric for M is SC-WR. 

(iii) Every complete convex metric for M is WR-WE. 

(iv) Every complete convex metric for M is SC-WR-WE. 

Proof: The proof follows (i) .... (iv) .... (iii) .... (ii) .... (i). 

(i) .... (iv) If M is homeomorphic to an interval of E1 , let D be 

a complete convex metric for M. Since M contains no simple closed 

curve, then by (6.2) it follows that D is SC-WE, and since M con

tains no simple triod, then D is WR by (6.1). 

(iv) .... (iii) This implication is a tautology. 
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(iii) - (ii) This is established by C6o2). 

(ii) - (i) Suppose (ii) holds. Let D be a complete convex metric 

for M, let x and z be two points of M, and let y denote the 

midpoint of x and z, which by C2o3) is known to be unique. Suppose 

y' is a point of M distinct from y such that xy' = xy holds. 

Choose segments xy, yz, and yy 1 by (1013). If either of the points 

x or z lay on yy', then the set xy U yz U yy 0 would contain a 

simple closed curve. If neither x nor z lay on yy 1 , then the set 

xy U yz U yy' would contain a simple triad. Since by (6.1) and (6.2) 

both alternatives are impossible, then y itself is the only point of 

M satisfying xy = yz. Since M is a connected metric space in which 

every two points have exactly one point equidistant from themi then 

according to a theorem of Berard [3], _. M is homeomorphic to an interval 

Theorem 605. For a locally connected generalized continuum M9 the 

following statements are equivalent: 

(i) M contains no simple closed curve, but does contain a simple 

tried. 

(ii) Every complete convex metric for M is SC but is not WRo 

(iii) Every complete convex metric for M is WE but is not WR. 

(iv) Every complete convex metric for M is SC-WE but is not WR. 

Proof: It is shown only that (i) - (ii) holds, since (ii) - (iii) -

(iv) is entailed by (6.2)j and (ii) - (i) follows from (6.1) and (6.2). 

(i) - (ii) With M as in ( i) , let xrz U x? U :X_3Z be a simple 

tried contained in Mj where ~ is an arc from x. 
:L 

to z and 
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these arcs intersect pairwise only in the point z. If D is a com-

plete convex metric for M, then D is SC by (6.2). Since there are 

no simple closed curves contained in M, then there is only one arc 

joining any two points [20]. From this it follows that x":Z is the 
1 

unique segment x.z, 
1 

and the arc x--:'z U X:z is the unique segment 
1 J 

xi xj, for i I j. Thus x1 z C x1 x2 U x1x3 holds, and the set 

~1x2 U ~1x3 = xJ:Z U x2'z U x'3Z is not a segment. Therefore, it follows 

from (2o4) that D is not WR. I 

Theorem 6.6. For a locally connected generalized continuum M~ the 

following statements are equivalent: 

(i) M is a simple closed curve. 

(ii) Every complete convex metric for M is WR but is not SC. 

(iii) Every complete convex metric for M is WR but is not WE. 

(iv) Every complete convex metric for M is WR but is neither 

SC nor WE. 

Proof: Since (iv) is just the conjunction of (ii) and (iii), the proof 

is completed by showing that (ii) and (iii) are separately equivalent 

to ( i). 

(i) - (ii) If M is a simple closed curve and D is a complete 

convex metric for Mi then D is WR by (6.1). But by (2.15)i D 

does not admit an SC metric. Hence, D cannot be SC. 

(ii) .... (i) If M satisfies (ii), then by (6.2) there is some simple 

closed curve C contained in M. If there exists some point p in 

M '- Ci then there would be an arc joining p to C, hence there 

would be a simple triad in M. Since this is prohibited by (6.1)~ it 
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must be that M = c. 

(i) .... (iii) The proof of (i) .... (ii) suffices here also, if 11SC 11 and 

11 (2.15)'' are replaced by "WE" and 11 (2.17) 11 1 respectively. 

(iii) .... (i) The proof of (ii) .... (i) can be usedi with "(ii)" replaced 

by "(iii)". I 

The space characterized by (6.6) is rather striking in that it is 

the only one obtained in this chapter that must be compact. The locally 

connected generalized continua that contain no simple closed curves 

(602) and those that are homeomorphic to an interval of E1 (604)-are 

the possibly non-compact analogues to the dendrites and arcs 1 respec

tively, that were characterized by Toranzos [25]. 



CHAPTER VII 

SUMMARY AND PROSPECTS 

This paper is an investigation of the properties of complete 

convex metrics on locally connected generalized continua, and is 

especially concerned with the question of metric extensiono The study 

of convex metrics on Peano continua was begun in 1928 by Menger [18], 

who posed the famous question, Does every Peano continuum admit a 

convex metric? This question was answered affirmatively by Bing [4] 

in 1949 9 but the notion of a convex metric continues to provide 

material for current research. 

One of the current areas of research involving convex metrics is 

in the setting of spaces which, aside from compactness, enjoy the other 

properties of Pea.no continua: these are the locally connected general

ized continuao Complete convex metrics on locally connected generalized 

continua seem to have many of the properties possessed by their counter

parts in the compact setting, the convex metrics on Peano continua. 

For example, in 1955 it was proved by Tominaga and Tanaka [24] that 

every locally connected generalized continuum admits a complete convex 

metrico In 1967, Lelek and Mycielski [16] showed that whenever a 

locally connected generalized continuum is given a:-cbmpi~te coniJ'ex __ 

metric 9 then every closed and bounded set is compacto These last two 

resultsj which were discussed in Chapter I, have been important tools 

for the results of this papero 
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The primary aim of the dissertation has been to establish results 

on the extension of complete convex metrics to the union of two spaces; 

it was the author's intent to generalize a useful theorem of Bing [4] 

concerning the extension of convex metrics to the union of two Peano 

continua. In Chapter V, a necessary and sufficient condition for such 

an extension was found by specifying two simple topological properties 

of the intersection of the two spaces in question. In proving this 

main result, it was discovered that a locally connected generalized 

continuum admits not only a complete convex metric~ but also one having 

the property that every bounded set is contained in a compact~ convex 

set. Two consequences of the main extension theorem were given at the 

end of Chapter V. One of these, analogous to the classic theorem of 

Bing [6] on general metric extension, states that a complete convex 

metric for a closed subspace of a locally connected generalized con-

tinuum can be extended to a complete convex metric for the entire space. 

The second consequence shows that the properties required in the 

author's main extension theorem on the intersection of two spaces are 

sufficient to ensure that the union of the spaces is a locally 

connected generalized continuum whenever both spaces are also. 

The entire thesis is closely related to the main body of results 

of Chapter V1 in providing either preparatory material for proving it 

or applications of it; nevertheless, a few results have emerged that 

are of some interest in their own right. Chapter III provided three 

theorems on segmented convex metrics that may be worthy of notice, 

First, it was found that if a locally compact metric space has a unique 

midpoint for every two of its points, then the metric is segmented , 
convex. Second, in a locally connected generalized continuum with a 
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segmented convex metric 9 every compact ball is a Peano continuum; in 

the case that the convex metric is complete, this result yields the 

useful corollary that every closed ball is a Peano continuum. And 

third, the admission of a segmented convex metric by a locally compact 

space was found to characterize the locally connected generalized 

continua in a theorem that concluded Chapter III. Chapter IV intro-
1 

duced a particular topology on the union of two spaces, and a few 

elementary properties were established; these became useful in proving 

the extension theorems of Chapter V. In Chapter VI it was found that 

locally connected generalized continua that are either without any 

simple closed curves, without simple triads, or homeomorphic to an 

interval of the real linei can be characterized by the admission of 

complete convex metrics possessing some combination of the three 

properties SC, WR, and WE; these properties were investigated in 

Chapter II. 

Certain questions have arisen in the course of this research t~at 

hopefully will prove to be of interest for further st~dy. The out-

standing question of Chapter II is whether an SC-WR metric must also 

be WE" The question of Krakus and Trybulec [14] remains unanswered 9 

whether every space with an SC metric is contractible. This question 

may also be restated with "SC" replaced by "WE." Also, it might be of 

interest to determine which of the plane continua admit WE metrics~ 

much as Glynn [12] has done for SC metrics. In regard to Chapter V, 

it might be profitable to investigate whether 1 in the main extension 

theorem (5.4) or in the subsequent corollary, it is necessary to require 

that the space M2 be locally compact, or whether it might suffice 

that M2 be simply a space that admits some complete comr_ex metric. 
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