DESIGN OF BINARY LOGIC SYSTEMS

USING MECHANICAL ELEMENTS

By
GLENN HANCOCK DEWEY
Bachelor of ScienceUniversity of VermontBurlington, Vermont1957
Master of ScienceUniversity of VermontBurlington, Vermont1959
Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements

 for the Degree of

 DOCTOR OF PHILOSOPHY

 May, 1973

ACKNOWLEDGMENTS

My sincere gratitude is expressed to all who have helped in any way to make this study possible. In particular I am indebted to Dr. A. H. Soni, Chairman of my Advisory Committee, for his encouragement and guidance throughout the investigation. He kept me going when things looked bleak!

The encouragement and helpful suggestions of the members of my committee, Dr. M. Mamoun, Prof. P. McCollum and Dr. J. Johnson is greatly appreciated.

To my "mechanisms companions", Dr. Matthew Huang, Mr. Rao Dukkipati, Mr. Dilip Kohli and Mr. Syed Hamid, I offer my gratitude.

My indebtedness is expressed to the University of Costa Rica for sending me to Oklahoma State University to continue my studies. I am especially grateful to Ing. Rodrigo Orozco, Head of the Department of Electrical and Mechanical Engineering at the University of Costa Rica, for the confidence he has shown in me.

For my family, Amalia, Maria and Garner, and the love and care I have received I overflow with joy.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
1.1 Revíew of Literature 1
1.2 Motivation for Study of Mechanical Logic Synthesis 4
1.3 Scope of the Study 5
II. SYNTHESIS OF CONVENTIONAL LOGIC FUNCTION GENERATORS 8
2.1 Basic Linkage Components 8
2.2 Basic Logic Functions 11
2.3 Linkage Systems Which Generate the Basic Logic Functions 11
2.4 Theorems of Boolean Algebra Proved Mechanica11y 25
2.5 Example of Logic Circuit Synthesis 30
2.6 Active Function Generators 35
2.7 Example of Active Logic Circuit Synthesis 41
III. SYNTHESIS OF THRESHOLD LOGIC GENERATORS FOR FUNCTIONS OF THREE VARIABLES 47
3.1 Definitions and Theory of Threshold Logic 47
3.2 Example of a Mechanical Linkage Which Generates a Function of Three Variables 51
3.3 Structural Synthesis of Separator and Threshold Linkages 59
3.4 Basic Separator and Threshold Linkages Needed 67
3.5 Dimensional Synthesis of Separator Linkages 76
3.6 Dimensional Synthesis of Threshold Linkages 84
3.7 Design Charts for Selecting Threshold Logic Generators 86
3.8 Examples of Synthesis Using Design Charts 109
IV. CONCLUSIONS AND RECOMMENDATIONS 116
4.1 Conclusions 116
4.2 Recommendations 119
BIBLIOGRAPHY 123
Chapter Page
APPENDIX A - EXAMPLE OF LOGIC CIRCUIT SYNTHESIS 126
APPENDIX B - EXAMPLE OF ACTIVE LOGIC CIRCUIT SYNTHESIS 133
APPENDIX C - ENUMERATION OF KINEMATIC CHAINS FOR SEPARATOR LINKAGES 144
APPENDIX D - SYNTHESIS AND ANALYSIS PROCEDURES FOR SEPARATOR LINKAGES . 152
APPENDIX E - SYNTHESIS AND ANALYSIS PROCEDURES FOR THRESHOLD LINKAGES . 171

LIST OF TABLES

Table Page
I. Truth Table of Equations (3-9), (3-10), (3-11) and (3-13). 53
II. Three-Variable Equivalence Classes and Their $\bar{W} ; \bar{T}$ Relations 69
III. Basic Threshold Linkages in Terms of Basic Separators and Threshold Angles 77
IV. Weight-Threshold Angle Vectors Vs. Function Values 90
V. Separator Linkage Dimensions 99
VI. Threshold Linkage Dimensions 103
VII. Truth Table of Control Circuit for Sorter Mechanism 128
VIII. Primitive Flow Table 135
IX. Synthesis Table 138
X. Distribution of Eighteen Ends on Eight Kinematic Links 147
XI. Distribution of Ten Ends on Five Kinematic Links 151
XII. Computer Program A 168
XIII. Computer Program B 180

LIST OF FIGURES

Figure Page

1. Four Link Mechanism 9
2. Crank-S1ider 9
3. Doub1e-S1ider 9
4. Mechanical Generators of the OR Function 12
5. Mechanical Generators of the AND Function 13
6. Mechanical Generators of the NOT Function 14
7. Mechanical Generators of the NOR Function 15
8. Mechanical Generators of the NAND Function 16
9. Mechanical Generators of the MEMORY Function 17
10. Mechanical Generators of the COINCIDENCE Function 18
11. Mechanical Generators of the OR-EXCLUSIVE Function 19
12. Twenty-Three Theorems of Boolean Algebra Proved by Mechanical and Electrical Analogues 26
13. Gonveyor System With Sorter Mechanism 31
14. Equivalent Systems for Generating the Logic Function $Z=A \cdot \vec{B}$. 33
15. Contro1 Circuit for Sorter Mechanism 34
16. Function Generators for Active Mechanical Logic Systems 37
17. Amplifier for Active Mechanical Logic Systems 39
18. Shaft Speed Sensor and Input Signal Generator 42
19. Schematic of the Speed Control Logic Gircuit 44
20. Model of Speed Control Gircuit 46
21. Geometric Interpretation of Threshold Elements 49
Figure Page
22. Separator Linkage for $s_{F}=\frac{1}{2} s_{1}+\frac{1}{4} s_{2}+\frac{1}{4} s_{3}$ 55
23. Threshold Linkage for $z=f\left(s_{F}\right)$ 56
24. Threshold Logic Generator Composed of Separator Linkage and Threshold Linkage 57
25. Enumeration of Kinematic Chains and Linkages Usable as Separators 60
26. Six-Link Chains and Linkages Derived to Serve as Threshold Linkages 64
27. Threshold Linkage Showing Multiple Paths of Point f
Between Stable States 66
28. Separator Linkage for $s_{F}=\frac{1}{2} s_{1}+\frac{1}{4} s_{2}-\frac{1}{4} s_{3}$ 71
29. Threshold Linkage Showing Separation Angles τ_{a}, τ_{b}, τ_{c} and τ_{d} and Threshold Angle τ_{b} 73
30. Graphica1 Representation of the Function of $F V=26$ Showing Threshold Angles 75
31. Proportioning of the Vertica1 Links $A D$ and $B G$ 79
32. Flow Chart Showing Use of Design Charts in Determining Desired Function Generator 87
33. Separator Linkages 100
34. Threshold Linkages 104
35. Threshold Logic Generator 111
36. Summing Linkage of Binary Adder 114
37. Flow Chart of Truth Table Rows for Consecutive Positions of Boxes 129
38. Revolute Pairs and Link "Ends" of a Six-Link Kinematic Chain 146
39. Enumeration of Kinematic Chains with $M=3$ and $N=8$ 148
40. Immobile Linkage Connections (Structures) 150
41. Five-Link Two-Degree-of-Freedom Kinematic Chains 151
42. Determination of S_{I} 153
43. Synthesis and Output Analysis of Separator of $\bar{W}=(1,1,0)$ 156
44. Synthesis and Output Analysis of Separators for $\overline{\mathbb{W}}=(1,1,1)$, $(2,2,1)$ and $(3,2,1)$ 157
45. Six-Link Loop Models 159
46. Graphical Monitoring of Transmission Angle 164
47. Analysis of Separator Linkage Transmission Angles 167
48. Synthesis of £oop LJK 172
49. Overlay for Locating K While Monitoring μ in Threshold Linkage Synthesis 174
50. Analysis of Cam Rotation Angle 176
51. Synthesis of Cam and Follower 177

CHAPTER I

INTRODUCTION

1.1 Review of Literature

In 1854 an English mathematician, George Boole, invented a twovalued algebra. Since that time Boolean algebra was well developed, but as a practical tool of technology it lay idle for nearly a century. Then in 1938 claude E. Shannon [1]* recognized that the logic of electrical switching circuits is comparable to the logic expressed by Boolean algebra. This was the beginning of a rapid and extensive development in the field of switching circuits. The conventional branch of logic involving the basic connections OR, AND, NOT, NOR and NAND was the earliest to develop.

1.1.1 Conventiona1 Logic

Systematic circuit synthesis was extended from combinational to sequential logic involving MEMORY with the work of Huffman [2] in 1954. Continued advancements in the electronic implementation of these circuits have made possible today's high speed digital computers, as well as many other digital systems.
*Numbers in brackets refer to numbered references in the Bibliography.

Fluid power and fluidic implementation of binary circuits $[3,4]$ has also been extensively developed in the last decade and a half. Cole [5], Maroney [6] and Woods [7] have contributed methods of logic circuit synthesis in the area of fluid power and fluidics, although the methods are not necessarily restricted to this area.

With respect to mechanical implementation of binary logic, the literature reveals very little. In a series of articles on engineering applications of Boolean algebra, Beizer and Leibholz [8] included a "fictional case history" of the design of a coin changer showing a mechanical circuit to implement the logic. A few mechanical binary elements were suggested in diagrams presented in a series of articles by Bennett [9] on binary logic.

In 1963 a dissertation was written by Brandt $[10]$ on the use of a seven-bar linkage to generate binary logic functions. The linkages of Brandt were not completely satisfactory because the output link did not remain stationary in its two stable positions at all times when it should.

Szekely, Muresan and Lelutiu [11, 12] presented basic concepts in the generation of binary and multipositional logic with mechanical elements. In their studies they included a mechanical relay.

1.1.2 Threshold Logic

Work in a new field of logic, "threshold logic," made its appearance with a publication by McNaughton [13] in 1957. Threshold logic presented a new challenge because it is "more powerful" or "richer" than conventional logic $[14,15]$. The power or richness of threshold logic is due to the general ability of a singłe element to perform the logic of a
more complex Boolean expression. Lewis and Coats [14] give an example of a function of seven variables that requires twelve AND-OR gates for its realization but requires only one threshold gate for its realization. Threshold elements promise an appreciable reduction in the total number of components and connections in a logic system. Sheng [16] shows that a threshold gate can be considered a generalization of the conventional AND, OR, NAND and NOR gates.

In spite of the significant advantages of threshold elements, there are also disadvantages. Among the disadvantages is the problem of converting the Boolean representation of a function into the threshold form (see Chapter III). During the years 1957 to about 1965, considerable attention was given to this problem. Dertouzos has been one of the principal contributors. He gives a "Brief History of Threshold Logic," and includes an extensive bibliography [15]. An early and significant contribution was made by Winder [17] in his doctoral dissertation.

Since the appearance of Haring's work [18], there has been a concentrated effort on multithreshold threshold elements. Multithreshold threshold elements represent a generalization of the theory of threshold logic. Among the contributions are those of references [19-22]. Threshold logic has been successfully implemented with electrical circuits. Lewis and Coats [14] give examples of circuits for single threshold logic and Haring [18] mentions the use of a tunnel-diode circuit with three thresholds. Other circuit realizations of multithreshold threshold elements are reported in the references [23-29].

Outside of the electrical field, the only work found on threshold logic implementation is in fluidics. Eckerlin and Be11 [30] show how a
threshold gate composed of four basic fluidic elements has been developed and applied to a few practical problems.

To the best of the author's knowledge, the use of mechanical linkages in the implementation of threshold logic is virtually unexplored. The "whiffletree" type linkage, a binary to multiposition converter, reported by Chironis [31] does, however, play a significant part in the development of this dissertation. Haas and Crossley [32] also used this type of linkage for a four-bit binary adding mechanism.

1.2 Motivation for Study of Mechanical Logic Synthesis

Mechanical switching and binary-logic controls have traditionally been designed by a trial-and-error, seat-of-the pants approach. Whether such controls are ever recognized as performing "switching or binarylogic" remains doubtful. It seems likely, in most cases, that the mechanical control systems are simply "linkages doing a job."

In this dissertation, the systematic Boolean techniques employed in electronics and fluidics are used for mechanical logic synthesis.

There are applications of binary controls where reliability, simplicity and safety are of greater importance than extremely low response time and very miniature parts. In some of these applications mechanical systems could become advantageous over their counterparts. Where a radioactive or explosive environment is involved, a mechanical linkage would be preferable to an electrical system. Where a compressed fluid would not be readily available, a mechanical linkage could be advantageous over a fluid logic system.

In a recent publication on fluidics the statement is made that, "The only completely successful transducers in this area ("area" refers
to the transduction of electrical voltage to fluidic signal) involves an intermediate transduction to mechanical position, . . " [33]. The signal medium for the logic of this dissertation is position. Thus the concepts presented here could conceivably be used to perform logic operations at the electrical-fluidic interface, where the transducers exist.

A certain coin changer, used with vending machines, employs electronics to perform most of its logic operations. However, a position signal is used to sense the presence or absence of coins in two storage tubes. A logic operation is performed mechanically at the point of transduction of the position signals to voltage signal. By performing the logic mechanically, an electrical switch is eliminated with essentially no added complication to the system.

In a random-access memory storage unit, a tape head is moved to any of twenty-eight positions with a mechanical linkage [31]. Binary electrical signals are transduced to binary position signals of the linkage input cranks. A whiffletree linkage performs the logic for providing the multiposition output at the memory head.

The examples above illustrate the successful use of linkages in performing logic operations. Such examples motivate the belief that many more applications of mechanical logic will be made if designers are aware that simple linkages can be used systematically in binary control. It is hoped that this study will provide a step in making "linkics" as commonplace as "electronics" and "fluidics"!

1.3 Scope of the Study

The purpose of this dissertation is to present the synthesis of mechanical linkages to generate binary logic expressed by Boolean algebra
functions. There are two different approaches to the generation of Boolean logic. They are the approaches of conventional logic and threshold logic. In this study both approaches are utilized to synthesize mechanical logic systems.

1.3.1 Conventional Logic Systems

Simple four-bar mechanisms are shown to be the basis for the generators of the basic conventional logic functions OR, AND, NOT, NOR, NAND and MEMORY. The four-bar mechanisms are assembled in various ways to form linkages which generate these basic functions. Slightly more complicated linkages are synthesized to generate the basic conventional functions COINCIDENCE and OR-EXCLUSIVE. A bistable mechanical power amplifier is developed to make the linkage function generators "active". The systematic methods employed in electronic and fluidic logic are used in examples of control circuit synthesis. A passive mechanical circuit is synthesized to control the transfer of soap boxes from one conveyor to another on an assembly line. In the second example, an active circuit using memory, is synthesized to control the speed of a rotating shaft. The conventional logic synthesis is treated in Chapter II.

1.3.2 Threshold Logic Systems

Using the approach of threshold logic, linkages are synthesized to generate the 256 functions of three binary variables. The threshold function generators are composed of two parts: a separator linkage and a threshold linkage. The composition method selected here allows for the synthesis of all 256 function generators with a few basic component
parts. The basic components are synthesized in Chapter III and include five basic separator linkages and nineteen basic threshold linkages. Structural synthesis and performance criteria are used in selecting favorable linkages for the basic separator and threshold linkages. Dimensional synthesis methods are applied to all of the linkages. The dimensions are recorded in tabular form. Design charts, presented in Chapter III, give the step-by-step procedure for the direct selection of the separator and threshold linkages needed to generate any one of the 256 functions. Two examples are given for the use of the design charts.

CHAPTER II

SYNTHESIS OF CONVENTIONAL LOGIC

FUNCTION GENERATORS

Abstract

The mechanical linkage components which are capable of simulating conventional logic functions are essentially simple mechanisms. This chapter presents these simple mechanisms and shows how they can be combined to form generators of the basic logic functions. Both passive and active logic systems are described. Examples are given of the synthesis of a combinational logic circuit using passive function generators and a sequential logic circuit using active function generators .

2.1 Basic Linkage Components

The simple mechanisms used to simulate the basic logic functions are shown in Figures 1, 2 and 3. Figure 1 shows a four \approx link mechanism with $A_{0} A$ as the input link, $A B$ as the coupler link, B_{0} as the output link, and $A_{0} B_{0}$ as the fixed link. These four links are connected using four pin joints at A_{0}, A, B, and B_{0}. The axes of the pin joints are parallel to one another and perpendicular to the plane of the paper. Because of this specific geometry, the mechanism moves in the plane of the paper. For the purpose of logic function simulation, the four-1ink mechanism is required to move from the position $A_{0} A_{1} B_{1} B_{0}$ to $A_{0} A_{2} B_{2} B_{0}$. Figure 2 shows a crank-slider mechanism with. $A_{0} A$ as the input link, $A B$ as the coupler link and the slider joint at B which translates along

Figure 1. Four Link Mechanism

Figure 2. Crank-Slider

Figure 3. Double-
Slider
the fixed axis $A_{0} X$. For simulating the logic function, the crank-slider mechanism is required to move from the position $A_{0} A_{1} B_{1}$ to the position $\mathrm{A}_{0} \mathrm{~A}_{2} \mathrm{~B}_{2}$.

Figure 3 shows a double slider mechanism. The input motion is provided through the slider at A and the output motion is obtained through the slider at B. For simulating the logic functions, the mechanism is required to move from the position $A_{1} B_{1}$ to the position $\mathrm{A}_{2} \mathrm{~B}_{2}$.

The four-link mechanism of Figure 1 is selected when input motion and output motion is rotary. The crank-slider mechanism of Figure 2 is selected when input motion is rotary and output motion is translatory. This mechanism may also be selected when input motion is translatory and output motion is rotary. The double slider mechanism of Figure 3 is selected when input and output motions are translatory.

The input motion to these mechanisms is a variable that can be in one of two states. The two states are described using an analogy of an electrical system. An electrical switch can be open, in which case there is no electrical circuit made beyond the switch, or it can be closed in which case the electrical circuit is made. In Boolean algebra language, the case where the circuit is made is designated by a "l"; the case where the circuit is not made is designated by a "0". The "on" and "off" positions of the switch correspond to the two positions of the mechanisms shown in Figures 1, 2 and 3. These mechanisms may be toggleactuated in order to retain them in either of the two positions.

2.2 Basic Logic Functions

The basic functions of conventional logic are the OR, AND, NOT, NOR, NAND, MEMORY (Flip-Flop), COINCIDENCE and OR-EXCLUSIVE. The mechanisms described in Figures 1, 2 and 3 can be assembled in several different ways to generate these basic logic functions. Figures 4 through 11 present mechanical assemblies which generate the basic logic functions. In each figure, the logic function is described using the Boolean algebra, the corresponding truth table, and the electrical and mechanical analogues. The symbols A, B, C, etc., are used to represent the input variables and the symbol Z is used to represent the output variable. In the electrical analogue, the "on" and "off" state of the variable describes the "on" and "off" positions of the switch. In the mechanical analogue, the "on" and "off" state of the variable describes the two finitely separated positions of the link representing the variable under consideration. In the following section a description is given of the mechanical assemblies which generate the basic logic functions.

2.3 Linkage Systems Which Generate the Basic Logic Functions

2.3.1 OR Function

The logic function $O R$ has a minimum of two input variables, and the Boolean operator used to express the $O R$ connective is a plus sign with a dot $(\dot{+}) .{ }^{*}$ If A and B are the two input variables and Z is the output

[^0]
Figure 4. Generators of the OR Function

Figure 5. Mechanical Generators of the AND Function

Figure 6. Mechanical Generators of the NOT Function

Figure 7. Mechanical Generators of the NOR Function

Figure 8. Mechanical Generators of the NAND Function

MEMORY FUNCTION	R
	L DEPEMDEMT
	0
$=S \cdot R+7$	1
coolean equation	TRUTH TABLE
(a)	
	$S_{R}^{T} \text { MEMORY }^{R}=$ (h)

Figure 9. Mechanical Generators of the MEMORY Function

Figure 10. Mechanical Generators of the COINCIDENCE Function

Figure 11. Mechanical Generators of the OR-EXCLUSIVE Function
variable, then the $O R$ function is expressed as

$$
\begin{equation*}
Z=A \dot{+} B \tag{2.1}
\end{equation*}
$$

The truth table, the electrical analogue, and the mechanical systems that generate the OR function are shown in Figure 4. Examining the truth table and the electrical analogue, it is noted that the OR function exhibits the property that the output Z is "on" when either A or B is "on". The mechanical systems shown at (a), (b), (c) and (d) of Figure 4 demonstrate linkage assemblies displaying the property of the logic function OR. At (a), the variables A, B, and Z execute rotational motion. At (b), the input variables A and B execute rotary motion, while the output variable Z executes translatory motion. At (c), the variables A, B and Z execute translatory motion, and at (d), the input variables A and B execute translatory motion while the output variable Z executes rotary motion.

The mechanical system in Figure $4(a)$ is built using two crank-slider mechanisms for the variables A and B, and a slider~crank mechanism for the output variable Z. The system at (b) is built using crank-slider and double slider mechanisms. The system at (c) is built using three double slider mechanisms. The mechanical system at (d) is built using two double slider mechanisms and one slider-crank mechanism.

The mechanical systems of Figure $4(\mathrm{a}),(\mathrm{b}),(\mathrm{c})$ and (d) are represented schematically using the "black-box" approach in Figure 4(e), (f), (g) and (h). The rotary motions of the variables A, B, or Z are described using the symbol R. The translatory motion of the variables A, B, or Z are described using the symbol T. Thus, for example, Figure 4(e) represents schematically the logic function OR generated by the mechanical system of Figure 4(a).

2.3.2 AND Function

The logic function AND has a minimum of two input variables, and the Boolean operator used to express the AND connective is a dot (•). (The \cdot is often omitted in an algebraic expression since the meaning remains clear.) If A and B are the input variables and Z is the output variable, then the AND function is expressed as

$$
\begin{equation*}
Z=A \cdot B \tag{2.2}
\end{equation*}
$$

The truth table, the electrical analogue, and mechanical systems that generate the "AND" logic function are shown in Figure 5. Examining the truth table and the electrical analogue, it is noted that the logic function AND exhibits the property that the output variable Z is "on" only if the variables A and B are both "on". The mechanical systems displaying the logic function AND are shown at (a), (b), (c) and (d) of Figure 5. The corresponding schematic "black-box" notations are shown in Figures 5(e), (f), (g) and (h).

In Figures 4 and 5 it is seen that all input and output variables executing rotary motion turn in a clockwise sense in going from "off" to "on". Also, all input and output variables that execute translatory motion move downward in the figures while going from "off" to "on". These conventions are used for convenience in synthesis of more complicated systems. The conventions are also followed for the generators of the other basic functions.

In all the mechanical systems of Figures 4 and 5 a compression spring is connected to the horizontal output slider. With the OR function, the spring is used to move the output Z from the "on" to the "off" position at any time when all the inputs are moved to the "off" position.

With the AND function, the spring is used to move the output Z from the "off" to the "on" position at any time when all the inputs are moved to the "on" position.

2.3.3 NOT Function

The NOT function has a single input. The Boolean operator which expresses the NOT function is a bar (-) over the variable. Thus if A is the input variable and Z is the output variable, the NOT function is expressed as

$$
\begin{equation*}
\mathrm{Z}=\overline{\mathrm{A}} \tag{2.3}
\end{equation*}
$$

The truth table, the electrical analogue and mechanical systems which generate the NOT function are shown in Figure 6. The truth table and the electrical analogue show that the NOT function gives an inversion of the input. The output variable Z is "on" when the input variable A is "off" and vice versa. If the NOT symbol (-) is placed over a mathematical variable or expression, then the variable or the expression is said to be "complemented." Thus in Figure 6, Z is the complement of A. The mechanical systems displaying the logic function NOT are shown in Figure 6(a), (b), (c) and (d). The corresponding schematic "black-box" notations are shown in Figure 6(e), (f), (g) and (h).

2.3.4 NOR Function

The NOR function is the complement of the OR function, and has a minimum of two input variables. If A and B are the input variables and Z is the output variable, then the NOR function is expressed as

$$
\begin{equation*}
Z=\overline{A+B} \tag{2.4}
\end{equation*}
$$

The NOR function is presented in Figure 7 in a manner previously described for other functions. It is noted from the truth table that the NOR function exhibits the property that the output variable Z is "on" only when all of the input variables are "off".

2.3.5 NAND Function

The NAND logic function is the complement of the AND function. It also has a minimum of two input variables. If A and B are the input variables and Z is the output variable, then the NAND function is expressed as

$$
\begin{equation*}
Z=\overline{A^{\prime} \cdot B} \tag{2.5}
\end{equation*}
$$

The NAND function is presented in Figure 8. It is seen from the truth table that the NAND function exhibits the property that the output variable Z is "on" when either or both of the input variables are "off".

2.3.6 MEMORY (Flip-F1op) Function

There are two input variables to a MEMORY function. They are called the "set" and "reset" variables or "S" and "R", respectively. With Z as the output variable, the MEMORY function is expressed as

$$
\begin{equation*}
z=s \cdot \bar{R} \dot{+} z \cdot(s \notin \bar{R}) \tag{2.6}
\end{equation*}
$$

The truth table and mechanical systems which generate the MEMORY function are shown in Figure 9. The Boolean equation states that the output variable Z is "on" when the "set" variable is "on" and the "reset" variable is "off". It also states that the output is maintained "on" as long as the "set" variable remains "on" or the "reset" variable remains "off". The output variable can go to "off" only when the
"reset" variable goes to "on". Thus in the case when both the "set" and "reset" variables are "off", the output Z is "on" if it was previously "on" or it is "off" if it was previously "off". As stated in the truth table and as can be observed by examining the mechanical systems at (a), (b), (c) and (d) of Figure 9, the "set" and "reset" variables cannot both be "on" at the same time. This makes it possible to simplify the Boolean equation to

$$
\begin{equation*}
z=s \dot{+} z \cdot \bar{R} \tag{2.7}
\end{equation*}
$$

The corresponding schematic "black-box" notations are shown in Figure $9(e),(f),(g)$ and (h).

The detent spring shown in Figure $9(a)$, (b), (c) and (d) provides enough force so that any external forces or torques on the output Z will not cause the output to shift positions when both the S and R inputs are in their "off" positions.

2.3.7 COINCIDENCE Function

The COINCIDENCE function has two input variables, A and B, and one output variable Z. Mathematically, the COINCIDENCE function is expressed as

$$
\begin{equation*}
\mathrm{Z}=\mathrm{A} \cdot \mathrm{~B}+\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \tag{2.8}
\end{equation*}
$$

The truth table, the electrical analogue, and a mechanical system displaying the CONGIDENCE function are shown in Figure 10. Examination of the truth table and the electrical analogue reveals the property that the output variable Z is "on" only when the input variables A and B are both "on" or both "off". A mechanical system where the input and the output variables execute rotary motion is shown at (a), (b) and (c) of of Figure 10. The three figures show the system in three of its four
possible positions: (a) A and B are both "off"; (b) A is "on" and B is "off"; and (c) A and B are both "on". At (d) the corresponding schematic "black-box" notation is shown.

2.3.8 OR-EXCLUSIVE Function

The OR-EXCLUSIVE function is the complement of the COINCIDENCE function, and it has two input variables. If A and B are the input variables and Z is the output variable, the OR-EXCLUSIVE function is expressed as

$$
\begin{equation*}
Z=A \cdot \bar{B} \dot{+} \bar{A} \cdot B \tag{2.9}
\end{equation*}
$$

The truth table, the electrical analogue, and a mechanical system are shown in Figure 11. It can be seen that the output variable Z is "on" when either of the variables A or B is "on", but Z is "off" when both A and B are "on". A mechanical system where the input and output variables execute translatory motion is shown at (a), (b) and (c) of Figure 11. These figures show the system in three of its four possible positions. The corresponding schematic "black-box" notation is shown at (d).
2.4 Theorems of Boolean Algebra Proved Mechanica11y

A list of the theorems of Boolean algebra that are important to the synthesis of mechanical systems is given in Figure 12. These theorems are useful in obtaining equivalent systems as well as in simplifying existing systems. Each theorem is proved using a mechanical system and an electrical analogue.

The mechanical systems are shown with simplified symbols. All input and output motions are of translatory type which are obtained through

Ne	THEOREM	MECHANICAL SYSTEM	ELECTRICAL ANALOGUE
1	$A+1=1$		$[-\infty$
2	$A \cdot O=0$		$\cdots A^{0-0} 0$
3	$A+O=A$		$\left[0_{0}^{\sigma_{0}^{0}}\right]$
4	$A \cdot 1=A$		$\sigma_{A}^{0}-0-0$
5	$A+A=A$		$-\sigma_{A^{0}}^{\sigma^{0}}$
6	$A \cdot A=A$		$\cdots \sigma_{A}^{0} \sigma_{A} \longrightarrow$
7	$\mathbf{A}+\overline{\mathbf{A}}=1$		$\left[\begin{array}{l} \sigma_{A^{0}} \\ A_{0} \end{array}\right]$
8	$A \cdot \bar{A}=0$		$\square_{A}^{0-a^{A}}$

Figure 12. Twenty-Three Theorems of Boolean Algebra Proved by Mechanical and Electrical Analogues

N:	THEOREM	MECHANICAL SYSTEM	ELECTRICAL ANALOGUE
9	$\overline{(z)}=A$		$\cdots A^{\text {a }}$
10	$A(A+B)=A$		$\left.\cdots A_{A^{0}}^{A_{A}^{0}}\right]$
11	$A+A \cdot B=A$		
12	$(A+B)(A+B)=A$		$\left[\sigma_{A^{a}}^{\sigma_{A}^{a}}\left[\sigma_{A_{0}^{0}}^{B_{0}}\right]\right.$
13	$A \cdot B+A \cdot B=A$		$\theta-\left[\begin{array}{cc} A_{A}^{0}-B_{0}^{0} \\ A^{0} & B_{0} \end{array}\right]$
14	$A \dot{B}=B+A$		$\cdot\left[\sigma_{B}^{A}{ }_{B}^{0}\right]=0 \cdot\left[\sigma_{A}^{B^{0}}\right]^{0}$
15	$A \cdot B=B \cdot A$		$\begin{aligned} & \bullet \sigma_{A}^{0}-\sigma_{B^{0}} \\ & \bullet \sigma_{B^{0}}^{0} \sigma_{A}^{0} \end{aligned}$

Figure 12. (Continued)

Ne	THEOREM	MECHANICAL SYSTEM	ELECTRICAL ANALOGUE
16	$A(\bar{A}+B)=A \cdot B$		
17	$A+\bar{A} \cdot B=A+B$		
18	$(A+B)+C=A *(B ; C)$		
19	$(A \cdot B) C=A(B \cdot C)$		

Figure 12. (Continued)

N:	THEOREM	MECHANICAL SYETEM	ELECTRICAL ANALOCUE
20	(aidxaic)aAiBec		
21	$A \cdot B+A \cdot C=A(B+C)$		
22	$(\overline{A+B}+\bar{C})=\bar{A} \cdot \bar{B} \cdot \bar{C}$		
23	$(\bar{A} \cdot \bar{B} \cdot \mathrm{C})=\bar{A} i \bar{B}+\bar{C}$		

Figure 12. (Continued)
sliding blocks. These sliding blocks are not shown in the diagrams of Figure 12. In these diagrams the input variables are indicated with the letters A, B, and C.

The theorems from 1 to 13 degenerate a system to a value of 0,1 , or A. The theorems 14, 15, 18 and 19 present equivalent mechanical systems. The theorems $16,17,20$ and 21 present simplified mechanical systems having fewer elements, and the theorems 22 and 23 resolve a mechanical system into its functional components.

2.5 Example of Logic Circuit Synthesis

On an assembly line a conveyor is transporting soap boxes of rectangular shape. Some of the boxes need to be sorted from the conveyor according to their dimensions. A "sorter mechanism" is available to transfer the desired boxes off the main conveyor onto an auxiliary conveyor (see Figure 13). A translatory displacement signal Z into the sorter mechanism triggers the rejection operation. Four oscillating cam followers are available to detect the dimensions of the boxes and serve as logic variables A, B, C and D. The boxes themselves act as cams when they pass by the followers.

A mechanical control circuit is designed that uses A, B, C and D as input variables and produces the desired output signal (variable Z).

There are four general steps that are used in the synthesis procedure for designing a logic circuit employing basic logic functions such as those of Figures 4 to 11. The four steps are:

1. Write a description of the output requirements and the input conditions. (Such a description must be logically meaningful, unambiguous and non-contradictory.)

Figure 13. Conveyor System With Sorter Mechanism
2. Devise a method to correctly assign the state of the output variable for every possible combination of the input states.
3. Write a simplified Boolean equation for each output variable.
4. Build a schematic mechanical control circuit.

The first three of these steps are not dependent upon the fact that the logic circuit is synthesized from linkage elements; the three steps are the same whether the circuit is electronic, fluidic, a linkage or whatever. Since the first three steps are not basic to this study they, as applied to the present example, are included in Appendix A.

Step 4 begins with the result of step 3. From Appendix A the simplified Boolean equation for the control circuit of the soap box sorter is

$$
\begin{equation*}
Z=C D+A \bar{B} D+\overline{\mathrm{A}} B C \tag{2.10}
\end{equation*}
$$

The simplified logic equation could be implemented by using two NOT functions, three AND functions, and one OR function. The need of the two NOT functions is eliminated, however, by observing the equivalence shown in Figure 14. Using one AND system, two AND-NOT systems, and one OR system, the required control circuit is shown in Figure 15(a).

Logic systems with translatory input and output motions are selected In the final design of the mechanical logic system. The rotary motion of the input cam follower variables is converted to translatory motion with the crank-sliders shown in the upper part of Figure 15(a). A vertical slider is used for each of the input variables A, B, C and D. The horizontal sliders of each function are then connected to the vertical sliders as needed. The vertical output sliders of the AND and ANDNOT systems become the inputs to the OR system. Finally the output of the $O R$ system is the required output variable Z.

Figure 14. Equivalent Systems for Generating the Logic Function $Z=A \cdot \bar{B}$

Figure 15. Control Circuit for Sorter Mechanism

The input variables A, B, C and D are shown in their "off" positions and all other inputs and outputs of the $A N D, A N D-N O T$, and $O R$ systems are shown in their corresponding positions. In this case, all of the inputs and outputs are in the "off" positions, but this situation is not true with all circuits.

The corresponding schematic "black-box" notation for the system is shown in Figure $15(\mathrm{~b})$.

2.6 Active Function Generators

The control circuit of the previous example is one of combinational logic (where the state of the output depends only upon the present state of the input variables). All of the mechanical logic systems presented are of a "passive" nature. They are passive because all of the energy entering or leaving the systems enters or leaves at the inputs and outputs. There is no force or power amplification at any point in the system.

For complex circuits, especially for sequential circuits where memory systems are needed, the passive elements are inadequate. (Sequential logic is the logic in which the state of the output depends not only upon the present values of the input variables but also upon their values at some previous time.) For the complex circuits, "active" logic systems are needed. Active logic systems are systems in which there is power amplification as well as the generation of the desired logic.

Each active mechanical logic system presented here is made up of two components. The first component is the mechanism (referred to as a function generator) which actually generates the binary logic function. The second component is a power amplifier. The output of the function
generator is connected to the input of the amplifier, and thus the output of the amplifier becomes the output of the active logic system.

The function generators are shown in Figure 16. They are basically the same as the mechanical systems shown in Figures 4 through 9. The function generators whose inputs and outputs exhibit translatory motion, however, do not employ vertical sliders. The inputs and outputs are applied directly to the horizontal sliders for convenience in interconnecting the function generators.

In Figure 16(a) the OR function generator is shown. Its inputs A and B and output Z are translatory. The circles on the sliders are used to indicate the points where binary links are connected with revolute pairs. These binary links make the interconnections with other function generators and amplifiers. The schematic "black-box" representation is also shown.

The AND function generator is shown in Figure 16(b). It has the rotary inputs and output A, B and Z . The circles at A, B and Z also represent the points where the interconnecting binary links are attached. The three ternary links act as inverters and have a grounded revolute pair at their centers. The "off" and "on" positions of these ternary links are symmetrical about vertical lines. It should be noted that the displacements of the points A, B and Z of the AND generator in going from the "off" to the "on" positions is the same as the displacements of the points A, B and Z of the $O R$ generator. This design convention is convenient for interconnecting the function generators. It is also noted that the displacement of all input and output points of the function generators is from left to right while changing from "off" to "on".

(a)	(b)
(c)	(d)
(e)	
(9)	(h)

Figure 16. Function Generators for Active Mechanical Logic Systems

The NOT function generator is shown in Figure 16(c). It is a single ternary link with a grounded revolute pair at its center. Since the input A moves from left to right in going from "off" to "on", the output acts inversely and is the complement of A.

The NOR, NAND, AND-NOT and OR-NOT function generators are shown in Figure $16(\mathrm{~d})$, (e), (f) and (g), respectively. It is observed that each of these generators satisfies the conventions described in the previous paragraph. A schematic "black-box" representation is also shown for each generator.

The MEMORY function generator is shown in Figure 16(h). The S (Set) input executes translatory motion, but the R (Reset) input executes rotary motion. The output Z is one link of a double toggle and thus executes rotary motion. This output link is made circular and provides a smooth cam motion.

The AMPLIFIER component is shown in Figure 17. It has a source of external energy for power amplification. The source is of any type which will rotate the powered rollers R_{1} and R_{2} continuously. The input to the AMPLIFIER is A and executes translatory motion. The output is Z and it executes rotary motion. Connected to the input slider S are two friction rollers F_{1} and F_{2}. The output toggle link T has a cylindrical surface C whose axis is Q. The surface C has a relief indentation at I. In Figure 17 the AMPLIFIER is shown in the "off" position.

The AMPLIFIER functions as follows:

1. The input A, which is moved by the output of some function generator, moves from the "off" to the "on" position. Upon reaching the "on" position the friction roller F_{1} makes contact with both the powered roller R_{1} and the output toggle link T.

Figure 17. Amplifier for Active Mechanical
Logic Systems
2. The clockwise rotation of the powered roller R_{1} is transmitted through the friction roller F_{1} to the output toggle link T causing T to rotate in a clockwise direction.
3. Just before the output toggle link T reaches the stop $S p_{1}$, the relief indentation I reaches the friction roller F_{I} and contact is terminated between F_{1} and T .
4. The momentum of the output toggle link T and the action of the toggle spring carry T on to contact the stop $S p_{1}$. The output Z is now in the "on" position.
5. When the AMPLIFIER returns from "on" to "off", an action occurs which is similar to that of steps 1 to 4 . It involves the action of the powered roller R_{2}, the friction roller F_{2} and the stop Sp_{2}.

Because of the design of the AMPLIFIER, the friction roller F_{1} is "wedged in" between the powered roller R_{1} and the output toggle link T as soon as contact is made by F_{1} with both R_{1} and T . This action provides the normal and friction forces needed to rotate the output toggle link T. No force is needed at A after contact is made by F_{1} with both R_{1} and T. Thus the only force needed at the input A to actuate the AMPLIFIER is the small force necessary to overcome the friction of the input slider S.

The force that can be developed at the output Z is limited by 1) the friction force that can be transmitted by the friction roller, 2) the resistance of the toggle spring, and 3) the dynamics of the system. The output Z is connected to one or more inputs of other function generators or to the output of the logic circuit. The toggle spring must provide enough force to hold the output toggle link T against the stop $\left(S p_{1}\right.$ or $\left.S p_{2}\right)$ while the AMPLIFIER is in a static situation.

The toggle spring must, therefore, provide enough force to overcome the resistance at the inputs of the other function generators or the resistance at the output: of the circuit.

Very little has been done with respect to determining amplification ratios. However, as the mode1, presented later in this chapter, was being constructed, it was found that the output from an AMPLIFIER is capable of controlling at least three function generator imputs.

2.7 Example of Active Logic Circuit Synthesis

The speed of a rotating shaft which has a variable torque requirement is maintained nearly constant by turning a motor on and off as needed. A supercharger is available to provide additional torque if the motor by itself is not sufficient to maintain the desired speed. The signal to turn the motor on is Z_{1} and the signal to activate the supercharger is Z_{2}.

The speed of the shaft is sensed with the device shown in Figure 18. The device provides the two binary signals x_{1} and x_{2}. When the shaft is rotating at the desired speed, the signal combination is $x_{1} x_{2}=00$. As the shaft speed increases the signals become $x_{1} x_{2}=10$ and then 11. A reduction in speed causes a signal combination of 01 , but, as seen in the figure, a signal combination of 11 cannot be reached by reducing the speed.

A mechanical control circuit is designed that uses the signals x_{1} and x_{2} as input variables and produces the desired output signals Z_{1} and Z_{2}.

The four general steps described in the synthesis procedure of the example of section 2.5 are observed. As before, the first three steps

Figure 18. Shaft Speed Sensor and Input Signal Generator
are not basic to this study and for this example are presented in Appendix B .

This shaft speed control circuit, as explained in Appendix B, is one of sequential logic and requires two MEMORY function generators. The outputs from the MEMORY functions are y_{1} and y_{2}. From step 3 of Appendix B, the outputs Z_{1} and Z_{2} are given in terms of the inputs x_{1} and x_{2} and the outputs of the MEMORY functions y_{1} and y_{2} as

$$
\begin{equation*}
z_{1}=y_{2} \tag{2.11}
\end{equation*}
$$

and

$$
z_{2}=\bar{x}_{1}\left(x_{2} \dot{+} \bar{y}_{1}\right)
$$

Also from Appendix B, the equations for the MEMORY functions are

$$
y_{1}=x_{2} \dot{+} y_{1}\left(\overline{\bar{x}_{1} \cdot \bar{x}_{2} \cdot y_{2}}\right)
$$

and

$$
\begin{equation*}
y_{2}=\bar{x}_{1} \dot{+} y_{2}\left(\overline{x_{1} \cdot x_{2}}\right) \tag{2.12}
\end{equation*}
$$

From these equations of the MEMORY functions, the SET and RESET inputs to the two MEMORY function generators are written as

$$
\begin{aligned}
& S_{1}=x_{2} \\
& R_{1}=x_{1} \cdot \bar{x}_{2} \cdot y_{2} \\
& S_{2}=\bar{x}_{1}
\end{aligned}
$$

and

$$
\begin{equation*}
R_{2}=x_{1} \cdot x_{2} \tag{2.13}
\end{equation*}
$$

Finally, step 4 of the synthesis procedure is to build a schematic mechanical control circuit. The "black-box" schematic of the required control circuit is shown in Figure 19. The way in which the output and secondary equations are implemented can be observed from the figure.

Figure 19. Schematic of the Speed Control Logic Circuit

The seven function generators used are numbered and they consist of one AND generator, one OR-NOT generator, two AND-NOT generators, two MEMORY generators and one NOT generator. The function generators numbered from 1 to 5 are seen to be active systems since their outputs are fed through AMPLIFIERS. A passive generator is used for the NOT function as it is simply an inversion process.

The AND-NOT generator (6) is made passive to avoid a problem of having the SET and RESET signals of the Y_{1} MEMORY "on" at the same time in one particular sequence of signal changes. A detailed explanation of this situation is given in Appendix B, section B.2.

In the model of the control system shown in the photograph of Figure 20 the logic function generators are not all in one plane as suggested in the schematic of Figure 19. The generators are "stacked" in parallel planes. This arrangement allows the friction rollers (see Figure 17) of all the AMPLIFIERS to contact the same pair of powered rollers.

In the logic circuit, physical connections are made between inputs, function generators, amplifiers and outputs. As seen in the photograph of Figure 20, these physical connections are made through shafts whose axes are perpendicular to the planes of the function generators. Binary links are used between the shafts and the function generators. In Figure 19 the representation of these shafts and binary links can be noted.

It can also be noted in the photograph that the AMPLIFIERS of the input signals x_{1} and x_{2} and the AMPLIFIER of the AND-NOT generator (5) are not included. Since the model in the photograph was not actually connected to a motor circuit, these AMPLIFIERS were not necessary.

Figure 20. Model of Speed Control Circuit

CHAPTER III

SYNTHESIS OF THRESHOLD LOGIG GENERATORS FOR FUNCTIONS OF THREE VARIABLES

Abstract

In Chapter II linkage generators of Boolean functions were treated in conventional logic form. In the present chapter the concept of threshold logic is employed to synthesize mechanical generators for all the functions of three variables. Definitions and the basic theory of threshold logic is presented. An example is presented which illustrates the type of linkage used for the threshold logic generators. Structural synthesis is employed to search for alternative linkages which might be used. Performance criteria is estab1ished and used to adopt a basic linkage for the generators. Steps are taken to recognize a limited number of basic linkages needed to generate all the functions of three variables and then these linkages are synthesized dimensionally.

Design charts are presented to aid in the direct selection of a linkage to generate any one of the functions of three variables. Two examples are presented to illustrate the use of the design charts. 3.1 Definitions and Theory of Threshold Logic

Boolean functions can be represented as threshold functions. Some functions are single-threshold threshold functions and are known simply as "threshold functions". Others are "multithreshold threshold
functions" and are known as such. The threshold functions are considered first.

For each combination of values of the input variables x_{1}, x_{2}, . ., x_{n}, the corresponding value of the output z is

$$
\begin{align*}
& z=1, \text { if } \sum_{j=1}^{n} w_{j} x_{j} \geq T \\
& z=0, \text { if } \sum_{j=1}^{n} w_{j} x_{j}<T \tag{3.1}
\end{align*}
$$

where

$$
\begin{aligned}
T= & \text { the threshold } \\
\mathrm{w}_{\mathrm{j}}= & \text { weights or coefficients; both } T \text { and } \mathrm{w}_{\mathrm{j}} \text { are fixed positive } \\
& \text { or negative real numbers. }
\end{aligned}
$$

The notation

$$
\begin{equation*}
z=\left\langle\sum_{j=1}^{n} w_{j} x_{j}\right\rangle T \tag{3.2}
\end{equation*}
$$

is used to represent Equation (3.1) [14].
A geometrical interpretation helps to make these definitions clear. In the geometrical interpretation, each of the Boolean function's n input variables is represented by a coordinate axis of a n-dimensional Euclidean space. Each combination of the input variables is represented by the corner of a unit hypercube (n cube) in the n-space. Consider the two-input variable function

$$
\begin{equation*}
z=\bar{x}_{1} \dot{+} x_{2} \tag{3.3}
\end{equation*}
$$

represented in Figure $21(a)$. The corners of the 2 cube (square), where z has the values 0 and 1 , are called the sets of points P_{0} and P_{1}, respectively. The vertices of P_{0} are shown in the figure as undarkened circles (O) and the vertices of P_{1} are shown as darkened circles (O).

(a) $\quad z=\bar{x}_{1}+x_{2}$

(b)

$$
z=\bar{x}_{1} \bar{x}_{2}+x_{1} x_{2}
$$

Figure 21. Geometric Interpretation of Threshold Elements

The equation of a hyperplane in the n-space is of the form:

$$
\begin{equation*}
\sum_{j=1}^{n} w_{j} x_{j}=T \tag{3.4}
\end{equation*}
$$

and if this hyperplane separates P_{0} from P_{1} (as in Figure 21(a)), then Equation (3.2) truly is a realization of the Boolean function. Thus in Figure 21(a)

$$
\begin{equation*}
z=\left\langle x_{2}-x_{1}\right\rangle-\frac{1}{2}=\bar{x}_{1} \dot{+} \bar{x}_{2} \tag{3.5}
\end{equation*}
$$

In Figure 21(b) the function

$$
\begin{equation*}
z=\bar{x}_{1} \bar{x}_{2} \dot{+} x_{1} x_{2} \tag{3.6}
\end{equation*}
$$

is represented. By observing the figure, it is evident that there is no way to separate P_{0} from P_{1} by using a single hyperplane. This fact is sufficient to prove that Equation (3.6) is not a threshold function (single-threshold threshold function). However, it represents a multithreshold threshold function. This class of functions is treated by Haring [18]. The definition of a multithreshold threshold element as given by Haring is

$$
z=1, \text { if } \sum_{j=1}^{n} w_{j} x_{j} \geq T_{1}
$$

or

$$
\begin{equation*}
T_{2 i} \geq \sum_{j=1}^{n} w_{j} x_{j} \geq T_{2 i+1} \quad i=1,2,3, \ldots \tag{3.7}
\end{equation*}
$$

where

$$
\mathrm{T}_{\mathrm{m}} \in\left(\mathrm{~T}_{1}, \mathrm{~T}_{2}, \cdots \cdot \mathrm{~T}_{\mathrm{k}}\right)
$$

and

$$
T_{m}>T_{m+1}
$$

and

$$
z=0, \text { otherwise }
$$

where z, X_{j}, w_{j}, and n are as defined as before,
$\mathrm{T}_{\mathrm{m}}=\mathrm{m}^{\mathrm{th}}$ threshold, and
$k=$ total number of thresholds.

Since Equation (3.7) is a generalization of the single-threshold threshold element [18], Equation (3.1) is included by Equation (3.7). For the sake of abbreviation the ordered set of weights and thresholds $\left(w_{1}\right.$, . . , $w_{n} ; T_{1}$, . . , T_{k}) that specifies a k-threshold element is denoted by the vector $(\bar{W} ; \bar{T})$ and called the MultiThreshold Weight Threshold Vector (MTWTV) [19].

Again observing Figure $21(b)$, it is seen that P_{0} is separated from P_{1} using two hyperplanes. In this example the MTWTV is

$$
\begin{equation*}
\bar{W} ; \bar{T}=\left(1,-1 ; \frac{1}{2},-\frac{1}{2}\right) \tag{3.8}
\end{equation*}
$$

3.2 Example of a Mechanical Linkage Which Generates a Function of Three Variables

This example is presented to provide an introduction to the type of function generator being synthesized.
3.2.1 Function to be Generated

A linkage is presented that generates the Boolean function

$$
\begin{equation*}
z=x_{1} \dot{+} x_{2} \cdot x_{3} \tag{3.9}
\end{equation*}
$$

where x_{1}, x_{2} and x_{3} are inputs and z is the output. One threshold realization of this function, in accordance with Equation (3.2) is

$$
\begin{equation*}
z=\left\langle 2 x_{1}+x_{2}+x_{3}\right\rangle 1.5 \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
2 x_{1}+x_{2}+x_{3}=f(x), \tag{3.11}
\end{equation*}
$$

then Table I shows the validity of Equations (3.9), (3.10) and (3.11).
To implement this function mechanically, a linkage made up of two components is used. The first component is called a "separator linkage" and is shown in Figure 22. The second is the "threshold linkage" and is shown in Figure 23. Tagether the two components form the threshold logic generator of Figure 24.

3.2.2 Separator Linkage

The separator linkage (Figure 22) is a three-degree-of-freedom linkage with the input cranks $X_{A} A, X_{B} B$ and $X_{C} C$ representing the Boolean input variables x_{1}, x_{2} and x_{3}, respectively. Two distinct positions of the input cranks are used to represent the "on" and "off" values of the input variables x_{1}, x_{2} and x_{3}. Each of the input cranks is shown in its "off" or "O" position in the figure. When an input crank is rotated clockwise to the position shown with a dashed line, then it is in the "on" or "l" position. The output of the separator linkage is the coupler point F.

The purpose of this separator linkage is to separate the positions of output point F, for each of the input combinations, into relative positions according to column IV of Table I. (The linkage of Figure 22 is similar to the whiffletree type linkage used for the position separation in a binary to decimal converter of a random-access-memory [31]. It is also similar to the linkage used by Haas and Crossley [32] for a four-bit binary adding mechanism.)

TABLE I

TRUTH TABLE OF EQUATIONS
$(3-9),(3-10),(3-11)$ and $(3-13)$

I	II	III	IV	V	VI	VII	VIII	IX
${ }^{X_{1}}$	x_{2}	x_{3}	$f(\mathrm{x})$	z	${ }^{\text {S }}$ F	${ }^{5} 1$	S_{2}	S_{3}
0	0	0	0	0	0	0	0	0
0	0	1	1	0	S	0	0	45
0	1	0	1	0	S	0	45	0
0	1	1	2	1	2s	0	45	45
1	0	0	2	1	2s	4 s	0	0
1	0	1	3	1	3s	45	0	45
1	1	0	3	1	3 s	45	45	0
1	1	1	4	1	45	$4 s$	45	4 s

In order to study the relative positions of the imputs and the output, the points A, B and C of the input cranks are considered to have the displacements s_{1}, s_{2} and s_{3}, respectively. The values s_{1}, s_{2} and s_{3} are also binary in accordance with x_{1}, x_{2} and x_{3}. When $x_{1}=0$, then $s_{1}=0$ and when $x_{1}=1$, then $s_{1}=k s=4 s$. The coefficient k is deter mined from

$$
\begin{equation*}
k=\sum_{j=1}^{3}\left|w_{j}\right| \tag{3.12}
\end{equation*}
$$

where the values of w_{j} are found from Equation (3.10). An arbitrary distance is taken for s. The values of s_{2} and s_{3} are also 0 and $4 s$ corresponding to values of x_{2} and x_{3} of "0" and "1".

In this separator linkage of Figure 22, points E and F are midpoints of the vertical links GB and DA. If the lengths of links GB and DA are great compared to the input displacements 4 , then it is seen that

$$
\begin{align*}
s_{F} & \approx\left[\frac{D F}{D A}\right]\left[s_{1}\right]+\left[\frac{G E}{G B}\right]\left[\frac{F A}{D A}\right]\left[s_{2}\right]+\left[\frac{E B}{G B}\right]\left[\frac{F A}{D A}\right]\left[s_{3}\right]=\frac{1}{2} s_{1} \\
& +\frac{1}{4} s_{2}+\frac{1}{4} s_{3} \tag{3.13}
\end{align*}
$$

where s_{F} is the horizontal component of displacement of the point F. Using Equation (3.13) the values of s_{F} are calculated for all combinations of the input variables. Together with the values of s_{1}, s_{2} and s_{3} g the values of ${ }_{s}$ F are entered in columns VI to IX in Table I. By comparing $f(x)$ and s_{F} of columns IV and VI it is observed that the linkage does separate the positions of F as desired.

3.2.3 Threshold Linkages

A "threshold linkage" is now employed to obtain the desired output
2. This linkage uses the point F (the output couplex point of the

Figure 22. Separator Linkage for $s_{F}=\frac{1}{2} s_{1}+\frac{1}{4} s_{2}+\frac{1}{4} s_{3}$

Figure 23. Threshold Linkage for $z=f\left(s_{F}\right)$

Figure 24. Threshold Logic Generator Composed of Separator Linkage and Threshold Linkage

- separator linkage) as the input and a dwell-rise-dwell cam to provide the Boolean output z (see Figure 23). By observing z and s_{F} of columns V and. VI in Table I, it is seen that

$$
\mathrm{z}=0 \text { when } \mathrm{s}_{\mathrm{F}} \leq \mathrm{s}
$$

and

$$
\begin{equation*}
z=1 \text { when } s_{F} \geq 2 s \tag{3.14}
\end{equation*}
$$

In Figure 23, when the input F is in the position of $s_{F}=0$, the output roller follower at H is in contact with the cam along radial line g and the output z is in the " O " position. As F moves to the position where $s_{F}=s$, the cam rotates counterclockwise so that the follower H is in contact with the cam along line h. The cam has a dwell between g and h, and consequently the output z remains in the "0" position.

As F continues to move to the position $s_{F}=2 s$, the follower makes contact with the cam along line i. Since there is a rise on the cam between h and i, the output crank $H Z$ rotates clockwise and z changes to the value "1". As F moves so that $s_{F}=3$ s and $4 s$, the follower makes contact with the cam along lines j and k. Between i and k the follower dwells and thus z retains the value "l".

With the separator linkage and the threshold linkage connected together as shown in Figure 24, the output z is the desired output as given by Equation (3.9).

At this point the significance of using a cam linkage for the threshold linkage should be considered. As was just seen, the dwells on the cam provide an easy way of maintaining the output link precisely in the "0" or "1" positions during all input state changes that do not requixe an output state change. A linkage using only revolute pairs could

Abstract

probably be designed to provide satisfactory dwells; however, it is expected that the numbers of links in the linkage would have to be increased.

3.3 Structural Synthesis of Separator and Threshold Linkages

In this section a search is made for alternate linkages which might be used for the separator and threshold linkages. Individual searches are made for alternate separator and threshold linkages since the entire synthesis of the function generators is based on the component method. In this study cam linkages only are considered for the threshold linkages.

By using performance criteria, basic linkages are selected for the separator and threshold linkages.

3.3.1 Alternate Chains for Separators

In the example of Figure 22, an arbitrary eight-link three-degree-of-freedom linkage is used. As stated earlier, however, similar linkages have been used for a similar purpose $[31,32]$. There is a possibility that other linkages can serve as well or better than the one chosen in Figure 22. In order to examine other eight-link three-degree-of-freedom linkages for possible merit, their respective kinematic chains must be enumerated. Since there are relatively few chains to be investigated, the enumeration is done through the use of Franke's condensed notation method as described by Davies and Crossley [34].

The enumeration process is described in Appendix C and the resulting eight-1ink chains with three-degreesmof-freedom are shown in Figure 25(a) through (f). As is seen later in this chapter, a separator linkage with

Figure 25. Enumeration of Kinematic Chains and Linkages Usable as Separators

Figure 25. (Continued)
two inputs is also needed. The simplest, and satisfactory, two-degree-of-freedom chain is shown in Figure $25(\mathrm{~g})$. The synthesis of this chain is also treated in Appendix G.
3.3.2 Performance Criteria and Selection of Separator Linkage

From the kinematic chains enumerated in the previous section, an eight-bar linkage is now selected to be used in the synthesis of all the separators. There is only one fivembar linkage and consequently no selection is needed in this category. Criteria for the selection of an eight-bar linkage is as follows:

1. Since there are three inputs to the separator linkages, the grounded link must be other than a binary link. As noted by Haas and Crossley [32], the inputs must be capable of independent activation and the output must respond to all of the inputs.

There are two types of chains appearing in the enumeration of Figure 25 which do not satisfy this requirement. They are chains with fractionated degrees of freedom or chains with partial degrees of freedom [34]. Each of the chains of Figure 25(a) through (d) has fractionated or partial degrees of freedom, and consequently no usable linkages can be derived from them.

There are four linkages derived from the chains of Figure 25(e) and (f) that do satisfy this requirement.
2. The linkages to be selected are of a type that can be synthesized dimensionally using a linear approximation. The linear approximation is obtained by arranging the links in a manner similar to that of Figure 22 and applying an expression such as that of Equation (3.13). (The dimensional synthesis is presented in sections 3.5 and 3.6.)

There are two arrangements of the chain of Figure 25(e) which lend themselves to this linear approximation. They are shown at (1) and (2) of the figure. The linkage at (1) is the arrangement used in the example of Figure 22.

For the chain of Figure 25(f), the only arrangement which lends itself to the use of the linear approximation is shown at (1). For the chain of Figure 25(f), (2), there seems to be no way of having the output point F on link 4 and arranging the linkage for the linear approximation.

After considering the two criteria above, there remain three linkages from which the selection is made. These are the linkages of Figure 25(e), (1) and (2), and (f), (1). The three linkages are very similar and there seems to be very little reason for the selection of one over the others. The only possible advantage to be noted is that the output link 3 of Figure 25(e), (1) is separated from the ternary link 5 with a binary link, whereas at (e), (2) the output link 4 is connected directly to the ternary link 5 and at (f), (1) the output link 7 is connected directly to the ternary link 4. The linkage at (e), (1) may thus be assembled somewhat more conveniently than the others.

The linkage as shown in Figure 25(e), (1) is selected to be synthesized dimensionally for the separators. The dimensional synthesis is explained in section 3.5 .

3.3.3 Alternate Chain for Threshold Linkages

The threshold linkage of the example of Figure 23 can be derived from the Watt's chain shown in Figure 26(a). The only other six-link chain is the Stephenson's chain shown in Figure 26(b).

Figure 26. Six-Link Chains and Linkages Derived to Serve as Threshold Linkages

3.3.4 Performance Critería and Selection of Threshold Linkage

Hain [35] lists a large number of cam linkages derived from the Watt's and Stephenson's kinematic chains shown in Figure 26(a) and (b). The only linkage, however, derived from the Watt's chain which allows for a path input, has an oscillating roller follower output and has only two cams is the one shown in Figure 26(a). The only linkage derived from the Stephenson's chain satisfying the same input and output conditions is the one shown in Figure 26(b). None of the other cam linkages listed by Hain appears to have qualities meriting consideration in this study.

The two cam linkages of Figure 26 are now examined according to performance criteria for the purpose of selecting the most favorable threshold linkage.

The performance criteria to be considered are as follows:

1. The input must be a path which is the path of point F of the separator linkage (Figure 22). It should be noted that F takes more than one path in moving from left to right depending on which of the input variables is being changed. The linkage of Figure 23 is repeated in Figure 27 to illustrate the multiple paths. In Figure 27 it can be seen that s_{F} changes from $2 s$ to $4 s$ by changing the input combination $x_{1} x_{2} x_{3}$ from 100 to 101 and then changing it to 111 . Also, s_{F} changes from 2 s to 4 s by changing the input combination from 011 to 111 , but the path of F is different in the two cases. The output z dwe11s (remains "1".) duxing either of the two changes; hence, the linkage selected must be capable of being synthesized so that the output is insensitive to the different paths of F when the output dwells.

Input Combinations: $x_{1} x_{2} x_{3}$

Figure 27. Threshold Linkage Showing Multiple Paths of Point F Between Stable States

In Figure 26, multiple paths of point F are shown for the linkages at both (a) and (b). Because the cam of the linkage at (a) has a fixed pivot (pivot K), the dwells of the output link 6 are not affected by the multiple paths of F. The cam of the linkage at (b), however, is part of the coupler link. In this case if the cam surface is designed so that link 6 dwells when F travels path p_{1}, then link 6 will not dwell when F travels path p_{2}.
2. Another desirable characteristic (which is similar to the above requirement) is that the output be relatively insensitive to exrors in the position of point F caused by errors in the positions of the inputs at their "0" and " 1 " positions and errors caused by tolerances on link lengths. These errors will, in effect create 2 inaccuracies in the paths explained in criterion (1). Consequently, as in criterion (1), the linkage at (a) of Figure 26 is preferable.
3. A third selection criterion is that the dimensional synthesis of the linkage be as simple as possible. The cam surface of the linkage at (a) is composed of simple rises and circular arc dwells, while the cam at (b) would necessitate a more complex shape, even for a single path of the point F. This point is sufficient to make the linkage at (a) the favorable linkage.

The considerations of the performance criteria clearly indicate the selection of the linkage of Figure $26(a)$ for the threshold linkages. 3.4 Basic Separator and Threshold Linkages Needed

The number of functions of n variable is M_{9} where

$$
M=2^{2^{n}}
$$

In this chapter of the study n is three and M becomes 256. Since the
purpose of the study is to synthesize a mechanical linkage composed of a separator linkage and a threshold linkage of the types selected in the previous section, it is necessary to determine the 256 multithreshold weight threshold vectors (MTWTV). In the papers of Haring and Ohori [22] and Mow and Fu [19] a procedure and tables are given to find the MTWTV which describes each of the Boolean functions of four variables. The results of these two papers are utilized to determine the 256 MTWTV's. This section is devoted to a search for a limited number of basic separator and threshold linkages which can be combined in various ways to form the 256 function generators.

3.4.1 Recognition of Basic Separator Linkages

Mow and Fu [19] persented a table (Table I of their paper) which is used in this study to establish the basic separator linkages needed. The portion of Mow and Fu's table which applies to functions of three variables is repeated in Table II. It is evident in the papers of Haring and Ohori [22] and Mow and Fu [19] that all 256 functions of three variables lead to the thirteen $\bar{W} ; \bar{T}$ vectors of Table II. Some functions, however, do not lead to a $\bar{W} ; \bar{T}$ vector identically shown in Table II. Such functions lead to $\bar{W} ; \bar{T}$ vectors that differ from the thirteen vectors of Table II only in one or more of the following:

1. A change in sign of one or more of the weights w_{1}, w_{2}, w_{3}. 2. A permutation of the weights with respect to the input variables.
2. A change in the value of the thresholds.

The significance of a change in the sign of a weight component such as w_{3} can now be shown. If w_{3} in the example of Figure 22 is negative

TABLE II*

THREE-VARIABLE EQUIVALENCE CLASSES AND THEIR $\overline{\mathrm{W}} ; \overline{\mathrm{T}}$ RELATIONS

Equivalence Class ${ }^{+}$
$\overline{\mathrm{w}} ; \overline{\mathrm{T}}^{\ddagger}$

One Threshold

1
4
7
9
13

1,0,0,0; 0.5
2,1,1,0; 1.5
1,1,1,0; 1.5
$1,1,0,0 ; 0.5$
1,1,1,0; 0.5

Two Thresholds

26
27
45
46
73
78

Three Thresholds
93
163
$2,1,-1,0 ; 0.5,-0.5$
$-2,1,1,0 ; 1.5,-0.5$
$1,1,1,0 ; 1.5,0.5$
2,2,-1,0; -,3.5,0.5
$1,1,1,0 ;-, 2.5,0.5$
$1,1,0,0 ;-, 1.5,0.5$

$$
\begin{aligned}
& 3,1,-2,0 ; 1.5,-0.5,-1.5 \\
& -1,1,1,0 ;-, 1.5,0.5,-0.5
\end{aligned}
$$

*This table is taken from Table I presented by Mow and Fu [19].
$\dagger_{\text {The }}$ equivalence class numbers are those given in the original table.
$\neq \bar{W} ; \bar{T}=W_{1}, W_{2}, w_{3} ; T_{1}, T_{2}, T_{3}$.
instead of positive,

$$
\begin{equation*}
f(x)=2 x_{1}+x_{2}=x_{3} \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{F}=\frac{1}{2} s_{1}+\frac{1}{4} s_{2}-\frac{1}{4} s_{3} \tag{3.16}
\end{equation*}
$$

The convention that the input cranks $X_{A} A, X_{B} B$ and $X_{C} C$ rotate in a clockwise direction when the input variables x_{1}, x_{2} and x_{3} change from " 0 " to "l" is maintained. If X_{C} is placed above C and called $X_{C}{ }^{\prime}$ as shown in Figure 28, instead of below as in Figure 22, then Equation (3.16) is satisfied by the linkage of Figure 28. Similarly the sign of any coefficient of a weight vector can be changed by moving the center of rotation of the corresponding input crank.

From the argument just given, it follows that the basic separator linkages needed are obtained independently of the signs on the weight vectors \bar{W}.

It should be evident that a permutation of the weights in the $\bar{W} ; \bar{T}$ vector merely changes the input cranks of the separator linkage to which the three input variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ are attached and that changes in the values of the thresholds do not affect the separator linkages.

From Table II it is now seen that basic separator linkages are needed for only six weight vectors. These vectors are:

$$
\begin{array}{ll}
(1,0,0) & (2,1,1) \\
(1,1,0) & (2,2,1) \\
(1,1,1) & (3,2,1) \text { or }(3,1,2) .
\end{array}
$$

The first of these vectors, (1, 0,0), is really a trivial case since it is the vector of a single variable. The other five vectors are those

Figure 28. Separator Linkage for $s_{F}=\frac{1}{2} s_{1}+\frac{1}{4} s_{2}-\frac{1}{4} s_{3}$
which must be realized with basic separator linkages. The example of Figure 22 shows a linkage for the vector (1, 1, 2).

3.4.2 Recognition of Basic Threshold Linkages

The basic threshold linkages needed are known through the use of a complete tabulation of the 256 functions. The complete tabulation is shown in Table IV (of section 3.7.1). For the tabulation, the $\overline{\mathrm{W}} ; \overline{\mathrm{T}}$ vectors were determined using the procedure and tables given by Haring and Ohori [22] and Mow and Fu [19].

For the present analysis it is convenient to define a "threshold angle vector", $\bar{\tau}$, containing the elements $\tau_{a}, \tau_{b}, \ldots, \tau_{f}$. The elements $\tau_{a}, \tau_{b}, \ldots ., \tau_{f}$ are called threshold angles.

The \bar{T} vector column of Table IV is included for the purpose of simplifying the recognition of the threshold linkage needed for each function.

Figure 29 shows the threshold linkage of Figure 23 for the purpose of illustrating the threshold angles. The threshold linkage has four "separation angles" which are also $\tau_{a}, \tau_{b}, \tau_{c}$ and τ_{d}. It is noted that the number of separator angles is k, given by Equation (3.12).

The following shows the separation angles for the generators of all of the functions in terms of the \bar{W} vectors.

\bar{W}	\underline{k}	Separation Angles τ
$(\pm 1, \pm 1,0)$	2	τ_{a}, τ_{b}
$(\pm 1, \pm 1, \pm 1)$	3	$\tau_{a}, \tau_{b}, \tau_{c}$
$(\pm 2, \pm 1, \pm 1)$	4	$\tau_{a}, \ldots, \tau_{d}$
$(\pm 2, \pm 2, \pm 1)$	5	$\tau_{a}, \ldots, \tau_{e}$
$(\pm 3, \pm 2, \pm 1)$	6	$\tau_{a}, \ldots, \tau_{f}$

The separation angle τ_{a} measures the rotation of the cam as s_{F} changes from $s_{\text {Fmin }}$ to $s_{\text {Fmin }}+1$, and the last separation angle for any generator measures the rotation of the cam as s_{F} changes from $s_{F m a x}-1$ to $s_{\text {Fmax }}$. For instance, with the linkage of Figure 29 the angle τ_{a} measures the cam rotation as s_{F} changes from $s_{\text {Fmin }}=0$ to $s_{\text {Fmin }}+1=s$. The last separation angle, τ_{d}, measures the cam rotation as $s_{\text {Fmax }}-1=3$ s to $s_{\text {Fmax }}=4 \mathrm{~s}$.

Finally, a threshold angle is any one of the separation angles in which a threshold occurs. At a threshold, the output variable z changes states and there is a rise or return on the cam. In Figure 29 there is only one threshold angle and it is τ_{b}; the threshold angle vector is $\bar{\tau}=\left(\tau_{b}\right)$.

To further illustrate the meaning of the threshold angles of Table IV, section 3.7 .1 , the function where $F V=26$ is observed. The $\overline{\mathrm{W}} ; \overline{\mathrm{T}}$ vector is

$$
\begin{equation*}
\overline{\mathrm{W}} ; \overline{\mathrm{T}}=(2,-1,-2 ; 0.5,-2.5) \tag{3.17}
\end{equation*}
$$

This vector indicates that there is a threshold at $s_{F}=-2.5 \mathrm{~s}$ and another at $s_{F}=0.5 \mathrm{~s}$. A graphical representation of the function is shown in Figure 30. The figure shows the threshold angles at τ_{a} and τ_{d}; consequently the threshold angle vector in Table IV for the function of $\mathrm{FV}=26$ is $\bar{\tau}=\left(\tau_{\mathrm{a}}, \quad \tau_{\mathrm{d}}\right)$.

The superscripts on the threshold angles of Table IV indicate whether the output variable z changes from " 0 " to " 1 " or from " 1 " to " 0 " as the threshold is crossed. Using the function of $F V=26$ again as an example, the superscript 10 on the threshold angle τ_{a}^{10} means that as S_{F} increases from $-3 s$ to $-2 s$ the output z changes from "1" to "0". This point is also illustrated in Figure 30 , where the darkened circle

Figure 30. Graphical Representation of the Function of FV $=26$ Showing Threshold Angles
at $s_{F}=-3 s$ indicates that $z=1$ and the undarkened circle O at $s_{F}=-2 s$ indicates that $z=0$. The superscript for τ_{d}^{01} of the function of $F V=26$ is 01 , which means that z changes from " 0 " to " 1 " as s_{F} changes from 0 to s.

It is noted that differences in superscripts do not cause "basically" different threshold linkages. If two functions have the same $\overline{\mathrm{W}}$ vector and the same threshold angles except that the superscripts are are different, the two linkage function generators are the same except that the center of rotation of one output crank is Z and the center of the other is Z^{\prime} (see Figure 29).

Taking the above concepts into consideration, the basic threshold linkages can now be recognized. For each basic separator linkage, a basic threshold linkage is needed for each distinct threshold angle combination (where the superscripts on the threshold angles are disregarded). These combinations are located by scanning Table IV (of section 3.7.1). The combinations are shown in Table III, and the number of basic threshold linkages needed is nineteen.

3.5 Dimensional Synthesis of Separator Linkages

In section 3.3 .2 a five-bar and an eight-bar linkage were selected for use as the separator. In section 3.4 .1 the need was shown for proportioning these linkages in five ways to produce the basic separators for the weight vectors $(1,1,0),(1,1,1),(2,1,1),(2,2,1)$ and (3, 2, 1).

The proportioning of the linkages is accomplished in this section. There are two fundamental steps to the synthesis procedure. The steps are:

TABLE III

BASIC THRESHOLD LINKAGES IN TERMS OF BASIC SEPARATORS AND THRESHOLD ANGLES

Vector of Basic Separator Linkage	Combinations of Threshold Angles			Number of Basic Threshold Linkages
	With One Threshold	With Two Thresholds	With Three Thresholds	
(1, 1, 0)	$\begin{gathered} \tau_{\mathrm{a}} \\ \tau_{\mathrm{b}} \end{gathered}$	τ_{a}, τ_{b}		3
$(1,1,1)$	$\begin{gathered} \tau_{\mathrm{a}} \\ \tau_{\mathrm{b}} \\ \tau_{\mathrm{c}} \end{gathered}$	$\begin{aligned} & \tau_{\mathrm{a}}, \tau_{\mathrm{b}} \\ & \tau_{\mathrm{a}}, \tau_{\mathrm{c}} \\ & \tau_{\mathrm{b}}, \tau_{\mathrm{c}} \end{aligned}$	$\tau_{a}, \tau_{b}, \tau_{c}$	7
$(2,1,1)$	$\begin{aligned} & \tau_{\mathrm{b}} \\ & \tau_{\mathrm{c}} \end{aligned}$			6
$(2,2,1)$				2
$(3,2,1)$			$\tau_{a}, \tau_{b}, \tau_{c}$	1
			Total	19

1. The vertical links $A D$ and $B G$ (see Figure 22) are proportioned to provide the desired output positions of point F.
2. The link lengths are determined to provide a large displacement S_{F}, good link length ratios and good transmission angles.

3.5.1 Proportioning of Links AD and BG

The vertical links $A D$ and $B G$ of the five basic separator linkages are proportioned by using the assumption that the horizontal displacement of the output point F can be approximated by a linear expression. The linear expression used is essentially that of Equation (3.13).

Figure 31 shows the application of the linear expression in proportioning the links $A D$ and $B G$ for each of the basic separators. The \bar{W} vector generated by the linkages is shown at the bottom of each illustration of Figure 31(a) through (e). In each figure, the linkage is shown with the weight that corresponds to the respective input indicated in parentheses. At the left center of the figures, the proportions of the links $A D$ and $B G$ are defined in terms of p_{1} and p_{2}; the fact that $A D$ and BG are both defined as 1 does not mean that they are necessarily the same length. The values of k as shown are found with Equation (3.12).

The horizontal components of translation of the inputs A, B and C are s_{A}, s_{B} and s_{C}, respectively. As the input variables change from the " 0 " state to the " 1 " state, the values of s_{A}, s_{B} and s_{C} change from 0 to ks. The horizontal component of output trans1ation is s_{F}, where the minimum translation is 0 and the maximum ku. In the case at (b), for example, $k s=3 s$ and $k u=3 u$. The unit of translation u is distinguished from s because with some separators (see Figure 31(d) and (e)) u is greater than s.

Figure 31. Proportioning of the Vertical Links $A D$ and $B G$

Figure 3l. (Continued)

Figure 31. (Continued)

In each figure, the linear approximation for S_{F} is written below the linkages in terms of $p_{1}, p_{2}, s_{A}, s_{B}$ and s_{C}. At the bottom of each figure three combinations of s_{A}, s_{B}, s_{C} and s_{F} are written. Each combination is substituted in the linear approximation for s_{F} giving the three approximations shown. Finally, the three approximations are used as equalities and solved simultaneously to give the proportions p_{1}, p_{2} and u / s. The values of p_{1}, p_{2} and u / s are shown at the lower right.

It is noted that the \bar{W} vector in Figure 31(d) contains one negative weight (-1). The negative weight occurs because the point F is on the extension of the link AD instead of between the ends A and D. By observing the figure it is seen that when A has a positive horizontal displacement, the point F has a negative horizontal displacement (the right is taken as positive).

The purpose of placing F on the extension of $A D$ is to make the maximum horizontal displacement s_{F} greater than $k s$. Thus the maximum value of s_{F} is made larger without increasing s_{A}, s_{B} and s_{C}. This increase is expressed by the value of $u / s=5 / 3$. The larger value of s_{F} in turn makes the threshold angles of the threshold linkage larger, without increasing the overall size of the separator linkage.

In Figure 31 (e) there is also an input with a negative weight (-1). It occurs because the point E is on the extension of the link BG instead of between the ends of BG. Again, the purpose is to increase the maximum s_{F} without increasing s_{A}, s_{B} and s_{C}. The increase in this case is expressed by $u / s=3 / 2$.

With the separators of Figure 31 (a) and (b), the value of u / s cannot be increased in the same way as with the linkages of (e) and (f). The value of u / s could be increased with the separator of (c), but it is
noted that with the arrangement shown the proportion p_{2} is the same as at (b) and (d). Thus the linkages at (b), (c) and (d) differ only in the proportion p_{1}, which means that they differ only in the position of point F on the link $A D$. This last fact can in effect be used to say that the number of basic linkages needed for the five basic separators is only three: those of Figure $31(\mathrm{a})$, (b) and (e).

3.5.2 Determination of Link Lengths

The link lengths are now determined for the linkages of Figure 31(a) through (e). The dimensions are shown in Table V of section 3.7 .2 and are given with reference to Figure 33 of section 3.7.2. It is noted that the only difference between the separators at (b), (c) and (d) is in the length of AF .

The synthesis of the dimensions is based on the following:

1. In order to maintain good link length ratios, the links $X_{A} A$, $X_{B} B, X_{C} C, C G, B G, B D$ and $E D$ are made of the same length ℓ for all the linkages. (In Table V the length 2 is represented as 1.0.) The link $A D$ of Figure $31(\mathrm{a})$, (b), (c) and (d) is also made of length ℓ. In Figure 31 (e) link $A D$ is made equal to $B E$ which is 1.5ℓ.
2. In the positions of the linkages shown in Figure 31 (a) through (e), the links AD and BG are made parallel (vertical on the page). The " 0 " and " 1 " positions of the input cranks $X_{A} A, X_{B} B$ and $X_{C} C$ are symmetrical about lines parallel to links $A D$ and $B G$ (vertical lines).
3. The displacements s_{A}, s_{B} and s_{C} of the points A, B and C (see Figure 31), as the input variables change from " 0 " to " 1 ", are made of the same value s_{I} for all separators. The value of s_{I} is made as large a percent of ℓ as possible. As the ratio s_{I} / ℓ is increased, the minimum
transmission angles decrease. Thus the maximum value of s_{I} is dictated by selecting a minimum allowable transmission angle μ_{m}. In this synthesis μ_{m} is selected as 45°.

The determination of s_{I} is detailed in Appendix D. An analysis of the transmission angles for all the positions of the separator linkages is also given in Appendix D.

It should be noted that the approximations expressed in Figure 31 become poorer as the ratio of $\mathrm{s}_{\mathrm{I}} / \ell$ is increased. It was found, however; that the inaccuracies caused in s_{F} by using the value of s_{I} calculated with $\mu_{\mathrm{m}}=45^{\circ}$ were not great enough to create any problem. These slight inaccuracies are absorbed in the synthesis of the threshold linkages as shown in the details of Appendix E (section E.1).
4. Based on the selections and calculations of steps (1) through (3), the coordinates of the fixed centers $X_{A}, X_{A}{ }^{\prime}, X_{B}, X_{B}{ }^{\prime}, X_{C}$ and $X_{C}{ }^{\prime}$ (see Figure 33 of section 3.7.2) are calculated. The calculations are detailed in Appendix D.

An analysis of the output positions of link AD is combined with the synthesis in Appendix D. This analysis of the separator linkages is needed in the next section for the synthesis of the threshold linkages. 3.6 Dimensiona1 Synthesis of Threshold Linkages

In section 3.3.4 the cam linkage of Figure $26(a)$ was selected for use as the threshold linkages. In section 3.4 .2 the need was established for proportioning this linkage in nineteen ways to produce the basic threshold linkages of Table III.

There are two fundamental steps to the dimensional synthesis procedure for each threshold linkage. They are:

1. The loop FJK is synthesized (see Figure 29) to provide large threshold angles, small dwell angles, good link length ratios and a good transmission angle.
2. The cam and output follower are synthesized to provide good link length ratios and a good cam pressure angle.

The steps 1 and 2 are largely graphical procedures. Greater details are given in Appendix E. Since the loop FJK is synthesized graphically, an output analysis of the cam rotation angle is needed. The analysis allows the threshold angles to be located on the cam with accuracy. This output analysis is part of the computer Program B of Appendix E.

The dimensions which result from the synthesis and analysis are recorded in Table VI of section 3.7.3. The dimensions are given with reference to Figure 34 of section 3.7 .3 . The coordinates of the fixed centers K, Z and Z^{\prime} are given, as well as the link lengths. The angles $\delta_{1}, \delta_{2}, \cdot, \quad, \delta_{7}$ are the result of the cam rotation analysis and are defined as shown in Figure 34. The δ angles are used, as shown in Table VI, to determine the magnitudes of the threshold angles.

In Figure 34 it is seen that only nine linkages, at (a) through (i), are used to represent the nineteen basic threshold linkages of Table III. Observation of Figure 34 and Table III shows why this is possible. For example, the linkage of Figure $34(\mathrm{a})$ with dimensions of Table VI, column I, has the two thresholds τ_{a} and τ_{b}. This same linkage serves for the other two basic threshold linkages for $\bar{W}=(1,1,0)$ shown in Table III. When the linkage is needed with the threshold τ_{a} only, the space for τ_{b} is filled with a dwell. When the linkage is needed with the threshold τ_{b} only, the space for τ_{a} is filled with a dwe 11.

Using the reasoning just given, it is seen that the linkage of Figure $34(\mathrm{~b})$ serves for all seven of the basic threshold linkages for $\bar{W}=(1,1,1)$. The six basic threshold linkages for $\bar{W}=(2,1,1)$ are satisfied with the four linkages of Figure 34 (c) through (f). (The linkage with a threshold at τ_{b} only is satisfied with the linkage of either Figure $34(\mathrm{c})$ or (e), and the linkage with τ_{c} only is satisfied with the linkage of either Figure $34(\mathrm{~d})$ or (f).) The two basic threshold linkages for $\bar{W}=(2,2,1)$ are satisfied with the two linkages of Figure $34(g)$ and (h), and the single basic linkage for $\bar{W}=(3,2,1)$ is at Figure 34(i).
3.7 Design Charts for Selecting Threshold Logic Generators

In sections 3.5 and 3.6 the methods of dimensional synthesis were shown for all the separator and threshold linkages. In this section the dimensions are given in tabular form (Tables V and VI) and are given with reference to Figures 33 and 34 . These figures are drawn to scale so that they represent the actual appearance of the linkages.

In conjunction with the dimensional tables and figures, a step-bystep procedure is presented for selecting the linkage needed to generate any of the 256 functions of three variables. The step-by-step procedure, tables and figures are contained in three design charts. The overall use of the design charts is shown in the flow chart of Figure 32.

Two examples of the use of the design charts are given in section 3.8.

3.7.1 Chart I: Determination of $\bar{W} ; \bar{T}$ Vector

Steps:

1. Expand the given Boolean function to the sum of products canonical form (see examples, section 3.8). (Each term of the equation that has less than three variables is multiplied by ($\bar{x}_{i} \dot{+} x_{i}$) where i is a subscript missing in the term. This process is repeated until every term contains three variables; the equation is then in canonical form.)
2. Find the term values $\mathrm{TV}_{\mathbf{i}}, i=0$, . . . , 7 according to the following listing. If the term exists in the expansion of step 1 , the corresponding TV_{i} has a value of 1 ; if the term does not exist in the expansion the corresponding TV_{i} is 0 .

Term Term Value

$$
\bar{x}_{1} \cdot \bar{x}_{2} \cdot \bar{x}_{3} \quad \mathrm{TV}_{0}
$$

$$
\bar{x}_{1} \cdot \vec{x}_{2} \cdot x_{3} \quad T V_{1}
$$

$$
\bar{x}_{1} \cdot x_{2} \cdot \bar{x}_{3} \quad T V_{2}
$$

$$
\bar{x}_{1} \cdot x_{2} \cdot x_{3} \quad T V_{3}
$$

$$
\mathrm{x}_{1} \cdot \overline{\mathrm{x}}_{2} \cdot \overline{\mathrm{x}}_{3} \quad \mathrm{TV} 4
$$

$$
\mathrm{x}_{1} \cdot \overline{\mathrm{x}}_{2} \cdot \mathrm{x}_{3} \quad \mathrm{TV}_{5}
$$

$$
x_{1} \cdot x_{2} \cdot \bar{x}_{3} \quad T_{6}
$$

$$
x_{1} \cdot x_{2} \cdot x_{3} \quad \text { TV } y
$$

3. Find the function value $F V$ by substituting the term values TV_{i} in the equation

$$
\mathrm{FV}=\sum_{i=0}^{7} \frac{128}{2^{i}}\left(\mathrm{TV}_{\mathrm{i}}\right) \equiv 128 \mathrm{TV}_{0}+64 \mathrm{TV}_{1}+\ldots \cdot+\mathrm{TV}_{7}
$$

4. Find $\overline{\mathrm{W}} ; \bar{\tau}$ from Table IV:
(a) If $\mathrm{FV} \geq 127$ locate $\overline{\mathrm{W}} ; \bar{\tau}$ directly.
(b) If $\mathrm{FV}>127$ find $\mathrm{FV}_{c}=255-\mathrm{FV}$, then locate $\overline{\mathrm{W}} ; \bar{\tau}$ using FV_{c}.

3.7.2 Chart II: Selection of Separator Linkage

Steps:

1. Select the basic separator linkage from Figure 33 using \bar{W} in the form ($\left.\left|w_{1}\right|,\left|w_{2}\right|,\left|w_{3}\right|\right)$.
2. Select the fixed centers X_{A} or X_{A}^{\prime}, X_{B} or X_{B}^{\prime} and X_{C} or X_{C}^{\prime} using $\overline{\mathrm{W}}$ and assign input variables to the input links.
3. Determine the linkage dimensions from Table V.

3.7.3 Chart III: Selection of Threshold Linkage

Steps:

1. Select the basic threshold linkage from Figure 34 using $\overline{\mathrm{W}} ; \bar{\tau}$ in the form ($\left.\left|w_{1}\right|,\left|w_{2}\right|,\left|w_{3}\right| ; \tau_{a}, \ldots, \tau_{f}\right)$.
2. Select the fixed center Z or Z^{\prime};
(a) If $0 \leq F V \leq 127$ and the superscript on first threshold of $\vec{\tau}$ is $\left\{\begin{array}{l}01, \text { use } Z, \\ 10, \text { use } Z^{\prime} .\end{array}\right.$
(b) If $\mathrm{FV}>127$ and superscript on first threshold of $\bar{\tau}$ is $\left\{\begin{array}{l}01, \text { use } Z^{\prime} . \\ 10, \text { use } Z .\end{array}\right.$
3. Determine linkage dimensions from Table VI.
4. Place rises and returns on the cam according to $\bar{\tau}$. The first τ that appears indicates a rise. If a second τ exists it represents a return and if a third τ exists it represents a rise. The cycloidal motion program is used for rises and returns.
5. Complete the cam with dwells.

TABLE IV

WEIGHT-THRESHOLD ANGLE VECTORS
VS. FUNCTION VALUES

$\begin{gathered} \mathrm{FV} \\ \text { or } \\ \mathrm{FV}{ }_{\mathrm{c}} \end{gathered}$	Weight Vector W_{1}, W_{2}, W_{3}	Threshold Vector $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$	Threshold Angle Vector $\tau_{a}, \tau_{b}, \ldots, \tau_{f}$
0	0, 0, 0		
1	1, 1, 1	2.5	${ }_{c} 01$
2	1, 1, -1	1.5	$\tau_{c}{ }^{01}$
3	1, 1, 0	1.5	τ_{b}^{01}
4	1, -1, 1	1.5	$\tau_{c}{ }^{01}$
5	1, 0, 1	1.5	τ_{b}^{01}
6	2, -1, -1	1.5, 0.5	$\tau_{\mathrm{c}}^{01}, \tau_{\mathrm{d}}^{10}$
7	2, 1, 1	2.5	τ_{c}^{01}
8	1, -1, -1	0.5	τ_{c}^{01}
9	2, 1, -1	2.5, 1.5	$\tau_{\mathrm{c}}{ }^{01}, \tau_{\mathrm{d}}^{10}$
10	1, 0, -1	0.5	τ_{b}^{01}
11	2, 1, -1	1.5	$\tau_{c}{ }_{c}^{01}$
12	1, -1, 0	0.5	τ_{b}^{01}

TABLE IV (Continued)

FV or FV_{C}	Weight Vector W_{1}, W_{2}, W_{3}	Threshold Vector $\mathrm{T}_{1} ; \mathrm{T}_{2}, \mathrm{~T}_{3}$	Threshold Angle Vector $\tau_{\mathrm{a}}, \tau_{\mathrm{b}}, \cdots, \cdots, \tau_{\mathrm{f}}$
13	2, -1, 1	1.5	τ_{c}^{01}
14	2, -1, -1	0.5	τ_{c}^{01}
15	1, 0, 0	0.5	τ_{a}^{01}
16	-1, 1, 1	1.5	τ_{c}^{01}
17	0, 1, 1	1.5	$\tau_{\mathrm{b}}{ }^{01}$
18	-1, 2, -1	1.5, 0.5	$\tau_{\mathrm{c}}^{01}, \tau_{\mathrm{d}}^{10}$
19	1, 2, 1	2.5	τ_{c}^{01}
20	-1, -1, 2	1.5, 0.5	$\tau_{\mathrm{c}}^{01}, \tau_{\mathrm{d}}^{10}$
21	1, 1, 2	2.5	τ_{c}^{01}
22	1, 1, 1	2.5, 1.5	$\tau_{b}^{01}, \tau_{c}^{10}$
23	1, 1, 1	1.5	τ_{b}^{01}
24	-1, 1, 1	1.5, -0.5	$\tau_{a}^{10}, \tau_{c}^{01}$
25	-1, 2, 2	2.5, -0.5	$\tau_{a}^{10}, \tau_{d}^{01}$
26	2, -1, -2	0.5, -2.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{d}}^{01}$
27	3, 1, -2	1.5, -0.5, -1.5	$\tau_{\mathrm{a}}^{01}, \tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}}^{01}$

TABLE IV (Continued)

$\begin{gathered} \mathrm{FV} \\ \text { or } \\ \mathrm{FV} \\ \mathrm{C} \end{gathered}$	Weight Vector W_{1}, W_{2}, w_{3}	$\begin{aligned} & \text { Threshold } \\ & \text { Vector } \\ & \mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3} \end{aligned}$	Threshold Angle Vector $\tau_{a}, \tau_{b}, \ldots, \tau_{f}$
28	2, -2, -1	0.5, -2.5	$\tau_{a}^{10}, \tau_{d}{ }^{01}$
29	3, -2, 1	1.5, -0.5, -1.5	$\tau_{\mathrm{a}}^{01}, \tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}}^{01}$
30	-2, 1, 1	1.5, -0.5	$\tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}}^{01}$
31	2, 1, 1	1.5	$\tau_{\mathrm{b}}{ }^{01}$
32	-1, 1, -1	0.5	$\tau_{c}{ }_{c}^{01}$
33	-1, 2, 1	2.5, 1.5	$\tau_{\mathrm{c}}{ }^{01}, \tau_{\mathrm{d}}{ }^{10}$
34	0, 1, -1	0.5	$\tau_{b} 01$
35	1, 2, -1	1.5	$\tau_{\mathrm{c}} 01$
36	$1,-1,1$	1.5, -0.5	$\tau_{a}^{10}, \tau_{c} 01$
37	2, -1, 2	2.5, -0.5	$\tau_{\mathrm{a}}{ }^{10}, \tau_{\mathrm{d}} 01$
38	$-1,2,-2$	0.5, -2.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{d}}^{01}$
39	1, 3, -2	1.5, -0.5, -1.5	$\tau_{\mathrm{a}}^{01}, \tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}}^{01}$
40	1, 1, -2	1.5, 0.5	$\tau_{\mathrm{c}}{ }^{01}, \tau_{\mathrm{d}}{ }^{10}$
41	1, 1, -1	1.5, 0.5	$\tau_{b}^{01}, \tau_{c}^{10}$
42	1, 1, -2	0.5	τ_{c}^{01}

TABLE IV (Continued)

$\begin{gathered} \mathrm{FV} \\ \text { or } \\ \mathrm{FV}_{\mathrm{c}} \end{gathered}$	Weight Vector W_{1}, W_{2}, W_{3}	Threshold Vector $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$	Threshold Ang1e Vector
43	1, 1, -1	0.5	$\tau_{b}{ }^{01}$
44	$2,-2,1$	-, 1.5, -1.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{d}}^{01}$
45	-2, -1, 1	-0.5, -2.5	$\tau_{\mathrm{a}}{ }^{01}, \tau_{\mathrm{c}}^{10}$
46	3, -2, -1	0.5, -1.5, -2.5	$\tau_{\mathrm{a}}^{01}, \tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}}^{01}$
47	2, 1, -1	0.5	τ_{b}^{01}
48	-1, 1, 0	0.5	τ_{b}^{01}
49	-1, 2, 1	1.5	$\tau_{c}{ }_{c} 01$
50	-1, 2, -1	0.5	$\tau_{c}{ }^{01}$
51	0, 1, 0	0.5	$\tau_{\mathrm{a}}{ }^{01}$
52	-2, 2, -1	0.5, -2.5	$\tau_{\mathrm{a}}{ }^{10}, \tau_{\mathrm{d}}{ }^{01}$
53	-2, 3, 1	1.5, -0.5, -1.5	$\tau_{\mathrm{a}}^{01}, \tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}}^{01}$
54	1, -2, 1	1.5, -0.5	$\tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}}{ }^{01}$
55	1, 2, 1	1.5	$\tau_{b}{ }^{01}$
56	-2, 2, 1	-, 1.5, -1.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{d}}^{01}$
57	-1, -2, 1	-0.5, -2.5	$\tau_{\mathrm{a}}^{01}, \tau_{\mathrm{c}}^{10}$

TABLE IV (Continued)

$\begin{gathered} \mathrm{FV} \\ \text { or } \\ \mathrm{FV}_{\mathrm{C}} \end{gathered}$	Weight Vector W_{1}, W_{2}, W_{3}	$\begin{aligned} & \text { Thresho1d } \\ & \text { Vector } \\ & \mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3} \end{aligned}$	$\begin{gathered} \text { Threshold } \\ \text { Angle } \\ \text { Vector } \end{gathered} \tau_{\mathrm{a}}, \tau_{\mathrm{b}}, \cdots, \cdots, \tau_{\mathrm{f}}$
58	-2, 3, -1	0.5, -1.5, -2.5	$\tau_{\mathrm{a}}^{01}, \tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}}^{01}$
59	1, 2, -1	0.5	τ_{b}^{01}
60	1, 1, 0	-, 1.5, 0.5	$\tau_{a}^{01}, \tau_{b}^{10}$
61	2, 2, -1	-, 3.5, 0.5	$\tau_{\mathrm{b}}^{01}, \tau_{\mathrm{e}}{ }^{10}$
62	2, 2, 1	3.5, 1.5	$\tau_{a}^{01}, \tau_{d}^{10}$
63	1, 1, 0	0.5	$\tau_{\mathrm{a}} 01$
64	-1, -1, 1	0.5	$\tau_{c}{ }_{c}^{01}$
65	1, -1, 2	2.5, 1.5	$\tau_{\mathrm{c}}{ }^{01}, \tau_{\mathrm{d}}{ }^{10}$
66	1, 1, -1	1.5, -0.5	$\tau_{a}^{10}, \tau_{c} 01$
67	2, 2, -1	2.5, -0.5	$\tau_{a}^{10}, \tau_{d} 01$
68	0, -1, 1	0.5	τ_{b}^{01}
69	1, -1, 2	1.5	$\tau_{c}{ }_{c}^{01}$
70	-1, -2, 2	0.5, -2.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{d}} 01$
71	1, -2, 3	1.5, -0.5, -1.5	$\tau_{\mathrm{a}}{ }^{01}, \tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}}^{01}$
72	1, -2, 1	1.5, 0.5	$\tau_{\mathrm{c}}{ }^{01}, \tau_{\mathrm{d}}^{10}$

TABLE IV (Continued)

$\begin{gathered} \mathrm{FV} \\ \text { or } \\ \mathrm{FV}_{\mathrm{C}} \end{gathered}$	$\begin{gathered} \text { Weight } \\ \text { Vector } \\ \mathrm{W}_{1}, W_{2}, W_{3} \end{gathered}$	Threshold Vector $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$	$\begin{gathered} \begin{array}{c} \text { Threshold } \\ \text { Angle } \\ \text { Vector } \end{array} \\ \tau_{\mathrm{a}}, \tau_{\mathrm{b}}, \cdots, \tau_{\mathrm{E}} \end{gathered}$
73	1, $-1,1$	1.5, 0.5	$\tau_{b}{ }^{01}, \tau_{c}^{10}$
74	2, 1, -2	-, 1.5, -1.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{d}}^{01}$
75	-2, 1, -1	-0.5, -2.5	$\tau_{a}^{01}, \tau_{b}^{10}$
76	$1,-2,1$	0.5	$\tau_{c} 01$
77	$1,-1,1$	0.5	$\tau_{\mathrm{b}}{ }^{01}$
78	3, -1, -2	0.5, -1.5, -2.5	$\tau_{\mathrm{a}}^{01}, \tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}}^{01}$
79	$2,-1,1$	0.5	$\tau_{b} 01$
80	-1, 0, 1	0.5	$\tau_{\mathrm{b}} 01$
81	-1, 1, 2	1.5	$\tau_{c} 01$
82	-2, -1, 2	0.5, -2.5	$\tau_{a}{ }^{10}, \tau_{\text {d }} 01$
83	-2, 1, 3	1.5, -0.5, -1.5	$\tau_{\mathrm{a}}^{01}, \tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}}^{01}$
84	-1, -1, 2	0.5	$\tau_{c} 01$
85	0, 0, 1	0.5	$\tau_{\mathrm{a}}{ }^{01}$
86	1, 1, -2	1.5, -0.5	$\tau_{b}{ }^{10}, \tau_{\text {d }}{ }^{01}$
87	1, 1, 2	1.5	$\tau_{\text {b }} 01$

TABLE IV (Continued)

$\begin{gathered} \mathrm{FV} \\ \text { or } \\ \mathrm{FV}_{\mathrm{C}} \end{gathered}$	Weight Vector W_{1}, W_{2}, W_{3}	Threshold Vector $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$	$\begin{gathered} \begin{array}{c} \text { Threshold } \\ \text { Angle } \\ \text { Vector } \end{array} \\ \tau_{\mathrm{a}}, \tau_{\mathrm{b}}, \ldots, \tau_{\mathrm{f}} \end{gathered}$
88	-2, 1, 2	-, 1.5, -1.5	$\tau_{a}{ }^{10}, \tau_{\mathrm{d}}{ }^{01}$
89	-1, 1, -2	$-0.5,-2.5$	$\tau_{\mathrm{a}}{ }^{01}, \tau_{\mathrm{c}}{ }^{10}$
90	1, 0, 1	-, 1.5, 0.5	$\tau_{a}^{01}, \tau_{b}^{10}$
91	$2,-1,2$	-, 3.5, 0.5	$\tau_{\mathrm{b}}^{01}, \tau_{\mathrm{e}}^{10}$
92	-2, -1, 3	0.5, -1.5, -2.5	$\tau_{\mathrm{a}}^{01}, \tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}}^{01}$
93	1, -1, 2	0.5	τ_{b}^{01}
94	2, 1, 2	3.5, 1.5	$\tau_{\mathrm{a}}^{01}, \tau_{\mathrm{d}}^{10}$
95	1, 0, 1	0.5	τ_{a}^{01}
96	-2, 1, 1	1.5, 0.5	$\tau_{\mathrm{c}}^{01}, \tau_{\mathrm{d}}^{10}$
97	$-1,1,1$	1.5, 0.5	$\tau_{\mathrm{b}}^{01}, \tau_{\mathrm{c}}^{10}$
98	1, 2, -2	-, 1.5, -1.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{d}}{ }^{01}$
99	1, -2, -1	-0.5, -2.5	$\tau_{a}^{01}, \tau_{c}^{10}$
100	1, -2, 2	-, 1.5, -1.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{d}}{ }^{01}$
101	1, -1, -2	-0.5, -2.5	$\tau_{\mathrm{a}} 01, \tau_{\mathrm{c}}^{10}$
102	0, 1, 1	-, 1.5, 0.5	$\tau_{\mathrm{a}}{ }^{01}, \tau_{\mathrm{b}}^{10}$

TABLE IV (Continued)

$\begin{gathered} \mathrm{FV} \\ \text { or } \\ \mathrm{FV} \\ \mathrm{c} \end{gathered}$	Weight Vector w_{1}, w_{2}, w_{3}	$\begin{aligned} & \text { Thresho1d } \\ & \text { Vector } \\ & \mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3} \end{aligned}$	Threshold Angle Vector$\tau_{a}, \tau_{b}, \cdots, \tau_{f}$
103	-1, 2, 2	-, 3.5, 0.5	$\tau_{\mathrm{b}}{ }^{01}, \tau_{\mathrm{e}}{ }^{10}$
104	$-1,{ }^{1},-1$	-0.5, -1.5	$\tau_{b}^{01}, \tau_{\mathrm{c}}^{10}$
105	-1, 1, 1	1.5, 0.5, -0.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{b}}^{01}, \tau_{\mathrm{c}}^{10}$
106	-1, -1, 2	1.5, -0.5	$\tau_{\mathrm{b}}{ }^{10}, \tau_{\mathrm{d}} 01$
107	1, 1, -1	0.5, -0.5	$\tau_{a}^{10}, \tau_{b}^{01}$
108	-1, 2, -1	1.5, -0.5	$\tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}} 01$
109	1, $-1,1$	0.5, -0.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{b}}{ }^{01}$
110	1, 2, 2	3.5, 0.5	$\tau_{\mathrm{a}}{ }^{01}, \tau_{\mathrm{d}}^{10}$
111	2, 1, -1	0.5, -0.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{b}} 01$
112	-2, 1, 1	0.5	$\tau_{c}{ }^{01}$
113	-1, 1, 1	0.5	$\tau_{b}{ }^{01}$
114	-1, 3, -2	0.5, -1.5, -2.5	$\tau_{\mathrm{a}}^{01}, \tau_{\mathrm{b}}^{10}, \tau_{\mathrm{d}}^{01}$
115	-1, 2, 1	0.5	$\tau_{b}{ }^{01}$
116	-1, -2, 3	0.5, -1.5, -2.5	$\tau_{a}^{01}, \tau_{b}^{10}, \tau_{d}^{01}$
117	-1, 1, 2	0.5	$\tau_{b} 01$

TABLE IV (Continued)

FV or FV_{c}	Weight Vector W_{1}, W_{2}, W_{3}	Threshold Vector $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$	Threshold Angle Vector $\tau_{a}, \tau_{b}, \cdots, \tau_{f}$
118	1, 2, 2	3.5, 1.5	$\tau_{a}^{01}, \tau_{d}^{10}$
119	0, 1, 1	0.5	τ_{a}^{01}
120	2, -1, -1	1.5, -0.5	$\tau_{\mathrm{b}}{ }^{10}, \tau_{\mathrm{d}}{ }^{01}$
121	-1, 1, 1	0.5, -0.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{b}} 01$
122	2, 1, 2	3.5, 0.5	$\tau_{\mathrm{a}}{ }^{01}, \tau_{\mathrm{d}}{ }^{10}$
123	-1, 2, 1	0.5, -0.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{b}} 01$
124	2, 2, 1	3.5, 0.5	$\tau_{\mathrm{a}}^{01}, \tau_{\mathrm{d}}^{10}$
125	1, -1, 2	0.5, -0.5	$\tau_{\mathrm{a}}^{10}, \tau_{\mathrm{b}}^{01}$
126	1, 1, 1	-, 2.5, 0.5	$\tau_{a}^{01}, \tau_{c}^{10}$
127	1, 1, 1	0.5	τ_{a}^{01}

TABLE V
SEPARATOR LINKAGE DIMENSIONS

	W	$\begin{gathered} 1 \\ (1,1,0) \end{gathered}$	$\begin{gathered} \text { II } \\ (1,1,1) \end{gathered}$	$\begin{gathered} \text { III } \\ (2,1,1) \end{gathered}$	$\begin{gathered} \text { IV } \\ (2,2,1) \end{gathered}$	$\begin{gathered} V \\ (3,2,1) \end{gathered}$
Coordinates of Fixed Centers	${ }^{\prime} X_{A}$	0.00000	0.00000	0.00000	0.00000	0.00000
	$\mathbf{y}_{\mathbf{x}_{\mathrm{A}}}$	0.00000	0.00000	0.00000	0.00000	0.00000
	${ }^{X_{A}^{\prime}}{ }_{\text {A }}$	0.00000	0.00000	0.00000	0.00000	0.00000
	${ }^{\prime} X_{A}^{\prime}$	1.89976	1.89976	1.89976	1.89976	1.89976
	${ }^{x} X_{B}$	-0.99396	-0.99396	-0.99396	-0.99396	-1.00000
	${ }^{4} X_{B}$	0.89023	0.39023	0.39023	0.39023	0.00000
		-0.99396	-0.99396	-0.99396	-0.99396	-1.00000
	${ }^{X_{X_{B}^{\prime}}^{\prime}}$	2.78999	2.28999	2.28999	2.28999	1.89976
		--	-1.98791	-1.98791	-1.98791	-1.99396
	${ }^{y_{x_{C}}}$	--	1.28045	1.28045	1.28045	0.89023
	${ }^{X_{X}^{\prime}}{ }_{C}$	--	-1.98791	-1.98791	-1.98791	-1.99396
	${ }^{\mathbf{x}_{\mathrm{X}_{\mathrm{C}}^{\prime}}}$	--	3.18022	3.18022	3.18022	2.78999
$\begin{aligned} & \text { n } \\ & \overrightarrow{4} \\ & 00 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\mathrm{X}_{\mathrm{A}} \mathrm{A}^{\text {a }}$	1.00000	1.00000	1.00000	1.00000	1.00000
	$\mathrm{X}_{\mathrm{B}} \mathrm{B}$	1.00000	1.00000	1.00000	1.00000	1.00000
	$\mathrm{X}_{\mathrm{C}} \mathrm{C}$	--	1.00000	1.00000	1.00000	1.00000
	AD	1.00000	1.00000	1.00000	1.00000	1.50000
	DB	--	--	--	--	--
	DE	1.00000	1.00000	1.00000	1.00000	1.00000
	BE	--	0.50000	0.50000	0.50000	1.50000
	BG	--	1.00000	1.00000	1.00000	1.00000
	CG	--	1.00000	1.00000	1.00000	1.00000
	AF	0.50000	0.66667	0.50000	1.33333	0.75000
	$\Delta \theta$	36.43273	36.43273	36.43273	36.43273	36.43273
	$\theta_{\text {"10" }}$	108.21630	108.21630	108.21630	108.21630	108.21630
	${ }^{\text {¢ }}$ " 1 "	71.78363	71.78363	71.78363	71.78363	71.78363

Figure 33. (Continued)

THRESHOLD LINKAGE DIMENSION

		$\begin{gathered} 1 \\ \left(1,1,0_{i} \tau_{a}, \tau_{b}\right) \end{gathered}$	$\begin{gathered} \text { II } \\ \left(1,1,1 ; \tau_{a}, \tau_{b}, \tau_{c}\right) \end{gathered}$	$\frac{\text { III }}{\left(2,1,1 ; \tau_{a} ; \tau_{b}\right)}$	$\frac{\mathrm{IV}}{\left(2,1,1 ; \mathrm{a}^{\prime} \tau_{c}\right)}$	$\frac{v}{\left(2,1,1 ; \tau_{b}, \tau_{d}\right)}$	$\frac{\text { VI }}{\left(2,1,1 ; \tau_{c^{\prime}} \tau_{d}\right)}$	$\overline{V I I}_{\left(2,2,1 ; \tau_{\left.\mathrm{R}^{\prime}, \tau_{d}\right)}\right.}$	$\frac{\text { viII }}{\left(2,2,1 ; \tau_{b}, \tau_{e}\right)}$	$\underset{\left(3,2,1 ; \tau_{\mathrm{a}}, \tau_{\mathrm{b}}, \tau_{\mathrm{d}}\right)}{\text { (}}$
	$\begin{aligned} & x_{\mathrm{K}} \\ & \mathrm{y}_{\mathrm{K}} \\ & \mathrm{x}_{\mathrm{z}} \\ & \mathrm{y}_{\mathrm{Z}} \\ & \mathrm{x}_{\mathrm{z}} \\ & \mathrm{y}_{\mathrm{z}} \end{aligned}$	0. 28252 2. 01024 1.16194 1. 67778 1. 16194 2. 34270	0.21289 1.9282B 1. 09230 1. 59582 1.09230 2. 26074°	0.22534 0.87133 1. 33475 0. 53887 1. 33475 1. 20379	0. 12861 1.85347 1. 23902 1.52101 1. 23902 2.18593	-0.12960 1.85347 0.97981 1. 52101 0.97981 2. 18593	-0.22534 0.87133 0.88407 0.53887 0.88407 1.20379	0.54560 2. 98600 1.75501 2.65354 1.75501 3.31846	-0.63185 2.92247 0.47756 2. 50001 0.47756 3. 25493	0.12603 1. 17928 1. 23544 0.84682 1. 23544 1.51174
		0.40000 0. 57000 0.71000 0.35000	0.33900 0,37700 0.77000 0.35000	0.50200 0. 39900 1.00000 0.35000	0.50200 0.35800 1.00000 0.35000	0. 50200 Q. 35800 1.00000 0.35000	0. 50200 0. 38900 1. 00000 0. 35000	1.00000 0.64700 1. 00000 0.35000	1.00000 0. 62500 1.00000 0.35000	0.45300 0.39800 1. 00000 0.35000
	$\underset{(\max)}{\mathrm{R}_{\mathrm{r}}}$	0.10000	0.10000	0.10000	0.10000	0.10000	0. 10000	0.10000	0.10000	0.10000
	$\begin{aligned} & \theta_{11(0)} \\ & \sigma_{1} \\ & \delta_{2} \\ & \delta_{3} \\ & b_{4} \\ & \delta_{5} \\ & \delta_{6} \\ & \delta_{7} \end{aligned}$	249.89700 30.43504 30.43542 64. 58416	240.28790 31.88648 31.88600 31.53956 61.83807 65,85151 G5. 85198 104.47160	101.30510 23.82632 23.82681 50.81484 50.81484 64.85433 64.85453 77. 81855	279.20522 23.84822 23. 34860 42.24343 42.24343 72. 30055 72. 30088 91.97027	168.82400 18. 21710. 18. 21750 49. 72710 49. 72710 66.86780 66.86820 91. 97036	156.51320 12. 25926 12.25949 27. 00482 27.00488 52.67398 52.67436 77, 81852	247.32250 26. 23706 43. 08242 43.08352 62.09396 62.08454 85. 99259 86. 42655	199.16370 0.02318 24.37606 24. 37705 44.60435 44.60517 64.75100 89. 87910	118.18610 27. 81996 53. 57556 74. 17320 74. 34611 106.53520 101.85770 109. 23120
	$\begin{aligned} & \tau_{\mathrm{a}} \\ & \tau_{\mathrm{b}} \\ & \tau_{\mathrm{c}} \\ & \tau_{\mathrm{d}} \\ & \tau_{\mathrm{e}} \\ & \tau_{\mathrm{f}} \end{aligned}$	δ_{1} 30.43504 $\delta_{3}{ }^{-\delta_{2}}$ 34.14874 \ldots -- \ldots	δ_{3} 31.53956 $\delta_{4}-\delta_{1}$ 29.95159 $\delta_{7}-\delta_{6}$ 38.61962 \ldots	δ_{1} $\left.\begin{array}{c}23.82632 \\ \delta_{3}-\delta_{2} \\ 26.98803 \\ \\ \\ \\ \\ \\ \\ \\ \cdots\end{array}\right]$ -	δ_{1} 23.84822 $\delta_{5}-\delta_{4}$ \cdots 30.05712 - \ldots	-- $\delta_{3}-\delta_{2}$ 31.50960 $\delta_{7}-\delta_{6}$ -- 25.10216 - \cdots		δ_{1} 26.23706 -- $\delta_{6}-\delta_{5}$ 23.90805 -- -	- $\delta_{2}-\delta_{1}$ 24.35288 \cdots $\delta_{7}-\delta_{6}$ \cdots 25.12811 \cdots	δ_{1} 27.81996 $\delta_{2}-\sigma_{1}$ 25.75560 \cdots $\delta_{5}+{ }_{5}+24$ 24.00000 δ_{5} \cdots \cdots
		36.43273 108.21630 71.78363	36.43273 108.21630 71.78363	36.43273 108.21630 71.78363	36.43273 108. 21630 71.78363	36.43273 108. 21630 71.783 к3	$\begin{array}{r} 36.43273 \\ 108.21630 \end{array}$ $71.78 .363$	36.43273 108.21650 71.78363	36. 43273 108.21630 71.78363	36. 43273 108. 21630 71.78363

Figure 34. Threshold Linkages

Figure 34. (Continued)

Figure 34. (Gontinued)

Figure 34. (Continued)

3.8 Examples of Synthesis Using Design Charts

In this section two examples are presented to illustrate the use of the design charts of section 3.7. In each example the simplified Boolean equation is given. The procedural steps given with the design charts are followed by number and the resulting threshold logic generators are shown in Figures 35 and 36 of sections 3.8 .1 and 3.8.2.
3.8.1 Example 1

The simplified Boolean equation of the function to be generated is

$$
z=\bar{x}_{2} \bar{x}_{3} \dot{+} x_{1} \bar{x}_{2} \dot{+} x_{2} x_{3}
$$

The use of the design charts is as follows:
Chart I (Steps)

1. The function is expanded to canonical form as follows:

$$
\begin{aligned}
z & =\left(\bar{x}_{1} \dot{+} x_{1}\right) \bar{x}_{2} \bar{x}_{3} \dot{+} x_{1} \bar{x}_{2}\left(\bar{x}_{3} \dot{+} x_{3}\right) \dot{+}\left(\bar{x}_{1} \dot{+} x_{1}\right) x_{2} x_{3} \\
& =\bar{x}_{1} \bar{x}_{2} \bar{x}_{3} \dot{+} x_{1} \bar{x}_{2} \bar{x}_{3} \dot{+} x_{1} \bar{x}_{2} x_{3} \dot{+} \bar{x}_{1} x_{2} x_{3} \dot{+} x_{1} x_{2} x_{3}
\end{aligned}
$$

2. The term values are found from the table as

$$
\begin{aligned}
& \mathrm{TV}_{\mathrm{i}}=1 ; \quad \mathrm{i}=0,3,4,5,7 \\
& \mathrm{TV}_{\mathrm{i}}=0 ; \quad \mathrm{i}=1,2,6
\end{aligned}
$$

3. The function value is calculated as

$$
\begin{aligned}
F V & =\frac{128}{2^{0}}+\frac{128}{2^{3}}+\frac{128}{2^{4}}+\frac{128}{2^{5}}+\frac{128}{2^{7}} \\
& =128+16+8+4+1 \\
& =157
\end{aligned}
$$

4. Since $\mathrm{FV}>127, \mathrm{FV}_{\mathrm{c}}$ is found as

$$
\begin{aligned}
\mathrm{FV}_{\mathrm{c}} & =255-157 \\
& =98
\end{aligned}
$$

Now, using $F V_{c}, \bar{W} ; \bar{\tau}$ is found from Table IV as

$$
\overline{\mathrm{W}} ; \bar{\tau}=\left(1,2,-2 ; \tau_{\mathrm{a}}^{10}, \tau_{\mathrm{d}}^{01}\right)
$$

Chart II (Steps)

1. The linkage of Figure $33(\mathrm{~d})$ is selected (see Figure 35).
2. The fixed centers $X_{A}^{\prime}, X_{B}^{\prime}$ and X_{C} are selected. The input variables are assigned as: x_{1} to $X_{A}^{\prime} A, x_{2}$ to $X_{C} C$ and X_{3} to $X_{B}^{\prime} B$. (The centers X_{A}^{\prime}, X_{B} and X_{C}^{\prime} could be used equally well.)
3. The linkage dimensions are determined from Table V, column IV but are not repeated here.

Chart III (Steps)

1. The linkage of Figure $34(\mathrm{~g})$ is selected (see Figure 35).
2. Since $F V>127$ and the superscript on τ_{a}^{10} is 10 , the fixed center Z is used.
3. The linkage dimensions are determined from Table VI, column VII but are not repeated here.
4. A rise is placed in the threshold angle τ_{a} and a return in τ_{d}.
5. The remainder of the cam has dwe 11 surfaces as shown in

Figure 35.

The threshold generator of Figure 35 can now be compared with a system of conventional elements needed to generate the same function. Since the function in simplified form is

$$
z=\bar{x}_{2} \bar{x}_{3} \dot{+} x_{1} \bar{x}_{2} \dot{+} x_{2} x_{3}
$$

the conventional system will include one NOR generator, one AND-NOT generator and one AND generator, each with two inputs, and one OR generator with three inputs. If conventional logic generators of Chapter II

are used to implement the system, it is seen that the linkage will be considerably more complex than the threshold generator of Figure 35.

3.8.2 Example 2

In digital systems, adders and subtractors are basic arithmetic units. In this example the threshold generators which act as an adder are selected from the design charts. There are three inputs to an adder. They are the augend $\left(x_{1}\right)$, the addend $\left(x_{2}\right)$, and the input carry $\left(x_{3}\right)$. There are two outputs from the adder which are the sum (z_{1}) and the output carry (z_{2}).

The sum of the three inputs is "1" if one of the inputs is "1" or if all three inputs are " 1 ". Hence the equation for z_{1} is

$$
z_{1}=\bar{x}_{1} \bar{x}_{2} x_{3}+\bar{x}_{1} x_{2} \bar{x}_{3}+x_{1} \bar{x}_{2} \bar{x}_{3}+x_{1} x_{2} x_{3}
$$

The output carry is "1" if two of the inputs are "l" or if all three inputs are "1". The output carry is given in simplified form as

$$
z_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}
$$

The use of the charts to select the linkage for the sum z_{1} is as follows. The steps for finding the linkage for the output carry will not be given, but the linkage will be described.

Chart I (Steps)

1. The function z_{1} is in canonical form as given.
2. The term values are found from the table as

$$
\begin{array}{ll}
\mathrm{TV} & =1 ; \\
\mathrm{TV} & \mathbf{i}=1,2,4,7 \\
\mathrm{TV} & =0 ; \\
i=0,3,5,6
\end{array}
$$

3. The function value is calculated as

$$
\begin{aligned}
\mathrm{FV} & =\frac{128}{2^{1}}+\frac{128}{2^{2}}+\frac{128}{2^{4}}+\frac{128}{2^{7}} \\
& =64+32+8+1 \\
& =105
\end{aligned}
$$

4. From step 3, FV <127; therefore, $\overline{\mathrm{W}} ; \bar{\tau}$ is found from Table IV as

$$
\overline{\mathrm{W}} ; \bar{\tau}=\left(-1,1,1 ; \tau_{\mathrm{a}}^{10}, \tau_{\mathrm{b}}^{01}, \tau_{\mathrm{c}}^{10}\right)
$$

Chart II (STteps)

1. The linkage of Figure 33 (b) is selected (see Figure 36).
2. The fixed centers $X_{A}{ }^{\prime}, X_{B}$ and X_{C} are selected. The input variables are assigned as: x_{1} to $X_{A}^{\prime} A, x_{2}$ to $X_{B} B$ and x_{3} to $X_{C} C$. (Other selections could be used equally we11.)
3. The linkage dimensions are determined from Table V, column II but are not repeated here.

Chart III (Steps)

1. The threshold 1inkage of Figure 34 (b) is selected (see Figure 36).
2. Since $\mathrm{FV}<127$ and the superscript on $\tau_{a}{ }^{10}$ is 10 , the fixed center Z^{\prime} is used.
3. The dimensions are determined from Table VI, column II but are not repeated here.
4. A rise is placed in the threshold angle τ_{a}, a return in τ_{b} and a rise in τ_{c}.
5. The remainder of the cam has dwell surfaces as shown in Figure 36.

Figure 36 shows the linkage which generates the $\operatorname{sum}\left(z_{1}\right)$ of a binary adder. The linkage needed for the output carry $\left(z_{2}\right)$ is the same as that of Figure 36 except that the input fixed centers are X_{A}, X_{B} and

Figure 36. Summing Linkage of a Binary Adder
X_{C}, the output center is Z and there is a single threshold in the angle τ_{b}. The separation angles τ_{a} and τ_{c} have dwell surfaces.

A comparison of the linkage of Figure 36 with a system of conventional logic generators reveals the real "logic power" of the threshold generators. Since the Boolean function

$$
z_{1}=\bar{x}_{1} \bar{x}_{2} x_{3} \dot{+} \bar{x}_{1} x_{2} \bar{x}_{3} \dot{+} x_{1} \bar{x}_{2} \bar{x}_{3} \dot{+} x_{1} x_{2} x_{3}
$$

is in simplified form, it is seen that three AND-NOT generators and one AND generator, all with three inputs, and one OR generator, with four inputs, are needed to generate the function. By observing the linkages of Chapter II needed to generate this function, it should be clear that the conventional logic system would require far more links than the threshold generator of Figure 36 .

CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

The objective of this research has been to develop mechanical linkage systems to implement binary logic. The binary logic has been treated in two basic forms: conventional logic and threshold logic.

In the realm of conventional logic, simple four-link mechanisms have been combined in systems or assemblies to generate the basic logic functions OR, AND, NOT, NOR, NAND and MEMORY. Slightly more complex mechanisms have been used to generate the COINCIDENCE and OR-EXCLUSIVE functions. The proof of twenty-three theorems of Boolean algebra has been established with illustrative mechanical systems.

The systems of linkages which generate the binary logic have been shown to be passive because energy can enter and leave only at the inputs and outputs. To design active logic systems, a bistable mechanical amplifier has been developed. The active systems are composed of a linkage which generates the binary logic and one of the mechanical amplifiers.

The application of existing methods of logic circuit synthesis to mechanical logic circuits has been illustrated. A practical problem of a sorting mechanism which involves combinational logic has been solved using a passive mechanical circuit. A shaft speed control problem involving sequential logic has been solved with an active mechanical
circuit. A physical model of the speed control circuit was constructed. The model served to confirm that the logic synthesis was correct. It also confirmed that the function generators and amplifiers operate as proposed.

In conclusion regarding conventional logic systems, it should be noted that the mechanical logic function generators developed can be used to implement any control circuit that can be expressed in Boolean equation form.

In the area of threshold logic, linkages have been synthesized to generate the 256 functions of three binary variables. The linkages, called threshold logic generators, are made up of two component linkages. One component is a "separator linkage" and the other is a "threshold linkage".

The selection of these components was suggested by the nature of the Multi-Threshold Weight Threshold Vector ($\overline{\mathrm{W}} ; \overline{\mathrm{T}}$) itself. The weight part of the vector (\bar{W}) suggested a linear summing device, and the separator linkage served in this capacity. The threshold part of the vector (\bar{T}) suggested a device to control the "on" and "off" of the output at certain position of the summing device, and the threshold linkage served in this capacity.

The study shows how all 256 functions can be generated through the use of five basic separator linkages and nineteen basic separator link. ages.

The separator linkages have been synthesized from an eight-link three-degree-of-freedom kinematic chain and from the five-link two-degree-of-freedom kinematic chain. Structural synthesis was applied to enumerate all of the eight-link three-degree-of-freedom and the five-
link two-degree-of-freedom kinematic chains. Then, to these chains, performance criteria were applied to select favorable linkages for the separators. The linkages selected were arranged so that their dimensional synthesis as a linear summing device was done with a linear approximation.

Cam linkages have been used for the threshold linkages. A cam linkage with an oscillating roller follower output was selected. The input to the threshold linkage was required to follow a path. From many six-1ink cam linkages enumerated by Hain [35], the two which satisfied these input-output requirements were considered; one linkage was derived from the Watt's chain and the other from the Stephenson's chain. Performance criteria were applied in selecting the linkage derived from the Watt's chain. With the cam linkage selected, simple rise, dwell and return programs have provided for maintaining the output link precisely in its "O" or "1" positions at all times except when a change in the output state was required.

In the study it has been noted that the cams used with the threshold linkages provide an easy way to obtain the required dwells of the output link. A threshold linkage using only revolute pairs could undoubtedly be synthesized with satisfactory dwells of the output link; however, it is expected that the number of links would have to be increased.

The separator and threshold linkages have been synthesized dimensionally. A combination of graphical and analytical techniques have been used. Favorable link length ratios and cam pressure angles have been maintained throughout the synthesis. A graphical technique was
devised to show that all transmission angles in the synthesis have been maintained at 45° or larger.

Design charts with linkage dimensions have been included in section 3.7. The design charts make possible the direct selection of the separator linkage and the threshold linkage which combine to generate any one of the 256 functions of three variables. In making the selection from the charts, no knowledge is needed of Boolean logic or of the theories of linkage synthesis.

Two example problems showing the use of threshold generators have been presented. One example selects the generator whose output gives the binary sum of three binary variables. The two examples serve as a good conclusion to threshold logic, since both illustrate the great "logical power" of threshold logic generators.

4.2 Recommendations

To further develop the application of mechanical linkages to logical control systems, it is recommended that research be conducted in the following areas:

1. Systematic application of mechanical 1inkages to the synthesis of proportional and hybrid (binary and proportional mixed) control systems. This study treated the systematic application of linkages to binary logic only. Electronic, fluidic and fluid power elements have been used systematically in both proportional and hybrid systems. The use of mechanical counterparts should also be considered. Mechanical devices will have to be designed to perform such functions as comparitor, digitizer and rectifier.
2. Development of other types of mechanical amplifiers. Mechanical clutches are in reality power amplifiers. Many types of clutches exist and some of them probably can be altered to form bistable amplifiers, hopefully to form amplifiers with advantages over the amplifier developed in the present study.
3. Study of the dynamics of the mechanical systems. Time response, "fan-in" and "fan-out" of the logic generators are important with regard to the applicability of the elements to particular problems. ("Fan-in" is the maximum number of input connections which can be made to a logic generator without causing it to malfunction. "Fan-out" is the maximum number of elements which can be connected in paralle1 to the output of a similar element and still be switched when the output of the first element changes.)
4. Application of the threshold generator linkage to functions of more than three variables. As the number of variable increases, the number of possible thresholds increases. Also, the horizontal separation (speaking in terms of the component method of this study) of the output point decreases on a separator linkage of given size. These two conditions are expected to make it more difficult to synthesize the four variable function generators than the three variable generators of the present study.
5. Use of alternate linkages and methods of synthesis for the threshold logic generators. The synthesis of threshold linkages using revolute pairs only and computerized optimization techniques should be investigated. In order to provide satisfactory dwells of the output link in its "0" and " 1 " positions at all times except when a change in
the output state is required, the linkage is expected to need more than the six links needed for the cam linkage of this study.

The synthesis of the separator linkages by some direct computer optimization technique, instead of the linear approximation method used in this study, should also be considered. Linkages with improved transmission characteristics and link length ratios can undoubtedly be synthesized.

Another alternative is to use basically the same linkage shown in Figure 24, but to include the $100 p X_{A} A F J K X A$ as part of the separator. The cam and the output follower HY will then become the only elements of the threshold linkage. The use of linear approximations can be elimi= nated and computerized synthesis can be used to directly maximize the threshold angles, minimize the cam rotation angles where thresholds do not exist and maximize the minimum transmission angles. It seems that this synthesis proposition can provide an excellent function generator; however, the optimization program will be quite complex.
6. Consideration of a direct synthesis method. Instead of using the two components of a threshold generator, a single linkage with revolute pairs should be considered. Such a linkage will have as many degrees of freedom as the number of inputs of the function to be generated.

Analytical optimization methods can be used and the synthesis equations can be written directly from the truth table of the function.

As with the other revolute pair linkages, difficulty is anticipated in keeping the output link immobile during all input state changes that do not require an output change. To strictly satisfy this condition, it is expected that the number of links needed will be greater than the
theoretical minimum. Also to satisfy this condition, it is expected that design equations will be needed for intermediate positions (positions other than the "O" and "1" positions) of the input links. These intermediate position considerations will signify a considerable increase in the number of design equations to be written.
7. Study of the possibility of miniturization of the logic func. tion generators. For many applications it is desirable to have function generators as small as possible. However, as linkages are made very small, precision and tolerances become significant factors and the linkw ages become expensive or even impossible to manufacture. The extent to which the generators can be economically miniturized, thus, has a bearing on the general usability of the function generators.
(1) Shannon, C. E. "A Symbolic Analysis of Relay and Switching Circuits." Trans. AIEE, Vol. 57 (1938), 713-723.
(2) Huffman, D. A. "The Synthesis of Sequential Switching Circuits." Journal of the Franklin Institute, Vol. 257, No. 3 (1954), 161-190 and Vol. 257, No. 4 (1954), 275-303.
(3) Fitch, E. C. Fluid Logic. (Unpub. manuscript, Stillwater, Okla\& School of Mechanical and Aerospace Engineering, 1966.)
(4) Foster, K., and Go A. Parker. Fluidics: Components and Gircuits. New York: Wiley-Interscience, 1970.
(5) Cole, J. H. "Synthesis of Optimum Complex Fluid Logic Sequential Circuits." (Unpub. Ph. D. dissertation, Stillwater: Oklahoma State University, 1968.)
(6) Maroney, G. E. "A Synthesis Technique for Asynchronous Digital Control Networks." (Unpub. Mo S. thesis, Oklahoma State University, 1969.)
(7) Woods, R. L. "The State Matrix Method for the Synthesis of Digital Logic Systems." (Unpub. M. S. thesis, Oklahoma State Univer= sity, 1970.)
(8) Beizer, B., and S. W. Leibholz. "Analyzing Combinational Circuits by Boolean Matrices and Karnaugh Maps." Electrical Manufacturing, Vol. 62, No. 1 (July, 1958), 100-109.
(9) Bennett, W. S. "Binary Logic." Product Engineering, Vol. 33, No. 1 (Jan. 8, 1962), 79-83 and Vol. 34, No. 21 (Oct. 14, 1963), 95-104.
(10) Brandt, D. A. "Mechanical Binary Logic Function Generators, Vol. 1 and 2." (Unpub. Ph. D. dissertation, Purdue University, August, 1963.)
(11) Szekely, I., T. Muresan, and M. Lelutiu. "Mecanismes a Commande Logique Avec des Elements Rigides et Elastiques." Rev. Roum. Sci. Techn. - Mec Appl. Vol. 10, No. 4 (1965), 1059-1069.
(12) Szekely, I., and T. Muresan. "Les Regimes de Fonctionnement des Mecanismes a Elements Rigides Multipositionnels." Rev. Roum Sci. Techn. - Mec. App1. Vol. 11, No. 3 (1966), 797-805.
(13) McNaughton, R. "Unate Truth Functions." IRE Trans. Electron. Computers, EC-10, March 1961, pp. 1-6, and previously available as TEchnical Report No. 4, Applied Mathematics and Statistics Laboratory, Stanford University, October, 1957.
(14) Lewis, P. Mo, and C. L. Coates. Threshold Logic. New York: John Wiley and Sons, 1967.
(15) Dertouzos, M. L. Threshold Logic: A Synthesis Approach. Cambridge, Mass: The MoIo T. Press, 1965.
(16) Sheng, C.L. Threshold Logic. Toronto: The Ryerson Press; New York: The Academic Press, 1969.
(17) Winder, R. O. "Threshold Logic." (Unpub. Ph. D. dissertation, Princeton University, 1962.)
(18) Haring, D. R. "Multi-Threshold Threshold Elements." IEEE Trans. Electron. Computers, Vol. EC - 15, No. 1 (Feb. 1966), 45-65.
(19) Mow, C. W. and K.S. Fu. "An Approach for the Realization of Multithreshold Threshold Elements." IEEE Trans. Electron. Gomputers, Vol. C - 17, No. 1 (Jan. 1968), $32-46$.
(20) Haring D. R. and R. J. Diephuis. "A Realization Procedure for Multithreshold Threshold Elements." IEEE Trans. Electron. Computers, Vo1. EC - 16, No. 6 (Dec. 1967), 828-835.
(21) Haring, D. R. "Multi-Threshold Building Blocks." IEEE Trans. Electron. Computers, Vo1. EC - " ", No. 4 (August 1966), 662~663.
(22) Haring D. R. And D. Ohori. "A Tabular Method for the Synthesis of Multi-threshold Threshold Elements." IEEE Trans. Electron. Computers, Vo1. EC - 16, No. 2 (April 1967), 216-220.
(23) Menger, K. S. "A Modulo Two Adder for Three Inputs Using a Single Tunnel Diode." IRE Trans. Electron. Computers, Vol. EC-10 (Sept. 1961), 530-531.
(24) Amodei, J. J. and W. F. Kosonocky. "High-speed Logic Circuits Using Common-base Transistors and Tunnel Diodes." RCA Review, Vo1. 22 (Dec. 1961), 669-684.
(25) Amodei, J. J. "High-speed Adders and Comparators Using Transistors and Tunnel Diodes." IEEE Trans. Electron. Computers, Vol. EC - 13 (Oct. 1964), 563-575.
(26) Renton, C. A., and B. Rabinovici. "Tunnel-diode Full Binary Adder. IRE Trans. Electron. Computers, Vol. EC - 11 (April 1962), 213-217.
(27) Horton, J. W., and A. G. Anderson. "A Full Binary Adder Employing Two Negative Resistance Diodes." IBM J. Res. and Dev., Vol. 2 (July 1958), 223-231.
(28) Rabinovice, B., and C. A. Renton. "A Transistor Flip-flop Full Binary Adder. IRE Trans. Electron. Computers, Vol. EC - 11 (Dec. 1962), 789-791.
(29) Miro, J., H. Apple, and D. Vlack. "A Nonlinearly Separable Logic Circuit." Proc. IEEE, Vol. 52 (Sept. 1964), 1081-1082.
(30) Eckerlin, H. M. and N. R. Bell. "Fluidic Realization of Threshold Logic." ASME Publication, 68 - WA/FE - 28, pp. 1-9.
(31) Chironis, N. P. 'Whiffletree Linkage Whisks a Load to a New Position." Product Engineering, Vol. 38, No. 14 (July 3, 1967), 58-60.
(32) Haas, S. L. and F. R. E. Crossley. "Structural Synthesis of a Four-Bit Binary Adding Mechanism." Trans, of the ASME, Journal of Engineering for Industry, Vol. 91, No. 1 (Feb. 1969), 240-250.
(33) Manning, J. R. "Fluidic Control Devices and Systems. ASME Publication, 70 - Flcs - 15, (1970), 4.
(34) Davies, T. H., and F. E. Crossley. "Structural Analysis of Plane Linkages by Franke's Condensed Notation." Journal of Mechanisms, Vol. 1 (1966), 171-183.
(35) Hain, K. "The Production of Large Oscillating Angles by Cam-Linkage Mechanisms." Proceedings - International Conference on Mechanisms (Yale University, March 27-30, 196I), 63-90.
(36) Jensen, P. W. Cam Design and Manufacture. New York: The Industrial Press, 1965.

APPENDIX A

EXAMPLE OF LOGIC CIRCUIT SYNTHESIS

This appendix presents three steps of the logic circuit synthesis for the example of the soap box sorter. The steps presented here are the three which are not dependent upon the fact that the control circuit is synthesized from linkage elements.

The three steps are:

1. Write a description of the output requirements and the input
conditions. (Such a description must be logically meaningful, unambiguous, and non-contradictory.)

In the direction of movement on the conveyor the boxes have a possibility of two lengths a_{1} and a_{2}, where a_{1} is less than a_{2}. The cross-section (section perpendicular to the conveyor) has a possibility of two dimensions (b and c) for height and width. The dimension b is less than c. These cross-sections can be squares ($b x b$ or $c x c$) or they can be rectangles ($b \mathrm{x} c$ or $\mathrm{c} x \mathrm{~b}$). The boxes are to sorted if:
a) They have the length a_{2}, or
b) They have a rectangular cross-section (b x cor $c x b$).

All other boxes are to be retained on the main conveyor.
The cam actuated input variables A, B, C, and D are arranged to function in the following manner: .
a) Variable A detects the height and is normally in the "off" position. It is "on" only when a box of height c is passing.
b) Variable B detects the width and is normally "off". It is "on" only when a box of width c is passing.
c) Variables C and D detect the length, and they are normally "off". At any time a box is passing one of the variables, the variable is in the "on" position. The cam followers, which provide the two variables, are separated along the conveyor by a distance greater than a_{1} but less than a_{2}. Thus, if a box of length a_{1} passes, C and D are not "on" at the same time. If a box of length a_{2} passes, both C and D are "on".
d) The cam followers are placed so the boxes reach the variables in the sequence C, A, B, and D (see Figure 13). The distance between the cam followers A and D is also less than a_{1}.
e) The boxes are spaced on the conveyor so that no two boxes can be passing the input signals at the same time.
2. Devise a method to correctly assign the state of the output variable for every possible combination of the input states.

To fulfill this requirement a truth table and a flow chart are used as shown in Table VII and Figure 37. The truth table is prepared by writing the 2^{4}, or 16 , possible combinations of the input states. Each combination appears as a "row". The values of Z describing the output state are assigned by using the flow chart of Figure 37.

The flow chart shows the sequence of the input states caused by each distinct box that passes the stations C, A, B, and D. It is used to determine which input state combinations cause the output variable Z to be "on". The chart is constructed as follows:

TABLE VII
TRUTH TABLE OF CONTROL GIRCUIT FOR SORTER MEGHANISM

	Inputs				Output
Row	A	B	C	D	Z
1	0	0	0	0	0
2	0	0	0	1	0
3	0	0	1	1	1
4	0	0	1	0	0
5	0	1	1	0	1
6	0	1	1	1	-
7	0	1	0	1	0
8	0	1	0	0	-
9	1	1	0	0	0
10	1	1	0	1	0
11	1	1	1	1	1
12	1	1	1	. 0	0
13	1	0	1	0	0
14	1	0	1	1	-
15	1	0	0	1	1
16	1	0	0	0	-

Figure 37. Flow Chart of Truth Table Rows for Consecutive Positions of Boxes
a) Each distinct "position" of the boxes along the conveyor with respect to the input variables A, B, C, and D is represented at the left. Each solid rectangle represents a position of a box of length a_{1}, and each solid plus dashed rectangle represents a position of a box of length a_{2}. There are 10 such positions, but it is noted that for a box of length a ${ }_{1}$ positions 9 and 10 are not distinct. Likewise for a box of length a_{2}, positions 4 and 5 are not distinct.
b) A "column" is prepared for each distinct box that passes. The different combinations of length, height, and width account for eight distinct boxes. In each column, for each position, a "block" is drawn. Then in each block is placed the number of the truth table row representing the corresponding input state combination. For instance, when a box of length a_{1}, height b, and width c is in position 4 , the input states are $A=0, B=1$, $C=1$, and $D=0$. This combination is given in row 5 of Table VII, so the number 5 is placed in the block of position 4 and column 2.

By reading a column from top to bottom the input state sequence caused by the passing of a particular box is known. The sequence caused by a box of column 2 is given by the rows 1,4 , $4,5,8,7,7,2$ and 1 in the truth table. Of course, if the box is sorted at some intermediate position the sequence is broken and the inputs return to "off".
c) Only the boxes of columns 1 and 4 are retained on the main conveyor since all other boxes are of length a_{2} or have a rectangular cross-section (b x c or $\mathrm{c} \times \mathrm{b}$). To retain the
boxes, the output state is "off" in all truth table rows found in these two columns. The rows are $1,4,2,13,12,9,10$, and 7. Wherever these row numbers appear in the flow chart, a diagonal line is drawn through the block to make it clear that Z cannot be "on" in that position.
d) In each of the six columns 2, 3, 5, 6, 7, and 8 sorting occurs. Thus Z must be "on" in at least one row represented in these columns. In columns 5 and 8 it is seen that Z must be "on" in rows 3 and 11. However, columns 2, 3, 6, and 7 must be further examined. If Z in "on" in rows 5 and 15, all sorting requirements are met, and the output Z corresponding to rows $8,16,6$, and 14 has "don't care" situations. This means that Z can be either "off" or "on" for the rows 8, 16, 6, and 14. The "don't care" situation is represented using a dash (-) in the truth table.
3. Write a simplified Boolean equation for each output variable.

The output equation is formed by including a term for every truth table row where the output Z in "on." Where a "don't care" condition appears, a term may or may not be written. The result in this case can be shown to be as simple as possible by including terms for the rows 6 and 14. Hence from the truth table (Table VII)

$$
\begin{equation*}
\mathrm{Z}=\overline{\mathrm{A}} \overline{\mathrm{~B}} \mathrm{CD} \dot{+} \overline{\mathrm{A}} \mathrm{BCD} \dot{+} \overline{\mathrm{A}} \mathrm{BCD} \dot{+} \mathrm{ABCD} \dot{+} \overline{\mathrm{B} C D}+\mathrm{A} \overline{\mathrm{~B}} \overline{\mathrm{C}} \mathrm{D} \tag{A.1}
\end{equation*}
$$

This equation is simplified by using the theorems of Figure 12 as follows:

See theorem(s)

$$
\begin{align*}
Z & =(\bar{A} \bar{B} \dot{A} B+A B+A \bar{B}) C D \dot{A} B C \bar{D}+A \bar{B} \bar{C} D \tag{14,21}\\
& =[\bar{A}(\bar{B} \dot{+}) \dot{+}(B+\bar{B})] C D \dot{+} \bar{A} C \bar{D} \dot{+} \bar{B} \bar{C} D \tag{21}
\end{align*}
$$

$$
\begin{align*}
& =(\vec{A} \dot{+} A) C D \dot{+} \bar{A} B C \bar{D} \dot{+} A \bar{B} \bar{C} D \quad \text { (7; 4). } \\
& =C D \dot{+} \bar{A} B C D \overline{+} \dot{A B} \bar{C} D \quad(7,4) \\
& =C(D+\bar{D} \bar{A} B) \dot{A} \bar{B} \bar{C} D \quad(15,21) \\
& =C(D \dot{+} \bar{A} B) \dot{+} A \bar{B} \bar{C} D \\
& =C D \dot{+} A \bar{B} \bar{C} D+C \bar{A} B \quad(21,14) \\
& =D(C \dot{+} \bar{C} \bar{B}) \dot{+} C \bar{A} B \quad(15,21) \\
& =D(C \dot{+A} \bar{B}) \dot{+C A} B \tag{17}
\end{align*}
$$

and finally

$$
\begin{equation*}
z=C D \dot{+} A \bar{B} D \dot{+} \bar{A} B C \tag{21,15}
\end{equation*}
$$

It should be noted that other methods, such as the use of Karnaugh Maps, may be employed to simplify the logic equation.

APPENDIX B

EXAMPLE OF ACTIVE LOGIC CIRCUIT SYNTHESIS

This appendix presents three steps of the logic circuit synthesis for the example of the rotating shaft speed controller. The steps presented here are the three which are not dependent upon the fact that the control circuit is synthesized from linkage elements.

The second part of this appendix presents the reason for the need of a passive AND-NOT generator in the control circuit of Figure 19.
B. 1 Three Synthesis Steps

The three steps of synthesis are:

1. Write a description of the output requirements and the input conditions.

There are three possible combinations of the output signals Z_{1} and Z_{2}. They are $Z_{1} Z_{2}=00$ (both the motor and supercharger are off), 10 (the motor is on and the supercharger is off) and 11 (both the motor and the supercharger are on). The combination of 01 never exists since the supercharger cannot be on unless the motor is on.

Since the motor and supercharger can only be "off" or "on" (there are no intermediate settings) the torque provided is never exactly right to maintain a constant speed. For this reason the system is constantly going through speed cycles. The desired speed cycle is as follows:

1) The output variables are $Z_{1} Z_{2}=10$ while the speed increases and the input variables sequence through $x_{1} x_{2}=00 ; 10$, and 11 .
2) The output variables are at $Z_{1} Z_{2}=00$ while the speed decreases and the input variables sequence through $\mathrm{x}_{1} \mathrm{x}_{2}=11,10,00$. At any time the input variables deviate from the desired cycle the additional torque of the supercharger is needed to restore the system to the desired cycle.
2. Devise a method to correctly assign the state of the output variables for every possible combination of the input states.

Because of the cycling involved with the input states, a primitive flow table provides a valuable method for depicting all possible input state combinations and their sequences. It also shows the associated output states. The primitive flow table is shown in Table VIII.

In Table VIII the circled numbers represent "stable states." The stable states indicate combinations of the input variables and the corresponding output states at which the system will operate indefinately if no changes are made to the input variables. It is convenient to interpret the table by starting at stable state 1 and following the possible speed cycles. The circled 1 indicates that the input combination of $\mathrm{x}_{1} \mathrm{x}_{2}=00$ and the output combination of $\mathrm{Z}_{1} \mathrm{Z}_{2}=10$ produces a stable state. The other numbers in a row indicate the next possible input state combinations. These numbers represent "unstable states." In row 1 the unstable states are 2 and 3 . If the system is running in stable state 1, and then the speed of the shaft increases sufficiently, the input state combination changes to $x_{1} x_{2}=10$. The system has changed to unstable state 2 and must pass to a stable state 2 which has the input combination of $x_{1} x_{2}=10$. The stable state 2 is found in row

TABLE VIII
PRIMITIVE FLOW TABLE

ROW	INPUTS $x_{1} x_{2}$				OUTPUTS	
	00	01	11	10	Z_{1}	z_{2}
1	1	3	-	2	1	0
2	4	-	5	(2)	1	0
3	1	3	-	-	1	1
4	4	3	-	2	1	1
5	-	-	5	6	0	0
6	1	-	-	6	0	0

2, and the associated output remains as $Z_{1} Z_{2}=10$. If the shaft speed continues to increase from this stable state 2, the next input state combination is $x_{1} x_{2}=11$. The corresponding unstable state is the state 5 of row 2, and from here the system passes to the stable state 5 of row 5 where the output combination is $Z_{1} Z_{2}=00$. (Since the speed has increased too much the motor is shut off so the shaft will slow down to the desired speed.)

Now the speed decreases and the input combination becomes $\mathrm{x}_{1} \mathrm{x}_{2}=10$ as given by the unstable state 6 of row 5. The next state is stable state 6 of row 6 where the outputs remain $Z_{1} Z_{2}=00$. Since the motor is still "off" the speed must continue to reduce so that the inputs again become $x_{1} x_{2}=00$. This unstable state is given by 1 in row 6 , and the following stable state is 1 of row 1 . Now the desired cycle of speed variation is completed, and the system is ready to make the same cycle again or to make some other cycle. Al1 possible speed cycles can be mapped out on the primitive flow table in a similar way.
3. Write a simplified Boolean equation for each output variable.

In the primitive flow table it is seen that two of the input state combinations have unique stable state output combinations. When the input combination is $x_{1} x_{2}=01$ the only stable state output combination is $Z_{1} Z_{2}=11$. When the input combination is $x_{1} x_{2}=11$ the only stable state output combination is $Z_{1} Z_{2}=00$. It is also seen that for the input combination of $x_{1} x_{2}=00$ there are two output combinations. These combinations are $Z_{1} Z_{2}=10$ and 11 for the stable states 1 and 4 , respectively. For the input combination of $\mathrm{x}_{1} \mathrm{x}_{2}=10$ there are two output combinations, $Z_{1} Z_{2}=10$ and 00 , for the stable states 2 and 6 , respectively.

Because there are input state combinations with more than one stable state output combination, this problem is one of sequential logic and is much more complicated than the previous example. The output equations cannot be written directly from the primitive flow table as the output equation was written from the truth table in the example of Appendix A.

Because this is a problem of sequential logic, memory elements must be used. Equations for the memory elements as well as output equations must be written. The memory element equations are called secondary equations and are of the form

$$
\begin{equation*}
Y=s \dot{+} y \vec{R} \tag{B.1}
\end{equation*}
$$

where: y is the output signal from the memory,
S is the set signal,
R is the reset signal.
The output and secondary equations are obtained through the use of Table IX. There are six columns in the table and they are constructed as follows:

1. Columns I, II, III, and VI contain the same information as the primitive flow table (Table VIII). Each number in column I represents the stable state of that number. (For the following discussion it is not necessary to say "stable state"; simply "state" is sufficient.) Column II contains the possible states that can follow next after the state of column I. Thus state 2 or state 3 can follow next after state 1. Columns III and IV contain the values of the output and input vario ables which correspond to the states of column 1.

TABLE IX

SYNTHESIS TABLE

OUTPUT AND SECONDARY EQUATIONS

$$
\begin{aligned}
& Z_{1}=y_{2} \quad z_{2}=\bar{x}_{1}\left(x_{2}+\bar{y}_{1}\right) \\
& Y_{1}=x_{2}+y_{1}\left(\bar{x}_{1} \cdot \bar{x}_{2} \cdot y_{2}\right) \\
& Y_{2}=\bar{x}_{1}+y_{2}\left(\bar{x}_{1} \cdot x_{2}\right)
\end{aligned}
$$

	SET	RESET
Y_{1}	x_{2}	$x_{1} \cdot \bar{x}_{2}-y_{2}$
Y_{2}	\bar{x}_{1}	$x_{1} \cdot x_{2}$

2. Columns V and VI are developed with several intermediate steps. The following description elaborates the steps for determining the entires of these columns and for writing the output and secondary equations.
a) The secondary variable y_{1} is introduced to provide a signal for state 1 which is distinct from the signal of state 4 . In column V under y_{1} a "1" is entered in state 1 and a "0" is entered in state 4. The signals for these two states are now distinct and are $x_{1} x_{2} y_{1}=001$ and $x_{1} x_{2} y_{1}=000$, respective $1 y$.
b) The secondary variable y_{2} is introduced to provide a signal for state 2 which is distinct from the signal of state 6. Under y_{2} a "1" is entered in state 2 and a " 0 " is entered in state 6 .
c) Column VI is now prepared to indicate the states in which the MEMORY generators Y_{1} and Y_{2} must be SET and RESET. (The capital letters Y_{1} and Y_{2} refer to the function generators themselves, and the small letters y_{1} and y_{2} refer to the output variables of the generators.) Consider state 1 , for example, where the value of y_{1} is prescribed in step 2.a) to be "1" ("on"). It is convenient, although not absolutely necessary, that the corresponding MEMORY generator Y_{1} be SET in a state that precedes state 1. This "prepared path" concept contributes to decreasing the time lost between input variable changes and the production of the new output variable values. Thus, since states 3 and 6 (as seen in column II) can precede state 1 , an S (representing SET) is placed in states 3 and 6 of column VI Y_{1}.

Using the same reasoning an S is placed in column $V I Y_{2}$ in states 1 and 4. This assures that the Y_{2} MEMORY generator is SET in states that precede state 2. The "prepared path" concept is also observed in the resetting of the MEMORY generators. Thus an R (representing RESET) is placed in state 2 under \bar{Y}_{1} so that the Y_{2} MEMORY generator is reset in the state preceding state 4. Also an R is placed in state 5 under \bar{Y}_{2} so that the Y_{2} MEMORY is reset in the state which precedes state 6.
d) More of the values of the secondary variables are now entered in column V. Since the Y_{1} MEMORY generator is SET in states 3 and 6, the secondary variable y_{1} is "on" in those states, and "l's" are entered in column V. Similarly "l's" are entered for y_{2} in states 1 and 4 , and "0's" are entered for y_{1} in state 2 and for y_{2} in state 5. This leaves "don't care" situations for y_{1} in state 5 and for y_{2} in state 3. (The "don't cares" are later changed to "1's" or "0's" in order to make the output and secondary equations as simple as possible.
e) The output equations are now written. The simplest combination is sought for the total signal $\left(x_{1} x_{2} y_{1} y_{2}\right)$ that makes the output Z_{1} "on" in states $1,2,3,4$ and "off" in states 5 and 6. Since there are relatively few states involved, this is done by inspection. It is noted that if the "don't care" of y_{2} in state 3 is made a " 1 ", then the values of Z_{1} correspond exactly to the values of y_{2}. Thus the first output equation is

$$
\begin{equation*}
\mathrm{z}_{1}=\mathrm{y}_{2} \tag{B.2}
\end{equation*}
$$

If the "don't care" for y_{1} in state 5 is also changed to "1", it is seen that there are two equally simple equations to make Z_{2} "on" in states 3 and 4. They are:

$$
\begin{equation*}
z_{2}=\bar{x}_{1} x_{2}+\bar{x}_{1} \bar{y}_{1} \tag{B.3}
\end{equation*}
$$

or

$$
\begin{equation*}
z_{2}=x_{2} y_{2}+\bar{x}_{1} \bar{y}_{1} \tag{B.4}
\end{equation*}
$$

Equation (B.3) can be written as

$$
\begin{equation*}
z_{2}=\bar{x}_{1}\left(x_{2}+\bar{y}_{1}\right) \tag{в.5}
\end{equation*}
$$

This form of the equation is advantageous since it can be implemented with one OR-NOT generator and one AND-NOT generator. In the form of Equation (B.3) three logic generators are needed: one AND-NOT, one NOR and one OR.
f) At this step the rest of the entries are made in column VI. The information entered is for the purpose of writing the SET and RESET equations. The SET of the Y_{1} MEMORY cannot be "on" in states 2 and 4 since y_{1} is "off". Thus "0's" are entered in states 2 and 4 under Y_{1}. In states 1 and 5 the SET signal for the Y_{1} MEMORY could be "on", but since it doesn't have to be, "don't cares" are entered. Under Y_{1}, "0's" are entered where the RESET signal cannot be "on". "Don't cares" are entered where the RESET may be "on". Similar information is entered under Y_{2} and \bar{Y}_{2} for the SET and RESET of the Y_{2} MEMORY.
g) Finally the SET and RESET equations are written giving the secondary equations. For the SET and RESET of the Y_{1} MEMORY the signal must be limited to the variables x_{1}, x_{2}, and y_{2}. It is observed that the Y_{1} MEMORY can be set in state 5 instead of
state 6 since state 5 has a "don't care" and since state 6 always follows state 5. The SET equation is now very simple and is

$$
\begin{equation*}
S_{1}=x_{2} \tag{B.6}
\end{equation*}
$$

The simplest RESET signal for the Y_{1} MEMORY is seen to be

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{x}_{1} \mathrm{y}_{2} \tag{B,7}
\end{equation*}
$$

As will be explained in section $B .2$ it becomes necessary to use the slightly more complicated signal

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{x}_{1} \overline{\mathrm{x}}_{2} \mathrm{y}_{2} \tag{B.8}
\end{equation*}
$$

The SET and RESET signals for the Y_{2} MEMORY are limited to the x_{1}, x_{2} and y_{1} variables. The simplest combination to give the SET signal is

$$
\begin{equation*}
\mathrm{S}_{2}=\overline{\mathrm{x}}_{1} \tag{B.9}
\end{equation*}
$$

This makes the SET be "on" in state 3 as well as in the required states 1 and 4. There are two equally simple combinations to give the RESET signal. They are:

$$
\begin{align*}
& \mathrm{R}_{2}=\mathrm{x}_{1} \mathrm{x}_{2} \tag{B.10}\\
& \mathrm{R}_{2}=\mathrm{x}_{1} \mathrm{y}_{1} \tag{B.11}
\end{align*}
$$

Equation (B.11) would make the RESET be on in state 6 as well as state 5. Equation (B.10) is selected.

The two output and two secondary equations are shown below Table IX. The SET and RESET signals are also shown in tabular form.

B. 2 Time Delays Caused by Amplifiers

In Table IX it can be seen that as the system goes from state 2 to state 5, the RESET signal of the Y_{1} MEMORY generator goes "off" and the SET signal goes "on". The RESET signal goes "off" because the input signal x_{2} goes "on". The SET signal goes "on" because x_{2} goes "on". By using a passive AND-NOT generator (6), the x_{2} input is in effect linked directly to both the SET and the RESET of the Y_{1} MEMORY generators. Thus the SET goes "on" and the RESET goes "off" simultaneously. If an active generator (6) is used, the x_{2} signal would still be linked directly to the SET of the MEMORY generator, but the x_{2} connection to the RESET would have a time delay in the displacement. The time delay would be caused by the AMPLIFIER of the AND-NOT generator (6). This situation would mean that the SET signal of the Y_{1} MEMORY would try to go "on" before the RESET signal would go "off". Because of the physical construction of the MEMORY generator the SET and RESET signals cannot both be "on" at the same time, and an active AND-NOT generator (6) is not usable.

The need for the \bar{x}_{2} variable in the RESET equation $R_{1}=x_{1} \cdot \bar{x}_{2} \cdot y_{2}$ can also be understood from this discussion. If the equation were simply $R_{1}=x_{1} \cdot y_{2}$, the RESET would be turned "off" (in going from state 2 to state 5) by y_{2} going "off". But y_{2} is delayed in going "off" by the two AMPLIFIERS of the generators (1) and (2). Thus as x_{2} would go "on" the SET would try to go "on" while the RESET would still be "on". Again the SET and RESET signal cannot be "on" at the same time. The conclusion is that the \bar{x}_{2} is needed in the equation, and it makes the RESET go "off" simultaneously with the SET going "on".

APPENDIX C

ENUMERATION OF KINEMATIC CHAINS

FOR SEPARATOR LINKAGES

In this appendix the enumeration of kinematic chains for use as possible separator linkages is explained. Steps described by Haas and Crossley [32] and the method of Franke's condensed notation as described by Davies and Crossley [34] are used. The eight-1ink three-degree-offreedom chains and the five-1ink two-degree-of-freedom chains are enumerated.

C. 1 Eight-Link Chains

The Chebyshev-Grubler formula for the degrees-of-freedom (mobility) M of a planar linkage is

$$
\begin{equation*}
M=3(N-1)-2 J \tag{C.1}
\end{equation*}
$$

where N is the number of links and J is the number of revolute pairs. (It should be noted that in reality a kinematic chain, which has no fixed link, has a different number of degrees-of-freedom than a linkage, which has a fixed link. However, in this study, kinematic chains are physically used only when they become linkages; thus it is convenient to consider the degrees-of-freedom of a chain to be the same as the degrees-of-freedom of a linkage derived from the chain.)

Equation (C.1) is solved for 2 J and becomes

$$
2 J=3(N-1)-M
$$

Since J is the number of revolute pairs, 2J represents the number of "half revolute pairs" or "ends" that exist on the N links of the chain. To illustrate, in Figure 38 the chain has six revolute pairs and twelve ends. Each binary link has two ends and each ternary link has three ends. Each quaternary link has four ends, etc.

For $M=3$ and $N=8$ Equation ($\mathrm{C} \cdot 2$) is solved for the number of ends 2J and gives

$$
2 \mathrm{~J}=3(8-1)-3=18
$$

The enumeration of all the desired chains is now made by finding all the ways in which 18 ends can be distributed on 8 links, and then finding all ways in which the 8 links can be assembled to form chains.

Table X shows the two possible distributions, (1) and (2), of the 18 ends. In distribution (1), seven links have two ends and are binary, and the eighth link has four ends and is quaternary. In distribution (2) there are six binary links and two ternary links.

Franke's condensed notation [34] is employed to find the distinct ways in which the two distributions can be assembled to form kinematic chains. The symbolic notation of Franke uses a "molecule" to represent the kinematic chain. The molecules and the respective kinematic chains are shown in Figure 39. The molecules are constructed by using two symbols:

1. A circle to represent a link with more than two ends (a polygonal link) and the circle has a number within indicating the number of ends.
2. A line to represent a direct connection between polygonal links, a single binary link between polygonal links or a string of binary links between polygonal links. Each line has an associated number which

(a) Chain With Six Revolute Pairs

(b) Links of Chain of (a) Showing Twelve "Ends"

Figure 38. Revolute Pairs and Link "Ends" of a Six-Link Kinematic Chain

TABLE X

DISTRIBUTION OF EIGHTEEN ENDS ON EIGHT KINEMATIC LINKS

Distribution \downarrow								
(1)	2	2	2	2	2	2	2	4
(2)	2	2	2	2	2	2	3	3

| DISTRI |
| :---: | :---: | :---: | :---: | :---: |
| BUTION |
| MOLECULE | (a)

Figure 39. Enumeration of Kinematic Chains With $M=3$ and $N=8$
indicates the number of binary links in the string. A zero means a direct connection. The number of lines leading to a circle must be the same as the number within the circle.

In Figure 39, for distribution (2), there are two ternary links and thus two circles with the number 3 within. The circles are joined with three lines. On the three lines are placed different combinations of numbers whose sum is six to represent the six binary links of the chain. It should be noted that the combinations cannot include two zeros or a one and a zero since these combinations eliminate the mobility between the polygonal links. Figure 40 illustrates this point.

For distribution (1) there is only one way for the seven binary
links to be attached to the quaternary link and have mobility of all of the links. This arrangement is shown in Figure 39(a).

C. 2 Five-Link Chain

To determine the five-1ink two-degree-of-freedom chain, $M=2$ and $N=5$. Substitution in Equation (C.2) gives the number of ends as

$$
2 J=3(5-1)-2=10
$$

The ten ends are distributed on the five links in only one way as shown in Table XI. Since all five links are binary, the only kinematic chain which results is a single loop of binary links as shown in Figure 41.

Figure 40. Immobile Linkage Connections (Structures)

TABLE XI

DISTRIBUTION OF TEN ENDS ON FIVE KINEMATIC LINKS

Distribution $\overbrace{\text { (1) }}^{\text {(1) }}$

Figure 41. Five-Link Two-Degree-of-Freedom Kinematic Ohain

APPENDIX D
SYNTHESIS AND ANALYSIS PROCEDURES
FOR SEPARATOR LINKAGES

This appendix contains the calculation of the value of the entity ${ }^{s} I^{\text {as }}$ defined in section 3.5.2. It also explains the application of the computer to the synthesis of the separators and to the output angle analysis of the separators. The third part of this appendix shows a method for monitoring transmission angle values. The method is applied to an analysis of all of the transmission angles of the separator linkages.

A computer Program A (Table XII) is included at the end of this appendix.
D. 1 Determination of s_{I}

The value of s_{I} as defined in section 3.5 .2 is shown in Figure 42. The minimum transmission angle μ_{m} is shown for the joint D . (In this study the transmission angle is defined as the acute angle between the coupler link and the output; if necessary one link is extended for the acute angle.)

From Figure 42 the following equations are written:

$$
\begin{gather*}
a=\ell \sin \alpha \tag{D.1}\\
\mathrm{s}_{\mathrm{I}}=\ell \cos \left(\mu_{\mathrm{m}}+\alpha\right) \tag{D.2}
\end{gather*}
$$

$$
\begin{equation*}
\left(s_{I}\right)^{2}+(\ell-2 a)^{2}=l^{2} \tag{D.3}
\end{equation*}
$$

When a and s_{I} are eliminated from Equation (D.3) and the substitutions

$$
\cos \alpha=\frac{1-\tan ^{2} \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}}
$$

and

$$
\sin \alpha=\frac{2 \tan \frac{\alpha}{2}}{1+\tan ^{2} \frac{\alpha}{2}}
$$

are made, Equation (D.3) becomes

$$
C_{1} \tan ^{4} \frac{\alpha}{2}+C_{5} \tan ^{3} \frac{\alpha}{3}+C_{6} \tan ^{2} \frac{\alpha}{2}+C_{7} \tan \frac{\alpha}{2}+C_{1}=0
$$

where $\quad G_{1}=\cos ^{2} \mu_{\mathrm{m}}$

$$
\begin{align*}
& C_{2}=-4 \\
& C_{3}=4+\sin ^{2} \mu_{m}-\cos ^{2} \mu_{m} \\
& C_{4}=2 \cos / \mu_{\mathrm{m}} \sin \mu_{\mathrm{m}} \\
& C_{5}=2 C_{2}+2 C_{4} \\
& C_{6}=2 C_{1}+4 C_{3} \\
& C_{7}=2 C_{2}-2 C_{4} \tag{D.5}
\end{align*}
$$

The roots of Equation (D.4) are found with the computers using the SSP subroutine POLRT. The value of α corresponding to Figure 42 is found to be 6.302212 degrees, where the value of μ_{m} in the coefficients of Equation (D.5) is 45 degrees. The value of S_{I} is found using Equation (D.2) in the computer Program A, Table XII, at the end of this appendix.

D. 2 Dimensional Synthesis and Output Analysis

In this section the calculations are made for the coordinates of the fixed centers $X_{A}, X_{A}{ }^{\prime}, X_{B}, X_{B}{ }^{\prime}, X_{C}$ and $X_{C}{ }^{\prime}$ of the separator linkages. The angles $\Delta \theta$ through which the inputs rotate as they change from the " 0 " to the " 1 " position is also calculated. The calculations are based on the link lengths selected in section 3.5.2 and the value of s_{I} determined in section D. 1 .

An analysis of the positions of the output point F for each of the separators is needed for the synthesis of the threshold linkages. The analysis is combined with the determination of the coordinates of the fixed centers X_{A}, . . . $X_{C}{ }^{\prime}$ in the computer Program A (Table XII) shown at the end of this section.

D. 2.1 Input Rotation $\Delta \theta$

The separator linkages are shown in Figures 43 and 44 in terms of the parameters of the synthesis and the analysis. The input crank rotations all have the same value since all of the cranks have the same length ℓ and since the chord intercepted by each rotation is s_{I}. The value of $\Delta \theta$ is calculated in computer Program A and is given by

$$
\begin{equation*}
\Delta \theta=2 \sin ^{-1}\left(\frac{\mathrm{~s}}{2 \ell}\right) \tag{D.6}
\end{equation*}
$$

Since the input cranks $X_{A} A, X_{B} B$ and $X_{C} C$ have their " 0 " and " 1 " positions symmetrically located about a vertical line, the binary values of θ_{1}, θ_{2} and θ_{3} are

$$
\theta_{110 \prime}=90^{\circ}+\frac{\Delta \theta}{2}
$$

and

Figure 43. Synthesis and Output Analysis of Separator of $\bar{W}=(1,1,0)$

Figure 44. Synthesis and Output Analysis of Separators for $\bar{W}=(1,1,1),(2,1,1)$, $(2,2,1)$ and $(3,2,1)$

$$
\begin{equation*}
\theta_{111 "}=90^{\circ}-\frac{\Delta \theta}{2} \tag{D.7}
\end{equation*}
$$

D.2.2. Coordinates of Fixed Centers

The coordinates of the fixed centers X_{A}, . . . $X_{C}{ }^{1}$ are based on the coordinate system shown in Figures 43 and 44 . In the computer Program A the coordinates are found by repeatedly applying the loop model of Figure $45(\mathrm{a})$ to the loops of each of the separators shown in Figures 43 and 44. In each application of the loop mode1, the vector of d_{6} is the unknown. The components of the vector of d_{6} give the desired coordinates.

A subroutine SYNSIX of Program A applies the model to any loop of the separator linkages. The subroutine is based on the following analysis of Figure 45(a).

Writing the loop equation and separating it into its real and imaginary parts gives the x and y components of d_{6} :

$$
x_{6}=d_{6} \cos \emptyset_{6}=d_{3} \cos \emptyset_{3}+d_{4} \cos \emptyset_{4}-d_{1} \cos \emptyset_{1}-d_{2} \cos \emptyset_{2}-d_{5} \cos \emptyset_{5}
$$

and

$$
\begin{equation*}
\mathrm{y}_{6}=\mathrm{d}_{6} \sin \emptyset_{6}=\mathrm{d}_{3} \sin \emptyset_{3}+\mathrm{d}_{4} \sin \emptyset_{4}-\mathrm{d}_{1} \sin \emptyset_{1}-d_{2} \sin \emptyset_{2}-d_{5} \sin \emptyset_{5} \tag{D.8}
\end{equation*}
$$

Now

$$
\begin{equation*}
\mathrm{d}_{6}=\sqrt{\mathrm{x}_{6}{ }^{2}+\mathrm{y}_{6}{ }^{2}} \tag{D.9}
\end{equation*}
$$

In order to determine the correct quadrant as well as the magnitude of \emptyset_{6}, the sine and cosine of \emptyset_{6} are found:

$$
\sin \emptyset_{6}=\frac{y_{6}}{d_{6}}
$$

(b) Analysis: \emptyset_{4}

Figure 45. Six-Link Loop Models
and

$$
\begin{equation*}
\cos \emptyset_{6}=\frac{x_{6}}{d_{6}} \tag{D.10}
\end{equation*}
$$

Finally

$$
\begin{equation*}
\emptyset_{6}=\tan ^{-1} \frac{\sin \emptyset_{6}}{\cos \phi_{6}} \tag{D.11}
\end{equation*}
$$

When the loop model of Figure $45(\mathrm{a})$ is applied to the five-bar separator (Figure 43), the value of d_{2} is made zero. The value of d_{2} is also made zero when applying the loop model to loop I of Figure 44.

Since the values for $\Delta \theta, \theta_{\text {" } 0 ",}, \theta_{\text {"1" }}$ and the coordinates of the fixed centers are given in Table V, no computer output is shown with Program A.
D.2.3 Output Analysis θ_{7}

Since the positions of the output point F, needed for the synthesis of the threshold linkages, are dependent upon the angle θ_{7} (Figures 43 and 44), an output analysis is needed. To perform the output analysis a loop model as shown in Figure 45 (b) is repeatedly applied to the loops of the separators.

A subroutine ANLSIX, of computer Program A, applies the loop model to any loop of the separators. The subroutine is based on the following analysis of Figure 45(b).

The real and complex parts of the loop equation give

$$
\cos \emptyset_{6 j}=E_{4} \cos \emptyset_{4 j}+E_{3} \cos \emptyset_{3 j}-E_{5} \cos \emptyset_{5}-E_{2} \cos \emptyset_{2 j}-E_{1} \cos \emptyset_{1 j}
$$

and

$$
\begin{equation*}
\sin \emptyset_{6 j}=E_{4} \sin \emptyset_{4 j}+E_{3} \sin \emptyset_{3 j}-E_{5} \sin \emptyset_{5}-E_{2} \sin \emptyset_{2 j}-E_{1} \sin \emptyset_{1 j} \tag{D.12}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{i}=\frac{d_{i}}{d_{6}} ; \quad i=1, \ldots, 5 \tag{D.13}
\end{equation*}
$$

and $\mathrm{j}=1,2, \ldots, \mathrm{n}$; $\mathrm{n}=4$ or 8
The values of j represent the input combinations as shown in the tables of Figures 43 and 44. For the separator of Figure 43, the number of combinations n is four. For the separators of Figure 44, n is eight. (In the figures the input joints A, B and C are subscripted with the numbers j. The subscripting is for convenience in recognizing the positions of the input cranks for each input combination.)

From Equation (D.12)

$$
\cos \emptyset_{6 j}=E_{4} \cos \emptyset_{4 j}+C 0_{j}
$$

and

$$
\begin{equation*}
\sin \emptyset_{6 j}=E_{4} \sin \emptyset_{4 j}+S I_{j} \tag{D.14}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{CO}_{\mathrm{j}}=\mathrm{C}_{3 \mathrm{j}}-\mathrm{C}_{5}-\mathrm{c}_{2 \mathrm{j}}-\mathrm{C}_{1 \mathrm{j}} \\
& \mathrm{SI} \mathrm{j}_{\mathrm{j}}=\mathrm{s}_{3 \mathrm{j}}-\mathrm{s}_{5}-\mathrm{s}_{2 \mathrm{j}}-\mathrm{C}_{1 \mathrm{j}}
\end{aligned}
$$

and

$$
\begin{align*}
& C_{i j}=E_{i} \cos \emptyset_{i j} \\
& S_{i j}=E_{i} \sin \emptyset_{i j} \tag{D.15}
\end{align*}
$$

The angle \emptyset_{6} is eliminated from Equation (D.14) by squaring and adding. The result gives

$$
\begin{equation*}
\mathrm{CO}_{\mathrm{j}} \cos \emptyset_{4 \mathrm{j}}+\mathrm{SI}_{\mathrm{j}} \sin \emptyset_{4 \mathrm{j}}=\mathrm{F}_{\mathrm{j}} \tag{D.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{F}_{\mathrm{j}}=\frac{1-\left(\mathrm{E}_{4}\right)^{2}-\left(\mathrm{CO}_{\mathrm{j}}\right)^{2}-\left(\mathrm{SI}_{\mathrm{j}}\right)^{2}}{2 \mathrm{E}_{4}} \tag{D.17}
\end{equation*}
$$

The substitution in Equation (D.16) of

$$
\cos \emptyset_{4 j}=\frac{1-T^{2} \gamma_{j}}{1+T^{2} \gamma_{j}}
$$

and

$$
\begin{equation*}
\sin \emptyset_{4 j}=\frac{2 T \gamma_{j}}{1+T^{2} \gamma_{j}} \tag{D.18}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{T} \gamma_{\mathrm{j}}=\tan \frac{\emptyset_{4 j}}{2} \tag{D.19}
\end{equation*}
$$

gives

$$
\begin{equation*}
T^{2} \gamma_{j}-G_{1 j} T \gamma_{j}+G_{2 j}=0 \tag{D.20}
\end{equation*}
$$

where

$$
\begin{aligned}
G_{1 j} & =\frac{2 S I_{j}}{G D_{j}} \\
G_{2 j} & =\frac{F_{j}-C 0_{j}}{G D_{j}}
\end{aligned}
$$

and

$$
\begin{equation*}
G D_{j}=F_{j}+C 0_{j} \tag{D.2I}
\end{equation*}
$$

The values of $T \gamma_{j}$ are found by solving Equation (D.20):

$$
\begin{equation*}
T_{j}=\frac{G_{1 j} \pm H_{j}}{2} \tag{D.22}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{j}=\sqrt{\left(G_{1 j}\right)^{2}-4 G_{2 j}} \tag{D.23}
\end{equation*}
$$

Finally, by using the Equation (D.18), the values of $\emptyset_{4 j}$ are given as

$$
\begin{equation*}
\emptyset_{4 j}=\tan ^{-1}\left(\frac{\sin \emptyset_{4 j}}{\cos \emptyset_{4 j}}\right) \tag{D.24}
\end{equation*}
$$

There are two values of T_{j} found from Equation (D.22) for each value of j. Consequently there are two values of $\emptyset_{4 j}$ calculated from Equation (D.24). In the Program A, the unwanted values of $\varnothing_{4 j}$ are rejected by rejecting all values of $\emptyset_{4 j}$ outside a known range of $\emptyset_{4 j}$.

As an example, the computer output values of θ_{7} are given at the end of Program A for the separator whose weight vector is $\overline{\mathrm{w}}=(2,1,1)$. D. 3 Transmission Angle Analysis

D.3.1 Graphical Monitoring Concept

A graphical concept can be employed to monitor transmission angles. The concept is explained through the use of Figure 46. The point A is the input to the linkage and follows some prescribed path. Link $A B$ is the coupler and ${ }^{B B}{ }_{0}$ is the output. The transmission angle μ is the acute angle between the directions of the coupler link and the output link.

The figure is constructed by allowing $A B B_{0}$ to assume any position. From B, link $A B$ is drawn at the angle $\mu=90^{\circ}$ which locates A_{90}. A circular arc (labelled 90°) is drawn with B_{0} as center and a radius of ${ }^{B_{0}} A_{90}$. Now, if the linkage $A B B_{0}$ were to move so that A followed the 90° arc, the transmission angle would remain constant at 90°. In a simi lar way two arcs are drawn for a constant $\mu=60^{\circ}$ and two for a constant 30°.

Figure 46. Graphical Monitoring of Transmission Angle

Finally, the transmission angle μ can be easily monitored as the input A travels along its prescribed path. When A is at A_{1}, A_{2}, A_{3}, etc., then μ has the values of $30^{\circ}, 60^{\circ}, 90^{\circ}$, etc., respectively. Additional arcs of constant μ can be added if a closer monitoring of μ is desired.

D.3.2. Transmission Angle Analysis for Separators

The graphical monitoring process of the previous section is utilized to analyze all the transmission angles of the separators. Observation of the dimensions of Figure 33 indicates that three analyses are sufficient to cover the analysis of all the transmission angles:

1. The single loop of Figure 33(a) and the loop $X_{B} X_{C} C G B X_{B}$ of Figure 33(b) through (e) are identical. The transmission angle μ of Figure 33(a) is at joint D. In Figure 33(b) through (e), μ is at joint G. Thus the analysis of μ shown in Figure 47(a) and (b) covers this group of transmission angles.

At (a) of Figure 47 the input is B and the output is either $D A_{0}$ or D_{1}. (The link $X_{A} A$ is considered to be fixed in either of the two positions $X_{A} A_{0}$ or $X_{A} A_{1}$ at any time when B is moving.) Consequently there are two sets of constant μ curves as shown. Examination of the figure reveals that as B moves from B_{0} to B_{1} with A at A_{0}, μ decreases from about 83° to about 55°. As B moves from B_{0} to B_{1} with A at A_{1}, μ increases from 45° to 90° and then decreases to about 83°.

At (b) of the same figure, the input is A and the output is either DB_{0} or DB_{1} depending on whether $\mathrm{X}_{\mathrm{B}} \mathrm{B}$ is considered fixed in position $X_{B} B_{0}$ or $X_{B} B_{1}$. The analysis of the transmission angle is similar to that of the figure at (a).
2. The loop $X_{A} X_{B}$ BEDAX $_{A}$ of Figure $33(b)$, (c) and (d) are identical, with the transmission angle at D. For the case where E is the input and link DA is the output, it can be shown that the analysis of μ is identical to the analysis of Figure 47 (a) except that the paths of E differ from the paths of B. The paths differ, however, only between the ends B_{0} and B_{1}; thus the range of μ is the same as in Figure 47(a),

For the case where A is the input and $D E$ is the output, E can be fixed in any of three positions. Consequently, there are three sets of curves of constant μ for the analysis. Figures for this analysis are not shown, but μ remains 45° or greater for all possible positions of the links.
3. The loop $X_{A} X_{B}$ BEDAX $_{A}$ of Figure 33(e) is distinct from all others. For the case where E is the input and $D A$ is the output, there are two sets of curves of constant μ since A can be fixed in either of the two positions A_{0} or A_{1}.

For the case where A is the input and $D E$ is the output, there are four positions in which E can be fixed. In this case there are four sets of curves of constant μ in the analysis. This analysis (figures are not included) shows that μ is not less than 45° in all possible positions of the linkage.

From the complete analysis as described, it can be seen that the minimum transmission angle for all the separators occurs in situations when a pair of links are in the position shown for the 1 inks $E D$ and $D A_{1}$ of Figure 42. In that postition the transmission angle is 45°, and hence it is verified that the minimum value of μ for the separator linkages is 45°.

Figure 47. Analysis of Separator Linkage Transmission Angles

TABLE XII

COMPUTER PROGRAM A


```
        YCP=1000.0
    RGP=100.0
    R6=1000.0
        E=1000.0
```



```
    IXC,YC,XCP,YCP,R1,R2,R3,RT,CE,BD,
    WRITE{6,42)
    WRITE{0,42,
    WRITE(6,40)
    HRITE(6,4a)
67 CRITEIG,64JJ,TIO(J)
tinue
SEPAKATURS FOR N=(1,1,1), (2,1,1), (2,2,1), (3,2,1)
    N=8
    N=8VL
    RK=VL
    00=1000.0
    4(1)=ALP
    F(L.EQ.2) GO TO SL
    RGP=0.5*VL
    7P=VL
    F(2)=(2.0/3.0)*RT
    AF(3)=0.5**7
    T5(1)=ALP
    TS(1)=ALP
    T7(1)=TR
    51 RGP=1.5*V
        N7=1.5*VL
        AF(5)=0.5*F7
        T5(1)=0.0
    TG(1)=TR
    53 cONTINUE
LOOP 1
D(1)=R 3
0(4)=RG
D(5)=84
P(1)=73(1)
P(2)=T = (1)
P(4)=Tक(1)
P(5)=T41)
CALL SYNSIX (D,P,RO,TG,X9,YO:
```

```
l}\begin{array}{l}{TO=T9*OEG}\\{OC(S)=RS}
CMLL AmLSIX (N,O,T3,T3,T2,T9,TOI
OUS5I=1,N
55 TODIII=T
LOOP &
O(1)R2,
O(3)=R1
M(S)=R5
P(2)=To(1)
P(4)=T7%1,
P(4)=T111%
GALL SYNSIX (O,P,Kg,TB,XX,YG)
TAD=Ty*UEG
O(S)=R8
M,
MOO1 I=1;N
61
CUNTINUE
```



```
YAP=2.0
l
Y XBP=XB
MBP=YS+YAP
M
M
\CP=YC+YAP ( GU TU 65
IF IL.EG.21
OO OOCK=2,4
WK,YE(O,G2)K,XA,YA,XAP,YAP,XB,YB,
&RGP,RG,K4,AF(K),UT,TOU,TIU
WRITE (6,42)
WRITE(6,44)
WRITE(6,48)
NO DE J=1,N
6B CONTINUE
6B CONTINLE
60 CONTINUE
K=5
\ 1XC,YC,XCP,Y(P,R1,R2,K3,K7,OE,BU,
```

SPRTK 142
SPKTR 143
SPRTK14.
SPKTEL
SPRTR144
SPRTR145
SPRTR145
SPRTR140
SPRTH
SPRTR146
SPKTKI 47
SPRTR148
SPRTR148
SPRTROOO
SPKTR000
SPKTR 000
SPRKTK000
SPRTKOROO
SPRTK149
SPRKTK 150
SPKTR 151
SKI
SPKTR151
SPRTK152
SPRTA154
SPRKTK153
SPRTR15
SPKTR154
SPRTR154
SPKTK15
SPRTK 150
SPRTK150
SPKTKI57
SPKTR15
SPRTR157
SPRTR150
SPRTR150
SPKTRTR159
SPRTR160
SPRTR160
SHRTR161

SPRTR16
SPRTR162

SPRTALIG
SPKTK104
SPRTR106
SPRTR106
SHRTK10T
SPRTR106
SPRTK 107
SPRTR164

SPRTK10
SPKTR170
SPRTK170
SHRTK17i
SPRTR172
SPRTR171
SPRTR172
SPKR173
SKRE
SPKTR173
SPKTK174
SPKR15
SPKTK174
SPKTR1 15
SHKTA17
SPRTK176
SPRTR170
SPKTK177
SPRTK 170
SPRTR177
SPRTK 170
SPRTK170
SPKTH179
SHRTKIOL
SPRTRLI*O
SPRT
SPRTR182
SPRTKIB2
SPRTR183
SPRTK182
SPRTR183
SPR18

SPRTRI86
Sprinidi
SPATK10
SPRTK 109
SPRTK109
SPKTRI90
SPKTR190
SPKTK191
SPRTK19
SPRTK 19
SPRTK192
S PRTKI9
SPRTK
SPRTR194
SPRTR195
SPKTK190

```
    #WRTEG(0;42)
    (8,44
```



```
    MRO (% J=1,N
69 CONTINUE
    \
```

SYNSIX

```
SURROUTINE SYNSIX (U,P,DG,PO,XG,YG
    00 12 l=1,5
    S(1)=D(1)*SIN(P(It)
12 C(I)=DII
YG=S(3)+S(4)-5(1)-S(2)-S(5)
    X6=C(3)+C(4)-C(1)-C(2)-C(5)
    MO=C(3)+C(4)-C(1)-C(2)
    SPO= YO/0G
    CPG=X6/06 
    RE TURN
    RE TUR
```

ANLS IX

IC $(4,5), S(4,8), P(3,8)$
PI=3.1415926535
RAOFPL/LBO.0
$\Delta \in G=18 \mathrm{C} . \mathrm{C} / \mathrm{P}$
$0015=1,5$
15 CONTINLE
$\mathrm{D}=20 \quad J=1, N$
$P(1, J)=P 1(J)$
$P(2, J)=P 2(J)$
20 CONTINUE
$00<51=1.3$

$25 \begin{gathered}\text { SCONT INUE } \\ \text { CO } \\ \text { S }\end{gathered}$
$C 5=E(5) * C \operatorname{Cos}(P 5)$
$S 5=E(5) * S(P)$
$0035 \mathrm{~J}=1, \mathrm{~N}$
$C O=C(3, J)-C 5-C(2, J)-C(1, d)$
$S I=S(3, J)-55-5(2, j)-5(1, J)$
 $\mathrm{GD}=\mathrm{F}+\mathrm{CO}$
$G 1=2.0 * 31 / 60$
$G 2=(F-C U 1 / G U$
$G R=G 1 * G 1-4.0 * 62$
$H=S U R T(G R)$
$T P=(G I+H) /<$.
$27 \mathrm{SP}=2.0 * \mathrm{~T} P /(1,0+\mathrm{T} P * T \mathrm{P})$
TPI/ $(1.0+T p * T p)$
P4(JI=ATAN21SP.CP)
IF (P4 (S).GT.0.73*PI) GO To 28
28 co ro 30
30 CUNTINLE
35 CONTINUE
CONT
RE TUR
ENO

```
sample of output angle theta FOR
\(\omega ; T=12,1,1 ; A, C\)
```

input coneimation theta 7

ANLSS001
ANLSSOO
ANLSSOO4
ANLSSO04
ANLSSOOS
ANLSS000
NLSSOOO
ANLSS507
ANLSS008
ANLSSS009
ANLSSO11
ANLSSO12
ANLSSO14
i 89.999527
) 12.32032 a

AxCS5015
ANLSSO16
ANLSSO17
ANLSSSO19
ANLSSO20
AivLSSOCL
AnLSSO22
ANLSSOO<S
ANLSSOZ
ANLSS50<5
ANLSOCO
ANLSSO 20
ANLSSO27
ANLSSO27
amLSS029
anlsso 30
ANLSSO
ANLS 5031
ANLSSOS2
ANLS5034
ANLSSO3S
ANLSSSO35
ANLSS037
NLSSO3
NLSSO39
ANLSSSO40

APPENDIX E

SYNTHESIS AND ANALYSIS PROCEDURES

FOR THRESHOLD LINKAGES

E. 1 Synthesis of Loop FJK

An example is presented to illustrate the synthesis of the loops FJK of the threshold linkages. The synthesis is for the linkage of $\bar{W}=(2,1,1)$ (see Table III) with two threshold angles τ_{a} and τ_{c}.

A graphical overlay procedure is used as follows to determine the lengths of links $F J$ and $J K$ and to locate center K with respect to center X_{A}.

1. All paths of point F are drawn (Figure 48) including the five stable points of F. The paths and stable points are located by using the lengths of $X_{A} A$ and $A F$ as given in Table V and the values of θ_{7} as given in the output of computer Program A (Table XII). (The analysis of the separator linkages in Appendix D shows that there actually are eight stable points of F. However, for graphical purposes some are so close together as to be considered the same point.)
2. Using overlays and trial and error, lengths for links FJ and JK are found. The threshold angles τ_{a} and τ_{c} are made relatively large while maintaining the lengths of $F J$ and $J K$ not less than about $\ell / 3$. (The value $2 / 3$ is selected as an approximate minimum for maintaining good link length ratios.) The resulting values of τ_{a} and τ_{c} are about 24° and 30°, respectively.

Figure 48. Synthesis of Loop FJK
3. At this point, interaction is made with the synthesis of the cam and follower (section E.3) to determine whether the threshold angle (cam rotation angle) of 24° is large enough to meet the cam specifications. Since 24° is satisfactory the synthesis continues.
4. Arcs are constructed with centers at the five stable points of F. The radius of the arcs is equal to the value of FJ found in step 2 . An overlay is constructed as shown in Figure 49. The overlay includes circular arcs for monitoring the transmission angle as explained in Appendix D. The overlay is used to locate the center K so that threshold angles τ_{a} and τ_{c} are about 24° or greater and so that the paths of F fall as close as possible to the 90° arc of constant μ.

For the final linkage as shown in Figure 48, it is seen that the transmission angle for all possible locations of point F is greater than 45° but less than 90°.

In section 3.5.2, reference was made to the fact that slight inaccuracies caused in s_{F} by the approximations of Figure 31 are absorbed in the synthesis of the threshold linkages. It is now observed that these slight inaccuracies simply cause slight differences in the positions of the arcs drawn from the five stable points of F in this step. The overlays are applied to the arcs as they are drawn, and consequently the "inaccuracies are absorbed."

The coordinates of the fixed center K are calculated in computer Program B (Table XIII, found at the end of this appendix) using

$$
\begin{align*}
& \mathrm{x}_{\mathrm{K}}=\mathrm{r}_{12} \cos \theta_{12} \\
& \mathrm{y}_{\mathrm{K}}=\mathrm{r}_{12} \sin \theta_{12} \tag{E.1}
\end{align*}
$$

Figure 49. Overlay for Locating K While Monitoring A in Threshold Linkage Synthesis

E. 2 Cam Rotation Analysis θ_{1}

The analysis of the cam rotation is based on the application of the loop model of Figure $45(\mathrm{~b})$ to the loop of Figure 50 . In the loop X_{A} A FJ K X A_{A}, there are two inputs, θ_{1} and θ_{7}. For each input combination, θ_{1} has the value $\theta_{" 0 "}$ or $\theta_{" 1 "}$ and θ_{7} has the magnitudes given by the output analysis of the separator linkages in Program A of Appendix D. The link lengths and the value of θ_{12} used in the analysis are found as described in section $E .1$.

The analysis is made with a part of the computer Program B (Table XIII) given at the end of this appendix. Since the model loop of Figure $45(b)$ is applied in the present calculations, the mathematical analysis is the same as that of section D.2.3

The output of the Program B gives four possible values of δ for each input combination. These four values of δ are the result of the two roots given by Equation (D.23). The approximate desired values of θ_{11} and δ are known from the graphical synthesis of section $E .1$, hence the desired values of θ_{11} and δ are selected from the computer output by observation.

E. 3 Synthesis of Cam and Follower

The synthesis of the cam and follower involves the determination of (see Figure 51):

1. The length of the output link HZ,
2. the displacement of the follower h,
3. the prime circle radius KH_{0},
4. the radius of the roller of the follower R_{r}, and

Figure 50. Analysis of Cam Rotation Angle

Figure 51. Synthesis of Cam and Follower
5. the location of the fixed centers Z and Z^{\prime} with respect to the fixed center X_{A}.

The determination of the five quantities is made as follows:

1. The length of the output crank HZ is selected to be 0.35 l. This value is greater than $\ell / 3$, the minimum for good link length ratios.
2. The output rotation of link HZ is selected to be equal to the input rotation angles $\Delta \theta$. Thus the displacement of the cam $H_{0}{ }^{H}$ is given by

$$
\begin{equation*}
\mathrm{h}=\mathrm{H}_{0} \mathrm{H}_{1}=2 \mathrm{r}_{14}\left(-\cos \theta_{H_{01}}\right) \tag{E.2}
\end{equation*}
$$

The value of h is determined using the computer Program B (Table XIII) given at the end of this section.
3. The minimum prime circle radius KH_{0} is dependent upon the follower length HZ , the displacement h , the cam rotation angles (threshold angles τ), the type of motion program, and the maximum allowable pressure angle.

Regarding the threshold angles τ, Table VI is observed. It is seen that all the threshold angles for the linkages of columns I and II were made (in the synthesis of section E.1) about 30° or greater. For the linkages of columns III through IX the threshold angles were made about 24° or greater. Because of the two minimum angles for $\tau, 30^{\circ}$ and 24°, two minimum prime circle radii are determined. The motion program selected is cycloidal and the maximum allowable pressure angle selected in this design is 45°.

The determination of the minimum KH_{0} is made with a graphical technique given by Jensen [36]. (The technique is not explained here.) With respect to accuracy, this graphical technique is completely satisfactory. Any small variation from an accurate minimum value of KH_{0}
merely alters the maximum pressure angle; and a pressure angle slightly greater than 45° is not critical.

The value of KH_{0} obtained when $\tau=24^{\circ}$ is 0.77ℓ as shown in Table IV, columns I and II. For $\tau=30^{\circ}$, the value obtained is 1.0ℓ as shown in columns III through IX.
4. The radius of the roller follower R_{r} cannot be greater than the minimum radius of curvature of the cam profile. A maximum value for R_{r} of 0.1ℓ is selected. This value is confirmed to be conservative by Jensen's [36] nomogram for radius of curvature; cycloidal motion.
5. The fixed centers Z and Z^{\prime} are located with respect to X_{A}. The coordinates of the two centers are given by

$$
\begin{align*}
& x_{Z}=x_{K}+r_{13}-r_{14} \cos \theta_{1 \prime \prime \prime} \\
& y_{Z}=y_{K}-r_{14} \sin \theta_{\prime \prime \prime \prime} \\
& x_{Z}^{\prime}=x_{Z} \\
& y_{Z}^{\prime}=y_{Z}+2 r_{14} \sin \theta_{\prime \prime \prime \prime} \tag{E.3}
\end{align*}
$$

The values for these coordinates are determined with the computer Program B (Tab1e XIII).

With the Program B, it is noted that no output is included. The reason is that all results obtained from the program are included in Table VI.

TABLE XIII

COMPUTER PROGRAM B

SAMPLE of output angles theta 11 and delta for linkage of $w ; T=(2,1,1 ; i, C)$

$$
\text { THETA } 11
$$

DELTA

	(1)	(2)	(11)	(12)	(21)	(22)
1	165.565521	-80.794785	0.0	246.360306	-246.360306	0.0
2	168.538391	-56.946533	2.972870	249.333176	-222.512054	23.848251
3	168.538620	-56.946136	2.973099	249.333405	-222.511658	23.848648
4	-38.551392	-169.767338	-204.116913	42.243393	-335.352783	-88.992554
5	-38.551193	-169.787445	-204.116714	42.243591	-335.352783	-88.992661
6	-8.494057	-165.458033	-174.059570	72.300720	-331.023926	-84.663849
7	-8.493729	-165.458420	-174.059250	72.301056	-331.023926	-84.663635
8	11.175558	-142.394562	-154.389954	91.970337	-307.959961	-61.599777

VITA

Glenn Hancock Dewey
Candidate for the Degree of
Doctor of Philosophy

Thesis: DESIGN OF BINARY LOGIC SYSTEMS USING MECHANICAL ELEMENTS
Major Field: Mechanical Engineering
Biographical:
Personal Data: Born in Wardsboro, Vermont, May 11, 1935, the son of Garner G. and Mary W. Dewey. On December 17, 1964 married Amalia Vargas M.

Education: Graduated from Leland and Gray Seminary (High School), Townshend, Vermont, in 1953; received the Bachelor of Science degree in Mechanical Engineering from the University of Vermont in 1957; received the Master of Science degree in Mechanical Engineering from the University of Vermont in 1959; completed the requirements for the Doctor of Philosophy degree at Oklahoma State University in May, 1973.

Professional Experience: Teaching at the University of Vermont, 1957-1959; teaching at Methodist high schools in Havana, Cuba and San Jose, Costa Rica, 1959-1966; teaching at the Universim ty of Costa Rica, San Jose, Costa Rica, 1966-1969; working as graduate teaching assistant at the Department of Mechanical Engineering, Oklahoma State University, 1971-1972.

[^0]: *The symbol $\dot{+}$ is used for the Boolean operator $O R$ which is to be distinguished from the arithmetic sum + .

