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CHAPTER I 

INTRODUCTION 

Area of Investigation 

This research is concerned with that class of 

mathematical programming problems known as integer 

programming problems. In particular, the class of integer 

programming problems in which all of the variables are 

restricted to take on only integral values is examined. 

Such all-integer programming problems arise from the 

need for finding an optimum or best policy (solution set) 

to adopt when confronted with a system model whose 

variables (or components of the solution set) are 

meaningful only as integral quantities. For example, 

if the problem deals with the number of men to be hired 

or the number of machines to be purchased, then a 

fractional solution may not be applicable. 

The specific topics investigated here are more fully 

defined by the following characteristics. As a unifying 

characteristic, this research centers around models 

which have a constraint set formed from linear diophantine 

inequalities. That is, the system objective function 

to be optimized is subject to restrictions which may be 
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expressed as linear inequalities with integral parameters. 

Mathematically, the restriction on the feasible solution 

set may be expressed as follows: 

2 

N 
I: 

j=1 
a . . x . < b . ( i = 1 , • • . , M) 

l.J J ]. 
(1-1) 

x. > 0 (j = 1, ••• , N) 
J -

(1-2) 

where 
N , 

(aij' xj, bi) E Z for all (i, j). 

Based upon this constraint set, two definable classes 

of objective functions, or function to be optimized, are 

examined. First, functions which may themselves be 

classified as linear diophantine objective functions are 

examined. Specifi~ally, the resultant problem class is 

further defined to have the form: 

N 
Maximize Z = I: 

j=1 
c. x. 

J J 

subject to the restrictions, 

a . . x . < b . ( i = 1 , • • • , M) 
l.J J ]. 

where c., a •. , b., x. are non·negative integers for 
J l.J ]. J 

(1- 3) 

{1-4) 

all (i, j). These problems are referred to as resource 

allocation problems and most frequently arise in 

the context of capital budgeting or knapsack decisions. 

The second type of objective function investigated 

is defined to be convex and nonlinear. The resultant 

problem is then referred to as an integer nonlinear 

programming problem, more specifically defined as: 

Minimize Z = f (~) (1- 5) 
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subject to the restrictions, 

a . x . > b . ( i = 1 , • • • , M) 
iJ J - 1 

(1-6) 

x. > 0 (j = 1, ••• , N) 
J 

where a .. , b., x. are integers for all (i, j). 
1] 1 J 

Such problems are less frequently encountered than the 

first class. However, an example of problems taking 

this form is the constrained economic order quantity 

model. 

Purpose of the Research 

(1- 7) 

Simply· stated, this research is an attempt to apply 

some fundamental concepts from N-dimensional geometry to 

the development of heuristic solution techniques for 

the probiems classified above. These concepts provide a 

means for making certain useful observations regarding 

the·feasible domain defined by the constraint set. In 

addition, they also provide the nucleus upon which the 

iterative techniques which follow are founded. 

Format of the Discussion 

The discussion of this research will proceed as 

fol lows. In Chapter I I .those fundamental concepts from 

N-~imensional geometry which provide the basis for this 

research will be developed. The idea of a feasible 

integer solution point satisfying a system of linear 

diophantine inequalities will be presented in Chapter III. 



In addition, Chapter III also contains a suggested 

procedure for finding such a point. Next, in Chapter IV, 

an algorithm will be presented which is specifically 

designed to sblve that class of problems referred to 

previously as resource allocation problems. This 

algorithm may be further characterized by the fact that 

it was developed for use at a time-shared remote telecom

munication terminal. In Chapter V an algorithm will be 

presented for solving integer programming problems with 

convex, nonlinear objective functions and subject to 

linear diophantine inequality constraints. This 

algorithm, formulated in a minimization context, uses 

the repeated application of simplex patterns to descend 

on the optimum integral solution point. Finally, Chapter 

VI contains the conclusions and recommendations drawn 

from this research. Appendices are provided which 

contain the computer codes employed in implementing the 

algorithms developed. The codes in Appendices A and C 

were run on an IBM 360/65 in the PLAGO partition of 

PL/I. The code in Appendex B was run on the same machine 

in the CPS partition of PL/I. 

Integer Programming Techniques 

This discussion centers around those techniques of 

a general nature which are most commonly associated with 

the topic of integer programming. Omitted from further 

discussion are the more specialized tabular methods for 
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solving transportation and assignment problems and the 

network analysis techniques oriented toward obtaining the 

maximum flow in a capacitated network system. More 

specifically, the techniques of discrete dynamic 

programming, cutting plane algorithms and implicit 

enumeration are discussed from a conceptual standpoint. 

Dynamic programming is an approach to problem 

solving. In particular, dynamic programming employs 

the technique of partitioning the problem into a series 

of subproblems. These subproblems are then sequentially 

optimized and ultimately yield the optimum so1ution to 

the entire problem. More specifically, the subproblems 

are referred to as stages. In discrete dynamic 

programming, the stages are most usually associated with 

a particular problem variable. At each stage a feasible 

set of states are given which represent the feasible 

domain described by the constraints. For each of these 

states a decision, or stage variable assignment, is 

made which optimizes the return, or objective, given 

that input state. A new stage is then added to the 

problem and the same procedure employed, with the· 

exception that after the first stage, consideration must 

be made for the state which results from a decision and 

the corresponding returns so defined from previous stages. 

The advantage gained by the dynamic programming approach 

is that once a decision is reached, at a particular 

stage and for a particular state, the decisions and 
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returns from previous stages are also established. 

Unfortunately, dynamic programming suffers from what is 

referred to as the curse of dimensionality. That is, 

the number of feasible states and decisions at a given 

stage can often exceed the capacity of even a large· 

computer. 

The cutting plane algorithms are more easily 

described. In effect, these algorithms begin by solving 

the linear programming problem while allowing the 

variables to take on continuous values. If the resultant 

solution satisfies the integrality restrictions, then the 

procedure, of course, terminates. Otherwise a new 

constraint, developed from the original constraints, 

is appended to the problem and a new solution obtained. 

The effect of this constraint is to cut off that part 

of the feasible domain containing the current non

integral solution, but not cutting off an optimum 

integral solution. The process of adding new constraints, 

or cutting planes, is repeated until the optimum integral 

solution is obtained. 

The concept of implicit enumeration or branch-and

bound is essentially a tree search methodology. This 

approach begins by building a tree constituted from 

branches associated with the feasible integral values of 

the problem variables. In this context, a solution set 

is said to be fathomed when a feasible solution value is 

established for each problem variable and the resultant 
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objective function value thereby determined. In effect, 

all possible combinations combinations of solution 

values are implicitly examined by either determining them 

to be infeasible or yielding an objective function value 

less favorable than an explicitly fathomed solution set. 

In other words, various possible solution sets are 

strategically fathomed until one is found which cannot 

be improved upon by the further explicit determination 

of any other possible set. Of the techniques here 

described, implicit enumeration has been found to 

demonstrate, in general, computational superiority when 

applied to large problems (9). 
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CHAPTER II 

. BASIC IDEAS IN N-DIMENSIONAL GEOMETRY 

Introduction 

From the standpoint of the individual observer, 

the concept of geometry arises through an intuitive 

development of the senses of sight and touch. The 

fundamental ideas of shape, bulk and length are analysed 

and refined, leading eventually to the conception of 

geometric figures. In like fashion, the history of the 

study of geometric concepts developed. First came the 

concept of a solid and from this, the abstractions of 

surfaces and lines, without solidity, developed. These 

abstractions from solidity led, after much refinement, 

to the development of plane geometry. As a consequence 

of the recognition of the point, line and plane as 

existing entities in a three dimensional universe, the 

concept of "dimensionality" itself arose. However, 

many centuries had passed before the plane and solid 

geometry of the Greeks and Egyptians gave way to an 

upward extension of the dimensionality concept to N

dimensional space. 

There are essentially two approaches to the 

development of an understanding of the geometry of higher 
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dimensions. On the one hand, there is the approach of 

extending the elements of point, line and plane in a 

serial fashion to higher dimensions. On the other hand, 

there is the approach of interpreting algebraic expres

sions through geometric concepts. Initially here, the 

first approach will be used to formulate an intuitive 

understanding of the fundamental concepts. These concepts 

will then be reinforced and extended by utilizing them 

as a basis for interpreting and understanding algebraic 

relationships in a geometric context. The purpose of 

this discussion is to enhance the ability of the 

individual observer to accomplish this interpretation 

and understanding. 

Extending the Dimensionality Concept 

As is customary, certain undefinable entities are 

taken to exist and from these the fundamental axioms 

(unproved propositions) of geometry are stated. These 

undefinables are the point, line and plane. The awareness 

and recognition of these being supposed, the following 

axioms are given: 

Axiom 1: Any two distinct points uniquely determine 

a straight line. 

Axiom 2: If two distinct points determine a 

straight line, then a third point exists which 

does not lie on this line. 

Axiom 3: Any three non-colinear points determine a plane. 
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Axiom 4: If two distinct points both belong to a plane, 

then every point on the line determined by 

these points also lies in the plane. 

Axiom 5: If three non-colinear points exist to determine 

a plane, there also exists a fourth point not 

in that plane. 

Axiom 6: The intersection of any two distinct lines in 

a plane uniquely determines a point at that 

intersection. 

Axiom 7: If two distinct planes have a point in common, 

they have a second point in common and 

consequently intersect in a straight line. 

These axioms provide the foundation for the concept 

of three dimensional space and thereby solid geometry. 

Observe that Axiom 1 postulates the existence of one 

dimensional space, Axiom 2 postulates two dimensional 

space and finally Axiom 5 postulates the existence of 

three dimensional (solid) space. This foundation being 

established, an attempt is now made to extend these 

concepts straightaway to higher dimensions. 

Given four non-coplanar points, it may be observed 

that all of the points, lines and planes therefrom 

determined constitute a three dimensional region, or 

the familiar three-space of solid geometry. Assume now 

that a point exists which is not in this region, and 

consequently the preceding three dimensional region is 

not now the whole of space. The region constituted by 

10 
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any four of the £ive points now postulated is called a 

"hyperplane" lying in a "hyperspace," or space whose 

dimensionality exceeds three (in this case, a four 

dimensional hyperspace). Taking these five points and 

all the lines, planes and hyperplanes thereby.constit~t~d, 

the following statements may be shown to be true in this 

four dimensional region. 

1. Two hyperplanes intersect in a plane. 

2. Three hyperplanes intersect in a line. 

3. Four hyperplanes intersect in a point. 

4. In general, five hyperplanes do not n~cessarily 

have any point in common. 

5. A hyperplane intersects a plane (the inter

section of two hyperplanes) in a line. 

6. A hyperplane intersects a line in a point. 

7 .. Two planes, each the intersection of two 

:hyperplanes, have in general only one point 

in common. 

8. A plane and a line have in general no point 

in common. 

9. A hyperplane is constituted by not only four 

distinct non-coplanar points, but also by a 

plane and a point not in the plane or by two 

skew lines. 

In an attempt to develop a better intuitive feel 

for the dimensionality concept it is often beneficial to 

relate dimensionality to the "degree of freedom" of a 



point in a region of specified dimension. By way of 

example, consider some point in a hyperspace of four 

dimensions. If the point is required to lie on a given 

line, a one dimensional entity, the point is said to 

possess one degree of freedom in that it may lie anywhere 

on that line. Similarly, a point required to lie on a 

given plane, a two.dimensional entity,· is said to have 

two degrees of freedom. Continuing upward, a point 

required to lie in a particular hyperplane has three 

degrees of freedom; and in the four dimensional hyper

space, four degrees of freedom are available. 

Considering ·the concept of degrees of freedom now 

from the restrictive standpoint, it may be observed that, 

in a four dimensional hyperspace, no conditions or 

constraints are required for a point to exist in that 

space (i.e., the point, as before, has four degrees of 

freedom). However, for a point to lie in a given 

hyperplane, one degree of constraint or one condition 

is required thereby reducing the degrees of freedom to 

three. Similarly, for a point to lie in a given plane 

two conditions or degrees of constraint are necessary 

thereby reducing the degrees of freedom to two. Finally, 

as one might suspect, if the point is required to lie 

in two distinct planes simultaneously, four conditions 

are required and the point is thereby uniquely determined 

(i.e., it now possesses no degrees of freedom). 

12 
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Flats or Linear Spaces 

Having now made the extension from a three 

dimensional space to space of four dimensions, the 

succeeding extension to higher dimensions follows directly. 

In an attempt to achieve greater generality, the term 

"hyperplane" will be extended to include not only the 

three dimensional analogue of a plane in four space 

but any space of "n" dimensions where n is greater than 

or equal to three. Note that this will require a means 

of explictly distinguishing, for example, a three 

dimensional hyperplane from one of four dimensions (see 

Figure 1). This distinction is accomplished by referring 

to a hyperplane of "p" dimensions as a "p-flat." A 

"flat" space is also referred to as a "linear space." 

The series of regions point, line~ plane, three

flat, .... , n-flat are then determined respectively by 

one, two, three, four, .... , n+l distinct points; and 

have correspondingly zero, one, two, three, .... , n 

dimensions. Consequently, given n+l points which 

determine an n-flat, there exists a p-flat which lies 

entirely in the n-flat and is determined by any p+l of 

the n+l given points (for p < n). 

The points which have been taken to uniquely 

determine a region exhibit a specific characteristic, 

that being "linear independence." Observe that if n+l 

points are to uniquely determine an n-flat, then they 
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must not be contained in the same (n-1)-flat. In 

addition, no "p" of these points (p ~ n) may be 

contained in the same (p-2)-flat. If this were not true, 

then the p-1 points required to determine the (p-2)-flat, 

together with the remaining n+l-p points would uniquely 

.determine an (n-1)-flat. A system of n+l points, no p 

of which lie in the same (p-2)-flat, is referred to as 

a system of linearly independent points. It may further 

be stated that any n+l points of an n-flat, if they are 

linearly independent, can be taken to uniquely determine 

the n-flat. 

This characteristic of linear independence leads 

directly to the following important observations. Given 

15 

a p-flat and an r-flat which are determined respectively 

by p+l and r+l points, if they have no points in common 

then there are in total p+r+2 independent points which 

determine a (p+r+l)-flat. Therefore, any p-flat and 

r-flat taken arbitrarily must lie in the same (p+r+l)-flat. 

However, if these flats lie in an n dimensional space 

and p+r+l is greater than n, then the two flats must 

have a region in common. Assume that this co.mmon region 

is of dimension "s". It may then be stated that, a p-flat 

and an r-flat having in common an s-flat are both then 

contained in a (p+r-s)-flat. Furthermore, a p~flat and 

an r-flat which are both contained in an n-flat (where 

p+r > n-1) have in common a (p+r-n)-flat; and if p+r < n, 

they have in generai no point in common. 



It now remains to tie the concept of degrees of 

freedom to that of a linear space. Recall that a p-flat 

requires p+l independent points to determine it, and 

each of these points requires n conditions to determine 

it in an "n dimensional" space. Observe, however, that 

p degrees of freedom are available in the selection of 

each point. It may then be concluded that the number of 

conditions required to determine a p-flat in a space of 

n-dimensions is (p+l)(n-p). In other words, the number 

of degrees o~ freedom available to a p-flat lying in 

an n-flat is (p+l)(n-p) where n > p. This number is 

referred to as the "constant number" of the p-flat. To 

further extend this concept, observe that if a p-flat 

has r points already determined, then p+l-r points are 

required to uniquely determine it; and consequently, 

the number of degrees of freedom is (n-p)(p+l-r). 

Therefore, the number of degrees of freedom of a p-flat 

lying in a given n-flat and passing through a given 

16 

r-flat is (n-p)(p+l-r). From this is obtained a fractional 

representation of the "degree of incidence" of a p-flat 

and an s-flat, where it is assumed that p > s. When 

there is complete incidence, or enclosure, the s-flat 

lies entirely in the p-flat and the fraction is unity. 

Conversely, skewness, or no points in common is represent

ed by zero. Intermediately, if the p-flat and the 

s-flat have in common an r-flat, then the degree of 

incidence is given by the fraction (r+l)/(s+l). 
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Recall that in an n dimensional space, a p-flat 

has (n-p)(p+l) degrees of freedom; but if it passes 

through a given r-flat it has only (n-p)(p-r) degrees of 

freedom. From this it is observed that the number of 

conditions required for a p-flat in n dimensional space to pass 

through a given r-flat is (n-p)(r+l), where n > p > r. 

Consequently, if the r-flat is free to move in a given 

s-flat, it has (r+l)(s-r) degrees of freedom. Therefore, 

the number of conditions necessary for a p-flat and an 

s-flat in n dimensional space to intersect in an r-flat 

is (r+l)(n-p-s+r), provided that p+s < n+r. If p+s > n+r 

the p-flat and s-flat intersect in a region of dimension 

p+s-n which is greater than r. 

Geometric Configurations -- The Simplex 

Having developed a fundamental understanding of 

dimensionality concepts, attention will now be 

turned to configurations which exist in higher dimensional 

space. To begin, the following observations are made: 

1. A point on a line divides the line into two 

segments but will not divide a plane in which 

the line lies. 

2. A line in a plane will divide the plane but 

will not divide a three-flat in which the 

plane lies. 

3. A plane in a three-flat will divide the three

flat but will not divide a four-flat in which 



the three flat lies. 

These observations may be extended in like fashion to 

higher dimensions and lead directly to the idea of 

geometric order. 
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If A1 and A2 are two distinct points on a given line, 

they° constitute a "line segment" consisting of all points 

P such that their order is A1PA2. In addition, A1 and A2 

also divide the given line into three distinct segments 

having respectively the order PA1A2, A1PA2 and A1A2P. 

If A1, A2 and A3 are three non-colinear points in a 

plane, they constitute three distinct lines which form a 

triangle. Taking a particular one of these lines, say 

A2 A3 , and a point on the line segment thereby determined, 

P23, it may be observed that all points P in the interior 

of the triangle have the drder A1PP23. By extension it 

is observed that these three lines will divide the plane 

into seven regions as follows: 

1. the interior of the triangle: A1PP23, 

A2PP13, A3PP12. 

2. three regions on the edges: A1P23P, 

A2P13P, A3P12P. 

3. three regions at the vertices: PA1P23, 

PA2P i 3, PA3P 12. 

Similarly four non-coplanar points A1, A2, A3, 

and A4 determine four planes and six lines which consti'tute 

a tetrahedron. The faces of the tetrahedron are the 

triangles formed by any three of the four points. The 



four planes corresponding to these triangles divide the 

space into fifteen regions consisting of points P having 

the following orders (here for example, P123 denotes 

any point on the face A1A2A3): 

1. the interior of the tetrahedron: A1PP234, etc. 

2. four regions on the faces: A1P234P, etc. 

3. four regions on the vertices: P234A1P, etc. 

4. six regions on the edges: P12P34P, etc. 

Extending to a space of four dimensions, there are 

then five points which determine five hyperplanes, ten 

planes and ten edges which collectively form a four 

dimensional "simplex" dividing space into thirty-one 

regions: 

1. the interior of the simplex. 
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2. five regions on the three dimensional boundaries. 

3. ten regions on the two dimensional boundaries. 

4. ten regions on the ·edges. 

5. five regions at the vertices. 

Finally the extension to n dimensions is as follows. 

The configuration formed by n+l independent points and 

the lines, planes and hyperplanes thereby determined is 

called a "simplex of n dimensions," denoted S(n+i). 

The lines, planes and hyperplanes determined by these 

points are called the boundaries of the simplex, and 

are of one, two, ..•. , n-1 dimensions (with the 

constituting points being referred to as its vertices). 

It may then be generalized that a simplex, S(n+i)' 



has the following number of boundaries of r dimension, 

n+l cr+1· 

Geometric Configurations--The Polytope 

Having now introduced the idea of a geometric 

configuration bounded by linear spaces, the question 

now arises as to configurations which may be bounded 

by several other configurations of smaller dimension. 

For example, consider the polygon in two dimensions which 

is bounded by several lines and has consequently several 

vertices. Analogously, the polyhedron in three 

dimensions is bounded by several lines and planes. As 

before, the analogy continues to higher dimensions with 

the configuration being referred to as a "polytope" 

bounded by hyperplanes, planes and lines. The following 

properties may now be stated as regards a polytope: 

1. Adjacent hyperplanes meet in boundaries of 

n-2 dimensions and in general only two 

hyperplanes meet in each boundary of n-2 

dimensions. 

2. Three or more (n-1)-flats meet in boundaries 

of n-3 dimensions. 

3. p or more (n-1)-flats meet in boundaries of 

n-p dimensions. 

4. nor more (n-1)-flats meet at a point, one of 

the vertices of the polytope. 

5. A boundary of r dimension is referred to as 

20 



an r-boundary. 

It should now be apparent that the simplest 

polytope that can exist in an n dimensional space is 

the simplex, S(n+i), which is bounded by n+l hyperplanes 

of dimension n-1. To clarify this point consider the 

triangle in two_dimensions which is bounded by three 

lines, the tetrahedron in three dimensions bounded by 

four planes and finally the four dimensional simplex 

bounded by five three dimensional tetrahedrons. 

Although there exist several classifications or 

characteristics of polytopes, this discussion will 

address that particular class of polytopes known as 

"simple, convex polytopes." A "simple" polytope is 

characterized by the fact that two and only two 

boundaries of dimension (n-1) meet at each boundary of 

dimension (n-2); and in general within any boundary of 

dimension p, two and only two boundaries of dimension 

(p-1) meet at each boundary of dimension (p-2). Further

more, a polytope is said to be "convex" if it lies 

entirely to one side of each of its boundaries having 

dimension (n-1). In other words the polytope and only 

the polytope is entirely closed within these (n-1) 

dimensional boundaries. This characteristic is also 

true for each of its boundary configurations of any 

dimension. 

For simplicity a simple, convex polytope of n 

dimensions is denoted (Po)n. The configurations which 
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form the exterior boundaries of (Po)n (i.e., (Po)n_ 1 , 

(Po) , .... , planes) are termed the "face constituents" 
n- 2 

of the polytope. As an example, consider the four 

dimensional simplex, (Po)4. It is observed that this 

simplex is bounded by four three dimensional tetrahedrons 

and six bounding planes which collectively form the 

face constituents of the polytope, (Po)4. 
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Having now discussed, at some length, the abstracted 

but fundamental ideas of N-dimensional geometry, the 

attention now turns to the second approach for understand

ing these concepts. Recall that this approach is one of 

attempting to interpret and understand algebraic 

expressions through the geometric concepts which have 

been discussed. 

Systems of Linear Equations 

Following a similar approach to preceding sections, 

the interpretation of systems of linear equations will 

begin with the point definition and proceed to build 

upon this to equations of higher dimensionality. This 

succession is by no means obtuse, but is a necessary 

prerequisite to the ultimate goal of interpreting systems 

of linear equations and inequalities. 

There are two fundamental concepts which provide 

the basis upon which the interpretation of linear 

equations is founded. First, the dimensionality of the 

space under consideration is given by the number of 



unique variables contained in the equation. Second, an 

equation represents a condition which must be satisfied 

by a point in the defined space and as such reduces the 

"degrees of freedom" of a point in that space by one. 

Consider the following three equations: 
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X1 = k1 (2-1) 

X1 + X2 = k2 (2-2) 

X1 + X2 + X3 + + XN = kN (2 - 3) 

where k 1, k 2, kN and N are known constants. 

Utilizing these two concepts, it is observed that 

equation (2-1) represents a point (or region of zero 

dimension), equation (2-2) a line (or region of one 

dimension) and finally equation (2-3) represents an N-1-

flat (or region of N-1 dimension). Note that in each 

instance, as indicated previously, the dimensionality of 

the space was defined by the number of ·unique variables 

and the region defined by each expression had for its 

dimensionality one less than that of the space to reflect 

the remaining degrees of freedom available. As a result, 

three distinct regions have been defined each lying in 

a space of known dimension and consequently defining a 

condition which must be met by any admissible point in 

that space. 

It now remains to combine each of these equations 

into a system or collection of linear equations. Taken 

collectively, it is observed that x 1 and x2 are not now 

uniquely represented in the system but are indicated 



three and two times respectively. Consequently, the 

system defined represents in total a space of N 
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dimension. Observe that three conditions are now specified 

and therefore the region defined is of dimension N-3 

(i.e., an N-3-flat). This is more readily observed if 

the following steps are taken. First, x 1 may be removed 

from the system by noting that its value is fixed at k1. 

Similarly, by removing x1 the value of x2 is fixed and 

it too may be removed. What remains is then equation 

(2-3) with two variables removed and a new constant value 

on the right hand side of the equation, 

X3 + .... + x = N (kN - k2 + k1 - ki) = k p (2-4) 

The adjustment from kN to kp and elimination of X1 and 

X2 from consideration forces equations (2-1) and (2-2) 

to be satisfied. Equation (2-4) is readily observed to 

define a space of N-2 dimensions with one condition 

specified. Again, a region of N-3 dimensions is defined. 

To generalize, it may be stated that a system of 

linear equations containing N unique variables and P 

distinct equations represents a region of dimension N-P 

(i.e., an N-P-flat) lying in a space of dimension N; · 

and further, that as each variable is allowed to take on 

a specific value (as with equation (2-1)) the dimension

ality of the space is reduced by the specific removal of 

one of its constituents. 



Systems of Linear Inequalities 

A linear inequality is represented in similar form 

to a linear equation with the exception that the equality 

sign is replaced by one of the following: 

1. fl< II strictly less than 

2. II<" less than or equal to 

3. ">II strictly greater than 

4. ">" greater than or equal to 

5. II:/-" not equal to 

The relationships to be discussed here are (2.) and 

( 4.), that is, the "loose" inequalities. Such re-

lationships are treated in the same fashion as equalities 

after one simple modification. 

The inequalities (2.) and (4.) may be made to appear 

as equalities by the addition of "dummy" or pseudo-

variables, so named because they are mathematical 

conveniences and do not specifically identify with the 

real space defined by the system (even though they are 

treated as if they do). This is accomplished as follows. 

For ":5.." inequalities a non-negative dummy variable 

is appended to form an equation as, 

N 
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E a.x. < k 
J J - (2-5) 

j = l 

becomes 

N 
E a.x. + s = k 

j = l J J 
(2-6) 
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where s is the dummy or "slack variable~" For ">" 

inequalities, 

a.x. 
J J 

> k . (2-7) 

becomes 

a.x. - s = k 
J J 

where the dummy variable, s, represents a "surplus 

variable." Again, S is non-negative. 

It is apparent that, when confronted with such a 

loose inequality, the number of degrees of freedom in 

(2-8) 

the defined space is unchanged. That is, one condition 

is specified by each resultant equation but this is 

offset by the corresponding addition of another 

constituent to the defined space, Therefore, inequalities 

such as (2-5) and (2-7) represent a space of N+l 

dimensions in which one condition is specified; and 

consequently a region of dimension N is defined (i.e., 

N real space dimensions + one pseudo space dimension less 

the one specified condition). 

This approach may be extended directly to systems 

of linear inequalities. Considering the following such 

system, it may be observed that it represents a space 

of N real plus P pseudo dimensions in which an N-flat 

has been defined. 
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N 
l: a1 .x.+s 1=k1 

j = l J J 

(2-9) 

N 
l: 

j = l 

To generalize, it may be stated that a system of 

M linear equations and P linear inequalities (of the 

form (b) or (d)) in N uniquely represented variables 

constitutes a space of N+P dimensions in which a region 

of dimension N-M+P has been defined (i.e., an N-M+P-

flat). 

Nonlinear Functions as Surfaces 

Conspicuously absent from the discussion thus ·far 

has been the topic of nonlinear functions and equations. 

There are two reasons for postponing a discussion of 

this topic till now. First, it is believed that 

the interpretation of such functions and equations is 

best accomplished by interpreting algebraic relationships 

rather than abstracted generalizations. Second, and 

more importantly, this research centers around systems 

of linear inequalities as boundary specifications of 

some feasible domain and is concerned with nonlinear 

functions as representing surface responses superimposed 

on such domains. 

The purpose of this section is to develop an 



understanding of nonlinear functions of higher dimension. 

More specifically, it is the dimensionality aspect which 

will receive the attention and not a discussion of non

linear surfaces in general. It will be assumed the 

functions are convex. To accomplish an understanding 

of convex nonlinear functions of higher dimension a 

simplex function of this class will be employed as 

a medium for developing the technique. This technique 

is equally applicable to any such function. The 

development will proceed in similar fashion to preceding 

sections in this chapter. 

To begin consider the simple nonlinear function, 
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f = X12 (2-10) 

which represents a parabola centered at the origin. 

It is noted that such an equation represents a functional 

relationship between the values taken by f or by X1 

when one or the other of these variables is specified. 

The relationship, in general, defines a locus of points 

along a curved path (the parabola) which in this instance 

has one degree of freedom. However, unlike a linear 

equation, when the value of f is specified, the degrees 

of freedom are not necessarily reduced to zero. To 

continue, another second degree variable is added to 

equation (2-10) and the equation, 

f = X1 2 + X2 2 (2-11) 

is obtained. Here the concept of a surface begins to take 

some meaning. As before, the three unique variables are 
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indicative of a space of three dimensions. Observe again 

that only f is uniquely specified when values are assigned 

to the variables X1 and X2. Recall that some limited 

restriction does exist on the value of x1 or X2 when 

one or the other is specified along with f, or when f 

alone is specified at some value. This restriction is, 

of course, the number of possible roots which satisfy 

the resultant equation. The variable f will now be 

concentrated on to complete the development of a 

surface concept. 

It is apparent that when the value of f is fixed, 

(2-11) becomes the equation of a circle. Further, if f 

is allowed to take on several values sequentially, then 

each has a different and unique circle (defined by (2-11)) 

associated with it. These circles may be viewed stacked 

one upon the other in the f direction to form a 

paraboloid--a surface (or family of circles). 

Continuing in an upward fashion it is observed that 

the addition of another variable, x 3 , to (2-11) to form, 

(2-12) 

yields a hypersurface of spheroids dependent for their 

exact size upon the value of f. The analogy to higher 

dimensions is straightforward. That is, the functional 

representation, 

(2-13) 

designates a hypersurface of hyperspheroids. Note that 

by fixing the value of f and sequentially fixing the 



value of each x. (i=N, .... , 2), that the defined surface 
1 

gradually loses its abstraction and becomes discernable 

as a more familiar geometric configuration. 

In general, any nonlinear function, 

may be interpreted most readily by assuming first that 

the value of f is fixed and then sequentially fixing 

subsets of the constituent xi (i=l, .... , N) to 

determine the exact configuration of the remaining 

variables in their constituent space. Then by aliowing 

f to assume other values, the corresponding surface 

defined by f(x1, x2, .... , xN) may be viewed more readily 

by its traces in the constituent space. 

Conclu4ing Remarks 

This chapter is an attempt to lay the foundation 

. upon which the succeeding research is built. Its 

purpose is to provide the geometric framework for 

interpreting and understanding the terminology and 

concepts which follow. Although there exists an area 
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of mathematics known as "the geometry of numbers" which 

deals specifically with lattice configurations, integer 

equations and inequalities and their resultant geometry, 

the position taken here is that these elegant mathematical 

theorems and postulates are not necessary to the under

standing or development of this research. In fact, their 

inclusion would rather retard this attempt to enhance 



the reader's ability to visualize the techniques which 

are employed. What is hoped for here is that some old, 

familiar concepts will be recalled, extended and later 

utilized as a basis for understanding the research. 

This chapter is based principally on the works 

of Sommerville (28) and Grunbaum (14) with graphical 

interpretations based upon Woodworth (36). 
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CHAPTER III 

FINDING A FEASIBLE LATTICE POINT 

Many integer programming techniques are enhanced by 

the presence of an initial starting point (vector) which 

is feasible and contains all integer components. 

This chapter develops a technique for finding such a 

feasible integral solution point that satisfies a system 

of linear diophantine inequality constraints. 

Lattice Points 

A lattice point is defined to be any point in the 

real vector space, RN, whose vector representation, 

is comprised of components, x. (i=l, 2, ... , N) whose 
1 

values are all integer. A feasible lattice point is one 

which satisfies the system of linear diophantine 

inequalities, 

N 
l: 

j=1 
a .. x. > 

1J J 
bi (i = 1 , . . . , M) 

and the non-negativity restrictions, 
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(3-1) 



x. > 0 (j = 1, ... , N). 
J -

Such a feasible lattice point, or integral solution 

vector, represents a point on or within the bounding 

polytope, (Po)N, defined by (3-1) and (3-2). 

Th~ purpose of this discussi6n is to suggest a 

procedure for finding such a point. The procedure rests 

upon a fundamental theorem from linear algebra and its 

consequent geometric interpretation. 

Foundation of the Procedure 

This procedure finds its basis in the following 

fundamental theorem from linear algebra (30). 

Theorem: .If ~1, ~2, •... , aM are vectors whose 
elements belong to~, the set of all 
linear combinations, C1 ~1 + C2 ~2 + ••• + 

CM aM for Ci (i=l, .•• , M) in "fl, is a 
linear vector space. The vectors 

~1, ~2, ... ,~are said to span or 
generate the linear vector space (i.e., 
any vector in the space can be written as 
a finite sum of the spanning vectors). 

Recalling now the non-negativity restrictions (3-2), it 

is readily observed that the vector representation of 

their coefficients, 

1 0 0 
T 0 T 1 T 0 ~l = a2 = ~ = , . . . ' 

. . 
0 0 1 

in fact span the feasible orthant of non-negative 
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lattice points (i.e., the positive ZN). More importantly, 

since the spanning set is not restricted to include 

only the spanning vectors, the constraints (3-1) may 

also be included as, 

[
a2 11 T [ aM ] l,N ' ... , .'!N+M = ~ 

Note that by writing the constraints in greater-than 

or equal-to form, the resultant vectors are normal to 

their corresponding constraints and point inward to the 

feasible domain defined by the constraint. It is this 

geometric interpretation which provides the framework 

from which the succeeding procedural description arises. 

Description of the Procedure 

Define the system of linear diophantine inequalities 

which form the bounding polytope as: 

S: a.. x > b. ( i = 1, ••• , N + M) 
-l. - - l. 

where, again, a.. represents the components of a normal 
-l. 

vector to the hyperplane defined by a.. x = b. and 
-l. l. 

pointing inward to the feasible domain defined by the 

( 3- 3) 

corresponding inequality. When, for any particular integral 

vector x 0 , the values b. - a.. _x 0 < 0 (i = 1, •.. , N + M), 
- l. -1 

then x 0 represents a feasible lattice point. It may 

further be observed that the value, 

V · = b. - a.. Xo > 0 
l. l. -l. -

(3-4) 

is a measure of the degree of infeasibility of ~o relative 



35 

h .th . to t e 1 constraint. Consequently, a movement in the 

direction defined by a. may be interpreted as necessary 
-1 

to obtain a feasible lattice point. In addition, the Vi 

indicating infeasibility may be ranked from greatest to 

smallest, with the greatest being interpreted as indicating 

the most desirable movement. 

It is apparent that only the v. corresponding to 
1 . 

constraints N+l to N+M need be considered explicity 

since a resultant x may be examined at each iteration to 

determine if it contains a negative element. If a 

negative element, say xj, appears then the non-negativity 

vector, a., is implicitly 1 invoked by setting x. equal to 
-J J 

zero. In this fashion the non-negativity restrictions 

are kept inviolate. 

Taking now that the vectors a. (i=l, ... , N+M) 
-1 

determine directions of feasible movement and that they 

also span the feasible space, it may be concluded that a 

feasible lattice point is obtainable by summing the a. 
-1 

indicated by the greatest current vi until all vi ~ 0. 

On the surface this may appear quite simple, however 

there are obvious difficulties to such an approach. The 

major difficulty with this procedure is that the finite 

number of summing operations required to obtain a feasible 

lattice point may be quite large. That is, finiteness 

is no guarantee of solution convergence in a reasonable 

number of iterations. Consequently, a parameter limiting 

the number of iterations must be included. In addition, the 



procedure must be able to establish that no feasible 

lattice point exists on or within the defined polytope. 

In this regard, it is necessary to define the terms 

"cycle" and "oscillation" as they apply to this 

procedure. 

Cycle and Oscillation 

Define the term "cycle" to be the occurrence of 

obtaining an intermediate point, xk, and after (n>l) 

succeeding iterations, reobtaining the same point, 

xk=~k+n· Since for any point, ~' there is taken 

some maximum Vi indicating the direction, ai' for 

movement; then if ~ is reobtained this cyclic occurrence 

will continually be repeated and no feasible point 

obtained. It is observed, however, that with parallel 

constraints for example, it is possible to "oscillate" 
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across the feasible space (i.e., one intervening iteration 

between obtaining xk and reobtaining it, xk = ~k+ 2 ) when 

in fact a feasible point may be present. The number of 

iterations which occur before a trial point is reobtained 

is then the differentiating factor between an 

oscillation and a cycle. 

In the case of a cycle, the procedure terminates 

indicating no feasible lattice point. If an oscillation 

should be detected, the following steps are taken. Define 

the weighting factor, 
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N+M 
w. = E a .. , for a. •• < O (j=l, ... , N). 

J i=N+ i lJ lJ 
(3-5) 

Then let the element xk of the current trial. vector be 

modified to, 

xk = xk + vi (3-6) 

where i corresponds to the maximum v. and k corresponds 
1 

to the.maximum element of w. In effect a quasi dual-

simplexing step is taken to eliminate the oscillation 

and the procedure then continues as before. 

A summary of the procedure is given in the form of 

an information flow chart in Figure 2. The code employed 

in testing the procedure is given in Appendix A and is 

in the PL/I language. 

Example Problem 

Consider the problem of finding a feasible lattice 

point which satisfies the system of linear diophantine 

inequalities, 

X1 - 2x2 > - -2 (3-7) 

~2X1 + X2 > -4 ( 3- 8) -
2x1 + 3x2 > - 12 (3-9) 

x. > 0 (j = 1, 2) . (3-10) 
J -

Figure 3 represents this system graphically and indicates 

the progression of the above procedure in obtaining the 

point, 

x = 

[:] 



x • 0 
-0 -

Compute weiahin1 factors,· 
;,j (j • 1, ••• , N) for 
possible Dual Step 

Find aost 
violated 
constraint 

constraint "1" 

!o • !o • .!t 

~ • !:r • !o 

NONE 

STOP 

Output 
solution 
vector, !o 

NONE 

Find aost 
v.iolated 

constraint 

constraint "1" 

No feasible 
YES inte1er 

solution point 

Y!S 

HO 

Dual Step 
to satisfy 

constraint "1" 

JC.. • x 
.... ""Cl 

YES 

HO 

Figure 2. Flow Chart for Procedure for Finding 
A Feasible Lattice Point 
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X2 

i. 

5 • • ~ ...... • • • 
\ ........ 

........ 

(3-9) \ 

• • \ 
\ 

...... 

3 • • • 

Figure 3. Graphical Description of Example Problem 
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as a feasible lattice point in seven iterations. It is 

of interest to note that if the inequality (3-9) is 

perturbed to be, 

2x 1 + 3x 2 ~ 13 (3-11) 

then no feasible lattice point exists. Figure 4 shows 

the resultant solution space and demonstrates the 

occurrence of a cycle, detected at the nineteenth 

iteration, thereby indicating that no feasible lattice 

point may be found. 

Comparison with Other Procedures 

Garfinkel and Nemhauser (7) present two alternative 

procedures, developed by F. S. Hillier, for finding a 

feasible lattice point which satisfies a system of linear .. 

inequalities. Both procedures require the solution of 

a linear programming problem, x*, over the constraint 

set as a beginning. From this starting point, the 

procedures are as follows. 

The first procedure is essentially a search of the 

integral neighborhood of the continuous solution, x*. 

This neighborhood is continually increased until a 

feasible point is detected. The second procedure is, 

in some respects, similar to that proposed here. With 

this procedure, a lattice point, x 1 , in the integral 

neighborhood of x* is used to determine, 

M N 
E E MAX (b. - E . a. . x. , 0) . . 1 J 1J J 1=1 J=1 

(3-12) 



5 

3 

2 

0 

(3-8) 

8 • • " 
• 

' 
• 

• • 

• • 

• • 

1 3 4 5 

Figure 4. Graphical Description of Modified 
Example Problem With A Cycle 
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(i.e., a measure of the infeasibility of the point x 1 ). 

The procedure then seeks to drive I(x 1 ) ~ 0 by moving 

through successive neighboring lattice points, x 11 , 

of the current point ! 1 , with a new x 1 being established 

at the point _! 11 whose value I(x 11 ) is a minimum. 

The major advantage of the procedure proposed here 

over the two stated alternatives is that it does not 

require the solution of a linear programming problem en

route to obtaining a feasible lattice point. The 

disadvantage of this procedure relative to the two 

alternatives is that, if the problem is an integer 

linear programming problem, the alternative procedures 

yield a feasible lattice point which has a greater 

likelihood of being near the optimum integral solution 

point. 
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CHAPTER IV 

A TIME-SHARED ILP ALGORlTHM FOR STRICTLY 

LIMITED RESOURCE ALLOCATION PROBLEMS 

This.chapter presents an algorithm specifically 

developed to solve a particular class of optimization 

problems, referred to here as "strictly limited" 

resource allocation problems. Such problems take the 

form, 

Maximize: F = cT x 

subj e·ct to the restrictions, 

where f6r all i, j: 

A x < b 

xj > 0 and integer 

a .. > 0 
1J 

b. > 0 
1 

c. > 0 • 
J 

Problems of this form are most commonly encountered in 

a capital budgeting or knapsack context (in which A 

becomes aT), but also occur frequently where more than 

one resource is under such limitation. 

(4-1) 

(4-2) 

(4-3) 

(4-4) 

(4-5) 

(4-6) 

Although several general integer linear programming 

(ILP) algorithms are available which adequately solve 

such problems~ they represent characteristically large 
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codes of the batch processing variety. The algorithm 

presented here has been implemented with a relatively 

small code (175 executable CPS PL/I statements), designed 

specifically for the conversational character of time

shared computation. 

Foundation of the Procedure 

Of importance in the development of this procedure 

are certain geometric characteristics of the bounding 

polytope, (Po)N' constituted by (4-2) and (4-3), and the 

objective function surface. Primary among these is 

the observation that extremity coordinates of the 

feasible domain lie on the axial planar face constituents 

of (Po)N' and consequently the integral upper bounds of 

the problem variables cannot increase as the objective 

function surface, while attempting to maximize, traverses 

the polytope from its origin vertex. This being 

understood, it may further be observed that an implicit, 

sequential examination of these face constituents can 

be made to determine if a potential improvement in the 

objective function exists. That is, the feasible domain 

complementary to F(x 0 ) n (Po)N may be examined for a 

potential improvement in the objective function as 

follows. 

Define: max. = maximum constraint intercept with 
J 

the xj axis. 

u. 
J 

= integral upper bound on x .. 
J 



Then, for a potential improvement to exist by reducing 

the value of xk and increasing the value of x1 at any 

lattice extremity, 

> 

Although this does not ensure that such a move will 
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( 4- 7) 

improve the objective function, it does provide a means 

for ruling out those moves which will not. 

To more specifically outline how these observations 

may be utilized in obtaining optimality, consider the 

stepwise procedure shown in the following information 

flow chart (Figure 5). 

Description of the Procedure 

In brief, the procedure may be described as a 

sequential comparison, using (4-7) above, to establish a 

potential for improvement. If such a potential exists, 

the indicated tradeoff of values is made and a new 

solution point generated. The new point is then accepted 

or rejected as an improvement direction based solely 

on the value of the objective function at that point. 

The solution process by total contribution potential 

(T. = U. * C.) is intended to provide an initial means 
J J J . 

for creating as large an intersection [F(!0 ) n (Po)N] 

as possible at each iteration. This, in effect, assumes 

that the trace of F(~0 ) on the axial planar face 

constituents of (Po)N is most likely to reflect a 

maximal lattice point at an extremity of those 



kcad i•plicit upper 
bounds UTj for j•l, 
••• , n. 
Reset ZFACT • 1, 

Co•pute Uj and •oxj lor 
J•l, ... , n. 
Set ZFACT • D, 

-+ 

+- -
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Figure 5. IRESAL Procedure- -Information Flow Chart 
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constituents of greatest contribution potential. 

Of particular interest is the necessity for a 

re-analysis by column-rank reversal (i.e., ZFACT = 1) 

when implicit upper bounds are specified. In effect, 

these bounds may prohibit a feasible lattice extremity 

of the solution space from being reached on a first 

pass due to the resultant distortion in the geometric 

comparison of (4-7) and the means employed in generating 

a complete new solution point. This is especially 

true of problems which admit only binary solutions. 
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The second pass has the effect of forcing a re-analysis 

which admits these feasible points by a counter distortion 

of the comparison and solution process. 

Computational Experience 

This algorithm has been tested with many single 

and multiple constraint problems. Of special interest 

is a comparison of the solutions to the nine 

allocation test problems given by Trauth and Woolsey (33)~ 

These problems are described here for clarity. All 

nine problems have the following form: 

Maximize: F = 20x1 + 18x2 + 17x3 + 1Sx4 + 15x 5 + 10x 6 

+Sx1 + 3xa + Xg + X10 

subject to the constraints, 

30x1 + 25x2 + 20X3 + 18X4 + 17xs + llxs + Sx1 + 2xa 

+ Xg+ X10 ~bk 



x. E (O, 1), i = 1, ... , 10 
1 

where the nine values of bk are given in Table I. 

k: 

bk: 

1 2 

SS 60 

TABLE I 

CORRESPONDING VALUES OF k AND bk 

3 4 s 6 7 

6S 70 7S 80 8S 

8 

90 

These problems were solved by the method proposed 
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9 

100 

here and, for purposes of comparison, by a branch-and-bound 

mixed-integer programming algorithm (BBMIP). The results 

are given in Table II. 

The above problem associated with k = 6 provides an 

example of the necessity for a re-analysis by column-rank 

reversal. It may be observed that on the initial pass 

only three trial vectors were explicitly exa~ined. They 

are given with their corresponding objective function 

values below: 



TABLE II 

ALLOCATION TEST PROBLEM RESULTS 

b X1 X2 X3 x,. X5 X& X7 Xe X9 X10 F 

55 0 0 0 1 1 1 1 1 1 1 so 

I 60 0 0 1 1 0 1 1 1 1 1 S2* 

R 65 0 0 1 1 1 0 1 1 1 1 S7 

E 70 0 0 1 1 1 1 0 1 1 1 62 

s 7S 0 0 1 1 1 1 1 1 1 1 67 

A 80 0 1 0 1 1 1 1 1 1 1 68* 

L 8S 0 1 1 1 0 1 1 1 1 1 70* 

90 0 1 1 1 1 0 1 1 1 1 7S 

100 0 1 1 1 1 1 1 l 1 1 8S 

-- - - ---- -~----------------------------------------------- -- --
5S 0 0 0 1 1 1 1 1 1 1 so 

60 ·o 0 1 0 1 1 1 1 1 1 S2* 

B 6S 0 0 1 1 1 0 1 1 1 1 S7 

B 70 0 0 1 1 1 1 0 1 1 1 62 

M 7S 0 0 1 1 1 1 1 1 1 1 67 

I 80 0 1 1 0 1 1 1 1 .0 0 68* 

p 8S 0 1 1 0 1 1 1 1 1 1 70* 

90 0 1 1 1 1 0 1 1 1 1 7S 

100 0 1 1 1 1 1 1 1 1 1 8S 

*It is interesting to note the detection of alternate optima by 
applying solution techniques with different logic structures. 
A particularly useful result when viewed in a capital budgeting 
context. 
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sec 

34. 

64. 

57. 

61. 

36. 

39. 

73. 

S3. 

39. 

---
. 8 2 

.70 

.72 

.7S 

.72 

.67 

.7S 

.75 

.64 



so 

1 0 0 

1 1 0 

xt1 = 1 xt2 , = 1 xt s = 1 

O· 1 1 

0 1 1 

0 0 1 

1 0 1 

0 0 1 

0 0 1 

0 0 1 

F1 = 60, F2 = 65, Fs = 6 7. 

By applying the procedure, it is noted that moving from 

!.!,2 to xts permits no intermediate solutions containing 

xt(2) at any value but zero since it is implicity restrict

ed to be no greater than one, and any trade-off involving 

xt(2) drives the variable to zero. However, taking 

Xo = !!,3 after the first pass, it may be observed that 

on the eighth second pass iteration, xt(3) is driven 

to zero and xt(2) = 1 yielding the optimum solution 

as indicated in Table II. 

The time-shared algorithm developed here is 

intended to provide a convenient means for solving 

strictly limited resource allocation problems. Its 

justification lies in its low storage requirements (Le., 

only the current solution vector and one test vector are 

employed at each iteration) and small object code 



which make it amenable to time-shared computation. The 

wide disparity in execution times between the procedure 

developed here and the BBMIP algorithm reflect a 

difference in high speed as opposed to low speed core. 

This represents only part of the reason for a difference 

in execution times. It is apparent th~t this procedure, 

although of Smaller object code, is not as fast in 

obtaining results as the BBMIP algorithm principally 

because of the necessity for a reanalysis by column-
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rank reversal. The CPS PL/I code employed in implementing 

this procedure is presented in Appendix B. 



CHAPTER V 

INTEGER SEARCH WITH SIMPLEX DESIGNS 

This chapter addresses the problem of minimizing 

a convex, nonlinear function, 

F (x 1 , X2, ••• , xN) 

subject to the linear diophantine iestrictions, 

and 

N 
I: 

j=1 
a .. x. > b~ (i = 1, 

1J J - 1 ••• ' M) 

x. > 0 and integer (j = 1, •.. , N). 
J -

(5-1) 

(5-2) 

(5-3) 

A solution technique is proposed which employs a 

sequential search of lattice points based on the repeated 

construction of simplex vertices, S(N+i)" The technique 

is illustrated through an elementary example, then 

extended and critically analysed by application to a 

class of non-convex problems referred to as pseudo

Boolean optimization problems. 

Integer Nonlinear Programming (INLP) 

Until the last five years little attention has 

been given in the literature to the solution of nonlinear 

programming problems requiring integer solution vectors. 

This is due, in part, to the fact that such problems 

are not as commonly encountered in actual situations as 
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their linear counterparts; but in the main, the reason 

for an apparent lack of attention to this problem area 

is that either the problems themselves permitted an 

alternative linear formulation or there was insufficient 

expertise available for their solution, resulting in 

linearization and approximation. 

Recent advances in pseudo-Boolean programming (i.e., 

seeking the optimum solution vector whose components, 

xj' belong to the set {O, l}) by Hammer (16, 17, 18) 

and his associates have made available the basis for 

solving certain integer nonlinear programming problems 

by branch-and-bound techniques. The work of Taha (31) 

has provided additional capacity for minimizing concave, 

nonlinear functions over a convex polytope. Gisvold 

and Moe (10) have proposed a modified penalty function 

approach to the solution of mixed-integer nonlinear 

programming problems encountered in structural design. 

A characteristic most frequently encountered in 

examining the problems discussed by the above authors 

is that the functions they seek to optimize are, from 

a mathematical standpoint, neither convex nor concave. 

That is, they are either characterized by an indefinite 

Hessian matrix or are non-unimodal. 

A specific problem classification deserves mention 

since it precipitated the initial inquiry which led to 

the development of the technique proposed here. The 

problem is one of obtaining the optimum economic order 
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quantities (in integers) of several commodities under 

conditions of constraint. The problem is fundamental 

and has been traditionally solved as a problem in 

continuous variables, then rounded to obtain a solution 

in integers. In effect, an approximation of the most 

elementary kind was performed. This class of problems, 

unlike those previously mentioned, is characteristically 

representative of a strictly convex form. 

The preceding discussion is intended to serve as 

an introduction to the area of integer nonlinear 
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programming. The economic order quantity and pseudo

Boolean problems mentioned will be employed in the 

discussion and evaluation of the technique here developed. 

Foundation of the Procedure 

The procedure proposed here is a modification and 

extension of a technique first proposed by Spendley, 

Hext and Himsworth (29) and later modified by Nelder 

and Mead (25). As originally proposed, the technique 

employs the repeated construction of simplex designs, 

S(N+i)' to search for the minimum in continuous variables 

of an unconstrained objective function. To begin, an 

initial simplex is constructed in EN and the objective 

function evaluated at each vertex x .. A new vertex is then 
-1 

established by the following procedure. 

Define the centroid of the simplex, £, as 
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N 
£ = ( r x.)/N+l (5-4) 

i= 0 -l. 

and the distance from the vertex associated with the 

worst objective function evaluation, !o, to the centroid 

as, d = C - Xo. 

A reflection step is then taken by projecting the 

vertex, !o, through the centroid of the simplex some 

specified distance to a new vertex, x 1 , where 

x 1 = !o + (1 + k) * d. 

The reflected point, !o, is then deleted and replaced 

by the more favorable point, ! 1 , thereby maintaining a 

simplex construction. The technique continues in this 

fashion, varying the value of k and the size of the 

simplex until the optimum is attained. 

( 5- 5) 

(5-6) 

Difficulties encountered with the basic procedure 

led to refinements providing for acceleration, improved 

progression in valleys and on ridges, and variations 

in the basic simplex configuration (4). A major change, 

instituted by Nelder and Mead, provided for reflections 

not through the centroid of the entire simplex, but 

rather through the centroid of the remaining N points 

omitting the point to be reflected, !o· In this instance, 

N 
£ = ( r x.)/N 

i= 1 -l. 
( 5- 7) 

with x 1 being computed as in equations (5-5) and (5-6). 

An example of two and th~ee dimensional reflections using 

this procedure, with k = N-1, is given in Figure 6. 



/ 
/ 

/ 
/ 

x' ,p 

Xo !,2 

A Two Dimensional Reflection 

x' 

A Three Dimensional Reflection 

Figure 6. Example of Simplex Reflections 
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A more detailed description of these procedures is 

given in the above cited references and in Himmelblau (20). 

Of importance here.is the basic concept of employing a 

derivative free search with simplex designs. 

Reflecting to Lattice Vertices 

The procedure proposed here employs the basic 

strategy of the Nelder and Mead simplex search. Certain 

modifications in the strategy are employed to maintain 

the integrality of the simplex vertices, and provisions 

are made for dealing with the linear diophantine 

constraints should they become active. Before embarking 

on a description of the procedure, it is necessary to 

discuss the method employed in maintaining vertex 

integrality. 

Recalling the Nelder-Mead method, consider the 

following simplex reflection. Given that a simplex is 

established on lattice points in a space of four 

dimensions and that xo represents the vertex of the least 

desirable objective function value, the reflected point, 

x', is computed as follows. Defining the simplex 

vertices as, 

Xo = 1 ,x1= 

1 

1 

0 

1 ,!;2 = 0 

1 1 

1 1 

1 1 

the centroid for reflection is 

,_!3 = 1 

0 

1 

1 

,_!It = 1 

1 

0 

1 



and the distance from the reflected point to the 

centroid becomes 

-1/4 

d = c - ~o = -1/4 

-1/4 

1 

It is now readily apparent that the first attainable 

integral vertex along the line of reflection is reached 

by allowing the parameter k in equation (5-6) to equal 

N-1. The first attainable integral reflection point 

using centroidial reflections is then generalized to be, 
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x' = ~o + N * d. (5-8) 

For the above example, 

0 

x 1 = ~o + 4 * d = 0 

0 

4 

Having now established a means for making centroidial 

reflections to a lattice vertex an obvious difficulty 

presents itself. Observe that the indicated reflection 

requires a step which is, in the above example, N units 

in one of the component variables (i.e., x~ - Xoi. = 4). 

In effect, a centroidial reflection can force the search 



to cover a minimum neighborhood which omits consideration 

of lattice points in the immediate (unit) neighborhood 

of the original simplex. 

Recalling the two dimensional reflection illustrated 

in Figure 6, it may be recognized that a reflection 

through the centroid of edge vertices on the planar 

constituents· of the simplex provides an alternative 

reflection procedure which admits consideration of the 

unit lattice neighborhood of the vertices. As before, 

an edge reflection may be defined by the following. 

Let the centroid of the edge vertices be described 

by, 
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c = (x. + x. )/2 (5-9) 
-1 -J 

where (i, j) E (1, 2, ... ' N), 

then x' = 2 * (.£ - ,!o) + ,!o = 2 * c - ,!o . (5-10) -
For the above example simplex, by allowing i = 3, j = 4 

and ,!o as before, an edge reflection yields the point, 

2 1 1 

x' = 1 1 = 0 

1 1 0 

2 0 2 

In summary, two.basic reflection procedures are employed. 

The first, centroidial reflections, will be ut~lized in 

attaining the general neighborhood of the optimum lattice 

point by an acceleration mechanism to be described below. 

Once the general neighborhood is attained, edge reflections 

are utilized to descend on the optimum lattice point. 



Accelerated Reflections 

Considering now a centroidial reflection, let a 

step length, 1, be defined as the distance between Xo 
. -

and the .first' attainable lattice point along the 

centroidial line of reflection, x': 
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1 = !' - Xo. (5-11) 

A method is then desired for generating multiples of 

this step length to accelerate movement of the simplex 

toward the optimum. The Fibonacci sequence provides a 

.very compatible basis for such a method by virtue of its 

integer progression and rapid expansion characteristic. 

The sequence is generated by beginning with the 

numbers F(O) = 1 and F(l) = 1. Each subsequent number, 

F(i), is equal to the sum of its immediate two 

predecessors in the sequence. That is, 

F(i) = F(i-1) + F(i-2). (5-12) 

The sequence has the added advantage of starting slowly 

(the numbers F(l) through F(3) are only one unit apart) 

but then increasing rapidly (the number F(49) = 

12,586,269,025). By employing the Fibonacci sequence 

as multipliers of the step length, the procedure is 

accelerated as follows~ 

Let the centroidial reflection to x' be redefined 

as, x' = F(k) * (N * d) + !o (5-13) 

where initially k = 1. Then, if x'· has an associated 

objective function value better than that of !o and x' 



is also a feasible lattice point, then k is incremented 

by one and the reflection recomputed using (5-13). This 

method continues in like fashion until either the 

objective function value at x' is worse than at Xo or 

until an infeasible lattice point is attained. When 

this occurs, the simplex is re-established about the 

last, best, feasible reflection point. The acceleration 

procedure is then restarted (i.e., k = 1) and terminates 

when an x' is found to be either infeasible or of worse 

objective value when k = 1. At this occurrence, edge 

reflections are employed to examine a closer neighborhood 

of the simplex. 

Handling Constraints 
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Assume now that edge reflections are being employed 

in search of the integral optimum. The reflection process 

proceeds by projecting the worst vertex through the 

centroid of the two best vertices, with the new vertex 

replacing the worst. Each vertex is checked for 

feasibility either upon construction of an initial 

simplex or when the vertex is otherwise generated. If 

the vertex is feasible then an associated feasibility 

parameter for that vertex is set to zero, otherwise the 

parameter is given a value equi~alent to the lattice 

point feasibility parameter, vi' described in Chapter III. 

If at any step in the reflection process a simplex is 

obtained which is constituted by vertices whose 



feasibility parameters are all non-zero (i.e., a 

completely infeasible simplex), then the following steps 

are taken. 

First, the last feasible vertex is held and the 

vertices of the new, infeasible simplex, are ranked 

according to their feasibility parameters. That is, 

the most infeasible vertex is ranked last and the 

remaining vertices are ranked in descending order, 

xN-i to !o· Now, instead of reflecting to improve the 

objective function at a vertex, the criterion for 

reflection is to reduce the measure of infeasibility at 

a new vertex. Edge reflections are employed to return 

a vertex to the feasible domain defined by (5-2) and 

(5-3). Reflections continue until a new feasible vertex 

is attained which is not the last feasible vertex being 

held. An attempt is now made to establish a direction 

for objective function improvement along the active 

constraint. 

Let x' represent the newly generated feasible 
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vertex and,!o the last feasible vertex being held. Define 

the exploratory direction, !' as follows. 

0 = 

XI - !o if x' better than or (5-14) 

equal in objective function 

value to x 0 • 

x 0 - x'; otherwise. 

An exploratory point, !e' is then established at, 

!e = !o + o. (5-15) 



If the objective function is better at ~ and the point 

is feasible, then x 0 is set at ~ and the above step 

reapplied until a worse or infeasible ~ is attained. 

When this occurs the simplex is reconstructed about 

the new ~0 and the reflection procedure begins anew. 

If, on the other hand, x' is a better and feasible point 

relative to x 0 and ~ is not, then the simplex is 

constructed about x'. The vertices of the new simplex 

are then evaluated for objective function value and 

feasibility. If a better and feasible vertex exists on 

this simplex, then a new simplex is constructed about 

that vertex (in effect, the simplex slides in that 

direction). This process continues until no better 

vertex in the newly constituted simplex is found. At 

this point the procedure of edge reflections is 

restarted. 

Stopping Criteria 

When the attempt to reobtain feasibility above 
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yields points x' and x neither of which is an improvement - -e 
over the last, best feasible vertex, !o, a unit 

neighborhood search is employed first around ~o and then 

the best vertex point of the simplex containing ~0 • 

If neither search yields an improved feasible point, 

then the procedure terminates with the optimum integral 

solution vector indicated at ~o. If a better point is 

found, the simplex is reconstructed about this point and 



the procedure of edge reflections is restarted. 

Until now it has been assumed that unit simplex 

reflections in the basic procedure produced points of 

better objective function evaluation. If such is not 

the case, then the following occurs. Rather than 

reflecting through the centroid of the two best vertices, 

the second best vertex is replaced by the next best 

and a new edge reflection is made. If this vertex is 

an improvement, then it replaces the reflected vertex 

and the procedure continues as before. Otherwise, the 

best vertex is maintained and the next vertex in the 

ranking employed with it to make an edge reflection. 

This process continues until either a vertex better than 

the reflected vertex is found or until the best vertex 

has been paired with the remaining vertices yielding no 

improvement. When the latter occurs, the same unit 

neighborhood search is employed as with the case of 

x' and x being worse than x 0 above. Again, if no better - -e -
point is found then the procedure terminates with the 

best feasible vertex of this final simplex indicated as 

the solution point. 

The preceding description illustrates the major 

aspects of the procedure proposed here. A more unified 

description is given in the following information flow 

chart (Figure 7). The PL/I code employed in implementing 

the procedure is given in Appendix C. To clarify this 

description, consider the following elementary example 
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1 

2 

Conotruct si•plex •bout on l11lthl 
fcal'ible vertca and_ co•pute 
ahjective function value at each 
vertex. Rank vortlcos by obj. value: 
! 1 • but, !fl•I • worn 

Accelerate centroidhl reflections 
usinc Fibonacci sequence until 

Rotate eds• rdloction1 In 
search of !I bettor than 

l!H+1 • infusible or worH x1 is 
1en1r1tod for an F(lf • 1. !l"(!1•!jl-!fi+1; j•3, .... , N. 

Eds• lie flectlons: 

!.1 • C!1 • !z) • !fl•l 

Co•puto obj value at x1 an4 
associated fusibility indicator 

NO 

Replace !fl•l by ! 1 •• 
Rank now •l•pl•• · 
venicH 

3 Surch unit neishborhood 
of best, feasible vertex 
and bHt vortex for a 
better feasible point, 

!ft 

NO 

Hold last but feasible 
vertex C!p) and rank 
now vertices by d•sreo 
of infeasibility 

Ulin1 !fl as the 
initial vertex, 

Go to CD 

Construct si•plex about !.l and 
evaluate vertices. If better, 
feasible vertex obtains, reconstTuct 
about it end repeat. ElH 10 to 

YES NO 

@ 

!• • last• best 
fusible vertex 

Make eds• reflection• to 
obtain fusible !1 I !p· 
COllpuu !a • !p ~ ! 

Us ins !a as the 
initial vortex, 
Go to (!) 

Figure 7. Information Flow Chart for Integer 
Search With Simplex Designs 

65 



developed to illustrate in more specific detail the 

particulars of the proposed technique. 

Example Problem 

Consider the problem of minimizing the function, 
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(5-16) 

subject to the linear diophantine restrictions, 

2x1 - 10x2 > - 20 

-3xi + 2x2 > -12 

and X1, X2 > 0 and integer. 

(5-17) 

(5-18) 

(5-19) 

The problem and the progression of this procedure in 

obtaining the optimum are shown graphically in Figure 8. 

The starting simplex is constructed about a feasible 

lattice point, point 1, with points 2 and 3 being 

generated by equation (5-20), 

where fl. = 
J 

i = l; k = 2, 3; j = 1, 2. 

ll;j=k 

O; otherwise 
(5-20) 

The simplex vertices are then ranked by objective function 

value (F(~1) = O, F(~2) = -7, F(x3) = -14) and the worst 

point (~ 1 ) is reflected through the centroid of the 

remaining two yielding ~4 as, 

[~] F(~4) = -21. 

Since ~4 is better than x1 and is feasible, accelerated 

reflections begin and points 5 and 8 are generated by, 



Xz 
(5-18) • • • • • 

4 • 
( 5-17) 

• 70::: 'O:::: ' n--------~ ,., ~ • 

• • 
/ 

/ 
/ 

3¥... '+// • • • • • 
/ 

0 le!( )o2 • • _, • • • .. 
2 

Simplex reflection 

Neighborhood search 
Simplex edges 

6 

o Tested point 

• Untested point 

Figure 8. Integer Search Example Problem 
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Gl 
F (_!s) = -36 ; 

Xe = 3*(x~ - X1) + X1, F(!e) = -45. 

Since point 8 is infeasible the acceleration is temporarily 

halted and a new simplex is constructed about the last 

best point along the line of reflection (_!s). Points 

6 and 7 are generated using equation (5-20) yielding the 

new simplex vertices, 

Xs = [; l Xs = r: i 
with objective function values, 

F(_!s) = -36, F(xs) = -39, F(x1) = -42. 

The acceleration process is restarted by reflecting point 

5 through the centroid on points 6 and 7 but stops 

immediately when point 8, an infeasible point, is 

reobtained. Now edge reflections (which are the only 

reflections in a two dimensional space) are begun. Point 

8 is held as a better vertex replacing point 5, since 

there still remains a feasible vertex (point 6); 

,!e = [:J F (,! ) = -45. 

Point 6, now the worst vertex, is reflected through the 

centroid of points 7 and 8 to point 9. Point 6 is 

replaced by point 9, but since the resulting simplex is 

completely infeasible point 6 is retained as the last 

best feasible vertex. The vertices of the infeasible 

simplex (points 7, S, 9) are now ranked according to their 



degree of infeasibility, 

v(x9 ) = 16, v(!1) = 6, v(!e) = 4, 

and edge reflections are made in an attempt to reobtain 

a feasible vertex other than the last best feasible 

vertex (point 6)·. Point 9 is reflected through the 

centroid of points 7 and 8 thereby reobtaining point 10. 

Point 10 replaces point 9 and point 7 is reflected 

through the centroid of points 10 and 8 yielding point 

11. Point 11 replaces point 7 and, since it is a 

feasible vertex whose objective function value is better 

than that of point 6 (F(!11) =-40), a! step is taken as 

follows, 

!1 2 = (2 *!1 l - !s) = , F(x12) = -39. 

Since point 12 is worse than point 11, but point 11 is 

better than point 6, a new simplex is constructed about 

point 11 using equation (5-20), 

F(X11) = -40, F(X12) = -39, F(!13) = -46. 

Edge reflections are begun again, point 12 is reflected 

to point 14, point 11 is reflected to point 15 and once 

more the simplex is driven infeasible. Holding point 11 

as the last best feasible vertex and ranking the new 

infeasible simplex vertices by degree of infeasibility, 

V(!1s) = 14, V(!14) = 4, v(X13) = 2 . 
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On reobtaining feasibility as before, point 12 is obtained 



again. Now a i step is taken to point 10, a worse point 

than point 11 is obtained. Since no better vertex than 

the last best feasible vertex (point 11) is found a unit 

neighborhood search about point 11 and point 13, the 

best vertex on the simplex containing point 11 (i.e., 

vertices 11, 13, 14) is made. The neighborhood points 

which are investigated (x) are obtained using equation 

(5-21), 

70 

x. = x .. + 1 
J 1J 

j = l; •.. , N (5-21) 

i = 11, 13. 

The search about point 11 yields no better point than 

point 13; however, on searching the unit neighborhood of 

point 13, a better point is found (point 16). A new 

simplex is constructed about this point using equation 

(5-20), 

!,1 6 = , x l 7 !,1 8 = 

F (!, 1 6 ) = - 4 5 , F (!, 1 1) = - 4 2 , F (!, 1 a ) = - 4 7 • 

Once again edge reflections are begun and the simplex 

is driven infeasible (points 18, 19, 20). This time, 

after reobtaining feasibility at point 17, making a i step 

to point 13 and searching the unit neighborhood of point 

16 (the last best feasible vertex) and point 19 (the 

best vertex on the simplex containing point 16), no better 

feasible vertex is found and the procedure terminates with 

the optimum integral solution: 



x* = 

[: J 
F(x*) = -45. 

Computational Experience 

As mentioned previously, the development of this 

proposed technique was precipitated by a desire to 

obtain the optimum order quantity, in integers, in an 

inventory control problem subject to constraints. In 
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this regard, consider the following problem from Taha (32). 

As stated the problem is to obtain the optimum 

order quantities of three items whose annual demands 

are known and constant. The items are assumed 

replenishable instantaneously with no shortages allowed. 

In addition, there exists a storage limitation on the 

space available for inventory. Described mathematically, 

the problem is to minimize the variable inventory cost, 

F = 20 + 0.15x1 + 20 + 0.05x2 + 45 + O.lOx3 
X1 X2 X3 

subject to the storage limitation, 

with x 1, x2, X3 ~ 0 and integer. Recall that the 

traditional procedure now requires a reformulation in 

the Lagrangian context as, 

minimize L = 20 + 0~015x1 + 20 + 0.05x2 + 45 + 0.10x 3 

X 1 X2 X 3 

where it is assumed (and may be verified) that the 

constraint is ~ctive. The procedure is then to search 



for an optimum value of A, determining an associated ~ 

by the usual unconstrained procedure at each test value 

of A. This accomplished, the optimum continuous solution 

is given as: 

A • 0.3, x . 

[ 
6. 7 ] 
7.6 

10.7 

Assuming that the optimum integer solution lies in the 

unit neighborhood of the continuous optimum, there are 

now 26 possible feasible integer combinations to be 

checked before the optimum is assured. 

By applying the procedure suggested here, the 

optimum integer solution, 

x* = F(~*) = 12.31 

is directly obtained (program execution time = 1.41 

seconds). It should be noted that, unlike the above 

example, the integer optimum to such problems does not 

always lie in such a convenient neighborhood of the 

continuous optimum. In such a case the procedure 

developed here becomes even more desirable. As a 

slightly more complex example, consider a similar· 

problem, given in Hadley and Whitin (15), of minimizing 

F = 50000 + 2x1 + 37500 + 10x 2 + 200000 + Sx 3 

X1 

subject to the limitation on investment in inventory, 
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20x1 + lOOx2 + 50xs ~ 14000. 

The optimum integer solution given in the above reference 

with A = 0.091 is 

x = [l::] 
145 

F(!,) = 4064. 

Again by the procedure suggested here, the_ optimum 

integer solution is found to be: 

x* = , F(!,*J = 4059.25. 

Having achieved a measure of success in solving the 

strictly convex economic order quantity problems, an 

attempt to extend the procedure to problems of a less 

desirable mathematical structure was made. 

In particular, the procedure was tested on several 

pseudo-Boolean optimization problems. Hammer and 

Rudeanu (18) demonstrate that numerous problems in 

operations research, graph theory and combinatorial 

mathematics can be brought to the form of optimizing 

an unconstrained pseudo-Boolean function (in effect, 

a nonlinear objective function subject to the restriction 

xj E {0,1}; j = 1, ••. , N). Such being the case, the 

ability of the proposed technique to solve such problems 

would add greatly ·to its generality~ Consequently, the 

technique was applied and the following results obtained. 

Several problems similar in form to that given 
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here were attempted with an equivalent measure of success. 

Consider the problem, fro~ Saaty (26), of minimizing 

subject to the restriction x. E {0,1}; j = 1, ... , N. 
J 

The optimum solution, 

x* = 1 

1 

1 

0 

1 

F(x*) = -9 

being attained by the program in Appendix C with an 

execution time of 2.09 seconds, beginning the search with 

the origin as an initial vertex. The form of this problem 

becomes important when considering the following problem 

for which the procedure failed to initially produce the 

optimum, again starting with the origin as an initial 

vertex. 

The problem, from Hammer and Peled (17), is to 

minimize, 

and subject to the binary restriction 

x. E {0,1}; j = 1, .•. , N. 
J 

Here the non-convexity of the objective function and 

limited feasible domain exact their toll on the procedure. 



It is readily observed that, on constructing the simplex 

about the origin, no distinguishable vertices exist. 

That is, unlike the preceding example which contained 

linear terms that provided improvement vertices, the 

above problem contains no such terms and consequently 

provides no such vertices. In fact, centroidial and 

edge reflections also fail to produce a feasible 

improvement direction, and the procedure terminates with 

the origin indicated as the optimum. It. is interesting 

to note, however, that if the simplex is constructed 

about the point ~ = l with constituent vertices lying in 

the feasible domain, the optimum is attained at, 

x* = 

1 

1 

0 

1 

0 

1 

0 

0 

0 

0 

F(~*) = -15. 

Unfortunately, even with this modification, the 

execution time required to obtain this solution was far 

inferior to that given in the above reference for a 

branch-and-bound technique designed specifically for 

such problems (i.e., 11.46 seconds as opposed to 0.90 
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seconds). 

Although the above modification did enable the 

optimum to be ~ttained, similar adjustments fail to 

produce optima with other such functions where the 

feasible domain is more rigidly restricted (additional 

constraints above the {0,1} restrictions are present) or 

where the objective function is not only non-conv~x but 

exhibits finite discontinuities. 

In summary, it may be stated that the procedure 

developed here works well on functions. which admit a 

feasible domain of distinguishable vertices attainable 

with edge or centroidial reflections from the initial 

simplex. However, the procedure bogs down immediately 

without the presence of an initial improvement direction 

existing in the immediate feasible domain about the 

initial simplex. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

This research demonstrates that certain fundamental 

concepts in N-dimensional geometry can be employed as 

a basis for the development of heuristic search 

techniques applicable to integer programming problems 

subject to linear diophantine inequality constraints. 

Specifically, the following are the basic conclusions 

of this research. 

In Chapter III it was stated that the coefficients 

of a constraint, in greater-than or equal-to form, may 

be interpreted as components of a vector normal to that 

constraint and pointing inward to the feasible domain 

defined by the constraint. This geometric interpretation 

provides the basis for the development of a procedure 

for finding a lattice point which satisfies a system of 

linear diophantine inequality constraints. In essence, 

the procedure moves toward a feasible point by strategically 

summing the normal vectors given by the constraints 

(i.e., moving in a direction indicated by a normal) until 

a feasible lattice point is found or until the procedure 
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begins to cycle around the feasible domain. It should 

be noted that the occurrence of a cycle does not guarantee 

that no feasible lattice point exists. In this regard, 

one should recognize that more than one constraint may 

be equivalently the most violated at a particular 

intermediate point. The procedure developed here will 

select only one of these constraint normals (and the same 

one at every such occurrence) to employ in search of a 

feasible lattice point. This fact can lead to the 

occurrence of a cycle if the wrong normal happens to 

be selected, even though a feasible lattice point exists. 

As a final remark, it should be observed that the ability 

of this technique to find a feasible lattice point is 

much more dependent on the configuration of the bounding 

polytope than on the number of variables or constraints. 
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For example, if the constraint ~ ~ ~ ! is the only constraint 

which bounds the feasible domain away from the origin and 
T a = 1, then if xo = l is a feasible lattice point the 

procedure suggested here will obviously produce the point, 

x 0 , in one iteration regardless of the number of variables 

or other constraints. 

In Chapter IV the integer solution to strictly 

limited resource allocation problems with linear 

diophantine objective functions and constraints was 

examined. It was demonstrated that a geometric 

interpretation of the constraint inequalities and objective 

function hypersurface provides a useful basis for the 



development of a solution technique for such problems. 

As a major consequence of this interpretation, the 

resultant solution technique is shown to be of small 

object code requiring limited storage and therefore 

easily implemented in a time-shared computational 

environment. 

In Chapter V it was shown that the basic technique 

of a search with simplex patterns can be modified to 

obtain the optimum integer solution to nonlinear 

objective functions subject to linear diophantine 

inequality constraints. However, owing to the fact that 

such a technique is a rudimentary steep descent procedure, 

it fails to obtain optima without the presence of a 

feasible improvement direction in the unit neighborhood 
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of the minimum simplex configuration (i.e., the unit 

simplex). It may further be concluded that an inherent 

partitioning characteristic of this procedure can be 

utilized to obtain the optimum solution to certain pseudo

Boolean problems (e.g., the problem from Hammer and Peled). 

By constructing the initial simplex about the point 

xo = 1 and employing the process of edge reflections 

and neighborhood searches described previously, the 

procedure partitions out the constituent variables (by 

setting them equai to zero) with undesirable effect on 

the objective function. 



Recommendations 

It is recommended that the approach taken in this 

research, of interpreting mathematical programming 

problems in a geometric context, be investigated as a 

means for developing other solution techniques which 

are amenable to time-shared computation. It is believed 

that this computational environment is advantageous both 

for its ease of accessibility to many users artd inherent 

desirability as an educational medium. 

A recommendation for modification of the simplex 

search proposed here can be made in the context of a 

specific problem. This modification incorporates the 

idea of edge reflections along with that of partitioning 

the feasible space. The specific problem is one of 

allocating police patrol cars to areas within a precinct. 

Blank (3) discusses the development of this problem and 

employs an algebraic solution by pseudo-Boolean methods. 

Mathematically such problems are, in form, similar 

to the following problem with finite discontinuities. 
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7 
Minimize F = I: 

i= l 
r. + (r. - r) 2 * (r. 1 0) 

1 1 1 
(6-1) 

subject to the restrictions, 



X1 + X2 > 1 

X1 + X3 + X4 > 1 

X2 + X3 + X4 + Xs > 1 

X4 + Xs + X7 > 1 

X3 + Xs + X7 > 1 

X1 + X2 + X3 + X4 + Xs + Xs + X7 < 3 

X1 + X2 +2X3 + 2X4 +2xs + Xs + X7 < 5 

and xj e:·{O,l}; j = 1, ... , 7. 

Here the variables, xj, represent the assignment of a 

patrol car to an area and the variables, ri, represent 

distance parameters defined as: 

r1 = l.3X1 + 0.3x1 X2 X3 - O.Sx1 X3 - 0.6x1 X2 

r2 = l.Sx2 + 0.3x1 X2 X4 -O.Sx1 X2 - 0. 8.X2 X4 

r3 = 2X3 + 0.4X3 X4 Xs - 0. 7x 3 Xs - 0.9X3 X4 

r4 = 2.2X4 + 0.6X3 X4 Xs + 0.4X3 X4 X7 + 0.7X4 Xs X7 

- 0.9X3 X4 - 1. lX4 Xs - X4 X7 - 0.4X3 X4 Xs 

rs = Xs - 0.3xs X7 - 0 .·2x4 Xs 

rs = 0.8xs - 0.2xs X7 
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(6-2) 

(6-3) 

(6-4) 

(6-5) 

(6-6) 

(6- 7) 

(6- 8) 

(6-9) 

X7 

The method proposed for further investigation may best be 

described in the following stepwise fashion. 

Step 1: Initialize a simplex about the point ~o = !, with 

~k = Xo + £_k 

where 

for k = 1, .•• , N 



Step 2: Compute the objective function value, F(k), 

and £easibility parametet, V(k), as in Chapter V 

fcir each vertex. If a vertex satisfies the 

lower bound restrictions, (6-2) through (6-6), 

then let the parameter lv(k) = 1 otherwise 

lv(k) = O. 

Step 3: Rank vertices by objective function value. 

Step 4: Select first as the vertex, xi' the one having 

the best objective function value and having 

the parameter lv(i) = 1. Select as a second 

vertex, x., that vertex with the best objective -J . 

Step 5: 

function value among those whose feasibility 

parameter, V(j) , is a minimum and having the 

parameter lv(j) = l; where i ~ j. 

If x. = x. and V(i) = O, or if V(i) = 0 and 
-1 -J 

no lv(j) = 1 is found then stop with x. as 
-1 

the solution. 

Step 6: Reflect x 0 through the edge constituted by 

x. and x . to x' . 
-1 -J 

Step 7: Partition the space by elimination of the 

constituents of x' having zero elements. Th~t 

is, reduce the feasible space by eliminating 

from further consideration the constituent 

dimensions, k, having xk' = 0. 

Step 8: Utilizing ~o = x' partitioned, return to Step 1. 

A time-shared code of this procedure was tested 

on the above problem yielding the optimum solution as 
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given by Blank, 

x T = ( 0, 1, 0, 1 , 0, 0 , 1) , F (!_) = 3. 2 6 6 7. 

It is further suggested that the above procedure 

be validated and compared with the branch-and-bound 

algorithm of Hammer and Peled (17) for problems as 

above. 
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APPENDIX A 

CODE FOR FINDING A FEASIBLE LATTICE POINT 

07 



STMT LEVEL NEST 
l 

2 
3 ,. 
5 
6 
7 
8 
9 

10 
·11 
12 
1l 
l'> 
15 
16 
17 

18 
19 
20 
21 
Zl 
2t. 
25 

26 
27 

l 
1 
1 
1 
l 
1 
l 
1 

1 
1 
1 
1 
1 
1 
1 
l 

l 
l 
l 
1 
1 
1 
l 

l 
1 

1 
l 
1 
l 

1 
1 
2 
z 
2 
1 

PROGRAM_Z: PROCEDURE OPTIONS IMAINI ; 

I• ••••••••••••••••••••••••••••••••••••••••••• •I 
I• FINDING A FEASIBLE LATTICE POINT SATISFYING •I 
I• A SYSTE'I OF LINEAi!. DIOPHANTINE WEQUALITIES •I 
I• REMARKS: ,. 
I• A. CONSTRAINTS HUST BE IN •>•" FORM •I ,. 6. INPUT: ., 
I• l. NUMBER OF CONSTRAINTS IHI ., 
I• NU'1BER OF VARIABLES INI ., 
I• NUMBER OF ITERATIONS BEFORE ., 
I• TERMINATION llTERI ,. 2. CO~STRAllllT COEFFICIENTS (IAll1Jll ., 
I• FOR EACH CO~STRAINft SEPARATED BY ., 
I• COH14AS ., ,. 3. RIGHT HAllD SID~ I 181111 OF EAC-i •I 
I• C01'STPAllllT IMMEDIATELY FOLLOWl'iG ., 
'" COEFFICIENTS AND ON SEPARATE CARO ., 
I*****••••••*•••••••••••••••••••••••••••••••• •I 

DECLARE H FIXED, N FIXED 
CE CUI RF l F IXEO ; 
OECLAR.E I TER FIXED ; 
DECLA~E IAI 10,201 FIXED, 191101 FIXED, IBTllOI FIXED 
DECLARE XIZOI FLOATl161 ; 
DECLARE XTl201 FLOATl161 ; 
DECLARE LH FIXED, XHI ZOI FLJATI 161 
DECLARE CSUMC2 0 I FLOAT 1161 

GET LIST C M,N, ITER I ; 
PUT PAGE ; 

PUT EDITl'CONSTRAlNING RELATIONSHIPS'llSKIP1XIZOl,A,SKIPI 
DO l=l TO H ; 
GET LI STll lAll ,JI 00 J•l TO NI I 
GET LIST I 181 111 ; 

PUT EOITlllAll,JI 00 J•l TO Nii' >•'olBlllHSKIPtl'O Fl610l1A1FllltOll; 
ENO ; 

I• •••• COMPUTING WEIGHTING FACTORS FOR DUAL STEP •••• •I 

00 J• l TO N ; 
CSUHIJ l•O, ; 
00 I "I TO 14 ; 
IF IAI (,JI >s 0 THEN GO TO T2 
CSUMIJlsCSUHIJ l•IAl l1JI 

T2: EM> ; 
ENO ; 

, ...................................................... , 
I* ******************* INITIAL STEP •••••••••••••••••• •I 

X1H•l•O. ; 
IBTl•l•IBC*I ; 

00 
00 



STMT LEVEL NEST 

28 
29 
30 
32 
33 
3't 
35 
36 

37 

38 

40 
"l 
'tZ 
43 
44 
't6 
48 
49 
50 
51 

52 

54 
56 

57 

59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 

71 

72 

1 
1 
l 
l 
1 
l 
l 
l 

l 

l 
1 
1 
l 
l 
1 
l 
1 
l 
1 

l 
1 

l 
l 
l 
1 
l 
l 
l 
l 
l 
l 
l 
l 

1 

2 

l 
1 

l 
l 

KSTEP=l ; 
CHL FIND 114,IBT,Ll ; 
IF L=O THEN G:l TO AN SwER 
CALL DIRECT IN,L,IA,IB,XI ; 

PUT SKIPI 21 ; 
PUT LISTl'VARIAaLE ASSIGNMENTS AT ITE~ATION •,KSTEPI 
PUT EDITllXIJI DO J=l TO NII ISKIP.CNllF(4,0l,Xlllll 

XTl•l=Xl*I ; 

I* ************************************••••••••••••••• •I 

Tl: KSTEP=KSTEP•l ; 

I• ************** ITERAT 10:>1 COUNT CHECK ************** *I 
tf KSTEP>ITER THEN GO TO ITERCOUNT ; 

I* *************************************************** •I 

DO I= l TO M , 
IBT 111 =I Bl I I -SUI! I IA I I,* I *XI •I I 
END ; 
CALL FINO IM,IBT,ll ; 
IF L=O TH~N GO TO ANSllER , 
IF MOOIKSTEP,21~=o THEN XHl•l=Xl*I & LH=L; 
CALL DIRECT IN,L,IA,18, XI ; 

PUT SKIPl21 ; 
PUT LISTI 'VARIABLE ASSIGNl'IENTS AT ITERATION ',KSTEPI 
PUT EDIT llXIJI DO J=l TO NII IS<IP,(NllFl4,0l ,XI 1111 

I• **CHECKING FOR A CYCLE - NO FEASIBLE LATTICE PT ** *I 
IF Xl•l=XTl•I THEN GO TO INFEAS ; , ..................................................... , 

I• ***********CHECKING FOR AN OSCILLATION*********** •I 
IF Xl•l=XHl•I THEN CALL DJALILH,H,N, IA, 1s,csu11,x1 ; 

EL SE G 0 TO Tl ; 
I**************************************************** •I 

XTI * I= XI *I ; G 0 TO Tl ; 

ITERCOUNT: PUT SKIPIZI , 
PUT EDITl'ITERATION COUNT EXCEEDED' llSKIP,AI ; 
GO TO OUT ; 

INFEAS: PUT EDIT1 1 •u NO FEASIBLE INTEGER SOLUTION ***'llSKIP121,U; 
PUT E<llT I 1 'lU'4BER OF ITERATIONS s ',KSTEPI ISKIP,A,Fl4o011 ; 

GO T 0 OUT ; 
ANSWER: PUT SKIPIZI ; 

PUT EDIT I'---- SOLUTION VECTOR ----'I ISKIPl21oXl201,AI 
DO IV=l TO N ; 
PUT EOITl 1 XI' olVr' 1"' ,XI IVll ISKIP,XIZ51,A,Fl3,0l,A,Fl8o011 
END ; 
PUT EDIT ('NUMBER OF ITERATIO'lS" •,KSTEPI ISKIPoAoFlltoOll 

FINO: PROCEDURE IMolBToll ; 
I*** FINDING '10ST VIOLATED CONSTRAINT** •I 

DECLARE H FIXED, IBTI 101 FIXED, l FIXED ; 00 
'-0 



STl'T LEVEL NEST 

73 
74 
75 
77 
79 
80 
81 

82 

83 
84 
85 
86 
87 
88 
89 
91 
92 
93 
'l~ 

'l6 

97 

98 
'l'l 

100 
101 
102 
103 
105 
107 
109 
110 
11 l 
112 
114 
115 

116 

2 
2 
2 
2 
2 
2 
2 

.2 
2 
z 
2 
2 
z 
2 
2 
2 
2 
2 
2 

2 
2 
2 
z 
2 
2 
2 
2 
2 
2 
z 
2 
2 
2 

l 
l 
l 

l 
l 
l 

1 
1 
l 
1 
1 

ITEST,L=O ; 
DO 121 TO M ; 
IF IBTI II <• ITE·ST THEN GO TO Fl 
L=l ; ITEST=IBTlll 

F 1: ENO ; 
RETURN ; 
ElllO Fl NO 

DIRECT: PROCEDURE IN,Lr IA, IB,XI ; 
I• •• MOVING NORMAL TO MOST VIOLATED CONSTRAINT **•I 

DECLARE N FIXED, L FIXED; 
DECLARE 1All0r201 FIXEOt 181101 FIXED ; 
DECLARE XIZOI FLOATl16l 

01: SCALE=O ; 
Xl•l=Xl*l•IAIL,•I ; 
DO J=l TO N ; 
IF XI JI >=SCALE THEN GO TO 02 
XI JI =SCALE ; 

02: END ; 
IF IBIL1-SUMllAIL1*l*Xl*ll>O THEN GO TO 01 
RETURN ; 
ENO DIRECT ; 

DUAL: PROCEDUREILH1M1N1IA1IB1CSJM1XI 
I* ** DUAL STEP TO ELIMINATE OSCILLATION•• •I 

DECLARE LH FIXED, M FIXED, N FIXED ; 
DE'CLARE IAl10t201 FIXED, 181101 FIXED, Xl201 FLOATl161 
DECLARE CSUMl201 FLOAT1l61 ; 
KzO ; 
00 J=l TO N ; 
IF IAILH,J I <= 0 THEN GO TO OUl 
IF K=D THEN GO TO OU2 ; 
IF CSUMIJI <2 CSUHIKI THEN GO TO OUl 

OUZ: K=J ; 
OUl: END ; 

XIKl=XIKl+CEILllBILHl-SUHllAILH,•l•Xl*ll/IAILK,Kll 
IF XIK I < O. THEN XIKI • Oo ; 
RETURN ; 
ENO DUAL 

OUTI ENO PROGRAM_2 

l.D 
0 
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CODE FOR IRESAL PROCEDURE 
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1. /• ********************************************~································ */ 
2. /• INTEGER RESOURCE ALLOCATION ALGORITHM */ 
3. /* Maximization context for linear objective function with"<•" constraints. •/ 
4. /• Program restrictions: . •/ 
5. /• 1. All aCl,J) greater than or equal to zero. •/ 
6. /• 2. Al 1 b( I), c(j) greater than zero. •/ 
7. I• ******************.~****~***·*~*****~··~********************************••••••• */ 
8. DECLARE M DECO), N DECO); 
9. PUT EDITC 1 Enter the number of constraints (M) and the number of variables (N). 1 )(SKIP,A); 

10. GET LIST(M); 
11. GET LISHN); 
12. DECLARE A(20,20) DEC(8),B(20) DEC(8),BTC20) DEC(8),x(20) DEC(8),xt(20) DEC(B); 
13. DECLARE c(20) DEC(8),col (20) DEC0),U(20) DECC8), TC20) DECC8); 
14. DECLARE maxC20) DEC(9); 
15. DECLARE UTC20) DECC8>; 
16, T,U,c•O; 
17. col•O; 
18. B"O; 
19. A•O; 
20. PUT EDITC'Enter the coefficients of each constraint followed by the right hand slde'><SKIP,A); 
21. PUT EDITC'of that constraint, one constraint at a time as requested. 1 )(A); 
22. DO J"l TO M; 
23. DO l"l TON; 
24, GET LISTCA(j,1)); 
25. END ; 
26. GET LISTCB(j )); 
27. END ; 
28, PUT EDITC'Enter the coefficients of the objective function as requested. 1 )(SK1P,A); 
29, DO i=l TON; 
30, GET LISTCcCi)); 
31, END ; . 
32. /• UPPER BOUND COMPUTATIONS •/; 
33. DO j=l TO N; 
34. maxl,max2=C; 
35, DOi•lTOM; 
36. IF A(i,j)=O THEN GO TO sklpl; 
37. tstl•BCl>IACl,j); 
38. maxl•tstl; 
39. GO TO skip2; 
40. sklpl: tstl•lOOOOO; 
41. skip2: IF i•l THEN GO TO sklp3; 
42. IF tstl>•tst2 THEN GO TO last; 
43. sklp3: tst2atstl; 
44. last: IF maxl<r.iax2 THEN GO TO next; 
45. max2•maxl; 
46. next: END ; 
47. U(j )•TRUNC(tst2); 
48. max Cj)•CE IL (max2); 
49. ENO ; . 
SD. PUT EDITC'lf any Implicit upper bounds exist enter a "l" for ZFACT; otherwise enter a "O".'><SKIP,A); 

\0 
N 



.51. 
52. 
53. 
54. 
55. 
56. 
57. 
5a. 
59. 
60. 
61. 
62. 
63. 
64. 
65. 
66. 
67. 
68. 
69. 
70. 
71. 
72. 
73. 
74. 
75. 
76. 
7 7. 
78. 
79. 
80. 
81. 
82. 
83. 
84. 
85. 
86. 
8 7. 
8a. 
89. 
90. 
91. 
92. 
93. 
94. 
95. 
96. 
97. 
98. 
99. 

100. 

NOW: 

sklp4: 

I astl: 

tryO: 
tryl: 

try2: 

GET LISTCZFACT); 
IF ZFACT•O THEN GO TO NOW; 
PUT EDITC 1 Enter the Implicit upper bounds as requested. 
PUT EDIT( 1 bound enter a value of 10000.')CA); 
DO zd"'l TO N; 
GET LISTCUT(zd)); 
END ; 
DO ze•l TO N; 
U(ze)=MIN(U(ze),UT(ze)); 
END ; 
/• *•********************** •/; 
T•U•c; 
/* COLUMN REARRANGEMENT BY TOTAL CONTRIBUTION •/; 
DO j •l TO N; 
DO Jj •l TO N; 
IF jj•l THEN GO TO sklp4; 
IF TCjj)<test THEN GO TO lastl; 
IF T(jj)-•test THEN GO TO sklp4; 
IF c(jj)<cCcol(j)) THEN GO TO lastl; 

. test•TCjj J; 
col(j)•jj; 
END ; 
TC col Cj JJ•O; 
ENO ; 
I• ******************************************* •/; 
BT=B; 
obj l=O; 
xt,x=O; 
xt(col Cl))•U(col Cl)); 
hi•l; 
lo"'l; 
DO k•l TO M; 
BT(k)=BTCk)-A(k,col(l))•xtCcol(l)); 
END ; 
I• ***** •/; 
CALL SOLSET; 
I• ***** •/; 
x•xt; 
BT•B; 
obj l•obj 2; 
hl•O; 
hl•hi+l; 
IF hi•N THEN GO TO REV; 
KFACT•O; 
IF x(col(hlJ)•O THEN GO TO tryl; 
I o=h i; 
l o•I o+ l; 
IF lo>N THEN GO TO tryl; 
IF x(col(lol)•U(col(lo)) THEN GO TO try2; 
rto•U(colChi))/UCcol(lo)); 

If a variable has no such upper 1 )(A); 

• 

ID 
VI 



101. 
102. 
103. 
1011. 
105. 
106. 
107. 
108. 
109. 
110. 
lU. 
112. 
113. 
1111. 
115. 
116. 
117. 
118. 
119. 
120. 
121. 
122. 
123. 
1211. 
125. 
126. 
127. 
128. 
129. 
130. 
131. 
132. 
133. 
1311. 
135. 
136. 
137. 
138. 
139. 
1110. 
1111. 
1112. 
1113. 
11111. 
1115. 
146. 
1117. 
1118. 
1119. 
150. 

try3: 

adjl: 

nul I: 

jumpl: 

adj2: 
jump2: 

jump3: 
adj3: 

jumpll: 

jump5: 

REV: 

IF cCcolChl))/c(col(lo>>>CEIL(maxCcolClo))/U(oolChi))) THEN GO TO tryZ; 
IF KFACT•l THEN GO TO tryl; 
xt<col Chi »•x.(col Chi »-CEI L(rto); 
IF xtCcolChl))<•O THEN GO TO null; 
DO I •1 TO M; . . . 
DO j•l TO lo-1; 
BT(l)•BTCl>-ACl,co1CJ1J•xt(co1Cj)); 
EN.[) adj 1; 
GO TO jumpl; 
xtCcol Chi »•O; 
KFACT•l; 
GO TO adj 1; 
DO l•l TO.M; 
I~ ACl,ccilClo))•O THEN GO TO adj2; 
tst3•BT<i )/ACl,col (loll; 
GO TO jump2; 
tst3•100000; 
IF l•l THEN GO TO jump3; 
IF tst3>•tstll THEN GO TO adj3; 
tstll•tst3; 

. END Jumpl; 
xt (col ( 1 o)) •Ml NCTRUNC( tstll ),U(col (lo))); 
IF xt(col(lo))•O THEN GO TO jumpll; 
DO i l•l TO M; 
BT Cl I )•BT( i I >-A Cl I ,col ( 1 o)) •xtCcol Clo)); 
END ; 
I* **·*** •/; 
CALL SOLSET; 
I• ***** •/; 
IF obj2>•objl THEN GO TO jumpS; 
xt•x; 
BTaB; 
KFACT•O; 
GO TO try2; 
x•xt; 
BT•B; 
objlaobj2; 
IF x(col(hl))•O THEN GO TO tryl; 
GO TO try3; 
; 
/* COLUMN REVERSAL SECTION •/; 
IF ZFACT•O THEN-GO TO OPT; 
PUT LIST( 1 COLUMN REVERSAL HAS OCCURRED'); 
PUT LI STC I I ) ; 

ZFACT•O; 
j hs •TRUNC(N/2); 
00 jh•l TO jhs; 
hol d•col CJ h); 
col(jh)•col(N+l-Jh>; 
col(N+l-jh)•hold; 

IO 
.j::>. 



151. 
152. 
153. 
154. 
155. 
156. 
157. 
158. 
159. 
160. 
161. 
162. 
163. 
164. 
165. 
166. 
167. 
168. 
169. 
170. 
171~ 
172. 
173. 
174. 
175. 
176. 
177. 
178. 
179. 
180. 
181. 
112. 
183. 
184. 
185. 
186. 
181. 
188. 
189. 
190. 
191• 
192. 
193. 
194. 
195. 
196. 

SOLS ET; 
major: 

minor: 

stp3: 
si:p2: 

stp4: 
stp5: 

stp6: 

stp7: 

stpl: 

OPT: 

END ; 
GO TO tryO; 
I• **'***********~•••••••• •/; 
PROCEDURE ; 
DO Jk•l TO N; 
, 
DO ik•l TO M; 
IF ACik,col CJkl>•O THEN GO TO stp3; 
tst5•BT(lk)/AClk,colCJk)); 
GO TO stp2; 
tst5•100000; 
IF lk•l THEN GO TO stp4; 
IF tst5>tst6 THEN GO TO stp5; 
tst6•tst5; 
END minor; 
IF jk<•lo THEN GO TO stp6; . 
xt(co1Cjk))•MIN(TRUNC(tst6),U(col(jk))); 
GO TO stp7; 
IF TRUNC(tst6)•0 THEN G.O TO stpl; 
d•U(col(jk))·xt(col(jk)); 
lne•MINCTRUNC(tst6),d); 
xt(colCjkl)•xtCcol(jk))+lnc; 
DO kl•l TOM; 
BTCklJ•BTCkl)·A(kl,col(Jk))•lnc; 
END ; 
GO TO stpl; 
DO kk•l TO M; 
BTCkk)•BTCkk)·ACkk,col(jk))•xt(col(jk)); 
, 
END ; 
END major; 
obj2•0; 
DO lv•l TO N; 
obj2•obj2+xt(co1(1v))•c(col(lv)); 
END ; 
RETURN ; 
END SOLSET; 
, 
I• •••••••••••••••••••••••••••••••••••••••• OUTPUT •••••••••••••••••••••••••••••••••••••••• •/; 
PUT EDITC 1SOLUTION VECTOR UPPER BOUNDS COLUMN REARRANGEMENT MAXIMUM INTERSECTION 1 )(SKIP,X(5),A); 
DO J•l TO N; . 
PUT EDIT( 1 X( 1 ,j, 1 ) • 1 ,x(j),U(j),col(j),max(j))(A,F(2,0),A,X(3),F(9,0),X(7),F(9,0),X(13),F(3,0),X(l6),F(9,0)); 
END • 
PUT fDITC'OBJECTIVE FUNCTION VALUE• 11objl)(SKIP,A,FC12,2)); 
STOP ; 
ENO ; 

l.O 
VI 
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STMT LEVEL NEST 
1 

2 
3 
(t 
5 
6 
1 
e 
9 

10 
11 

12 
13 
l• 
15 
16 
11 
u 

l 
l 
l 
l 
l 
l 
1 
l 
1 
l 

l 
l 
l 
l 
l 
l 
l 

l 
l 
1 

HOUND: PROCEDURE OPTIO~S lMAINt ; 

, ........................................•...........• , 
I• INTEGER ROUTINE FOR NO~LINfAR JBJECTIVE FlNCTIONS •I 
I* SUBJECT TO LINEAR DIOPHANTINE INEQUALITY RESTRAINTS •I 
I• I MINIMIZATION CONTEXT I •I , ..................................................... , 
I• REMARKS: •I 
I• 1. CONSTRAINTS MUST BE LINEAR ANO IN•>•" FORM •I 
I• z. OBJECTIVE FUNCTIDl'O •I 
I• Ao MUST BE CONVEX •I 
I• B. ENTEREO AS INOICATED IN PROCEDURE "OBJ• •I 
I• 3o INPUT OAT A: •I 
I• Ao NUMBER OF CONSTRAINTSIMlt NUMBER OF •I 
I• PRORLEM VARIABLESINI - SEPARATED BY •I 
I• COMMAS •I 
I• a. CONSTRAINT COEFFICIENTS: •I 
I• lo INTEGER VALUES •I 
I• Z • SEPARATED BY COllMAS •I 
I• C. RIGHT H4NO SIDE YA LUE FOLLOWS EACH SET •I 
I• OF CONSTRAl~T CJEFFICIENTS ON A •I 
I• SEPARATE CARD IAGAIN AN INTEGERI •I 
I• Do INITIAL FEASIBLE SOLUTION VECTOR: •I 
I• l. MUST BE INT EGER •I 
,. z. XI II. l•l TO N, SEPAR.ATED ar COMMAS ., 
I• E. PROBLEM NAMEINAllEI UP TO 50 CHARACTERS •I 
I* INCLUDED IN 'f IC' MARKS •I 
I• ~. PRroRAM VARIABLES: •I 
I• A. Xl•,•I - Sl'4PLEX VERTICES •I 
I• &. Fl•I - OBJ VALUES AT YEllT ICES •I 
I• C~ MARKC•I - VERTE)( FEASIBILITY PARAMETERS •I 
I• O. XTl•I - TEST POINT •I 
I• E. FT - TEST POINT OBJ VALUE •I 
I• F. MK - TEST POINT FEASIBILITY PARAMETER •I 
I• G. XHI •t,XPC •l,XBC•I - HOLDING VECTORS •I 
I• H. FH,TEST,MH,MP - HOLDING PARAMETERS •I , ..................................................... , 

DECLARE xc11,101 FIXED • XTClOI FIXED. XHllOI FIXED ; 
DECLARE M FIXED , N FIXED , NN FIXED ; 
tECLARE A~l(t,\01 FIXED, Bll'-1 FIXED ; 
DECLARE MARKClll FIXED , MK FIXED , MH FIXED I 
DECLARE FClll FLOAT 1161, FT FLOATC161, FH FLOATCl61 
DECLARE ISUMC101 FIXED ; 
DECLARE XPClOI FIXED , MP FIXED , FP FLOATU61 I 
OECLARE NAME CHARl501 VARYING I 
OE CLARE XBll 01 FIXED ; 
DECLARE TEST FlOATll61 

GET LISTUl,NI ; 
NNsN+ l ; 
OD l•l TO M ; 
GET LISTCCAll,JI DO J•l TO NII 
GET LI S TC BI 111 ; 
ENO ; 
GET LISTCIXlteJI DO J•l TO NII 

ID 
"'-.J 



STMT LEVEL NEST 

l• 
20 
21 
22 

2J 
Zto 
25 
Z6 
27 
28 
H 
50 
Jl 
52 

Jlo 
36 
31 
311 
3• 
1oo 
lol 
loZ 
lo3 
to5 
loll 

"" 50 
51 
5to 
55 

'6 
51 
59 
60 
61 
62 
64 
67 
68 
69 
TO 
Tl 
TZ 
n 

l 
l 
l 
l 

l 
l 
l 
l 
1 
l 
1 
l 
1 
1 

1 
l 
1 
1 
l 
l 
1 
l 
1 
l 
l 
l 
1 
1 
l 
l 

1 
1 
l 
l 
l 
l 
1 
l 
l 
l 
l 
l 
l 
l 

l 
l 
l 

l 
l 
l 
l 

l 
l 

1 
l 
1 

l 
l 
I: 
z 
z 
l 

l 
l 

GET L ISTCNAMEI 
MARKl•l •O ; 
BRE AK•Oo ; 
CHANGE•Oo ; 

I• •• INITIAL SIMPLEX CONSTllUCTION •• •I 

MAG a 00 J•2 TO NN ; 
XIJ1•l•XI 11•1 ; 
XCJ,J-ll•XCJ,J-11+1 

ENO MAG I 
00 J•l TO Nt.I ; 
XTl•l•XCJ,•I I 
CALL 08 JI XT 1F Tl 
FIJ l•FT ; 
Et.ID ; 
CALL RANKINN1MARK1F1XI XHC•l•Xl11•I 

I• ••••• ACCELERATED REFLECTIOIU USING FIBJNACCI SEQUENCE ••••• •I 

FO-l; Fl•l; 
ISUMl•l"'O ; 
00 l•l TO NN-1 ; 

ISUMl•l•ISIJMl•l+Xll1•I 
ENO ; 
XPl•l•IZo•ISUMl•l-Z.•~XCNN,•11/Zo 

LONG: XTC•l•XINN1•l•Fl•XPl•I I 
CALL OBJIXT ,FTI ; . 
IF FT < FINNI & FEASIM1A181XTl•O THEN GQ TO EXPAND I 
IF Fl•l THEN GO TO START I ELSE 00 ; . 

xn. •l•XHI •I 
GO TO MAG I 
ENO 

EXPAND: FZzfl ; Fl•Fl+FO ; FO-FZ I 
XHC•l•XTl•I ; 
GO TO LONG ; 

, .............................................................. , 
I• ••••••••• SEARCHING WITH UNIT SIMPLEX REFLECTIONS •••••••••• •I 

STAR Tl ISUMI •l•O I 
XPC•l•O ; FP•lOOOOOO. ; 
00 KL•l TO NN ; 
XHI •l•X IKl1 •J ; 
MARKIKll•FEASllM1Ao81XHI I 
IF FCKLI < FP & MARKIKLl•O 

XPl•l•XHl•I 

ENO ; 
00 l•l TO Z I 
I SUMl•l•ISUMl•l•Xll1•I 
ENO I 
XTC•l•ISUMC•l-XINN1•I 
CALL OBJUT,FTI ; 

THEN DO ; 
FP•FIKLI I MP•NlRKIKLI I 

ENO I 

ID 
00 



STllT LEYH NEST 

14 1 
16 1 

" 1 

"' l 
13 1 
84 l 
15 l 
117 1 
Ill 1 
410 1 

•1 1 
413 1 
415 1 
98 1 
419 1 

100 l 
102 l 
103 l 
104 l 
106 l 
101 1 
108 l 
109 1 

no 1 
lll 1 
113 1 
114 I 
116 1 
l11 l 
119 1 
120 1 
122 l 
1Zl l 
Ult 1 
125 1 

126 l 
IZB l 
131 l 
132 l 
133 1 
136 1 
131.. 1 
138 1 
U9 l 
140 l 
141 1 
l1t2 1 
143 1 

IF Ff>•FINN I THEN GO TO CHECK I 
RSTI llK•FEASllll1A181XTI I 

IF FT< Fill & llK•O THEN 00; 
1 XPl•l•XTl•l-XINNo•t I ICHl•l•XTl•I; F1•2 I GO TO LONG I 
1 MO; 

DO J•l TO N ; . 
1 IF MAAKIJI • 0 THEN GO TO POllU 

. l ENO ; 
IF llK•O THEN GD TO POINT I 

GO TO llOUNO ; 

CHECK: KV•NN I K•l ; 
CKll IF NN-K•O THEN Do ; 

1 XT l•l•ICPl•I I FT•FP I MK•MP I 
1 GO TO RUN ; · 
1 END ; 

IF NN-K<J THEN ISUMl•l•ISUMC•l-XINN-K.•l·•XINN-K•lo•I 
ICTI •t•I SUMl•t-XCNN-Ko•t ; . 

CALL 0 BJ IX T, FT I ; 
IF FT>•FCNN-KI THEN DO ; 

1 K•Ul ; 
1 GO TO CKI 
l ENO I 

Gil TO RST ; 

POINTI DO 1•1 TO NN ; 
l IF FT ) Hll THEN GO TO NEXT 
1 00 K• I TO NN I 
2 JCHl•l •XIK,•t ; FH•FIKI 
2 ll""MARK IK I ; 
2 XIK,•t•XTC•I ; FIKl•FT 
2 llAll Kl Kl •MK I 
2 XTC•t•ICHC•I f FT•FH 
2 llK•MH ; 
2 END I 
1 NEXTI END POINT I 

GO TO START I 

, .............................................................. , 

1 
1 
1 

l 
1 
1 

1 

I• ••••••• SLIDING THE SlllPLEIC IN AN OPTIMAL DIRECTION •••••••• •I 

BOUNDS IF CHANGE•Zo & ICINN1•l•XPl•I THEN 00 ; 
XINN1•l•XTl•I ; llARKINNl•MK I FINNl•FT 

GO TO llRUSH I 
END I 

Xll 1• I-XI NN1•t I F Cl I •Fl NNI ;· XT l•l•X ll 1•1 
MA,Klll•FEASllM1A180XTI ; 

SLIDE: CHANGE-0. ; 
00 J•2 TO NN ; 
X&J,•l•XI lo•I I 
XIJ,J-ll•XIJrJ-11+1 
Et«> ; 
DO J•Z TO NN I 
XTI •I •X IJr• 1 ; tO 

tO 



STMT LEVEL NEST 

144 
146 
147 
149 
152 
153 
154 
155 
157 
160 
161 
162 
164 
165 
Uo6 
167 
168 
169 
170 
171 
112 
17J 
174 
175 
176 
178 
ieo 
181 
183 
184 
117 
190 
193 
194 
195 

196 
197 
199 
201 
204 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 

l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
t 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 

l 
l 
l 
l 
l 
\ 
l 
l 
l 
l 
l 
l 
l 
l 
1 

l 
l 
l 
2 
2 
2 
l 

l 
2 
2 
2 
l 

l 
l 

l 
l 
2 
2 
2 
2 
l 

l 
l 
l 
l 
l 
l 

l 
l 

CALL 08JCXT1FTI ; FCJl•FT ; 
MARKIJl•FEASllM1A1B1XTI ; 
IF FIJI <•Fill & MARKIJl-0 THEN 00; 

XCl,•l•XIJ,•I I FCll•FCJI I MARKCll•MARKCJI 
CHANGE•lo I 

ENO I 
END ; 
IF CHANGE•lo THEN GO TD SLIDE ; 
XPl•lsXl11•I I FP•FCll ; MP•MARKUI ; 
CHANGE•2o ; 
00 J•2 TO NN I 
IF MARKCJlaO THEN 00 ; 

ENO ; 

CALL RANKCNN1MARK1F1XI 
GO TO START 
END I 

STEP: CALL RANKINN,MARK 1F1XI 
ISUMl•l•O; 
DO Jal TO 2 : 
I SUM .. I •ISUMC•l •XIJ1•I 
ENO ; 
XTl•lalSUMC•l-XINN1•I I 
CALL 08JIXT1F1'1 ; 
MK•FEAS11M1A181XTI ; 
IF FT > FINNI THEN GO TO RUN ; 
IF MK .. •O & XCNN,•l•XPC•I THEN GO TO FINAL 
00 Jal TO NN ; 
IF FT > FIJI THEN GO TO LAB ; 
00 K•J TO NN ; · . 
XHl•lsXIX,•I ; FH•FCKI ; MHaMARKIKI 
XIK,•l•XTl•I ; FIKl•FT ; MARKIKl•MK 
XTI •l•XHI •I ; FT•FH ; MK•flti ; 
END ; 

U8: ENO ; 
GO TD STEP ; 

, ...............................................•.............. , 
I• •••••••••••• REFLECTING TO REOBTAIN FEASl81LITY •••••••••••• •I 

FINAL: DO fzl TO NN ; 
IF MAAKlll .. •O THEN GO TO MJRE ; 
If Fiii > FP THEN GO TO MORE ; 
XPl•J=Xll1•I ; FPcflll ; MP•MARKlll ; 
Xll1•lsXTl•I ; Flll•FT ; MARKlll•MK I 
GO TO BRUSH ; 

MORE: ENO FINAL ; 
BRUSH: CALL FRANK INN1MARK1 F1X I 
Bll l Sli"ll•l•O ; 

00 l• l TO 2 ; 
l SUMl•I• lSUMC •I •XI I, •I ; 
ENO ; 
XTI •J•I SUMC •1-XCNN,•I 
CALL 08JIXT1FTI I 
MK•FEASllM1A181XTI ; 

...... 
0 
0 



STMT LEVEL Ne Sf 

217 
219 
221 
223 
226 
221 
228 
230 
232 
233 
2)5 
238 
U9 
2«t0 
241 
2«t2 
243 
244 
245 
247 
249 
250 
252 
255 
256 
257 
259 
260 

263 
266 
267 
270 
272 
2 7«t 

275 
276 
211 
278 
27<1 
281 
2n 
285 
286 
287 
218 
289 

290 

1 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
1 
l 
l 
l 
l 
l 
l 
l 

l 
l 
l 
l 
l 
l 

l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
1 
l 

l 
l 
l 

l 
l 
l 
2 
2 
2 
2 
2 
l 
l 

1 
2 
2 
z 
3 
3 
2 
2 
1 
l 

IF MK>•MHKCNNI THEN GO TO TUltN 
IF MK-.sO THEN GO TO PLACE ; 

821 IF FT < FP THEN DO ; 
Xll,•l•XTC•I ; Fl ll•FT ; NARKC ll•FEASllMtAt8tXTt I 

GO TO SLIDE ; 
ENO ; 

IF FT> a FP THEN GO TD LOOK ; 
83: CALL RANKINN,MARK,F,XI ; GO TO SOLVE 
LOOK: XINN,•l•XTl•I ; 

FINNl•FT ; MARKINNl•MK ; 
XHl•l•XTl•I; FH•FT; MH•MK 
CALL FRANKINN,NARK, F, XI 
ISUMl•JsO ; 
00 LK•l TO 2 ; 
ISJMl•lslSUMl•l•XILK,•I 
EN> ; 
DO LKK•NN TO 2 BY -1 ; 
XTl•l•ISUMC•l-XILKK,•I I 
MKsFEASllMtAtBtXTI I CALL OBJIXT,FTI ; 
IF IUl.•O & FT<FP THEN 00 I 

BREAK•BREAK• l• I 
IF BREAK>•Z. THEN GO TO RUN 

XI t,•J•XH•I ; Fl U"'FT ; MARKlll•MK 
GO TO SL IOE ; 
ENO ; 

IF LKK•3 THEN ISUMl•l•ISUMC•ltXILKK,•1-XILKK-t,•I 
ENO ; 
XTI •I •XHC •I ; F TaFH I l'K•MH ; 

I• ••••• SLIDING THE SIMPLEX ALONG A CONSTRAINT ••••• •I 
RUNI XHI •l•XTC•t I FH•FT I MH•MK ; 

XBI •l•XHI •l-XPI •t I 
IF FH > FP THEN XTl•t•XPC•l-XBl•I ; ELSE XTC•l•XHC•HXBC•t 
CALL O!!JIXT,FTI ; MKaFEASl(M,A,a,xu 
IF FT < FH & KK•O THEN GO TO RUN ; 
TEST•FH ; 

, ..................................................... , 
I• •••••••• NEIGHBORHOOD SEARCH OF LAST, BEST •••••••• •I 
I• •••••••• FEASIBLE VERTEX •••••••• •I 
LK• l ; 
00 KJ•l TO 2 ; 
00 JJ• l TO N ; 
XTIJJl•XTCJJl•LK ; 
CALL 08 JI XT ,FTI ; MK•FEASll M,A, 8,XT I 
IF FT < TES 1' & MK•D THEN 00 I 

1'EST•FT I XBC•l•XTC•I 
ENO ; 

XTIJJl•XTIJJl-LK 
END ; 
LK•-1 I 
ENO ; 
I• ••••••••••••••••••••••••••••••••••••••••••••••••••• ·•I 

IF TEST < FH THEN 00 ; 

f--' 
0 
f--' 



STMT LEVEL NEST 

292 
295 
296 
297 
299 
J02 
!03 
304 

305 
306 
301 
309 
312 
315 
318 
!19 
320 
J2l 
323 
l21t 
326 
]21 
!28 
329 
]31 
Ul 
331t 
3'35 
]]6 
]]7 

339 
]40 
34l 

31t4 
345 
346 
347 
349 
351 
353 
355 
356 
J57 
358 
359 

l 
l 
l 
l 
l 
1 
l 
l 

1 
l 
1 
l 
l 
1 
1 
1 
1 
I 
l 
l 
l 
l 
l 
l 
l 
1 
l 
l 
l 
l 
l 
1 
1 

1 
l 
l 
1 
l 
l 
1 
l 
l 
l 
l 
l 

l 
1 
l 

l 
l 
1 

l 
l 
2 
2 
z 
z 
1 

l 
l 
1 
1 
l 

l 
1 

l 
2 
2 
2 
3 
3 
2 
2 
l 
l 

XT I •t•!Ull •t ; FT•TEST I MK•O 
GO TO RUN I 
ENO ; 

IF FH < FP & MH•O THEN 00 ; 
XI lo•t•XHl•t ; FIU•FH ; MRKllt•MH 
GO TO SLIDE I 
ENO ; 
GO TO 8 3 ; 
I• •••••••••••••••••••••••••••••••••••••••••••••••••• •I 

PLACE: 00 l•l TO NN ; 
IF MARKlll <MK THEN GO TO Pl I 
DO 1<•1 TO NN ; 
XHl•t•XIK.•I I FH•FIKt ; IM•MIRKCIO I 
XIK.•l•XTl•t ; FIKl•FT ; MARKIKt•MK I 
XTC•l•XHl•I ; FTafH ; MK•llt ; 
El'IO ; 

Pl: END PLACE ; 
GO TO Bl ; 

TURN: XINN.•t•XTl•I ; MARKINNl•MK ; 
K•l ; 

Tll IF NN-K <• 2 THEN ISUMC•t•ISUMl•t-XINN-K,•t+XINN-K+l1*t 
XTC •t•ISUMl•l-XINN-K.•t 
MK•FEASlCfl,AtlS.XTt ; 
till OBJIXT,FTI I 
IF MK >• MA1UtlNN-Kt & K < NN-1 THEN 00 

XINN-t<1•l•XTl•t I MARKINN-Kt•MK 
K•K+ l I 

FINN-Kt•FT I 
GO T 0 Tl ; 
END I 

IF MK >• MARK INN-Kt THEN 00 ; 
GO TO SOLVE 
END ; 

IF HK•O THEN GO TO 82 ; ELSE GO TO PLACE ; 

, .............................................•....... , 
, ••••••••• NEIGHl!ORHOOD SEARCH OF BEST VEii.Tex·-······· ., 

SOLVE: Kl•l ; 
DO K•l TO 2 ; 
00 JJ•l TO N ; 
XTl•t•Xllt•I ; XTCJJl•XTCJJl+Kl; 
CALL OBJIXT,FTt ; MK•FEASIM1At81XTt 
IF FT< FP & MK•O THEN 00 ; 

XI 11•l•XTl•I ; GO TO MAG 
ENO ; 

XTI JJI sXTI JJt -Kl 
ENO ; 
KL•-1 ; 
ENO ; 
I• ••••••••••••••••••••••••••••••••••••••••••••••••••• •I 

1• •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• •I 
I• ••••••••••••••OUTPUT OF THE SOLUTION VERTEX ••••••••••••••• *I 

1--' 
0. 
N 



STMT LEVEL NEST 

160 
)61 
J64 
!65 
167 
168 
J70 
372 
!14 
115 
J76 
J77 
378 
]79 
380 
JU 
!82 
JU 
384 

185 

186 
!117 
188 
3119 
39.0 
393 
)94 
395 
)96 
)98 
]99 
400 
401 
402 

403 

404 
405 
406 
401 
408 
40'1 
411 
4l4 
411 
1,2·0 
421 
422 
423 

l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

l 
l 
l 
l 
l 
l 

l 
l 

l 
l 
l 

l 
l 
l 
l 

l 
2 
2 
2 
2 
2 
l 

Xll o•J•XPl•J I Fl U•FP ; MARKlll•MJt 
KLaO· ; 
00 J•l TO NN ; 
IF MARKI JI ... 0 THEN GO TO Sl 
l<L•KLH ; 
IF l<L•I THEN GO TO 52 I 
ff FIJI >• Fl 11 THEN GO TO Sl 

S21 Xll o•l•XIJo•I I Flll•FIJI I 
Sll ENO ; 

PUT PAGE I 
PUT St<fPl21 ; 
PUT SKIPC21 ; 
PUT llSfCNA"EI 
PUT SKIPC2 I I 
PUT LISTl•fNTEGRAL SOLUTION VECTOR 1•1 ; 
00 J•l TO N ; 

PUT EDITC•xc•,Jo'I • •,xcl,JlllSKfP,AoFCJ,01,A.FC8,0ll 
• ENl I 
PUT eonc•OBJECTIVE FUNCTION VALUE. •,FCllllSKIPC21,A,Fl10tZll 

, .............................................................. , 
FEAS: PROCEOUREC~,A.&,XVI RETURNSIFIXEOI ; 

t• •• BINARY VERTEX FEASIBILITY INDICATOR •• •I 
DECLARE H FIXED, All4,l01 FIXED , 81141 FIXED , XVllOI FIXED 
DECLARE VALUE FIXED I 

VALUE•D ; 
DO J•l TO N ; 
IF XVI JI >• 0 THEN GO TO FSTEP I ELSE VALUE •-1 
GO TO FSTEP 2 ; 

f'STEP: ENO : 
DD t •l TO M I 

IF Bltl-SUMIAC 1,•1•xv1•11 <• 0 THEN GO TO FSTEPl 
VALUE •-1 ; 
GCi TO F STEPZ ; 

FS TEP l : ENO ; 
FSTEPZ t RETURNIVALUEI 

END FEA S ; 

RANK: PAOCEOUREINN,HARKofoXI I 
I• l\Uil<.I NG THE SI HPLEX VERTICES BY OBJECTIVE FUNCTION VALUE •I 

DECLARE NN FIXED, Fllll FLO&Tll61 t XlllolOI FIXED I 
DECLARE XHllOI FIXED , FH FLOATll61 I 
DECLARE M&RKClll FIXED , MH FIXED ; 

ADJ: 00 J•l TO NN-l ; 
00 l<•J+l TO NN I 
IF FlK I > FC..11 THEN GO TO RSTEPl ; 
XHC•laXCJ,•I I FH•FIJI I MH•H&R<IJJ I 
XI J,•l•XCK,•I I FIJl•FlKI ; HARKIJl•HARKCKt 
X(Ko•>•XHl•J I F(K)•FH ; MARKIKl•HH I 

RSTEPl : END ; 
END &DJ I 
RETURN I 

END RANK 

1--' 
0 
VI 



ST"T LEVEL NEST 

424 

425 
426 
4Zl 
4211 
429 
430 
431 
432 
OJ 

434 

435 
06 
01 
4311 
09 
441 
442 
t,'t] 

l,44 
"46 
1,47 
1,48 
449 

450 

451 
452 
45) 
454 
455 
456 
458 
461 
464 
467. 
4611 
46'1 
470 

411 

2 
z 
2 
z 
2 
2 
2 
2 
2 

z 
2 
2 
2 
2 
2 
z 
z 
2 
2 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

1 
l 

l 
1 
1 
1 

1 
2 
2 
2 
2 
2 
1 

08JI PROCEOUREUToFTI ; 
I• COMPUTING THF. VALUE OF THE OBJECTIVE FU'fCTION AT A VERTEX •I 
DECLARE XTllOI FIXED ; 

DECLARE FT FLOAT 1161 ; 
fTsXT Cl 1 .. 2-1.•XT ll h2. •xT 121 .. 2-16.•XTC 21 ; 
PUT SKIP I 

PUT ED IT l IXH KMI 00 KM• 1 TO 10 I CIN II FC 6001 o XC2 I 11' 
PUT SKIP ; . 

PUT LISTCFTI 
RETURN ; 
ENO OBJ ; 

FEASl: PROCEllJRE IM1Ao80XYI RETUlU\ISIFIXEOI ; 
I• VERTEX FEASIBILITY INDICATOR 8Y VALUE OF INFEASIBLE SLACKS •I 

DECLARE M FIXED , Al14ol01 FIKEO o 8Cl41 FIXED , XYClOI FIXED I 
OECLARE VALUE FIXEO ; ' 
VALUE 2 0 ; 
00 Jls 1 TO N ; 
IF XYIJZI < 0 THEN YALUE•VALUE-XVCJZI 
END I 
DO l•l TD M ; 
YALUEl•8111-SUM(Allo•l•XVC•ll I 
IF VALUE! <"' 0 THEN GO TO Fl I 
VALUE 2 VALUE •VALUE l 

Fl: ENO ; 
RETl.ANCVALUEI; 
END FEAS 1 ; 

FRANK: PROCEDURE INN,MARK,F,XI • 
I• ••VERTEX RANKING BY DEGREE OF INFEASIBILITY•• •I 
DECLARE NN FIXED, MARKllll FIXED, Xlll,101 FIXED 
DE:LARE X81101 Fl XED. MB FIXED. FB FLOATC161 ; 
DECLARE Fllll Fl0ATC161 I 
DO l•I TO NN-1 ; 
DO Ksl•l TO NN ; 
IF MARK(KI > MARK(ll THEN GO TO FRl I 
XBl•l:X(l,•I ; MB•MARKlll ; F8•FC11 ; 
Xll,•l•X(K,•I ; MARKlll•MARKIKI ; Flll•FCKI 
X(K,•l•XB(•I ; MARKCKl•M8 I FCKl•F8 I 

FR 1: END ; 
END ; 
RETURN ; 
END FRANK 

EN> HOUND 

I-' 
0 
+=-



VITA 

Robert Pratt Davis 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: INTEGER SEARCH UNDER LINEAR DIOPHANTINE 
CONSTRAINTS 

Major Field: Industrial Engineering 

Biographical: 

Personal Data: Born in Hampton, Virginia, 
November 25, 1946, the son of Mr. and Mrs. 
D. G. Davis, Sr. 

Education: Graduated from Newport News High School, 
Newport News, Virginia, in June, 1965; 
received Bachelor of Science degree in 
Industrial Engineering from the University of 
Tennessee in 1970; received Master of Science 
degree in Industrial Engineering from the 
University of Tennessee in 1971; completed 
requirements for the Doctor of Philosophy 
degree at Oklahoma State University in 
December, 19 7 3. 

Professional Experience: Engineering-aide, NASA
Langley, 1966; Engineering-aide, USAAVLABS
Fort Eustis, 1967; Industrial Engineer, ORTEC, 
1970; graduate research and teaching assistant, 
University of Tennessee, 1971; NDEA Fellow, 
Oklahoma State University, 1972; part-time 
instructor, Oklahoma State University, 1973. 




