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CHAPTER I 

INTRODUCTION 

The acoustic behavior .of gases has been the subject of sci,entific 

investigation for over one hundred years, and while the behavior of the 

noble gases ca~ be predicted with accuracy in the region where the wave-

length of the sound. wave is substantially greater than the mean free 

path of .the molecules (see.Figure 1), the mict;"oscopic phenomena and 

their i.nfluence on the macroscopic behavior is not so well understood. 

From purely classical considerations Stokes (l), Poisson (Z) • and Navier <.3) 
i; 

were able to. independently formulate the effect of ·internal "friction", 

the effect which in more modern (and less descriptive) terminology is 

attributed to viscosity. Twenty five yeat;s after Stokes published his 

work on the subject Kirchhoff(4) was able to formulate the effect of 

thermal conductivity on the propagation of a sound wave through a gas. 

It is interesting to note that Stokes was not specifically looking for a 

way to explain the absorption of sound in a gas, but.was concerned with 

problems more relevant to his time. "Of what form must (an aqueduct) 

be, in order to ensure a given supply of water with the least expense 

of .materials in the construction?"(l) The "classical" sound absorption 

postulated by the theory of these men, now called the Naviel'.'-Stokes 

theory, was a result of their postulates on the nature of gas and liquid 

materials, but as they did "not possess any means of measuring the in-

tensity of sound the theory (could) not be tested, nor the numerical 

1 
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value of u (the viscosity coefficient) determined in thi~ way.u(l) 

The predictions of their theory were well accepted until Pierce(S) 

constructed a piezoelectric acoustic interf era.meter and was .. able . to show 

conclusively in 1925 that the s9und absorption of carbon dioxide gas was 

very much greater than that predicted by the Navier-Stokes theory. Un-

til th~n researchers were not able to measure the.high frequency sound 

absorption with much accuracy. Three ye~rs later Rice and Her~feld(6 ) 

postulated that the excess absorption was due to the lack of equilibrium 

of the internal degrees of freedom of the gas molecules with respect to 

the translationB;l degree of freedom. Using this postulate they were 
. 

able to predict the behavior of relatively simple molecular systems. 

The result of their postulate is to introduce a rela~ation time, tau, 

into the hydrodynamic-equations.· One assumes a rel.axa,tion equation of 

the form 

-dE{t)/dt 
int = (1/tau)(E{t) ~ E{tr)) 

int int 
(1) 

where E{t) is the instantaneous value of the internal energy, and E{tr) 
·. int · int 

is the value of the internal energy if it were in equilibrium with the 

translation energy. One can then deduce an effective specific heat:(7) 

= cinf + cint I (1 + jwt). 
v v 

where w = the angular frequency of the sound, Cinf = specific heat at 
v 

(2) 

very high (infinite) frequency. Putting this into the equation of motion 

of a plane wave in a fluid one has: 

(V /V) - j a V /w) 2 
o o· 

= (3) 



where 

v 
0 

v 

a 

j 

= 

= 

= 

= 

= 

= 

velocity of the sound wave at zero frequency· 

velocity of the sound wave at frequency w 

static ·va:).ue of the specific heat ratio 

effective .specific heat ratio using Eq. 2 

absorption coefficient of the sound wave 
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In Figure 2 the absorption per wav~le~gth and the velocity dispersion is 

plotted versus the frequency. 

The relaxation for a certain process can be.connected. with the re­

action rate for that process. It ·can be shown(S) that for a gas with 

only two internal .ene,.:-gy states separated by an.energy hv the relaxation 

time and the reaction rate are related by: 

l/tau = K21 (1 + g2/gl) exp (-hv/KT)) (4) 

where ~l is the rate for a molecule going from state 2 to state 1 via a 

coll.ision.with another molecule. gi is the degeneracy of state i. The 

fact of the matte~ is that molecules usuaily have more than just two in­

ternal energy levels, and the relationship between a relaxation.time (or 

times) and the rates for all of .the possible reactions is not as straight 

forward. If one assumes that the molecules behave like quantum mechani-. 

cal harmonic oscillators one can, by making several approximations, show 

that the relaxation time .is related to the rate for energy transfer be­

tween the two lowest levels by: 

l/tau = K10 (1 - exp (-hv/KT)) (5) 
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This result is from the work of Landau·and Teller. <9) Using this ap­

proach several authors(lO,ll,l2) have developed theories concerning 

multiple relaxation in.gases compose~ of harmonic oscillator type mole ... 

cules, but their theories are not·applicable.to other types.of relaxa-

tion: e.g., rotational. relaxation~ 

6 

H.J. Bauer has developed a theory for the analysis·of multiply re-

laxing systems based on the thermodynamics of irreversible processes. 

(13,14) 
His ideas have not been wi4ely applied by researchers in this 

country although the theory was presented in English in 19.65. · The de­

tails of this approach will be presented in ·Chapter III. Briefly it is 

based on the linearity of the phenomenological laws of irreversible ther­

modynamics.. It shoul.d be noted 1:hat Stokes' approach to the viscosity 

effects mentioned above is also based on.a linear model, Its appl~ca­

bility to acoustic work follows from the fact·that acoustic signals are 

usually small perturbations to the system, In cases of a large pertur­

bation, such as a shock wave, the theory may not be useful, but this 

depends on the magnitude and width of the shock front. (l5) 

Bauer's approach reduces the problem to one similar to a normal. mode 

analysis of small oscillations of a system of masses and springs. The 

problem is reduced to an eigenvalue problem, where one can identify the 

relaxation times with the eigenvalues. This procedure is a very power-

ful tool for understanding multiple relaxation processes, and will be 

used in this work, 

Bauer's theory depends on a knowledge·of the rates for all of the 

re.actions in a system. One must set up a model for the system under 

consideration, calculate the rates involved, and then put these rates 

into the theory to see if the model predicts the experimental behavior. 



It is only in this way that meaningful statements~about the microscopic 

behavior of the system can,be deduced from any macroscopic experimental 

results. 

7 

The calculation of these rates is a problem in scattering theory, 

and the.state of the art is such that the cross sections for most reac­

tions. cannot be calculated exactly. The obvious corre.ct answer would be 

that.given by the solution of .the quantum mechanical equations for the 

interaction of two molecules. Sucq a problem is formidable to say the 

least~ For co_2~co22 collisions it would be a 50 body quantum mechani­

cal calculation which is beyond the scope of this work. Instead various. 

assumptions are made·regarding the nature of the interacting systems. 

A first choice could be to quantize nothing and treat the problem 

with a purely classic~l approach, Of course all quantum mechanical in­

formation would be lost in such a calculation, and one would still have 

a SO body.problem to solve. Another formulation is called the."classi­

cal approach'' which usually implies that it is t:he equations of motion 

tbat are classical, but the substances are quantum mechanical. In other 

words, one quantizes the energy levels that a molecule may have but uses 

Hamilton's·equations for the time evolution of the system rather than the 

Schri::idinger equation. Of course this model seems to be physically un­

realist.ic since, the infinite channel nature of the classical approach 

seems to. exclude the idea of discrete states to which a system can make 

transitions. 

In solving the .problem this way one must average the classical 

energy transferred over many collisions. Although this is very differ­

ent from the quantum mechanical picture where a quantum of·energy is 

either transferred or it isn't, the results with respect to the average 
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energy transferred per unit time are identical. (l6) 

Another model which can be used is·the semicla!)sical model. This 

model has almost'as.ma,ny variations as people who use it~ depending on 

what·is treated classically and what is treated quantum mechanically. 

The essence .. of the problem is ·to. find the scattering amplitudes between 

a given,ingoing and any outgping channel using a form of.first order 

perturbation theory. Extension of this approach to higher orders·of the 

b i i h b d b R b . d G .. d (17 ,18 ,19) pertur at.on expans on. ave. een.presente y a itz an. or on • 

The·details of this approach will be outlined in Chapter III. The re.,-

sult is that,the scattering amplitude between art initial state, i, and 

a final state, f, is given by: 

ampif = -j f (f:V (t):i) 
s exp (j wif t) dt 

The differences in semiclassical approaches come in the analysis of 

(6) 

V (t), the potential of the interaction, which depends on time, t, The 
s 

time depep.dence of the potential is gotten from assuming a potential of 

the form V (!(t)) and postulating a form for R(t). In this work two dif­

ferent forms of V(r(t)) will be used: 

(10) 
i. V(~) = v exp(-aR) = 

0 
v 

0 
(1 - aR + (aR)**2/2! - ... ) (7) 

R. m+ m+ (17-22) 
e. r 1 . YR. ( r i) YR. (R) 

V(R) 
l. 47T E E (8) ii. =, E I'*+ I = e. 

(2R.+l) RR-+l ,, i R-r:i. i 1 R. ,m 

where approximations are.made concerning the form of !(t). 

AnQther appr&ximation to the transition amplitude which will be 

used is that it is a constant between certain limits. This approxima-

tion i$ artificial, and it is simply an attempt to fit the observed re-
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sult to a form that gives the correct experimental results in certain 

situations. Its usefulness lies with the fact that it can indeed give 

the correct temperature dependence of the observed macroscopic.phenomena 

in hydrogen and nitrogen.<23) 

Purpose and Scope 

The reaction.rates mentioned above are·of ,interest not-only to 

acousticians mec;isuring sound absorption, but also to.laser researchers 

where detailed understanding of the energy tra~sfei; processes is impor­

tant in understanding how a given laser works, and how it can be made to 

work.more,efficient;ly. Using the above methods to cal.culate the reaction 

rates and Bauer's theory to calculate the acoustic behavior from the 

rates inferences can be made.concerning, (i) the nature of the energy 

transfer processes for carbon dioxi,de and binary gases, (ii) the reason 

for the anomolo~s effect that hydrogen has on the absorption of sound in 

carbon dioxide-hydrogen mixtures, (iii) the regions·of .validity for the 

various rate calculation schemes giving some insight'into which methods 

can be used for rate calculations of rates which cannot.be measured or 

which have no acoustic effect. Hydrogen and nitrogen were chosen.as the 

binary gases because of the insight they can give into the nature of the 

energy exchange processes in the carbon dioxide laser, as they are both, 

present along with.the carbon dioxide in many laser systems now in oper­

ation. Because of the large energy gaps in its rotational levels, hydro­

gen has been postulated(22 ) as being very efficient in exchanging energy 

with the vibrational. levels of carbon dioxide. Nitrogen on the .other 

hanc;l. has very small spacings in its rotational level spectrum, and should 

not exhibit any vib~ation-rotation effects. 
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Experi~entally the temperature and frequency dependence of ultrason,... 

ic absorption in carbon.dioxide - hydrogen mixtures over a frequency/ 

pressure (f/p) range of l .MHz t9 100 MHz per atmostiher·e, and a tempera-

o 0 ture range of 300 K to 1000 K was-obsei;ved. A model hl:'!.s·been postulated. 

which inc~udes vibration to translation energy excqange, rotation to 

translation energy exchange and vibratiot). to rotat:l,on energy excqange 

for carbon dioxide-hydrogen and carbon dioxide"".'nitrogen reactions. 

Remaind.er of Thesis 

In Chapter II the experimental procedure is discussed including tl;ie 

e~perimental apparatus, the data taking procedure, and the method aQ.d 

theory.of the data reduction•· T~e experimental results are presented 

for. mixtures of carbon dioxide .with hydrogen and ca_rbon dioxide with 

nitrogen. Chapter III cqntains a detailed disci;ssion of Bauer's theory 

and itS ueie• Also included in Ghapter .·III is a ·discus9ion of ·the method 

of rate calculationwhic4 makes use of multipole.moments, Eq. 8 Chapter 

IV contains a comparison.of the theqry with experiment.· Theoretical 

predictions of the following syste~s are presented: 

1) pure co2 (using SSH rate calculation)(lO). 

2) pure H2 (using a.modified calculation.based on work of Raff 

and Winter)(2J) 

3) Co2 with,H2 (no vibration-ro~ation interactions) 

4) C02 with H2 (including vibration-rotation interactiqns) 

5) co2 with N2 (no vibration-rotation interactions) 

Chapter V, t~~ conclusion, will ,contain a~ analysis of Bauer!s theory 
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and of the .. variQus theories used to calculate ·the rates; The appendiciei;; 

will outline the cqmputer programs used, and they will include the pro ... 

grams for data reduction, a11-d for using Bauer's theory to calculate re­

laxation times from a reaction schem~. 



CHAPTER II 

EXPERIMENTAL RESULTS 

Apparatus Description 

Measurements of sound absorption and veloci~y were made on carbon 

dioxide and on two carbon dioxide - hydrogen mixtures. Two instruments 

were used to.make,the measurements. A high pressure. acoustic interfero­

meter<24> was used to measure the absorption in c~rbon dioxide at room 

temperature. Because small amounts of impurities can cause a large 

shift .in th~ relaxation time which.would imply a shift .in'the observed 

frequency of maximum absorption the high pressure.instrument was used to 

verify the purit¥ of .the carbon dioxide used. Since·the instrument is 

capable of making measurements on the frequency/pressure range of 20 

KHz/atm to·l MHz/atm the peak in absorption occurring around 30 KHz/atm 

could be observed. The results of this measurement done at room tem-, 

pe~ature are shown in Figure 3. The proce~ure for obtaining absor~tion 

measurements with this instrument.is adequately described elsewhere<25 >. 

A numerical analysis of this curve to determine a, fit to a single re-

laxation equation is difficult because of the high pressures involved. 

Using a crystal frequency of 1 MHz the pressure at the.ma.Jtimumabsorp-

tion point is approaching the point .at which carbon dioxide liquifies. 

For this reason the shape of the curve becomes.distorted and no ,analysis' 

to fit a single relaxation time was made except to note that the fre­

quency /pressure ratio at.maximum absorption occurs at 30 KHz/atm agree-. 

12 
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(26) . ing with the work of Shields using a lower 'frequency instrument. 

The second instrument, a pulsed ultrasonic interferometer(27), was 

used to determine the absorptio~ at higher temperatures and higher fre-

quency/pressure ratios·, and this instrument was used to make· the remain!"" 

ing measurements reported in.this work. The instrument is capable of 

making measuJ;"ements in the .temperature range 300 degrees Kelvin.to.1000 

degrees Kelvin and within the frequency/pressure range of approximately 

1 MHz/atm to about 100 MHz/atm, but measurements at the higher frequency/ 

pressure ratios are: difficult.. The signal to noise ratio becomes poor 

and problems with sound being propagated through the walls of the stain-

less steel chamber become a problem when. making measurements on carbon 

dioxide. The instrUI1,1ent is capable of making measurements at high 

frequency/pressure ratios a~d high absorptions as is indicated by Figure 

1 in Chapter I where results for measurements on Argon indicate that 

measurements up to an absorption of 700 db/in at a pressu~e of 7 x 10-3 

atmospheres are possible. There appears to be no systematic error and 

the random error appears to be small, .less than.10%. 

Pure Carbon Dioxide 

After the gas was checked for purity measurements were done on pure 

carbon dioxide mainly to verify that the instrument was capable of pre­

dicting absorptions that agreed with those of other researchers(26 •28 >. 
It ·was found necessary to dry the carbon dio~ide ,over Dririte for at 

least 24 hours before measurements wet:e taken. Even very small., 0.01%, 

of water vapor in the gas can cause a marked shift in the absorption 

curve<29 >. The results for dried carbon dioxide at room temperature 

taken with the pulsed instrument are shown in Figure 4. The data points 
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are compared with those of Zartman(30). 

In order to extract relaxation times from this data it is necessary. 

to determine the absorption due to internal effects and that due to the 

so called classical effects o~ viscosity and thermal conductivity. · In 

order to calculate the classical absorption and hence determine the ab-

sorption due to internal effects accurately it is n~cessary to account 

for the frequency.dependence of the transport coefficients(Jl). This 

poses somewhat of a problem. In order to determine the,frequency depend-

ence of the coefficients one must know the relaxation times, but the 

relaxation times cannot be determined until the internal absorption is 

determined which in turn cannot be determined until the classic~l.ab-

sorption is ~nown. The problem of extracting relaxation times·from the 

data can be formally written as an attempt.to invert an equation con-

taining the relaxation time, ,, and the observed absorption per wave~ 

length, (a.A.) b : 
0 s 

(at..) b = F(c) 
0 s 

Where the necessary parameters are defined by: 

where: 

F(c) = (at..). + (at..) 1 int c 

(aA.)int) 2 
(Vo/V - j 2TI = 

V = velocity at zero frequency 
0 

Y = specific heat ratio at.zero frequency 
0 



yeff = 

(Cp)eff = 

Ci = 

'i = 

n = viscosity; 

(Cp) eff/ (Cv) eff 

2 00 . Ci 
R + (Cv)eff = Cp + i~l 1 + j. 27Tf 

'i 

"relaxing" internal specific heat 

relaxation time corresponding to Ci 

= [n + 3/4 (yeff - 1) K(f) ] 
(CP) eff 

p0 = density; K(f) = n/M [(Cp)eff + 5/4 R] 

The complex specific heat, (Cp)eff' is obtained by assuming that the 

vibrational specific heat, c1 , relaxes with a single relaxation time, 

17 

-c1 , and the rotational specific heat relaxes independently with a re­

laxation time, 1 2 • The point of the measurements is to determine -c 1 and 

-c 2 as a function of temperature. 

Several assumptions have been made about the nature of the system 

under consideration. In order to derive the equation for .the classical 

absorption the wavelength of the sound wave must be much greater than 

the mean free path of the molecules, or equivalently the time between. 

collisions must be much less than the frequency of the sound wave. This 

does.not present difficulties until frequency/pressure ratios of the 

order of 1010 Hz/atm(32), well beyond.the resolving power of the instru-

ment. Further an assumption as to the nature of the relaxation process 

was made. There is no a priori reason for only two relaxation times 

being able to describe the absorption of the system. That the results 

from·this assumption can be made to agree with experiment to within.the 

experimental error is its justification. As the.data indicates the 
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theoretical curves can be made to gene+ally fit the experiment the as-

sumption of parallel relaxations appears to be a good one, but care must 

be taken not to attach too much physical significance to this fact. No 

inference about the microscopic process i.s implied, and the relaxation 

times should be viewed as adjustable parameters in the theory which fit 

the data, More ac~urate measurements of the absorption might'require 

more than just two relaxation times, and it would be incorrect to con-

nect the two relaxation times to the rate for a specific process. 

Rather than attempting to invert the above equations to determine 

1 1 and 1 2 a best fit procedure, suggested by Bass<27 >, is used. The 

data was analyzed using program AMDOOl described in the Appendix. The 

program is not very subtle, as it depends on a brute force method to 

find a local minimum.of 

= ~ I (aA) b - (aA) 1 I 
all o s ca c. 

observations, i 

as a function of i:1 and 1 2• One makes an educated guess about the ap­

proximate values of the relaxation times and searches the 1 1 , 1 2 plane 

for a minimum around this guess. Although the procedure is not mathe-

matic~lly rigorous and may not find a true minimum experience has shown 

that it is capable of giving an (aA) that agrees with experiment, Even 

though the equations for the theoretical calculations of (aA) appear 

complicated they are easily programmable, and the program makes up for 

its lack of finesse by its simplicity, The results of th.ese calculations 

for pure carbon dioxide at different temperatures is plotted in Figures 

5-9. The quantity plotted is (aA)int = (aA)total - (aA)cl' 
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Mixtures 

A mixture of 2% hydrogen and 98% carbon,dioxide was prepared by. 

using the law of partial pressures. A high pressure cylinder was evacu­

ated and then filled to a pressure PH with hydrogen. Carbon dioxide was 

then admitted until the total pressure, PT' was such that PH/PT = 0.02. 

This method is straight forward and as long as the total pressure.re­

mains relatively low, 5 atmospheres or so, problems with the density not. 

being directly proportional, to the pressure can be ignored. Some care 

must be taken to.allow the system to come to thermal equilibrium .as the 

expanding gas cools as the mixing cylinder is filled from the compressed 

gas bottles, 

An analysis was made using the above equations modified for a sim­

ple mixture, and the results are shown in Figures 10 to 15. The trans­

port coefficients were calculated according to formulas for mixtures in. 

Molecular Theory of Gases and Liquids<33). The program used was .AMD002. 

A mixture of 15% hydrogen and 85% carbon dioxide was prepared in a 

similar manner. There are several;. problems involved in using this high 

percentage of hydrogen in the pulsed instrument and in the analysis of 

the data, The acoustic chamber of the pulsed instrument is stainless 

steel and hydrogen is known to adsorb and diffuse into stainless steel. 

This did not appear to be a problem at moderate temperatures, but at 

higher temperatures so much hydrogen diffused that the pressure.of the 

mixture inside the cylinder was seen to change. This problem can be 

somewhat alleviated by flowing the gas, but nevertheless it was discover~ 

ed that measurements could be made to only 750 degrees Kelvin on the 15% 

mixture. It should be noted however that all of the measurements made 

on the 15% concentration may be in error because of this problem. 
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Shortly after the high temperature measurements·it was-noted tnat·the 

stainless steel chamber itself had developed cracks and would no longer 

hold a vacuum. This was probably due to hydrogen embrittlement of the 

stainless steel. 

The analysis of the data is complicated by the fact that one must 

consider the effect of mass diffusion on the aqsorption of sound. Fol­

lowing Hunt<34> and Kohler(JS) the following expression for (aA.)cl is 

used: 

where an asterik (*) indicates values of the quantity evaluated for the 

gas.mixture, and: 

x. = concentration of .species i. 
l. 

M. = molecular weight of species i 
l. 

PD12 = diffusion coefficient 

~ = thermal diffusion ratio 

These quantities are completely described in Hunt's thesisC34 > and in 

Molecular Theory of Gases and Liquids<33), but one modification was 

made. As noted above y, C and Kare frequency dependent quantities. 
p 

Since KT can be written in terms of K it too becomes frequency depend-

ent <33>. · The calculation of~ is straight forward but unfortunately 

the results agree with experiment only to within about 10% for carbon 
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dioxide - hydrogen mixtures<33). At -a concentration of 2% hydrogen the 

diffusion term makes a contribution of less than,10% to. the total classi-

cal absorption whereas at a 15% concentration the contribution is about 

50%, For this reason this more complicat~d expression was used to 

analyze only the 15% data, As noted below using this approach·on tlie 

2% data yielded no difference from the more straight forward approach 

described above. 

It was also found that the analysis of th,e 15% hydrogen data re-

quired the use of an additional relaxation,time corresponding to the 

rotational.relaxation of the hydrogen in the mixture. A new computer 

program was written to handle these calculations for mixtures. When 

used with the 2% data no significant change was noticed in the calcu­

lated absorption or the relaxation times. The program, AMD003, is out~ 

lined in the Appendix, and the results of the analysis are shown in 

Figures 16 to 19. The program incorporates three relaxation times, 

vibrational relaxation of carbon dioxide, rotational relaxation of 

carbon dioxide and rotational relaxation of hydrogen. The method for 

finding the best fit to the data was modified. Instead of finding the 

minimum of F(•1 , • 2) a different function G(•1 , • 2 , • 3) =~I (a/..) 0 bs -

(aA.)calc. I was minimized with respect to • 1 , • 2 , and • 3 • Even if this 

minimization only involved increasing the.number of points searched 

from 100 (= 10 different • 1 x 10 different • 2) to 1000 (corresponding 

to an additional 10 • 3 1 s) the calculation would be 10 times longer, but· 

because of the inclusion of the diffusion term in the calculation of 

(aA.)cl the expression for G is more.involved than that of F with a cor-

responding increase in computational time,· • 
A minimum of G was found by finding minima on a surf ace gotten by 
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keeping in turn one·of·the T's consta~t. The sul;'face was. searched·in· 

the following manner~ Three T's are selected:as·being a.first guess and 

on the surface with one of the T's constant the value of ·G is computed 

for all values of the ot~er two T's that would be.adjacent to the guess 

val,.ue: 

0 0 
+ ATl, 

0 
- l::.:r Tl = Tl Tl Tl ' 1 

0 0 + Ln2 , 
0 

- AT T2 = T2 T2 T2 ' 2 .. 

Of these nine values for.G the·smallest is selected and the.search is 

done again from that,point on the surface. If the point .in the center 

is the smaJ,.lest point the range of the search is reduced until the 

change, AT/T becomes less than some parameter E. The· search is then re-. 

peated holding a different T constant and varying the other two. This 

process can be repeated using different T's until convergence is reached. 

Essentially from the point where the initial guess was ma4e·the direc-

tion of the true minimum is assumed to be,given by the direction of the 

next nearest minimum, and although the searching proced\lre is not.rig-

orous experience has shown that-it see~s to be able·to predict absorp-

tiqns that agree with experiment,. and calculations' on, the 2% data in 

th.is manner gave the same.results aEI seat;"ching the entire surface. 

Furthermore, the procedure seems to be insensitive to the choice of 

which T would be kept initially constant~ It is possible that a local 

rather than a true minimum of G would be found and care must be taken 

so that the initiai increment of T. is large enough to keep this from 
1 

happening. In.the program a method is also established to keep from 

recalcuiating G for values of Tl and T2 already calculated. Although 
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this increases the complexity of the program by giving it'more bookkeep-

ing to do it.reduces the computational time as the greatest amount 9f 

time is spent calculating G rather than making1 decisions about .the re-

gion to be searched. 

Experimental Conclusions' 

It is believed that the relaxation times.calculated are the best. 

choice to fit the data to an accuracy of approximately 10%. This is 

indicated by Figure 20 where an expanded scale is used and calculations 

were.made using a relaxation time for the vibrational specific heat that 

is different by 14% from that judged to be the beat fit. - It has been 

argued that some measure of the error in the best fit re+axation times 

can, be inferred from assigning a random 10% error to a set of theoreti-

cally generated data points and then determining the best iit to this 

artificial data<27 >. This procedure is useful in determining the number 

of data points necessary.to get a true best.fit<27 >, but it is not.be-

lieved that it is any measure of the accuracy of the inferred relaxation 

times. Rather it is a check on the accuracy of the best fitting pro-· 

cedure and the true randomness of the assignment of the 10% error. It 

was found that if a large enough set of data points were used the assign-

ment of a truly random error made no difference in the best fit relaxa­

tion times. The conclusions of Bass<27 > concerning the number of data 

points necessary to insure accurate results are valid however. 

The vibration relaxation time for pure carbon dioxide decreases 

with temperature and a plot of the log (•vib) vs. T-l/3 yields a straight 

line as.shown in Figure 21 where the results are compared to those of 

Simpson and Chandler(3G) obtained in a shock tube experiment. The addi-
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tion of hydrogen to the carbon. dioxide has a peculiar ef feet. · At room. 

temperature the relaxation time of the 2% mixture is lowered by an.order 

of magnitude, but rather than decreasing with temperature the relaxation 

time rises slightly and then appears to be approximately constant with 

temperature as shown in Figure 22. Although there may be some error in 

the 15% data as·noted above it appears that the vibrational relaxation 

increases with temperature at least to 750 degrees Kelvin, Figure 23. 

The rotational relaxation of carbon dioxi<;le generally increases 

with temperature, Figure 24, but there is considerable scatter in.the 

data. In order to measure rotational relaxation times accurqtely it is 

necessary to have accurate measurements of the absorption at high fre-. 

quency/pressure ratio~. As note<;! above this was difficult with the 

available instrument .because of sound being passed through the walls of 

the acoustic chamber. Although this effect is present at all gas.pres..,. .. 
sures it becomes a problem only at low pressures where the signal going 

through the walls of the.chamber becomes an appr~ciable part of the 

total signal~ The problem, although not unique.with carbon dioxide is 

not severe with.measurements made on most other gases made.with the 

instrument<27> as results of measurements on Argon indicate. The prob-

lem comes with the acoustic velocity of the sound wave in the gas. If 

the wave going through the gas and that going through the walls arrive 

at approximately the same time the problem will occur. Also if the 

sound wave in the gas is sufficiently strong the problem will not exist. 

It may be possible to modify the .. design of the instrument to alleviate. 

this effect, and such an approach has been suggested by Bass(27). 

The temperature dependence of the vibrational relaxation time of 

the carbon.dioxide - hydrogen mixt4res cannot be explained by existing 
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theories concerning vibration - translation (VT) ·energy transfer, and 

for this reason a model was developed that would calculat~ what effect 

a possible vibration - rotation (VR) energy exchange between carbon 

dioxide and hydrogen would have on the,observed relaxation time, 



CHAPTER III . .· 
THEORY 

Multiple Relaxation 

This section of .Chapter III is based on the work done by H. J. 

Bauer on multiply relaxing systems; especially that part which deals 

with acoustical phenomena(13 ,i4>. A multiply r~laxing systel!l will. be 

considered as one in w~ich there are more than one means by which energy 

can be transferred into the internal degrees of freedom of a.molecule, 

and each of these is governed by a specific reaction rate. The·probleni 

of deducing reaction rates from relaxation .times is quite complicated, 

and a rigorous connection can only be made for simple models . of the · 

(7 ,37) gas • Bauer's method effectively deals with any system, no matter 

how complicated, and it is a means of going from a reaction scheme and 

a set of reaction rates to the actual acoustic data, Because this 

method was used extensively in this work and because it has, in general, 

not been used td its potential by other researchers a reformulation of 

the procedure is presented. Since.a complete rederivation of Bauer's 

work·would be unwarranted.only a brief outline of that part that deals 

with acoustical phenomena observed in multiply relaxing systems is pre-

sented, The notation used follows that of reference 14, but where 

feasible the notatiol'l has been changed so that the.results would be· in .a 

form more recognizable to researchers in acoustics. 

In a gas of molecules with internal degrees of. freedom,. vibration 

46 
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or rotation, the sound wave perturbation will cause a nonequilibrium 

situation, and chemical reactions which were at'equilibrium before the 

introduction of the perturbation will no longer be so. A'chemical reac-

tion can be written.in terms of the stochiometry of the reaction, Namely 

if there are·N reactants reacting.by Rreactions the stochiometry.can be 

written: 

The via are the stochiome.tric coefficients and are simple integers, The· 

above equation is simply a mathematical formulation of what.is taught to 

all students of freshman or high school chemistry; namely in the. .. r.eac.-

tion: 

A + B :t C 

one mole of A and one mole.of B will react to produce one.mole of C. In· 

the above reaction there is only one reaction implying a = 1, and there 

are 3 substances implying N = 3. The terms in the stochiometric equa~ 

tion become: . 

Ml = number of .moles of A 1 

M2 = number of moles of B = 1 

M3 = number of mo lei;; of c = 1 

\)11 = 1 I 

\)11 = 0 

\)21 = 1 I 
\)21 = 0 

\)31 = 0 I 
\)31 = 1 

The equation then implies that one mole.of A and one mole of B.react to 

form one mole of C; the usual result. 
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From the stachiqmetric coeffiaieµts, "ia., one· can define .• a new var..-. 

iable, F;Ci, defined by: 

dna. = 
i 

(10) 

where: 
a. ' 

dni = differential number of .. moles of substance. i pro.,. 

duced by.reactio~ a. 

= 

f;a. is in.some.sense a progress variable for reaction a• !'n·a reacting 

syste111 one of the independent variables which desctil;>e th~ system co.uld 

be the number of moles of .substances produced by reactions in the sys­

tem, dn~; instead df;a will be used as one.of the independent variables. 

Later a. transformation will be .made . to go, from .. the variable f; to the 

variable n, but·for mathematical convenience f; will be .used.to·del;:'ive 

the final result. 

The energy of a thei:-moclynamic,system ca~ be written U =.U(V,S,~) and 

dU(V ,S ,~) = (11) 

the so. called Gibbs equation. The connection between .. the partial deriva-

tives and the,thennody~amic variables is made in most elementary bao~s 

on thermodynamics whereby: 

= T (= temperature) 

= -P (= - pressure) 
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= -A (-affinity) 

Physicists most often learn this equation as:· 

dU = TdS - PdV 

but removing the restraint of no chemical reactions gives Equat!Qn .11; a 

form probably more familiar to chemists •. The a~finity, Aa '· can also be. 

defined in terms of other thermodynamic variables: H.= U + PV; G =.H -

TS; F = U - TS (called A in some notations which could be a cause for 

some confusion).· A useful choice would be to .define the affinity in 

t~rms-of F, the Helmholtz funct;i.on ot Helmholtz. free energy~. 

A = a 
_ (aF ) 

0 ~a V,T 
= 

an1 
but from equation a~ = 

a 
A d (~) h h i 1 1 uVia an 0 = µi t e C em ca potentia 

ni V ,T · 

S() t:hat 

A = a 
(12) 

µi is a measure of the effect on the Gibbs function of adding substance 

i to the system(JS). 

The above equations are commonly use4 to cQnnect the effect of 

che'l!lical reactions to the thermodynamic bell.a.vier of the system, but cal-

a 
. ·· dni 
calculations are usually of the quantity dt"'" and not dn~~ and an ~qUa""· 

a tion for dni/dt in terms of the macroscopic-variables must be formulated.· 

In order to connect ~a and th.e rates to macroscopic ·thermodynamics it is 

convenient.to introduce the concepts of .forces and fluxes from the field 
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of irreversible thermodynamics(l4 , 3 ~J. 

Two fundamental equations of thermodynamics are: 

dU = dQ + dW 

dS > dQ/T 

where, as usual: dU = change in energy of a system 

dW = work done on the system 

dQ = change in heat of ·the system 

dS - change ·in entropy of the system· 

T = temperature of the system · 

The· equation for the entropy can be made exac.t by noting that for re-

versible process: TdS = dQ. rev Therefore, an exact equation for dS 

would be: 

dS dQ/T + dS . irreversible 

Then dW = dU - TdS + TdSi , but dU - TdS is the reversible work done on rr 

the system so that: 

= (dW - dW )/T rev 

The rate of entropy production, CJ, due to irreversible processes is de-

fined: 

CJ = dSi /dt rr = (dW - dW )/Tdt. rev 

It is assumed that the entropy production rate, CJ, can be written as 

CJ = i JiXi, where Ji is a generalized flux, and Xi is a generalized 

force. At equilibrium both the forc~s and fluxes go to zero(l4), and it 
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is assumed that the fluxes are functions of the forces:. J. m J.(X1 , 
l. l. 

x2' •... ) . expansion of J. is then.made about the equiiibrium 
l. 

0 
point, Ji' 

Then for systems not too far removed from equilibrium cr can be written: 

cr = (13) 

The coefficients, Lij are symmetric for conditions nqt too far removed 

. (39 40) from equilibrium ' • This is.the Onsager reciprocity theorem, and 

its proof lies beyond the scope of this work. The quantity l/T is pulled 

out of the coefficient for simplicity since the L's can be a function of 

the equilibrium thermodynamic coordinates. 

Combining the equation for cr with the equation for reversible work 

reformulates cr as: 

The above equation is similar to the equation for cr, (written earlier in 

terms of forces and fluxes) and the same sort of expansion as that done 

d!;a. 
for the generalized flux, Ji, is made for~: 

. 1 a~a. a~ 
I; a. = T' { <aA ) Al+ <aAa) A2 + •. • •} 

1 2 
(14) 

1 
Ai = T f Lai 

. 
!;a is considered as a flux, while Aa is the corresponding force. That 
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this expansion can be made and truncated in the manner shown is the 

basic assumption of Bauer's linear model. It is a specific case of a 

more general assumption of ten made in the field of irreversible thermo• 

dynamics(JJ). It is conveb.ient to introduce a matrix notation at this 

time. 

; = a.vector with elements ;a 

L = a matrix with elements Lij 

A = a vector with elements Ai 

-
giving an equation for ~: 

Since the force goes to zero at equilibrium a Taylor expansion of Ai is 

0 made about the equilibrium point Ai. 

aAi aAi R 
Ai= Ai(P,T,;) = <ar->eq AT+ (~)eq AP+ a~l 

aAi 0 
<ar-> (;a - ;a) 

Cl. 

or in matrix notation: 

A = ( a.A) AP ~ <a.A ' ap + a=l a~ ' ~a 
Cl. 

The last term of the above equation can be written: - G ·~ 
aAi 

Where (G) ia = - ar- , and (£ ~) is a vector with elements (£ ~) i = 
Cl. 

~ G1 ~ • Combining with Equation (15): 
a a a 

(15) 
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= !. L {ax AT +~AP - G ~} 
T ~ aT. ap - (16) 

Using the definition of Aa and the fact that·the second partial deriva­

tives of. U or F with respect ·to ··any pair of variables is independent of 

the order of.differentiation C4l) two new variable-s ·are defined by: 

. 
Giving for ~: 

-v = ·- (av) 
d.~ P,T = 

(a:A, 
a:f'~ ,P 

~ = .!.. L A = Tl L_ Sp_ (T-T ) - .!.. L v (P-P ) 
T- o. T- o 

1 -- - L G ~ T--

(17) 

(18) 

(19) 

Making an expansi0n of the entropy S(T,P,~) about the equilibrium value, 

so• and again·keeping only the linear terms:' 

s-s = 
0. 

.. (as) <as) 
aT ~,P AT + a:P T,~ AP + Sp • ~ 

(20) 

In the acoustic caee the assumption is made that ~(t) .. ~o exp (jwt + <I>) 

(14) after a steady state has been reached • This gives immec;liately that 

t(t) = jw~(t) and implies that the populations of·vai::ious chelJlical 

species vary about·an equi]..ibrium value harmonically with time. This is 

the result of a sinusoidal.. force being applied to the system. Putting 

this result into Equation J,.9 and assullling an isobaric procesfi1, P = P0, 
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yields: 

M 
AT 

= (21). 

But 

~IAP-=O 
6T = C /T 

p 

And cas/aT)~,P 
.1 co 

= T Cp since constant ~ implies tha~ the system cannot .. 

"see'' the reaction whicQ. would be. the case if the sound frequency were 

very high, infinite, and the only contribution to the specific heat, CP, 

would be from the translation motion of the molecules(7). 

heat: 

This gives an equation for the frequency dependence of the specific 

1 co ... - c T p 
- [ 1 ]-1 1 -+ S • jwl + -T L G · -T L .S 

p - -- - p 
(22) 

and in formal terms the problem is solved, but·as with most formal solu..;. 

tions. it is useless for any manner of cal~ulation.. The connecti9n be.,. 

tween the terms in the above. equation and the reactic;>n must• be . es tab~ 

lished, and the equation will be put in a more useab1e form. 

From the deUnition of the progress variable, ~' it cat). be seen that 
\) ia. 

tfa. = (Rate)forward I Ci , where Ci's are the molar concentrations 
Cl 

and the rate i1;1 the rate per unit volume. Similarly the. reverse reac.,. 
\)I 

tion leads to tra. = (Rate)reverse 7T Ci fo At ·equilibrium the forward 
Cl i 

and reverse reactions balance and tf = ~r· Giving: 

. 
~net, = = 
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Defining K = Rf/R = mass action constant of molar concentration gives: c r 

. 
;net 

or:. 

. 
;net 

= 

= 

1 Avi 
~F (1 - ~ 1T Ci ) 

c i 
(23) 

(24) 

where Xi is the mole, fraction of specie~ i, 

ct constant of mole fraction. · By defining Qx 

and K is the mass action .. x 

with the other variables is made by noti?g: 

A = a. 

AV 
1T X ia. The connection 

- i i 

but µi = µi 0 +RT ln Xi. <3s) This gives an equation for ACY.: 

A I: 
0 

AV fa - RT I: Avia. ln xi =.- µi a. i i 

AV 
I: 

0 AV .;. RT I: ln xi ia. · = - µi i fa i 

AV 
I: 

0 
Av fa - RT ln [i xi fa] = - µi i 

(25) 

I: 
0 

Av fa - RT ln Q a. = - µi i x 

0 
Because Aa. vanishes at equilibrium where Kx = Qx: and - ~ µi 6via. = 

RT ln K • And aq. equation for A becomes:. 
x 

. 
Combining with Equation 24 yields:. ;net 

a 

. 
= ; = a. 

. 
;f 

a. 

(26) 

[l - exp (-A /RT)] . a , 



Expanding the exponential and keeping the:first two,terms: · 

a R AV 
• !. {_L (7r C fa)} A 

T R i i a 
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(27) 

In keeping with the spirit of keeping only linear terms in the expansions 

it is noted that the term in brackets in Equation ('l?};'.;i:s .. a constant ·at 

equilibrium which is not zero. Taking the value at equiliprium for this 
. 

term the equation for ~ is: 
a 

• 
~a . • constant x Aci 

From 'Equation (14): La.6 = 
.. 

'OF, /'OA 
a a 

a .. a 

= 0 otherwise 

And the conI\ection between L and the rate constants is established. 

Essentially L ·is a diagonal matrix of the rate cqnstants. 
- ' - ' 

From the definition of .G: 

(Q)aa .. -

=- RT _L ln (K a/Q a) 
i)~ ' x x 

8 

But Kxa is a constant with respect to ~a and: 

(28) 

(29) 
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a ln (Q Cl) 

(G)ae - RT x = 
a~e 

a Avia a ln xi Avia. axi 
= - RT - ln ir xi = - RT r Avfo = - RT r-- (30) 

a;e i i a;e i xi a;e 

Evaluation of axi/a; 6 follows: 

a 
= W (ni/n) 

e 

1 
r A. e> since r = ~ (Avie - x. n = n, 

l. j J j J 
(31) 

a A 
_RT {(E 

Av, tiv,e 
so that: a l.Cl l.. ) (l; r fivfo Avjf3)} = -

ass n i x. i j l. 

(32) 

This expression is very complicated and Bauer was able to simplify the 

notation by the introduction of matricies. 

Let v be a matrix such that: (v), = AviN 
- l.CI. .... 

(33) 

and X be a matrix such that: (X)ij = xi oij (34) 

X is a diagonal matrix of mole fractions. The first term of Equation 

(32) can now be written: 

i x. 
l. 

= r E (v) , 
i j - Cl.l. 



= 
- -1 
<~!. ~)as 
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(35) 

- -1 -It is the (a,S) component of the matrix(~!, ~),where~ indicates the 

transpose of .i• The second term of Equation (32) will always be zero 

for all cases considered here--the acoustic case, To show this one 

simply notes the physical meaning of E av. , . This is the change in the 
i l.Cl 

total number of moles in the system by reaction proceeding to completion. 

Assume reaction a was of the form: A+ B + C. Then: f. avia = -1 + 

(-1) + 1 = -1. But energy transfer reactions considered are always of 

the form: A + B + C + D, Giving: E avi i a 
= - 1 - 1 + 1 + 1 = o. In 

situations where a recombination reaction is considered the second term 

will be necessary, but no such cases are considered here. Formally: 

G = RT (v x-l v) 
n -- -

It remains to find a more familiar form for S defined as: 
p 

cs ) =-
P a 

Noting dG = dH - TdS - SdT = 0 at constant P and T: 

= 
1 oH 
T (af"")p T a , 

= !. aH T a 

Where aH is known as the heat of reaction a. The equation for the 
a 

specific heat becomes: 

C (w) = C = + T i • [jwl + _Tl L G]-l lT L S 
p p p - -- - p 

(36) 

(37) 

Where all of the terms have been defined. This is nqt·the form used, 



however. If & were a diagonal matrix then: 

co 
•. C +.Tl: 

p i 
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By making the identification of Li.i G11/T with ('ti)...,1 and of (Sp)//G:i.i 

with ISC /T: 
pi 

C (w) 
p 

Which resembles th~ usual equation for relaxation in "series11 ( 7). Be-

fore making a transfor~tion in order.to effect a diagonal, matrix a 

change of variables is·made: 

-n = \) ~ 

and -+ 
A = - \) µ 

From Equations (15)(16) and (18): 

I = ..., G ~ + S ~T - vl:i.P - . p -

and 

where· (~)i -

-yields an,equat:ion for µ: 

= - RT (~ x-l v) ~ + S ~T (v =,O) 
~.-- -. p 

s 
p 

= 1 ~H. 
T 

the partial energies of eac;h•substai,.ce. 

(39) 

(40) 

(41) 

(42) 

This 
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µ = R: !.-l n - ·~ E LlT (43) 

Following a.development similar to the one above: 

Where L' = (RT/n)1• As before this equation could be more easily used 

if [jw!, + .Y.1'i!.-l] were diagonal, and although .this is not necessary 

and the equation for C has been used in the form shown there are often p 

practical problems in inverting matricies, and the diagonal form is 

easier to understand in terms of familiar concepts. In order to effect 

a form of equation which is more amenable to calculation note the follow-

ing three equations: 

s-s 
0 

µ = RT 
n 

-l - l -E LlT x n - T 

~ = - vLv µ (From t = 1 A) 

(-as) AT + _1 -E·n- + (T • ) LI erms in p 
aT T 

Equation (45) and (46) can.be rewritten: 

~ -x µ 
RT -~ - 1 ~ -

= - x n - - x E t..T 
n T-

-~ -: x n 

-~ -k: 
denote x ~~~ !. 2 by M, and note that M is symmetric: 

(M) ij = 

(45) 

(46) 

(47) 

(48) 

(49) 



~ince.~ and.!. are ~iagonal: 

.. 

• 

E 
K,L,M,N 

-~ 
~ xii vim 1MM 

• 

(v)Mj 
-~ 

xjj 

-~ - -~ • ~ xjj \l jM ~ · (v)Mi xii 

= (M)ji 

So that a matrix! can be found such that: 
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q.e.d. 

BM B 111 (1/ '!_) , and: 

B ! • .!_, wher.e (1/J) is a diagonal matrix. Rewriting (48) and (49): 

RT - -~ - 1 - ~ -= - B x n - - B x E ~T 
n -- T - -

-
Combine To eliminate µ and assume, as above, n = jwn 

= 

Where (l/!.') 

- -12 -jw! !. n 

- -12 -B. x n = 

_ RT (l/'I) 
n 

RT - -~ - 1 - · 12 - } = - (l/_T) {- B x n - - B x E ilT 
n -- T --

(jw +RT, (l/T))-l (l/;:) !. B x12 E il'l' 
n - - T--

= ~ o.C /(1 + jwTi) 
i ]. p 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 



where 

giving finally 

co 

. - ~ 'E, 2 IB x --~1 Rn 
-- RT 
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C (w) 
p 

.. c + 
p 

(56) 

This is the form used in all calculations and the program for the 

rate calculations, AMD004 and the calculation of C , AMDOOS, are out­
p 

lined in the Appendix. The problem of going from a set of rates to 

acoustical results is formally solved. By using this-procedure the 

method of going from a set of rates to acoustical data is reduced from 

numerically solving a set of coupled differential equations to diagonal-

izing a matrix, a substantial reduction of computer time .and programming 

effort. Admittedly the above derivation is rather complicated, and it -

is only an outline of the more complete and formal presentation by 

Bauer(l3 ,l4), It is not a difficult procedure to use in practice and an 

outline of the steps necessary to use the program is presented below. 

1. Set up a reaction scheme matrix, \) ' . 
ia 

2, Calculate the. diagonal ~matrix containing the reaction rates, 

3. Calculate the concentration of each specie, X .• 
1 

4. Form matrix ~by: 

(M)ij 

5. Diagonalize M with a matrix! giving eigenvalues, (l/•i) and 

the corresponding eigenvectors, b, from the columns of B. 
1 

6, Calcul~te the internal energy of each specie, Ei. 



7, For each non .. zero, eigenvalue calculate· iSic~ from the ·corres­

ponding -eigenvector .. by: 

8, Calculate (C ) ff = c + E oic I (1 + jWTi).' . P e P i P . 

9, ·Use (C) ff to.calculate (aA.(w)i t and v2/v 2 • p e · ·· · n o 

In practice several of the.· above steps ca'Q. be combined an~ the process 

becomes even simpler. 

Vibration. - Rotation Rates 

This section deals with the formalism involved in.calculating the 

vibration - rotation energy transfer rates for two reactions1 
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(17.-22) ' 
As tll:!,s prc;>cec;h.ire is described in. more . detail in .othel;' works · · · only 

a brief outline will be given mainly for completeness an4 ~hich deals 

primarily with .the assumptions and approximations of the:model. Mathe-

matical details are i,:>resented in . a ser:l;.es of three papers , by Rabitz .:and· 

Gordon(l7-l9) and a.presentation here.would only be a.rederivation of· 

their results, The problem of calculating the probability of an.in-

elast:t.c ·transfer of energy between the.carbon dioxide and hydrogen. 

mole~ules is solved by a.semiclassical approxi~ation. The translational 

mc:>tiQ?l- of the two molecules is:trea~ed classically·and the,pote'Q.tial 
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5etween the colliding molecules is a sum of m1,1ltipole pote'l)..tials which 

is truncated after the first nonvanishing term •. Further the assumption 

is made that the classical traje~tory can.be approximateci by a straight 

line for large impact par~eter~. 

The important point to note about·this type of calculation is.its· 

region of validity, As mentioned it is useful only for.smallcha~ges.in. 

the. total internal energy of the. two molecqles and this i?Qplies ·th.at~ .it 

should be used for near resonant energy exchat).ges, It could.not be ex-

pected to, work.in systems where the change in rotatio~al quantum numbers 

would be . very large. · The· approach does not, .conserve angular mo~entum 

and errors because of this should be kept to a,minimum •. Rabitz and 

Gordon(l7) give a general criter,d;Qn: 

!::.E/kT < 1 

and. !::.J/L < 1 

where: AE. is the change of internal energy, and L·• m v b/h:• a measure 

of the angular momentum of the system, b is the impact parameter, !::.J = 

change.in rotational,quantum number. 

Th17.potential used.is.the first nonvanishing term.of·Equation (~) 

for impact parameters greater than.a certain cut off pa~ameter, d, and 

the transition probability for the system going from one set of .quantum 

numbers, i, to another, f is ca+culated. In the case of carbon ·dioxide -

hydrogen the transition dipole moment for carbon.diox~de is used, while 

the quac1rapole.moment of hydrogen.is used. There .is no assurance that 

the ,actual potential can be r.epresented by suc'Q. a truncation,, but-.that: 

assumption .is made,. The calculation is straight .forward, and· the result 

is a transition probability parameterized by !::.E, v (relative velocity of. 



colliding molecules) , a.t,1.d b : . P (6:E tV, b) • 

Where 

Th 1 d li t d final . lt' i C42l e genera , an .comp ca e 1 resu s: 

2 1 . 
c (j ,.e.,jr ;OO) 

w = l:.E/ifi 

T = b/v 

= 

K (x) 
µ 

= _ modified Bessel function 

1 (i) <n IQ In > i R-1 i • matrix element. for QR. multipole. moment of-· 
i 

molecule i. 
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(57) 

In the case considered here the transition is sUllimed over all possible 

values of the rota1;:ion quantum numbers for the carbon dioxide molecule, 

while the hydrogen molecule is assumed to be in the ground vibration~l-

state. This transition probability is averaged over the\ velocity by 

using a Maxwell-Boltzman distriQution of velocities:(4l) 

giving 

dN = (4N//;")(m/2kT) 312 v2 exp (-mv2/2kT)dv 
v 

P(T,w,b) 
~ ~ 

'"" l P ( v , w, b_) vdN I J vdN v=o v v=o v 
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Some manner. of averaging over the impact parameter, 'b, is then· 

formulated. Sharma and Brau <42 > calculate an approximate far P(b=O)- and 

then assume: 

P(b < ~) = P(b = 0) + (b/d) 2 (P(b = d) - P(b = 0)). 

There.are other.ways of handling this averaging,(l7) one·being: 

p (b < d) 

P(b > d) 

= 1 

= p 
calc• 

In each cas~ d ·is .. the cut off parameter ·that re~lects the fact that: a·· 

zero il!lpact.parameter in the straight line trajectory,model woulcl.imply 

that the molecules passe4 straight through. each, other.' The value of P 

can. be. sensitive to the , choice of d. The usual choice is the hard 

sphere diameter of the molecule obtained from the LennarQ,-' Jones 6 - 12 

potential, but it can be.treated as an adjustable parametel;'. It was not· 

in the.carbon dioxide - hycirogen calculation.' 

Th.e·P(wfT) obtained after averaging is often referred to as a 

transition probability or cross section. Clearly it 'is not a transition 

probability in th,e usual quantµm mechanical sense. It is connected to 

a reaction rate by multiplication by the number of c9.llisions. per second 

between the two initial states of·the colliding molecules normalized to 

a standard density. The.density chosen for all of the.rates was one 

atmosphere at the-temperature of the calculation. 

Although the final result .is relatively simple, especially if one 

has access tq a computer, discretion must be exercised.in its use. As 

noted,there are.sevetal assurnptions made·in deriving the final.form, and 

the i;ystel!l on which .the moclel is used, should not contradict these assump.,.. 
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tions, It does have advantages in that it can.be·used to,prel:lict tran.,... 

sition probabilities that; are difficult to define if the internal motion 

of the molecule is treated classically. A further discusaion.of·this 

semiclassical model is presented in Chapter V. 



CHAPTER IV 

COMPARISON OF THEORY AND EXPERIMENT-

Computationai Techniques 

Using Bauer's ideas a model of the syst~ wastmade which allowed 

various types.of reaction schemes to be tested agail}.st the data• Al~ 

though.the mqdel,can predict ab~orption and dispersion the theory and 

experiment are compared through relaxation times. The-theoretical ab-

sorption data wa~ fitted to a s:i.ngle.relaxi\'ltion -curve anci·a theore~ic~l 

relaxation .. time :was extracted much in the same 11\B.nr).er il}. which a relaxa'l'" 

tion time is inferred from experimental _data~ ~ flow chart for this 

scheme.is shown in Figure 25. This was done to keep with what appears 

to :be the standard practice of reporting not. the acoust.ic data, but the 

relaxation _times inferred from it. The relaxation times·so inferred 

would correspond to vibrational,relaxation times, but as is noted below 

the processes i~vo1ved-can include the rotational degre~s of,freedom. 

Figure 26 shows the.acoustic _and shock .tube.vibratiollal relaxation 

times. The shock tube work is due.to Simpson and Chandler of Great 

BJ;itain. 

The rates used al;'e·calculated according to tqree different theqries. 

The vibration - translation (V-T) rates.are calculated according to the 

' Schwartz, Sch+awsky and Herzfeld (SSH) model(lO), the. rotation~ trans~ 

lation (R-T) rates wel;'e calculat~d according to a .model. proposec;l by 

~ff and W!11.ter<23>, and the vibration - rotation (V-R') rates were cal..;. 
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Figure 25. Flow Diagram for Using Bauer's Approach 
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. -•- 100% C02 
-A- 98% C02 + 2% H 2 

--•--97% C02 + 3% H2 (Simpson 
and Chandler) 

t'<obs> vs Temperature 

-E 
0 10-6 -------- - - - -- - -I 
(.) 
Q) 
(/) - -·--

10-1 L--------'-~ __ __,, ______ ....._ ____ __,_ ______ ..__ ____ ~----~ 

300 400 ·500 600 700 800 900 1000 

T(~·K) 

Figure 26. Observed C02 Relaxation Times Versus Temperature 
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culated ·to Sha.rm~' s model (22). The Raff and Wint.er calculation was modi-

fied to. allow for bJ, th.e change. in rotation quantum number, to be . equal 

to two. The bJ = 1 assumption of the published Raff and Winter calcula­

tion was not critical to the conclusion!!:! from the:j..r calculationsC23 >, 

but because of the nature of the model of the gas used in this work it · 

is necessary to keep the system as physically realistic as possible. 

Because inelastic.collisions·causing a change in the nuclear orienta,.. 

tions of the hydrogen molecule would conf u9e th~ results of the model 

this change was.deemed necessary. It should be·pointed out however 

that this would in no way invalidate the.conc+usions of the Raff and 

Winter paper with res~ect to the origin.of the temperature dependence of 

the. rotational relaxation times being contained in the rotational level .. 

populations. Another point .to note is that in these calculations tQ.e 

value of Z, the number of collisions.per second experienced by one 

molecule in a gas at one atmosphere pressure is slightly different than 

that used by most authors. The Z used differs by the inclusion .of a 

term called n(2 , 2) by Hirschfelder, Curtiss and Bird(JJ) which allows to 

some extent the dynamics of the collision process to enter into the cal­

culation of z. The use of n< 2 , 2> gives.the same effect as deducing the 

va1ue of Z from viscos:j..ty m~asurements(7 ). The difference in rates using 

this form of Z can be as much as 30% from .that gotten using·a hard sphere 

model.of the collision. In all cases the rate for a.reaction .is inferred 

from: 

Rate = Probability of transition/collisio~ * (Z*) 

Where: Z* =number of collisions.per second of reaction species 

normalized to a standard density (1 atmosphere) 
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Pure Carbon Dioxide 

Using the .fotmalism a reaction scheme was developed which allowed 

for only carbon dioxide - carbon dioxide collisions,and the results were 

compared with the relaxation times for pure ca+bon dioxide, Figure 27. 

It was found that although t~e general temperature dependence of the re-

laxation times cquld be predicted by the SSH theory without .any adjust-

ment th~ slope of the Log(T) vs. temperature curve was not correct, 

Since it is essential that the theory be able to predict the results in 

pure substances before the effect of impurities could be inferred the 

carbon dioxide - carbon dioxide SSH rates were adjusted by an empirical 

adjustment of,300/temperature. As can be seen in Figure 27 this adjust-

ment reproduces the experimenta+ relaxation times fairly well in the 

temperature range 300 to 1000 degrees Kelvin, The fact that an adjust~ 

ment less than one.was necessary reflects a fact noted repeatedly in 

this work, namely that the.SSH theory gives rates that a+e in general 

too large, For carbon dioxide - carbon dioxide collisions there are any 

number of reasons why the SSH theory is not exact •. The theory was not, 

nor was it intended to be, a rigorous calculation, It is employed mainly 

because it seems to predict the general temperature dependence and cor-

rect order of magnitud,e of a large number of relaxation times., and it is 

easy to use. The calculation as outlined can be susceptible to rounding 

errors on the computer, especially the diagonalization procedure, There-

fore, all calculati.ons. were done using the double precision mode . of the 

compute+, and IBM 360/65 system, In all calculations it was necessary 

to include a rather large number of levels and a cut off population of 

-3 . . 10 % was used when the population of the various vibrational levels 

were calculated. An inclusion of more levels. resulted in .a change of 
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peak height of less than 1% and it was decided to trade off a greater 

accuracy in the peak height, which is related to the relaxation strength, 

for computational speed, and a reduction of th.e ·core size necessary to 

run the program. 

Pure FJ;ydrogen 

A reaction scheme was then formulated for pure hydrogen, and the 

results are shol<?n in Figure 28, As explained by Raff and Winter<23> the 

rates are given by: 

= 
2 ~ 2 N(Ticr p) (8kT/TIµ) · exp (-ex·. AE:tj/lcT) (58). 

Where: N = Number of molecules in·the system at one. 

atmosphere 

p = an adjustable parameter 

T = temperature 

µ = reduced mass of colliding pair 

LlEij = E. - E 
l. j 

2 adjustable parameter ex = an 

The paramete:i;:s ex and p were adjusted to give a good fit to the data of 

Hill(SO) at 300 degrees Kelvin. The values used were: 

ex 2/k -. 2440 (degrees/ev) 

2 
1TCi p = 

2 0.63 (a.u.) = 
7 1.8 x 10 barn 

Probably because of the different method for.connecting the acoustic 

data to the microscopi,c rates the relaxation times are different than. 
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those used by Raff and Winter for their L1J = 2 calculations(23). The 

results of using their parameters are also shown in Figure 28 as the 

dashed line. 
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As mentioned above the main effect of including a large number of 

levels is to change the peak height slightly, This effect'can be noted 

for the case of pure hydrogen in Table I, where the total relaxation 

strength, oCPi, is given for different values of the ~aximum 

rotational quantum number considered. In no case was the inferred value 

of the relaxation seen to change, so the effect of adding more levels 

would be to change slightly the peak shape, but it 'should not effect the. 

value of the relaxation time inferred, In other words. the frequency of 

maximum absorption does not change, but the absolute magnitude of the 

maximum does, 

Carbon Dioxide - Hydrogen Mixtures. 

Three different mixtures of carbon dioxide were analyzed, 2% H2 , 

3% H2 , and 15% H2 concentrations, Using the SSH theory to predict the 

V-T transition for the reaction: 

yields the results shoWn by the lower line in Figure 29. It is obvious 

that this does not agree with the data even.within anorder of magnitude, 

and an adjustment on the SSH co2 - H2 rates of 1/50 yields the results 

shown by the dashed line in Figure 29. The solid line through the data 

is simply a reference line. In all subsequent calculations where the. 

carbon dioxide - hydrogen rates are used this adjustment has been made, 

The carbon dioxide - carbon dioxide SSH rates have been modified by the 
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TABLE I 

EFFECT OF INCLUDING ADDITIONAL. ROTATIONAL LEVELS IN 

THE REACTION SCHpiE FOR HYDROGEN AT 300 °K 

% of Mol~cu1es in 
E <\ C 1" Rotational Level J i ' p (best Jit) 

m~x. 

1 0.9584 i.501 x lo-8 

.1 0.9597 1.501 x 10 -8 

.01 0.9598 1.501 x 10 -8 

10-4 0.9599 1.501 x 10 -8 

10-6 0.9599 1.501 x 10 -8 

10-10 0.9599 1.501 x 10 -8 

10-12 0.9599 1.501 x 10 -8 

10-14 0.9599 1.501 x 10 -8 
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empirical. factor noted above.. Figure 30 shows· the same reaction for a 

3% hydrogen concentration.. As can be seen the tempe+ature dependence of 

the relaxation times is certainly different than.the pure carbon dioxide 

relaxation times, but the cui;ve is not.representative of the data as the. 

slope is wrong, It appears that the SSH theory does not predict relaxa­

tion times th~t-increase with temperature, as the data implies, For 

th:l.s reason. a reaction scheme which .include-d vibration - rotation energy. 

transfer was formulated, There are two different V-R reactions treated: 

co2(0l0) + H2(J=2) 

co2(010) + H2(J=l) 

co2(000) + H2 (J=4) 

co2(000) + H2(J=3) 

In refer;nce 22 Sharma calcul,ated the.rates for these reactions, but in 

his discussion he does not compare the theory and experiment in a way 

that is analogous to that presented here. 

Figure 31 shows the results of a reaction scheme which allows only 

V-R type interactions between the .carbon dioxide and hydrogen while using 

carbon dioxide -.carbon dioxide rates that have not been adjusted by the 

empirical temperature dependent factor, The effect of the inclusion of 

the V-R rates is to lower the relaxation time at 300 degrees Kelvin and 

the relaxation time increases until it approaches that of the pure car­

bon dioxide results. This behavior is understandaqle through a rather 

crude model o~ the internal processes. If the assumption is made that 

at the lower temperatures the intet;nal.energy goes from the vibration of. 

the carbon dioxide into the rotation of the hydrogen.faster than it.goes 

from the vibration of carbon dioxide through catbon dioxi,de .,.. carbon 

dioxide energy exchange processes the relaxation times will follow the 

temperature of the V-R rate inversely, i.e., if the V-R rate decreases 
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with temperature the .relaxation time will generally inctease with tem­

perature. While the V-R rate decreases with temperature the carbon 

dioxide - carbon dioxide rates are increasing with temperature and the 

system will at some point begin to follow a temperature dependence that 

is inversely related to this ,faster rate~ Although this is ·a gross 

simplificatiqn of ,the actual process it seems that the relaxation will 

follow the temperature dependence of the faster process, 

Adjusting the carbon dioxide - carbon dioxide rates by the empirical 

factor so that they do not increase with temperature quite as fai;;t'as the 

SSH theory.indicates gives relaxation times that agree more closely with 

the experiment·as shown in Figure 32. Allowing both V-R and V-T (ad­

justed) type.interactions between carbon dioxide and hydrogen yields 

the .results shown in Figure 33. The relaxation times are in general too 

large for the mixtures, but the theory seems to reproduce the general 

temperature dependence of the.experimental.data which the V-T theory 

could not do. 

Figure 34 shows a summary of the results for a 3% hydrogen concen­

tration where some feeling for the effect of different types of reactions 

on the rel~xation time can be gotten. The curves indicate that in this 

model the effect of V-R transitions. is important at low temperat;ures 

while at high~r temperatures the relaxati.on times. seem to indicate a V-T 

type transition predominates~ 

Carbon Dioxide - Nitrogen Mixtures 

Measurements on carbon dioxide - nitrogen.mixtures were also made 

by Simpson and Chlander(3G) using a 60% concentration of nitrogen. The 

temperature dependence.of these relaxation times is plotted in Figure 
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35, and it appears t~t the addition of nitrogen raises the rel~ation 

time above that of the pure carbon dioxide val\leS •. A similar effect was 

noted by.TreadawayC43> using the high pressure acoustic interferomet;:er 

described earlier •. This·effect is not predicted by the SSH·theory as. 
i 

shown by the lower li.ne in Figure 35. The SSH· theory predicts that the 

relaxation time c;>f the mi:Xt\lre should be lower. In this reaction t4e 

carbon dioxide and nitro·gen were allowe~ to interact by a V-T type 

process <;>nly. If the carbon dioxide - nitrogen SSH V-T rates' a~e ad-

justed by a factor 1/50, the same adjustment as used for the carbon 

dioxide - hydrogen V-T,rates, the results agree more eloljlely with ex-

periment. This.effect is also plotted in Figure 35. 

A great deal.of importance.should probably not be attached to the 

fact that the adjustment has the exact same.numerical value, although 

several other values were tried and 1/50 seems·to give-the cl.oseljlt fit 

to the data. The agreement implies only that the SSH.theory predicts 

rates that are consistently too high by about a factor of 0~01 ...- 0.03 

for carbon dioxide - hydrogen and carbon dioxide - nitrogen V-T rates. 

Although the value of the adjustment happens to be the.same in'both 

cases a different reaction scheme maY well imply that a diff~rent ad-. 

justment, or no adjustment, would be necessary. 



CHAPTER V 

CONCLUSIONS 

Experimental Conclusions 

From the comparison of the theoi;:y and experiment it appears as 

though·th~ model·used can predict the general temperature dependence of 

the relaxation times of pure carbon dioxide, pure hydrogen, carbon di-:-

oxide - hydrogen and carbon dioxide - nitrogen.mixtures. In carbon di­

oxide - hydrogen mixtures it.appears necessary.to.allow for vibration to 

rotation energy transfer between the carbon dioxide and the hydrogen. 

molecules, and Sharma's theory gives rates for this process that appear 

to predict the general temperature dependence of the relaxation times. 

In carbon dioxide - nitrogen mixtures the general temperature dependence 

of the relaxation times seem to be predicted by considering V-T type 

collisions only. This implies that a V-R process is important in.carbon 

dioxide - hydrogen systems, but not carbon dioxide - ni~rogen systems. 

Multiple Relaxation 

In order to predict the relaxation times it is necessary to include 

. (36 44) a complete model of the system. It is sometimes assumed ' that 

when V-R transitions are considered it is not necessary to allow for R-T 

reactions also, but in order that the model be complete.this effect must 

also be.considered. Figure 36 shows the effect of using R-T rates that 

are a factor of 100 ;larger than those used in.the previous calculations 

88 
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(effectively infinite rates) for a 3% hydrogen mixture. Tfte low temper­

ature data agrees rather well with the experimental results, but at 1000 

degrees Kelvin the results are too low by a factor of two. More.impor­

tantly the temperature dependence of the relaxation times.appears to be 

wrong. Although no ·claim. for the exactness of the rates used is made 

this result implies that the resultant relaxat:i:Dn times are closely con­

nected to the rates and the reaction scheme used in the.model. Only by. 

considering the total model of the gas can conclusions·about the correct'"' 

ness of various theories be made, 

The formalism of Bauer for going from a set of microscopic rates to 

macroscopic ,_data is very useful. Figures 37 through 39 show the experi­

mental absorption and the predicted absorption gotten from Bauer's 

formalism .at 300 degrees Kelvin. Although the theory is complicated and 

its o~iginal English publication(l4) is difficult to understand it is 

easily used in.practice. It is also very fast. The importance of using 

a complete reaction scheme has been recognized by several authors<23 , 45 >, 

but detailed calculations on systems with a large number of internal 

levels has been hampered by the restrictions of computer size and speed 

(23) Using Bauer's approach the system of differential .equations, the 

rate equations, can be solved quite easily, and although the approach 

will not work when there are large perturbations from equilibrium yield­

ing non linear effects nevertheless it appears to be useful in a large 

number of situations where a relaxation process is important. Besides 

acoustic phenomena the same approach can.be easily extended to the study 

of laser flourescence, where the measurement also the results of the 

effect of more than one reaction rate<46 ). 

The formalism has been used to go from a,postu,lated reaction scheme. 
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to theoretical results which can be compared with experiment, ?t is not 

believed that·. the formalism .can be used in reverse, Although it would 

be desirable to go from experimental data to reaction rates, and it has 

b d h h h b 0 bl <17> h . een suggeste t at sue · an approac may e poss1 e t ere are ser1-

ous problems in attempting such a procedure from Bauer's formalism. 

This work has.implied that one must consider a complicated set of 

reactions that is, at the least, complete within.itself. In other words 

if a V-R reaction is in the.reaction scheme the. corresponding R-T reac-

'tion must also be considered. In going from experimental data to rates 

th~re appears to.be no assurance that the rates so produced are·unique, 

and.other rates coupled with a different reaction scheme might also 

yield the same agreement with e~periment with different rates. Although 

a procedure to go from the data to tl).e rates can be written there is 

some question as to th~ validity of the rates so obtained. It appears 

that one would be attempting· to reverse the flow of information from the 

macroscopic to microscopic. It may be that such an atte~pt couldbe· 

predicted to fail a priori, since it appears to be ari attempted "retro­

diction" <47) __ prediction of the probability that an event will occur 

based on the f?xperimental fact that it did occur. Further conunent should 

be deferred until the.results of such an effort can be analyzed complete-

ly. 

The formalism can be used, however, to decide ~hether or not a theo~ 

retical prediction can be checked by a given experimental situation. An 

example conceI'nS"Kolker's(46 ) calculation of the rates for two reactions: 

co2(001) + H2(J=2) ---- co2(100) + H2(J=4) 
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The results of including these reactions into·the reaction scheme for a 

3% hydrogen are compared.to those gotten by omitting these, rates from 

the.reaction scheme in Table II. Although there is a slight difference 

in the results at 364 and 579 degrees Kelvinthe experimental relaxation 

times would have to be known.to an accuracy of .better than 1% to observe 

the effect. Relaxation times.to this acc:uracy could not;be resolved 

with the available instrument~ In a laser flourescence experiment which 

observes specifically the deactivation of the (001) mode of carbon di-

oxide the acc,uracy of . the results could be checked, but again one would 

have to consider all reactions involved and not just the ones.calculated· 

above, 

Rate Calculations 

There are three distinct types of rate calculations used: Raff and 

Winter<~3 ), SSH(lO), and Sharma's multipole moment method<22 >, They will. 

be conddered separately. The Raff and Winter calculation for the R-T 

r.;ites is admittedly unrealistic <23> as it assigns a. constant transi.tion 

probability irregardless of the quantum numbers.identifying the reacting 

species, That it can predict the temperature dependence of the acoustic 

data is probably due not to the correctness of the rates, but the dis­

crete level nature.of the rotational energy, This was the conclusion of 

the work of Raff and Winter<23), and it is not contradicted by this 

work. It seems to be strengthe~ed by the fact that the same model can 

predict the temperature dependence of the relaxation times when a reac.,... 

tion scheme of ~J = l or ~J = 2 is used, Of course it could be that the 

fact that there are two adj us table parameters .. in the theory might be 

forcing the model to fit, but the parameters are adjuste,d only once at 
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TABLE II 

EFFECT OF INCLUDING KILKER~S V-R DEACTIVATION OF 

co2 (001) BY H2 IN THE REACTION SCHEME 

Temperatur~ '! (sec .... atm)· '! (sec:atin) 
(degrees Kelvin) With Kolker Rates Without ,_Kolker Rates 

300 6.93 x 10'""'7 6.93 x 10-7 

364 9.11 x 10 -7· 9.12 x 10 -7 

455 1.24 x 10 -6 1.24 x 10 -7 

579 1. 24 x 10 -6 1.25 x 10 -7 

751 1.20 x 10 -6 1.20 x 10 
-7. 

1000 1.08 x 10 -6 1.08 x 10 -6 
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300 degrees Kelvin so that the magnitude of the relaxation time and the 

shape of the absorption curbe.agree with the data. There is then no 

apparent reason for the fact that the temperature dependence of the re-

laxation times should follow from this one adjustment. The.fact that,it 

does implies that i~deed it is the changing population of the levels 

with temperature that is causing the effect and not to any large extent 

the temperature dependence of .the rates due to a change in the average 

velocity of the molecules. Although the assignment of a constant tran-

sition probability to each reaction was for computational convenience, 

detailed calculations by Shimamura and Tak.ayanagiC45 > on para-hydrogen 

using a potential that averages long range forces over molecular orien-

tations indicate that the croi;;s sections for the two reactions: 

H (J=O) + H·(J=O) 2 2 

are the same to within 2% over a wide range of relative velocities. Al-

though this does not mean that the parameters chosen are in any sense 

correct, it does imply that the model is not completely wrong, and the 

fact that the theqry agrees with the acoustic data implies that the, 

rates themselves are probably within an order of magnitude of being 

correct. 

The SSH rate calculations have been applied to a large number of 

various gases<4S), and the basic calculations have been modified by 

Several authors (l1,l2) t k 1 1 t• large numb r f t o ma e ca cu a ions on a e o sys ems. 

The calculation does not .. appear to be accurate in all cases, but it has 

been found to predict the temperature dependence of relaxation times in 

relatively simple syste~s with surprising accuracy considering the crude-
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ness of the model. 

Previous comparison of the SSH calculation-with experiment has in­

dicated that the rates were in general too large(4S) ~ and_ this has been 

verified in this work. Although the calculations, are. admittedly crude 

and some of _the assumptions made in making them are.possibly not valid, 

the SSH model is the best ·ava::lrlable for V-T and V-V rates, and for this 

reason it has been U$ed e~tensiv~ly. 

The V-R ca.lculation du.e to Sharma is most notec;l for its lack of ad ... 
t- - .. • •. 

justableparameters, although the impact parameter used can.be in.some 

sense considered a parameter indicating an arbitrary cut-off for the 

potential. If the parameter used is the.hard sphere radius of the mole ... 

<;:'1le t:hMJilr tq::t.s parameter is really not adj us table. The calculation, . 

wl:l~n.IJ!il~c;l w!th a complete reaction scheme, seei;ns to work. It can predict 

the t(ampt~;:tture dependence of the relaxation times.for carbon dioxide -

hydrogen systems while a V-T theory only does noti The IJlagnitude of the 

relaxation times.is not correct, but the error is -qot i;evere. It is 

most noteworthy that what fit there il;i occurs with no empiric;a.:L modifi-

cation of the V-R calculation. 

The· metho.d of calculation using the multi pole. moment approa.ch seems .. 

to be a powerful. and easily used tool for making rate calculations, It 

has been applied to other types of col;Lisions(l7-l9) and will probably 

come into greater use. It should be noted that the accuracy and useful-

ness of the calculation depend on several factors: (1) The validity of. 

the trajectory and.· impact parameter approximations, (2) t~e validity of 

the perturbation truncation, ,and (3) the availability of multipole mo­

ment matrix elements. Rabitz and Gordon~l7 ) have discussed the validity 

of these approximations in first and higher order perturbation theory. 
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It appears that·otl:ier transition probabilities could be calculated by 

this method, Since.all but the translation degrees of f'.f.'eedom are 

quantized the model can predict ,transition probabilit~es that are dif f i-

cult to define classically, ,and it can_ be understood by elementary quan ... 

tum mech~nical theories. The calculation seems'to require a minimum 

amount of approximations that maintain the quantum nature of the system 

while keeping the.c.;i.lculation tractable• 

An estimate of the accuracy of the rates as calculated is difficult 

because. the system is so complicated. A question aris.es as to .whether 

the disagreement between theory and experiment is due to the V-T, V-V, 

R-T, or V-R rates being in error. No claim for the ·accuracy of the 

rates used.is made exce.pt for that which can be inferred by t~e agree-. 

ment, or disagreement between the theory and experiment. Certainly if. 

the SSH theory.is to.be believed for the,V-T rates then some.sort.of V-R 

traJ'.lsition must be included in the reaction scheme to account;. for the 

observed temperature dependence-_ of the experimental relaxation times. 

S.omeday someone with a large computer will. make a full quantum calcula ... 

tion for a system for which a calculation based on.the multipole moment· 

appraoch·has been made, an~ the.results will be compare~. A start in 

tb,is directi,on has been made and there is a book'in print<49 ) directed 

to the necessary computational-techniques. All that can be claimed at. 

this time is th~t the rates as calculated appear to predict the.correct 

temperature dependence of the relaxation times. as long as they-. are under.,. 

stood as.a part of a.total reaction scheme. 

Rates Used 

It would-not be feasible to list all of the rates used -for c~lcula-
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tions in this work. In some cases the number of reactions·is in the 

thousands, and since analytic formulas exist .for all of the rates used 

any listing of.the rates.for specific temperatures would.be redundant. 

The SSH theory used was that derived in the original paper by Schwartz, 

Schlawsky, and Herzfeld(lO), and modified slightly in a later paper by 

Tancoz(ll),. TheR-T rates were calculated by the formula given by Raff 

and Winter(23) and reproduced in Equation 58. The value of the adjusta-

ble used are: 

~2 /K = 2440 (deg/ev) 

2 
TIO" p = 

2. 
0.63 (a.u.) 

The V-R rates were calculated by Sharma(2Z) by averaging Equation 57 

over all possible values of the carbon dioxide rotational quantum num­

bers (ZZ). Since Sharma calculated the numerical value of the rates it 

is easiest to use his numbers. They were reproduced as a polynomial in 

the.temperature: 

= 

3 
= .iE =o 

i a.T 
l. 

3 i 
• E bi. T - pl3 i.=o 

Where T is the temperature in degrees Kelvin. The values of the coeffi-

cients used were: 

ao = 7.368 x 10-3 
bo 6.958 x 10-3 

al = -1.58 x 10-5 
bl = -1.289 x 10-5 

a = L470 x lo-:8 
b2 = 1.004 x 10-8 

2 
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= -5.556 x 10-12 = -3.194 x 10-12 

It must be emphasized again that the rates should be considered in the 

reaction scheme used. Although no universality is claimed for the rates, 

with the reaction used they can.predict the-general temperature depend-

ence of the.relaxation times, 

Further Study 

The areas of further study can be divided into two classes; use of 

Bauer's formalism and rate calculations. There are several areas where 

th~ rate calcul~tions of the type done by Sharma could be used. It 

seems that rotationally inelastic cross sections for H2 systems could be 

calculated using a calculated quadrapole moment of th,e H2 molecule, but 

calculations by Shimamura and Takayanagi<45 ) seem to indicat~ that a 

sh9rter range potential might be necessary. The multipole moment method 

seems useful for long range forces with near resonant energy exchange 

because of the trajectory and impact parameter approximations. One can. 

chec~ the trajectory approximation by using an equation for the relative 

motion of the two molecules, R(t), derived from classical considerations 

using a potential surf ace calculated quantum mechanically or one of the 

semi-empirical potentials, such as the Lennard - Jon~s 6 - 12 potential •. 

The outline of Bauer's formalism given here was directed specifical..:. 

ly to the acoustic case. The theory is much more general than that and 

can be used in almost any system where the perturbation from equilibrium 

is small and the return.to equilibrium is governed by.a set.of micro .... 

scopic rate equations. With the advent of tunable la5ers the number 

flourescence studies should increase and Bau~r's theory can be easily 



used to treat this case. Instead of acoustic absorption one predicts 

the intensity of emitted light as a function of time(lS). 
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The fact of nature is that.one usually can not measure one rate· in 

a given experiment but rather some sort of an effective rate which can 

be a complicated function of all the rates. This is unfortunate because 

one would like to be able to compare one·rate at a time with the experi­

ment. At least in Bauer's formalism there exists.a straightforward, 

fast and fairly rigorous method to compare all the rates and the experi-

ment. 

Concll,lsions 

The conclusions of this work are summarized as follows: 

(1) There is a V-R proce~s·present in the deactivation of carbon 

dioxide by hydrogen, and Sharma's calculation of this i;ate, when coupled 

with a reaction scheme that ,allows· for several different types· of. reac.,.. 

tions, yields relaxation times whose temperature dependence generally 

agree with experiment. 

(2) Rates calculated according to the SSH theory for vibrational 

energy transfer seem to be generally too large.· 

(3) That the rotational relaxation times agree with experi~ent 

strengthens the conclusion of Raff and Winter with respect to the origin 

of the temperature dependence of the relaxation times being connected to 

the level structure of the system more closely than they are connected 

to some velocity dependence of the reaction rates. 

( 4) Bauer's formalism .is an easily used method for. c0nnec ting re-

action rates to the macroscopic data. Because of its ease of use and the 

relatively rigorous connection of the rates to thermodynamic.quantities 
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it appears to be preferable to a brute force method·of numerically in­

tegrating the rate equations. 

(5) The method of calculation energy transfer rates by the semi­

classical, approach of quantizing all but th.e translational degrees of. 

freedom seems to be effective when the rotational en~rgy is postulated 

as taking a part in the process. The results of these calculations must 

be compared with experiment within the framework of a total reaction 

s~heme in order.that,the comparison be meaningful. 
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APPENDIX I 

OUTLINE OF COMPUTER PROGRAMS 

A brief outline of the col)lputer programs·used in.data reduction and 

comparison of.t~eory and experiment is presented below. All programs 

are useful only for the systems under consideration here, but they could 

be modified for use with other systems. A listing of all programs is 

available upon request, but experience has shown that unless the program 

was written with a general application as an end, the program itself can 

only serve as a general guide to, specific problems. The programs were 

writt:en to handle carbon dioxide, carbon dioxide - hydrogen, and carbon 

dioxide - nitrogen mixtures and modifications for use with other.types 

of gases would be necessary. 

AMDOOl 

This program is very straightforward. Designed to handle one gas 

with two relaxation times in a parallel relaxing situation it attempts 

to find the smallest value of the sum over all data points of the abso­

lute value of the calculated absorption minus the observed absorption. 

The input to th~ program includes the transport coefficients and the 

temperature as well as the absorption and corresponding pressure for each 

data point. The program was written .in IBM's Fortran (G) compiler using 

the available options and built .in mathematical functions. At the time 

the program was written there existed no on line method of taking the 
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real or imaginary part of a double precision variable (although the func~. 

tions have s_ince ·been implemented) and function subroutines were • includ-

ed for this purpose. The program assumes the absorption to be·in.db/in . . . 

and the pressure to be in lbs/sq. in. Output includes_ the.calculated 

internal absorption, experimental absorption, and velocity dispersion as 

a functic;>n of frequency/pressure. Also included in the.output is the 

val,.uel:! of the difference between theory and experiment.for eac4 of the 

100 possible pairs of relaxation times searched. The program will 

search a maximum of ten possible values for each of -the two relaxa~ion 

times, ·and can.internally reduce.the range.of relaxation times searched 

if c~nvergence does not occur at either the upper or lower limit of the 

relaxation times (input)_. The thermal. conductiyity is frequency depend-

ent. 

AMD002 

This program is .. similar to AMDOOl except that; the transport coef fi-

cients·are computed as the values they would have in a gas mixture. 

There is no provision for calculating the effect of mass diffusion and 

the program is therefore useful only for small impurity con~entrations. 

AMD003 

The essential points of this program are outlined in the body of 

the thesis• It was written to analyze the d~ta from carbon dioxide -

hydrogen mixtures, and it will calculate the theoretical absorption by 

assuming three parallel relaxation times correspond to the vibration and 

rot~tion of carbon dio~ide and the rotation of hydrogen. The specific 

heat is calct.illilted.as a function of pressure (probably not necessary) as 
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well as the concentration of various_spec:i.,es, .and the effect of mass 

diffusion is calculated. A vector of integers (input) determines the 

order in which th~ relaxation times are searc~ed. This program was 

written to b~ compiled by IBM's Fortran (H) compiler, ane although a 

great.deal.of the physical body of the program ~eals·with bookkeeping 

fdr the sea,rching procedure.the greatest amount of execution time is 

spent calculating the theoretical absorptions •. The output includes the 

difference between the calculated and measured absorption at eacb. pair 

of relaxation tim~s se~rched as.welt.as th~ calculated and measured ab­

sorption as a function .of frequency/pressure for the•best'relaxation, 

times. 

AMD004 

This procedure calculates the rates and reaction schem~ as input to 

Bauer's formalism. The program will calculate SSH, Raff and Winter, and 

Sharma rates ·(if the·• gas impurity is hydrogen) and was, intended for 

e:f..ther nitrogen or hydrogen as the i1:11purity gas •• The procec;lure.was 

written to. be co·mpilE;!d of IBM's PL/I (F) compiler version 5, l, and makes 

use of .. a large numb.er of the available options. The· input for eacb new. 

set of rates is .g()tten by a GET DATA statement and.as a cqnsequence all 

pal;'ame1=ers need .not b~ read in each· time •. The input .,parameters keep 

their initial values unless specified explicitly on.the data CE!-rd. The 

input .. for ei:,ich nt?w calculation is separated by a semicolon from the pro­

ceeding stream. ~he program will internally generate the reaction. 

species, population of various species, energy of each specie and.a re.-. 

action scheme. All data is wr:i.,tte~ on an external file (intended to be 

a tape) for use as input to AMD005. A DD card must be included for this 
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file and one, scratch file (tape ot direct access device), and the block­

size for these external files should be greater,than 7230 if·the program 

is. to· generate more than 900 rates• The rate.s are put on the external · 

file in blocks of 900 which, since the rates are double precision, is 

approximately the largest single.write statement available. Two notes 

of caution, several variables (vectors) have different.meanings in the 

flow of the program in order. to conserve core space. This· is · simi.lar to 

having the.variables equivalenced in Fortran, except that the variables 

keep the same name. Also several of the variables are declared with the. 

CONTROLLED VARIABLE.· attribute which means that their dimensions. are set 

at execution time, and not all variables are active throughout the pro­

gram. The program also generates an indexing vect.or from which AMDOOS 

deduces the nature of the rates and reaction scheme.· 

AMDOOS· 

This procedure (IBM PL/I (F) version 5.1) uses the data created by 

AMD004 in Bauer's formalism. The first part .of the prog.ram is mainly. 

book~eeping as the procedure was written to be run from a private library 

so that many possible variations (printing of output, skipping of various. 

segments, etc.) c51n be controlled by data input rather than having to 

recompile the procedl,lre. The options are read in as string variables 

and·each set of options is indicated with a card completely blank except 

for%% in any two consecutive columns. This card can.then be followed by 

a new set of opt:I.ons. Diagonalization ,is done by a modified version of 

an IBM PL/I SSP routine MSDU contained in.AMDOOS as an·external proce­

dure. The fit of the theoretical data is done by an external procedure, 

ACOUTIC, also contained in AMDOOS. A note of caution in that there are 
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approximately 25 separate options available to the procedure and all. 

possible combinations have not been checked, The procedure assumes that 

the data will be inputed from an, external file and that the rates and 

reaction scheme.will be inputed in groups containing less th~n 901 

separate reactions, Various.rates themselves can be modified by this 

program so that it has been .. the U!;Jual practice .to calculate the rates in 

AMD004 with nq empirical adjustments and make any adjustments in AMDOOS, 

The procedure does not.destroy the rates created by AMD004. 



APPENDIX II 

COMPLEX QUANTITIES IN ACOUSTIC EQUATIONS 

It is of ten convenient to introduce. complex notation into the equa-

tions which describe the acoustic properties of a system. A variable 

q(x,t) which depends harmonically on x or t is written: 

q (x, t) = q0 exp (-i(wt - kx)). 

The quantities k; the wave vector, and w, the angular frequency, may al-

sob~ treated.as complex quantities. A question of interpretation arises 

when attempts to measure these complex quantities are made. There are· 

two distinct types of complex quantities under consideration, those that 

are harmonic.functions of x and/or t, such as q(x,t) above, and those 

which are not, like k or w, but which are made complex for notational 

convenience. 

In the case of complex quantities of the first type A convention is 

established depending on whether the quantity itself or its square is to 

be of interest, Considering, for simplicity, a function of time, t, 

only, q(t) =A exp (iwt), where A is complex and A= Ar+ iAi. A first, 

and.obvious, choice would be to take the real part of q(t) as·correspond-

ing to that which is measured. 

q(t) = B cos. (wt - c/J) 
m 
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Where: B2 = 

c/J = -1 
tan (A. /A) 

1 r 
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B refers to the amplitude of the oscillation .and c/J is a phase angle~ 

2 This is.convenient as long as q(t) and not q(t) is the quantity con-

sidered. Wilen it is the square.of an harmonic-quantity that· is being 

considered a slightly different convention is used. 

When the square of an harmonic quantity is cqnsidered it is the 

time average that is of importance. For a simple periQdic.function of 

time the time average: 

q(t) = i !~ q(t) dt =.O, 

where T is the periodicity of the function. In these the time average 

of the square of the quantity is taken and the magnitude of the quantity, 

- 2 ~ q, is ta~en to be, q = (((q)· )) , and is the root mean square amplitude 

of the actual variable, q (t). The peak value will then be given by: 

= 12 xq, 

since the time averaging introduces a factor of ~. It is ·simply a 

matter of convention whether the ampl:i,tuqe of a complex quantity, q(t), 

refers to the quantity B, defined above, or the root mean square value, 

or the peak value. As long as the convention has been established the 

interpretation is straightforward. 

As noted above it is sometimes convenient to make k or w complex 

quantit:i,.es. It is usually one or the other that is complex, not both. 

Assuming: 



k • k - ik• 
r i 

a convention for interpretation will be established which agrees with 
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that established by severaJ,. authors referenced i11 this work. The con-

vention used is thGtt·th~ phase velocity, VP, is given by: 

V = w/k , 
p. r 

and the absorption coefficient for the amplitude is given,by: 

• 

In order to illust.rate this convention its introductic;m into the acous-

tic equation will be illustrated. Consider.the case of a shear wave in 

a fluid 

d a2 
n/p dt dx2 (q) 

Assuming q = q0 exp (i(wt = kx)) the equation reduces to: 

2 2· 
-w = -iwk n/p 

-w2 = -iwn/p(k2 
r k2 - 2ik k.) 

i r i 

equating imaginary parts: k = k. = k 
r l. 

Equating real parts: 2 
w = 

2 2 
2wk n/p, or k = pw/(2n). 



Accord;f.ng to Bhati.a <52> the phase velocity 1 ·v P, is interpreted. as: 

V = w/k = 
P r 

~ (2nw) /p 

Obviously , the wave will be quite dispersive., 
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Cott.rell and McCo\,lbrey C3 7) treat the problem .in· a d:l.fferent ·manner. 

They writ~ the sc;>lution .to ·the wave equat::J,.oti as:. 

q(x,t) - q0 exp (iw(t - x/v)). 

where the "velc;>city", v, is complex; v = vi + v r, but the phase · v~loci ty 

v 2· + v. 2 

is interpreted as VP. = r V L , ,but this is really n~ 'd:tf f erent than 
r 

the situation of allowing k to be.complex and ha.Ving the phase·veloci~y · 

given by w/k. • For Cottrell and McCoubrey's equation can be .rewritten 
r 

as:.·.· 

q(x,t) 
x vr . ) _ vi x ) 

= qo exp (iw(t - v 2 + v 2 V 2 . V 2 
r i. r - i 

which is th~ same as having the real part of ·k given.by 

k = w/V 
r P 

= 
v IJj 

r 

and as be~.ore,. the phase velocity is· given by w/kr. 

The idea of tbe phase velocity given.by w/k is .also explicitly . r-

st;ated :by Markham, Beyer and Lindsay<53> who, set k .= kr + ki and. stat~ 

"The phase velocity ,in general is given.by c2 = w2/k;." This seetlls 'to. 

be the convention a4opted by. Herzfeld .and Litovitz also <7>. The question · 
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arises whether this convention, and it is really a convention, is dif-

ferent from a$suming that a complex quantity, when measured, yields a. 

value X = (Xi+ x. 2)~. Consider the case of molecular absorption and m r i · · 

no classical absorption(7). In this case the specific heat becomes a 

complex and the equation reduces to(7): 

(k/w) 2 

k ik. 2 
r l.) (---

w w 

= 

= 

c 
M (...Y) 

RT C 
p 

c 
M (...Y) 

RT C ·· 
p 

If the measured velocity (insofaras the phase velocity is the measured 

velocity) is assumed to be w/kr the equation for the velocity becomes, 

from the real part of the above equation: 

= 

k 2 
+L 

2 
w 

But stating that the real part is what is measured would be equivalent 

to adopting the convention that 

v 2 
r 

= Re (!!°. C /C ) + V 2 
M p v i 

= v 2 
m 

Adopting the convention that Re (R~ C/C) is interpreted as V 2 and the 
r 

measurement is of vm2 = vr2 + vi2 then the two conventions.are equiva:-

lent. The problem seems to be one of deciding which convention has 

been adopted. The references used in compiling this thesis adopt the 

cqnvention that the measured velocity corresponds to w/k , but they do r 

nQt interpret Re (RMT C /C) as V 2 • It really makes no difference which 
p v r 

convention is used as long as one is consistent. As a matter of fact 



117 
t 

for the case of aco1,lstic compressional waves propagating in a "dense'' 

gas one need not worry about'the problem at all. Using the convention 

2 2 
adopted it is a~ways the case .that k. /w is much smaller than 

l. 

M 
Re (RT Cv/Cp) or in the other convention,. the imaginary part of the 

velocity is much smaller than the real part so that the measurement is 

of the.real part, ~nd in fact Cottre].1 and Mccoubrey state, "V is set 
p 

equal to V and is simply written.v. 11 <37> 
r 
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