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CHAPTER I
INTRODUCTION

Thé large volume of research dealing with extreme points makes
it apparent that this area is an important segment of functional analysis.
Much of this work is scattered in the literature and has not been set
forth in a unified way. It is our intent to present an exposition of
certain méjor portions of this area in this paper, We will begin at a
basic level and arrive at some of the more interesting results. in the
literature. The paper is not intended to be comprehensive since such
an undertaking would require several volumes,

Extreme points have been studied since the early part of this
century. At that time the main concern was with the finite dimensional
case. In recent years mathematicians have dealt with extreme points
in infinite dimensional spaces. These studies have led to useful
theorems concerning the isometric and isomorphic [see Definitions
3,14 and 3. 15] properties of Banach spaces. The study of such
properties is one of the most active areas in functienal analysis.

We hope to present the material in such a manner so that a
second year graduate student in mathematics would have little difficulty
in understanding the paper. The prerequisite for reading this work is
a basic first year course in functional analysis and measure theory
(see [40] and [44] for example). For the reader's convenience we

list a few of the main results in functional and real analysis that are



used frequently and give references: the Hahn-Banach theorem [[44]

p. 65]; if E is a normed space then the unit ball of E* is w*-compact
[[44] P. 239]; if X is a Banach space then in X%, w¥*-bounded
implies'norm bounded [[44] P. 245]; in X, w-bounded implies normed
bounded [[44] P. 223]; the Baire category theorem [[40] p. 139]; and
the Tietze extension theorem [[40] P. 148].

Chapter II will present the basic material needed in the rest of
the paper. Some simple examples of extreme points in the plane will
be included along with seme basic lemmas that will be needed later.

Chapter III will be devoted to three basic theorems concerning
extreme points. These theorems will be presented in chronological
order so that we may see to a certain extent how the ideas have
developed from the first part of the century to the present time. Also
included in Chapter III are some applications of extreme points.. These
should help to explain the interest in extreme points in recent years.

- A major portion of the paper will be assigned to Chapters IV and
V. The characterizations of the extreme points of the unit balls of
five well -known Banach spaces will be covered in Chapter IV. In
Chapter V we endeavor to do the same for the unit balls of the duals of
these five spaces. Also at the end of each section in Chapter IV we
present the results concerning the question of whether the unit ball is
the closed convex hull of its extreme points, As previously mentioned,
this informatioen is scattered throughout the literature and it is our
hope to gather these results together and present them in a readable
form.

Chapter VI will be devoted to other distinguished points which

are related to extreme points. These ideas give the interested reader



an opportunity to investigate some extensions of theorems in Chapters

II, III, IV, and V.



CHAPTER 1II
BASIC CONCEPTS OF EXTREME POINTS
Definitions, Basic Lemmas, and Notation

We begin with the basic definitions and notation to be used
throughout the paper.

X will denote a Banach space with the norm being designated by
-]l . (Remark: we will agree that X is not the trivial space
consistingef only the zero element. ) The dual of a Banach space X
will be denoted by X*; i,e., X* is the space of continuous linear
functionals f defined on X with |f]| = sup{]f(x)|:xeX, [x| <1}.
The unit ball of a space X is U(X) = {xe¢X:|[x] <1}, For any
subset K of a vector space V, the set of extreme points of K will

be denoted by extK.

Definition 2.1 A subset K of a vector space V is said to be

convex if whenever x,yeK, then ax+ (l-a)yeK, 0 < o .<1.

Definition 2.2 Let K be a convex setand xeK. x 1is said to

be an extreme point of K if whenever y,ze¢K with x = ay + (1 -«a)z,

0<a<1l, then x=y =2z,

Intuitively speaking this definition says that xe¢ extK if and only
if x does not beleng to the interior of a line segment contained in K.

Definitien 2,2 could be

We note that in the special case of « = %,



interpreted as xeextK if and only if x 1is net the midpoint of two
distinct elements in: K.

. We will find the following lemmas helpful in discussing some of
the examples. We will therefore establish them first and present the
examples later.

If x is not an extreme point of a convex set, it is sometimes to
our advantage to be able to write x as the midpoint of two distinct
points of the convex set. Therefore the following lemma will be help-

ful in preving later results.

Lemma 2,3 Let K be a convex subset of a vector space and

[v—L

xe K. x ¢ extK if and only if there exist v,w e¢ K with x = (5)(v+w)

(8]

and x #v.

Proof: If x is not an extreme point of K, Definition 2.2 implies

there exist y,z ¢ K with = ayt+ (l -a)z, where 0<a <1,

x#y, and x#z. I a =

x
1 . .
> there is nothing to prove.. For

0<a<§1- let v = x - a(y-2) and w = x+ a(y-z). Then

X = (%*)(v+w), v = qyt (l-a)z'—-ay'+ @z = z and

w = ayt {lea)z+ ay ~ @z = 2ay + (1 -2a)z. Thus w is an element
of the line segment joining y and z, since 0 < a < % Since y # z
it follows that v # x. For —;— < a <1 apply the above argument to

1l - @ instead of «.

The implication in the other direction follows trivially from

Definition 2.2. Q. E.D.

Our main concern is with the set of extreme points of U(X).

With the help of Lemma 2.3 we prove the following proposition for the

convex set U(X).



Remark: when we say [x + vl <1 (or |lxzvy| =1), we mean

both [lx+y[ <1 (fx+y[ =1 and [x-y[<1 ([x-y]=0.

Proposition 2.4 xeextU(X)  if and only if whenever ye X and

|x = v <1 then y =0.

Proof: Assume xc¢extU(X), yeX, and |x +vy] <1. Then
x+yeUX), x -y U{X) and x = (%)‘[(x+y) + (x—y)]. Thus by
Definition 2.2, x + y = x -y which implies that y = 0.

Suppose xe U(X) and x ¢ extU(X). Them by Lemma 2.3 there

are elements 'y and  z of the unit ball with x (%)(y+z) and x # V-

Then
1 1 1
x - (3)y-2) =x-(5)y+tx-(35)y
= 2X -y
= z
and
1 1 |
x4+ (F)y-2) = x - ($)z+x - (5)z
= 2x - z
- y.

(y-2z)|| <1 and y -z # 0. This is contrary to the

Hence |[x +(

hypethesis and it follows that xeextU(X). Q.E.D.

The next lemma gives a necessary condition for an element x
to be an extreme point of U(X). This lemma will be used in later

proofs with greater frequency.

Lemma 2.5 If xeextUX) then [x]| =1.



"Proof: Clearly x =0 1is not an extreme point of U(X). (Recall that

X

Il

z = 2x-y. Then ”y” =1 and ”z” < 1. The last inequality follows

we assume X # {0}). Suppose 0 < [|x]] <1. Let y = and

from the fact that

0<2lfxl<z=-1<2]x] -1<1=[x]l2-F]<1= |z

I |

= flax - 20

i3

X

==l 2 - 2] <1

|

Hence vy,zeU(X), x = (zlh)(y+z) and x # y. Therefore by Lemma

‘2.3 xdextU(X). Q.E.D.
Examples in the Plane

We now give some examples of extreme points of convex subsets

of the plane.

Example 2.1 Let A be the line segment in:the plane between

the two distinct points P and Q. Then extA = {P,Q}. Notice that
any other point of the line segment can be written as the midpoint of

two distinct points of the segment.

Example 2.2 Let A be a convex polygonal region in the plane.

Then the set extA is the set of vertices of the polygon. Two

examples are given in Figure 2.1.



Figure 2. 1. Convex Polygonal Regions

Example 2.3 Let A = {(x,y): x% 4 yz <1}. Then

extA = {(x,y)eA: x2'+ yz = 1} . {That the former set is contained in
the latter is a consequence of Lemma 2.5. See Lemma 2.6 for a
proof of the other containment.) Note that intuitively no extreme point
can be positioned on a line segment contained in A. It is also easily
seen that the unit ball in the plane has uncountably many extreme

points. See Figure 2.2a.

Example 2.4 Let the norm in the plane be defined by

?la(i’{,y)” = fx[ + ’y’ I A= {(x,y): ” (x, y)” < 1} then the set of
extreme points of A is precisely the set {(0, 1), (1, 0),(-1,0),(0, -1)}
(See Example 2.2). Thus the norm of the space determines the
"rotundity' of the unit ball. Note also that the two norms in Examples

2.3 and 2.4 are equivalent but have very different sets of extreme



points. See Figure 2.2b.

Figure 2.2. Equivalent Unit Balls

Notice that'the set A in the above examples is a convex compact
subset of the plane and that A always has extreme points. A much
stronger result will be proved in Chapter III. Let us now consider
convex subsets of the plane which are not compact. Recall that a set
in the plane is compact if and only if it is closed and bounded.

Example 2,5 is a set which is not closed and Examples 2.6 and 2.7
are unbounded sets. We will see that in these examples, there may or

may not be extreme points in the set.

Example 2.5 Let A = {(x,y): <%+ yz <1}. Then A has no

extrerneé;rpoints since every point of A is on the interior of some line
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segment which is gontained in A. (See the proof of Lemma 2.6.)

Example 2.6 Let A = {(x,y):y > |x|}. The origin is the

only extreme point of A since it is clear that every other point of the
cone A is the midpoint of two distinct points of the set. See Figure

2.3a.

Example 2.7 Let A = {(x,y): -1 <y <1}. For this example

" the set extA is empty. OSee Figure 2.3b,

A
——
7 J //// //

Figure 2,3. Unbounded Regions

The characterization of the extreme points of the unit disk in the
complex plane is exactly the same as that of Example 2.3 . Since the
functions in our Banach spaces are complex-valued, the following

lemma will be useful in the proofs of later results.
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Lemma 2.6 A complex number )\ is an extreme point of the

closed unit disk in the complex plane if and only if f)\’ =1,
Proof: The condition that ,)\’ = 1 1is necessary by Lemma: 2.5,
Suppose X\ = a+ bi is of modulus 1 and o = ¢+ di is any

complex number with !)\ + al <1. Then

a;2 +-2ac +c2+ bz + 2bhd. + dzil.

Since a3+ bz =1 we have +2(ac+bd) + c2+ dz < 0. This inequality

is valid onlyif ¢ =d =0 since either 2(ac+bd) > 0 or
<2(act+bd) > 0, Thus o =0 and by Proposition 2.4 X\ is an extreme

point. Therefore |A| =1 is a sufficient condition. Q.E.D.

We will usually be considering Banach spaces X over the coinplex
number field. The following lemma gives us the fact that in such a
spate, if there is one element in extU(X) then there are uncountably

many extreme points of the unit ball.

Lemma 2.7 Let N\ be a complex number with |A\| =1 and X
a Banach space over the complex number field. Then

xeextU(X) = AxeextU(X).

Proof: Let xeextU(X) and yeX with [Ax «y]| < 1. Then
Hx+;1\—y”§1. But since xeextU(X), )l\—y'—“O so 'y =0, Thus

Ax e ext U{X), Q.E.D,

Although the concept of "extreme point' is a fairly simple one,
it will be seen in Chapters IV and V that the characterization of

extU(X) and extU(X*) is sometimes a difficult task.  In proving the



results in the next chapter some fairly deep mathematical tools are

sometimes needed.

12



CHAPTER III

THEOREMS ON EXTREME POINTS

AND APPLICATIONS
Three Major Theorems

‘A few ideas and facts related to convexity and extreme points had
been considered earlier, although it was mainly due to the pioneering
work of Minkowski that the notions of convexity and extreme points
became well known subjects of research. The concept of 'extreme
point' constitutes an important part of his book published in 1911 (see

[30]). We will need the following definitions.

Definition 3.1 Let H be a subset of a vector space. Then the

convex hull, denoted conH, is the intersection of all convex sets that

contain H. The closed convex hull of H, denoted clconH, is the

intersection of all claosed convex sets that contain H.

Definition 3.2 A hyperplane in a vector space V is a set of the

form {xe V: f(x) =t} for some linear functional f (not identically

zero) defined on V and some scalar t.

For a finite dimensional linear space E, the linear functionals
f are of the form f(x) = <x,y> for some ye¢E where <{x,y> Iis
the scalar product of x and y. Therefore a hyperplane in E is of

the form {xe¢eE:{x,y> =t} for some y # 0 and some scalar t.
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Definition 3.3 A hyperplane H = {xeV:f(x) =t} is said to
support a convex subset A of a vector space V if there exists an

X3 € A such that f(x,) =t and either Ref (xo) < Ref(x) for all xeA

o)
or Ref (xo) > Ref(x) for all xe¢A., (Here Re\ is the real part of

the complex number X\.)

Definition 3.4 Let H be a supporting hyperplane of a convex

subset A of a vector space V. The set F = H( ) A is called a face
of A. (This is not the usual definition of face, but is convenient for

our purpose. )

The next theorem is a classical result which appeared in
Minkowski's book. It is a forerunner of the Krein-Milman type

theorems which were to appear later.

Theorem 3.5 (Minkowski) Let K be a nonempty compact

convex subset of an n-dimensional linear space E. Then K = conextK,

Proof: [[16], P. 18] We may assume without loss of generality that
the dimension of K m n. Since extK C;- K and K is convex, . it
follows that conextK C_ conK = K.

To prove that K C conextK, we use induction on the dimension
of K. If the dimension of K is 0 or 1 then it is-clear that
K C conextK. Let the dimension of K be greater than 1 and xe¢K.
If x¢{extK then there is a line L such that x is an element of the
relative interior of K ()L, Since K is compact and convex, L
intersects the boundary of K in exactly two points y and z. Thus
there exist faces Fy and FZ of K such that vye Fy and ze¢ FZ .

The dimension of Fy and Fz is less than n and therefore by the
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induction hypothesis FY = conext FY and FZ = conextFZ. To
complete the proof we must show that ext FY g extK. Let we FY

and suppose w¢ extK. Then there are elements u and v of K such
that uw#w and w = au+ (l-a)v for some 0<a <1. Let f be

the linear functional which defines the face FY with

i

sup{Ref(t):te K} =M. Since we FY it follows that f(w) = M, Thus
3

M = f(w) = af(u) + (1 ~a)f(v) < M which implies f(u) = f(v) = M,
Hence u,ve FY and Wg’extFy. Note that for any two sets A and B,

conA U conB ( con(AU B). We then have that

xecon{y,z} C con(Fyu F) C con{conethyU con ext FZ}

C con{extFyu extFZ} (C conextK.

Hence K ( conextK. Q.E.D.

The conclusion of this theorem is that every element of a compact
convex subset K of E can be written as a convex combination of
extreme points of K. The following theorem is a sharper form of

Minkowski'!'s theorem.

Theorem 3.6 (Carathdodory) Let K be a nonempty compact

convex subset of an n-dimensional linear space E. Then every xe¢K
can be written as a convex combination of n+1 (or fewer) extreme

points of K.

Proof: Asgsume without loss of generality that the dimension of K is
n and as in the proof of Theorem 3.5 we will use induction on the
dimension of K. The theorem is trivial if the dimension of K is

zero, Let the dimensionof K be n>0 and xe¢K, If x isa
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boundary point of K then there exists a supporting hyperplane H such
that x is an element of the face F = H( ) K. The dimension of F is
at most n -1 and therefore by the induction hypothesis, x can be
written as a convex combination of n extreme points of F. It was
shown in the proof of Theorem 3.5 that extF g extK. Thus x is a
convex combination of n extreme points of K.

If x is an interior point of K, choose yeextK. The line
through x and y intersects the boundary of K at some point z. x
is a convex combination of y and z and by the first part of the proof,

z 1s a convex combination of n extreme points of K. Thus x isa

convex combination of n+1 extreme points of K. Q.E.D,

For n =2 we can use Example 2.2, Figure 2. 1(b) of Chapter
II. as an illustration of this theorem. Recall that the extreme points of
a triangular region are the three vertices. Thus any non-extreme
point on the boundary is a convex combination of the two extreme points
on that side of the triangle. For an interior point we must use all
three vertices to represent the point as a convex combination of the
extreme points.

Probably the most famous theorem concerning extreme points is
the Krein-Milman Theorem. There has been a considerable amount of
research done attempting to generalize and extend the results of this
theorem and for good reason. Its applications in analysis are numerous
and important. It first appeared in 1940 and the proof may be found in

several standard texts (seev [11] and [40]).

Theorem 3.7 (Krein-Milman) Let K be a nonempty compact

convex subset of a locally convex topological vector space E. Then
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K = clconextK,

Proof: [[40], p. 207] Let ¥ = {H: H is a supporting hyperplane of K}
and § = {F: F=HMK, HeH}, § is the set of faces of K (see
Definition - 3.4). Let § be the set of all nonempty finite intersections
of elements of §. Let Ge G and partially order G by inclusion.
Then by the Huasdorff maximal principle there is a maximal linearly
ordered family 8§ in G with Geg. Since K is compact .

S = {S':S5"e S} is nonempty. Furthermore S 1s minimal in the
sense that if S properly contains an element of G then the family §
would not be maximal. Thus any Ge G contains a minimal nenempty
element Q. We claim that Q can contain only one point. For if Q

contains distinct points x, and Yo then since E is'locally convex

0

there is a continuous linear functional f with Ref(x,) > Ref(yo) .

o)
Thus H = {x: Ref(x) = sup{Ref(x): x¢Q}} is a supporting hyperplane
of Q (hence of K) that does not contain Vo Therefore Q properly
contains -H (M Q # @ which contradicts Q being minimal. Since Q
contains only one point, it must be extreme. Hence every Ge §
contains an extreme point.

If feE* then Ref assumes its maximum on K since K is
compact. Thus H = {x: Ref(x) = sup{Ref(y): yeK}} 1is an element
of # and H( K = Fe . Since F contains an extreme point, we
can conclude that the maximum of a continuous linear functional defined
on K is equal to its maximum on the extreme points of K. If
x ¢ clconextK then there is a continuous linear functional g such that
sup{Reg(y): ye K} < sup{Reg{y): yeclconextK} < g(x). Thus x¢K
and we have X g clconextK. Clearly clconextK g K. Hence
K=clconextK. Q.E,D.
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We note that the converse of this theorem is not true since there
are examples of non-compact convex sets which are the closed convex
hulls of their extreme points. For example the unit ball of 11 , the
space of sequences of complex numbers which are absolutely summable,
is the closed convex hull of its extreme points (see Theorem 4.5).

The unit ball of 11 is convex but not compact since £ is infinite

1
dimensional.
The Krein-Milman Theorem in its original form stated that every
nonempty convex bounded weak*-closed subset of a conjugate Banach
space is the weak*-closed convex hull of its extreme points. In general

weak*-closed cannot be replaced by nerm-closed. For example the

unit ball of o (see p. 30) is a norm-closed bounded and convex sub -

e

set of lm = 11 and has no extreme points (see Theorem 4.1). An
interesting result that is closely related to the Krein-Milman Theorem

is the following.

Theorem 3.8 In a Banach space X, the following two state -

ments are equivalent:
(i) Every closed bounded convex subset K of X has an
extreme point.
(ii) Every closed bounded convex subset K of X 1is the

closed convex hull of its extreme points.

Proof: [25] Clearly (ii) = (i). Assume that (i) holds and suppose
there isa y in K ~ clconextK. Then there is an fe¢X* such that
sup{Ref (x): xeclconextK} < Ref(y). Let H = {xe¢X: Ref(x) = Ref(y)}.
HM K is disjoint from b,clcon extK, and is a nonempty bounded closed

and convex set. Therefore by hypothesis it has an extreme point. Now
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0 # extx(HMK) C extK (as in the proof of Theorem 3.5). But this

contradicts H () K being disjoint from clconextK. Hence

K = clconextK. Q.E.D.

For any Banach space X, the unit ball of X* with the weak¥*
topology is compact and hence by Krein-Milman Theorem it is the
w¥ -closed convex hull of its extreme points. If the condition of
separability is added to  X* then we get the stronger result known as
the Bessaga-Pelczyrdski Theorem. The original proof by Bessaga and
Pelczydski [3 ], which appeared in 1966, is quite involved and uses
some deep mathematical tools. We will present a proof due to. Namioka
[31] which uses only standard techniques in functional analysis. The
proof has been distilled from his to coincide with the purposes of this
paper. We proceed with four lemmas which lead to the result. (K, T)

will denote a subset K of X* with the topology T . All topological

terms in these lemmas refer to the weak¥-topology unless otherwise

stated.

Lemma 3.9 Let K be a compact subset of X* and
{C.i: i=1,2,...} be a sequence of closed subsets of K such that
KzU{Ci:izl,Z,...}. Then U {intCi:izl,Z,...} is dense in

K where intCi is the interior of Ci in K.

Proof: [31] Assume K # @ since otherwise the assertion is trivial.
Let V be a nonempty open subset of K. Since K is compact, V is
of segond category in itself (see [42], p. 8). We have

v = U {VﬂCi:i= 1,2,..,} where VfWCi is closed in V, and

therefore for at least one i, V /) Ci has nonempty interior relative
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to V and hence relative to K. Thus VM [ {intC:1i-= 1,2,...}]#(2)
and since V is arbitrary U {intC:i=1,2,...} is dense in K,

Q.E.D.

Lemma 3.10 Let K be a w¥*-compact subset of a separable

conjugate space X* and Z be the set of all points of continuity of the

identity map: (K,w*) > (K, ||-]]). Then Z is a dense subset of (K, w¥).

Proof: [31] For >0 let Ae be the union of all open subsets of
(K, w¥) with norm-diameter <e¢. Clearly AE is open. Let

S = {x:|x] < %—g} and let {xi} be a norm-dense sequence in X¥*,
Then K = U {KM (x.1+ Sy:i=1,2,...}, Since S is w¥-closed,
xi+ S is w¥*-closed for i=1,2,... . Since K is w¥*-closed,

KM (Xi+ S) is also. Hence Lemma 3.9 implies that '

U {int[K M (xi+ S)]:i=1,2,...} is dense in (K,w%*) and this union
is contained in A; since each xi+ S has diameter <e. Thus Ae

is a dense open subset of (K, w¥*), We claim that

. ’ 1 .

Z *—'ﬂ{Al-/ﬁ.nzl,Z,...}..If x € Z then {y.”x-y”<ﬁ is a

w#*-neighborhood of x for every n=1,2,... and has norm diameter

< -:; Hence xce¢ Al/ri for every n=1,2,,.. . Let

xe M {Alln: n=12,...} andlet B(x,e) = {y:[lx-y]| <e}. Choose

o, large enough so that Eg <e¢. Since xe Al/n.o there is a

w*-neighborhood N of x of diameter iz-i—— . Since xeN and the

0

diameter of N is < Z%_— < -;— , N (C B(x,e). Thus xe¢Z. Since K

0 =

is of second category in itself, the intersection of a countable family
of dense open sets is dense. Therefore Z is a dense subset of

(K, w*). Q.E.D.
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Lemma 3.11 Let K be a w¥*-compact convex subset of a

separable conjugate space X*. Then Z ()extK is a dense subset of

(extK,w*). (Z is defined in Lemma 3, 10)

Proof: [31] Assume K contains more than one point since otherwise
the assertion is trivial. Given ¢ > 0, let BE be the subset of extK
such that uce Be if and only if there is a neighborhood of u . in (K, w¥*)
of diameter <e.’ Clearly Be is an open subset of (extK,w¥*)., We
now show Bs is dense in (ext K, w¥).

Let W be a wk*-open subset of X* such that W /M) extK # 0.
We need to show Bs MW # ¢. Let D be the wk-closure of extK,
Then D is w¥-compactand W /(D # ¢§. By Lemma 3.10 the set of
points of continuity of the identity map: (D, w*) — (D, “ . ”) is dense in
(D,w%*). Thus there is a w¥-open subset V of X* such that
$ # VOD C WD and the diameter of VD < +¢. Let K, be

= 2 1

the w¥*-closed convex hull of the w¥*-compact set D~ V, and K2 be

the w¥.closed convex hull of DMV, K1 and ‘KZ are w¥*-closed

subsets of K and therefore are W>5<—compé.ct. Note that

ext K g Klkj.K2 . Thus by the Krein-Milman Theorem,

K = con (KIU KZ). Note that _Kl # K since extK, g D~V and
DMV # ¢. Let re(0, 1] and let, Cr be the image of the map

f K| xK, X [r, 1] > K defined by fxX,0) = Mt (LN, £
is continuous for the w¥*-~topology on: K, so Cr is w¥-compact. In
addition, Cr # K since extK M Cr g K1
q = )\xl+ (1 ~)\)x2 and if gqeextK then X\ = 1) and K1 # K. Let

(if qe Cr then

yeKerr. Then y is of the form vy = )\x1.+ (1 -N)x xiEKi’

2,
Ae[0,r). Hence Hy—x2 | = )\Hxl -xzn < rd where d = diameterK.
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Since K is w¥-compact, K is w¥-bounded which implies by the
uniform boundedness principle that K is norm bounded. It follows

that d <o . For yl,yzervCr and xzeKZ we have

”YI - Y, < ”yl - %, [+ sz - Y, | < 2rd. Thus diameter

(K~C ) < 2rd., Let C=C_ with r= = then diameter
r’ - . r 2d

(K~C) <e. Since C # K, there is an element u such that
ue (K~C) M extK and K ~C is a neighborhood of u in (K, w¥)
of diameter <e¢. Hence ueB_. Since D~V C K, C C we have

ueDMV C W. Therefore uc BE (Y W and consequently Bem W+#6.
Thus B is dense in (extK, w¥).
Finally we see that Z M extK = N {Bl-/r-l: n=12,,..} and

since extK is of second category in itself (see [10]) it follows that

Z MextK is a dense subset of (extK,w¥*). Q.E,D.

Lemma 3 12 Let K be a norm-closed, bounded, and convex

subset of a separable conjugate space X* and let Kl be the

w¥ ~¢losure of K. Then K M extK, 1is a w¥-dense subset of extK, .

1 1

Proof: [31] Since K is bounded, K1 is bounded and hence .

w¥*-compact. Let Z be the set of all points of continuity of the identity
map: (Kl,w*) - (Kl’ ” “) and let zeZ. Since K is w¥-dense in

Kl’ there is a net {Xar} in K converging to z relative to the

w¥* -topology. Since zeZ,. x, >z in the norm topology and therefore

ze¢K. Hence Z C K and ZmextKICKmextKl. By Lemma

3.11 Z MextK, is w¥-dense in extK1 , and hence KM exi:K’1 is

1

wk-dense in extK.. Note that since K (C K

1 C Ky, KmextKICextK.

Q. E.D.
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We are now ready to state the Bessaga-Pelczyrski Theorem

which will follow easily from the above lemmas,

Theorem 3.13 Let X be a Banach space such that X* is

-separable. Then each norm-closed, bounded, convex subset K of X%

is the norm-closed convex hull of its extreme points,.

Proof: [31] Assume K # . Then according to Theorem 3.8 it is
sufficient to prove that extK # . Let K1 be the w¥*-closure of K.
Then .Kl is w¥*-.compact and therefore by the Krein-Milman Theorem,

extK1 # @. Hence it follows from Lemma 3. 12 that

¢ 4 Kmextch extK., Q.E.D.

Applications

In this section we discuss some applications of extreme points
.in Banach spaces. Some of the material in Chapter IV will be used in
this section but it seems appropriate to present the applications first
to motivate the study of Chapter IV. The following are standard

definitions to be found in almost every functional analysis text book.

Definition 3., 14 - An isomorphism between two normed: linear

spaces Y and W is a linear homeomorphism of Y onto W.

Definition.3.15 An isemetric isomorphism between two normed

linear spaces Y and W 1is an isomoerphism T:Y - W with
ITiy)ll = lyll, ye Y. Two such spaces are said to be isometrically

isomorphic.

An important problem is classifying Banach spaces as to

isomorphic and isometric 'types'. If two spaces are of the same
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"type' then the spaces will have many properties in common. In
Chapter V we will use the fact that L: = Lq for 1<p<w and
I-l)-+ é = 1. Note that if spaces Y and W are isometrically
isomorphic then the usual notation is Y = W. Recall that for any
Banach space X, the mapping Q: X - X¥% defined by Q(x) = R is
an isometric isomoerphism of X onto its range. 2 'is the linear
functional defined on X* by Q(f) = f(x) for feX¥, If the mapping“
Q is onto X¥*% then X is sé.id.to be reflexive.

We may apply Theorem 3. 13 to determine whether or not a

Banach space is isometrically embeddable in any separable conjugate

space. Thus we have the folléwing corollary.

“Corollary 3.16 The space LI[O’ 1] is not isometrically

isomorphic to any subspace of a separable conjugate Banach space.

Proof: This follows from the fact that U(LI[O, 1]) has no extreme

points (see Corollary 4.7). Q.E.D.

- The notion of extreme point also arises in the study of integral
representation theory. Phelps' book [34] is suggested to the reader
for study in this area. The following definition is needed for the next

theorem.

Definition 3.17 Let K be a cofnpact convex subset of a locally

c;on(vex space -E. The class of Baire sets of K is defined to be the

c-algebra of subsets of K generated by the sets {xeK: f(x) > o}

where f is a real-valued continuous function on K.

We say that p represents x if f(x) = ‘/Il{ fdp for every
fe E%*., Since the proof of Theorem 3. 18 is given in [34, p. 30] in a
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clear readable style and is quite long, we omit it here.

Theorem 3.18 (Choquet-Bishop-de LLeeuw) Let K be a compact
convex subset of a locally convex space E and denote by 8 the
o -algebra of subsets of K which is generated by extK and the Baire
sets. Then for each point x e K there exists a nonne.gal:ivé probability

measure p on .8 such that p represents x and p(extK) =1,

Let S be a compact Hausdorff space. C(S) will denote the
Banach space of continuous complex-valued functions on S with sup-
norm (see [11] for properties). Suppose f, fn’ n=12,... are
functions in C(S). A well known theorem states that {fn} converges
weakly to f if and only if the sequence {fn} is uniformly bounded
and lim f (y) = f(y) for each yeS (see [11] p. 265). Using
Theorem 3. 18 we are apl_e to prove the following result of which the
above mentioned theorem‘is a special case. It will be shpwn (see
Theorem 5. 15) that the extreme points of U(C(S)*) are the linear
functions ¢ where ¢(f) = M (y) for some scalar )\,‘ I)\| =1, and

some yeS,

Theorem 3.19 (Rainwater) Let E be a normed linear space
and suppose X, X , n= 1,2,... are elements of E., Then the
sequence {xn} converges weakly to -x if and only if {xn} ~is bounded

and lim f(xn) = f{x) for each feextU(E*).
n

Proof: ,[34, p. 33] Let Q denote the natural isometry of E into
CEdk I {xn} converges weakly to x, then (an)(f) if beunded for
each {e¢ E* and therefore the uniform boundedness theorem implies

that {Q xn} , hence {xn} , is bounded in nerm.  That lir{n f(xn) = f(x)
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for each feextU(E*) follows from the definitien of weak convergence.
Suppose {an} is bounded and f(xn) = (an)(f) - (Qx)(f) = f(x)
for each feextU(E%*), ILet g be an arbitrary element of U(E¥).
We need to show that g(xn) — g(x) which is equivalent te showing *
(an)(g) - (Rx)(g). In the w*—topology,' U(E*) 1is compact (and
convex) so by Theorem 3. 18 there is a o-algebra § o.f subsets of
U(E*) such that extU(E%*)e8 and aprobabiiity measure p on &
supported by the extreme points of U(E*) and such that F(g) Zdep.
for each w*-continuous linear functional F on TU(E%*). In particular
(an)(g) = f(an)dp and (Qx)(g) =f(Qx)dp. F’urtherrnore {an}
converges to Qx on U(E%) a.e., with respectto p, so by the
Lebesgue bounded convergence theerem f(an),dp - f(Qx)dp . Hence

(Qx_)(g) ~ (Qx)(g) . Q.E.D.

We shall see in Theorem 3.21 that it is sometimes useful to
know the cardnality of extU(E*), We first of all need the following

theorem which is of interest in its own right.

Theorelrn 3.20 If X is an infinite dimensional reflexive Banach

space, then the set of extreme points of U(X) 1is uncountable.

Proof: [28] Suppose that extU(X) = {xn}, n=1,2,... and for each
n let F = {fe X% Hf” <1 and ff(xr;), = | £]|}. To show that F
is weakly closed for eve‘\ry n, let {fi} be a net in F_~such that
{fi} converges weakly to f. Since the nerm.in X* is w¥*-lower
semicontinuous {see [44], p. 212) we have |/f| < lim inf ”fiH <1.

Weak convergence implies for xe¢ X,
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Lim X (£) = R () = lim £(x) = f6c) => lim FACHY
e )|
Since f,¢F_  we have lim ||f.]| = |f(x )|. Therefore
i "n i i n
el < diming g | < 1o ) [ < el [l [ = (€]
which implies ,f(xn)I = ||[f]]. Thus fe Fn.

Next we claim that U(X*) = U {Fn: n=12,...}. Clearly the
latter is a subset of the former. Let fe U(X*). U(X) is weakly
compact and therefore by the proof of the Krein-Milman Theorem f
assumes lts maximum on the extreme points of U(X). Thus
It} <1 and ,f(xn)] = ||f]] for seme n which gives us the other set
containment.

By the Baire Category Theorem, é.t least one of the sets Fn
(say Fl) has nonempty weak interior relative to U(X%*). Let f, be

0

a relative weak interior point, Then there is a ball B centered at fO

such that U{X*) M B ( inf F1 . Thus we may assume ”fo H <1,

Since F, is a weak neighborhood of f, and X is reflexive, it

1 0

follows that there exist points AR ZYRERER N in X such that fe F1

whenever

(%)  Jf] <1 and |(f-f,

Let

N = {feX*: f(Yi) = fO(Y')’ i=1,2,...,n and f(xl) = fo(xl)} .

Since X is infinite dimensienal and N is of finite codimension, N

contains a line through f, which intersects the boundary of the unit

0
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ball in a point g, “g” =1, Thus geN and (*) implies ge Fl, 50

1= |gl = Ig(xl)' = lfO(xl)l = Hfo | which is a contradiction. Q.E.D.

Recall that Lemma 2.7 states if xe¢ ext U(E*) then
Ax ¢ ext U(E*) where |\] = 1. If, however, we define two extreme
points x and y to be equivalent provided x = Ay for some [x[ =1,
then it makes sense to ask whether U(X) can have countably many
equivalence classes of extreme points. The proof of Theorem 3.20
a!pplies without change to show that if X is reflexive and infinite

dimensional, then the answer is negative.

Theorem 3.21 Suppose that E is a normed linear space and

that extU(E*) is countable. Then
(i) E#* is separable and

(ii) E contains no infinite dimensional reflexive subspace,.

Proof: [28] (i) Since U(E*) is w*-compact and convex, Theorem
3. 18 implies that for each fe¢ U(E*) there is a probability measure p
on extU(E*) such t‘Q‘c\t Nf(x) = f g(x)dp(g) for each xe¢E.

: e ext U(E*)

Let p = |.L(fn) where {fn} = ext U(E%*), Then b, > 0, an =1 and
flx) =2 pnfn(x) for each xe¢E, Let S be the set of all sequences
{l‘Ln} with p, >0 and Zp =1. Then S C £, and forany {)\n}
in §, g=2 xnfn defines a. member of U(E#*). Thus there is a map,
from the norm-separable space S onto U(E%*). Since

f-gll = sup{]|f(x)-gx)]|: |x] ill} < Z !I“Ln" xnl , the map is norm-
to-norm continuous and hence U(E*) is norm separable which implies
that E* is also.

(ii) If F is an infinite dimensional reflexive subspace of E
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then F* is also reflexive and hence by Theorem 3.20, extU(F*) has
uncountably many points. But each fe¢ extU(F*) can be extended to an
extreme point of U(E%) which implies extU(E*) is uncountable.

- Q.E.D.

The result of Theorem 3,20 has been improved recently by an

application of the following theorem due to [21].

Theorem 3.22 If X is a Banach space and X** is separable

then both X and X* have infinite dimensional reflexive subspaces.
Proof: (see [21]).
We now have the following corollary.

Corollary 3.23 If X is infinite dimensional then ext U{X%**) is

uncountable,

Proof: Suppose that extU(X**) is countable. Then by Theorem 3.21
(i) X*%* jis separable; therefore X* has an infinite dimensional
reflexive subspace by Theorem 3.22. This contradicts Theorem 3.21

(ii). Q.E.D.

We have now presented three important results in the develop-
ment of the theory of extreme points: the Minkoewski Theorem, the
"Krein-Milman Theorem, and the Bessaga-Pelczyidski Theorem. To
exemplify the importance of extreme points in the study of functional
analysis, we have presented several applications. We are now ready
to embark upon the task of characterizing the set extU(X) where X

is one of five well known Banach spaces,



CHAPTER 1V
CHARACTERIZATIONS OF ext U(X)

The purpose of this chapter is to characterize the extreme points
of the unit ball in some well known Ba:nach spaces. Section one will
deal with three of the sequence spaces; section two, the Lp spaces;
section three, the Hardy spaces; éection four, the Lipschitz space
Liplo, 1]; and section five, the sf)a.ce of continuous functions on a
compact Hausdorff space S, C(S). At the end of each section we will
answer the question whether the unit ball in these spaces is the closed
convex hull of its extreme points. This will determine if there are
"enough'' extreme points in the boundary of the unit ball to, in a sense,

span the unit ball.

Sequence Spaces

The sequence spaces to be considered in this section are g
11 , and lm © Cy is the space of complex-valued sequences x = {xn}
such that lim x = 0 with [jx] = sup fxnf o Ly s the space of

complex -valued sequences x = {x_} suchthat = |x | < o with
n n n

f]x” = Z ixnl . Em is the space of bounded complex-valued sequences
n .
x = {xn} with |[x| = sup fxn’ . We will not distinguish norms

notationally unless it is not clear which one is meant.

Theorem 4.1 extU(c.) = @.

o)

2N
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Proof: Let xe-U(co) . Since lim x =0 there exists a positive

; 1
integer n, such that ]xnol < 5. Let
) *n , n# ng X , n# ng
Y, = , oz =
n + L = n L =
*nT 7 BT *nTZ T

-and define y = {Yn} , Z = {zn} . Clearly |yl <1, Jz] <1,

X = -;—(y-f-z) , and x # y. Hence x is not an extreme point of U(co) .

Q.E.D.

In the next theorem we will need the following noetation:
6j = (0,0, «+--,0,1,0,0, --+) 1is the element in 11 which hasa 1 in
the j-th positien and zeros elsewhere. Note that ” 6j ” =1,

. Theorem 4,2 xeextU{4

1) if and only if x = )\6j for some

j=1,2,...  and complex number X\ with ’)\[ 1.

Proof: Let x = )\Gj, I)\! =1, and suppose x %(y+ z) where

] .
y,zeU(ﬂl). Then xk—z-(yk+zk), k=1,2,... . For

k = j,xj = é—(yj+ zj) but xj = X\ is an extreme point of the unit disk
in the complex plane; therefore, x, = Yj = zj =\. For k#j,

Vi = % = 0 since ”y” = Ztll'ynf <1 and ”z” = Zr)llzn’ < 1. Hence

x =y = z which implies that xe extU(ﬂl) .

Now suppose [x| =1 and x # )\6j for any j=1,2,... and

[A] = 1. Let n, be the first integer such that x # 0 and
. 0
x = re19 . Since x # )\Gj we have 0 < r < 1; therefore, define

0
y = {yn} , Z = {Zn} where.
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i@
e, n=n, 0 ;o om=ng
n T in mT )
, n#n ‘
0 I-r *n’ “’éno
Note |y =1 and |z = =]z |= === |x |-|re®])= ~L(lor)=1;
n n 1-r n n l-r !

thus y,zeU(ll) and x=ry+ (l-r)z, 0<r <1, with x#y. Hence

X is not an extreme point of U(4 Q.E.D.

1)'

We now want to consider a more general space than the sequence
space lm. The characterization of the set ext U(lm) will then be a
corollary to the next theorem. Let S be any set, then lm(S) is the
space of bounded complex-valued functions defined on S. lw(S) is a

Banach space with [[f| = sup {|f(x)]|:xeS}.

. Theorem 4,3 fe extU(lw(S)) if and only if !f(x)l =1 for all

xeS,.

Proof: Let fe £ _(8) with lf]] <1 and suppose for some x,¢S,

0
f(xo) = re1e where 0 <r <1, Define

glx) = ) h(x) =

fx), x # X flx), x#x

0

then f(x) = rg{x)+ (1 -r)h(x). Since ”f” <1 we have that
el <1 and |n] <1; also f # g, which implies f is not an
extreme point of U(lw(S)) .

Let fe lm(S) with ]f(x){ =1 for all xe¢S and suppose
f= %—(g-ﬁ-h) where g,he U(lm(S)) . Since f(x) is an extreme point of
the unit disk in the complex plane for all xe S, f(x) = g(x) = h(x) for
all xeS, Hence f=h =g and we have that feext U(lm(S)) . Q.E.D.
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Corollary 4.4 xeextU(f ) ifandonlyif [x | =1 for all

It is clear that U(co) # clconextU(cO) since U(co) contains

no extreme points, For the space 11 we have the following result,

Theorem 4,5 U4 1) = clconextU(4 1) .
Proof: 11 is the conjugate space of o and 11 is separable (the
n ]
set of elements of the form k§1 )‘k Sjk where )‘k = ak+ bkl » B bk

rational, is a countable dense subset). Thus the conclusion follews

from the Bessage -Pelczyrdski Theorem (3.13). Q.E,D,

We conclude this section with the result for the space z - We

shall delay the proof until the next section,

Theorem 4.6 U(!m) = clconextU(!m).

Proof: (see Theorem 4.15).
I, Spaces
p P

In this section we will consider the set of extreme points in the
space ‘Lp(,,S, M, ) where (S,M,u) is a measure space (see [40],
p. 217). For 1 < p < o, Lp(S, M, ) 1is the space of complex-
valued, p-measurable functiens f defined on S with
£ = [f,flpdp] l/p < @, Lm(S, M, ) is the space of complex-valued,
p-measurable functions defined on S with
lf]l = ess sup {|f(x)|: xe S} < @. The three cases p=1, 1<p<awm,

and p = o will be treated separately. The next theorem will show
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that the existence of extreme points in Ll depends upon the measure

p being atemic.

Definition 4.7 FeM with p(F) >0 is called an atom (with

respect to p) if and only if for all F'e M such that F' (C F either

W(F') = 0 or w(FY) = u(F).

Throughout this section X will denote the characteristic

function of the set F.

Theorem 4.8 A necessary and sufficient condition that

IL_(}F“): XF for some atom F and complex

fe extU(Ll) is that f = \

constant X where |[A\| =1,

Proof: Suppose the condition holds and ge Ll such that ”f + gﬂ =1,

Let G={xeS:g(x)+0}. Then

1 :ﬁf:!;‘;.g‘\!ydp = fGUFff.:I: gldu

:ijrfigtdij lelan + [ Ll

Since F is an atom, either p{G/F) = 0 or w(GMF) = pF. Let
us first assume . (G M F) = pF (which implies that G/ ) F is an
atom), g(x) # 0 for xe¢.G () F; therefore, either 'fl < If+gl or
fff < If —g[ on a subset of G/ F of positive measure (for if not
then g =0). But since G M 'F is an atom we have either

|f] < |f+g]| or [f] <|f-g| a.e. on GMF. Assume |f| < |[f+g]

a.e. on G/ F. Then
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1+jG Llglaw =ijFlfldp+_/F GlfldwaNFlgldp

~ ~

</;;mF]f+g'dp+/I;~G|f]dp+/;}

=1,

g |dp
F

~

This contradiction implies w(G (N F) = 0 which implies

R(F ~G) = WF). Thus we have

1+fG~Flgldu :‘/.GﬁF,fig,dH +_/]; Glfldwff Flgldu =1

~ GN

and therefore f lgldp:O. gx) # 0 for xe¢G ~ F, hence
G~F

~

p(G ~F) = 0. This together with (G (M F) = 0 implies p(G) =0.
Thus g(x) =0 a.e. and fe extU(Ll).

Now let fe extU(Ll) . If there exists AeM such that
- ; - 1 .
0<j‘;,f]d|¢—oz <1 then define g = afo and h = 1~af XX.

Clearly ”g” = ”h” =1 and f = ag+ (l-o)h where 0<a<1.
Since g # f, fg’extU(Ll). This argument shows that f’f[dpzl
A
or 0 for'all AeM suchthat w(A)>0. Let P={xeS:|[f(x)|>0}.
Note that P)>0 since/ fid +f fd:f fldp = 1. Now
u(P) g plflan foltldp = fo]g]dp
take A C P with p(A)>0. We then have f[fldp>0 and hence
A

.&lf,dp =1. Forall A (C P with p(A) >0, we have

1:_/; A’f'dp-l'jj;lf,dp:‘/P A’fldp,-l'l.

~ ~

This gives p(P~A) = 0 which implies p(A) = p(P). Thus P is an

atom. Forall A C P with p{A)> 0 it follows that

;1:% [£(x)] w(A) 14 |[fidu = 1 : therefore, ;1:% [f(x)]| > H({A) 2 p(lP) .
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For each n such that i - 1 > 0, let
w(P) n
1 1 1
= : < < - —F . —_—

M_ = {xe5:0 [£(x) ] iz ~} e ) lf(x) ] < 0By Thus
p(Mn) =0, for if I‘L(Mn) > 0, then by the previous argument

1 1

>

Xseu n[f(x)’ 2 WD) Hence [f(x)] > (D) a.e. on P, It follows
that '

P
which implies ,f(x)l = E(l?) XP (x) a.e. Therefore there exists a
measurable complex-valued function ¢(x) with lgp(x), =1 for xeP

and f{x) = ¢(x) D) ‘XP(X). If ¢(x) is not constant on P then
either Re ¢(x) or Im ¢(x) is not constant. Assume without loss of
generality that Re ¢(x) is not constant on P. Then there exists a
real number ¢ and B C P with p(B) >0 and p(P~B)>0 where
Re ¢(x) >c for xeB and Re ¢(x) < c for xeP ~B. Butthis is
"lrnpossible since P is an atom. Hence ¢(x) = A\ for xe¢P where
IN] = 1. Thus f(x) = xi(—lﬁ xp(x) where [x] =1 and P isan

atom. Q.E.D.

As noted in Theorem 4.2 xe¢ extU(4 if and only if x = )\Sj

)
for some i)\i = 1. This is also a consequence of Theorem 4.8 if we
coﬁsider 11 as the space Ll(S’ M, n) where S is the set of positive
integers, M the o-algebra of all subsets of S, and p the counting
measure on M. The result follows by noting that the atoms in this
space are the singleton sets.

L,[0,1] isthe space L (S,M,p) where 5= ][0, 1], M is the

family of Lebesgue measurable subsets of S, and p is Lebesgue
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measure. Since M contains no atoms, we have the following corollary

to- Theorem 4. 8.

Corollary 4.9 ext U(Ll[o’ 1]) =

Next we shall consider the space Lp(S, M,u), 1 <p<o where
“f” = [’/‘S ,flpdp.]l/p. Note that f and g are in the same equivalence
class if and only if f =g a.e. with respect to the measure . The
following lemma will be used in the proof of the theorem which will

characterize the set of extreme points of the unit ball of Lp(S, M, p).

Lemma 4.10 Let fgeL , l<p<a, with || = |lgl| =
Then |[f+gj = [[f]] + ||lgl] ifand onlyif f=g a.e.
Proof: If f=g a.e. then |f|] =]gll and f+ g = 2f a.e. Thus
Ie+gll = 20l = < + el
Assume Hf+g” = ”f” + Hg” = 2, Then
I£+gll® Ie+el® (el + |l (£ + 1glP
= —————— < —_—d
2P '/; 2P '/; 2P “'/; 2 g
LTI
> .

The last inequality follows from the fact that the map ¢t — tP isa
strictly convex function of a real variable for t>0 and 1<p <.

Therefore equality must hold throughout this expression and since

frg|P ]+ g))P
fl gl” 4, :f(l [+ 1eh” 4,
s 2P S 2P

we have |f+g| = |[f| + |g| a.e. This implies there exists a
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nonnegative real-valued function ¢, such that f(x) = ¢(x)g(x) a.e.
Also since

[l lgh? Ji €1+ g ”

dp = d

S 2P S 2

we have ——-(lf]+ig| :;— lfip+ lg’p) a.e. Thus |[f] = |g] a.e.
2P

Hence Ig(x = If(x)’ l (x) l ,g(x)l a.e. Thus ¢(x) > 0 implies

o(x) =1 a.e. and we therefore have that f =g a.e. Q.E.D.

Theorem 4.11 feextU(L ), 1< p<w, ifand onlyif [f]| =

Proof: Let fe extU(Lp) . Then it follows from Lemma 2.5 that

el =

Now let [[£] =1 and suppose f= S (g+h) where ghe uL,).
Then 2 = 2|/f]l = [lg+hfl <[l + [[all <2 which implies
Inl = llgfl =1 and |lg+h| = {ig]l + ||n]l. It follows from Lemma

4,10 that h=g a.e. Thus f=g=h a.e. and feextU(Lp). Q.E.D.

The final space to be considered in this section is Lm(S, M, ),
the space of complex-valued measurable functions on S with

I £]] = ess sup |f] < w.

Theorem 4.12 fe¢ extU(Lm) if and only if ,f[ =1 a.,e.

Proof: Suppose |[f] <1 on P where p(P)> 0. Define

g =f+(1-|f]) and h = f-(1-|f]). Then

lgll = ess sup |£+ (1-]£])] < ess sup(|€] +1 - |£]) = 1 since

1 - |f] > 0. Similarly we have [lhff < 1. Therefore g heU(L_),

1%(g+h) and f#g. Thus f{extU(L_).
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Let lfl = 1 a.e. and suppose f{ = —é—(g+h) a.e. where
g, he U(Lm) . Then for almost all xe S, f(x) = %(g(x) + h(x)),
[f(x)] = 1

f=g=h a.e. and hence feextU(L ). Q.E.D.
[e3]

lg(x)| <1 and |h(x)] < 1. Thus Lemma 2.6 implies

We observe again that ﬂw is a special case of Lw(S, M, )
where S is the set of positive integers, M the o-algebra of all sub-
sets of S, and pu the counting measure on M. Heﬁce Corollary 4.4
follows from Theorem 4,12,

Considering Theorem 4.8, the next statement is not too

surprising.

Theorem 4. 13 U(Ll(s.,M,p.)) = cleonextU(L (S, M, p)) if and

only if p is purely atomic, that is, every element of M of positive

finite measure can be written as a countable union of disjoint atoms.

Proof: Suppose is purely atomic. We first observe that if x and

y are elements of a Banach space with [’x” =1, y#0, and
Ix-yi <e it follows that [1-[lyll | = [{x| -fyll| <e. Thus
=i

Hx~ ” ” ” llx Y” ![y ” ” ” = x-Y” ”Y” ll~—”—Tl

fe -yl + [ Iyl - 1] < 2.

Returning to the proof of the theorem, we note that it will suffice
to show that the set of convex combinations of extreme points is dense
in the boundary of U(LI(SJ7 M, n)). For suppose ge¢ U(LI(S, M, 1)),
g#0, and ¢>0. Then h = ﬂ—gi is of norm one. Therefore there

n -

is a convex combination X aifi of extreme points f_.,L such that
i=1
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n
lh - = a.f, | <e. Hence
=1 *t

lell In- 2 a,] - ng_<zngnaf+—<1~ngnf+—<1-,;g”<f y

i=1 i=1

<Jele <

and g is approximated by a convex combination of extreme points. We
proceed to show the density pro‘p‘erty stated above. Let

fe U(LI(S, M, ) with [f]] = 1. Then there is a simple function V
such that ”f «*y” < i— . By the definition of purely atomic ¥ may be

represented as V= 2 a. XA where the AJFI's are disjoint atoms

and o, $0, j= 1,2J,_.1.. . le[ 1 ]a 'p,AJ = a # 0. Since this
series converges there is a number N such that j:c;+ o [pa; < £
et v = Blepuy o Thus (el <lev el < 5 v
B, = ’—al—’ Then o = jfl ]a/jlij ﬁ—j— xAj and by Theorem 4.8
_“E‘%? X“ij is an extreme point of U(L,(S,M,u)). Hence

— = = _'il,_ HA _EJ_ %

loll 551 loll 773 1Ay 74,

is a convex combination of extreme points of U(L (S,M, 1)) and by the

T <

Now let A be a subset of S with positive finite measure. Define

observation at the beginning of the proof ||f -

o = _}IIK XA - Then ¢ ¢ U(LI(S, M, un)) and henc}:{e by hypothes‘is there is
n A

a convex combination of extreme points, ¥ = X a, —L x , such

that f)xJi = 1, the Aj's are disjoint atoms,

Z) a, =1 and lo -v “<l Let B, = A A,. Then
i=1 n n j j

. 1
o -v Il =fUle<p~‘¥nldu +A Us lo -v_ldu +fU Al<p~‘¥nldu< =.
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kn
Thus as n increases we see that w{A ~ Ul B.) >0 since
k j=
n
o -Y = —% on A~ U B.. Note that if wB, >0 then B, isan
n % j:l J J J

atom. Hence A 1is a countable union of atoms together with a set of
measure zero., But if P is an atom and Q is a set of measure zero
then P Q 1is an atom. Therefore A 1is a countable union of atoms

and it follows that w is purely atomic. Q.E.D.

Every element of the boundary of U(Lp) , 1<p<w, is an
extreme point (Theorem 4.11). Thus the following result follows

readily.

Theorem 4. 14 U(Lp) = clcon ext_U(Lp) , 1 <p<ow,

Proof: Let fe U(Lp), f#0. Then —”;c—“ is an extreme point of
U(L_ ). -— isalsoan extremé point and
P[]
vl e el ey
2 it 2 £l

Thus f is a convex combination of extreme points of U(Lp) and hence
feclconext U(Lp). Clearly clconext U(Lp) C U(Lp) (see also

Theorem 6.14). Q. E.D.

We now show that U(L(JO (S; M, 1)) is also the closed convex hull
of its extreme points as is the case for Lp’ l1<p<ew and Ly

provided p is purely atomic.

Theorem 4. 15 U(Lm) = clcon extU(Lm) .

Proof: If is shown in [11, P. 445] that there is a compact Hausdoerff

space S such that Lc3 and C{(S) are isometrically isomorphic.
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Thus the result follows from Theorem 4.30. Q. E.D,
Hardy Spaces

The next Banach spaces to be considered are the Hardy spaces.
For 1 <p < o, Hp is the space of all analytic functions in the open

unit disk of the complex plane, ’zl <1, with

Il = Limy z%{z“ li(r e [Paoy /P < w
H00 is the space of all bounded analytic fﬁnctions in lz] <1 with
Hf” = sup [f(z)l . Much of the material in this section can be found
in Hoffnfalrf'ls book [17], however,we feel that it should be included for
completeness. |

The characterization of ext U(Hp) for 1 <p<ow, presents no
problem since Hp can be considered as a closed subspace of L
. Hence the extreme points of U(Hp) , 1<p<w, are precisely those
functions of norm 1 by Theorem 4.11. Therefore in characterizing
the set ext U(Hp), the spaces ‘Hl and H00 are the only Hardy
spaces presenting any difficulty. It might be conjectured that U(Hl)
has no extreme points »since this is the case in U(Ll) , but Theorem

4.20 will lshow this conjecture to be false. The following will describe

the set ext U(Hm) .

Theorem 4. 16 fe ext U(H_) if and only if |f(z)] <1 for

2] <1 and [ logll - [(e*®)]1a0 = -w.
0

2 ,
Proof: [17, p. 138] Let |f(z)] <1, f ﬂlog[lmlf(ele)l]de = -
0

and geH_ with [fsg]<1. If f=u+iv and g = r+it then
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lf+g| < 1 implies (u+r)®+ (v#t)® <1 and |f-g| <1 implies

(u -~ r)2 + (v —t)z < 1. Adding these two inequalities, we have

u2+r2+v2+t2§ 1, Thus If]2+ ]g]zil and
lge®®) 1% < 1 - |£(e!®)]?. It follows that
2T i0 2T ‘0 2T {0
zf log]|g(e )}de<f log (1+ |f(e )])de+f log (1 - |£(e'")])de
0
. 2m 0
< 2-rrlog2+/ log (1 -|f(e*")])d0 = ~w.

0
Since g is analytic in the unit disk it has a Maclaurin's expansion

© @ (n)
g(z) = = g (0 ,n_,m 5 _g__n_i(_()_)_zn—m = 2z h(z)

n=0 n=m

where m is the smallest nonnegative integer such that g(m)(O) #0.
We have he Hm, h(0) # 0, and by a simple extension of Jensen's

] 2T i0
inequality [17, p. 52] _T?/o log |h(re )| d6 > log |h(0)|, O0<r<1.

2
Thus
2T . 2n . 2T .
1 i@ m i0 1 i6
ﬂ‘/o‘ log |g(re ") |do = > A log |[re " |do + ﬂ‘{; log |h(re ") |d6.

Taking the limit as r appfoaches 1 we have

2m VA

. 0
Z*ITr,{). log Ig(ele)lde = 2—%‘/0‘ log Ih(e1 )|d® > log In(0)]
(m)
= l@g’&Tn!(_O)_l .

The left side of this expression being -o implies g(m)(O) = 0 for
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m=20,1,2,... . Hence we have that g(z) =0 for [z, < 1 and
since lim g(r ele) exists a.e., g(ele) = 0 a.e. Therefore g=20
Tr-—>

and feext U(Hw).

i9
e

Now let fe exi’;U(Hw) and suppose that log(l - |fle ")|) is

integrable. Define

27 10 ,
glz) = exp‘[ﬁ_{; 212 1og(l - If(ele)l)de]
e

- Z

Clearly g # 0 and g(z) is analytic for fzf < 1 by Cauchy's

Theorem. It follows from the Poisson integral formula that

1 it . 1 2m ele +r el't i9
og |gle™)] = lim Re 5= 5 log (1 - [f(e”")])ae
r—1 0 e -re

t

log (1 - |£(e'9)])

i0 i
ele)[ which implies g is

)= 1K

bounded and therefore ge Hm . From the fact that

(see [12], p. 34). Hence ]g(e

[g(eie)f + lf(eie), =1, we have. ]g(z)f + ]f(z)l < 1 for all z in the
unit disk [z[ < 1. Therefore '”fd:g”w <1 and since g # 0,

féext U(Hw) . This contradiction gives the result, Q.E.D.

It should be mentioned that the result holds for the subspace A
of H‘JD of continuous function on the closed unit disk which are analytic
in the interior., The first half of the proof is the same as above since
fe Hw whenever feA. Inthe second half of the proof, the function
g must have continuous boundai'y values. This can be accomplis/hed by

setting
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‘where - u is continuous on lzl = 1, logu is integrable, 0 <u<1- [f,,
and u is continuously differentiable on each open arc of the set where
|f| # 1. It can then be shown that Ig(eie)l + If(eie)! < 1 and hence

f is not extreme.

We now turn to le , but first we will need some definitions.

Definition 4.17 A function fe Hp is an outer function if f can

be represented as

e - Z

. 2w it - .
_ 8 1 f e+ z it
f(z) = e exp l:——Z'rr A ST log ]f(e ),dt]

2m it
where f log [f(e ) ]dt < @
0

Definition 4, 18 A function fe Hp is an inner function if

|£(z)| < 1 and [f(eie), =1 a.e,

The following is a known fact from complex variable theory and

will be stated without proof.

Lemma 4.19 [17, p. 63] A nonzero function fe Hl has a

unique factorization (up to a constant of modulus 1) of the form

f= Mfo where M, is an inner function, Qf is an outer function,

f
and i, = Il -

The next theorem was originally proved by Rudin and de Leeuw in

[41].

Theorem 4.20 feextU(H,) if and only if l|fl|1 =1 and f is

an outer function.
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Proof: [17, p. 139] Assume ”fHI = 1 and f is an outer function.
Pick ge H1 such that ||f g”l = 1. Define h = gf- (Note that
f(z) # 0 for |z| < 1 since f is an outer function. Thus h is
-analytic in the unit disk.) Define the positive measure du = lf]d@ .
Then h is integrable with respect to- u since

ﬂh[dp = f‘}'gf‘}' |[f]de = ||g]l < ®. By our assumption,

/

0

2T . . . . . 2w s
(14" + g(®)] + €™ - gte’®) 10 = 2f (e ae.

By rearranging this expression and introducing our new measure, we

have

2m i0 i6
f (|1+h(e”")| + |1 -h(e )| -2)dp = 0.
0

Since f(ele) does not vanish on any set of positive measure, it follows

that [1+h(ele)[ + ‘1 —h(ele)] = 2 a,e. with respectto p. Thus

h(ele) is real and -1 < h(ele) <1 a.e. In view of the Poisson

representation for H. functions [12, p. 34], h(z) is real for

1
[zf < 1 and hence is constant. Thus (1+h) Hf” = (1 -h) ”f” which
implies h=0.. Hence g=0 and fe extU(Hl) . |

Le.t feext U(Hl) and suppose f is not an outer function, i.e.,
f = Mfo where the inner function Mf is not constant., Let l

am. i@ ia i0
pla) = f [f(e )f Re [e Mf(e )]de. ¢(a) is a real continuous
0 ’ .

function and since ¢(0) = -¢(m) there exists some B with 0.<pB <7

such that ¢(B) = 0. Let ulz) = eiﬁM (z) and

£
g(z) %eiﬁQf(Z)(l+u2(z)). Then g(z) is analytic for |z| < 1 and

el

It

él"HQf” ”1+u2H < %(1-!- ”uHZ) < 1. Therefore geH1 and
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g # 0 since M, is not constant. (Note that emlBsz 1—1{.) Since
‘Mf is an inner function lu(ele)' = 1 a.e. Whenever lu(eie), =1
—_ 2

we have ZRe(u):u+u=u+ll-I: 1+121 . Therefore
. - . o u o 13
g(et?) = é—e‘l%f(ele)(nuz(ele)) - %Zf(ele)Re[u(ele)] a.e. on
Iz, = 1. Hence
lf(ele) + g(ele)l = l,f(ele)[(l + Re [u(ele)]) a.e.
and by our choice of B, it follows that |[f+ gl = |[f]] = 1. Thus

fdext U(Hl) . This contradiction implies that f is an outer function.

Q. E.D.

For the space H, we can answer affirmatively the question of

1

whether U(H is the closed convex hull of its extreme points. In

1)

fact we have the following stronger result,

Theorem 4.21 Let fe U(Hl)’

(i) If ”f”1 = 1 and f is not an extreme point of U(Hl)

1
2

extreme points of U(H

where f and f, are distinct

then f = 1 >

(f1+ fZ)

1) )
(ii) If ”f”1 < 1 then f is a convex combination of two

extreme points of U(Hl) .

Proof: We shall present only a sketch of the proof. For details see
(17, p. 141-142]. For (i) we construct g as in Theorem 4. 20 and

define f = f+g, f, = f-g. Then 1,0, = II5,0, = 1 and
1

f=5(f+1

5 Once f and f are shown to be outer functions then

2) ’ 1 2
the proof is complete.
For part (ii) suppose 0 < ”f” <1 (f=0 1is trivially the mid-

point of two extreme points). If f is outer then f is a convex
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-combination of the two extreme points £

—:f_
TR

outer, construct g as in Theorem 4.20 and then choose t:1 >1 and

5> 1 such that ”f+t1g”1= Hf-—‘tzgulz 1. Once f+t;g and

If f is not

t
f -t,g are shown to be outer functions, the proof of (ii) is complete

since f lies on the segment joining these two functions. Q. E.D.

That U(Hp) = c¢lcon extU(Hl) s 1 <p<w, is a consequence of
the fact that every element of the boundary of U(Hp) is an extreme
point (see proof of Theorem 4, 14). The proof of the result for U(Hm)
is quite long and hence we again only sketch the proof, For the details,
see [33]. The following definitions will be needed for the next theorem.

A subset A of C(S) 1is called a function algebra of C{(S) if A isa

linear subspace and multiplicatiori of functions is closed (multiplication

is pointwise), We say A is a lo-gbrnodular algebra if

{log |f]: fe A and -lf- € A} is dense in CRr(S). Denote by M(A) the
maximal ideal space of A, i.e., the set of all multiplicative functionals
on A (see Theorem 5.6). A part of M(A) is an equivalence class
defined by the equivalence relation ~ Hy ~ My if ”“1 ol | <2

(the norm is the one for A%). Recall that a subset P of A* is tetal
over ‘A if for feA, f# 0, there if Fe¢A%* suchthat F({) #0. We

now state the theorem.

Theorem 4.22 Let A be a logmodular algebra in C(S) with

maximal ideal space M(A) and suppose that there is a part P of
M(A) which is total over A, Then U(A) 1is the closed convex hull

of its exposed points (see Definition 6.1).

Proof: [33] Recall that every element ¢ ¢ P may be represented by

a measure. Let ¢ e¢P with representing measure p and suppose
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feU(A) suchthat Q = {x:|f(x)| = 1} has positive u measure.
Then f is an exposed point of U{A). Define FeA¥ by
F(g) = IL—(l_Q—)j(;g—fd“’ geA, Then F(f) =1 = ”F“ .. It can be shown
that if geA and F(g)=1= |/g| then g=f and hence f isan
exposed point.

Next it can be shown that the set of all linear functions Fe A"
such that 1 = “F” = F(f), where f is an exposed point of U(A), is
.norm-dense in the boundary of U(A*) ,  Thus intuitively speaking, we
can see that U(A) is the intersection of all closed half-spaces which
support U(A) at an exposed point. Thus U(A) is the closed convex

hull of its exposed points. Q. E.D.

Corollary 4. 23 U(Hm) = clconext U(ch) .

Proof: This follows from the preceding theorem since it can be shown
that ch is isemetrically isomorphic to a logmodular algebra., The
maximal ideal space of ch - is complicated but it is known that the

open unit disk is a total part of M(A). Q.E,D,
Lipschitz Spaces

We now consider the space Lip (S,d-a) of complex-valued
functions on a compact metric space S with metric d which satisfy

a Lipschitz condition.

Definition 4,24 fe Lip (S, a%) if there exists a constant K > 0

such that If(x)wf(y)l < Kda(x,y) for all x,yeS, 0<a <1,

It should be noted that if fe Lip (S, da) then f is centinuous and

hence bounded. Also it can be shown that Lip (S, da) is a vector
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space. Define |[[f[ = sup{|f(x)-f(y)]d"¥(x,y):x # y}. Then

d
el = max(”f”w, ”f”da) is a norm on the space. (Recall that ”f”a0
is the sup nerm on S.) lip (S,da) is the closed linear subspace of
Lip(S,da) containing those functions f such that

“¥(x,y) >0 as da%(x,y) 0.

| £x) - £(y) | d
In general not much is known about the extreme éoints in

: Lip(S,da) for arbitrary S and d. Throughout this section we use

the term '"a.e.'" to mean almost everywhere with respect to Lebesgue

measure., The following is a characterization of ext I;I(Lip [0,1])

where Lip[0,1] is Lip(S,d%) with S=1[0,1], d the usual metric,

and « =1, Itisdueto A. K. Roy [39].

Theorem 4,25 If f is not of modulus one everywhere on [0, 1]

then fe extU(Lip[O,_l]) if and only if ]f'f =1 a.e, on [O,I]N.Mf,

where M, = {xe[0,1]: |f(x)] = ”me}.

Proof: If lf] = 1 everywhere then it follows that fe extU(Lip [0, 1])
(see Theorem 4.27). Note that if fe extU(Lip [0,1]) then it is
necessary that Hwa = 1; for suppose Hf”w = a<1. Then

g=f+%—(1~a) and h:fuzl-(l—oz) are such that

gl < llfll, + (1-@) <1 and similarly IIn] < 1. Thus

g, he U(Lip[o0, 1]) since |[lgf = [h]l ,=[f] , < 1. We then have
d d d

f = %(g+h), f4g, and hence f{extU(Lip[o0,1]).

Suppose [f" < 1 ona set F of positive measure where

FC[o,1]~M [0, 1] N,Mf is open; therefore we may assume

£
(i) F to be compact since otherwise there exists F1 closed,

F1 (C F, whose measure is arbitrarily close to the measure

—

of F;
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(ii) F C 1 for some closed interval I C [0, 1] ~Mf;
(ili) ess sup [f'(x)f = @ <1, since if we define:
xeF
An = {xef0,1]: lf'(x)f <1 - -rl;} then the measure of

some An .is greater than 0. (For if not, the measure.
of F is 0.); and
(iv) for some €>0, |[f(x)| < 1-¢ forall xel since f is

continuous on the closed set I.

Again we let denote the characteristic function of F. Then the

Xp
x .
function g(x) =f XF (t)dt is a continuous function on [0, 1] and by
0 s

the intermediate value theorem there exists X € (0,1) such that

X 1
0 1 , 1 .
_/; X (t)dt = -2-'/0. X (t)dt = Z—m(F) . Define

folx) = Dp ) Xpg e 100) = [xp o) X 17 00)]

0

X
and go(x) = f fo(t)dt:. Figure 4.1 will help illustrate thée functions
' 0

g, fo, and g (for real-valued functions).

m(F)+4 1
/ Fm(F)T
e 1 ] [ . I | JE—
0 FI1 0 x. 11 0 Exioi k

-1 -

Figure 4.1, Functions in Proof of Theorem 4.25
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Since g is absolutely continuous and [gbf is bounded we have
gg © Lip[0,1] (see[ , p.108]). For &§>0 small enough it follows
that £+ 6gofl < [lfll  + 6]g,ll <1and
e+ 6gollda5 ﬁfﬂda + 6Hg0Hda < 1. Hence [fxdg |l <1,
1 1
f= -2-(f+ 6g0) + —2—(f~6g0), and f # f+ 6g0. Thus f¢extU(Lipl[0,1])

which proves the condition is necessary.

Now let ,f’f =1 a.e. on [O,l]NMf and suppose f = é—(g+h)
for some g,heU(Lip[0,1]), ”f”(JO = 1 implies that g=h ={f on
Mf° Also f' = é—(g‘ + h') a.e. ﬁence g! = h' = f a.e, on
[0,1]~Mf since |f'] = 1, |g'] <1 and |h'|< 1 a.e. If x;(Mf

let y be the closest point of Mf to x. Assume y <x, Then
g'=h' a.e. on (y,x) and therr’;”‘efore‘ fxg'dm =th'dm. Thus
g(x) - g(y) = h{(x) - h(y), and since vye I\Zf it followsythat

g(x) = h(x) forall xe[0,1]~ Mf. Hence g =h =f{ from which we
conclude that feextU(Lip[0,1]). Q.E.D,

Figure 4.2 illustrates the graphs of some extreme functions in
the subspace LipR[O, 1]' of real-valued functions. Note that

sup ]f(x)' must be one.
X

14+ —

)

o
- —

-H

Figure 4.2. Extreme Lipschitz Functions
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The proof of the result concerning clconextU(Lip [0, 1]) is quite

long and involved. We shall again give only a rough sketch of the proof,

Theorem 4.26 The unit ball of Lip [0, 1] is the closed convex

hull of its extreme points.

Proof: [39] Consider C[0,1]® Lw[O, 1] with nerm

I, el = max(”f”w, ”g”w). Define the map:

Lip[o,1]~cC[o0,1] ® L lo, 1] given by f —(f,f'). This is a linear

and isometric map and the image of Lip,[O, 1], say A, is a closed
subspace of C [0, 1] & Lw [0, 1]. Essentially what needs to be shown
now is that a dense subset of the boundary of U(A*) attain a norm of

1 at some extreme peint of U(A). This, in fact, is the difficult part
of the proof. Once this is shown it will follow that U(A) = clcon ext U(A)

(see [33]). Thus we have the conclusion of the theorem. Q.E.D.
The Spaces C(S)

Let S be a compact Hausdorff space. Then C(S) denotes the
space of continuous complex-valued functions on S with
”f” = sup{ ]f(x) f :x €S} . The following characterization of ext U(C(S))
is not surprising if we consider the graphs of the real-~valued functions

as was done in Figure 4,2 in the previous section.

Theorem 4.27 feextU(C(S)) if and only if [f(x)f = 1 for all

xeS,

Proof: Let fe¢U(C(S)) and suppose that If(x)] < 1 on some nonempty
subset of S. Define g = f+ -é—(l-]f[) and h = f - %(1~If[).

g, he C(S) and |g(x)| < [f(x)] + %—(I-Jf(x){) = %(1+If(x)l) <1
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for all xeS. Similarly lh(x), <1 forall xe¢ S.' Therefore
g, heU(C(S)), f= é—(g+h), and f # g. This implies that
f¢ ext U(C(S)) which proves that the condition is necessary.
Suppose lf(x)l = 1 forall xeS and let ge C(S) be such that
[f(x) + g(x)l <1 forall xe¢S. Lemma 2.6 implies that g = 0. Hence

feextU(C(S)). Q.E,D,

Let CR(S) denote the subspace of C(S) of real-valued functions

on - S. We see from the above theorem that the set extU(CR[O, 1])

contains enly two points.

Corollary 4, 28 extU(CR[O, 1]) consists of the constant functions

1 and -1_.

Corollary 4.29 CR[O, 1] is not isemetrically isomorphic to a

dual space.

Proof: The closed convex hull of the extreme points 1 and -1 is the
set of constant functions f such that 'fl < 1. Thus

clconex_tU(CR[O, 1]) # U(CR[O, 1]~) . I CR[O, 1] were a dual space,
then its unit ball would be w*-compact. By the Krein —.Milman Theorem
U(CR[O, 1]) would be the closed convex hull of its extreme peints.

Q. E.D,

We conclude this section with the results concerning the question

of whether U(X) = clconextU(X) for the spaces C(S) and C,(S).

r!
Let p. be a nonnegative Baire measure on S. Then the support of

is the complement of the union of all open sets G such that u(G) =0.

Note the support of p is closed. We can now state the following

result,
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Theorem 4.30 The unit ball of C(S) is the closed convex hull

of its extreme points.

Proof: [33] Once again we will not give all the details to the proof.
Suppose TU(C(S)) is notthe closed convex hull of extU(C(S)). Then
‘there is a nonnegative Baire measure p on S with p(S) =1 and a

function fe U{C(S)) with ,fl = 1 on the suppert Q of p  such that
sup Refg?dp <1, geextU(C(S)).

Thus to prove the theorem we need only to show that for each ¢ > 0
there exists geextU(C(S)) such that Refg—f-dp >1 -¢e .,
Partition the unit circle of the complex plane into N equal half-

open arcs - A, , . where N ¢ > 2., Since

kl
N -1
1=p@ = = pliha
- k=1

) Nel,
we have for at least one of these arcs, say- A1 , the subset

f“l(Al) MN'Q of Q must have measure less than The same is

N|m

true for intA1 (relative to the ¢ircle), so let

Ql = {x:xeQ and f(x)dintAl}. It follows that p.Q1> 1 ".'28‘ and

? where ¢ isa real-

that Ql is a compact subset of O~ f=e'

valued continuous function on 'C‘l‘?“\We can extend ¢ to a real-valued

continuous function 6 on S. Let g = ele. Then by Theorem 4,27,
g € ext U(C(S)) and
Refg_fdp = Ref ele fdp + Ref elerp
Q~Q Q
1 1
4 B _
> Q~Q) Q) > - F 41 F =L
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Thus g is the function that is needed to complete the proof. Q. E.D.

We have noted (Corollary 4.29) that
U(CR[O, 1]) # clconext U(CR[O, 1])., Thus for real-valued functions

on S we must place some restrictions on the compact Hausdorff space

S.

Theorem 4.‘31 U(CL(S)) = clconextU(CR(S)) if and only if S

r!

is totally disconnected, i.e., S has a base consisting of sets which

are simultaneously open and cleosed.

Proof: (see [2 ];also [14]).



CHAPTER V
CHARACTERIZATIONS OF ext U(X%*)

We now .want to characterize the sets of extreme points of the
unit balls of the duals of the Banach spaces considered in Chapter IV.
- Recall that the dual X* of a Banach space X is the set of continuous
linear functionals on X with |[f] = sup{|f(x)]|:xeX, |[x] < 1}.

It is very useful if we are able to represent the dual of a Banach
as some other known space; i.e., find an isometric isomorphism
between the two spaces. For e;{ample C(S)* is represented by the
space of regular countably additive measures on the o¢-ring of Borel
sets in S (see [11], p. 265); i.e,, for each Fe C(S)* there
corresponds a measure u such that

F(f) :ff(t)dp., fe C(S).
S
Furthermore IF|| is equal to the total variation of p. Another

example is that 1;, l1 < p< o, can be represented by lq’ where

1 ' s’
; + é__ = 1, Thus for each fe lp' there is an Lsometnc isemorphism
which identifies an elernént (

... el with f such that
2 q .

[2¢]
fla) = f t.a. for a = (al,az,...)e lp'

R7
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Duals of the Sequences Spaces

We begin with the duals of the sequence spaces. Since

co' = 11 and { 1 = lm we have the following two theorems

immediately.

Theorem 5.1 extUlc,) = (A6 y=1,2,... with [A] =1},
Proof:. {(see Theorem 4, 2)
Theorem 5. 2 extU(ﬂl*) = {xet_:|x | =1, n=1,2,...)

Proof: {(see Theorem 4.3).

3 B
We shall consider 1; as a special case of LG0 (S, M, ) and

Lo
S

therefore will delay the discussion of extU(l;) .
Duals of the Lp Spaces

If (S,M,un) is a positive o-finite measure space, then there is

an isometric isomorphism between L1 (

S, M, ) and Lm(S, M, un). The
isomorphism is F —-g where F({f) = fg(s)f(s)dp for every

' S
fe Ll(S, M, ) (see [11], p. 289). We have previously characterized

extU(Lw) but state the result for the sake of completeness.

Theorem 5.3 Let (S,M,pn) be a positive o-finite measure

space. Then Fe extU(Lik(S, M, u)) if and only if F(f) :'/éfdp for

all feL, where geL_ with lg| =1 a.e.

Proof: (see Theorem 4.12).

sle 1 1
Fo l1<p«< L (S, M, = L (S, M where —+ = =1,
r P @O, p( |~L) q( s|~L) p q

Thus the following theorem is a consequence of an earlier result.
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b
(

Theorem 5.4 For 1 <p<w, Feext U(Lp S, M, ) if and only

if ||F[ = 1.
Proof: (see Theorem 4.11).

We now want to give a.necessary condition for an element of
L:(S, M, ) to be an extreme point of the closed unit ball. The
problem is not as trivial as in the previous spaces since L: is an
L1 space for some measure space (S, M,u). In general little is
known about this measure space, but Theorem 5.6 gives a partial
description of the extreme points. We need some preliminary rema;ks
before stating the result.

Let (S,M,pn) be a positive o-finite measure space. Let M

1

be the completion of M; i.e., M1 contains all sets B such that
B (C A for some AeM with p(A) =0, Let i, be the extension of

poto M (see [40], p. 221). Then (S,Ml,pl) is a complete,

1
positive, o -finite measure space. Denote by ba (S,Ml,pl) the spa;:e
of bounded additive functions on M1 which vanish on sets of -
measure zero. The norm of an element X\ in ba (S’Ml’ pl) is its
total variation ([[\]| = sup{|[\(A)]: Ac Ml} ). v(\, A) denptes the
total variation of A on A; v‘()\..,A) = sup { ’)\(B)]:B € Ml’ B g A}.

. The following result is needed but the proof is not within the

scope of this paper and hence will not be given.

Lemma 5.5 There is an isometric isomorphism between

L::(S, M, ) and ba (S, Ml’ pl) determined by the identity

F(f) = '/S‘f(s)d)\, feL_(S, M, .
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Proof: (see [1ll], p. 296),

Theorem 5.6 Let (S,M,n) be a positive o-finite measure

space. FeextU(L (S,M,u)) ohly if F = a‘G, where !a[ = 1 and

e
[« ¢]

G 1is nonzero and multiplicative; i.e., G(fh) = G(f) G(g) for all

f,gGLm(S,M’H)o

Proof: [11, p. 443 By Lemma 5,5 there isa X\ in ba(S,Ml,p.l) with

Ix = 1 and

F(f) = _/;f(y)dx_, £eL (S, M, ) -

We want to show that A vanishes on at least one of every pair of
disjoint sets in »Ml so that we may define a characteristic function

later in the proof, Suppose there are disjoint sets P1 and P2 in

‘M. with )\(Pl) # 0 and MPZ) # 0. Let \,(P) = )\(Pmpl) and

1 1

A (P) = AP M (S~P1)) for PEMl.' It follows that

A
Xl,}\zeba(S,Ml,pl), v()\l,P) = y(}\, PmPl), and

v(,xZ,P') = v\, PN (S~P)) for PeM,. Since total variation is
addi&ive we have 1 = ])l\xﬂ = I I+ ”xz)]\[. Since X # 0, X, # 0
we may define v, = m and v, = —”—i—” . Thus v,,v,<cU(L))
by the isometry between L::(S, M, ) and ba(S,M, ), and also
NER RS I ”)‘1 H)u2 . Since A is an extreme point, we have
A= v, =v, andthus 0 # A(P}) =v,(P,) =0. This contradiction

gives us the desired result.

For PeM, we have X(P)(\(S)-X(P)) =0. Hence the function

1
m = 'X.()}‘S—) assumes only the values 0 and 1. Thus

(1) m(A M B) = m(A)m(B) forall A,BeM.
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For if either m(A) = 0 or m(B) =0 then m(AMB) = 0. If
m(A) = m(B) =1 then either m(A~(A/MB)) or m(B~(AM B)) is
zero (since A~ (A B) and B ~ (A B) are disjoint), Hence

m(AMN'B) = 1.

Let G be defined by G(f) = ff(y)dm for fe Lm. Then
S
”G”r-‘”m”: 1 and G = aF where lal——- 1 =1.
Ix(s)|

Let

f:XA and g = Xp for A,BeMl, Then

Giig) = [itngtnam = [ it gnam = [ ity)am [ glyam.

The last equality follows from (1). Thus G(fg) = G(f) G(g) where f
and g are characteristic functions on sets in ‘Ml . For ge Lm

define

Tg = {fe Lm: G(tg) = G(f) G(g)} .

It is clear that Tg is a closed linear subspace of Lm. By the
preceding remarks it follows that Tg = LqD if g is a characteristic
functioen. (It is known that the characteristic functions form a
fundamental set in Lm.) Thus if f is an arbitrary function in L.

then the linear subspace Tf contains all characteristic functions and

hence sz Lw. Thus G(fg) = G(f) G(g) for every f,ge Lm. Q.E.D.

Note that the function X\ has an "atomic type'" property mentioned

in Definition 4.5. This is to be expected since as we have pointed out

S .
Lco is an L1 space for some measure space and the extreme points
1

;(—K)— XA where A was an atom

of U(Ll) were of the form f = \

and |A| = 1.
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We now have the following corollary.

*
Corollary 5,7 Fe extU(lm) only if F = aG where [a[ =1

and G is nonzero and multiplicative.

Proof: This follows from the previous theorem since the positive
integers with the counting measure on all subsets is a o-finite measure

space. Q.E.D.

Duals of the Hp Spaces

Sle

It appears that the characterization of ext U(HI:) is still an

open question, It is known that for a Banach space X and any closed
; X

subspace Y that YY" is isometrically isomorphic to where

YJ_

Y'L denotes the set of all elements F ¢ X* such that F(y) =0 for
every yeY,. Y'L is called the annihilator of Y. Thus, since Hp
is a closed subspace of Lp’ 1 < p < o, the dual of Hp can be
described if the annihilator of Hp in Lp* can be determined, It

has been shown that the annihilator of Hp is isometrically isomorphic

T, L
1 1 sk
to ' H where —+ — =1 see |12, p. 113]). Therefore H = -3 .
q ot g (see [12,p. 113]) p =T

K q
Since there is no concrete description of Hp ;-any attempt to identify

the extreme points of its unit.ball would be rather artificial, hence we
will not endeavor to do so.

Much has been written about the maximal ideal space M of Hm;
i.e., the multiplicative linear functionals on Hw. A famous conjec -
ture which was unsolved until recentiy is the following: Is the unit
disk (when embedded in M) dense in M ? Carleson [5 ] has shown
that the answer is affirmative. For more details concerning the

corona theorem!' see [12].
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£
- It is known that Hw is a proper subset of H1 . No concrete
sk '
description of ch has been found and hence the identification of the
extreme points of U(H;) seems to be an open question,

Duals of the Lipschitz Spaces

We now want to identify the extreme points of the unit ball of the

This has been done in a more general

dual of the Lipschitz spaces.
setting than for the spaces themselves. Some preliminary remarks

are needed before we state the main result.
Definition 5.8 Let F be a closed linear subspace of C(S). An

evaluation functional on F, denoted by P is defined by (px(f) = f(x)

where xe¢S and fe¢F,

We will use the following notation: S is a compact metric space

with metric d.

W = {(x,y):x#y and x,yeS}.

BW is the Stone-Cech compactification of W (see[l1,p. 276])

bg = {)\(px:xeS, IN] = 1}

b= Do tw=(oy)eW, 0<d¥xy) <2, A= 1)
D = {)upw:we BW ~ W, 17\[ = 1}

For feLip(S,d%) define f on SU W by

xeS

~

f(x) = f(x)

H

fw) = f(x,y)
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~

Since f is bounded and continuous on W, it has a unique
extension Te C(BW) with H?” = ”';/f\”. If we define f(x) = f(x), x¢8S,
then /f\ is a continuous extension defined on S{J pW. For every
fe Lip(S,da») , let jf = /f\ j is clearly linear and is also an isometric

map since for every fe Lip(S,da) , we have

_ ' A A
lithspw = max (sup [1(x)] , Sup [£(w) )

"

max (sup ]?(X)I s Sup /f\(W)I‘)
xeS We

max (| £]], [ €] )
d

(Rl

Definition 5.9 Let F be a closed linear subspace of C(S) and
xeS. We say a function f in F peaks at x relative to F if
f(x) =12> lf(y)[ with equality holding only for those y in S that

satisfy either

gly) = g(x) for all geF or

forall geF,

1]
=
n .
'
aQ
»

The next lemma, due to de Leeuw, helps us to identify the extreme
e .
points of U(F ) 1in terms of the peaking functions relative to F where

F is again a closed linear subspace of C(S).

Lemma 5.10 Let xeS. If F contains a function f which

)

peaks at x relative to F, then P € extU(Fa).
Proof: [9 ] Py € U(F*) since

ol = suptlo @] £l < 1} = sup{feal: el < 13 <1
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. Suppose @y = ;—— (yl + .YZ) wherel Y12 Yy € U(F*) - YyrYy, are bounded

linear functionals on C(8) and therefore by the Riesz representation

theorem (see [40], p, 310) there are unique finite signed Baire

measures p,; and Mo such that
Yl(g) =/gd|.,Ll and
S

Yz(g) = fgdpz for all ge F.
s

Also the total variation of M is equal ”YJ.” <1, i=1,2.
Let f be a function in F which peaks at x relative to F.

Then

fd < su(.p{ fly)]l : yeS} < L.
[ ran, | < swp{lstn] v s} <

Similarly ,ffdpzl < 1. Thus
S

1= 5x) = g (6) = 5 (v,(0) + v,(0) = %—[_/;fdul-’fj;fduz]-

Thus it follows that ffdpl =f fdpz = 1. Define
S S

w4
i

o = {y:&y) =1} = {y: g(y) = g(x) for every geF)}

<
n

{y:1ly) = -1} = {y:gly) = -g(x) for every geF}

<
1]

o =yt iy ] <1} = {y:ydY, and y{Y }.

Hence 1 =ffd|.|., = pAY ) - p (Y )+f fdp_. The function
S 1 i+ i - YO u
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f(x) , X € Y+u Y
f0x) = ¢, ~  -also peaks at x.
~2—f(x)‘ s X € Yo

Nlr—-

Since f

1 =y (Y ) - pi(Y_) . Therefore

‘/; fdp.. unless H’i(YO) =0, it follows that

v;{8)

H
o
aQ
.
e
-
It
'\
aQ
[o N
x
.
+
<
[0}
[o
=
+
—
)]
[oR
k=
-

H

g(x) [, (Y,) - pi(Y_)]

i

g(x) = <px(g) for all ge F.
Hence P T Y17 Y which implies P € ext U(F*) .. Q.E.D,

The next two lemmas will identify the peaking functions in
j(Lip (S,da)) which, as we recall, is the image under j of
Lip(S,d%) in C(SU BW). We then will use Lemma 5. 10 to identify

the extreme points of U(Lip(S,d%)) and U(lip(s,d%)).

Lemma 5.11 For each point X, € S ‘there is a function

felip(S,d¥)(0 < @ < 1) such that f peaks at x. relative to

0
j(Lip (S, da)) and hence relative to j(lip (S, da)) .

Proof: [18] Let 3{0 be a fixed point of S and define g(x) = Kd(x,xo)
where K >0. For x #y we have
Kld(x,x,) - d(y,x,)| K|d(x,x,) -d(y,x,.)]|
a — - Sy ey <k ).
d(x,) ’

Clearly g 1is continuous and since S is compact d1-oz(xﬂ y) is

bounded. Thus ge Lip(S,d%). Letting d(x,y) =0 we see that
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g elip (S,d%). By choosing K small enough, ”g”m <1 and
”g” o <L Also g is a nonnegative real-valued function vanishing
d

only at x Let f=1-g, Then

0"
(i) 0 <f<1,

(ii) f(x) =1 1if and only if x = Xy and

e pen |1 -g(x) - 1L+gly)]
(iii) ”f]]da = sup { =3 cx £y}

< sup{Kdlqz(x, y):x#y} <l.

N
Hence f peaks at x, relative to j(Lip(S,da)). Since felip(S,da)

0

then f also peaks at x, relative to j(lip(S,da)). Q, E.D.

0

Lemma 5.12 Let Wy = (s,t)e W with da(s,t) < 2. Then

there is a function fe lip (S,da) such that f peaks at w, relative

0
to j(Lip(S,d%)) and relative to j(lip(S,d%)).

Proof: [18] Let 0< a <1 and Wo = (s,t) e W. Suppose

K = da(s,t) < 2. Define an auxilliary metric p by

o(x,y) = min(@% " Y(s,)d(x,y), K), x,yeS.

p is.a metric and p(x,y) < da(x, y) with equality holding if and only

if either d{x,y) = d(s,t) or d(x,y) = 0. Let g and h be defined

by g{x) = p(x,t) - %—K and h(x.) = é—K - p{x,8), xe€S. Itis clear
that

() flell, = K and

(ii) gx) = - %K if and only if x =¢t.

Since |g(x)-gly)] = |plx,t) -ply,t)] < plx,y) < d%(x,y) for



(x,y) ¢ W, it follows that
(iii) Ilgllda <1 and
(v) |8, y)| - 18 -gt]

d%(x, y)
y=t. Forif x #y then

= 1 implies that either x =t or

plx,y) < d¥(x,y) = olx,t) - ply, t)] < plx,y)
which implies that da(x, y) = p(x,vy). Hence d(x,y) =d(s,t)

and Ig(x)~g(y)[ = a( K. (i) implies either

t) =
g(x) = - %K or gly) = - %K Thus it follows from (ii) that

either x =t or y=t¢t.

Since lg(x)-g(y)l,ﬁ p(x,y) then ”g”p < I. Thus for (x,y)eW,

lgx) -g(v)| _ lgx) -gy)]

- px,y) . _p(x,¥)
d%(x, y) px. )

a%@x,y) ~ a%(x,y)

- But from the definition of p, el y) -0 as da(x y)—=0
d%(x,y)
It has been shown [18] that if ge lip(S,da)

Hence

Hence gelip(S,d%).
then @ vanishes on PW ~ W . Thus
N
g\w

(v) g(w) = 0 if we pW ~ W,

The function h satisfies conditions (i) —(v) with t replaced by

s and the minus sigh removed in (ii). Let f = %—(g+h), Since j is

N A
linear we have f = ;—(@ + h), For the fixed point w

O’
Ywy) = LEL=H) _ el *ple,8) _
d” (s, t) 2d%(s, t)
If w=(x,y)eW then |f(w)] < ”f”

<z (Ilgllda+ Htha) <1

68
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Suppose r’f\(w')] ='1 then (iii) implies 18(w)] = {’ﬁ(w)] = 1. By
(iv), {x,y} = {s,t} . Hence w = (s,t) or w = (t,s).. Since /f\
vanishes on - pW ~W and ”?”S = ”f”c0 < ;—K <1, the function

[/f\( . )| attains the value 1 only at (s,t) and (t,s). By the definition
of jg we have 2(s,t) = ~/g\(t, s) for every ge Lip(S, da) and thus 7
peaks at Wy = (s,t) relative to j,(Lip(S,da)) and relative to

j(lip (S,d%)). Q.E.D.

We consolidéte the information from these lemmas into the next

theorem.

Theorem 5.13 For 0 < a <1

extU(Lip(s,d‘f‘)*) = ¢gU oy, U D,

where ~D0 is some subset of D (see p. 63). For lip(S,d%),

. [0 3 _
ext U(lip (S,d%)%) = o5l oy

Proof: Identifying the linear functionals on Lip (S5, da) with those on
the isometric image of j: Lip(S,d%) ~ c(s U BW), we see from

“)*) has the form

Theorem 5. 15 that every element of extU(Lip(S,d
X where |e] = 1 and ve SUPBW. If v = (5,t)e W with
a%(s, t) > 2 then ¢, can be represented as the convex combination

of two elements of U(Lip (S, da)*) by writing

o B -9 @
4
‘PV(?) = /f\(v) = f(sa) - f(t) _ s . t
d” (s, t) d (s, t)
= %‘(E—&—g-v—-—— fPs(f) b2 (pt(/f\)) for all ?ej(Lip(S’da)).
(s, t)

d"‘(s,t)_
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‘Note that gos,q)teU(L'lp(S,da)*) since

>

)18l < 1, Pej(Lip(s,a®)}

h

lo, Il = sup {lo

A . o R
and l¢.s(f)| = |f(s)| < 1. Thus ¢, ¢ extU(Lip(S,d%)") if

da(s,t) > 2 where v = (s,t). Hence

ext U(Lip(5,d%)") C ¢gU ¢y U D.

If veS or v = (s,t)e W with da(s,t) < 2 then by Lemmas 5. 11 and
5.12 there is an felip (S,da) such that /f\ peaks at v. Hence by
Lemma 5.10, g U by C extU(Lip (S,d%)*). It therefore follows

0
The above argument holds for the unit ball of lip(S,d%)*. The

that extU(Lip(S,d%)*) = ¢ U oy, U o for some subset D, of D.
S w DO

elements of D all vanish on lip (S,da) ([18]) and hence cannot be
extreme points of U(lip(S,da)*) . Hence extU(lip(S,d%)*) = ¢SU by -

Q. E.D.

Until recently it was not known whether D was empty. A

0

result of Johnson [19] is that D0 # @§. Furthermore it has been shown
that if S is countable then D0 is.uncountable (éee [20]). An open

question is the following: if S is uncountable, is D0 uncountable?

"a.ppears to be quite difficult.

A complete description of D0

Dual of the C(S) Spaces

The final dual to be cdnside’fed is the dual of C(S). As we shall
see in the next theorem, the extreme points of U(C(S)*) are the point
evaluation functionals on C(S). We first of all need the following

lemma.
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Lemma 5.14 Let K be a compact subset of a locally convex

linear topological space E whose closed convex hull is compact. Then

the only extreme points of clconK are points of K.

Proof: [11, P. 440] Let pe(extclconK) ~K. Since K is clesed

there is a neighborhood V_, of the origin such that (p+V0) MK =4¢.

0
Since K is a locally convex linear space there is a convex neighbor-
hood 'V of the origin such that V -V g VO. Thus

(p+V)M(K+V) = @ and hence p¢cl(K+V), The family
{k+V:keK} is an open covering of K and hence has a finite sub-
covering {ki+ V:is= 1,‘2, «..,n}. Let

Ki = clcon [cl(ki+ V) YK] C el (‘ki+ V). Ki is a closed and hence

compact subset of clcon K., . Thus

clconK = clcon(KlL) UK_n) = con(KIU UKn)
n
(see [11, p. 415])). It follows that p has the form p = P )\iki,
n i=1
)\'1 >0, Z )\i =1, kie Ki' Since p is an extreme point we have that
- i=1-

p= ki if )\,1 > 0. Therefore

n n
pe U K, GRY, cl(k, + V) C cl(K+ V).
i=1 = i=1 -

This contradiction implies extclconK ( K. Q.E,D,

We are now ready to state the main result of this section.

Theorem 5.15 Let F be a closed linear subspace of C(S).

Then every extreme point of U(F*) 1is of the form ao. where

: ia[ =1 and x¢S. If F = C[S) the converse is also true, i.e.,
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every element of the form e, !al = 1, xeS is an extreme point

of U(C(S)¥).

Proof: [11, p. 441] Let A = {bupx: la] = 1, xeS}. We first need

to show that A C U(F¥). For f¢F we have |[f| = sup{|f(x)|:x¢8S}.

Thus if [[f]| < 1 it follows that [¢ (f)] = |[f(x)] < 1 and hence
lap Il = o, ] = sup o 0] : £ <1} < 1.

This implies ag¢_e U(F*) and ‘A C U(FY).
Let F* have the w*-topology. Since U(F¥) is w*-compact, it

is w*-closed and also convex. Thus w*-clconA (C U(F*). Suppose

peF*¥ ~clconA. Then since F* has the w*-topology there is an
fe F and real constants ¢ and e, with ¢ > 0; Re/f\(p.) = Rep(f) > c;
and Re/f\(v) = Rev(f) < c-e, for veclconA. This is a result of a
version of the Hahn-Banach Theorem. In particular

Re af(x) = Re a<px(f) < c-e for xeS and le| = 1. Hence

£l < ¢ -t ; for suppose [f]l > ¢ -e. Then there is an X € S such

that |f(x.)| > c-e, If

0
HEW |£(x ) 2 ' f
o = then eof(x,) = —— = [f(x.)| > c -¢ .
| £(x0) o | £(xg) | "o
But this contradicts Re o f(x) < c -e for every xe¢S and [a[ =1,
Therefore

: lu(g) ]
”P’” = sup h—:gEF’ g#0py> ”f”

Thus pfU(F") and we have U(F¥) = clconA.
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If we show A is w*-closed then the first part of the theorem
will follow from Lemma 5.14. Let C be the unit circle of the complex

* _continuous frem C X S into

plane. The map (a,x) >ag is w
C(S)*. Since C X S is compact, the image under the map, namely A,
. is also.

To prove the converse let - F = C(S) and xe¢S such that
Py = At (1 ~X)v where 0 < X <1 and p,v EU(C(S)*) . We need to
show that P =M=V, Let f0 e C(S), “fO H <1 and fo(y) =0 for
y in some neighborhood N of x. By the Tietze extension theorem

there is an he C(S) such that “h” <1, hix)=1 and h(y) =0 for _

y¢N. Then

Ap(h) + (L -Av(h) = ¢_(h) =1, [um)] <1, and [v(h)]| < 1.

Thus p(h) =v(h) = 1. Similarly we have p.(fo-!- h) = v(foﬂ-!- h)=1.
Hence u(f,) =v(fy) = 0. Nowlet £, ¢C(S), Hf1 | <1 and f(x) =0,
Then since f1 is continuous on S, for each positive integer n there
is a neighberhood Nn of x such that lfl(y)l < rlT for vye Nn’ Let
Mrl be a neighborhood of x such that cl Mn C Nn' Again by the
Tietze extension thegrem there is an hh € C(S) such that ”hn ” < 1;1_’
hn(y) =0, den and hn(‘y) = fl(y) for vye Mn' Then fl- hn—»fl,
Hf -h “ <1 for n>1, and f, -h wvanishes on M _ . Thus

1 n'" — 1 n n
f1 - hrl satisfies the conditions on the function fo and hence by what

was done above }.L(f1 - hn) = v(f1 - hn) = 0., Since f1 --hrl - f1 and

i and v are continuous, we have p.(fl) = v(fl) = 0. If h'eC(S)

)1
such that h'{x) = 0, then for sufficiently large n, H-%—” <1 so that
' _
%— satisfies the coenditions on f1 and thus u(h') = v(h') = 0, If

cpx(h') = 0 then u('") = v(h') = 0 and it follow; that there are
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scalars a and vy such that p = ag. and v = Yo, (see [L1, p. 421]).
Since p,veU(C(S)*), we have foz! <1, and }yf < 1. Since
Py = Na + (1 -)\)y)qpx we have Aa + (1 -\)y = 1. This implies
a =y =1 since 1 is an extreme point of the unit disk in the complex

plane. Hence gqpxeextU(C(S)*), That ag_eextU(C(S)¥) isa

consequence of Lemma 2.7. Q.E,D,

We have now characterized the extreme points of the unit balls
of five Banach spaces in Chapter IV and their duals in the present
chapter. It may be noted that is some cases these characterizations
were very intuitive and what we might expect them to be., On the other
hand some of the cases proved to be difficult and in fact some of the
results are not known as was the situation in the duals of the Hardy
spaces. In the next chapter we want to look at some extensions of the

notion of extreme points.



CHAPTER VI

OTHER DISTINGUISHED POINTS IN

BANACH SPACES

In the present chapter we will discuss same other points: in
Banach spaces which are somewhat related to extreme points. Some
of these are generalizations of extreme points while others are special
cases of extreme points. Most of the results will be stated without
proof. Our intent is to supply some ideas and problems so that the
interested reader might pursue the study of extreme and other related
points in Banach spaces,

The first topic to be considered. is the notion of an exposed point

of a convex set K,

Definition 6,1 Let K be a convex subset of a locally convex

linear space "E. A point x in K is said to be an exposed point of K

if there exists fe¢ E* such that Re f(x) > Re f(y) whenever yeK,

x #y. (The set of exposed points of K will be denoted expK.)

Intuitively speaking a point x is an exposed point of K provided
a closed hyperplane exists which intersects K only at the point x.
The following theorem shows that an exposed point is a special case of

an extreme point.

Theorem 6.2 Let K be a convex subset of a normed. linear

space - E. Then expK ( extK.
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Proof: Let xe¢expK. Thus we have fe E* such that Re f(x) > Ref(y) .
for yeK, x #y. Suppose x¢extK. Thenthere are w,ze¢K such
that x = %—(w+z) with w#x and z # x., Therefore

Re f(x) = -21‘—Re f(w) + %Re f(z) < Ref(x).. This contradiction implies
xeextK. Q.E.D,

A simple example in the plane shows that not every extreme

point is exposed.,

Example 6.1 Let K be the convex hull of two disjoint circles

in the plane., The four boundary points A, B, C, D where the
common tangents intersect the circles are extreme points but not
expbsed. (See Figure 6.1) A is not exposed since the supporting
hyperplane at A is the tangent line through A and B which inter-
sects K at points other than A. On the other hand A is extreme

since it is not on an open line segment contained in K.

D

Figure 6.1. Extreme Non-exposed Points
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If we restrict our attention to normed linear spaces, then the

following is a result similar to the Krein-Milman Theorem.

Theorem 6.3 If K is a compact convex subset of a normed

linear space E, then extK (C clexpK and K = clconexpK.
Proof: (see [22]).

The above theorem by Klee appeared in 1958. In the same paper
a similar result is proved concerhing weakly compact subsets of a
separable Banach space. This has been improved [ 1] and states that
every weakly compact subset of a Banach space is the closed convex
hull of its exposed points.

A result which is closely associated with the Bessaga-Pelczydski

Theorem is the following.

Theorem 6,4 Let X be a reflexive Banach space and K a

closed bounded convex subset of X, Then K = clconexpK.
Proof: (see [27]).

By Theorem 3,20 we know that if X is an infinite dimensional
reflexive Banach space, then extU(X) 1is uncountable. According to
[28] Branko Grunbaum has shown that there is a three dimensional
space E such that extU(E) is uncountable but exp U(E) is
countable. This leads to the following open question: can the unit ball
of an infinite dimensional reflexive Banach space have countably many
exposed points?

A refinement of the definition of an exposed point i$ the notion of

a strongly exposed point.
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Definition 6.5 Let K be a convex subset of a normed linear

space E. A point xe K is called a strongly exposed point of K if

there is'an fe¢E = such that
(i) f(y) < f(x) for yeK, y #x and
(i) f(x ) ~f(x) and {x} C K imply [x_-x[ -o0.
The following example due to [26] shows that there are separable

reflexive Banach spaces whose unit balls have exposed points which are

not strongly exposed.

Example 6.2 Let £, be the space of real sequences x = {xn}

2
. _ 2,1/2 _ 1 1
with nerm ”x”—{E}xnl } <o, Let en—{l—-E,O,...,O,Z-,O,...}
for n=2,3,... where the number é— is in the n-th place. e is
*
clearly an element of U(EZ) for n=2,3,... . Anelement fe EZ

is of the form f(x) =X t %, where {tn} and {xn} = x are elements

of EZ-' In particular g(x) = X, is an element of izq‘. The element

p={1,0,0,...} in EZ is such that g(p) =1 and g(x) <1 for

Xe€ U(iz) ;, X#p. Thus p is an exposed point, but it is not strongly

Sk

exposed, To see thislet hel with h(p) > h(y), ve U(EZ) , VD

2
and h(e )~h(p). But we have ”en -pll > %— for n=2,3,... and
therefore ”en - p] does not converge to zero.

The following refinement of the Krein-Milman Theorem involves

strongly exposed points instead of extreme points.

Theorem 6.6 Every weakly compact convex set in a separable

Banach space is the closed convex hull of its strongly exposed points.

Proof: (see [26]).
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A generalization of Theorem 3.20 is the following: every closed
bounded convex set K with nonempty interior of an infinite dimensional
reflexive Banach space X, extK is uncountable ([28]). 1t is also
shown in the same paper that if X 1is separable there is a symmetric
convex subset with nonempty interior which has countable many strongly
exposed points. However, it is an open question whether there are

countably many exposed points.

Definition 6,7 Let K be a convex subset of a normed linear

space E. An exposed ray of K is a closed half-line L contained in

K such that L = KM\ H for some supporting hyperplane H of K.,

(The union of all exposed rays of K will be denoted by rexpK.)

Theorem 6.8 Suppose K is a locally compact closed convex

subset of a normed linear space and K contains no line. Then

extK (C clexpK and K = clcon(expK{J rexpK).
Proof: (see [22]).

To see the above theorem more clearly, consider the following

example in the plane.

Example 6.3 Recall that the only extreme point of the cone

y > [x[ in the plane is the origin (see Figure 2.3a). It is clear that
the origin is also an exposed point, We note also that every nonextreme
point of the cone is a convex combination of two boundary points. Thus

the cone C is the convex hull of expC.lJ rexpC.

We next want to consider smooth points which are in a sense dual

to the notion of an exposed point.
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Definition 6.9 Let K be a convex subset of a normed linear

space. An element x in K 1is called a smooth point of K is there

exists a unique hyperplane which supports ‘'K at x. (The set of

smooth points of K will be denoted smK. )

It is clear that every point on the boundary of the unit disk in the
plane is a smooth point (see Figure 2,2a). The smooth poi‘nts of a
convex polygonal region in the plane are all the points on the boundary
which are not vertices. (see Figure 2.1) Recall that the extreme
points of such a set were the vertices. Therefore we see that an
extreme point may or may not be a smooth point and vice-versa. A
problem posed by Klee [22] is the following: if K is a bounded closed
convex subset of a reflexive Banach space with intK # @, must K
have an exposed point or a smooth point? Theorem 6.4 answers the
question for an ‘exposed point. There is however the next result

concerning the smooth points of U(X).

Theorem 6.10 Let X be a separable Banach space. Then the

smooth points of U(X) form a dense GB subset of the boundary of

U(X).
Proof: (see [34]).

The dual notion of strongly exposed is strongly smooth. We will

use this notion only for U(X) so we define it only in this case.

Definition 6.11 Let E be a normed linear space. xe¢ U(E)

with "~ Hx” = 1 1is a strongly smooth point of U(E) if (i) there exists

only one feE™ satisfying f(x) = [[f] = 1 and (ii) f_(x) >1 and
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{t}-.; C UE") imply that [ -f[f > 0.

Note that by duality and Example 6.2 there are separable
reflexive Banach spaces whose unit balls have smooth boundary points
which are not strongly smooeth. In fact in the next examiale- due;i;to [26]
we shall see that there is a separable Banach space whose unit ball has

no strongly smooth beundary points.

Example 6.4 Let x = {xn} el;, with ||| = 1 (restrict 2. to

1

real sequences). Suppose x is a strongly smooth point of U(ll) . Let

e

b

f be the unique element of £ such that f(x) = ||[f|| = 1. For

1
yel,, fly) = Bty where t={t}ecf, =4_. Define i_ by
Xl X
{(—=,. .., —=,0,0,...}
) x| .
(Note xiaé 0,i=12,... since f is unique.) Clearly
k
f )~ x| =1 and f UML), n=1,2,... . But
*1 *n
”fn— f” = ma'x{l_'_;—l -t]_,’"" ,_l-;{—l _tnlv igg’tk’}
1 n
x
which does not converge to 0 unless tn= , % and tn—>0. Since
x
n

this is impossible x is not a strongly smooth point of U(Il) .

We shall now give a positive result concerning strongly smooth

points.

Theorem 6. 12 The boundary of the unit ball of a separable

reflexive Banach space contains a dense subset of strongly smooth

points.
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Proof: (see [26]).

The last notion te be considered in this chapter is that of a

support peint,

. Definitien 6.13 ILet K be a convex subset of a normed linear -

space E. xeK is a support point of K if there exists a'hyperplane

which supports K at x, that is, there is an’ fe E (f # 0) such that

f(x) = supf(K),

. It is easy to see that every boundary point of a compact convex
subset K of the plane is a support point of K. It follows from
Definitions 6., 1 and 6,9 that exposed points and smooth points are
support points. The next result shows that in the case of the unit ball

of a normed linear space, every boundary point is a support peint,

Theorem 6.14 Let E be a normed linear space. Then every

xe¢E with |x| = 1 is a support point of U(E).

g

Proof: Let xe¢U(E), [x| = 1. Since U(E™) is w*-compact, every
2e E** attains its supremum for some fe U(E*), Hence the hyper-
plane associated with f supports U(E) at x. Thus x is a support

point of U(E). Q.E.D.

In general not every boundary point of a closed convex subset of
a Banach space is a support point, but we do have the following result

concerning the support points.

Theorem 6. 15 Let K be a closed convex subset of a Banach

space. Then the support points of K are dense in the boundary of K.
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Proof: (see[4 .

Corollary 6,16 If K is a closed convex subset of a Banach

space, then K 1is the intersection of all closed half-spaces which

support it.
Proof: (see[4]).

As mentioned previously this chapter is a potpourri of results,
examples and problems concerning other distinguished points in Banach
spaces. The purpose of the chapter is to give the reader some ideas
concerning the geometry of linear spaces., There are some notions
which are not mentioned such as: strongly extreme points [29] and
algebraically exposed points [22] because they are much less important
than the others.

- As is the case of extreme points, these other notions have useful
applications in various areas. Information concerning exposed points
can be applied to invariant means on locally compact groups and

discrete semigroups (see [15]).



CHAPTER VII
SUMMARY AND CONCLUSIONS

This dissertation was written so that it is within the mathematical
background of a second year graduate student. It could be used as
reference material for a seminar on extreme points and their role in
functional analysis. However the main purpose of the paper is to
collect and présent research in the literature in a readable and compact
form. The main theme of the paper is to characterize the extreme
points of the unit balls of five well known classes of Banach spaces.
The reader should gain an appreciation of the importance of extreme
points in the study of convex sets in functional analysis.

Chapter I is an introduction which explains the purpose of the
paper and the background needed te read it, Chapter II gives the
definition of an extreme point and some basic lemmas which are used
later in the dissertation., The notation to be used later is also
explained, Chapter III presents three important theorems concerning
extreme points. They are given in chronological order so that the
histerical development of the subject, to-a.certain degree, can be
followed. As a motivational device, some applications of extreme
points are also given., The heart of the paper is in Chapter IV. The
extreme points of the unit balls of the five chosen Banach spaces are
characte-rized. In some cases this proved to be a lengthy proposition.

It is the desire of the author that the material is presented in an
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understandable form. Conditions under which the unit ball is the closed
convex hull of its extreme points are also given. The concern. of
Chapter V is with the extreme points of the unit ball of the duals of the
spaces mentioned in Chapter IV.

Chapter VI gives some extended notions of extreme points. This
should give the interested reader who wishes to do further study on
these subjects a direction to proceed. The compilation of results in

these areas into a comprehensive work could possibly be a worthwhile

paper.
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