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CHAPTER I 

INTRODUCTION 

The large volume of research dealing with extreme p0ints makes 

it apparent that this area is an important segment of functional analysis. 

Much of this work is scattered in the literature and has not been set 

forth in. a unified way. It is our intent to present an exposition of 

certain major portions of this area in this paper. We will begin at a 

basic level and arrive at some of the more interesting results in the 

literature. The paper is not intended to be comprehensive since such 

an undertaking would require several volumes, 

Extreme points have been studied since the early part of this 

century. At that time the main concern was with the finite dimensional 

case. In recent years mathematicians have dealt with extreme points 

in infinite dimensional spaces. These studies have led to useful 

theorems concerning the isometric and isomorphic [see Definitions 

· 3. 14 and 3. 15] properties of Banach spaces. The study of such 

properties is one of the most active areas in functional analysis. 

We hope to present the material in such a manner so that a 

second year graduate student in mathematics would have little difficulty 

in understanding the paper. The prerequisite for reading this work is 

a basic first year course in functional analysis and measure theory 

(see [ 40] and [ 44] for example). For the reader's convenience we 

list a few of the main results in functional and real analysis that are 



2 

used frequently and give references: the Hahn -Banach theorem [ [ 44] 

p. 65]; if E is a normed space then the unit ball of E* is w*-eompact 

[ [ 44] p. 239]; if X is a Banach space then in X*, w*-bounded 

. implies. norm bounded [ [ 44] p. 245]; in X,. w-bounded implies normed 

bounded [ [44] p. 223]; the Baire category theorem [ [40] p. 139] ;. and 

the Tietze extension theorem [ [40] p. 148]. 

Chapter II will present the basic material needed in the rest of 

the paper. · S0me simple examples of extreme points in the plane will 

be included along with some basic lemmas that will be needed later. 

Chapter III will be devoted to three basic theorems concerning 

extreme points. These theorems will be presented in chronological 

order so that we may see to a certain extent how the ideas have 

developed from the first part of the century to the present time. Also 

included in Chapter III are some applications of extreme points .. These 

should help to explain the interest in extreme points in recent years . 

. A major portion of the paper will be assigned to Chapters IV and 

V. The characterizations of the extreme points of the unit balls of 

five well-known Banach spaces will be covered in Chapter IV. In 

Chapter V we endeavor to do the same for the unit balls of the duals of 

these five spaces. Also at the end of each section in Chapter· IV we 

present the results concerning the question of whether the unit ball is 

the dosed convex hull of its extreme points. As previously mentioned, 

this information is scattered throughout the literature and. it ls our 

hope to gather these results together and present them in a readable 

form. 

Chapter VI will be devot~d to other distinguished points which 

are related to extreme points. These ideas give the interested reader 



an opportunity to investigate some extensions of theorems in Chapters 

II, III, IV, and V. 
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CHAPTER II 

BASIC CONCEPTS OF EXTREME POINTS 

Definitions, Basic Lemmas, and Notation 

We begin with the basic definitions and notation to be used 

throughout the paper. 

X will denote a Banach space with the norm being designated by 

II· II . (Remark: we will agree that X is not the trivial space 

consisting''"Gl:.( only the zero element. ) The dual of a Banach space X 

will be denoted by X*; i.e. , X* is the space of continuous· linear 

functionals f defined on X with 11 f II = sup { I f(x) I : x e X, II x II·~ 1} . 

The unit ball of a space X is U(X) =. {xe X: llxll ~ l}, For any 

subset K of a vector space V, the set of extreme points of K will 

be denoted by ext K . 

Definition Z .. 1 A subset K 0f a vector space V is said to be 

convex if whenever x, ye K, then ax + ( 1 ,.. a )ye K, 0. ~ a . < 1 . 

Definition 2. 2 Let K be a convex set and x e K. x is said to 

be an extreme Eoint of K if whenever y, z e K with x = ay + (1 - a)z, 

0 < a < l , then x = y = z . 

Intuitively speaking this definitfon says that x e ext K if and only 

if x does not belong to the interior of a line segment contained in K. 

We note that in the special case of a = ~ , . Definition 2. 2 could be 
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interpreted as x e ext K if and only if x is not the midpoint of two 

distinct elements in K. 

We will find the following lemmas helpful in discussing some of 

the examples. We will therefore establish them first and present the 

examples later. 

If x is not an extreme point of a convex set, it is sometimes to 

our advantage to be able to write x as the midpoint of two distinct 

points of the convex set. Therefore the following lemma will be help-

ful in proving later results. 

Lemma 2, 3 Let K be a convex subset of a vector space and 

xeK. xi extK if and only if there exist v, we K with 

and x :f. v. 

Proof: If x is not an extreme point of K, Definition 2. 2 · implies 

there exist y, z e K with x = ay + (1 - a)z, where 0 < a < 1, 

x :f. y , and x :f. z . If 
1 

a = 2 there is nothing to prove .. For 

1 
0 < a < 2 let v = x - a (y - z) and w = x + a (y - z). Then 

l 
x = ( 2 )( v + w) , v = a y + ( l - a ) z - a y + a z :::: z and 

w = ay + (1 ~ a)z + ay ~ az = 2ay + (1 - 2a)z. Thus w is an element 

of the line segment joining y and z, since 
1 

0 < a < 2 .. Since y :f. z 

it follows· that v -f x. For 
1 2 < a < l apply the above argument to 

1 - a instead of a . 

The implication in the other direction follows trivially from 

Definition 2. 2. Q .. E. D. 

Our main concern is with the set of extreme points of U(X). 

With the help of Lemma 2. 3 we prove the following proposition for the 

convex set U(X). 
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Remark: when we say llx ± Yll < 1 (or llx ± y/I = 1), we mean 

both II x + y II ~ 1 (II x + y II = 1) and II x - y II < 1 (II x - y II = 1). 

Proposition 2. 4 x e ext U(X) if and only if whenever ye X and 

II x ± y II < 1 then y = 0 . 

Proof: Assume x e ext U(X), ye X, and !Ix ± y I/ < l. Then 

x +ye U(X), x - y U(X) and x = (})[(x+y) + (x-y)]. Thus by 

Definition 2. 2. x + y = x - y which implies that y = 0. 

Suppose x e U(X) and x i ext U(X). Them by Lemma 2. :3 there 

are elements y and z of the unit ball with x = ( ~· )(y + z) and x f. y. 

Then 

and 

Hence 

x - (})(y-z) = x - (~)y+x - (~)y 

= 2x - y 

= z 

= 2x - z 

= y. 

l 
llx ± ( zHY - z) II ~ i and y - z f. 0. This is cc:mtrary to the 

hyp0the sis and it follows that x e ext U(X) . Q. E. D. 

The next lemma gives a necessary condition for an element x 

to be an extreme point of U(X). This lemma will be used in later 

proofs with greater frequency. 

Lemma 2. 5 If x e ext Uf-X) · then II x II = 1 . 
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'Proof: Clearly x = 0 is not an extreme point of U(X). (Recall that 

0 < llxll < l. Let y= 
11

:
11 

and we assume X /: {O} ). Suppose 

z = 2x-y. Then llYll = 1 and ll z II < I . The last inequality follows 

from the fact that 

o < 211 x !I < 2 ~ - i < 2 11 x 11 - i < i => 11 x 11 I 2 - II: II I < i ~ 11 z 11 

= I/ 2x - 11: II II 

=!lxlljz- 11:11 l<l. 

l 
Hence y,zeU(X), x = (z){y+z) and x /: y. Therefore by Lemma 

2.3 x¢extU(X). Q..E.D. 

Examples in the Plane 

We now give some examples of extreme points of convex subsets 

of the plane. 

Example 2. l Let A be the line segment in the plane between 

the two distinct points P and Q. Then ex:tA = {P,Q}. Notice that 

any other point of the line segment can be written as the rilidp0int of 

two distinct points o.f the segment. 

Example 2. 2 Let A be 1a convex polygonal region in the plane. 

Then the set ext A is the set of vertices of the polygon. Two 

examples are given in Figure 2. 1. 
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a b 

Figure 2. 1. Convex Pqlygonal Regions 

Example 2. 3 Let A = { (x, y) : x 2 + y2 :.5_, l} . Then 

extA = {(x,y)eA: x 2 + y 2 :: l}. (That the former set is contained in 

the latter is a consequence of Lemma 2. 5. See Lemma 2. 6 for a 

proof of the other containment.) Note that intuitively no extreme point 

can be positioned on a line segment c:::ontained in A. It is also easily 

seen that the unit ball in the plane has uncountably many extreme 

points. See Figure 2. 2a. 

Exam:ele 2. 4 Let the norm in the plane be defined by 

If A = { (x, y) : II (x, y) II ~ l} then the set of 

extreme points of A is precisely the set {(O, 1). (1, 0), (-1, 0), (0, -1)} 

(See Example 2. Z). Thus the norm of the space determines the 

"rotundity" of the unit ball. Note also that the two norms in Examples 

2. 3 and 2. 4 are equivalent but have very different sets of extreme 
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points. See Figure 2. 2b. 

( 1, 0) 

a b 

Figure 2. 2. Equivalent Unit Balls 

Notice that the set A in the above examples is a convex compact 

subset of the plane and that A always has extreme points, A much 

stronger result will be proved in Chapter III. Let us now consider 

convex subsets of the plane which are not compact. Recall that a set 

in the plane is compact if and only if it is closed and bounded. 

Example 2. 5 is a set which is not closed and Examples 2. 6 and 2. 7 

are unbounded sets. We will see that in these examples, there may or 

may not be extreme points in the set. 

Example 2. 5 Let 
2 2 

A = {(x, y): x + y < l}. Then A has no 

extreme:cpoints since every point of A is on the interior of some line 
( 
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segment which is contained in A. (See the proof of Lemma 2. 6.) 

Example 2. 6 Let A = { (x, y) : y ~ Ix!} . The origin is the 

only extreme point of A since it is clear that every other point of the 

cone A is the midpoint of two distinct points of the set. See Figure 

2. 3a. 

Example 2. 7 Let A = {(x, y): -1 ~ y :5._ l}. For this example 

· the set ext A is empty. See Figure 2. 3b, 

a b 

Figure 2, 3. Unbour;i.ded Regions 

The characterization of the extreme points of the unit disk in the 

complex plane is exactly the same as that of Example 2. 3. Since the 

functions in our Banach spaces are complex-valued, the following 

lemma will be useful in the proofs of later results. 

.... , .. 



Lemma. 2. 6 A complex number X. is an extreme point of the 

closed unit disk in the complex plane if and only if Ix. I = 1 . 

Proof: The condition that Ix. I = 1 is necessary by Lemma, 2. 5, 

Suppose X.. = a.+ bi is of modulus 1 and a = c + di is any 

complex number with IX. :i: al.< 1 . Then 

.2 2 2 2 
a ± 2ac + c + b ± 2bd. t d < 1 . 

11 

Since a2 + 1} = 1 we have ±2(ac + bd) + c 2 + dz < 0. This inequality 

is valid only if G = d = 0 since either 2(ac + bd) > 0 or 

·2(ac + bd) > 0, Thus a = 0 and by Proposition· 2, 4 X. is an extreme 

point. Therefore Ix. I = 1 is a suffic;ient condition. Q, E. D. 

We will usually be c0nsidering Banach spaces X over the· complex 

number field. The following lemma gives us the fact that in such a 

space, if there is one element 'in ext U(X) then there are uncountably 

many extreme points of the unit ball. 

Lemma 2. 7 Let X. be a complex number with Ix. I = 1 and X 

a Banach space over the complex number field. Then 

x e ext U(X) => X.x e ext U(X). 

Pr0of: Let x E ext U(X) and y E X with II X.x ± y II :5_ 1 . Then 

II x + t y II ~ 1 . But since x e ext U(X), t y = 0 so y = 0, Thus 

X.x E ext U(X) .. Q. E. D. 

Although the concept of "extreme point" is a fairly simple one, 

it will be seen in Chapters IV and V that the characterization of 

ext U(X) and ext U(X*) is sometimes a difficult task. In proving the 



results in the next chapter some fairly deep mathematical tools are 

sometimes needed. 
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CHAPTER III 

THEOREMS ON EXTREME POINTS 

AND APPLICATIONS 

Three Major· Theorems 

: A few ideas and facts· related to. convexity and extreme points had 

been considered earlier, although it was mainly due to the pioneering 

work of Minkowski that the notions of convexity and extreme points 

bec;ame well known subjects of research. The concept of "extreme 

point" constitutes an important part of his book published in 1911 (see 

[30]). We will need the following definitions. 

Definition 3. 1 Let H be a subset of a vector space. Then the 

convex hull, denoted con H, is the intersection of all convex sets that .·-
contain H. The closed convex hull of H, denoted clean H, is the 

intersection of all closed convex sets that contain H. 

Definition 3. 2 .A hyperplane iri a vector space V is a set of the 

form {x EV: f(x) = t} for some linear functional f (not identically 

zero) defined on V and some scalar t, 

For a finite dimensional linear space E, the linear functionals 

f are of the form f(x) = (x, y) for some ye E where (x, y) is 

the scalar product of x and y, Therefore a hyperplane in E is of 

the form {x e E: (x, y) = t} for some y f. 0 and some scalar t. 
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Definition 3. 3 A hyperplane H = { x e V: f{x) = t} is said to 

support a convex subset A of a vector space V if there exists an 

x 0 e A such that f(x 0 ) = t and either Ref (x0 ) ~Ref (x) for all x e A 

or Ref (x0 ) ::::_Ref (x) for all x e A, (Here Re X. is the real part of 

the co;mplex number X..) 

Definition 3, 4 Let H be a supporting hyperplane of a convex 

subset A of a vector space V. The set F = H n A is called a face 

of A. (This is not the usual definition of face, but is convenient for 

our purpose. ) 

The next theorem is a classical result which appeared in 

Minkowski' s book. It is a forerunner of the Krein-Milman type 

theorems which were to appear later. 

Theorem 3. 5 (Minkowski) Let K be a nonempty compact 

convex subset of an n-dimensional linear space E. Then K = conext K. 

Proof: [ [ 16], p. 18] We may assume without loss of generality that 

the dimension of K in n. Since ext K C K and K is convex, it 

follows that con ext K C con K = K. 

To prove that K C con ext K, we use induction on the dimension 

of K. If the dimension of K is 0 or 1 then it is clear that 

K C con ext K. Let the dimension of K be greater than 1 and x e K. 

If xi. extK then there is a line L such that x is an element of the 

relative interior of K n L, Since K is compact and convex, L 

intersects the boundary of K in exactly two points y and z. Thus 

there exist faces F and F of K such that ye F and z e F . 
y z y z 

The dimension of F and F is less than n and therefore by the 
y z 
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induction hypo the sis F = con ext F and y y F = conextF . z z To 

complete the proof we must show that ext F C ext K. Let we F 
Y- y 

and suppose w i ext K. Then there are elements u and v of K such 

that -q..:f w and w =au+ (1 -a)v for some 0 <a< 1. Let f be 

the linear functional which defines the face F with 
y 

sup {Ref (t) : t e K} = M. Since we F y it follows that f(\) z M. 

M = f(w) = af(u) + (1 - a)f(v) ~ M which implies f(u) = f(v\ = M. 
\ 

Thus 

Hence u~ v e F and w i ext F . Note that for any two sets A and B, 
y y 

con AU c;onB C con (AU B). We then have that 

xe con{y,z} C con(F U F) C con{cone:x;tF U conextF} 
y z - y z 

C con{extF UextF} C conextK. 
- y z ~ 

Hence K C con ext K. Q. E. D. 

The conclusion of this theorem is that every element of a compact 

convex subset K of E can be written as a convex combination of 

extreme points of K. The following theorem is a sharper form of 

Minkowski 1 s theorem. 

Theorem 3. 6 (Carath~odory) Let K be a nonempty compact 

convex subset of an n-dimensional linear space E. Then every x e K 

can be written as a convex combination of n+ l (o:r fewer) extreme 

points of K. 

Proof: Assume without loss of generality that the dimension of K is 

n and as in the proof of Theorem 3. 5 we will use induction on the 

dimension of, K. The theorem is trivial if the dimension of K is 

zero, Let the dimension of K be n > 0 and x e K, If x is a 
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boundary point of K then there exists a supporting hyperplane H such 

that x is an element of the face F = H (] K. The dimension of F is 

at most n - I and therefore by the induction hypothesis, x can be 

written as a convex combination of n extreme points of F. It was 

shown in the proof of Theorem 3. 5 that ext F C ext K. Thus x is a 

convex combination of n extreme points of K. 

If x is an interior point of K, choose ye ext K. The line 

through x and y intersects the boundary of K at some point z. x 

is a convex combination of y and z and by the first part of the proof, 

z is a convex combination of n extreme points of K, Thus x is a 

convex combination of n + I extreme points of K. Q. E. D. 

For n = 2 we can use Example 2. 2, Figure 2. I(b) of Chapter 

II as an illustration of this theorem.· Recall that the extreme points of 

a triangular region are the three vertices. Thus any non-extreme 

point on the boundary is a convex combination of the two extreme points 

on that side of the triangle. For an interior point we must use all 

three vertices to represent the point as a convex combination of the 

extreme points. 

Probably the most famous theorem concerning extreme points is 

the Krein-Milman Theorem. There has been a ccm.siderable amount of 

research done attempting to generalize and extend the results of this 

theorem and for good reason. Its applications in analysis are numerous 

and important. It fii'st appeared in I 940 and· the pro0f may be found: in 

several standard texts (see [I I] and [ 40]), 

Theorem 3. 7 (Krein~Milman) Let K be a nonempty compact 

convex subset of a locally convex topological vector spac;e E. Then 
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K=clconextK. 

Proof: [ [40], p. 207] Let l:f = {H: H is a supporting hyperplane of K} 

and u = {F:F=B(JK 1 Hel:!}. u isthesetoffacesof K (see 

Definiti0n· 3. 4). Let Q be the set of all nonempty fim.ite intersections 

of elements of O. Let Ge Q and partially order Q by inclusion. 

Then by the Huasdorff maximal principle there is a maximal linearly 

ordered family g in Q with Ge g. Since K is compact 

s = n { S' : S' E 3} is nonempty. Furthermore s is minimal in the 

sense that if S properly contains an element of Q then the family g 

would not be maximal. Thus any Ge Q contains a minimal nonempty 

element Q. We claim that Q can contain only one point. For if Q 

contains distinct points x 0 and y 0 then since E is locally convex 

there is a continuous linear functional f with Ref (x0 ) > Ref (y 0 ). 

Thus H = {x: Ref (x) = sup {Ref (x): x e Q}} is a supporting hyperplane 

of Q (hence of K) that does not contain y 0 . Therefore Q properly 

contains H (] Q f.: 0 which contradicts Q being minimal. Since Q 

contains only one point, it must be extreme. Hence every Ge Q 

con~ains an extreme point. 

If f e E* then Ref assumes its maximum on· K since K is 

compact. Thus H = {x: Ref (x) = sup {Ref (y): ye K}} is an element 

of J:I and H (] K = Fe Q. Since F contains an extreme point, we 

can conclude that the maximum of a continuous linear functional defined 

on K is equal to its maximum on the extreme points of K. If 

xi cl con ext K then there is a continuous linear functional g such that 

sup{Reg(y): yeK} ~ sup{Reg(y): yeclconextK} < g(x). Thus xiK 

and we have K C cl con ext K. Clearly cl con ext K C K. Hence 

K=clconextK. Q.E.D. 
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We note that the converse of this theorem is not true since there 

are examples of non-compact convex sets which are the closed convex 

hulls of their extreme points. For example the unit ball of 1 1 , the 

space of sequences of complex numbers which are absolutely summable, 

is the closed convex hl.;l.ll of its extreme points (see Theorem 4. 5). 

The unit ball of J. 1 is convex but not compact since J. 1 is infinite 

dimensional. 

The Krein-Milman Theorem in its original form stated that every 

nonempty convex bounded weak*-closed subset of a conjugate Banach 

space is the weak*-closed convex hull of its extreme points. In general 

weak*-closed cannot be replaced by n~nm-closed, For example the 

unit ball of c 0 (see p. 30) is a norm-closed bounded and convex sub­

* set of J.m = J. 1 and has no extreme points (see Theorem 4. 1). An 

interesting result that is closely related to the Krein-Milman Theorem 

is the following. 

Theorem 3. 8 In a Banach space X, the following two state -

ments are equivalent: 

(i) Every closed bounded convex subset K of X has an 

extreme point. 

(ii) Every closed bounded convex subset K of X is the 

closed convex hull of its extreme points. 

Proof: [25] Clearly (ii) :::::;> (i). Assume that (i) holds and suppose 

there is a y in K,.,., clconextK. Then thereis an feX* such that 

sup{Ref(x): xe clconextK} < Ref(y). Let H = {xeX: Ref(x) = Ref(y)}. 

H r1 K is disjoint from .cl con ext K. and is a nonempty bounded closed 

and convex set. Therefore by hypothesis, it has an extreme point. Now 
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r/J :f ext (H n K) C ext K (as in the proof of Theorem 3. 5) . But this 

contradicts H (J K being disjoint from cl con extK. Hence 

K = cl con ext K. Q. ,E, D. 

For any Banach space X, the unit ball of X* with the weak* 

topology is compact and hence by Krein-Milman Theorem it is the 

w* -closed convex hull of its extreme points. If the condition of 

separability is added to X* then we get the stronger result known as 

the Bes saga-Pelczyrlski Theorem. The original proof by Bes saga and 

Pelczyriski [ 3 L which appeared in 1966, is quite involved and uses 

some deep mathematical tools. We will present a proof due to Namioka 

[31] which uses only standard techniques in functional analysis. The 

proof has been distilled from his to coincide with the purposes of this 

paper. We proceed with four lemmas which lead to the result. (K, T) 

will denote a subset K of X* with the topology T .. All topological 

terms in these lemmas refer to the weak*-topology unless otherwise 

stated. 

Lemma 3. 9 Let K be a compact subset of X* and 

{ C. : i = 1, 2, ... } be a sequence of closed subsets of K such that 
1 

K = U {C.: i = 1,2, ... }. Then U {intC.: i = 1,2, ... } is dense in 
l 1 

K where int C. is the int~rior of C. in K. 
l 1 

Proof: [31] Assume K :f r/J since otherwise the assertion is trivial. 

Let V be a nonempty open subset of K. Since K is compact, V is 

of second category in itself (see [42), p. 8). We have 

V = U {V (J C. : i = 1, 2, ... } where V (J C. is closed in V, and 
l 1 

therefore for a.t least one i, V (J Ci has nonempty interior relative 
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to V and hence relative to K. Thus V (I [U {intC: i = 1, 2, ... }J-1 ~ 

and since V is arbitrary U {int C: i = 1, 2, ... } is dense in K. 

Q.E.D. 

Lemma 3. 10 Let K be a w*-compact subset of a separable 

conjugate space X* and Z be the set of all points of continuity of the 

identity map: (K, w'~) -+ (K, II· II) . Then Z is a dense subset of (K, w'~) . 

Proof: [ 31] For e: > 0 let A be the union of all open subsets of 
e: 

(K,w*) with norm-diameter <e:. Clearly A is open. Let 
e: 

s = {x: llxll < ~d and let {xi} be a norm-dense sequence in X* 

Then K = U {K (I (x. + S): i = 11 2, ... }. Since S is w*-closed, 
l 

x. + S is w*-closed for i = 1, 2, . . • • Since K is w':~ -closed, 
l 

K (I (x. + S) is also. Hence Lemma 3. 9 impl~es that ' 
l 

U {int [K (I (x. + S)]: i = 1, 2, ... } is dense in (K, w*) and this union 
l 

is contained in A since each x. + S has diameter < e: . Thus A 
e: l e: 

1s a dense open subset of (K, w*). We claim that 

Z = (l{A1;n_:n= 1,2,. .. } .. If xeZ then {y:llx-y!I < 2~} isa 

w*-neighborhood of x for every n = l, 2,... and has norm diameter 

~ ~. Hence x e Al/n for every n = 1, 2,... Let 

xe(i{Al/n:n=l,2, ... } and let B(x,e:) = {y:llx-yll <e:}. Choose 

1 
no large enough so that -. < e:. 

no 
w'~ -neighborhood N of x of diameter 

Since x e Al/ -- there is a 
no 

1 ' 
< -- Since x e N 
- 2n0 

and the 

diameter of N is , N C B(x, e:). Thus x e Z. Since K 

is of second category in itself, the intersection of a countable family 

of dense open sets is dense. Therefore Z is a dense subset of 

(K, w*). Q. E. D. 
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Lemma 3. 11 Let K be a w*-co:mpact convex subset of a 

separable conjugate space X*. Then Z, n ext K is a dense subset of 

(extK, w*). (Z is defined in Lemma 3, 10) 

Proof: (31] Assume K contains more than one point since otherwise 

the assertion is trivial. Given e: > 0, let B 
e: 

be the subset of ext K 

such that u e B if and only if there is a neighborhood of u , in (K, w*) , e: 

of diameter < e:. · Clead:y B is an open subset of (ext K, w*). We 
e: 

now show B is dense in (ext K, w*) . 
E: 

Let W be a w*-open subset of X* such that W (] extK :/: r/J. 

We need to show B n W :/: r/J. Let D be the w*-closure of extK. 
e: 

Then D is w*-compact and W n D -/: r/J. By Lemma 3. 10 the set of 

points of continuity of the identity map: (D, w*) -+ (D, II· II) is dense in 

(D, w*). Thus there is a w*-open subset V of X* such that 

r/J :/: V (1 D C W n D and the diameter of V n D < ~ e:. Let K be 
1 

the w*-closed convex hull of the w>:<-compact set D ,..., V, and K 2 be 

the w*-closed convex hull of D n V. K 1 and K 2 are w*-closed 

subsets of K and therefore are w*-compact. Note that 

ext K ~ K 1 U K2 , Thus by the Krein -Milman Theorem, 

K =con (K 1 U k 2 ). Note that K 1 :/: K since extK 1 ~ D,..., V and 

nnv :f: r/J. Let re (0, l] and le~ C be the image of the map 
r 

f 
r 

fr: K 1 x K 2 X [r, l]-+ K defined by fr(x 1, x 2 , A) = AXl + (1 - A)x2 . 

is cc:mtinuous for the w*-topology on · K, so C is w*-compact. 
r 

In 

addition, Cr -/: K since ext Kn Cr ~ K 1 (if q e C then 
r 

q = AXl + (l -A)x2 and if qe extK then A= 1) and K 1 -/: K. Let 

ye K,..., Cr. Then y is of the form y = AXl + (1 - A)x2 , xi e Ki, 

A e [O, r). Hence I/ y -x2 II = A r!x 1 - x 2 ti :=:.,rd where d =diameter K. 



Since K is w*-compact, K is w*-bounded which implies by the 

uniform boundedness principle that K is norm bounded. It follows 

that d < oo. For y 1, y2 e K,...., Cr and x 2 e K 2 we have 

llY1 -Y2ll ~ llY1 ~ x 2 11 + llx2 - Yzll < 2rd. Thus diameter 

(K...., C ) < 2rd. Let C ;:: C with r = ...E_ then diameter r - r · 2d 

(K ,...., C) ~ E . Since C f: K, the re is an element u such that 

u E (K...., C) n extK and K,...., c is a neighborhood of u in (K, w*) 

of diameter < E. Hence u e BE. Since D ...., V i;; K 1 ( C we have 
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uennvcw. Therefore ue B (1 W 
e 

and consequently Bf1W:/:0. 
e 

Thus B is dense in (ext K, w*). 

Finally we see tha~ Zn extK = n {Bl/n: n = 1, 2, ... } and 

since ext K is of second category in itself (see [ 10]) it follows that 

Z (1 ext K is a dense subset of (ext K, w*) . Q. E, D. 

Lemma 3. 12 Let K be a norm-closed, bounded, and convex 

subset of a separa:ble conjugate space X* and let K 1 be the 

W'f.-Glosure of K. Then ·Kn ext K 1 is a w•:<-dense subset of ext K 1 . 

Proof: (31] SinGe K is bounded, K 1 is bounded and hence 

w*-compact. Let Z be the set of all points of continuity of the identity 

map: (Kl' w*) - (K 1, II· II) and let z e Z. Since K is w>:<-dense in 

K 1 , there is a net {xa) in K converging to z J;"elative to the 

Since Z E Z 1 x - z 
Q:' 

in the norm topology and. therefore 

z e K. Hence Z ( K and Z (1 extK 1 i;; Kn extK 1 . By Lemma 

3. 11 Zn extK1 is w*-dense in extK 1 ,. and hence K (1 extK1 is 

w* ~dense in ext K 1 . Note that since K ~ K 1 ,. K (1 ext K 1 s; ext K. 

Q. E. D. 



We are now ready to state the Bessaga-Pelczyrlski Theorem 

which will follow easily f:r0m the above lemmas. 

Thec;>rem 3. 13 Let X be a Banach space such that X* is 
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. separable. Then each norm-closed, bounded, convex subset K of X* 

is the norm-closed convex hull of its extreme points. 

Proof: [31] Assume KI 0. Then according to Theorem 3. 8 it is 

sufficient to prove that ext K I 0. Let K 1 be the w*-closure of K. 

Then . K 1 is w*-compact and therefore by the Krein-Milman Theorem, 

extK 1 :f 0. Hence it follows from Lemma 3. 12 that 

0 :f Kn ext Kl c ext K. Q. E. D. 

Applications 

· In this section we discuss some applications of extreme points 

. in Banach spaces. Some of the material in Chapter IV will be used in 

this section but it seems appropriate to present the applications first 

to motivate the study of Chapter IV. The following are standard 

definitions to be found, in almost every functional analysis text book. 

Definition 3. 14 · An isomorphism between two normed, Hnear 

spaces Y and W is a.linear homeomorphism of Y onto W. 

Definition. 3. 15 An ·is0metric isomorphism between two normed 

linear spaces Y and W is an isom0rphism T : Y - W with 

II T(y) II ::: II y II , ye Y .. Two such spaces are said to be isometrically 

isomorphic. 

An important problem is classUying Banach spaces as to 

isomorphic a,,nd is0metric 11 types 11 ; If two spaces are of the same 



"type" then the spaces will have many properties in common. 

Chapter V we will use the fact that * L 
p = L q 

for 1 < p < Q'.) 

1 1 
-+-=l. p q 

Note that if spaces Y and W are isometrically 
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In 

and 

isomorphic then the usual notation is Y = W. Rer:all that for any 

Banach space X, the mapping Q : X ~ X** defined by Q(x) = ~ is 

an isometric isomorphism of X onto its range. ~ is the linear 

functional defined on X* by 
I\ x(f) "' f(x) fo;r f E X:O'c. If the mapping 

Q is onto X** then X is said to be reflexive. 

We may apply Theorem 3. 13 to determine whether or not a 

Banach space is isometrically embeddable in any separable conjugate 

space. Thus we have the foll6wing corollary. 

Corollary 3. 16 The space L 1 [O, l] is not isometrically 

isomorphic to any subspace of a separable conjugate Banach space. 

Proof: This follows from the fact that U(L 1 [O, l]) has no extreme 

points (see Corollary 4. 7), Q. E. D. 

The notion of extreme point also arises in the study of integral 

representation theory. Phelps 1 book [34] is suggested to the· reader 

for study in this area. The following definition is needed for the next 

theorem. 

Definition 3. 17 Let K be a compact convex subset of a locally 

convex space · E. The Glass of l3aire sets of K is defined to be the 

o--algebra of subsets of K generated by the sets {x e K: f(x) :::_a} 

where f is a real-valued continuou,s function on K. 

We say that µ represents x if f(x) = 1 fd µ for every 
K 

f e E*. Since the proof of Theorem 3. 18 is given in [34, p. 30] in a 
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clear readable style and is quite long, we omit it here. 

Theorem 3. 18 (Choquet-Bishop-de Leeuw) Let K be a compact 

convex subset of a locally convex space E and denote by g the 

o--algebra of subsets of K which is generated by extK and the Baire 

sets. Then for each point x EK there exists a nonnegative probability 

measure µ on . g such that µ represents x and µ(ext K) = 1 . 

Let S be a compact Hausdorff space. C(S) will denote the 

Banach space of continuous complex-valued functions on S with sup-

norm (see [ll] for properties). Suppose f, f, n = 1,2, ... 
n 

are 

functions in C(S). A well known theorem states that {f } converges 
n 

weakly to f if and only if the sequence {f } 
n 

is uniformly bounded 

and lim f (y) = f(y) for each ye S (see [11.J p. 265). Using 
n n 

Theorem 3. 18 we are a.ple to prove the following result of which the 

above mentioned theorem is a special case. It will be shown (see 

Theorem 5. 15) that the extreme points of U(C(S)*) are the linear 

functions <p where <p (f) = Af(y) for some scalar A., I>.. I = 1, and 

some y ES. 

Theorem 3. 19 (Rainwater) Let E be a normed linear space 

and suppose x, 

sequence {x } 
n 

x . ' n 
n=l.,2, ... are elements 0f E. 

converges weakly to x if and only if 

Then the 

{x } · is bounded 
n 

and lim f(x ) = f(x) for each f e ext U (E*) . 
n n 

Proof: f34, p. 33] Let Q denote the natural isometry of E into 

. E**' If {x } 
n 

converges weakly to x 1 then (Q x )(f) if bounded for 
n 

each f e E* and therefore the uniform boundedness theorem implies 

that {Q x } , hence { x } , is bounded in norm. 
n n 

That lim f (x ) = f(x) 
ri n 
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for each f e ext U(E*) follows from the definition of weak convergence. 

Suppose { Q x } is bounded and f(x ) = (Q x )(f) -+ (Qx)(f) = f(x) 
n n n 

for each f e ext U(E*). Let g be an arbitrary element of U{E*). 

We need to show that g(x ) -+ g(x) which is equivalent to showing " 
n 

(Q x )(g) -. (Qx)(g). In the w*-topology, U(E>i:) is compact (and 
n 

convex) so by Theorem 3. 18 there is a er-algebra g of subsets of 

U(E*) such.that extU(E>:<)eg andaprobabilitymeasure µon 8 

supported by the extreme points of U(E*) and such that F(g) = J Fdµ 

for each w':< -ccmtinuous linear functional F on U(E*) . In particular 

(Qx)(g) = /(Qx)dµ. Furthermore {Qx } 
n 

converges to Qx on U(E>:e) a. e. with respect to µ, so by the 

Lebesgue bounded.convergence theorem /(Qxr).dµ .- /(Qx)dµ. Hence 

(Q x )(g) -+ (Qx)(g). Q. E. D. 
n 

We shall see in Theorem 3. 21 that it is sometimes useful to 

kn0w the cardnality of ext U(E*), We first of all need the following 

the0rem which is of interest in its own right. 

Theorem 3, 20 If X is an infinite dimensional reflexive Banach 

space, then the set of extreme points of U(X) is uncountable. 

Proof: [28] Suppose that ext U (X) = { x } , n = 1 , 2 1 • • • 
n 

and for each 

n let F n = {f e X* : II f II ~ 1 and I f(x ) I = II f II}. To show that F 
n n 

is weakly closed for every n ~ · let { fi} be a net in F such that 
n 

{ f.} converges weakly to f. Since the norm. in X* is w* -lower 
l 

semicontinuous (see [44], p. 212) we have llfll < lim inf llfJ ~ 1. 

Weak convergence implies for x e X, 



Since 

lim ~ (£.) = 
i n l 

Q (f) => lim f. (x ) = 
n i l n 

= I f(x ) I . n 

£. E F 
l n we have li.m II fi II = I f(xn) I . 

l 

which implies I f(x ) I = II f II . Thus f E F . n n 
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Therefore 

Next we claim that U(X*) = U {F : n = 1, 2, ... }. Clearly the 
n 

latter is a subset of the former. Let f e U(X*). U(X) is weakly 

compact and therefore by the proof of the Krein-Milman Theorem f 

assumes its maximum on the extreme points of U(X). Thus 

11f11 < I and if(x )! = llflJ for, some n which gives us the other set 
n 

containment. 

By the Baire Category Theorem, at least one of the sets F 
n 

(say F 1) has nonempty weak interior relative to U(X*). Let f 0 be 

a relative weak interior point. Then there is a ball B centered at f0 

such that U(X>:~) () B ~ inf F 1 . Thus we may assume II f 0 II < I. 

Since Fl is a weak neighborhood of fo and x is reflexive, it 

follows that there exist points Y11Y21···'Yn in x such that f E Fl 

whenever 

(*) 11f11 < l and I (f - foHYi) I < I' i = 1,2, .•. ,n. 

Let 

Since X is infinite dimensional and N is of finite codimension, N 

contains a line through f0 which intersects the boundary of the unit 



28 

ball in a point g, /I g II = I. Thus g e N and ('!~) implies g e F 1 , so 

1 = llgll = jg(x 1)j = j£0 (x 1)1 = /lf0 11 which is a contradiction. Q.E.D. 

Recall that Lemma 2. 7 stq.te s if x e ext U(E*) then 

X.x E ext U(E*) where IX. I = 1. If, however, we define two extreme 

points x and y to be equivalent provided x = X.y for some IX. I = l, 

then it makes sense to ask whether U(X) can have countably many 

~quivalence classes of extreme points. The proof of Theorem 3. 20 

applies without change to show that if X is reflexive and infinite 

dimensional, then the answer is negative. 

Theo rem 3. 21 Suppose that E is a normed linear space and 

that ext U(E*) is countable. Then 

(i) E* is separable and 

(ii) E contains no infinite dimensional reflexive subspace. 

Proof: [28] (i) Since U(E*) is w'!<-compact and convex, Theorem 

3. 18 implies that for each f e U (E*) the re is a probability measure µ 

on ext U(E':<) such b~~ "-zJ(x) = [ g(x)d µ(g) for each x EE. 
~>- ext U(E'!~) 

Let µ = µ(f ) where {f } = ext U(E*). Then µ > 0, L: µ = 1 and n n n n- n 

f(x) = L: µ f (x) for each x e E, Let S be the set of all se,quence s 
n n 

with µ > 0 and L: µ = 1 . n- n Then S C J. 1 

in S, g = L: A. f defines a member of U(E*). Thus there is a map, 
n n 

from the norm-separable space S onto U(E*). Since 

/jf-gll = ~up{/f(x)-g(x)/: llxll ~I} < L: /µn - A.n/ 1 the map is norm­

to-norm continuous and hence U(E':<) is norm separC1.ble which implies 

that E* is also. 

(ii) If F is an infinite dimensional reflexive subspace of E 
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then F>!< is also reflexive and hence by Theorem 3. 20, ext U(F>:<) has 

uncountably many p0ints. But each f e ext U(F>:<) can be extended to an 

extreme point of U(E>:~) which implies extU(E*) is uncountable. 

Q. E. D. 

The result of Theorem 3. 20 has been improved recently by an 

application of the following theorem due to [21]. 

Theorem 3. 22 If X is a Banach space and X** is separable 

then both X and X* have infinite dimensional reflexive subspaces. 

Proof: (see [21] ) . 

We now have the following_ corollary. 

Corollary 3. 23 If X is infinite dimensional then ext U(X**) is 

uncountable. 

Proof: Suppose that ext U(X**) is countable. Then by Theorem 3. 21 

(i) X** is separable; therefore X* has an infinite dimensional 

reflexive subspace by Theorem 3. 22 . This contradicts Theorem 3. 21 

(ii). Q. E. D. 

We have now presented three important results in the develop-, 

ment of the theory of extreme points: the Minkowski Theorem~ the 

Krein-Milman Theorem, and the Bessaga-Pelczyr!ski Theorem. To 

exemplify the impcHtance of extreme points in the study of functional 

analysis, we have presented several applications. We are now ready 

to embark upon the task of characterizing the set ext U(X) where X 

is one of five well known Banach spaces, 



CHAPTER IV 

CHARACTERIZATIONS OF ext U(X) 

The purpose of this chapter is to charac;terize the extreme points 

of the unit ball in s0me well kn0wn B~nach spaces. Section one will 

deal with three of the sequence spaces; section two, the L spaces; 
p 

section three, the Hardy spaces; section four, the Lipschitz space 

Lip[O, l]; and section five, the space of continuous functions on a 

c0mpact Hausdorff space S, C(S). At the end of each section we will 

answer the question whether the unit ball in these spaces is the closed 

convex hull of its extreme points. This will determine if there are 

"enough" extreme points in the boundary Qf the unit ball to, in a sense, 

span the unit ball. 

Sequence Spaces 

The sequence spaces to be considered in this section are c 0 , 

J. 1 , and J. 
CXJ 

c 0 is the space of complex-valued sequences x = {x } 
n 

such that lim xn = 0 with II x II = sup I xn j , J. 1 is the space of 

complex-valued sequences x = {x } 
n 

such that I:: Ix I < co 
n n 

with 

11 x II = I:: Ix I . P. is the space of bounded complex-valued sequences 
n n oo 

x = {x } with II xii = sup Ix I . We will not distinguish norms n n 

notationally unless it is not clear which one is meant. 

Theorem 4. l ext U(c 0 ) = 0. 



Proof: Let xEU(c 0 ). Since lim x = 0 n 

integer such that /x I < 1 
Let no 

·. no - 2· 

. y = { xn 
n x + 1 

n 4' 

and define y = { y } , z = { z } . 
n n 

Clearly 

there exists a positive 

1 
4• 

l/y II ~ r, 

n = n 
0 

1 
x = 2 (y + z), and x f. y. Hence x is not an extreme point of 

Q. E. D •. 

In the next theorem we will need the following notation: 
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6j = (0, 0, .. ., 0, 1, 0, 0, ... ) is the element in 11 

the j -th position and zeros elsewhere. Note that 

which has a 1 in 

II 0. II = i. 
J 

Theorem 4. 2 x E ext U(1 1) if and only if x = A.6. 
J 

for some 

j = 1, 2,.,, and complex number A. with /A./ = 1. 

Proof: Let x = A.6. , /A./ = 1, and suppose x = 
J 

1 2 (y + z) where 

1 
y,zE U(1 1). Then xk = z(yk+ zk)' k = 1,2,,., For 

. l k = J, x. = 2- (y. + z.) but x. = A. 
J J J J 

is an extreme point of the unit disk 

in the complex plane; therefore, x. = y. = z. = A.. 
J J J 

yk=zki:::O since l/yl/ = ~/yn/ < 1 and l/zl/ = 
n 

Hence 

x = y = z which implies that x E ext U (1 1) . 

Now suppose l/x II = i and x f. A.6. 
J 

for any j = 1, 2, •.. and 

I A I = l. Let be the first integer such that x f. 0 and 
no 

x f. A.6. we have 0 < r < 1 ; therefore, define 
J ' 

where 



y ;;;: 
n 

{ 
i8 e , 

0 . , 

n;;;: n 
0 

n f. no x . n 
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Note II YI! ;;;: 1 and II z II ;:: ~ I z I ;:: -11 (~ Ix I - I r e i8 I ) . = -11 ( 1 - r) = 1 ; 
n n -r n n -r 

thus y,ze U(.t 1) and x::; ry + (1-r)z, 0 < r < 1, with x f. y •. Hence 

x is not an extreme peint of U(.t 1). Q. E. D. 

We now want to consider a more general space than the seq_uence 

space 1 . The characterization of the set ext U(.t ) will then be a 
co co 

corollary to- the next theorem. Let S be any set, then 1 (S) is the 
(Xl 

space of bounded complex-valued functions defined on S. 1 (S) is a 
co 

Banach space with II f II = sup f I f(x) I : x e S} . 

·Theorem 4., 3 f e ext U(.t (S)) if and oniy if I f(x) I = 1 for all 
Oil 

x e S. 

Proed: Let f e 1 co(S) with II:£ II ~ 1 and suppose for some x0 e S, 

i9 f(x 0 ) = re where 0 < r < 1 .. Define 

{ 
i9 e , 

g(x) = , 
f(x), 

x=x 0 

x f. XO 
h(x) - {o 

- f(x) , 

then f(x) = rg(x) + (1 - r) h(x). Since II f 11 < 1 we have that 

II g II ~ l and II h II < l ; also f f. g, which implies f is not an 

extreme pofot of U(.t (S)). 
CQ 

Let f e 1 (S) with I f(x) I = l for all x e S and suppose 
ttJ 

f :;; ~ (g + h) where g, he U(.t co(S)) . Since f(x) is an extreme point of 

the unit disk in the c0mplex plane for all x e S 1 f(x) = g(x) = h(x) for .. :"(; 

all x e S. Hence f = h = g and we have that f e ext U(.t (S)) . Q. E. D. 
co 
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Corollary 4. 4 x e ext U(.£ ) if and only if co Ix I = 1 for all n 

n=L,2, ..• 

It is clear that U(c 0 ) # cl con ext U(c 0 ) since U(c 0 ) contains 

no extreme points. For the space .I. 1 we have the following result. 

Theorem4,5 U(J. 1) = clconextU(.1. 1). 

Proof: .I. 1 is the conjugate space of c 0 and .I. 1 is separable (the 
n 

set of elements of the form k~l X.k ojk where X.k = ak+ bki, ak, bk 

rational, is a countable dense subset). Thus the conclusion follows 

from the Bessage-Pelczyriski Theorem (3. 13). Q. E. D. 

We conclude this section with the result for the space .I. • 
CXl 

We 

shall delay the proof until the next section, 

Theorem 4. 6 U(.1. ) = cl con ext U(.1. ) . 
CXl co 

Proof: (see Theorem 4.15). 

LP.Spaces 

In this section we will consider the set of extreme points in the 

space L (S, M, µ) where 
p 

p. 21 7) • For l ~ p < co, 

(S, M, µ) is a measure space (see [40], 

L (S, M, µ) is the space of complex­
p 

valued, µ-measurable functions f define_d on S with 

L (S, M, µ) is the space of complex-valued, 
co 

µ-measurable functions defined on S with 

11£/! = ess sup { jf(x)j: xe S} < oo. The three cases p = 1, 1 < p < a:i, 

and p = co will be treated separately. The next theorem will show 
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that the ex;istence of extreme points in L 1 depends upon the measure 

µ being atomic. 

Definition 4. 7 Fe M with µ(F) > 0 is called an atom (with 

re.spect to µ) if and only if for all F' e M such that F 1 C F either 

µ(F') = 0 or µ(F') = µ(F) . 

Throughout this section XF will denote the characteristic 

function of the set F. 

Theorem 4. 8 A necessary and sufficient condition that 

fe extU(L 1) is that 
l ;. 

f = A. µ(FJ XF for some atom F and complex 

constant A. where I A I ::: 1. 

Proof: Suppose the condition holds and g e L 1 such that II f ± gjl = 1. 

Let G = {x e S: g(x) f:. O} " Then 

i = 'J f ± gJ.dµ = f If ± g Idµ 
JI ·. . GUF 

= f I £ ± g Idµ + [ I g Idµ + 1 I £Idµ . 
G (J F G ""'F F ""'G 

Since F is an atom, either µ(G (J F) ;:: 0 or µ(G (J F) = µF. Let 

us first assume. µ(G (J F) = µF (which implies that G (J F is an 

atom). g(x) f 0 for xe.G(J F; therefore, either 1£1 < lf+gl or 

If I < If - g I on a subset of G n F of positive measure (for if not 

then g = 0). But since G (J F is an atom we have either 

/£/ < lf+g/ or /£1 < /£-gl a.e. on G(JF. Assume 1£1<1£+gl 

a. e, on G (J F . Then 



= 1 . 

This contradiction implies µ(G () F) - 0 which implies 

µ(F""' G) = µ.(F). Thus we have 

and therefore j I g jdµ = 0. g(x) :f 0 for x e G ""'F, hence 
G""'F 

µ(G ""'S) = 0. This together with µ(G () F) = 0 implies µ(G) = 0 . 

Thus g(x) = 0 a. e. and f e ext U(L 1). 

Nowlet feextU(L 1). Ifthereexists AeM suchthat 

0 <. ( jfidµ =a< 1 then define g = .!._£ XA and h = -1 1 f 'X"-'. JA a , -a A 

Clearly llgll = /lhll = 1 and f = ag + (1-a)h where 0 <a< 1, 

Since g:f;f, fiextU(L 1). This argument shows that J jfjdµ= 1 
A 
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or 0 for ·'all A e M su,ch that µ(A) > 0. Let P = {x e S: I f(x) I > O} . 

Note that µ{P) > 0 since ( jfjdµ + ( jfjdµ = ( jfjdµ = 1. Now 
Js""'P Jp )p 

take A C P with µ(A) > 0. We then have l 1 fj dµ > 0 and hence 

l 1 f I df.L = l . For all A C P with µ(A) > 0, we have 

1 = f If I df.L + [ I £Idµ = [_ I f Idµ + i . 
P ""'A A P "'A 

This gives µ(P"-'A) = 0 which implies µ(A) = f.L(P). Thus P is an 

atom. For all A C P with µ(A) > 0 it follows that 

sup I f(x) I µ(A) ?:_ J If Idµ = l : therefore, sup I f(x) I ?:_ (~) 
xeA A xeA µ 

1 
?:_ µ(P) . 



For each n such that 

M = { x e S : 0 < I f(x) I 
n 

l 
µ(P) 

l 
< µ(P) 

µ(M ) = 0, for if µ(M ) > 0 , 
n n 

sup_ I f(x) I ~ (k) Hence 
XE Mn µ 
that 
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l - - > 0 let 
n ' 

- ~} . x ~ufr I f(x) I < µ(k) . Thus 
n 

then by the previous argument 

l 
I f(x) 1 ~ µ(P) a. e. on P. It follows 

which implies I f(x) I = µ(k) 'Xp (x) a. e. Therefore there exists a 

measurable complex-valued function <{J(x) with !<tJ(X) I = I for x e P 

and 
I 

f(x) = <fJ (x) µ(P) Xp (x). If <{J(X) is not constant on P then 

either Re <tJ(x) or Im <fJ(x) is not constant. Assume without loss of 

generality that Re <{J(x) is not constant on P, Then there exists a 

real number c and B C P with µ(B) > 0 and µ(P ,..._, B) > 0 where 

Re <fJ (x) > c for x e B and Re <fJ (x) ~ c for x e P ,..._, B . But this is 

impossible since P is an atom. Hence <fJ(x) = A. for x E P where 

I A I = 1. Thus f(x) 
I 

= A. µ(P) Xp (x) where and P is an 

atom. Q. E. D. 

As noted in Theorem 4. 2 x e ext U(.£ 1) if and only if x = A.o. 
J 

for some I A. I = l . This is also a consequence of Theorem 4, 8 if we 

consider ..e 1 as the space L 1 (S, M, µ) where S is the set of positive 

integers, M the CT ~algebra of all subsets of S, and µ the counting 

measure on M, The result follows by noting that the atoms in this 

space are the singleton sets. 

L 1 [O, l] is the space L 1 (S, M, µ) where S = [O, l], M is the 

family of Lebesgue measurable subsets of S, and µ is Lebesgue 
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measure. Since M contains no atoms, we have the following corollary 

to Theorem 4. 8. 

Corollary4.9 extU(L 1[o, I])= 0. 

Next we shall consider the space L (S, M, µ), I < p < oo where 
p 

II f II = [ls/ f/ pdµ] 1 /p. Note that f and g are in the same equivalence 

class if and only if f = g a. e. with respect to the measure µ. The 

following lemma will be used in the proof of the theorem which will 

characterize the set of extreme points of the unit ball of L (S, M, µ). 
p 

Lemma 4. l 0 Let f, g E L , I < p < co , with II f I/ = II g II = I . 
p 

Then II ft g II = rl fl! + II g II if and only if f = g a. e. 

Proof: If f = g a. e. then II £/I = I/ g /I and f + g = 2£ a. e. Thus 

11 f + g 11 = z 11 £ 11 = 11 £ 11 + 11 g 11 . 

Assume // f + g II = II fll + II g II = 2. Then 

= = l. 

The last inequality follows from the fact that the map t -+ tp is a 

strictly convex function of a real variable for t > 0 and I < p < oo. 

Therefore equality must hold throughout this expression and since 

(_/f_+_g_j_P dµ =1df/+/g/)p dµ, 
JS zP s zP 

we have If+ g I = I£/ + I g / a. e. This implies there exists a 



nonnegative real-valued function cp, suc;h that f(x) - cp(x) g(x) a. e. 

Also since 

=1 s 

we have - 1 (jfj + lgl)p = }<lfjP+ lg IP) a.e. Thus !fl= lgl a.e. 
2P 

Hence I g(x) I = I f(x}j = l.p(x) I I g(x) I a. e. Thus cp(x) > 0 implies 

cp(x) = l a. e. and we therefore have that f = g a. e. Q. E. D. 
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Theorem 4. 11 f e ext U ( L ) , l < p < oo , if and only if II f II = l . 
p 

Proof: Let f e ext U(L ) . Then it follows from Lemma 2. 5 that 
p 

II f 11 = I. 

Now let II fl! = 1 and suppose f = i (g + h) where g, he U(Lp). 

Then 2 = 2llfll = llg+hll :::_ llgll + llhll :::_ 2 which implies 

II h II = II g II = 1 and II g + h II = II g II + II h II . It follows from Lemma 

4. 10 that h = g a. e. Thus f = g = h a. e. and f e ext U(L ) . Q.E.D. 
p 

The final space to be considered in this section is L (S 1 M, µ), 
co 

the space of complex-valued measurable functions on S with 

II f II ::;: es s sup If I < CX). 

Theorem 4. 12 fe extU(L ) if and only if jfl = l a. e. 
CX) 

Proof: Suppose I£ I < 1 on P where µ(P) > 0. Define 

g = f + ( l - I f / ) and h = f - ( l - If I ) . Then 

llgll = ess sup jf + (l - If!)!:::_ ess sup(l£1+1 - 1£1) = 1 since 

l - If I > 0 . Similarly we have II h II < l . Therefore g, he U(L ) , 
co 

l 
f = ·- ( g + h) and f -f g . Thus £ i ext U ( L ) . 2 00 



Let lfl ::: l a. e. and suppose f::: t (g+h) a. e. where 

l 
g, he U(L00 ), Then for almost all x e S, f(x) = 2 (g(x) + h(x)), 

I f(x) I = l. I g{x) I ~ l and lh(x) I ~ l. Thus Lemma 2. 6 implies 

f = g = h a, e. and hence f e ext U (L ) , 
0) 

Q.E.D. 

We observe again that i.. 
0) 

is a special case of L (S, M, µ) 
co 
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where S ls the set of positive integers, M the <J·algebra of all sub-

sets of S, and µ the counting measure on M. Hence Corollary 4. 4 

follows from Theorem 4. 12. 

Considering Theorem 4. 8, the next statement is not too 

surprising. 

Theorem 4. 13 U(L 1 (S, M, µ)) = cl con ext U(L 1 (S, M, µ)) if and 

only if µ is purely atomic, that is, every element of M of po.sitive 

finite measure can be written as a countable union of disjoint atoms. 

Proof: Suppose µ is purely atomic. We first observe that if x and 

y are elements of a Banach space with ii x II = 1 , y I- 0, and 

llx-yll < e it follows that ll-Jly!J I= I llxll -if YI! I< e. Thus 

II x - II~ II II < II x - y II + II y - M" = Ii x - y II + II y II 11 - II~ H ' 

= II x ~ Y II + I 11 Y 11 - i I < 2e . 

Returning to the proof of the theorem, we note that it will suffice 

to show that the set of convex combinations of extreme points is dense 

in the boundary of 

g f 0 , and E: > 0 . 

U(L 1 (S, M, µ)). For suppose g e U(L 1 (S, M, µ)), 

Then h = -L is of norm one. Therefore there 
n · II gii 

is a convex combination L: a.f. of extreme points 
i= 1 1 1 

f. 
1 

such that 



n 
lih - .z a/ill < r:. Hence 

1= l 

n 
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ii g 11 11 h - . z aifi II 
i= l 

n 1 l 
- Ilg 7(.z llglia/i+ 2(1- llgll)fl + 2(1- flg1i)(-f1))ll 

1:::: 1 ' 

< II g lie < £ 

and g is approximated by a convex combination of extreme points. We 

proceed to show the density property stated above. Let 

fe U(L 1(S,M,µ)) with llfll = 1. Then there is a simple function 1l' 

such that II f - '¥ /l < f. By the definition of purely atomic; '¥ may qe 
co 

represented as '¥ = 1: a. XA where the A: 1 s are disjoint atoms 
j=l J j co J 

and a. :f 0, j = 1, 2,... . 11'¥11 = 1: la. !µA, =a :f 0. Since this 
J j=l J J 00 

.series converges there is a number N such that . 1: la. lµA. < ~. 
N J ==N+ I J J 

Let cp = .~1 a j X A. . Thus II f - cp II ~ II f -11' II + II'±' - cp II ~ ~. Let 
a· J- J N f3· 

[). = ....:.LI .

1

• Then cp = Z la. lµA. _:i_A XA and by Theorem 4. 8 
J a. j=l J J µ · · 
[). J J J * xA. is an extreme point of U(L 1 (S, M, µ)). Hence 

J J 

_cp_ 

II cp II 

N la .1 [). 
= ~ ~µA. _J_A XA 

j=l ll<Pll J µ j j 

is a convex combination of extreme points of U(L 1 (S, M, µ)) and by the 

observation at the beginning of the proof II f - II: II II < e:. 

Now let A be a subset of S with positive finite measure. Define 

cp = ~ xA. Then cp e U(L 1 (S, M, µ)) and hence by hypothesis there is 
µ kn A· 

a convex combination of extreme points, 1¥ = 1: a. ~ x.A .. , such 
n j=l J µ j j 

that /A. I = l, the A. 1 s are disjoint atoms, 
kn J J 

1: a. = l and li<P - '¥ II < l. Let B. = An A,. Then 
j=l 1 n n J J 



Thus as n increases we see 
1 kn 

<P - ':!' = - on A ,,...., U B .. 
n µA j= l J 

kn 
that µ(A,,...., U B.)-+ 0 

j = 1 J 
Notethatif µB.>O 

J 

since 

then B. is an 
J 

atom. Hence A is a countable union of atoms together with a set of 
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measure zero. But if P is an atom and Q is a set of measure zero 

then P U Q is an atom. Therefore ·A is a countable union of atoms 

and it follows that µ is purely atomic. Q. E. D. 

Every element of the boundary of U(L ) , 1 < p < a:i, is an 
p 

extreme point ('Theorem 4. 11). Thus the following result follows 

readily. 

Theorem 4. 14 U(L ) = cl con ext U(L ) , 1 < p < a:i. 
p p 

Proof: Let feU(L ), f-/:0. Then 
p 

f 

11f11 
is an extreme point of 

U(L ) . 
p 

-f 

11f11 
is also an extreme point and 

f= l+llfll 
2 

+ 1 -llfll ( f) 
2 w. 

Thus f is a convex combination of extreme points of U(L ) 
p 

and hence 

f e cl con ext U(L ) . Clearly cl con ext U(L ) C U(L ) (see also 
p p - p 

Theorem 6.14) .. Q. E. D. 

We now show that U(L (S, M, µ)) is also the closed convex hull 
CX) 

of its extreme points as is the case for 

provided µ is purely atomic. 

L, l<p<ai 
p 

Theorem 4. 15 U(L ) = cl con ext U(L ) . 
co co 

and L 1 

Proof: If is shown in [11, p. 445] that there is a compact Hausdorff 

space S such that L 
CX) 

and C(S) are isometrically isomorphic. 
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Thus the result follows from Theorem 4. 30 .. Q. E. D. 

Hardy Spaces 

The next Banach spaces to be considered are the Hardy spaces. 

For 1 < p < OJ, H is the space of all analytic functions in the open 
- p 

unit disk of the complex plane, I z I < 1 , with 

{ 
1 f Zrr rn } i / . II f II = lim -2 . I f(r e ) IP de P < 

P r~l rr o OJ • 

OJ 
is the space of all bounded analytic functions in I z I < i with H 

II f JI = sup I f(z) I . Much of the material in this section can be found 
/zl<l 

in Hoffman 1 s book [ 17], however., we feel that it should be included for 

completeness. 

The characterization of ext U(H ) for I < p <OJ, presents no 
p 

problem since H can be considered as a closed subspace of L . 
p p 

Hence the extreme points of U(H ) , 
p 

I < p < OJ , are precisely those 

functions of norm I by Theorem 4. 11 . Therefore in characterizing 

the set ext U (H ) , the spaces 
p 

H are the only Hardy 
OJ 

spaces presenting any difficulty. It might be conjectured that U(H 1) 

has no extreme points since this is the case in U(L 1), but Theorem 

4. 20 will show this conjecture to be false. The following will describe 

the set ext U(H ) . 
OJ 

Theorem 4. 16 fe ext U(HOJ) if and only if I f(z) / < l for 

/zl <I and j 2 rr log[l - lf(e:te)/]de = -co. 
0 

l zrr I rn Proof: [17, p. 138] Let /f(z)/ ~ l, log[l - f(e )!Jae= -OJ 
0 

and g e H with I/ f ± g II < l . If f = u + iv and g = r + it then 
(lJ 
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1£+gl ~I implies (u+r}2 + (v+t}2 ~I and 1£-gl <I implies 

2 2 
(u - r} + (v - t} ~ I. Adding these two inequalities, we have 

u 2 + r 2 + v 2 + t2 < I. Thus I£ 12 + I g 12 < I and 

·e 2 ·e 2 
I g(e 1 } I S: I - I f{e 1 } I . It follows that 

[ 21T ·e [2ir ·a [ 21T ·e 
2 loglg{e 1 >Ide< log{l+ jf{e1 }j}de + log(l- jf(e1 }j}de 

0 0 0 

1
211' ·e 

< 2~log2+ log(I-j£(e1 >!}de= -oo. 
0 

Since g is analytic in the unit disk it has a Maclaurin' s e:x:pansion 

g(z} = 
co 
E 

n=O 

CXl 
m z E 

n=m 

where m is the smallest nonnegative integer such that g(m}(O} :/: 0. 

We have h Ea ' h(O} f. 0' and by a simple e:x:terrsion of Jensen's 
co 

I 1211' ·e 
inequality [I 7, p. 52] 2 1T 0 log ih(r e 1 } I de ~log jh(O} I, 0 < r < 1. 

Thus 

I 1211' ·e 121T ·e 1 £211' rn 
2 1T 

0 
logjg(re 1 }jde = ~ 0 logjre1 Ide+ 2 11' 

0 
logjh(re >Ide. 

Taking the limit as r approaches 1 we have 

I 1211' ·e 
2 11' 0 log I g(e 1 } I de 

I 1· 211' . ·e 
= Z;r 0 log ih(e1 } Ide ~log ih(O} I 

(m}(O} 
= log I g m! I 

The left side of this e:x:pression being - co implies g(m}(O} = 0 for 



m = 0, 1 1 2,.. . . Hence we have that g(z) := 0 for I z I < 1 and 

iO iO since lim g(r e ) exists a. e. , g(e ) = 0 a. e. Therefore g = O 
r-1 

and f e ext U {H ) . 
00 

iO Now let f E ex~U(H00 ) and suppose that log (1 - I f(e ) I) is 

integrable. Define 

g(z) " exp [z~ ~Zn 
iO 

e + z 
iO 

e - z 

Clearly g :f 0 and g(z) is analytic for I z I < I by Cauchy's 

Theorem. It follows from the Poisson integral formula that 

it: 
log I g(e ) I = lim Re t-I \ e r e it 10 g ( I - I f ( e iO) I ) de [ 

2rr iO + it ~ 
r-+ 1 1T 0 e - r e 

it = log(l - /f(e )j) 

44 

(see [12], p. 34) . Hence 
iO ·e I g(e ) I = 1 - I f(e 1 ) I which implies g is 

bounded and therefore g e H . From the fact that 
co 

/g(ei 8 )j + jf(e10 )j = 1, we have 

unit disk / z I < l . Therefore 

/g(z)j + /f(z)j:::, 1 for all z in the 

II f :I: g /I < 1 and since g :/: 0, 
CX) -

f i ext U(H ) . This contradiction gives the result, Q. E. D. 
co 

It should be mentioned that the result holds for the subspace A 

of H of continuous function on the closed unit disk which are analytic 
OJ 

in the interior. The first half of the proof is the same as above since 

f e H whenever f e A. In the second half of the proof, the function 
OJ 

g must have continuous boundary values. This can be accomplished by 

setting 

g(z) = exp l .l_ j2rr 
l!rr 0 

i9 
e + z 

iO e ..., z 
log ude] 
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·where · u is continuous on I z I = 1, log u is integrable, 0 :.::_ u :::_ l - If j, 

and u is continuously differentiable on each open arc of the set where 

If I ! 1 • It can then be shown that I g(e iS) I + I f(e iS) I < 1 and hence 

f is not extreme. 

We now turn to H 1 , but first we will need some definitions. 

Definit.ion 4. 17 A function f EH is an outer function if f can 
p 

be represented as 

·e [ I 121T 
f ( z ) = e 1 exp Z 1T 0 

it e + z 
it 

e - z 

f 21T 't 
where logjf(e 1 )jdt<co. 

0 

Definition 4. 18 A function f EH is an inner function if 
p 

lf(z)j < 1 and a. e. 

The following is a known fact from complex variable theory and 

will be stated without proof. 

Lemma 4.19 [17, p. 63) A nonzero function f E H 1 has a 

unique factorization (up to a constant of modulus 1) of the form 

f = MfQf where Mf is an inner function, Qf is an outer function, 

The next theorem was originally proved by Rudin and de Leeuw in 

[ 41]. 

Theorem 4. 20 f E ext U(H 1) if and only if II f!l 1 = I and f is 

an outer function. 
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Proof: [17 , p. 139] Assume II f 11 1 = 1 and f is an outer function. 

Pick g E H 1 such that /If± g I/ 1 = l. Define h = ~. (Note that 

f(z) :/: 0 for / z / < 1 since f is an outer function. Thus h is 

analytic in the unit disk.) Define the positive measure dµ = / f / d9. 

Then h is integrable with respect to· µ since 

fihldµ = J Wi 1£/de = /lg/I< en. By our assumption, 

By rearranging this expression and introducing our new measure, we 

have 

Since f(ei9) does not vanish on any set of positive measure, it follows 

that ll+h(ei9)/ + /1-h(eie)/ = 2 a.e. with respect toµ. Thus 

h(e ie) is real and i9 
-1 :::_ h(e ) :::_ 1 a. e. In view of the Poisson 

representation for H 1 functions [ 12, p. 34], h(z) is real for 

lz/ < 1 and hence is constant. Thus {l+h) /lfll = (1-h)l/fll which 

implies h = 0. Hence g = 0 and f E ext U(H 1). 

Let f e ext U(H 1) and suppose f is not an outer function, i.e.·, 

f = MfQf where the inner function Mf is not constant. Let 

r2rr i9 ia i9 
<P (a) = Jr. I f( e ) I Re [ e Mi e ) ] de . <P (a) is a real continuous 

0 
function and since cp(O) = -qi(rr) there exists some 13 with 0 :::. 13 :::_ 1T 

i 13 such that cp(l3) = 0, Let u(z) = e Miz) and 

1 i 13 2 g(z) = 2 e Qf{z)(l + u (z)). Then g(z) is analytic for / z / < 1 and 

/lg/I= }llafll l/l+u2 1/ :::_ t(l+/lull 2 ) :::_I. Therefore g e H 1 and 



J -i~ g _,.. 0 since Mf is not constant. (Note that e Qf :: 

Mf is an inner function ju(ei8) I = 1 a. e. Whenever 

1 1 + u2 
we have 2 Re (u) = .u + u = u + - = Therefore 

u u2 

g(eie) = ~ e-i~Qf(ei9 )(l+u2 (ei0)) = t2f(ei0)Re[u(ei9)] 

lzl:: 1. Hence 

i.) Since 
u 

·a 
ju(e 1 )j = I 

a. e. on 

a . .e • 

and by our choice of ~ 1 it follows that 11£ ± g II = II f II = 1 . Thus 

f i ext: U(H 1). This contradiction implies that f is an outer function. 

Q.E.D. 
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For the space H 1 we can answer affirmatively the question of 

whether U (H 1 ) is the closed convex hull of its extreme points. In 

fact we have the following stronger result. 

Theorem 4. 21 Let f e U(H 1) ~ 

(i) If llfll 1 = I and f isnotanextremepointof U(H 1) 

then f = ~ (f 1 + f 2 ) where f 1 and f2 are distinct 

extreme points of U (H 1). 

(ii) If II f II 1 < 1 then f is a convex combination of two 

extreme points of U(H 1). 

Proof: We shall present only a sketch of the p:r,-oof. For details see 

[17, p. 141-142]. For (i) we construct g as in Theorem 4. 20 and 

define f 1 = f+g, £2 = f-g. Then 11£ 1 11 1 = llf2 11 1 =I and 

l 
f= z(f1 +f2 ). Once f 1 and f 2 areshowntobeouterfunctionsthen 

the proof is complete. 

For part (ii) suppose 0 < II fl! < 1 (f = 0 is trivially the mid-

point of two extreme points). If f is outer then f is a convex 
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·combination of the two extreme points 
f 

and 
II f 11 11f11 

-f 
If f is not 

outer, construct g as in Theorem 4. 20 and then choose t 1 > 1 and 

t 2 > 1 such that l!f+t 1gll 1 = llf-t2 gJl 1 = 1. Once f+t 1g and 

f - t 2 g are shown to be outer functions, the proof of (ii) is complete 

since f lies on the segment joining these two functions, Q. E. D. 

That U(Hp) = clconextU(H 1). I< p <co, is a consequence of 

the fact that every element of the boundary of U(H ) 
p 

is an extreme 

point (see proof of Theorem 4, 14). The proof of the result for U(H ) 
co 

is quite long and hence we again only sketch the proof. For the details, 

see [33]. The following definitions will be, needed for the next theorem. 

A subset A of C(S) is called a function algebra of C(S) if A isa 

linear sub space and multiplication of functions is closed (multiplication 

is pointwise), 

{log I f J : f E A 

We say A is a logmodular aLgebra. if 

l 
and 7 e A} is dense in CR(S), Denote by M(A) the 

maximal ideal space of A, i.e., the set of all multiplicative functionals 

on A (see Theorem 5. 6). A part of M(A) is an equivalence class 

defined by the equivalence relation ""', µ 1 ......, µ 2 if II µ 1 - µ 2 II < 2 

(the norm i,s the one for A*) . Recall that a subset P of A* is tE>tal 

over A if for f e A, f "f 0, there if F.:; A* such that F(f) "f 0. We 

now state the theorem. 

Theorem 4. 22 Let A be a logrriodular algebra in C(S) with 

maximal ideal space M(A) and suppose that there is a part P of 

M(A) which is total over A, Then U(A) is the closed convex hull 

of its exposed points (see Definition 6. l). 

Proof: [33] Recall that every element <Pe P may be represented by 

a measure, Let ope P with representing measure µ and suppose 



f e U(A) such that Q = {x: I f(x) I = l} has po.sitive µ measure. 

Then f is an exposed point of U(A). Define Fe A* by 
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l 1 -F(g) = µ(Q) Qgfdµ, geA. 

that if g e A and F(g) = I = 

Then F(f) = 1 = II F II , . It can be shown 

II g II then g = f and hence f is an 

exposed point. 

* Next it can be shown that the set of all linear functions Fe A 

such that 1 = II F II = F(f), where f is an exposed point of U(A), is 

norm-dense in the boundary of U(A*). Thus intuitively speaking, we 

can see that U(A) is the intersection of all closed half-spaces which 

support U(A) at an exposed point. Thus U(A) is the closed convex 

hull of its exposed points. Q. E. D. 

Corollary 4. 23 U(H ) = clconextU(H ) . 
Cl) !Xl 

Proof: This follows from the preceding theorem since it can be shown 

that H is isometrically isomorphic to a logmodular algebra. The 
!Xl 

maximal ideal space of H . is complicated but it is known that the 
co 

open unit disk is a total part of M(A). Q. E, D, 

Lipschitz Spaces 

We now consider the space Lip (S, da) of complex-valued 

functions on a compact metric space S with metric d which satisfy 

a Lipschitz conditi(;m, 

Definition 4. 24 f e Lip (S, d a) if there exists a constant K > 0 

such that jf(x) ~f(y)I ::::_ Kda(x,y) for all x,ye S 1 0 <a< 1, 

It should be noted that if f e Lip (S, d a) then f is continuous and 

hence bounded. Also it can be shown that Lip (S, d a) is a ve.ctor 
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space. Define II f II = sup {I f(x) - f(y) Id -a (x, y) : x :f y} . Then 
da 

II f 11 = max (II f 11 , II f 11 ) is a norm on the space. (Recall that II flJ _ 
cx:i da "" 

is the sup n0rm on S. ) lip (S, d a) is the closed linear subspace of 

Lip (S, d a) containing those functions f such that 

Jf(x)-f(y)Jd-a(x,y)-+O as da(x,y)-+O. 

In general not much is known about the extreme points in 

Lip (S, d a) for arbitrary S and d. Throughout this section we use 

the term 11a. e. 11 to mean almost everywhere with respect to Lebesgue 

measure. The following is a characterization of ext U(Lip [O, l]) 

where Lip[O,'l] is Lip(S,da) with S = [O, l], d the usual metric, 

and a= 1. It is due to A. K. Roy [39]. 

Theorem 4. 25 If f is not of modulus one everywhere on [O, l] 

then f e ext U(Lip [O, 1]) if and only if If' I = 1 a. e, on [O, 1] ""'Mf, 

where Mf= {xe[O,l]: Jf(x)J = llfll 00 }. 

Proof: If / f / = 1 everywhere then it follows that f e ext U(Lip [O, 1]) 

(see Theorem 4.27). Note that if fe extU(Lip[O, l]) then it is 

necessary that II f /I co = 1 ; for suppose I/ f II = a < 1 . Then 
al 

g = f + } ( 1 - a) and h = f - ~ ( l - a) are such that 

llgll 00 < /1£11 00 + (1 ~a) < 1 and similarly llhll 00 ~ l, Thus 

g,he U(Lip[O, l]) since llgll . = llhll = llfll ~ 1. We then have 
da da da 

1 [ -f = 2 (g + h). f f: g, and hence f i ext U(Lip 0, 1 J). 

Suppose I £1 / < 1 on a set F of positive measure where 

F ~ [O, l] ""'Mf' [O, l] ""'Mf is open; therefore we may assume 

(i) F to be Cl!>mpact since otherwise there exists F 1 closed, 

F 1 C F, whose measure is arbitrarily close to the measure 

of F; 



(ii) F ~ I for some closed inte:r.val I C [O, l] "'Mf; 

(iii) ess sup I f'(x) I = a < 1, since if we define 
xeF 1 

A= {xe[O,l]:/f'(x)j < 1 - -} thenthemeasureof 
n n 

some A is greater than 0. (For if not, the measure 
n 

of F is 0 . ) ; and 

(iv) for some e: > 0, /f(x)/ < 1 -e: for all xe I since f is 

continuous on the closed set I. 
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Again we let XF denote the characteristic function of F o Then the 

function g(x) = [x XF (t) dt is a continuous function on [0, l] and by 
0 . 

the intermediate value theorem the re ex is ts x 0 e (O, 1) such that 

[ XO 1 fl l 
X (t) dt = - X (t) dt = - m(F) . Define 

O F 2 O F 2 

x 
and g0 (x) = [ f0 (t) dt. Figure 4. 1 will help illustrate the functions 

0 
g, f 0 , and g0 (for real-valued functions). 

g fa go 

1 1 1 

m(F) 
1 
z-m(F) 

0 0 XO 0 

-l 

Figure 4. 1. Functions in Proof of Theorem 4. 25 
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Since g 0 is absolutely continuous and I g0 I is bounded we have 

g 0 e Lip [O, l] {see [ , p. 108]). For 5 > 0 small enough it follows 

that llf ± ogolloo ~ liflloo + orlgolloo'~ 1 and 

llf± 0g 0 1f ~ flfll + oflg 0 ll ~I. Hence llf± og0 ll ~I, 
dQ' dQ' dQ' 

I I 
f = 2(f+ og 0 ) + 2(f-og0), and f -f ft og 0 . Thus fiextU(Lip[O, I]) 

which proves the condition is necessary. 

Now let lf'I =I a.e. 

for some g,he U(Lip[O, I]), 

on [0,1].-,Mf andsuppose f= }(g+h) 

fl f H = 1 implies that g = h = f on 
00 

I 
Mf. Also f' = Z (g' + h') a. e. Hence g' = h' = f' a. e. on 

[0,1].-,Mf since /f'I = l, lg'I < 1 and lh'I < 1 a.e. If x{Mf 

let y be the closest point of Mf to x. · Assume y < x. Then 
. x x 

g' = h' a. e. on (y,x) and therefore j g' dm = j h' dm. Thus 
y y 

g(x) - g(y) = h(x) - h(y), and since ye Mf it follows that 

g(x) = h(x) for all x e [O, I].-, MC Henc;e g = h = f from which we 

conclude that f e ext U(Lip [O, I]). Q. E. D, 

Figure 4. 2 illustrates the graphs of some extreme functions in 

the subspace LipR[O, l] of real-valued functions. Note that 

sup / f(x) I must be one. 
x 

0 

-1 - - - -

l 
I 

Figure 4. 2. Extreme Lipschitz Functions 
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The proof of the result concerning clconextU(Lip[O, 1]) is quite 

long and involved. We shall again give only a rough sketch of the proof. 

Theorem 4. 26 The unit ball of Lip [O, 1] is the closed convex 

hull of its extreme points. 

Proof: (39] Consider C [O, l] ~ L [O, l] with norm 
co 

II (f, g) II = max {II fll , II g IJ ) • Define the map: 
co 00 

Lip[O, 1)-c[o, l] E8 L [O, l] given by f-+{f,f 1). This is a linear 
00 

and isometric map and the image of Lip[O, l], say A, is a closed 

subspace of C [O, l] ® L [O, l]. Essentially what needs to be shown 
co 

now is that a dense subset of the boundary of U(A *) attain a norm of 

1 at some extreme point of U{A). This, in fact, is the difficult part 

of the proof. Once this is shown it will follow that U(A) = cl con ext U(A) 

(see [33]). Thus we have the conclusion of the theorem. Q. E. D. 

The Spaces C (S) 

Let S be a compact Hausdorff space. Then C{S) denotes the 

space of continuous complex-valued functions on S with 

llfll =sup{ lf(x)I :xe S}. The following characterization of extU(C(S)) 

is not surprising if we consider the graphs of the real -valued functions 

as was done in Figure 4. 2 in the previous section. 

Theorem 4. 27 f e ext U(C(S)) if and only if I f(x) I = 1 for all 

XE S, 

Proof: Let f e U(C(S)) and suppose that I f(x) I < 1 on some nonempty 

subset of S. Define g = f+ ~(1-lfl) and h = f- ~ (1-lfl). 

g,he C(S) and lg(x)I ::..1£(x)I +~(I - lf(x)I) = t(l+ 1£(x)I)::.. 1 



for all xeS. Similarly lh(x)I < 1 forall xeS. Therefore 

1 
g, he U(C(S)), f = 2 (g + h), and f f. g. This implies that 

fr/ ext U(C(S)) which proves that the condition is necessary. 
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Suppose I f(x) I = l for all x E S and let g e C(S) be such that 

I f(x) ± g(x) I ~ 1 for all x E S. Lemma 2. 6 implies that g = 0. Hence 

f e .ext U(C(S)). Q. E. D, 

Let CR (S) denote the subspace of C(S) of real-valued functions 

on S. We see from the above theorem that the set ext U(CR[O, 1]) 

contains only two points. 

Corollary 4. 28 ext U(CR[O, l]) consists of the constant functions 

1 and -1 . 

Corollary 4. 29 CR[O, l] is not isometrically isomorphic to a 

dual space. 

Proof: The closed convex hull of the extreme points I and -1 is the 

set of constant functions f such that J f J ~ 1 . Thus 

clconextU(CR[O, I]) f. U(CR[O, I]). If CR[O, l] were a dual space, 

then its unit ball would be w* -compact. By the Krein-Milman Theorem 

U(CR[O, I]) would. be the closed convex hull of its extreme points. 

Q. E. D. 

We conclude this section with the results concerning the question 

of whether U(X) = cl con ext U(X) fo:r the spaces C(S) and CR (S). 

Let µ be a nonnegative Baire measure on S. Then the supEort of µ 

is the complement of the union of all open sets G such that µ(G) = 0. 

Note the support of µ is closed. We can now state the following 

result. 
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Theorem 4. 30 The un:j.t ball of C(S) is the closed convex hull 

of its extreme points. 

Proof: [33] Once again we will not give all the details to the proof. 

Suppose U(C(S)) is not the closed convex hull of ext U(C(S)), Then 

the re is a nonnegative Ba ire measure µ on S with µ(S) = 1 and a 

function fe U(C(S)) with If I = l on the support Q of µ · such that 

sup Re Jg fdµ < 1, g e ext U(C(S)). 

Thus to prove the theorem we need only to show that for each e: > 0 

there exists g E ext U(C(S)) such that Re Jg 7 dµ > l - e: 

Partition the unit circle of the complex plane into · N equal half-

open arcs. Ak 1 . where · N e: > 2. Since 

N 
1 =µ(Q)= ~ µ[f- 1(Ak)nQ], 

k=l 

we have for at least one of these arcs, say A 1 , the subset 

f-l(A 1) n Q of Q must have measure less than r. The same is 

true for intA 1 (relative to the circle), so let 

Q 1 = {x: x E Q and f(x) i intA 1}. It follows that µQ 1 > 1 - . ~ and 

that Q 1 is a compact subset o,f ~~·f = eic;o where <P is a real-

valued centinuous function on 

continuous function e on s. 

geextU(C(S)) and 

Re J gfdµ 

or-:----w e can extend <P to a real-valued 

i8 Let g = e Then by Theorem 4. 27, 
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Thus g is the function that is needed to complete the proof. Q. E. D. 

We have noted (Corollary 4. 29) that 

U(CR[O,l]) :/: clconextU(CR[O,l]). Thusforreal-valuedfunctions 

on S we must place some restrictions on the c:ompact Hausdorff space 

S. 

Theorem 4. 31 U(CR (S)) = clcon ext U(CR (S)) if and only if S 

is totally disconnected, i.e., S has a base consisting of sets which 

are simultaneously open and closed. 

Proof: (see [ 2 ] ; also [14]). 



CHAPTER V 

CHARACTERIZATIONS OF ext U(X*) 

We now want to characterize the sets of extreme points of the 

unit balls of the duals of the Banach spaces considered in Chapter IV. 

Recall that the dual X* of a Banach space X is the set of continuous 

linear functionals on X with //fll = sup{ /f(x)/: xe X, /!xi/~ l}. 

It is very useful if we are able to represent the dual of a Banach 

as some other known space; ~. e., find an isometric isomorphism 

between the two spaces. For example C(S)* is represented by the 

space of regular countably additive measures on the o--ring of Borel 

sets in S (see [ 11], p. 265); i. e,, for each Fe C(S)* there 

corresponds a measure µ such that 

F(f) :;:: 1 f(t) dµ, f E C(S). 
s 

Furthermore II F II is equal to the total variation of µ. Another 

example is that 1 * p' 1 < p < co, can be represented by 1. , where 
q 

. L + l = 1 • Thus for each 
p q 

f E 1 >:< 
p 

there is an isometric isomorphism 

whichidentifiesanelement t = (t 1,t2 , •.. )elq with f suchthat 

f(a) = 
co 
~ t.a. 

i= 1 l l 
for a = 

.; 7 



Duals of the Sequences Spaces 

We begin with the duals of the sequence spaces. Since 

and we have the following two theorems 

immediately. 

Theorem 5. 1 * extU(c 0 ) = {x.o.: j = 1,2, ... 
J 

with I A I = l} . 

Proof: (see Theorem 4. 2) 

Theorem 5. 2 * ext U (.£ 1 ) = {xe.£ : Ix I= 1, n = 1,2, ... }. oo n 

Proof: (see Theorem 4. 3). 

We shall consider * .£ 
co 

as a special case of 

* therefore will delay the discussion of ext U(.£ ) . 
CXJ 

Duals of the L Spaces 
p 

* L (S, M, µ) 
co 

and 
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If (S, M, µ) is a positive <T-finite measure space, then there is 

an isometric isomorphism between L ;~ (S, M, µ) and Leo (S, M, µ). The 

isomorphism is F-+ g where F(f) = 1 g(s) f(s) dµ for every 
s 

fe L 1(S,M,µ) (see [11], p. 289). We have previously characterized 

ext U(L ) but state the result for the sake of completeness. 
CXJ 

Theorem 5. 3 Let (S, M, µ) be a positive <T-finite measure 

space. Then 
:i:~ 

Fe extU(L 1 (S, M, µ)) if and only if F(f) =fa f dµ for 

all f e L 1 where geL 
CXJ 

with jgj = 1 a.e. 

Proof: (see Theorem 4. 12). 

For 
~* 

1 < p < co , L (S, M, µ) = L (S, M, µ) 
p q 

1 1 
where -+ - = 1. p q 

Thus the following theorem is a consequence of an earlier re sl1llt. 
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Theorem 5. 4 For * 1 < p < oo, FE ext U(Lp (S, M, µ.)) if and only 

if II F II = 1. 

Proof: (see Theorem 4. 11). 

We now want to give a necessary condition for an element of 

* L (S, M, µ) to be an extreme point of the closed unit ball. The 
Cl) 

problem is not as trivial as in the previous spaces since * L is an 
CD 

L 1 space for some measure space (S, M, µ). In general little is 

known about this measure space, but Theorem 5. 6 gives a partial 

description of the extreme points. We need some preiiminary remarks 

before stating the result. 

Let (S, M, µ) be a positive <T-finite measure space. Let M 1 

be the completion of M; i.e., M 1 contains all sets B such that 

' 

B C A for some A EM with µ(A) = 0. Let µ 1 be the extension of 

µ to , M 1 (see [ 40], p. 221). Then (S, M 1, µ 1) is a complete, 

positive, <T-finite measure space. Denote by ba (S, M 1, µ 1) the space 

of bounded additive functions on M 1 which vanish on sets of 

measure zero. The norm of an element X. in ba (S, M 1, µ1) is its 

total variation (II X. II = sup { I X.(A) I: A e M 1}). v (X., A) denptes the 

total vadation of X. on A; v~X.~ A) = sup {I X.(B) I: Be M 1, B C A}. 

The following result is needed but the proof is not within the 

scope of this paper and hence will not be given. 

Lemma 5. 5 There is an isometric isomorphism between 

* L 00 {S, M, µ) and ba {S, M 1, µ 1) determined by the identity 

F(f) = [ f(s) dX., 
s 

f e L (S, M, µ) • 
al 
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Proof: (see [ 11], p. 296), 

Theorem 5. 6 Let (S, M, µ) be a positive CT-finite measure 

* space. Fe ext U{L (S, M, µ)) only if F == aG, where ! a I = 1 and 
co 

G is nonzero and multiplicative; i.e. , G(fh) = G(f) G(g) for all 

f, g e L (S, M, µ) • 
co 

Proof: [11, p. 443] By Lemma 5, 5 there is a A. in ba{S, M 1, µ1) with 

II A. II == 1 and 

F{f) == lf(y)dA., fe L 00 (S,M,µ). 
s 

We want to show that A. vanishes on at least one of every pair of 

disjoint sets in · M 1 so that we may define a characteristic function 

later in the proof. Suppose there are disjoint sets P 1 and P 2 in 

M 1 with A.{P 1) :f 0 and A.{P2 ) :/= 0. Let x. 1{P) = A.{P () P 1) 

x.2 (P) = A.(P () {S,...., P 1)) for Pe M 1 • It follows that 

x. 1, x.2 e ba{S, M 1, µ 1), v(A. 1, P) = v(A., P () P 1), and 

and 

v (A.2 , P) = v (A., P () {S """Pl)) for Pe Ml • Since total variation is 

additive we have l = II A. II = II A. 1 11 + II x.2 11 • Since A. 1 :/= 0 , x.2 :/: 0 

. A.1 A.2 >!'-
we may def1ne v 1 = ~ and v 2 = II x.2 II . Thus v 1, v 2 e U(Lco) 

by the isometry between L:{s, M 1 µ) and ba{S, M 1, ~), and also 

A.= llx. 1)lv 1 + (l - llx. 1 11)v2 .. Since A. is an extreme point, we have 

A. = v 1 = v 2 and thus 0 :/= A.(P 1) = v2 (P2 ) = 0. This contradiction 

gives us the desired result. 

For Pe M 1 we have A.(P) (A.(S) - A.(P)) = 0. Hence the function 

A. 
m = A.(S) assumes only the values 0 and 1 . Thus 

( 1) m(A () B) = m(A) m(B) for all A, B e M. 
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For if either · ni(A) = 0 or m(B) = 0 then m(A n B) = 0. If 

m(A) = m(B) = 1 then either m(A....., (An B)) or m(B....., (An B)) is 

zero (since A....., (An B) and B,...., (Af) B) are disjoint). Hence 

m(A f) B) = 1. 

Let G be defined by G(f) = i f(y) dm for f e L Then 
CXl s 

1 
llGJj = Jjmjj = 1 and G = aF where I a I = = l . Let 

I X.(S) I 
f - x - A and g = XB for A, Be M 1 , Then 

G(fg) = [f(y) g(y)dm = [ f(y) g(y)dm = [ f(y)dm 1 g(y)dm. 
S '.Af)B A B 

The last equality follows from ( 1). Thus G(fg) = G(f) G(g) where f 

and g are characteristic functions on sets in M 1 . 

define 

For g e L 
CXl 

T g = {f e Leo: G(tg) = G(f) G(g)} . 

It is clear that T is a closed linear subspace 0f L . By the 
g CXl 

preceding remarks it follows that T = L if g is a characteristic g c:o 

function. (It is knewn that the characteristic functions form a 

fundamental set in L . ) Thus if f is an arbitrary functien. in L 
CXl CXl 

then the linear subspace T f conta'ins all characteristic functions and 

hence Tf = L . 
CXl 

Thus G(fg) = G(f) G(g) for every f, g e L . Q. E. D. 
CXl 

Note that the function X. has an "atomic type'' property mentioned 

in Definition 4. 5. This is to be expected since as we have pointed out 

* L 
CXl 

space for some measure space and the extreme p0ints 

1 
were of the form f = X. µ(A) X A where A was an atom 

and IX. I ""' 1. 
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We now have the following corollary. 

Corollary 5. 7 * Fe ext U(i ) only if F = aG where co laf = 1 

and G is nonzero and multiplica~ive. 

Proof: This follows from the previous theorem since the positive 

integers with the counting measure on all subsets is a er-finite measure 

space. Q. E. D. 

Duals of the H Spaces 
p 

It appears that the characterization of ext U(H >:<) 
p 

open question, It is known that for a Banach space X 

svbspace Y that is isometrically isomorphic to 

>'< 
denotes the set of all elements F E X' such that 

is still an 

and any closed 
x,:< 
-- where 
yl 
F(y) = 0 for 

every ye Y. y1 is called the annihilator of Y. Thus, since H 
p 

is a closed subspace of L ' p 
1 ~ p < co, the dual of H 

p 
can be 

de scribed if the annihilator of H in 
p 

>!c;: 

L can be determined, 
p 

It 

has been shown that the annihilator of H is isometrically isomorphic 
p 

l l ~ L 
to H where - + -- "" 1 (see [14, p. 113]). Therefore H ~ = F . 

q p q ,... p q 
Since there is no concrete description of H ,,, ; , any attempt to identify 

p 

the extreme points of its unit ball would be rather artificial, hence we 

will not endeavor to do so. 

Much has been written about the maximal ideal space M of H ; co 

i.e. , the multiplicative linear functionals on H. co A famous conj ec -

ture which was unsolved until recently is the following: Is the unit 

disk (when embedded in M) dense in M? Carle son [ 5 ] has shown 

that the answer is affirmative. For more details concerning the 

11 corona theorem' 1 see [12]. 



·It is known tha.t H: is a proper subset of H 1 . No concrete 

* description of H has been found and hence the identification of the 
CIJ 

extreme poiri.ts of * U(H ) seems to be an open question. 
CIJ 

Duals of the Lipschitz. Spaces 

63 

We now want to identify the extreme points of the unit ball of the 

dual of the Lipschitz spaces. This has been done in a more general 

setting than for the spaces themselves. Some preliminary remarks 

are needed before we state the main result. · 

Definition. 5, 8 Let F be a closed l.inear subspace of C(S). An 

evaluation functional on F, denoted by <p , is defined by <p (f) = f (x) 
x x 

where x e S and f e F, 

We will usei the following notation: S is a compact metric space 

with metric d. 

W = { (x, y) : x I y and x, ye S} . 

~ W ls the Stone-Gech compactification of W (see [i l, p. 276]). 

<l>s = {> .. <p x : x e s, Ix. I = l} 

<l>w = { >.. <p w : w = (x. y) e W , O < d a (x, y) < 2 , I >.. I = 1} 

D = {>..<p : we ~w-w, l>..I = l} 
w 

For f e Lip (S, da) define f on SU W by 

f (x) = f(x) 

,..., ,..., 
f (w) = f (x, y) = f(x) - f(y) 

d a (x. y) 

xeS 

w = (x, y) eW 
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Since f is bounded and continuous on W, it has a unique 

extension ~ e C{~ W) with lltll = 11;~11 . If we define f'{x) = f{x), x e S, 

/\ 
then f is a continuous extension defined on SU ~ W. For every 

f e Lip (S, d a.), let jf = L j is clearly linear and is also an isometric 

map since for every f e Lip (S, d a), we have 

" /\ //j£/1 8u~w = max{sup /f(x)/, sup /f(w)/) 
XES WE~W 

/\ /\ 
= max (sup I f(x) I , sup I f(w) I) 

xeS weW 

= max ( II f 11. II f II ) 
da 

= II £11 . 

Definition 5. 9 Let F be a closed linear subspace of C (S) and 

x e S. We say a function f in F peaks at x relative to F if 

f(x) = 1 ~ / f(y) I with equality holding only for those y in S that 

satisfy either 

g(y) = g(x) for all g e F or 

g(y) = -g(x) for all g E F , 

The next lemma, due to de Leeuw, helps us to identify the extreme 

:i::: 
points of U{F ) in terms of the peaking £.unctions relative to F where 

F is again a closed linear subspace of C{S). 

Lemma 5. 10 Let x ES. If F contains a function f which 

)~ 

peaks at x relative to F, then· <P e ext U(F ) . 
x 

Proof: [ 9 ] <P E U(F*) 
x 

since 

. /l<Pxll = sup{/<Px(f)/: 11£11 < l} = sup{/f(x)/: 11£/1 < l} < l·. 
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l 
. Suppose <Px = 2 ('1 1 + '12 ) where 'Yl' '1 2 e U(F*). 'Yl' '(2 are bounded 

linear functionals cm C(S) and therefore by the Riesz representation 

theorem (see [40], p, 310) there are unique finite signed Baire 

measures µ 1 and µ 2 such that 

'I 1 (g) = 1gdµ 1 and 
s 

'1 2 (g) = 1 g dµ 2 for all g e F. 
s 

Also the total variation of µ 1 is equal 11'11 II ::S., l, i = 1, 2. 

Then 

Let f be a function in F which peaks at x relative to F. 

I 1fdµ 1 I ::S., s~p { If (y) I : y e S} < l . 
s 

Similarly 11 f dµ 2 I < 1. Thus 
s 

1 = f(x) = <P (£) x 

Thus it follows that 1 f dµ 1 ::::: 1 fdµ 2 = l. Define 
s s 

Y+ = {y: f(y) = l} = {y: g(y) = g(x) for every g e F} 

Y = {y: f(y) = -1} = {y: g(y) = -g(x) for every g e F} 

Y 0 = { Y: I f(y) J < 1} = { y: y i Y + and y i Y _} 
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{ 
f(x) 

~ f(x) 
also peaks at x. 

Since 1 ·2l f dµ, f. ( f dµ. unless 
y 1 Jy l 

. 0 0 

µ. (Y 0 ) = 0 , it follo~;~ that 
. l ,;;:. 

~; 

1 = µi(Y+) - µi(Y _), Therefore 

= 1gaµ, = f gaµ .. + r gaµ, +[ gdµ. 
s l y 1 Jy 1 y l 

+ - 0 

= g(x) = <px(g) for all g e F. 

Hence <px = '( 1 = 'iz wh~ch implies . cpx E ext U(F*). Q. E. D. 

The next two lemmas will identify the peaking functions in 

j (Lip (S, d a)) which, as we recall, is the image under j of 

Lip(S,dll') in C(S U ~W). We then will use Lemma 5. 10 to identify 

the extreme points of U(Lip(S,da)) and U(lip(S,da)). 

Lemma 5. 11 For each point x 0 e S there is a function 

f e lip (S, d a )(0 < a < l) such that f peaks at x 0 relative to 

j (Lip (S, d Cl.')) and hence relative to j(lip (S, d a)) . 

Prcc>af: [18] Let x 0 be a fixed point of S and define g(x) = Kd(x, x 0 ) 

where K > 0. For x f. y we have 

= 
K/d(x,x0 ) - d(y,x0 )1 l-a l-a 

d(x, y) d (x, y) < Kd (x, y) . ll' d (x, y) 

1 - ll' Clearly g is continuous and since S is compact d (x~ y) is 

bounded. Thus g e Lip (S, d a). Letting d(x, y) -+ 0 we see that 



g e lip (S, d a). By choosing K small enough, II g II 00 ~ 1 and 

II g II < 1. Also g is a nonnegative real-valued function vanishing 
d Q' 

only at x 0 . Let f == 1 - g. Then 

(i) 0 < f < 1 , 

(ii) f(x) = 1 if and only if and 

( . ) II f 1·1 ,.,, = { 11 - g(x) - i + g(y) I _/. } 
iii d""' sup d(x, y) : x -r y 

{ 1 -a 
:::_sup Kd (x,y): x :f y} < 1. 

Hence f' peaks at x 0 relative to j(Lip(S,da)). Since fe lip(S,da) 

then f also peaks at x 0 relaHve to j(lip (S, d a)). Q, E. D. 

Lemma 5. 12 Let w 0 = (s, t) e W with d a (s, t) < 2. Then 

there is a function f e lip (S, d a) such that f peaks at w 0 relative 

to j(Lip(S,da)) and relative to j(lip(S,da)). 

Proof: [ 18] Let 0 < a < 1 and w 0 = (s, t) e W. Suppose 

Q' 
K = d ( s, t) < 2 . Define an auxilliary metric p by 

. a -1 p(x, y) :: mm (d (s, t) d(x, y), K), 
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p is. a metric and a p(x, y) :::_ d (x, y) with equality holding if and only 

if either d(x, y) = d(s, t) or d(x, y) = 0. Let g and h be defined 

by g(x) = p(x,t) ~ ~ K and h(x) == }K - p(x,s), xe S. It is elear 

that 

( i) 11g1/ 00 = ~ K and 

1 
(ii) g(x) = - 2° K if and only H x = t. 

Since I g(x) - g(y) I = I p(x, t) - p(y, t) I :::_ p(x, y) ::_ d a (x, y) for 



(x, y) e W, it follows that 

(iii) II g II a < I and 
d 

(l.v) 11\g(x. y) I -- I g(x) - g(y) I -- I h h • implies t at eit er x.:: t or 
da(xJy) 

y = t. For if x -/: y then. 

p(x, y) ~ d a (x, y) = I p(x, t) - p(y, t) I ~ p(x, y) 

which implies that d a (x, y) = p(x, y). Hence d(x, y) = d(s, t) 

and I g(x) - g(y) I = d a (s, t) = K. (i) implies either 

I l 
g(x) = - 2 K or g(y) = - 2 K, Thus it follows from (ii) that 

either x = t or y = t. 

Since I g(x) - g(y) I ~ p(x, y) then II g II p < l. Thus for (x, y) e W, 

I g(x) - g(y) I 
a d (x, y) 

= 
I g(x) - g(y) I 

p(x, y) 
p(x, y) < P (x, y) 
O! 

d (x, y) 
O! d (x, y) 

But from the definition of p, p(x, y) - 0 as d a (x, y) _... 0. Hence 
O! d (x, y) 

Hence g e lip (S, d a). It has been shown [ 18] that if g e lip (S, d a) 

then ~ vanishes on f3W ""' W . Thus 

(v) ~(w) = 0 if we f3W ""'W. 
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The function h satisfies conditions (i) -(v) with t replaced by 

s and the minus sign removed in (ii). Let f = } (g + h), Since j is 

I\ II\ I\ 
linear we have f = 2 ( g + h) . For the fixed point w 0 , 

If w = (x, y) e W then 

f(s) - f(t) 

da(s, t) 

= p(s, t) + p(s, t) ::r 1 . 

2da(s, t) 



Suppose j1(w) I = '1 then (iii) implies j~(w) I = j'h(w) I = 1. By 

(iv), {x; y} = {s, t}. Hence w = (s, t) or w = (t, s). Since 'f' 
vanishes on f3W ""W and II 111 S = II f II O? < ~ K < 1 , the function 
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j'f'( · ) I attains the value l only at (s, t) and (t, s). By the definition 

of jg wehave ~(s,t)::: -~(t,s) forevery geLip(S,da) and thus 'f' 

peaks at w 0 = (s 1 t) relative to j(Lip (S, d a)) and relative to 

j(lip(S,da)). Q.E.D. 

We consolidate the information from these lemmas int0 the next 

theorem. 

Theorem 5. 13 For 0 < a < 1 

a-·~ U U ext U(Lip (S, d )") = <l>s <l>w DO 

where D 0 is some subset of D (see p. 63). For lip (S, d a), 

Proof: Identifying the linear functionals on Lip (S, d a) with those on 

the isometric image of j : Lip (S, d a) .....,. C(S U f3W), we see from 

a ,,, 
Theorem 5, 15 that every elemer;i.t of ext U(Lip (S, d )"') has the form 

i:: <p where I i:: I = 1 and v e S U f3 W • If v ::: ( s, t) e W with 
v 

a d (s, t) ::._ 2 then <p can be represented as the convex combination v . 
a :i:;: 

of two elements of U(Lip (Sid ) ) by writing 

::; 
f(s) - f(t) 

a d (s, t) 
a d (s, t) 



and 
a ..... 

Thus cp i ext U(Lip (S, d )"') if 
v 

da(s, t) > 2 where v::: (s, t). Hence 
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If v e S or v = (s, t) e W with da(s, t) < 2 then by Lemmas 5. 11 and 

5. 12 there is an f e lip (S, d a) 
/;::.. 

such that f peaks at v. Hence by 

Lemma 5. 10, cl>s U cl>w ~ ext U(Lip (S, da r:~). It therefore follows 

that extU(Lip(S,da)*) = cl>s U cl>w U cl>n for some subset D 0 of D. 
0 

The above argument holds for the unit ball of lip (S, d a)*. The 

elements of D all vanish on lip (S, d a) ([18]) and hence cannot be 

extreme points of U(lip (S, d a)*). Hence ext U(lip (S, d a)*) = cp5 U cl>w, 

Q.E.D. 

Until recently it was not known whether was empty. A 

result of Johnson [19] is that D 0 -/: Ql. Furthermore it has been shown 
. . 

that if S is countable then D 0 is uncountable (see [20]). An open 

question is the following: if S is uncountable, is D 0 uncountable? 

A complete description of D 0 appears to be quite difficult. 

Dual of the C (S) Spaces 

The final dual to be considered is the dual of C(S). As we shall 

see in the next theorem, the extreme points of U(C(S)':~) are the point 

evaluation functionals on C(S). We first of all need the following 

lemma. 
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Lemma 5. 14 Let K be a compact subset of a locally convex 

linear topological space E whose closed convex hull is compac;:t. Then 

the only extreme points of cl con K are points of K. 

Proof: [11, p. 440] Let p E (ext cl con K) ,.._, K. Since K is closed 

there is a neighborhood VO of the origin such that (p + V 0 ) n K = 0. 

Since E is a locally convex linear space there is a convex neighbor-

hood V of the origin such that V - V C V 0 • Thus 

{p+V)n(K+V) = 0 andhence p{cl(K+V), The family 

{ k + V : k E K} is an open covering of K and hence has a finite sub-

covering {kit V: i = 1,2, ... ,n}. Let 

K. = cl con [cl(k. + V) n K] C cl (k. + V). K. is a closed and hence 
1 l - l l 

compact subset of cl con K. Thus 

(see [II. p. 415]). 
n 

X..>O, ~X..=l, 
l - i= 1 l 

P = k. if A.. > 0 . 
l l 

n 
It follows that p has the form p = ~ A.. k. , 

i= I 1 i 

k. e K. • Since p is an extreme point we have that 
l 1 

Therefore 

n n 
p E u Ki c u cl (ki + V) c cl (K + V) . 

i= l i= 1 

This contradiction implies ext cl con K C K. Q. E, D. 

We are now ready to state the main result of this sectic:m. 

Theorem 5. 15 Let F be a closed linear subspace of C(S). 

Then every extreme point of U(F*) is of the form a <Px where 

I a/ = I and x e S. If F = C(S) the converse is also true, i.e., 
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every element of the form a <P . , I a I = 1 , x e S is an extreme point x 

of U(C(S)*). 

Proof: [11, p. 441] Let A:;: {a<Px: I a I :;: 1, xe S}. We fi.rst need 

to show that A C U(F*). For. f e F we have II f 11 = sup {I f(x) I: x e S}. 

Thus if II f II < 1 it follows that I <Px(f) I = I f(x) I < 1 and hence 

This implies a <Px e U(F*) and ; A C U(F*). 

Let F* have the w*-topology. Since U(F*) is w*-compact, it 

is w*-closed and also convex. Thus w* -cl con A C° U(F*). Suppose 

µ. e F* "'cl con A. Then since F* has the w* -topology there is an 

f e F and real constants c and e, wi~h £ > 0 ; Re'!'{µ.) = Re µ.(f) > c ; 

" and Re f{v) :;: Re v(f) < c;; -£, _for v e cl con A. This is a result of a 

version of the Hahn •Bci.nach Theorem. In particular 

Re af(x) = Re a <P (f) < c -£ for x e S and I a I = 1. Hence 
x -

ilfll ~ c --e:; for suppose ilfll > c -e:. 'l'hen there is an x 0 e S such 

that If (x0 ) I > c - e • If 

~ 
jf(x0 )1 then 

But this contradicts ·Re a f(x) < c -e: for every x e S and I a I :;: 1. 

Therefore 

II 'I { I µ.(g) I F J. o.} > ~ > ----$..- > I 
µ. j = sup II g II : g e , g .,. . - II f II - c - e 

* * Thus µ. ¢ U(F ) and we have U(F ) = cl con A. 
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If we show A is w*-closed then the first part of the theorem 

will follow frem Lemma 5. 14. Let C be the unit circle of the complex 

plane. The map (a, x) - a cp is w* -continueus from C x S into x 

C(S)*. Since C X S is compact, the im.age under the map, namely A, 

. is also. 

To prove the converse let · F = C(S) and . x e S such that 

cp = X.µ + 0 - A)v where 0 < X. < 1 and µ 1 v e U(C(S)*) .. We need to 
x 

show that cpx = µ = v. Let f0 e C(S), llf0 II ~ 1 and £0 (y) = O for 

y in some neighborhood N of x. By the Tietze extension theorem 

there is an h E C(S) such that llhll ~ 1, h{x) = 1 and h(y) = 0 for 

y i N. Then 

X. µ(h) + {l - X.)v{h) = cpx(h) = 1, I 1-1(h) I < 1 , and I v{h) I ~ 1. ..... 

Thus µ(h) = v (h) = 1 • Similarly we have µ(f0 + h) = v (f0 + h) = 1 ~ 

Hence µ(f0 ) = v(f0 ) = 0. Now let f 1 e C(S), II f 1 II ~ 1 and f 1 (x) = 0. · 

Then since f 1 is continuous en S, for each positive integer n there 

is a neighb0:rh00d Nn of x suc;h that If 1 (y) I < ! for y E Nn, Let 

M be a neighborhood of x such that cl M C N . Again by· the n n ,_ n 

Tietze ext:nsion theerem there is an h~ e C(S) such that llhn II ~ ·-~., 
h (y) = 0, y i N 

n . n 

II f 1 - hn II ~ 1 for 

for y EM • 
n 

n > l , and f 1 - hn vanishes en 

Then 

M. 
n 

fl ... hn -fl' 

Thus 

f 1 - hn satisfies the conditions on the function f0 and hence by what 

Since f - h .... f and 
1 n 1 

µ and v are continuous, we have µ(f 1) = v(£1) = 0. If h' e C(S) 

such that: h'(x) = 0, then for sufficiently large n, 11~11<1 n so that 

h' 
n 

satisfies the cenditions on f 1 and thus µ(h') = v(h') = 0, If 

cp. (h') = 0 then µ(h') = v(h') = 0 and it follows that the:re are x 
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scalars a and y such that µ = acpx and v = 'l'Px (see [11, p. 421]). 

Since µ, v e U(C(S),:~), we have I a I < 1, and iY I ~ 1 . Since 

cpx,= (X.a+(l-X.)y)cpx we have X.a+(l-X.)y = 1. This implies 

a = y = l since 1 is an extreme point of the unib disk in the complex 

plane. Hence 
}:e 

cp e ext U(C(S) ) , 
' x That 

consequence of Lemma 2. 7. Q, E. D. 

a cp e ext U(C(S)*) is a x 

We have now characterized the extreme points of the unit balls 

of five Banach spaces in Chapter IV and their duals in the present 

chapter. It may be noted that is some cases these characterizations 

were very intuitive and what we might expect them to be. On the other 

hand some of the cases proved to be difficult and· in fact some of the 

results are not known as was the situation in the duals of the Hardy 

spaces. In the next chapter we want to look at some extensions of the 

notion of extreme points. 



CHAPTER VI 

OTHER DISTINGUISHED POINTS IN 

BANACH SPACES 

In the present chapter we will discuss s0me other points in 

Banach spaces which are somewhat related to extreme points. Some 

of these are generalizations of extreme points while others are special 

cases of extreme points. Most of the results will be stated without 

proof. Our intent is to supply some ideas and problems so that the 

interested reader might pursue the study of extreme and other related 

points in Banach spaces. 

The first topic to be considered is the notion of an exposed point 

of a convex set K. 

Definition 6. l Let K be a convex subset of a locally convex 

linear space · E. A point x . in K is said to be an exposed point of K 

if there exists f e E* such that Re f(x) > Re f(y) whenever ye K, 

x I y. (The set of exposed points of K will be denoted exp K. ) 

Intuitively speaking a point x is an exposed point of K provided 

a closed hyperplane exists which. inter sects K only at the point x. 

The following theorem shows that an exposed point is a special case of 

an extreme point. 

Theorem 6. 2 Let K be a convex subset of a normed. linear 

space E. Then expK C extK. 
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Proof: Let x e exp K. Thus we have f e E* such that Re f(x) > Re f(y) 

for ye K 1 x ::fi y. 

1 
that x :;:: 2 (w + z) 

1 
Re f(x) = 2 Re f(w) 

x E extK. Q. E. D. 

Suppose xi extK. Then there are w, z e K such 

with w :/: x and z # x. Therefore 

1 + 2 Re f(z) < Re f(x). This contradiction implies 

A simple example in the plane shows that not every extreme 

point is exposed. 

Example 6. 1 Let K be l!he convex hull of two disjoint circles 

in the plane. The four boundary points A 1 B 1 C, D where the 

common tangents int~rsect the circles are extreme points but not 

exp>6sed. (See Figure 6. 1) A is not exposed since the supporting 

hyperplane at A is the tangent line through A and B which inter-

sects K at points other than A. On the other hand A is extreme 

since it is not on an open line segment contained in K. 

A 

D 

Figure 6. 1. Extreme Non-exposed Points 
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If we re strict our attention to normed linear spaces, then the 

following is a result similar to the Krein -Mi,lman Theorem. 

Theorem 6. 3 If K is a compact convex subset of a normed 

linear space E, then ext K C cl exp K and K = cl con exp K . 
...,.. 

Proof: (see [22]). 

The above theorem by Klee appeared in 1958. In the same paper 

a similar result is proved concerning weakly compact subsets of a 

separable Banach space. This has been improved [ 1 ] and states that 

every weakly compact subset of a Banach space is the closed convex 

hull of its exposed points. 

A result which is closely associated with the Bes saga-Pelczynski 

Theorem is the following. 

Theorem 6. 4 Let X be a reflexive Banach space and K a 

closed bounded convex subset of X. Then K = cl con exp K. 

Proof: (see [27]). 

By Theorem 3. 20 we know that if X is an infinite dimensional 

reflexive Banach space, then ext U(X) is uncountable. According to 

[28] Branko Grunbaum has shown that there is a three dimensional 

space · E such that ext U(E) is uncountable but exp U(E) is 

countable. This leads to the following open question: can the unit ball 

of an infinite dimensional reflexive Banach space have countably many 

exposed points? 

A refinement of the definition of an exposed point i~ the notion of 

a strongly exposed point. 



Definition 6. 5 Let K be a convex subset of a normed linear 

space E. A point x e K is called a strongly exposed point of K if 

the re is an f e E* such that 

(i) f(y) < f(x) for ye K, y :f. x and 

(ii) f(x ) .- f(x) and {x} C K imply llx - x II .- 0. 
n n - n 
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The following example due to [ 26] shows that there are separable 

reflexive Banach spaces whose unit balls have exposed points which are 

not strongly exposed. 

Example 6. 2 Let 12 be the 

with norm llxll = {E Ix 12} 1 / 2 <co. 

space of real sequences x = {x } 
n 

n 
1 l 

Let e = { l - - , 0, ..• , 0, 2 , 0, ..• } n n 

f 2 3 h th b l . . th th l or n = , , . . • w ere e num er 2 is in e n- p ace. 

clearly an element of U(l 2 ) for n = 2, 3, .•. An element 

is of the form f(x) = E t x where {t } and {x } = x are elements n n n n 

of 1 2 . In particular g(x) = x 1 is an element of 1;. The element 

p = { 1, O, 0, ... } in 1 2 is such that g(p) = 1 and g(x) < 1 for 

x e U(1 2 ), x :f. p. Thus p is an exposed point, but it is not strongly 

exposed, 
>:~ 

To see this let he 12 

and h(e ) -h(p). 
n 

But we have 

with h(p) > h(y), 

llen-Pll'.:.~ for 

therefore II e - P II n 
does not converge to zero. 

n=2,3, ••. and 

The following refinement of the Krein-Milman Theorem involves 

strongly exposed points instead of extreme points. 

Theorem 6. 6 Every weakly compact convex set in a separable 

Banach space is the closed convex hull of its strongly exposed points. 

Proof: (see [26]). 
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A generalization of Theorem 3. 20 is the following: every closed 

bounded convex set K with nonempty interior of an infinite dimensional 

reflexive Banach space X, ext K is uncountable ([28]). It is also 

shown in the same paper that if X is separable there is a symmetric 

convex subset with nonempty interior which has countable many strongly 

exposed points. However, it is an open question whether there are 

countably many exposed points. 

Definition 6, 7 Let K be a convex subset of a normed linear 

space E. An exposed ~ of K is a closed half-line L contained in 

K such that L = K () H for some supporting hyperplane H of K. 

(The union of all exposed rays of K will be denoted by r exp K. ) 

Theorem 6. 8 Suppose K is a locally compact closed convex 

subset of a normed linear space and K contains no line. Then 

extK C clexpK and K = clcon(expKU rexpK). 

Proof: (see [22]). 

To see the above theorem more clearly, consider the following 

example in the plane. 

Example 6. 3 Recall that the only extreme point of the cone 

y > / x / in the plane is the origin (see Figure 2. 3a) . It is clear that 

the origin is also an exposed point, We note also that every nonextreme 

point of the cone is a convex combination of two boundary p0ints. Thus 

the cone C is the convex hull of exp C U r exp C. 

We next want to consider smooth points which are in a sense dual 

to the notion of an exposed point. 
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Definition 6. 9 Let K be a convex subset of a normed linear 

space. An element x in K is called a smooth point of K is there 

exists a unique hyperplane which supports K at x. {The set of 

smooth points of K will be denoted sm K. ) 

It is clear that every point on the boundary of the unit disk in the 

plane is a smooth point (see Figure 2, 2a). The smooth points of a 

convex polygonal region in the plane are all the points on the boundary 

which are not vertices. (see Figure 2. 1) Recall that the extreme 

points of such a set were the vertices. Therefore we see that an 

extreme point may or may not be a smooth point and vice -versa. A 

problem posed by Klee [22] is the following: if K is a bounded closed 

convex subset of a reflexive Banach space with int K :f. 0, must K 

have an exposed point or a smooth point? Theorem 6. 4 answers the 

question for an exposed point. There is however the next result 

concerning the smooth points of U(X). 

Theorem 6. 10 Let X be a separable Banach space. Then the 

smooth points of U(X) form a dense G 0 subset of the boundary of 

U(X). 

Proof: (see [34]). 

The dual notion of strongly exposed is strongly smooth. We will 

use this notion only for U (X) so we define it only in this case. 

Definition 6. 11 Let E be a normed linear space. x e U(E) 

with ,- II x II = 1 is a strongly smooth point of U(E) if (i) the re exists 

only one f e E* satisfying f(x) = II f II = l and (ii) f (x) _,, l 
n 

and 
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{f } 00
_ C U(E*) imply that /If - fl!__.. O. 

n n-1 - n 

Note that by duality and Example 6. 2 there are separable 

reflexive Banach spaces whose unit balls have smooth boundary points 

which are n0t str0ngly smooth. In fact .in the next example due.t0 [26 T 

we shall see that there is a separable Banach space whose unit ball has 

no strongly smooth b0undary points. 

Example 6.4 Let x = {xn} e 1 1 with /Ix//= 1 {restrict 1 1 to 

real sequences). Suppose x is a strongly smooth point of U(l 1). Let 

f be the unique element of 1 t such that f(x) = I/ f II = I . For 

:i:~ 
ye 1 1 , f(y) = ~ t y where t = { t } e 1 = 1 n n n I m Define f by 

n 

:x: I x 
{ ~ , . . . . Ix: I ' 0. 0' ... } E 1 C() • 

(Note x.#0,i=l,2, ... 
l 

since f is unique. ) Clearly 

f (x) __.. II x 11 = 1 
n 

and * fneU(1 1 ), n = 1,2, ... But 

x 
which does not converge to 0 unless t = n and 

n /xn/ 
this is impossible x is not a strongly smooth point of 

t __.. 0. 
n 

Since 

We shall now give a positive result concerning strongly smo0th 

points. 

Theorem 6. 12 The boundary of the unit ball ofa separable 

reflexive Banach space contains a dense subset of strongly smooth 

pointl3. 
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Pr0of: (see [26]). 

The last notion to be considered in this chapter is that of a 

support point. 

Definitien 6. 13 Let K be a convex subset of a. normed linear 

space E. x e K is a supp0rt p0int of K if there exists a !cyperplane 
, .. 

which supports K at x, that is, the re is art f e E '' (f :/: 0) such that 

f(x) = sup f(K) . 

It is easy to see that every boundary point of a compact convex 

subset K of the plane is a support point 0f K. It follows from 

Definitions 6. l and 6. 9 that exposed points and smooth points are 

support points. The next result shows that in the case of the unit ball 

of a normed linear space, every boundary point is a support point. 

Theorem 6. 1~ Let E be a normed linear space. Then every 

x e E with /1 x II = 1 is a support point of U(E) . 

Proof: Let x e U (E), II x /I = 1 . Since U(E*) is w*-compact, every 

A ** * x e E attains its supremum for some f e U(E'•) .. Hence the hyper -

plane associated with f supports U(E) at x. Thus x is a suppert 

point of U(E). Q. E, D. 

In general not every b0undary point of a dosed convex subset of 

a Banach space is a support point, but we do have the following result 

concerning the support points, 

The0rem 6. 15 Let K be a closed convex subset of a Banach 

space. Then the support points of K are dense in the boundary of K. 



Proof: (see [4]). 

Corollary 6. 16 If K is a closed convex subset of a Banach 

space, then K is the intersection of all closed half-spaces which 

support it. 

Proof: (see [ 4 ] ) . 
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As mentioned previously this chapter is a pot~~mrri of results, 

examples and problems conceirning other distinguished points in Banach 

spaces. The purpose of the chapter is to give the reader some ideas 

concerning the geometry of linear spaces. There are some notions 

which are not mentioned such as: strongly extreme points [29] and 

algebraically exposed points [22] because they are much less important 

than the others. 

As is the case of extreme points, these other notions have useful 

applications in various areas. Information concerning exposed points 

can be applied to invariant means on locally compact groups and 

discrete semigroups (see [ 15]). 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

This dissertation was written so that it is within the mathematical 

background of a second year graduate student. It could be used as 

reference material for a seminar on extreme points and their r0le in 

functional analysis. However the main purpose of the paper is to 

collect and present research in the literature in a readable and compact 

form. The main theme of the paper is to characterize the extreme 

points of the unit balls of five well known classes of Banach spaces. 

The reader should gain an appreciation of the importance of extreme 

points in the study of convex sets in functional analysis. 

Chapter I is an introduction which explains the purpose of the 

paper and the background needed to read it. Chapter II gives the 

definitfon of an extreme point and some basic lemmas which are used 

later in the dissertation. The notation to be used later is also 

explained. Chapter III presents three important theorems· concerning 

extreme p0ints. They are given in chronological order so that the 

historical development 0£ the subject, to a certain degree, can be 

followed. As a motivational device, some applications of extreme 

points are also given. The heart of the paper is in Chapter IV. The 

extreme points of the unit balls of the five chosen Banach spaces are 

characterized. In some cases this proved to be a lengthy proposition. 

It is the desire of the author that the material is presented· in an 

nA 
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understandable form. Concl.itions under which the unit ball is the closed 

convex hull of its extreme points are also given. The concern of 

Chapter V is with the extreme points of the unit ball of the duals of the 

spaces mentioned in Chapter IV. 

Chapter VI gives some extended notions of extreme points. This 

should give the interested reader who wishes to do further study on 

these subjects a direction to proceed. The compilation of results in 

these areas into a comprehensive work could possibly be a worthwhile 

paper . 
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