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CHAPTER I 

INTRODUCTION 

Discussion 

The free~vibratioJ11al characteristics of unstiffened or stiffened 

circular o:r noncircular cylindrical shells are of interest to designers 

of aircraft fuselages and submari.q.e hulls. Noneircular cross sections 

are due eithe~ to special internal storage requirements or to imper­

fections occurring dudng manufacture.. The purpose of this study is to 

develop and evaluate two methods of analysis for determining the free­

vibrational characteristics of ring- and/or stringer-stiffened, singly 

symmetric, o.oncircular cylinders. For the first method, the stiff­

eners are treated as being loca~ed at discrete locations. The second 

method conaiders the stiffeners to be "smeared" over the surface of 

the shell, thereby transforming the stiffened shell into a somewhat 

equivalent. orthotropic cylinder. 

Background 

Methods for vibrations analyses of unstiffened, circular> iso­

tropic cylinders with specialized bou.ndary conditions have been avail­

able for many years. With the advent of the digital computer., the 

1 



general case of stiffe~ed, no~d:rcul"r, anisotropic cylinders with 

arbitrary boundary .con4iUons col,l.ld be studied. A brief review of 

some historically important studies which have contributed to the sol'1 .. 

tion of this com:pUcated problem is presented tn the following 

paragraphs, 

The equatione;i which govern the static and dynamic behavior of 

noncirc~lar cylinders have been derived by extending the classical 

theory of thin circular cylb1dl"ical shells to incluP,e the effec;ts 0£ non ... 

circularity, Ke:mp.p.er (1) presented energy expressions i;i.nd differential 

eqQ.ations useful }n the analysis l;)f arbitrary cylind.dcal shells, 

Kempner and his associates have used these eq,uatipns to study a wide 

range of problems dealh1g primarily with Unear and nonlinear sta,tic::s 

problems (2. 3, 4, 5, 6, 7). Using ~he aarne class of ~vals as 

Kempner, Klpsner and Pohle (6, 9, 10) S1tudied the free vibrations of 

infinitely long oval eylinder s utilizing an approximate method. 

Culberson and Boyd ( 11) ol;>tained e~a.ct solutions of the free vibration 

equations of motion for the same clasi;; of oval cylinders i;tudied by 

Klosner and Pohle. 

Based on solution functions used by Boyd (l2) in static analyses 

of nonci.i:cular panels subjected to uniform px-es1;1ures, studies have 

been performed considering linear buckling (13) and free vibration (14) 

of nonc:;:irc.ular cyHndric~..l shell panels. Finite-difference ( 15) and 

• Rayleigh-Ritz (16) analyse~ of the small de£lection st~tic behavior of 

oval cylinders and non~ircular paneis also have been conclucted. 



Sewall (17) used the Rayleigh-Ritz technique to study the free 

vibrations of elliptical cylindrical shells having free-f.ree, fixed ... free, 

and freely supported ends. A free vibration study of nondrcular cyl­

inders was also performed by Malkina (18), 

Mc Elman, Mi kulas and Stein ( 19) p.resented a theo.retical analy­

sis of the vibration and stability characteristics of eccentrically 

stiffeJ;).ed circular cylinders and flat platt;is. In this study, the stiff­

en,ers were not considerecl as discrete members, but their effects we.re 

averaged or "smeared out" over the plate o.r shell. 

Egle et al, (20, 21) utilized the Rayleigh-Ritz t~chnique to deter .. 

mine the free vibration frequencies and mode shapes of stiffened 

circular cylinders. The rings a.11d st:ringers in this study were treated 

as discrete elements, and, a number of i;:>ractiGal end \'.ionditions were 

eqiplayed. 

Bushnell and Almroth (22) have developed a computer program to 

determine the vibration and stability characteristics of stiffened shells 

of a geperal shape under geReral loadings. The numerical solution is 

based upon a two-P.imensional, fi.nite.,.difference approximation. The 

shell surface is covered wit.P, mesh lines parallel to the coordinate 

lines and the me sh spacing is variable over the sul1'face. 

Boyd and Rao (23) studied the free vibrations of riRg- and 

stringer- stiffened elliptical cylindrical shell stn1ctures, treating the 

stiffeners as d~screte elements. Their stud,y utilized the Rayleigh­

Ritz technique to find the free vibration frequencies and mode shapes 
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for a wide ra.n,ge of cross secticm eccentriciUes, .Q.Umbers of stiffeners 

.. 
and end conc;litions. The Flugge strain-displacement relations were 

used f(;>r the cylindrical shell. In addition, the shell was limited to 

isotropic:: materials and symmetric rings. The method of analyi:iis was 

complicated by the eUects of noncircularity and the compatibility 

requirements between the shell and the stiffeners. These effects 

increai;ed the computer storage .requirements and the computation 

time for these highly comple;x: problems. 

Even with the research. accomplished to date, a need still exhts 

for a method of analyli!is that has: 

• increased computational efficiencies, 

• orthotropic material properties for the shell, 

. 
• improved compatibility X'elations, a:o.4 

• arbitrary stiffener cross sections. 

F1,1,rthermo:i:"e, a need exists for additional 1,1nderstanding of the vibra-

tional characteristics of stiffened shell struct1,1res. This study was 

initiated to provide these needs, 

Approach to the :Problem 

The objective of the pre i:;ent study is to develop a method of anal-

ysie that satisfies the above needs and to obtain additional understanding 

of the vibrational cha:racte:dstics of stiffened shell structures. Two 

methods of analysis are developed here to study the free..,.vibrational 

~haracteristics of unstiffe11ed or stiffened arbitrary cylindrical shells. 
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Both methods use the Rayleigh-Ritz approach. ln the first method of 

analysis, the stiffeners are considered to be discretely located, The 

second method 11 smeari;; 11 the stiffeners over the surface of the shell 

based on an equivalent energy approach, These methods are evaluated 

for their computationc;i.l efficiencies. 

Orthotropic material properties for the shell are included in this 

analysis. With orthotropic material properties~ the vibrational char-

acteristics of filament wound pres1;1ure vesf!els can be studied, Also, 

this allows for the use of composite materials, Thi$ method could be 

easily modified to include sandwich-type materials. Kraus (24) 

showed a good correlation between the numerical results obtained from 

Love's Firet Approximatio:n, Theory of thin elastic shells and those 

from higher .. orde:r theories (e. ~·, Flligge'~ Theory) and theory of 

elastidty solutions, Therefore, the theory of Love was selected fo;r;-

this study. 

An improved set of compatibihty relations for the stiffeners was 

developed for this study (Appendix A). These compatibility relations 

a.ve consistent with the shen and beam theories and are preferred to 

those used in References 21 and 23. In addition, the stiffeners can 

have arbitrary cross sectionE), :for example, shell struotures using 

zee or channel stiffeners c;an be analyzed with this method of analysis. 

Stiffeners with arbitrary cross sections are quite commonly used in 

many structures. 
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The derivation of the ~ne,rgy expressions fQr the shell structures 

is described in Chapte~ II. Expres~iol).s for the stiffenei- energies are 

presented in Appendixes B and C. The elements of the mass and stiff~ 

ness matrices are given in Appendix D. The computer program 

developed is discussed in Chapter III. An evaluation of the methods 

and numerical results a1"e discussed in Chapter IV. Finally, Chapter 

V summarizes the results of thiSI study, contains conclusions and 

makes recommendations for future investigatiPP.s. 



CHAPTER II 

FORMULATION OF THE SOLUTION 

l'he equations of motion in thi!:'l analysis were developed using 

Hamilton's l?rinciple by mfr1imizing the Action Integral with respect to 

the undetermined coe!ficients of assu:r:ned displt;i.cement functions, i.e., 

ti 
6.A.:;: J (6T .. 5U)dt;:: 0 (2. 1) 

t 
0 

The firet variation of the strain and kinetic energies of the shell~ 

stringers, and ri:q.gs (with re$peet to their own, coordinate) system111) 

was formulated. <;;ompatibility relations were dwdved to e:npress the 

dii'lplacements of the stiffeners in terms of the displacements of the 

shell mediat;:1. surface. Using these relations, the first variations of 

the strain and kinetic energies for the stUfene:rs were expressed in 

tel.'ms of the displacements of the sheU median surface. The energies 

for the shell, stringers and rings were combined to obtain the first 

variation of the total strain and J,dnetic energies for the stH£ened cyl.., 

inder. Finite series satisfying the kinern.atic boundary conditions were 

assumed for each component of point displacements on the shell median 

surface. The a$sumed di~placement functions with unc1etermined 

7 
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coefficien~a were substituted ii:ito the expressions for the fir et varia~ 

tion of the total energies and combined to form a11 eigenvalue problem. 

Geometry 

The geometry of a typical nonclrcula.t shell is shown in Figure 1, 

The three orthogonal coordina.tes x. e and z locate points on the 

referan.ee surface of the shttU and u~ v and w are the. corresponding 

di$pla.cement con1ponents. Tb.e variable radius of curvature of the 

shell cross section is expressed as & function of the a coordinate. The 

geometries o! a typical stringer and r~g are shown ia Fig\lres 2 am. 3, 

respectively~ The local coordinates of the stiffeners x 11 y 1 and z / are 

me;:isured from the centroid of the seiffener. 

Come,atibP,\tx; ~~lations 

The compatibility ~quatlou .rcdate the displacemcmts {qJ1 of any 
. . 

point in the ith stiffener to 'those (q} of the median s.urlace of the 
. . . 0 ,'. . 

shell. (The derivation of the equ&tlCHlS is ·presented la Appendix A.) 

Th~se compatibility relations can be expressed as 

(2. 2) 

where i;;: s fo:r tb,e stringers arid i = r for the rings. The matrix [ C] 
s 

may be expres~e.d as 

.• 
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Figure 1. Geometry of an Elliptical Shell 
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Figure 2. Geometry of a Typical Stringer 
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Figure 3, Geometry of a Typical Ring 
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[ C] 
s 

= 0 

0 

- . I ;:i 
-(y Sty S) oX 

1 - I 
1 +R (z +z ) 

s s 

1 - I 
- R (y +y ) 

s s 

- a -(z +z ') -
s s ;,x 

1 .:. . 0 
- -(z t'z ') -

R s s o9 

1 
i 

I 
! 

1 - 0 
l+-(y +y ') - J 

R s s o9 

and, the matrix [C] may be expressed as 
r 

[ C] 
r 

1 

' 1 - 0 
- ~(x +x ') -­

R r r o9 

0 

Strain-Displacement Relations 

0 

1 -
1 + R (z +z ') 

r r 

0 

- a -(z +z ') -·-
r r ox 

- ..!...(z +z ') l 
R r r o9 

- a 
l+ (x tx ')-J 

r r ax 

12 

The strain at any point in the shell can be expressed in terms of 

six middle· surface strain components; i.e., two normal strains ( e 
x 

and e0), one shearing strain (e eh. two curvature changes (i-t . and 
x . ' xz 

it Sz) and one twist (T ). These may be expressed in matrix form as 
'• . 

...., 
~ 
x 

6 e 

[ e } 
6xe = 

0 
K xz 

i.t ez I 
,. J 

0 

Likewise, the strains at the centroid of the stringer are 
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' e I x 

e I 
I y I 
I 

e I 
I 

(e} = 
xy 

~ s I >t 
xz: 

' 

and the strains at the centroid of the ring are 

e 
:y 

e 
(e} = 

xy 
r 

11 yz 

ft. 
yx 

T 
r 

The strain-displacement equations relate the strain at any poiµt 

in the structure to the displacements of the shell median surface. 

h th . . . f These may be written for t e i component in matrix · orm as 

( e}. = [B]. (q} 
l . l 0 .• (2. 3) 

The strain-displacement relations used in this study reflect the pos-

. ·lulates of Love's First Approximation Theory for 

~he matrix [B] may be expressed as 
0 

thin elastic shells. 



0 
ox 

0 

1 0 

R ~e 

[B] = 0 
0 

0 

..!_ _Q_ 
Rae 

0 

0 

1 
R 

0 

14 

-, 
I 

0 1 0+1 0 (1) 
R 2 ae Rae R 

_l_ ~ ..!_ ...£_(..!_) _Q_ 
-R 2 ae 2 -R ae R r1e 

0 
1 0 
Rox 

' The Bernoulli theory of bending was used for the stringers and rings. 

Thus, the matrix [B] for the stringers is 
s 

[B] = 
s 

0 
(lx 

0 

0 

0 

a:a 
y s ox2 

0 

0 

0 

a:a 

ox2 

1 0 

Rox 

02 
z Ox:a s 

0 

0 

oa 
- --2 

Ox 

0 

..!_ --2.:_ 
R cieax 

and the matrix [B] for the rings is shown in Equation (2. 4) on page 15, 
r 



[B]r = 

0 

x x 
r d (.!_' 0 r o:il 

-"Rae Rias-RR ae2 
c c 

0 

0 

_1_ -2- _1_)-2._ ___!_ L 
- R ae(R oe - R2 ae 2 

c c c 

1 0 
- R 2 oe 

c 

0 

z z 1( r)o .r a(l) 
R 1 + R as + R oe R 

c c 

0 

- : :e(~) 
c 

0 

0 

_l _ _a_ 
RR oS 

c 

0 

-z z x 
r o2 r o ( 1) o 1 r i1 

- R R 00 2 - R aa R ;,e +R +Rox 
c c c c 

0 

1 0 ( l) 0 1 o2 

R ae R as + RR off 
c c 

w_, z 1 2 z ~ 

x r 0 ( ) 0 r o'"' 
R +Rae R oxae + R 2 oxoe 2 

c c c c 

z 
( ' l r) 0 2 

- il + R 2 oxoe 
c c 

(2. 41 

I-' 

1.11 



Strain and Ki,netic Energiea 

The strain energy of the shell, stringer or ring can ea(th be 

expressed in terms of the middle surface strain con;lponents and stress 

resultants as 

(2. 5) 

where the six stress resultants consist <;:>f two normal stress resul.-

tants 1 one shearing stress resq.ltant, two bending stress resultants q.nd 

one torsional atress resultant, The stress resultants for the shell are 

[cr } '° Ro 

and for the stringer 

[ cr } ;:;: 
R s 

N x 

N e 

Nxe 

M 
9 

M 
x 

M xe 

N 
x 

N 
y 

N 
xy 

M 
y 

M 
z 

M 
:x; 

0 

s 



and for the ring 

N 
x 

N 
y 

N 
xy 

M 
x 

M 
z 

M 
\... y 
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r 

The stress resultants can be expressed in terms of the middle surface 

strain components as 

[crR}. = [D]. (e}. 
1 1 1 

(2. 6) 

After Equations (2. 3) and (2. 6) a·r~ s:ubstituted into Equation (2. 5)~ the 

first variation of the strain energy is 

6U 1• = J ( 6q} T [ B] ! [ D] . [ B] . [ q} dS 
. 0 1 1 1 0 

(2. 7) 

s 

The kinetic energy of the shell, stringer or ring can be expressed as 

. T. = i J m. ( q} ~ [ q} . dS 
1 1. 1 1 

(2. 8) 

s 

h . th . . . f th . th 1 . Af E . (2 2) . b w ere :m. ls e mass o e 1: e ement. ter. quation . lS su -
1 

stituted into Equation (2. 8), the first variation of the kinetic energy is 

6T. = J m. [6q}T [c]! [C]. (q} dS 
1 1 0 1 1 0 

(2. 9) 

s 



Shell Energies 

The first variation of the shell strain energy obtained from 

specializing Equation (Z. 7) is expressed as 

oU 
0 

a Zn T T 
= J J [ oq} [ B] [ D] [ B] [ q} R de dx 

0 0 0 0 0 

0 0 

where for orthotropic material, the matrix [D] is 
0 

E h 
. \)ex 

E h 
x e 

1-\) \) 1-\) \) 
xe ex xe ex 

0 0 0 

\J E h E h 
xe x e 

1-\) \) 1-\) \) 
xe ex xe ex 

0 0 0 

0 0 G h 0 0 
xe 

[D] = 
E h3 E h3 0 'Jex 

0 0 0 
x e 

lZ(l-\) \) ) lZ(l-\) \) ) 
xe ex xe ex 

\Jxe E h3 E h3 
0 0 0 

x e 
lZ(l-\) \) ) lZ(l-\) \) ) 

xe ex xe ex 
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(Z.10) 

0 

0 

0 

0 

0 

0 0 0 0 0 
G h 3 

xe 

After Equation (2. 10) is expanded, the first variation of the strain 

energy for the noncircular cylindrical shell is 

oU 
0 

a Zn E g. \J 

= J J {1 x [u, ou, + Rxe (u, ov, - \) \)e x x x e 
' xe x 

0 0 

E h \Jex 
tu,xow)J+ 1 _\Je \J [T(v,eou,x+wou,x) 

xe ex 

lZ 



+ ; 2 ( v, e o v, e + w o v, e + v, e ow + wow) -J 

+ v, ov, J + 
x x 

E h 3 

12 ( 1 - : \) ) I w • xx 0 w • xx 
xe ex 

E h3 v 'J e - [~( - w'xxow, eJ + 12(1-v v · ) R2 v, e0w'xx 
xe ex 

\) . 

- w, ow, _ ) + Rex ( Rl ) I vow, - w, ow, ) 
ee xx , \ xx e xx e 

19 

1 ( . ) - R4 v, eov, 9 - w, eeov, 9 - v, Sow, 99 + w, 99ow, 99 

- ~3 (~), e(vov, e- w, eov, e + v, eov - w, eeov 

- vow, ee+ w, eow, ee- v, eow, e+ w, eeow, e) 

- ~.{(!), / ( v&v - w, 9ov - vow, e + w, 9 ow, 9)] 

G h3 
xe 1 2 

+ 12 [R2v,xov,x - R2(w'xeov,x + v,xow,xe) 

+ :2 w, xeow, xe]} R de dx (2. 11) 

The first variation of the shell kinetic energy obtained from 

specializing Equation (2. 9) to the case of harmonic motion is 

oT 
0 

a 2rr 

= w2 J J mo 

0 0 

T T 
[oq} [c] [c] [q} Rdedx. (2.12) 

0 0 0 0 
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Expanding this expres eiion, the {ir st variation of the kinetic energy for 

the nonc;ircular Gylindrical ~hell is 

a z,.,. 
6T 

0 
= w2 I I poh(uau + vav + w8w} R de dx 

0 0 

Stringer Energies 

Th f . i . f h . f th 'th t . . e irst var ation o t e strain energy or e ~ s ringer 

located at eJ, is expressed as 

where 

a 

aus.t =I (6q}~ (B]~J. [O]s.t [B]s.t (q}o dxle=e.t 
0 

E A 0 0 0 0 
sJ, a.t 

0 0 0 0 0 

0 0 0 0 0 

(DJ = 0 0 0 E I -E I 
s J, st yy f$ J, styz 8 J, 

0 0 0 -E I E I 
sJ, yz sR, zzs.t s J, 

0 

0 

0 

0 

0 

(Z. 13) 

(2. 14) 

0 0 0 0 0 (GJ) s.t 

Equat~on (2, 14) is exp;:i.11deq a.nQ. presented i;n. Append ix B. 

Two methods of analysis were used in this research,. The first 

method is called the 11disc:rete11 method. In this ap}P+oach, the first vari-

ation of the stringe):" strain energy (Appendix B) is evaluated at the 

specific; e (i.e., 9 J,) where each stringer is located. Thue~ the total 
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contribution of all the stringers is expressed, for a discrete analysis, 

as 

ns 
= \ 

/_, 

.t=l 

(2. 15) 

The second method em.ploys a "modified smearing" technique. 

In a "convention~! smearing" approach, the first variation of the strain 

energy (Appendix B) is integrated over a region wherein the stringer is 

assumed to be "smeared" and divided by the length of the region, 26. 

Thus, the total contribution of all the stringers for a conventional 

smearing approach is 

(2. 16) 

In this study, the conventional smearing technique is modified by intro-

ducing a constant of proportionality defined as the ratio of the "dis-

crete" energy to the "conventionally smeared" energy. This is 

expressed for the jth mode as 

1 
6ustla=a =atj26 

" 
6U de 

s .t 

Thus, the total contribution of all the stringers for the modified 

smearing approach may be expressed as 

1 
21::. 

a·.t +t::. 

J. aus"de 
e .t-A 

(2. 17) 

(2. 18) 



(It shouid be noted, for ex .tj "' 1. 0, Equation (2, 18) is identical to 

Equation (2, 16),) 

22 

The first vadation of the kinetic energy for the .tth stringer, 

located at 9 J.,' is expresi;;ed as 

a T T 
oT 11 = w2 J m 11 (oq} [C] 11 [C] 11 (q}. dx I (2.19) 

SJf.I JfJ 0 SJfJ SJfJ 0 ' e:::e 
J, 

0 

This expression is expanded and presented in Appendix B. The equa~ 

tions far the kinetic energy are developed in the same manner as those 

for the strain energy. Therefore, the total contribution of all the 

$tringers, for a discrete analysis, is 

ns 

(2. ZO) 

and, for a conventional smearing analysis, is 

ns e .e,+6 

oTcs l 1 I oT s.t de = 26 
(2. 21) 

s Ji;::l e - 6 
J, 

Furthermore, for a rnodified smearing analysis, 

ns e. +-ti 
1 

l 

8TMS ~ l ~ /,j fi I oT s J, 
de 

s 
J.,;;i:l e. -6 

l 

(2,22) 

where 
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6T I st e::;:e 
f3 J,j ::; 

t (2. 23) 

The values of OI • and I' . are determined by the following itera-
J.J tJ 

tion sequence, The constants Of • and ~ . are first assumed to have a 
.tJ tJ 

value of one (thus formulating a conventional smearing analysis). The 

eigenvector associ.ated with the particular eigenvalue of interest is 

substituted into Equations (2.17) and (2.23) and new values of Cl'.tj and 

~ tj are determined from these equations. The improved values are 

substituted into Equations (Z. 18) and (2. 22) to formulate the modified 

smeared problem. F;rom the solution of this problem, new values of 

0t . and ~ . are determined. This ite;rative process is continued until 
.tJ tJ 

the difference between the values of the /h eigenvalue obtained from 

two consecutive iterations is less than O. 01. 

Ring Energies 

The first va,riation of the strain energy for the kth ring (located 

2TT T T 
6li k :;:: J (6q} [B] k[D] k[B] k(q} Rdel 

r o r r r o x=xk 
(2.24) 

0 

where 
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0 0 0 0 0 0 

0 A E 
rk rk 

0 0 0 0 

0 0 0 0 0 0 

[DJrk = 0 0 0 E I -E I 
rk xxrk rk xzrk 

0 

0 0 0 ,.,E I 
rk xzrk 

E I 
rk zzrk 

0 

0 0 0 0 0 

This expression is e}!:panded and presented in Appendix C. The equa-

tions for the ring strain energy are developed in the same mf\,nner as 

those for the stringer, Thus, the total contribution of all the rings, 

for a discrete analysis, is expressed as 

nr 

= I 
k;::l 

au rk 'x=x 
k 

and, for a conventional smearing analysis, as 

nr xk+ti 

l 1 I au rk dx oUCS 
::;; ~ 

26 . l' 

kd x -6 
k 

and, for a modified smearing analysis, as 

au MS 
. . r 

nr xk+6 

= I Q' kj -h I au r k dx 
k;::;l x -6 

k 

where 

(2. 25) 

(2. 2 7) 



Q'kj ;:; 

au I 
1'1.p x:;:x 

oil>- k 

xk+6 

I oUrk dx 

xk-6 
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(2. 28) 

The first variation of the kinetic energy for th~ kth ring (located 

oTrk = UJ2 {oq}T[C]Tk[c].k{q} RdSI ..• (2~29) 
Q r r 0 x;:;xk 

0 

This expression is expanded and pre sen,ted in Appendix C ! The equa .... 

~ions for the ring kinetic energy are developed in the same manner as 

those for the stringer. Therefore, the total contribution of all the 

rings, for a dii;;crete analysis, i~ expre;ssed as 

nr 

= l oT rk; lxzx 
k=l . k 

and, for a conventional smearing analysis, as 

nr xk+t. 

= lfl J ~T rk ~ 
k"'l xk- 6 

and, for a modi£ied smearing analysis, as 

w}J.ere 

o'l'MS 
r 

nr 
\ 1 

;:; L ~kj 26 
k:;:l 

xk+ti 

I oTrk dx 

xk-ti 

(2. 30) 

(2. 31) 

(2. 32) 
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~kj = (2..33) 
xk+A 

21A J aT rk d:i-c 

xk ... ~ 

The modifieCI. smearing analysis of rings is carried out in the 

same manner as in the a.nalysis of stringer energies. 

Displacement Functions 

The displacemenb;i u, v and w are assumed tc:> be dou,ble finite 

eieries, Conventionally~ each term of the series is a product of a 

circumferential and an axial function weighted by a time ~dependent, 

generalized coordinate. 1'.'he assumed displacement functions are: 

M* N>:< 

U(X, e, t)::; \ \ (U. COS ne tU I Si:q.n6) U . (x)eiwt L L r.pn mn rn 
p:i;;O ni::;Q 

M* N* 

::; "'. \ ( V . Sin n (!) - V I . C 0 S n 9) LLmn ·mn 
(2, 34) 

mpO n;::O 

I ..,1,,. 

M~~ N"' 

l l .,.. ..,... . . iwt 
W(X, e, t)::; . (W . COS ne +w I SJ,n n6) w (x)e 

mn mn m 
m::::O n,;;:0 

where U (x), V (x) and W (~) are the axial m<;>de fonctions which 
m m m 

satisfy at least the kinematic boundary conditions of the stiHened shell; 

u , v and w are unknown amplitude coefficients of the sym .. 
mn mn. mn 

metric circumferential modes anq ii' , v' and w / are those · · mn :m.n mn 

associated with the antisymmetric modes. 
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In this analysis the axiaJ mode functions U (x), V (x) and 
m m 

W (x) were expressed by a single fu.q.ction i (JC:) such that 
m m 

U (x) 
m 

d = ......,._ t (x) 
dx m 

V (x) = t (x) 
m m 

W (x) = w (x) 
m m 

The following functionS" were used in this a:p.alysis: 

Boundary Condition Function Used 

Freely supported: ( ) r::; . mTT X 
~ x :;:: l\/t. s~n-.--
m a 

Clamped-free: t (x) = X , Characteristic function 
m m 

of a Clamped-free beam. 

Clamped-cla:i;nped: t (x) = X , Characteristic function m m ·· · 

of a Clamped-cl~mped beam, 

Free-free: IP 0(x) = 1 

~ 1 (:x:) = x/ a ... ! 

~ (x) z X 1, Cha,ractedstic function 
m m-

of a Free .. free beam. (m:;::: 2) 

(2. 35) 

Eqn. No. 

(2. 36a) 

(2. 36b) 

(2. 36c) 

(2. 36d) 

The characteristic furictions X , their derivatives anc;l eigenvalue m . 

properties are tabulated in Reference 25, 



2. 8 

Frequency Equati<;>n 

The first variation of the total strain energy of the stif~ened she11 

is obtained, £or the discrete analysisJ by combining Equations (2. l l )J 

(2. 15) and (2. 25). Similarly, the first variation of th~ total kinetic 

energy.is obtained by combining Equations (2, 13), (2. 22) and (2, 32.). 

Substituting the first variations of the total strain and kinetic energies 

into Equation (2. 1) we obtain 

t1 T . . J [oq} [[K] - wa[MJ] [q} dt :;: o 

to 

Stnce the ( oq} are arbitrary, the followtng eigenva.lue problem is 

obtained 

This equation can be rearranged in t:he following form 

::; 0 (2. 3 7) 

where fq } and [q } denote the symmetric and antisymmetric mode 
s a 

vectors. 

In Equation (2. 37) the off,..diagonal submatrices of both the stiff-

ness and mq.ss matrices vj;l,nish if the cross section of the stiffened 

sheU is symmetric with respect to the vertical axis. Thus, the above 

eqµation is uncoupled into two equations ,.. one for symmetric, and the 



other for antisymmetric modes. The equation .for the symmetric 

modes may be written as 

Kll I Kl2 I Kl3 
---L--l--

Mll I Ml2 I Ml3 
---l--1--

u 
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Kl2T I KZ2 I K23 
I I 

- w2 Ml2TI M22 I M23 v :i; o. (2, 38) 

Kl~T: K23T: K3~ 
--+--l---
Ml3TI M23TI M33 w 

The frequency equation for the smeared analysis is formulated in 

the same manner as in the case of the discrete analysis. Equations 

(2. 11), (2.18) and (2, 27) are combined for the first variation of the 

total 1;1train energy and Equa~ions (Z. 13), (2. 22) and (2, 32) are com-

bine d for the fir st variation of tl/.e total kinetic energy, 



CHAPTER III 

COMPUTER SOLUTION 

General 

A computer program was developed to deter:r;nine the modes of 

free vibration and the cor+esp<;>n<:ling frequencies for an arbitrary 

stringer- and ring-stiffened, orthotropic noncircular cylindrical shell, 

The mass and, stiffness matrices of the st:1,"ucture are computed in the 

program and the eige.r;walue s and. eigenvectors are calculated using the 

subroutine EIGENP (26). 'rhe material properties of the shell may be 

either isotropia qr orthotr<:>pic, The program alleiws the stif£eners to 

have arbitrary cross sections and to be treated as either discrete or 

smeared. Circumferential integrals and smearing integrals are evalu .. 

ated using an eight point Gaussian quadrature method with four 

subintervals. Figul"e 4 shows a flow cha;r"t of this program. The 

Oklahoma State;! University IBM Model 360/65 compqter was employed 

for this project. 

The input data for the program is c;;itegorized ~nto four kinds. 

The first is gener;:tl data, e.g., number of te+ms considered in tQ.e 

assumed dii:iplacement series, the number of stringers, the number of 

rings, etc. The other three kinds of data are shell data, stringer 



DETERMINE 
EIGENVALUES 

ANO 
EIGENVECTORS 

Figure 4. 

STOP 

GENERATE NEW STIFFNESS 
'-------!ANO MASS MATRICES WITH 

DETERMINE 
VALUES 

OFaAN0,6 

a ANO fJ 

ADO ALL SMEARED 
RING MASS ANO 

STIFFNESS MATRICES 
TO STRUCTURE 

Flow Chart of the Comp1Jter Program 
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data, and ring data. 'l'he radius of curvature, R, of the shell is c;on ... 

sidered to be a tabulated function of the 9 c;:oordinate. The expressio.p.s 

for R, (~), e' R, e are calculated in function subprograms. These 

subprograms must be supplied for each problem. 

Natural F.l;:'equencies and Mode Shapes 

The order of the stiffness and mass matric;::es of Equation (2. 38) 

depends on the total number of circumJere:ntial and axial terms in the 

d d . 1 . f M>:< . f . 1 d >:< assume .1sp acement series. I- . cir~um· ereµtla an N axial 

h h h . *~:;; 
terms are used, t en t e order of t e :rnatric;::es is .3M N and Equation 

(2. 38) may be written as 

v ::I 0 ( 3. 1) 

-w 

where the generalized coordinates are 

uoo voo 

UOl v 01 

~02 ~02 ~02 

' • ..,. 
~ 

UON* .. VON* 
u = v = w = 

ulO vlO 

ull vll 

~12 :'12 ~12 

uM*N* VM>:<N>:< WM>:<N* 



33 

and 

K = stiffne es rnat:ri.x, 

M = mass ma.tri,.x;, 

w :;; the natµral frequencies in radians I second, 

If the mat~iGes K and M bec;ome singular due to rows and col .. 

umns of zeroes for certain boundary c:ol'),ditions, the matrices are 

condensed by eliminati.n,g those rows and columns of zeroes. The sub­

l'Outine called EJIOENP (Z6) is used to caleulate the ~requencies (w) of 

Equation (3. 1) and the resulting generaazed coordin,ates. 

After the natural frequencies and a~sociated generaHzed coordi .. 

nates are obtci.ined, the c;:oJ;"respo..p.ding mode shapes are determined 

from another pro~ram based on ;E::quation (Z. 34). Ai; in conventional 

free vi'l:!ration probleml!l, only tl').e nqrmalhied displacements can be 

found~ The displacement mode shapes can be calculated at any x or e 

value. 



CHAPT;EJR JV 

NUMER:J:CAL RESULTS 

Introduction 

Th~ discrete method of a?l,a.lysii;; desc;:ribed in this dissertc;1.ti~n 

was Sl;l.batantiated by comp~ring r~aults of thi,.s stµ¢ly with some of thpse 

obtained by previous invesUgators. A cpm.parison of the discJ;"ete a;nd 

smearing methods of a.naiyeii;; was rna~e and i!il prei;;ented in thb ~hap­

ter, 

Compari!i!OP of Discrete Anaiysis 

Wtth Known Solutions 

The natural frequencies of (1) unstiffened circular cylinders, (2) 

unstiffened non.circular cylinde;t's and (3) stringer- and/or ring­

stiffened circular cylinders obtained usi;p.g the discrete method of 

analysis were compa.ted with known s©lutions a;nd presented in this 

section. 



ComparisQI?- of Re sul~s for Unsti££ened 

Circular Shells 

35 

Forsberg (2 7) obtained the ex:act frequencies for freely supported, 

unstiffened, circular cylinders by solving the differential equations Qf 

motion. Boyd and Rao (Z~) s9lved the eame problem usi,ng the 

Rayleigh .. Ritz approach, Both analyses used the Flugge shell theory. 

The results of these aualyses and those obtained from this study are 

listed in Table I for the longitu.c:Unal mode m ;:;: 1. A good col'relation 

between the frequencie$ was ot)tained. fro:m the three aX',l.alyses. The 

frequencies obtained ~rom t'Q.e present analysis a.re slightly higher than. 

those obtaine4 u.sing th~ hiiher-ofder theory of Flugge, ReferenQes 23 

and 27 ~ 

Sewall et al. (17) $tuc;lied freely supported circular cylinders 

using Sander's shell thet;>ry a.ri.d the ;!Rayleigh., Ritz approach, ';rhe same 

structure was studied (23) using FlU'.gge shell theory. The result!:! 

obtained from this study and those from References 17 and 23 are 

shown in Table II for the longitudinal modes m ;; 1 and 2, The cor­

relation of the results from the three studies was e~cellent. 

The experimental and analytical results of Re£erence 28 for a 

clc;tmped-free, unstiffened, ciri:;ular shell are compared to those of the 

present analysis (for the longitudinal modes m = 1 and 2) in Table III. 

Comparisons were also maqe with the experimental results of Park et 

al~ (29), the analytical results of Egle a.nd Soder (21), and the 



q.) 

b) 

c) 

TABLE I 

COMPARISON OF ANALYTiC.AL FREQU:lj::NCIES OF A FREELY 
SUPPORTED UNS'l'IFFENEJD CIRCULAR CYLINDER a 

Present Boyd b 
Forsberg 

c 
n m 

Analysh; & Rao 

1 779 778 778 

2 2 2450 2449 2449 

3 4254 4253 4253 

1 628 628 627 

3 2 1459 1458 1458 

3 2683 2682 2681 

1 975 974 974 

2 1305 1304 1303 
4 

3 2023 2021 2020 

4 2950 2947 2946 

';['he geometry of the sh.ell is given in Reference 2 7. 

Reference 23. 

Refere,nce 2 7. 

·36 
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~ABLE II 

COMPARlSON O:f FREQUENCIES OF A FRBELY 
SUP:PORTED CIRCULAR CYLINDJ!;Rc;i. 

ni ·~ 1 ' ' m:;: 2 
I 

Boyd 'b Present · BQyd. b n Present c c 
Anal~113ii:i & I\ao 

Sewall 
Anal~sis & RaQ 

Sewall 

l 1565.3 1565.3 1565.0 2309,3 2309.3 2309.0 

2 894. 1 894. 1 894. 1 1782.4 1782.4 1782,0 

3 529.9 529.8 529.8 1314,9 1314.9 1315.0 

4 338.7 338.6 338.6 968,4 968.4 968.4 

5 235,6 235.6 235~6 726.3 726,3 726.3 

6 182,2 182, 1 182. l 560,4 560.3 560.3 

7 162,2 162.2 162,Z 448.6 448.6 448.6 

8 167.0 166r9 166.9 377,2 377.2 377,2 

9 188,6 188. 6 188.6 338.2 338. 1 :n8. 1 

10 221. 4 221,3 221. 3 325.8 325,7 32 5, 1 

11 261,7 261,7 ?6L7 335, 1 335.0 335,0 

12 308, 1 308.0 308.0 361. 2 361,0 361.0 

13 359.5 359,5 359.5 399.6 399.6 399,5 

14 415.6 415.6 415.6 447.5 447,5 447,5 

a) The geometry of thif:l shell is given in Refereri.ce 17. 

b) Reference 23, 

c) Reference 17. 
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TABLE III 

COMPARISON OF ANALYTICA;L AND EXPERIMENTAL 
FREQUENCIES OF A CLAMJ?E:P,-FREE 

UNSTIFFENED CIRCULAR 
CYLINDER a 

m::; 1 m;:; 2 
n ·Present S~wall b Sewallb Present Sewall b Sewallb" 

Anal}'.: sis Anal}!:sis Ex;e. Anal:t:sis Analisis Exl2· 

1 787,2 791. 6 2017.5 >2000. a 

2 394.2 395.9 1311, 0 1314,0 

3 218. 5 219,3 
201, 8 875.0 876,8 
206.2 

4 137.8 138.2 131. 7 612.4 613.6 

5 103, 1 103. 3 100,8 449.0 449.7 429. 1 

6 97,8 97.9 96,9 345.8 346.3 
326,3 
334.4 

7 112. 1 112. 1 113. a 283.5 283,8 273~5 

8 138. 1 138. 1 140.4 252.4 25?.6 247,4 

9 171. 4 171. 3 174.3 246.7 246.8 244,2 

10 21 o. 1 21 o. 1 214.6 260,8 260.9 261.5 

11 253,7 253.7 258.4 289.6 289.6 292.1 

12 301,7 301. 7 307.6 328.8 328. 8 335,2 

13 354;, 1 354. 1 361. 2 375.8 375,8 381. 1 
393,2 

14 410.8 410.8 
416,0 

429.l 429. 1 437.8 424.9 

a) The geometry of the shell is given in RE;:forence 28. 

b) Reference 28, 



analytical results o{ Boyd and :R,ao (2 3 )~ These a.r~ presented in Table 

IV. Generally, the compal'ison1;1 are good. The slight differences 

might be attributed to the difference in shell theories and tq inexact 

bounclary conditions in the experiment. 

The validity of the pref:!ent analysis for the free~free bound~ry ... 

conditions case was establi!ilhed by comparing the results of this 

analysis with the experime;n.tal aP.d a.p.alytical res1J.lts of Refere:Q.ce 17. 

Table V shows gQod ~greement between the results of the two studies. 

Comeari~on of Res~lts ,for Str~nger~ 

Stiffened Circ:u1ar Shells 

Egl~ and Sewall (20) :pres~nted frequencies obtained fo:r freely 

supported, circular cylinders, with ai+d witho1J.t stringers, usb;1g the 

Donnell shell theory and n~gle~t\n.g the insurface inertias. Refe:l.'e:p.ce 

Z3 presented ;results for the same structures using the Donnell theory 

but including the insu.rface inertias, Table VI shows the results (for 

the longitucUnal modes m :;; 1 a.p.d 2) obta:i,ned fre>m this analysis and 

those presented in R.ef~rence1;1 20 and Z~. The frequencies obtained by 

Egle and Soder are slightly higher tb.aJ;'l those of Boyd and Rao. ';['his 

discrepanc;y is evidently attributa'Qle to tl;ie neglect of the insul'face 

inertias. The results of Boyd a.ud Rao are higher- than those of th~ 

pr~sent analysis. 'rhe differe.nc;es might be attributed to diffel;'ences 

in compatibility +elations used, 



n 

2 

3 

4 

5 

6 

7 

8 

a) 

q) 

c) 

c) 

TABLE IV 

COMPARISON OF ANALYTICAL AND EXPERIMENTAL 
FREQUENCIES OF A CLAMPED·FREE 

UNST IFFENED CIRCULAR 
CYLINDER a 

m:;: 1 m ""2 

Present 
Boydb Egle &c · Parkd 

Present 
Boydb Egle &C 

& Rao Soder et al. & Rq.o Soder 
Analysis 

.A.n;;1.l, Anal . E~E· 
Analysis 

Anal. Anal, 

104, 1 104.4 104,4 
87,2 

507.2 508,2 
95. 1 

55.6 55.6 55. 6 51, 5 280,9 281,3 

52. 0 52.0 52" 0 50.4 177.7 177,9 177,9 

71. 6 71. 6 70. 9 135,3 13$.4 

101. 8 101. 8 101,4 132,0 132. 0 

139.2 139. 1 139. 1 138,8 154.2 154.2 154.2 

182, 6 182.6 l~Z.6 182, 2 191. 4 191. 2 191. 2 

The geometry of the shell is given in Reft;lrence 29. 

Reference 23. 

Reference 21, 

Reference 29. 
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;t?a;rkd 
et al. 

E~E·. 

168. 5 
170.2 

132,8 

128. 8 
130, 1 

153,6 

191. 3 
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TABJ.,iE V 

COMPARISON OF ANALY'l'ICAL AND ;EXPERIMENTAL 
FREQUENCIES OF A FREE~FREE UNSl'I:FFENEO 

CIRCULAR CYLINOERa 

m;:; 1 m;:: 2 

n Present 
Boyd b 

Sewall0 SewallC Pre~ent 
Boydb SewallC Sewa.llc 

Anal. 
& Rao 

Anal. Exp. Anal. 
& Rao Anal. Exp. Anal. Anal. 

1 2013. 1 2012.,0 2014.0 2289.6 2288.0 2293.0 

2 a. 2 7. 5 7.5 7,7 1614.0 l6l3. 0 1616.0 

3 19.4 19.0 19~ 0 18. 9 1066,8 1066.0 1068.0 

4 34.4 34.2 34.Z 35.7 717,3 716.9 717.8 

5 53.5 53.4 53.4 53.0 504.6 504.4 504.8 

6 76.8 76.6 76.7 76,4 375.6 :ns. 4 375.6 377.3 

7 104.2 104.l 1Q4, 1 103.8 300.0 ~99.8 299.9 299,1 

8 135, 8 135.7 135.7 135.3 262,3 Z62.6 262.Z 257.4 
262. 1 

9 171. 5 171. 4 171. ~ ~70,7 253.5 253.6 Z53,4 Z48.8 
249,3 

10 211. 5 211. 4 211. 5 210, 2 266.5 266.5 266.3 268.8 

11 255.7 255,6 255,7 253,0 2.94.9 294.8 294,7 290.9 

12 304,l 303.9 304.1 305.5 334. 1 333,9 334.0 327.6 

13 356.7 356.5 356.7 352.0 381,2 381,2 381. 1 

14 41,3. 5 413.3 413.5 412.5 434.7 434.7 434.7 436.6 

a) The geometry of the shell is given in Reference 17. 

b) Reference 23, 

c) Refe renoe 1 7. 



m n 

3 

4 

5 

6 

7 
1 

8 

9 

10 

11 

12 

TABLE VI 

COMPARISON OF FREQUENCIES OF A FREELY SUPPORTED 
CIRCULAR CYLINDER WITH AND WITHOUT STRINGERSa 

Stringer Stiffened 
Sym. Mode Anti~ym. Mode 

Presentb c d Presentb c . d b 
Boyd Egle & Boyd Egle & Pres. 

Discrete Discrete 
Analysis 

& Rao Sewall 
Analysis 

& Rao Sewall Anal: 

160 - 1-69 160 - 169 -

99 - l-03 103 - 108 -

91 - 95 91 - 95 -

106 - 109 112 - 116 -

140 - 145 140 - 145 -

179 - 183 187 ·- 192 -

231 - 236 231 - 236 -

273 - 278 291 - 297 -
345 - 350 345 - 350 -

403 - 408 419 - 425 -

Unstiffened 

Boyd 
c 

Egle & 
d 

& Rao Sewall 

- 171 

- 108 

- 98 

- 117 

- 151 

- 194 

- 243 

- 300 

- 362 

- 431 
~ 
N 



TABLE VI {Continued) 

Stringer Stiffened 
Unstiffened 

Sym. Mode Antis ym. Mode 
m n Present6 c d Presentb c d b c d 

Discrete 
Boyd Egle & 

Discrete 
Boyd Egle & Pres. Boyd Egle & 

Analysis 
& Rao Sewall 

Analysis 
& Rao Sewall Anal. & Rao Sewall 

3 SS7 SSS S91 S57 SSS S91 S68 568 6-02 

4 336 337 346 349 348 36S 353 353 365 

s 235 236 241 235 236 241 245 246 251 

6 190 192 194 196 197 202 198 200 203 

7 187 189 191 187 1139 191 192 194 196 
2 

8 20S 2-08 209 211 213 217 214 216 218 

9 252 254 2Si> 252 2S4 2S6 253 256 258 

10 292 295 297 3-0-0 303 306 305 308 309 

11 353 3S5 358 353 355 358 364 367 369 

12 418 421 424 424 427 430 432 435 436 
a) The geometry of the shell is given in Reference 2.0. 
b} Love T_heory and insurface inertias included. 
c) Donnell Theory and insurface inertias included~ Reference 23. 
d) Donnell Theory and insurface inertias neglected, Reference 20. ~ 

v-> 
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Comparison of Results for Ring-S~iffened 

Circular Shells 

Al-Najafi and Warburton (30) prei:;en.ted both analytical and exped-

mental results for ring .. stiffened circ;µlar shells with freely supported 

and free,.£ree bou:p.dary conditions, Their analytical re~ults were 

obtained using a finite element technique in which the insurfci.ce inertias 

were neglected, Reference 23 presented resµlts for the same struc-

ture including insurface inertias, A comparison is i:;hown in Table VII 

l:>etween the results of this study and those of References 23 and 30. 

The frequencies obtained from the present analysis for the freely sup .. 

ported case are lower than the analytical values of References 23 and 

30. This mig4t be attributecl to either the difference in she~l theories 
;;. 

or the coll1l>atibility relations 1.u1ed. ]fpr the frfi!e-free case, the {inite 

element results wer(). in general, observed to be closer ~P the experi-

mental values than the results obtained from either the present 

a:p.alysis or Reference 23. In general, the results of this ap.alysis and 

those of References 23 al;).d 30 show a good correlation. 

Comparison of Results fo:r; Ring-. and Stringe.r-

Stiffened Circular Shells 

Park et al. (29) presented the results of an experimental study of 

ring- and stringer- stiffened c;:ircular shells with clamped-free boundary 

conditions. Egle and Sod.er (21) compared their analytical results with 
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3 

4 

5 

6 

7 

8 

9 

10 

a) 

b) 

c) 

TABLE VlI 

COMPARISON OF FREQUENCIES OF A RING­
STIFFENED CIRCULAR SHELLa 

Freely SuE:izorted Free.,.Free 

Present 
Boyd P War-c · War.-C 

Present 
BoyQ.b War-c 

& Rao burto:p. bµ.l;'ton & Rao bur ton 
Analysis 

An~l, Anal. ExE· 
A.nalysis Anal. Anal. 

... 1540 1550 1547 

1848 1867 1873 1867 1536 1538 1537 

2070 2089 2091 2076 1765 1aa9 1895 

2630 2,651 2650 4600 2290 2303 2290 

3391 3415 3429 3355 3055 3075 3044 

4215 4239 4270 3935 3955 3920 

4945 4925 5022 4776 4910 

5805 5846 5546 5548 

6548 6585 ,... 6303 6349 

7294 7330 7080 7103 

8046 8079 

45 

War .. c; 

l:>urton 
Ex9. 

1551 

1539 

1890 

2287 

3044 

3916 

The geometry o! the s'Q.ell is given in R~ference 30, (5 dngs, 

d = O. 25 inches). 

Reference 23. 

Refe.rence 30. 
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the experimental :r:-e $Ults of Reference 29 for a circular cylinder with 

three internal :rings and sixteeX! internal stringers. Boyd and Rao (23) 

studied the same stiffened shell. The results of the present analysis 

are compared in Table VIII with those of References 21, 23 and 29. 

The results of this analysis and those of Boyd and Rao (23) are consis-

tently lower than those of Egle q.nd Soder (21 ). In general, the results 

of this analysis compared favorably with those of Boyd and Rao (23). 
,.,, 

The difference might be attributed to the differep.ce iP. compatibility 

relations used. 

Comparison of Results for Unstiffened 

Noncircula:r:- Shells 

Elliptical sheUe were studied to $Ubstantia.te the validity of the 

analysis for nondrcul21-r ~hells. Sewall et al, (17) presented analytical 

and experimental results for elliptical shells with various end condi .. 

tions. Analytical results for these shell$ were presented by Boyd ap.d 

Rao (23). Tables IX an(j. X show the resµlts of ~his study and those of 

References 17 and 23 for free!y supported, elliptical shells having 

eccentricities of O. $26 and O. 760, respectively. It is evident from 

Tables IX and X that the resulti;; of this analysis are in exceHent agree-

ment with those of Reference 23 and with those for the lower 

circumferential modes of Reference 17. 



n 

2 

4 

6 

a) 

b) 

c) 

d) 

TABLE VIII 

COMl?ARISON OF ANALYTICAL AND E;Xl'ERIMENTAL 
FREQUENCIES OF A CLAMPED .. FREE RING"' AND 

STRINOER-rSTIFFENED CIRCULAR SH;ELLa 

I 

Boyd b Pa.~'kd 
Present 

Egle &C 
m Analysis 

& Rao Soder et al. 
An;:t.l, Anal. E~~· 

1 100,5 100.2 105.8 80.2 
88,2 

2 433.9 432.2 433.9 

3 915.9 907.Q 

1 207,1 207.6 Z16,9 184.6 

z 276,3 276.0 iss.9 251.5 

3 440.0 437.2 447.1 397.0 
430.4 

1 313.4 308.5 315.0 
~ 

2 350.7 345,9 353.8 

3 411.4 402,6 414.0 

47 

jj .. 

The geometry of the shell is given in Reference 29, (Model lS), 

Reference 23. 

Reference 21. 

Reference 29. 
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TABLE IX 

COMPARISON OF FREQ1JENCIES OF A FR,EELY 
SUPPORTED ELLIPTICAµ CYLINDERf 

e: :;: o. 526, m:;: 1 

Symmetric Antisymmetric 
n Present ;Boyd b c Present Boyd b c 

Analisis & Rao 
Sewall· 

, Anal~sis & Rao Sewall 

0 2550.3 2550.2 2550.2 

1 1439.7 1439.7 1440,0 1685.7 1685.7 1686.0 

2 876.6 876.6 876,6 888.9 888.9 888,9 

3 524. 1 524. l 524. l 524.2 524.2 524.2 

4 335.6 335.5 335,5 335.6 335.6 335,5 

5 234.3 234.3 234.3 234,4 234.3 234.2 

6 184.3 184.2 184.2 184.3 184.2 184.2 

7 156.9 156.9 157. 1 157,0 156.9 157.0 

8 160. 1 160. 1 160.2 160.2 160,2 160. 2 

9 189.7 189.7 189.8 189. 4 189.4 189,8 

10 221,5 221.5 221. 9 221,8 221,8 221. 9 

11 260.8 260.8 261. 9 261. 7 261. 7 261.9 

12 307.7 ~07,6 308. 1 307.9 307.9 308.1 

13 348.9 348.9 359.5 355.8 355.8 359.5 

14 405,7 405.7 415,6 413,9 413.9 415.6 

a) The geometry of the shell is given in Reference 17. 

b) Reference 23. 

c) Reference 17. 
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'rABLE X 

COMPARISON OF FREQUENCIES OF A FREELY 
SUPPORTED ELLIP'rICAL CYLlNDER,a, 

e = 0,, 760, .rn = 1 

Srrnrnetric · Antisirnrnetric 
n Present . B«:>yd 6 

Sewallc Present Boyd 6 S Uc . ·ewa 
Anal:t:sis & Rao Analysis & Rao 

0 2611,8 2.611. 8 2612.0 

1 1237,8 1237.7 1238,0 1855,7 1855,7 l856.0 

2 785, 1 785,l 785.2 858.5 858,5 858,5 

3 491.l 491. 1 491,1 492.5 492.5 492,4 

4 319.8 319. 8 319.4 318.9 318.9 319,4 

5 226.6 226.6 226.9 

6 

7 138.5 138. 5 138,5 138.6 138.5 138.5 

8 
140,0 140,0 140,l 140, 1 140,l 140. 1 
177.8 177,8 178.3 178.5 178.5 178, 3 

9 
182. 3 182. 3 184,l 

184. 1 184.0 184, 1 
226.1 226. 1 226.9 

10 221,7 221. 7 223.9 223.5 223.5 223.9 

11 261,6 261. 6 263.6 259.2 259,2 263.6 

12 310,6 310,6 307.3 296.9 296.9 307,3 

13 378.4 378,4 359,4 338.7 338,6 359.4 

14 464.9 464.8 417.1 399.6 399.6 417. 1 

a) The geometry of the shell is given in Reference 17. 

b) Reference 23. 

c) Reference 17. 



50 

The results for a free~free elliptical shell are presented in 

Table XI. The re~mlts of this analysis give a good correlation with 

those of References 17 and 23. 

Comparison of Discrete and Sm.earing 

Methods of Ana.lysis 

Having shc;iwn the validity of the discrete method of analysis, 

solutions for stiffened circular sheHs were obtained from the smearing 

and discrete methods of analysis and are compared in this section. 

Effects of Smearing Stringers 

The shell used by Egle and Soder (21) was selected as the case 

for the comparison. Table XII presents the frequencies obtained for 

the dc;iubly symmetric (i. e,, with respec;t to vertical and horizontal 

axes through the centroid of the cylinder cross sectic;in) modes of this 

shell stiffened with 4~ 8, 16 and 60 stringers tising both the discrete 

a.1;1.d the conve.1;1.tional smearing methods of a:P.alysis. Indistinguishable 

:results were obtc;tined from the two methc;ids for the shell with 60 

stringers. Even for the sqells stiffened by 4, 8 and 16 stringers, the 

lower frequencies obtained from the smearing method of analysil;l were 

in good agreement with those ol;>tained from the discrete analysis. 

l'he effect of the ratio of stringer-mass to shell-mass (m /m ) 
s 0 

was studied, The shell with four stringers was used for this study to 

determine the effects for widely spaced stringer cases. Using both the 
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TABLE XI 

COMPARISON OF FREQUENCIES OF A. FREE-. FREE 
ELLIPTICAL CYLINDER, a,, 

e = o. 526, rn = o 

S~mmetric Antii;;~mmetric 
Boyd.b c c 

Pres. 
Boyd b c c n Pres. 

& Rao 
Sewall Sewall 

& Rao 
Sewall Sewall 

Anal. 
Anal. A.nal. Exp, Anal. 

Anal. 
Anal. Exp. 

2 5.62 5.62 5.62 5. 6 5.68 5.68 5.68 5, 6 

3 15, 89 15, 89 15,89 16. 1 15.89 15. 89- 15,89 16.2 

4 30.52 30.52 30. 52 30. 9 30,52 30.52 30, 52 30. 8 

5 49.42 49.42 49.41 50~ 1 49~42 49.42 49.41 50. 1 

6 72.54 72. 54 72.54 74.8 72.54 72.54 72.54 74.4 

7 99.87 99,87 99.87 102.4 99,87 99.87 99.87 102,4 

8 131. 42 131. 42 131. 40 134.6 131. 42 131. 42 134.40 

9 167.18 167,18 167,20 171. 5 167.17 167. 17 167.20 171. 7 

10 207.13 207,13 207. 10 212.5 207. 10 207. 10 207, 10 212.8 

11 251.34 251.34 251.30 258.8 251,26 251.26 251.30 258.4 

12 299.46 299.46 299.60 312, 1 299.72 299.72 299.60 

13 351.95 351.95 352.20 363. 8 353,19 353.19 352.20 362.3 
363.0 

14 408.14 408,14 409.00 423.2 411. 1 7 411. 1 7 409. 00 

a) The geometry of the shell is given in Reference 17. 

b) Refer<::nce 23. 

c) Reference 17. 



a) 

TABLE XII 

COMPARISON O;F F~EQUENCJES OBTAINED FROM 
DISCRETE AND CONVENTIONAL SMEARED 

ANALYSES FOR STIFFENED 
CIRCULAR SHELLsa 

m:;: l 

Number Symmetric 
Discrete 

Conventional 
of Moqes 

Analysis 
Smearing 

Stringers n Analysis 

4 98. 81 100,99 

4 6 105.56 108.55 

8 178,81 181. 87 

4 95.57 98.57 

8 6 104.81 104,98 

8 166.98 175.46 

4 94,30 94.46 

16 6 98.67 98.90 

8 151,88 164.52 

4 78.76 78.76 

60 6 80.01 81,01 

8 128,39 128.39 

Error 

2. 21% 

2. 84% 

1. 71% 

3. 14% 

o. 16% 

5. 10% 

o. 17% 

o. 23% 

8. 35% 

o. 00% 

0.00% 

o. 00% 

The shell and stri.n.ger propertiei:;; are given in Reference 21. 
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discrete and conventional smearing methods of apalysis, the fre-

quencies for the even (symmetric) modes were obtained for various 

mass ratios. Figure 5 shows the ratio of the lowest frequencies 

(w /w ) verirns the ratio of the masses, As would be expected, the 
0 s 

difference between the frequencies obtained from the two methoqs 

increases as the mass-ratio increases, 

The "modified smearing" method of analysis was studied con-

53 

sidering the shell stiffened by four stringers. Tal;:>le XllI presents tpe 

results of this study. The frequencies obtained for the double sym-

metrk modes conve;rged monotonically to values close to the discrete 

values. For the singly symmetric (i. e,, with respect to the vertical 

axis only) modes, the frequencies converged to values further from 

the discrete values. Investigating the assu,med mode shapes, it was 

observed that if a stringer was located precisely at a nodal point of the 

assumed displacement function, the modified smearing method evi-

dently added more energy to the system tl;ian was present in the 

physical problem, This may explain the divergence of the singly sym-

metric modes of Table XIII from the frequencies obtained by the 

discrete analysis. 

The effect of mass-ratio was also studied using the modified 

smearing method of analysis, Figure 6 shows the ratio of the lowest 

frequencies (w /w ) associated with the doubly symmetric modes ver­
o s 

sus the mass ratio for both smearing methods of analysis. For all 

mass-ratios, the frequencies obtained using the modified smearing 



1.01 ___________ _ 

3 3"' 0.8 

... 
0 

~ 0.6 
a:: 
>­
(.) 

z 
w 
::::> 
0 
w 
a:: 
LL. 

0.4 

0.2 

NOTES: 
a) CONVENTIONAL SMEARING 

METHOD OF ANALYSIS USED 

b) GEOMETRY OF SHELL AND 
STRINGERS GIVEN IN 
REFERENCE 21 

0.1 0.2 0.3 

MASS RATIO ~ 
'mo 

014 
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Ratio of a Shell Stiffened by Four 
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n 

4 

6 

5 

7 

'l' AB LE X!lI 

COMPARISON OF FREQUENCIES OBTAINED FROM 
DISCRETE AND MODIFIED SMEARED ANALYSES 

FOR STIFFENED CIRCULAR SHELLSa 
n;l = 1 

. . Modified s:r;nearing Method of Analysifi.i 

55 

Discrete 
Analysis 

Iteration Iteratio:p. Iteration Iteration Iteration 

:98, 81 

105.56 

90.64 

139.71 

0 1 2 3 4 

Even Modes 

100,99 98,59 98.69 98,66 98,67 

l 08, SS 105,41 105.43 105.43 105.43 

Odd Modes 

90.84 90,86 90,93 90,93 

140.86 141.72 14;1. 79 141. 78 

a) The shell and ~tringer properties a.re given in Reference 21. 
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method were in closer agreement with those obtained from the dis.,. 

crete method of analysis. 

Results for Smearing Rings 

57 

Freely supported shells, stiffened by rings having varioµs cross,.. 

sectional areas, were stµdied. A shell stiffened with one ring having 

a square cross section and loc;ated at the center of the shell was 

studied first. Frequencies were obtained for five cases by varying the 

cross ... sectional area of the ring. A shell having two rings with identi­

cal square cross sections and located at a/4 and $a/4 was also studied, 

A range of frequencies was obtained by varying the c;:ross ... sectional 

area of the rings. Figure 7 shows the ratios of frequencies obtained 

by the two methods versu,s the ratios of ring-ma!'ls to shell-mass. 

The dif{erence between the f:i;equencie s obtained from the discrete and 

smearing methods of analysis increases as the mass-ratio increases, 

For a shell stiffened by only one ring, the frequencies obtained from 

the conventional smearing method were closer to the discrete values 

than thor;:;e of the modified smearing method. However, for two or 

more rings, the reverse occurred. 

The longitudinal mode shapes associated with the fundamental 

frequency are shown in Figure 8, having two different mass ratios, and 

two rings for simply supported shells stiffened by one ring. These 

were obtained using the discrete meth9d of analysis. The smearing 

methods of analysis used the sine function (in tP.e longitudinal direction) 
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1.0 

o~~....-~---~...-~"t-~-t-~....-~....-~-T-~......-~-. 

a 

-1.0 ONE RING AT a/2, mrlm0 = .0228 

a 

-1.0 ONE RI NG AT a/2, mr/mo = .0915 

1.0 

a 

-1.0 TWO RINGS AT a/4 AND 3a/4,mrlm0 =.183 

Figure 8. Longitudinal Mode Shapes, n = 4, m = 1 
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to represent the w displacements of the fundamental mode. As the 

number of rings increased for a given mass ratio, the sine function 

better approximated the fundamental longitudinal mode shape. There­

fore, the difference between the frequencies obtained from the 

smearing methods of analysis and the discrete analysis decreases. 

Table XIV presents the frequencies obtained using the three 

methods of analysis for the simply supported shell stiffened by one 

ring having a mass ratio of O. 0228. For the even longitudinal mode 

shapes, the frequencies obtained using the modified smearing method 

of analysis are less than the discrete values. The torsional strain 

energy is the predominant part of the strain energy for the case in 

which the ring is located at the node point of the mode shape in the 

physical problem. However, the smearing method of analysis uses 

the same constant of proportionality for both the extensional and tor­

sional strain energies. Therefore, the rings evidently have more 

extensional strain energy theoretically than is physically present. 

The frequencies obtained will be lower as a result. This character­

istic is typical of shells with stiffeners located at (or near) node points. 



n 

4 

TABLE XIV 

COMPARISON OF FREQUENCIES OBTAINED FROM 
DISCRETE AND SMEARING METHODS OF 

ANALYSIS FOR A SHELL WITH 
ONE RINGa 

Discrete 
Conventional Modified 

m 
Analysis 

Smearing Smearing 
Analysis Analxsis 

1 630.2 615.0 650. l 

2 1362.3 1371.4 1345.9 

3 2182. 9 2189.6 2191. 5 

4 2857.Z 2858. 9 2822.6 

5 3393. 1 3400.3 3403.9 

6 3878.4 3881. 3 3831. 2 

a) The shell and ring properties are given in Reference 30, 

d = 0, 25, R = 7. 567 inches, 
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CHAPTER V 

SUMMARY~ CONCLUSIONS AND 

RECOMMENDATIONS 

Two methods of an.1;1.lysis have been pre ~ented in this study to 

determine the naturai frequencies and mode shapes of unstiffened or 

stiffe:p.ed, circular or noncircqlar, cylindrical shellsf One method of 

analysis qmsidered the stiff~ners to be discretely located and the other 

considered. the stif!ener~ to be 11 $meared" over the surface of the shell 

(using an equivalent ~nergy appr~ach). Both methc;:>ds employ the 

Rayleigh-Ritz energy method. Case:s for stiffened anel unstiffened, 

circular and noncircula:r cylindrical shells having va.rious l;>oundary 

conditions were investigated using both methods of analysis. A sum­

mary of the re$ults of this study, conclusions made from this study 

and recommendations for future investigationi;; are given in the fol­

lowing paragraphs, 

Summary of the Re sl,llts 

The :following results were obtained. 

1. The natural f:i;-equencies obtq.i.p.ed for discretely stiffened or 

unstiffened~ circi.ilar or noncircular cylinders using Love's 

t..? 
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First Approximation Theory for thin elastic shells were in 

good agreement with those obtained by other investigators 

using higher-order theodes. 

2. The discrete method of analysis presented in this study was 

shown to be valid for simply supported, free-free and 

clamped-free boundary conditions by comparisons with 

results obtained by previous investigators. 

3. For the discretely stiffened shells, the natural frequencies 

obtained using the set of improved compatibility relations 

were in good agreement with those obtained by other inves­

tigators using other compatibility relations. 

4. The computation time required for problem solution and the 

computer storage requirements for the discrete method of · 

analysis were about the same as required by other discrete 

methods also using the Rayleigh-Ritz approach. 

5. As the number of stringers increased, the differences 

between the frequencies obtained using the conventional 

smearing method and the discrete method of analysis 

decreased. 

6. As the stringer mass-ratios increased, for a constant 

number of stringers, the differences between the 

lowest frequencies obtained from the conventional smearing 

method and the discrete method increased. 
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7. For stringer-stiffened cylinders, the frequencies obtained 

for the doµbly symmetric modes using the modified 

sr.n,earing method converged to values close t:o the discrete 

val\l.es, However, for the singly symmetri~ modes, the 

iterative procedure did not improve the calculated fre-

q uenc ie s. 

8, In general, the frequencies obtained from both smearing 

methods of analysis were in good agreement with those 

obtained using the discrete method of analysis. 

9. As the ;rrnmbel;' of rings increased, the difference between 

the frequencies obtained from either smearing method and 

the discrete method of analysis decreased. 

10. For shells stiffened by two or more rings, the fundamental 

frequencies obtained from the modified smearing method 

we,.-e closer to the discrete values than those obtained from 

the co1.wention.al smea:dng method. 

11. As the ma5s .. ratios increased for a constant number of 

rings, the differ~ncee between the frequencies obtained 

from the smearing methods and the discrete method of 

analysis incre,ased. 

1 Z. For ring· stiffened !ihells, the frequencies obtained for the 

even 1011gitqdinal modes using the modified smearing 

method c;onvelt'ged to values less than the discrete values, 



65 

Con.clusions 

The majo)." conclµ.sions made from this study are listed. 

1. For ahells eitiffened by either stringers or rings located at the 

nodal poi,p.ts of the terms µi the assumed dii;;placement series, 

the bei:it agreement between the smearing methods and the 

diecrete metQ.od of analysis can be obtained using the con--.-

ventional i;mea;ring method of analysis. However, if the 

stiffener~ are not located at the nodal points, the best 

agreement is obtained using the modified smearing method 

of ana.lysis. Background of this conclusion is discussed in 

Cb,apte r IV. 

2, Beci!J.Use stdngers produce weak circumferential coupling, 

compara.bh~ results can be obtained from either the discrete 

pr the smearing methods of analysis assuming the same num-

oe.r of terms in the dhiplacement series is used. Theref9re, 

fo;I." fl. shell stiffened by o,p,ly stringers, the computation time 

required for J?r9blern solqtion and the computer storage 

.requirements for the smearing method of analysis are 

nea+ly equal to those of the discrete method of analysis. 

~. For a X'ing-stiffe.ned shell, the difference between the values of the 

frequencies obtained from the discrete and smearing 

methods of a.nalysis depends not only on the mass-ratio but 

on the number of rings a$ well. When the results obtained 

from the smearing and discrete methods are in good 
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agreenwnt~ the smearing methods of analysis required 

fewer t~rms in the displacement series than was required 

by the discrete method of analysis. Thus, the computer 

stQra~e requi:r;ement is less for the smearing methods of 

ana.lysis thap, for the di.screte methods of analysis. Suffi.,.. 

dent da~a was not available to compa:r;e the computer times 

J;'ec;quired by the three methods of analysis. 

Recommendations 

The follqwing :r;iecommendatione are made for £urther study: 

~, The ~mearing method pf analysis for ring- stiffened shells 

should be i;itudied further to define the limitations of this 

method, 'J;'he study should consider such parameters as 

number of rings, mass ratios, and stiffener cross sec­

tiqn aP.d shell sptiffl;J.ess parameters. 

z, The moclified smea:idng me1:hod of analysis should be 

etucUed using tb.ree con~ta:nts of proportionality instead of 

the two (i, e., ~ and ex) µsed ip this study. One should be 

associated. with the kinetic energy of the stiffener and two 

others with the extensional a;pd torsional strain energies. 

'rhis <ii,pproach should improve the modified smearing 

m~thod of analysil:i, pa:t"ticuiarly for tho1t1e shells having 

stiffeners loc;;ated at (Q.r near) the node points of the dis­

pl~c;~men,t functions. 
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APPENDIX A 

DERIVATION OF 'rHE COMPATIBILITY 

RELATIONS 

The compatibility relations for the stiffeners were derived based 

on the assumption that the stiffoners are attached to the shell along a 

single line of attachment. The di~placement veato:r; of any point in the 

cross section of the ith stiffener call be written as 

where 

i 
= { s. fo. r the stringer 

r for the ring, 

' = the displacement vector of an arbitrary point in the 

cross section of the stiffener, 

(Al) 

{ q} . = the displacement vectqr of the centroid of the stiffener, 
Cl 

{0} = the rotation .... vector at an arbitrary point in the cross 
i/Gi 

section with respect to a~es through the centroid of the 

stiffener, 

{n} . :;: the position vector of an arbitrary point in the crqs s 
t/ Cl, 

section meai;;ured from the centroid of the stiffener, 

71 
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These vectors may be expanded as follows: 

u 

{q} = v 
i 

w i 

{q}. 
Cl 

i 

fl) 
x 

{ 0}i/ci 
=:! 0e (A2) 

fl) 
z i/ci 

0 

{o} = y' 
· sics s 

(see Figure 2) 

z' 
s 

x' 
r 

{o} = 0 
r/cr 

(see Figure ~) 

z' 
:r 

The displacement vector of the centroid of the ith stiffener can 

be written as: 

where 

{ q} "" the displacement vector of an arbitrary point on the 
0 

(A3) 

middle surface of the shell along the line of attachment, 



{ 0} . = the angle of rotation vector through the centroid of the 
c1/o 

ith stiffener measured from the middle surface of the 

shell axes, 

{o} = the position vector qf the centroid of the ith stiffener 
· ci/o 

measured from the line of attachment to the shell. 

These vectors may be expanded as follows: 

u 

{q} = v 
... 0 

w 
0 

0 
x 

{{!}} ci/o = 0e 

0 z 
ci/o 
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J: 
(A4) 

{o} 
cs/o 

{n} cr/o = 

l .: 
x 

r 

0 

After Equation (A3) is substituted into Equation (Al), the fol-

lowing compatibility relations can be written: 

x {o} . . (AS) 
i/c1 
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Assuming the Bernoulli theory of bending for the stiffeners and Love's 

first approximation to the theory of thin elastic shells, the angle of 

rotation vectors c~n pe equated as follows: 

(A6) 

where 

{0} = the angle of rotation vector of the middle surface of the 
0 

shell. 

This vector may be expanded as: 

where 

0x = 

09 = 

= 

= 

w, 
~ -R 

-w, 
x 

-u, 
..........! 

R 

v, 
x 

v -R 

(A7) 

for rings 

for stringers 

After Equations (AZ), (A4) .and (A7) are s.ubstituted into Equ:ation 

(AS), the compatibility relations of the stringer can be written in terms of 

displacements of the shell as follows: 
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u - (z + z')w, ,. (y' + y')v, 
s s x s s x 

'V) --R (AS) 

..,.. ' (w, e v) 
w + (y. + y') ..,_,........ - -

s s R R 

Likewise, the c<;>rnpatibility relations of the ril').g c;:an l?e written as: 

U - (z + Z I) WI 
r r x 

; u, w, 
').a ( +z')( e v) v - (x r + x r R "' z r r R "' R 

(A9) 

w + (x + x ') w, 
r r x 



APPENDIX B 

ENERGY EXJ?RESSIONS FOR STRINGERS 

The first variation of the kinetic energy of the !, th stringer 

lpcated at e J, can be expressed as: 

a 

6TsP, ;:: ps,R,w 2 J {As,R,(u6u + v&v +w&w).., ysJ,AsL(v,x8u 

0 

1 1 1 1 
+u6v, +R···v8w-Rw, 8w+-w&v--w8w,) 

x e R R e 

+ v,x&w 1 ) } I dx • 
x e "' e 

J, 

The first variation of the strain energy of the J, th stringer 

located at e J, c~n be expressed as: 
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a 

l\UsJ, "'J {Es.tAsJ,(u,xl\u,x) - ysp,Es.t..AsJ,(u,xl\v,xx 

0 

.,.., 
+v, l\u,)-z E A,,(u,.l\w, +w, .au,) 

xx ~ sJ, sJ, S;c, x xx xx x 

+ E (y 2 A + I ) (v, 5v, . ) t E , (-; 2,, A ,, 
sJ., sJ, sJ, zz · xx xx S;c, S;c, S..t. 

s J, 

+I ) (w, . ow, ) + E (y ,, z A ,, 
YY s J, xx xx s J, s ,/(/ s .e s XI 

+I )(v, 8w, +w, l)v,) 
yz 8 J, xx xx xx xx 
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APPENDIX C 

ENERGY EXPRESSIONS FOR RINGS 

the fi:r;st variation of the kinetic ~nergy of the kth ring located at 

~k can be express<;)d as: 

2TT 

= prk (I)~ I { A:rk(u6u + v6v + waw) 

0 

.,.,.. 
- z kA k(uaw, r r x 

1 1 - 1 
- ----.R. 2 w, 6v + .R,aw •. ow,) + (~:?kA k +I )(R 2 u,t1ou,/;I e . e e r r zzrk "' "' 

..,.,. ,...,. 1 
+ w, 0w, ) + (x k z k A ,~ + I ) (,. R 2 u, ov 

~ x r r rl'\. xzrk e 

The Jil"st variation of the strain energy of the kth ring located at 

xk can be expressed as: 

(v, ov, + wov, + v, ow + w 0w) e e e e 
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E A z 
+ . rkR ;rk rk (~v,e5v,~ +(.JO v5v,e 

c · w 'e 

+ {(.l.) };a v8v ~ l.(l) yv, .' 6v 
R , ;R R . , ee e e 

j 

. i(~) 'ev·r·s. {(t )) • v6w,e 

+ 
E I 

rk xxrk 

R c 
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1 ) } 2 1 ( 1 ) 1 ( 1 ) - {(R" w,eav,. R R w~eeav + R R vav,e 
·e · 'e · 'e 

1 ) 1 ) ,. ('(;) · u, Sw, ,.. ~R. u, ow, + w, aw, 
.1,\. . , e x e@ X! x x 

c a c 

+ 
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- Rl (R·l ) u, 6w, t (Rl ) w, 6w, , ee xe , x xe 
c c e c e 

1 (1)· 1 - - - u 6w - .--.- u 6w 
R R , 'e 'xee R 2 'ee 'xee 

c c e c 

1(1) 1 (1) + - ...,...,_, w 6w +.....,.,... --- w ow 
R R , 'xee 'xe R R , 'xe 'xee 

c c e c c e 

(GJ)rk zrk 1 1 
- R (.,.,.,..,,,R li1 w, o u, +Ra u. ow, xe e e xe c c c 

2 (GJ) l'k z~k 
+ R w'xe ow'xe) + Rs . w,xe ow,xe} I de 

c c x=xk 

2rr E A x 
+ I { ;r kR r k r k (- ( 1 ) ( 1 ) R v,eou, "' R w&u,e 

c 'e 9 'e a 
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+ w, aw + v, 6w, + w6w, ) 
x e x x 

+ ~(~) u, 90 au, 9 - (t) w,~au, 0 
+' 'e 'e 

....,... 
E A x z 

t r k . r k r k r k ( " .l (l.) v .tu 
Re R R , 0 '01:1 'e 



83 

E I 
rk xzrk 

R 
c 

1 1 1 +--q. ov, .. ...,..w, ov, 
R R 'ee e R x e 

c 
(~) (f) u,e&w,e. 

'e c 'e 
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E I z 
rk xzrk rk 

R 
c 



Al?PENDIX D 

ELEMENTS OF THE MASS AND 

STIFFNESS MATRICES 

The matrix eleme.n.ts of Equation (2. ~6) are presented in this 

appendix. The circumferential and longitudinal integrals (ISA., ISB., 
1 1 

IRA,, IRB,, and IX.), the stringer circumferential funGtions (SF. ) 
1 l 1 l, J, 

and the ring longitudinal £unctions (RF. A) used in these expressions 
i, JIJ 

are defined in Appendix E, Appendix F defines the remaining constants 

which are various combination.s of the ma,teria~ prppertie s of the shell, 

The elements of the ma$s and stiffness matrices of a stringer 

and ring stiffened noncircular shell may be written as follows: 

Contribution Qf the noncircular shell: 

E;l3 = ST4 !SA5 IX 4 mn,mn 

K23 = £ST::1 n ISA13 + ST 1 (n2._;;, ISA4 + nn lSB2 + n 2 ISB 4 mn,mn 
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+ SXT 3 n IS.As IX2 

+ ii ISB5 ) IX~ - ST2 (n2 ISA8 + n !SB~ )IX4 

+ [ST 3 !SA8 + ST 1 (n2 ~2 !SA4 + nn2 ISBe 

+nan ISB 4 , + nn ISB 1 } IX6 

Ml 1 = SPC ISA1 IX2 mn,mn 

M22 - ,.,. = SPC ISA9 IX5 mn,mn 

M~3 ..... " = $PC ISA1 IX6 mn,mn 

Contdbution of the J,th stringer: 

Kll J, .... ... = STR8 A SFl, A I;>t.1 mn, mn XJ XJ 

Kl2:n, mn = .. $l'R9 SF 4 . IX 1 u~ ' J, f p, 

Kl3p, .,,.._::: ,..S'l'R10 SF 1 IX 1 mn, mn J, , J, 

K22~n, m,n. :i; STRl 1 p, SF J, R, IX 1 + STR12 R, SF 6, R. IX2 

K2;3J, ....,,. = STR13 SF2 IX 1 + STR12 SF6 IX2 mn, mn J, · .• R, J, , J, 

K~3:un .. mn = STR14 SF l IX 1 t STR12 SF 6 IX2 , J, ,R, R, ,p, . 

Ml l!in, m. n = STRl A SF 1 A IX2 
XJ ' y, 

J, 
Ml2 ,.,.-- = -STR2 SF IX2 mn, mn R, 4, R, 

Sq 
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M22 J, ;:: [ STRl SF3 + STR4 SF5 t STR5 SF6 mn, mn · J, , J, I, , J, t , J, 

+ STR6 SF6 } IX 5 + STRS SF3 IX2 /, ,J, J, ,J, 

M23 t ;:: ( .-STR2 SF7 + STRS n SF6 + STR3 n SF5 mn, mn J, , R. J, , J, J, , J, 

+ STR6 n SF6 } IX 5 + STR 7 SF2 IX2 J, ,p, J, ,J, 

M33.e ,,.,.,.~ ;:: ( STRl SF1 ,.. STR2 n SF8 ,., STRZ A ii SF7 mn, mll J, , J, t , J, x.i , t 

t STR6 SF1 IX2 J, , J, 

Contribution of the kth ring: 

Kl l~n, mn ;:: [ RNOl 7 k (nn !RB 1 -h n 2n IRB2 + nii2 IRB3 

Kl3k = t RNGl 7k(n IRB4 + n9 IRA3 ) ~ RNG18k(nii IRB 1 mn,mn 
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+ naiia IRA13 )} RF 31 k 

K22k = [ RNG8k nn IRAS + RNG9k(2 nii IRA12 + ii !RBS · mn 1 mn 

+ n !RB9) + RNOlOk(nii IRA11 + n IRB 8 + n IRB 7 

+ IItB6) + RNG20k(IRB 6 t n lRB7 + n IRB 8 

K23k ~ [ RNG8k ii IRAS + RNG9k(n 2n IRAl., + l'\U IRBS 
mn,mn "" 
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2" "'a 2~2 )} + n n IRB 14 t nn IRB 15 + n n IRA 13 RF 4 , k 

Ml 3~n, mn ;z ~ RNG3k IRA7 RF l, k + RNG7 k nn IRA9 RF 3, k 
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M33~;n, mn = [ RN05k + RNG6k} lRA7 RF l, k + [RNGlk !RA7 

+ nii RNGpk IRA9 } RF z, k + RNG2k IRA7 [RF 3 , k 



APPENDIX E 

FUNCTIONS AND INTEGRALS OF THE 

MATRIX ELEMENTS 

This appendix contains thi;i functions and integrals used in the 

equations in Appendix D. The ci.rcur:nferential integrals are evaluated 

numerically using the eight-point G;:rnssian quadrature method with 

four subintervals. The ci.):'cumfe;rential integrals are divided into four 

groups (ISA..' !SB., IRA., IRB.) and defined as follows; 
l l l l 

'TT 

ISA1 i:: JR co~ ne cos ne de 

0 

TI 1 
IS.Aa ;:: 

JR 
sin ne sin ne de 

0 

'TT 1 
ISA~ = J R' sin .µe sin ne de 

0 

ISA4 I'TT 1 -= Rs cos ne cos ne de 

0 

'TT 

I 
-

ISA5 
;:: coi;; ne cos ne el e 

0 

01 



TT 

ISAa :;: I sin ne si:p ii.a de 
0 

ISA? :::; I TT~ sin ne sin :P.9 de 
0 

ITT Rl -lSA9 ::: cos n9 COfil n9 d9 

0 

TT 

ISA9 == J R sin ne stn ne de 
0 

IT'!' 1 (1) . ~ 
ISE2 :;: ~ R s~n ne cos ne de 

'e 

ISl3~ 

0 

TT 1 1 :;:; J - (~ \ cos n e sin n, a de R 2 R/ 
0 . . '@ . 

"TI 1 
r:; j (R:} cqs ne sin ne de 

o e 

TI 1 - f ~ CQS n9 COS n9 d9 - Re 
0 c 
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TT 
i . e IRA2 ;:: I R3 sin n sin ii,e de 

0 
c 

TT 1 
IRA,q = I R1i cos n,e cos ne de 

0 
c 

'Ii 1 
IR.A.4 ;:: I ~sin ne sin ne de 

0 
c 

TT 
1 

IRA = I ...,.,...... cos ne cos ne de 6 R 
0 

c 

TT 1 
IRA8 ;:: J 1l sin ne sin ne ~e 

0 
c 

'Ii 

I - de IRA.,. = R GOS ne CQS J;l@ 
c 

0 

TT 

IR.A.8 = J Re si}1. ne s ~lil ne de 
0 

Jrr: R 
IRA19 

c 
s~n n.e sin ne de = ~ 

Ra 

0 

TT R 
IRA10 I c . sin iie de = R sin n'9 

0 

iT 
1 1 I -IRA11 = ...,........ R2 cos ne coi; ne de 

R 
0 c 



IRA12 

IRB2 

IRB1' 

1i 1 1 "' 
= I a R cos ne cos ne de 

Q c 

TT 1 1 "' J ii ··:R cos ne cos ne de 
0 

c 

1'Tl 1 .:a 
= J R {(r), } ~in ne sin iie de 

0 Q c e 

,.,. 1 1 -- J 'R2 (R" ). cos ne sin n,a de 
c c 'e 

0 

• TT l 1 ) 
= I R1 (i ' sin na CQS ne de 

0 c c e 

1i 1 1 
= J (a-) R cos ne sil1. iie de 

~ 'e c 0 

JTI 1 (1) -
IRB15 ;: R R 'e sin ne cos ne de 

0 0 

!RB e 
TT 1 . 1 2 

=- J r{(Ir).} sinne sinne de 
c a 0 . 

'I'!' 1 1 1 - I - - ( ...... ) cos .Q.0 sin na de - R R R , 
0 c e 

-cos ne de 
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TI -it (fl),e J -= cos ne sin ;ne de 

0 

IRB 10 

TI 

f- (~), (f-), I -
:;: sil'l ne sin ne d.e 

0 c e c e 

TT l 1 l -
~ JR~(R)19 cos ne $in ne de 

O c G 

IRB12 

TI 

J_ (.1) I -:z R2 R $in ne cos ne <;l.9 

0 c 'e 

TT 1 1 .. 
:;: J R("R),e 

sin ne CQ!i! n9 de 
0 c c 

TT 

la (l) I 
.. 

de ,__ co$ ne sin ne 
l\ R 'e 

0 

11 1 1 1 
de = J ~ ~ (---) sin ne cps P.9 RR R , 

0 c c e 

The c;losed-form expressions for the longitudinal integral$ were 

obtained f.rorn the t;;i.ble of for:rnulai:; for i,ntegrals derived by Felgar 

(31 ), These integrals may be defined by a general a,xial mode function, 

IP , as follows: 

IX l = 

= 

I 
0 

I 
0 

a 
ip I/ ip ~ dx 

m m 

a 
ip I 

<.t> !... dx 
m m 
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a 

IX~ = r q} II ij)- dx 
J m m 
0 

a 
= J 4? ij) ~ dx 

m m 
0 

a 

= I 4? ij)- dx 
m m 

0 

After Equations (2. 35a to 2.35d) are substituted into the above equa-

tions, the longitudinal integrals for various boundary conditions may be 

written as: 

For freely supported cylinders: 

IX1 
m4TT4 

= as 

IX2 -IX -IX4 
m 2 TT :a 

= = = 
~ a 

Form= m 

IX5 = a 

} For m I= rn 

For clamped-free cylinders: 

= { s
0
:n a IX1 

m =m 

m I= m 

et 8 (2 + a S a) 
mm mm 

m =m 

4f3 S-
m m [ ( - 1 ) m +m ( OI - S 3 - Ct S ...§.) s 4 -s±- m m m m 

mm m I= m 

-S-S (a S - 0/--,-(3-)] 
mm mm mm 



m = 0 

O! a (2 .. O! a a) 
mm m rn 

O! 8 (2 ,,. OI S a) 
mm :r;nm 

For clamped-clamped cylinder$; 

:::o: -IX :3 

For fre~-free cylinders: 

IX1 = IX2 = IX13 = IX4 

IX6 = a 

IX1 ::; IX2 = IX13 ;:;: 1X4 

0t S (~ S a ~ 2) 
mm mm 

= 0 

= IX5 = 0 
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m:::m 

m=m 

m#m 

m = :r;n 

m#m 

m =m 

m=m 

m#m 
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IX1 = IX9 ;:: IX8 = IX5 ;:: 0 } m. ~ 2 

{ 4"~ la- I m~ 2 even only 
lX4 

= m.,. m .. 

0 
..... 

2 odd only rn > 

m= 1 

IX1 = IX9 · IZI IX3 = rx4 = IX15 ;:: 0 } m. = o 

IX1 :;;; IX3 :::: rx4 = 0 } .... 
m= 1 

IX a = 1 I a ; IX15 = a/12 

IX1 = IX3 = IX6 :;:; 0 } m~ 2 L 4/a 
..,. 

2 odd 0ply m> 
r:xa = ..,... 

m~ 2 evep. only 

{4/a-Za- 8-
..,.. 

2 odd only 
m-1 m-1 

lU > 
IX4 = 

0 m. ~ 2 even only 

m~ 2 

IX1 = IX2 ;:: IX4 = IX 9 
::; 0 

{ 4a " 
m~ 2 even only m. = o 

IX3 
" 

0 
m-1 m-1 

m> 2 odd only 

IX1 c:;; lX4·= IX5 ;:;: 0 

" { ~ 4/a 
ro > 2 odd only 

IXa 
ffi;j;!: 2 even only m = 1 

{ 4/ a - za 1 a 1 rn> Z odd only 
IX."! 

m- m-

0 m:;:;: 2 even only 
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{
a". a m-1 

::::: 

0 

m = m 

mfm 

m = m 

l'.Xg = 
mf m 

ex 1 a 1 (2 - Qi la la) m- m- m ... m-
m=m 

m ~ 2 

m::;m 

mfm 

m =m 

mfm 

The stringer circumferential functio!l.s are defined as follows: 

-SF1 = cos ne cos ne 
, J, J, R. 

-SF2 ::; cos ne J, sin ne 
' J, J, 

SF = sin ne sin .fie 
3, £, J, J, 

SF4 = sin ne CQS ne .e, , J, J, 
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l. -
Sf' 5' J, = sin ne s irt ne 

~ J, J, 

Sf' 6,;, 
1 . 

sin !ie;, = Ri sin ne J, 

SF 7 , J, 
1 

= R cos n e J, s in n 9 J, 

SF B, J, 
1 

z,:; R sin n9 J, cos n9 J, 

The ring longitµdinal functions for different boundary conditions 

(!.re defined as follows: 

For freely supported cylinders: 

mmrr2 
= z :a .. 

a 

,..... 
= Z ffiTT 

a 

cos 

a 

cos 
a a 

a 

cos 
a 

mTT 
RF = 2-

4,k a 
CO$ 

a a 

For clamped-free cylinders: 

RF 1, k :;: S S ..,.. [ s inh ~ . xk + s in S . xk - r:t (cos h S xk mm m· m rn m 

- cos S x ) }[ s inh IO -x + sin IO ~ x - ex ...... (cos h S - x 
mk mk; mk m mk 

RF2 k 
' 

= (cosh smxk - cos s xk - O! (sinh s xk m m m 



RF 3, k = ~ ...,. (cos h ~ xk - c: o s ~ xk - Ct' ( s inh. ~ xk m m m. m m 

- cos ~---x )} 
mk 

= ~ [sinh ~. xk +sin~ xk ~ Cl' (c:osh ~ ... xk m m· m m m 

- sin ~ ..... x )} 
mk 

For clamped-free cylinders; 

101 

The expressions are thlil same as c:lamped-(ree except the 

values of Ct' , Ct' - , S and ~..,,. are di£fe.rent. 
m m m m 

For free-free cylinders: 

m = 0 

RF 1 k :;; RF3 k = RF 4, k = 0 
• . ' m. = o 

RF 2, k 
::::; l 

RF 1 k = RF4 k = 0 
I . , 

RF 2, k = xk/a - i m = 1 

RF 3, k "" l/a 

RF 1, k = RF 4 k = 0 

' 
m;;,,, 2 

- O! ~ .. 1(sinh s-.. 1xk + sin ~- 1xk) m- m'!" m-
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RF 3, k ::; ~ '"'.'"" 1 ( sin}} ~ - 1:xk .. sin ta - 1 xk m- m- rn-~ 

... OI ..... 1(co~h ta-. lxk +cos Ii-. 1xk)) m... m~ n'h } 
m::: 1 

RF 4 k = 1/a 
I 

m. = i 

RF31 k ::: RF :::: x /a2 ,. 1/2a 
4, k k 

.. °""""' l(C\:?Sh ta-- lxk + CQs ~-.· l:x;k)) mr m.. m .. 

- Qt..,.. 1 ( si~h .IS~ 1:xk + sin ~..... 1xk)} 
m~+ m.. m .. 

x 
:;: ~..... 1 { ~ ,. t} ( s inh ia - 1xk "' sin ~ - 1xk m... a . m .. · m •. 

.. a..... 1( cosll. IS..,.,.. 1~·k t c~s ia ~ 1xk)) 
m- m- m ... 

~ l (coi:;h ~- 1xk +cos is-.. 1xk a ;rn... m-

.. a - 1(sinh IS- 1xk + sip is...- l~k)} m- m- mp 
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m 11!: 2 

- Ot 1 ( s inh e . lxk + sin e . lx. k) m.,. m~ m- m;:;: O 

RF4, k ;:;: e 1 [ s inh s lxk .,. sin s lxk m- m- m-

.. 0t 1(c9sh ~ . 1xk + cos ~ . 1xk)} m- m- . m-

RF2,k 

· .. O! 1 ( s inh S 1xk + sin ~ ·. 1xk) } m... m- m-
m;:;: 1 

RF 3, k 
1 ;;;: ..,... r c 0 ~ h e lxk + c 0 s e lxl. 
a m.- m" "" 

- Q'. 1(sinh S 1xk +sins. 1xk)} m- rn,~. m., 

x 

RF 4' k ,... { ak .,. t} Sm- 1 [ s in.h lam m 1 xk , sin S m-1 xk 

- °' 1(cosh S 1xk m- m-
m ~ 2 

- O! ....... l(cosh s~ lxk +cos s-. lxk)} m.. m- m-
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_ 0t 1( sinh ~ 1xk 
m.. r;n-

- a - 1 ( s inh ~ .,... 1xk + sin ~ ..... 1x ) } m- m. m- k 

,.. 0t 1( sinh ~ 1xk 
m- m-. 

m ~ 2 
+ ~dn e 1x ) H sinh e.:.... .. 1xk ... sin ~...: 1xk m- k m... m-

- t!l' - 1 ( c 0 sh e - lxk + c Q s ~ ...... lxk)} m- r;n.. m,.. 

RF4, k ::: S 1 ( s inh ~ 1xk - sin ~ 1xk m... r;n... m .. 

- Q' 1 ( c 0 sh e lxk m.- m .. 

- °' ...... 1(sinh ~- 1xk +sin$,.... 1xk)} m- m- m., , 



APJ?ENIHX F 

CON~TANTS OF THE MATRIX ELEMENTS 

This appendix contains the !)'.:onstants used in the equations in 

Appendix D, These expressions contain vari~us combinations of the 

material properties of the shell, stringers and rings. 

Canstanh of the Shell 

D1 
h3 

:::; 

12(1 - vxevex) 

D :;:: E D1 x x 

D :::; E 9 D1 e 

sx1 <:: ZD 
x 

SXa 'l!: 2D x'Vxe 

24D 
sx.'q 

x = ~ 

ST1 = 2D e 

ST2 ::; ZD 'V e ex 

24D 
ST.~ 

e :::: h2 
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24D \J 

ST 4 
e e~ 

g 
ha 

SXT1 ::; 2G h 
~e 

G h3 

SXT2 
xe = 6 

G h8 

SXT .... 
xe = 3 

ZGxe h3 

SX'J;' 4 :;: 

3 

SPC = 2p h 
0 

Const~nts of the Stdnger13 

STRl ::; 
PS t A 

J, s J, 

STR2 ::; 
p s P. 

A y s p, J, s J, 

STR3 J, c ,p A z 
s P. sR, st 

STR4 ::; 2 p s p, A z 
/, s R, s R. 

STRS = ~ s J, 
( a A t I 

P. YSJ, SR, zz 
s R. 

....,. 
STR6 t .., p (z2 A + I ) 

st s R. f3 J, yy s J, 

""'"' STR7 ::: 
Ps;,(ysJ, z A +I ' J, st sJ, yzsJ, 

STR8 J, = E A 
s J, s J, 

.,.... 
STR 9 J, ::; E sJ,AsJ,ysJ, 
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STRlO 
J, 

:>:: E A z 
sJ, sJ, sJ, 

STRll 
' J, 

= E (ya A +I ) 
s,t SJ, SI, ZZ 

s J, 

STR12 . I, = ( GJ) i;; .t 

STR13.t 

STR14 J, = E (z 2 A + I ) 
s J, s .t s .t yy s J, 

Constanb;; of th1;;i Rings 

RNGlk :;; 2 P l'k Ark 

RNG2k ;;: 2 ~ rk Ark xrk 

RNG3k ::::: Zp k A k z k r r · r 

RNG4k c 4 13 rk Ark zrk 

RN05k 
..... a = 2 p k (x k A k + I ) 

r r r. zzrk 

-RNG6k ·- 2~ k(z2kA k+I ) 
r r :r xx:rk 

RNG7k = Zprk(xrk z A +I ) 
l;'k rk xzrk 

RNG8k = ZE:rk Ark 

"'""' 
RNG9k = ZErk Al;'k zrk 

RNG10k ;:: ZErk Ark z~k 

RNGllk ;:: 2E k A x k r rk r 
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RNG12k ::: ZEJ,"k Arl:tx;k 

..... 
RNG13k ::;: 2E A x z 

rk rk rk rk 

RNG14k ::;: 2(GJ)rk 

RNGl!\ ;;::: 2(GJ) z 
rk ;i:k 

RNG16k :::: Z(GJ)rk ;~k 

RNG17k ::;: 2E I 
rk zz 

rk 

..,.,.,. 

RNG18k ::: 2E I z 
rk zz 

rk 
rk 

RNG19k ::;: 2E I · z 2 

rk zzrk rk 

RNG20k ::;: 2E I 
rk xxrk 

RNG2lk .- ZE I rk xz rk 

..... 
RNG22k == ZE I z 

+k xz 
rk 

rk 
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