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CHAPTER I
INTRODUCTION
Discussion

The frée-vibrational characteristics of unstiffened or stiffened
circular or noncircular cylindrical shells are of ix;terest to designers
of aircraft flusvel'ages a;.‘nd submarine hulls. Néncircular cross sections
are due' eii:hé:_: to special internal storage requirements or to impér-
fections‘occurring during ma.nufa.cture. The purpose of this study is to
deveiop and evaluate two methods of analysis for determining the free-
vibrational char.ac‘teristics of ring- and/or stringer-atiffenéd, singly
symmetric, noncircular cylinders, Fof the first method, the stiff-
eners are treated as being located at discrete locations. The second
" method cpnsiders the stiffeners to be ''smeared' over the surface of
‘the shell, thereby tranéforming the. stiffened‘ shell into a somewhat

equivalent orthotropic cylinder.
Background

Methods for vibrations analyses of unstiffened, circular, iso-
tropic ¢ylinders with specialized boundary conditions have been avail-

able for many years., With the advent of the digital computer, the
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general case of stiffened, noncircular, anisotropic cylinders with
arbitrary boundary conditions could be studied. A brief review of
some historically important studies which have contributed to the solu-
tion of this complicated problem is presented in the following
paragraphs,

The equations which govern the static and dynamic behavior of
noncircular cylinders have been derived by extending the clasgsical
theory of thin circular cylindrical shells to inglude the effects of non-
circularity, Kempner (1) presented energy expressions and differential
equations useful in the analysis of arbitrary cylindrical shells,
Kempner and his associates have used these equations to study a wide
range of problems dealing primarily with linear and nonlinear statics
problems (2, 3, 4, 5, 6, 7). Using the same class of ovals as
Kempner, Klpsner and Pohle (8, 9, 10) studied the free vibrations of
infinitely long oval cylinders utilizing an approximate method,
Culberson and Boyd (11) obtained exact solutions of the free vibration
equations of motion for the same class of oval cylinders studied by
Klosner and Pohle. |

Based on solution functions used by Boyd (12) in static analyses
of noncircular panels subjected ta uniform pressures, studies have
been performed considering linear buckling (13) and free vibration (14)
of noncircular cylindrical shell panels. Finite-difference (15) and
Rayleigh-Ritz (16) analyses of the small deflection static behavior of

oval cylinders and non¢ircular panels also have been conducted.



Sewall (17) used the Rayleigh-Ritz technique to study the free
vibrations of elliptical cylindrical shells having free-free, fixed-free,
and freely supportéd ends. A free vibration study of nencircular cyl-
inders was also performed by Malkina (18),

McElman, Mikulas and Stein (19) presented a theoretical analy-
sis of the vibration and stability characteristics of eccentrically
stiffepned circular cylinders and flat plates. In this study, the stiff-
eners were not considered as discrete members, but their effects were
averaged or ''smeared out' over the plate or shell,

Egle et al, (20, 21) utilized the Rayleigh-Ritz technique to deter-
mine the free vibration frequencies and mode shapes of stiffened
circular cylinders. The rings and stringers in this study were treated
as discrete elements, and a number of practical end conditions were
employed.

Bushnell and Almroth (22) have developed a computer program to
determine the vibration and stability characteristics of stiffened shells
of a general shape under general loadings. The numerical solution is
based upon a two-dimensional, finite-difference approximation. The
shell surface is covered with mesh lines parallel to the cpordinate
lines and the mesh spacing is variable over the surface.

Boyd and Rao (23) studied the free vibrations of ring- and
stringer-stiffened elliptical cylindrical shell structures, treating the
stiffeners as discrete elements. Their study utilized the Rayleigh-

Ritz technique to find the free vibration frequencies and mode shapes



for a wide range of cross section eccentricities, numbers of stiffeners
and end conditions, The Flagge strain-displacement relations were
used for the cylindrical shell, In addition, the shell was limited to
isotropic materials and symmetric rings., The method of analysis was
complicated by the effects of noncircularity and the compatibility
requirements between the shell and the stiffeners. These effects
increagsed the cc;mputer storage requirements and the computation
time for these highly complex problems.

Even with the research accomplighed to date, a need still exists
for a method of analysis that has:

® increased computational efficiencies,

® orthotropic material properties for the shell,

® improved compatibility reiations, and

@ arbitrary stiffener cross sections.
Furthermore, a need exists for additional understanding of the vibra-
tional characteristics of stiffened shell structures. This study was

initiated to provide these needs,
Approach to the Problem

The objective of the present study is to develop a method of anal-
ysis that satisfies the above needs and to obtain additional understanding
of the vibrational characteristics of stiffened shell structures. Two
methods of analysis are developed here to study the free-~vibrational

characteristics of unstiffened or stiffened arbitrary cylindrical shells.
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Both methods use the Rayleigh-Ritz approach, In the first method of
analysis, the stiffeners are considered to be discretely located. The
second method ''smears'' the stiffeners over the surface of the shell
based on an equivalent energy approach., These methods are evaluated
for their computational efficiencies.

Orthotropic material properties for the shell are included in this
analysis. With orthotropic material properties, the vibrational char-
acteristics of filament wound pressure vessels can he studied, Also,
this allows for the use of composite materials, This method could be
easily modified to include sandwich-type materials. Kraus (24)
showed a good correlation between the numerical results obtained from
L:‘)ve's First Approximation Theory of thin elastic shells and those
from higher-order theories (e.g., Flligge's Theory) and theory of
elasticity solutions, Therefore, the theory of Love was selected for
this study.

An improved set of compatibility relations for the stiffeners was
developed for ‘this study (Appendix A). These compatibility relations
are consistent with the shell and beam theories and are preferred to
those used in References 21 and 23. In addition, the stiffeners can
have arbitrary cross sections, For example, shell structures using
zee or channel stiffeners can be analyzed with this method of analysis.
Stiffeners with arbitrary cross sections are quite commonly used in

many structures.



The derivation of the energy expressions for the shell structures
ig described in Chapter II. Expressions for the stiffener energies are
presented in Appendixes B and C. The elements of the mass and stiff-
ness matrices are given in Appendix D. The computer program
developed is discussed in Chapter III, An evaluation of the methods
and numerical results are discussed in Chapter IV, Finally, Chapter
V summarizes the results of this study, contains conclusions and

makes recommendations for future investigations.



CHAPTER II
FORMULATION OF THE SOLUTION

The equations of motion in this analysis were developed using
Hamilton's Principle by minimizing the Action Integral with respect to
the undetermined coefficients of assumed displacement functions, i.e.,

tl
6A=J" (6T - 8UYdt = 0 . (2. 1)

t.O
The first variation of the strain and kinetic energies of the shell,
stringers, and rings (with respect to their own coordinate systems)
was formulated. Cofnpa,tibility relations were derived to express the
displacements of the stiffeners in terms of the displaceménts of the
shell median surface. Using these relations, the first variations of
the strain and kinetic energies for the stiffeners were expressed in
terms of the displacements of the shell median surface. The energies
for the shell, stringers and rings were combined to obtain the first
variation of the total strain and kinetic energies for the stiffened cyl-
inder; Finite series satisfying the kinematic boundary conditions were

assumed for each component of point displacements on the shell median

surface. The assumed displacement functions with undetermined



coefficients were substituted into the expressions for the first varia-

tion of the total energies and combined to form an eigenvalve problem.
Geometry

The géornétry of a typical noncircular shell is shown in Figure 1,
The three orthogonal coordinates 'x; 8 a;nd z locate poinks on the
reference surface of the shell and u, v and w aré the corresponding
displacement components. .‘I‘he variable radius of curvature of the
shell cross section is éxpressed ag & Egmction of the 8 coordinate. The
gec;met._ri:es of & typical stringer and‘]ring are shown ia Figares 2 and 3,
rebspectively» The local coordiﬁ&tes of the stiffeneré x*% y?and z ' are

meagured from the centroid of the stiffener.

Compatibility Relations L

The comfﬁatibility equ‘a&iom relgte the displagamvks {q} ; of any
point in tba ith gtiffener to those {q}u of ﬁhel médiéxﬁ. s_urfﬁc:e of the
shell, (The derivation of the sguations is -.presented in_Appcndix AL}
These compm’:.ibﬂity relations can be expressed as

{a}; = [C] {a}, : - (2.2)
where | = s :I'Qr the st;ingers and i = r for thé rings. The matrix [C]s

may be expressed as



Figure 1. Geometry of an Elliptical Shell
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Figure 2. Geometry of a Typical Stringer
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Figure 3. Geometry of a Typical Ring
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. -
- / A - / B i
- . - + 2 !
L (Ys+ys) oxX (Zs Zs) AX
[C] = |0 1+e(z 42)) - =(n +2)) =
s R Zs Zs "R Zs Zs a8
1 - 1 - d
- ! I+=(y +y’) =%
—__0 R(YS+YS) +R(Ys Ys) 36 |
and, the matrix [C]r may be expressed as
— _ 3 T
0 - Yy —
% 1 (zr+z ) -
R RN TR IO SR
[C]r = - R(xr+x ) 0 1+ R(z +zr) - (zr+z ) 6
|
3 0 0 1+ (x 1x ) 2=
, r r ax_

Strain-Displacement Relations

The strain at any point in the shell can be expressed in terms of
six middle surface strain components; i.e., two normal strains (e
. X

); two curvature changes (u and

and ¢,), one shearing strain (¢
x0 X7

6

) and one twist (7). These may be expressed in matrix form as

“ez
' ~
[
x
e.
e
€
"x 0
{e}o =< s
"
Xz
“ez
T

o)

Likewise, the strains at the centroid of the stringer are



{e}

(el

13

The strain-displacement equations relate the strain at any point

in the structure to the displacements of the shell median surface.

th
These may be written for the i

(e}, = [B] {a}_ .

component in matrix form as

(2. 3)

The strain-displacement relations used in this study reflect the pos-

}iulates of Love's First Approximation Theory for thin elastic shells.

)

' The matrix [B]O may be expressed as
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S 0 0
ax ’
13 1
0 R 236
13 D 0
R »© X
Aa
(Bl = 0 0 ey
0 _1__§_+L_5_(L) 1 3% 13 L)_B_
R®36 R 36\R R236%2 R ae<R 28
0 13 2 3%
B R 3x " R 3x36 ]

X
The Bernoulli theory of bending was used for the stringers and rings.

Thus, the matrix [B]s for the stringers is

—_a_ - 32 2 aa
3% Ys 3x2 T s x®
0 0 0
0 0 0
(8], = | 2
S §O 0 - axz
30 dx 2 0
2 13 1
R ox R 363x

and the matrix [B] for the rings is shown in Equation (2.4) on page 15,
r g q pag



0
_f_r__a_(Li_ r a7 1/1+z_r>-5_+z—ri(
R 38 36 R R 3p2 R \ R/38 R 238
C C C C
0 0
0 _L_é_(_l_)_l__B_
R 238\R/  RR 236
C C
_.LiL)L__l__BB 0
R ae(R /38 R2 392
C C C
1 23
=2 0
RZ 39
C

S1
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Strain and Kinetic Energies

The strain energy of the shell, stringer or ring can each be
expressed in terms of the middle surface strain components and stress
resultants as
U, = %f fo_ 1T {e}. ds (2.5)

i R-i i
S
where the six stress resultants consist of two normal stress resul-
tants, one shearing stress resyltant, two bending stress resultants and

one torsional stress resultant, The stress resultants for the shell are

{ogly= J S

and for the stringer

{GR}S: < >
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and for the ring

r
The stress resultants can be expressed in terms of the middle surface

strain components as

{cR}. = [D]. {e}, . (2. 6)

1 1
After Equations (2.3) and (2. 6) are substituted into Equation (2.5); the
first variation of the strain energy is
6U, = 1T 1817 D], [B].{q} s | 2.7
i_f{éqo i (Dl LBL{al, ' (2.7)
S
The kinetic energy of the shell, stringer or ring can be expressed as

T, = 3 [m (4} (4}, as . (2. 8)
S

o . : .th , . .
where m, is the mass of the i element. After Equation (2.2) is sub-
stituted into Equation (2. 8), the first variation of the kinetic energy is

8T, = f mi. {a&};r [c];r [c], {4} as . (2.9)
g ,
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Shell Energies

The first variation of the shell strain energy obtained from

specializing Equation (2.7) is expressed as
a 2m T T
Ceug = [ [ el [BI] (D] [B]) {a) Rdedx  (2.10)
o o

where for orthotropic material, the matrix [D]O is

E h v Eeh A T
X ,lex 0 0 o 0
_Vxevex -Vxevex
v_._E h E h
lxe x_ - 8 0 0 0 0
'Vxe\’ex 'Vxe\’ex
0 -0 G h 0 0 0
X8
[D]o = ’ E h3 \)e Ee h3
X X
0 0 0 0
12(1- -
2( vxevex) 12(1 Vxevex)
\)Xe EX h3 Ee h?
0 0 0 0
} 1- -
12( Vxevex) 12(1 Vxevex)
Gxeha
0 0
B 0 0 0 12|

After Equation (2. 10) is expanded, the first variation of the strain -

energy for the noncircular cylindrical shell is

a 21 E h
X pq)
T ey . TR
ST V%gVex X ¥ x 8
o o

E h Vv

0 6x
+ ’ » ’ H
u éw)] + 1 9 [ R (v eau < + wéu x)

X _Vxe ex
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+ 'Ria(v, e&v, e+ wv, 5 + v, eéw + WGW)H]

+G h—l-u 8u +—1— su +i §v
%0 [Ra 9o TRV TRV

E h3
X

+v, 8V, ]+ "w, 5w,
x X lZ(l—\)xe\)ex) UxxX XX

1 .
- Tz » » - W, » - ’ ’ + ’ W,
A2 g0Vr g W ggtVrg Y 6°% g6 T W 50%% ee)

1 1
- E (E), e(vév, e— W, e&v, 5 + v, e&v - W, eeév

- ’ + ’ ’ = ’ ) + ’ >
VO ot We BWs o Vi BW ok W, 6w, )

-—1 {(1) }2<V6V w, &V v + w Sw )
- e = ) = W, » ’
R2\R/, 5 e 0 ] e —]

3
12 [sz’x Vig T Rz( 'x0° V" x T Vrx w’xe>

4
+R2w,xe6w,xe]}Rde dx . (2.11)

The first variation of the shell kinetic energy obtained from

specializing Equation (2. 9) to the case of harmonic motion is

§T

(o]

a 2m ‘
w2[ [ m, (sa), [C]E [C], fa}, Rdedx . (2.12)

(o] o
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Expanding this expression, the first variation of the kinetic energy for
the noncircular cylindrical shell is

a 2nm
= .3
sTo = g JI JI poh{uau +vév + wéw} R de dx . (2.13)

o O

St:inger Ene rgie 8

The first variation of the strain energy for the .ch stringer

located at e!, is expressed as

a
T T
su_, = [ {sal; [B]],[D]_,[B], (g axlyey 19
Q
where
B 0 0 0 0o |
s!,AsE
0 0 0 0 0 0
0 0 0 0 0 0
[D] = 0 0 I -E 1 0 .
s4 S“’Ysz szyzsz
0 00 -E 1 I 0
sd stz sy zzsz
0 00 0 0 (GJ)Sz

L—

Equation (2, 14) is expanded and presented in Appendix B,

Two methods of analysis were used in this research. The first
method is called the 'discrete' method. In this approach, the first vari-
ation of the stringer strain energy (Appendix B) is evaluated at the

specific g (i.e., e!,) where each stringer is located. Thusg, the total
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contribution of all the stringers is expressed, for a discrete analysis,

as

-

| . 2.15
aUsL ‘9 =0 ( )
. .

@)
5o

The second method employs a ''modified smearing' technique.
In a "conventional smearing' approach, the first variation of the strain
energy (Appendix B) is integrated over a region wherein the stringer is
assumed to be "smeared" and divided by the length of the region, 2A.
Thus, the total confribution of all the stringers for a conventional
smearing approach is

0
ns 1

5chs - Z EIZI
. 8 -

=1
y 4

+A
§U ,de . (2. 16)
s4
A
In this study, the conventional smearing technique is modified by intro-
ducing a constant of proportionality defined as the ratio of the 'dis-
crete' energy to the ''conventionally smeared" energy. This is

expressed for the jth mode as

+A

L
§U de . (2.17)

9
1
6Usz‘e=eL %428 f st
6
)

-A
Thus, the total contribution of all the stringers for the modified
smearing approach may be expressed as
| 8 +A

n . 1 A
= — . 2.18
5UMs iam 2A f GUszde ( )
S =1 8,-8



22

(It should be noted, for ¢ ,., = 1.0, Equation (2. 18) is identical to

£j
Equation (2, 16),)
. - C th .
The first variation of the kinetic energy for the £ stringer,

located at ez, is expressed as

a
T T
= 3 ‘
6T, = ©® [ m,{sa}_[c]_,[C]_, {a}, ax lg=e, 19
o
This expression is expanded and presented in Appendix B. The equa-
tions for the kinetic energy are developed in the same manner as those

for the strain energy. Therefore, the total contribution of all the

stringers, for a discrete analysis, is

8T, = Z 8T, loze (2.20)

and, for a conventional smearing analysis, is

ns e +A
L
6T g = ZZ—A—f 6T, do (2.21)

=1 e -
) .GA

Furthermore, for a modified smearing analysis,

ns
1
6Tppg * z i35 j 5T, de (2,22)
S z;l

e

8.+
i
~4

where
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6T | .
sk G—GL

= . 2.23
BLJ 8 +A ( )
1 J
— T d
ZAJ 8 s ®
8 -A

4

The values of 4 and sz are determined by the following itera-
tion sequence, The constants sz and sz are first assumed to have a
value of one (thus formulating a conventional smearing analysis)., The
eigenvector associated with the particular eigenvalue of interest is
substituted into Equations (2,17) and (2.23) and new values of a,@j and
ﬁzj are determined from these equations. The improved values are
substituted into Equations (2. 18) and (2.22) to formulate the modified
smeared problem. From the solution of this problem, new values of
°’zj and sz are determined. This iterative process is continued until

. th .
the difference between the values of the j eigenvalue obtained from

two consecutive iterations is less than 0, 01.

Ring Energies

The first variation of the strain energy for the kth ring (located

at xk) is

em T T
sU,, = | {sal; [B]rk[D]rk[B]rk{q}oRdelxzxk (2.24)
(o]

where



0 0 0 0
0
0 ArkErk 0
0 0 0 0
[D]rk - 0 0 0 Erklxx
rk
0 0 0 - rkIXZ
r
0 0 0 0

24

0 0
0 0
0 0
I 0
rk xzrk
I 0
rk zzrk
0 (C}J)rk

This expression is expanded and presented in Appendix C. The equa-

tions for the ring strain energy are developed in the same manner as

those for the stringer, Thus, the total contribution of all the rings,

for a discrete analysis, is expressed as

nr
aUD,r =Z aUrklxzxk
k=1

and, for a conventional smearing analysis, as

g

n x

1

= y— dx

Yes_ Z 55 | 8U 1
k=1 xk—A

and, for a modified smearing analysis, as

nr X, +4A
] k
*Oms T ) %535 | U 8%
k=1 xk-A

where

(2.25)

(2,26)

(2.27)
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aUrk

|x:x ]
k

o . = e (2.28)

kj xk+d

1

2A f 6Urk dx
xk—A

The first variation of the kinetic energy for the kth ring (located

at xk) is
2m
T ;T ,
= 2
8T,y = o [ m {ea) ) [C] [C] {q}oRdelx:Xk. (2.29)

o
This expression is expanded and presented in Appendix C, The equa-
tions for the ring kinetic energy are developed in the same manner as
those for the stringer, Therefore, the total contribution of all the

rings, for a discrete analysis, is expressed as

nr
$T, = Z 8T e |x~_:xk (2. 30)
r kzl

and, for a conventional smearing analysis, as

nr x. +A
1 k
6Tog = ‘z_Ef 6T, dx (2.31)
1

k= X, - A

k
and, for a modified smearing analysis, as

nr xk+A
6Ty g * szjwﬂf 8T . dx (2. 32)
r k=1

rk
xk-A

where
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6Trk Ix=xk ,
Bkj = Xk"'A » ~— (2.33)

1
E_A f 6Trk dx

%X, " A

The modified smearing analysis of rings is carried out in the

same manner as in the analysis of stringer energies.

Displacement Functions

The displacements u, v and w are assumed to be double finite
series, Conventionally, each term of the series is a product of a
circumferential and an axial function weighted by a time-dependent,

generalized coordinate, The assumed displacement functions are:

u(x, 8, t) —z z G. [ €08 n6+ﬁm sinn®) U (x)eiwt
m=0 n=0
M>‘< %

. -, igt
v(x, §,t) = z z smne - vmncos ng) Vm(x)e (2, 34)

mz=0 n=0

(x, 8, t Z Z L cOSmB+W’ sinnd) W (x)e ®F

mn m

m=0 n=0

where U (x), V_ (x)and W (x) are the axial mode functions which
m m m

satisfy at least the kinematic boundary conditions of the stiffened shell;

-

w _, v __and w___ are unknown amplitude coefficients of the sym-
mn’ ‘mn mn

. . . l - -~
metric circumferential modes andu’ , v/ and w’ are those
mn' mn mn

associated with the antisymmetric modes.
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In this analysis the axial mode functions Um(x), Vm(x) and

Wm(x) were expressed by a single function Qm(x) such that

d
Um(x) ® = @m(x)
Vm(x) s §m(x) (2.35)
Wm(X) = i?m(X)
The following functions were used in this analysis;
Boundary Condition Function Used Egn. No.
Freely supported: Qm(x) = «[2- si,n'—n-l—g-}-i (2. 36a)
Clamped-free: Qm(x) = Xm, Characteristic function (2. 36Db)
of a Clamped-free beam,
Clamped~clamped; Qm(x) = Xm, Characteristic function (2. 36c)
of a Clamped-clamped beam,
Free-free: éo(x) = 1 (2.364d)
@l(x) = x/a - %
$ (x)= X , Characteristic function
m m-1

of a Free-~free beam, (m 2 2)

The characteristic functions Xm’ their derivatives and eigenvalue

properties are tabulated in Reference 25,
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Frequency Equation

The first variation of the total strain energy of the stiffened shell
is obtained, for the discrete analysis, by combining Equations (2. 11),
(2, 158) and (2.25). Similarly, the first variation of the total kinetic
energy.is obtained by combining Equations (2.13), (2.22) and (2, 32).
Substituting the first variations of the total strain and kinetic energies

into Equation (2.1) we obtain

t _ :
f 1{M}T [[K] - w“[M]] fq} @ = 0 .
tO

Since the {6q} are arbitrary, the following eigenvalue problem is

obtained
(1) - w?(M]] 0} = 0 .

This equation can be rearranged in the following form

K K M | M q

ss | sa 58 | sa S
—_— e e | e Lad B —_— —_——_—— .~ =

T ‘ ® - 0 (2.37)
K K M I M q

sa | aa sa | aa a

where {qs} and {qa} denote the symmetric and antisymmetric mode
vectors,

In Equation (2. 37) the off-diagonal submatrices of both the stiff-
ness and mass matrices vanish if the cross section of the stiffened
shell is symmetric with respect to the vertical axis. Thus, the above

equation is uncoupled into two equations - one for symmetric, and the



other for antisymmetric modes.

modes may be written as

K1l K12 K13
—_—

Tl | s
Kl2* K22 |K23

|

_— — — — —— —

| |
K13T k23T | K33

2 M2l M22 1 M23

29

The equation for the symmetric

M11 | M12 | M13]
__.__|__.1_...__.

—_ - + —_— _.‘..._ ——
M13% 1 M23%] M33

>= 0, (Zr 38)

The frequency equation for the smeared analysis is formulated in

the same manner as in the case of the discrete analysis,

Equations

(2,11), (2.18) and (2,27) are combined for the first variation of the

total strain energy and Equations (2.13), (2.22) and (2, 32) are com-

bined for the first variation of the total kinetic energy.



CHAPTER III

COMPUTER SOLUTION

General

A computer program was developed to determine the modes of
free vibration and the corresponding frequencies for an arbitrary
stringer- and ring-stiffened, orthotropic noncircular cylindrical shell,
The mass and stiffness matrices of the structure are computed in the
program and the eigenvalues and eigenvectors are calculated using the
subroutine EIGENP (26), The materijal properties of the shell may be
either isotropic or orthotropic., The program allows the stiffeners to
have arbitrary cross sections and to be treated as either discrete or
smeared. Circumferential integrals and smearing integrals are evalu-
ated using an eight point Gaussian quadrature method with four
subintervals, Figure 4 shows a flow chart of this program. The
Oklahoma State University IBM Model 360/65 computer was employed
for this project,

The input data for the program is categorized into four kinds,
The first is general data, e.g., number of terms considered in the
assumed displacement series, the number of stringers, the number of

rings, etc. The other three kinds of data are shell data, stringer

an



GENERATE SHELL STIFFNESS
AND MASS MATRICES

GENERATE DISCRETE STIFFNES! ENERATE DISCRETE STIFFNESS
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STRIFFNESS ANDMASS
MATRICES ON TAP|
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ACH DISCRET
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|
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DISCRETE AND
STRINGERS
MEARED,
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AND
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| GENERATE NEW STIFFNESS
AND MASS MATRICES WITH

a AND B

DETERMINE
VALUES

OF a AND 8

Figure 4.

Flow Chart of the Computer Program
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data, and ring data.

32

The radius of curvature, R, of the shell is con-

sidered to be a tabulated function of the 8 coordinate, The expressions

for R, (-]%{-) , R, 5 are calculated in function subprograms. These
-

subprograms must be supplied for each problem.

Natural Frequencies and Mode Shapes

The order of the stiffness and mass matrices of Equation (2. 38)

depends on the total number of circumferential and axial terms in the

assumed displacement series. If M* circumferential and N* axial

terms are used, then the order of the matrices is 3M*N* and Equation

(2. 38) may be written as

where the generalized coordinates are

-

e
1]
A

%00
Y01

u

. 02

Yon*

10

o]

11

.12

s

Mo

-

-

M)

Vo1

Vo2

VON>:<
Y10

V11
V12

v M % N sk

g1

g1

g1

g1

00
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02

E3

ON
10
11
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£

M*N*

(3.1)
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and
K = stiffness matrix,
M = mass matrix,
w = the natural frequencies ir; radians/second,

If the matrices K and M become singular due to rows and col-
umns 6f zeroes for certain boundary conditions, the matrices are
condensed by eliminating those rows and colﬁmns of zeroes. The sub-
routine called EIGENP (26) is us_»ed to calculate the frequencies (w) of
Equation (3. 1) and the resulting generalized éoordin,ates,

After the natural frequencies and associated generalized coordi-
nates are obtained, the correspending mode shapes are determined
from another program based on Equation (2, 34). As in conventional
free vibration problems, only the normalized displacements can be
found, The displacement mode shapes can be calculated at any x or 8

value.



CHAPTER IV

NUMERICAIL RESULTS
Introduction

The discrete method of analysis described in this dissertation
was substantiated by comparing results of this study with some of those
obtained by previous investigators. A comparison of the discrete and

smearing methods of analysis was made and is presented in this chap-

ter,

Comparison of Discrete Analysis

With Known Solutions

The natural frequencies of (1) unstiffened circular cylinders, (2)
unstiffened noncircular cylinders and (3) stringer- and/or ring-
stiffened circular cylinders obtained using the discrete method of

analysis were compared with known solutions and presented in this

section,

24
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Comparison of Results for Unstiffened

Cirgular Shells

Forsberg (27) obtained the exact frequencies for freely supported,
unstiffened, circular cylinders by solving the differential equations of
motion. Boyd and Rao (23) solved the same problem using the
Rayleigh-Ritz approach, Both analyses used the FlfJ:gge shell theory.
The results of these analyses and those obtained from this study are
listed in Table I fo;* the longitudinal mode m = 1. A good correiation
between the frequencies was obtained from the three analyses. The
frequencies obtained from the present analysis are slightly higher than
those obtained using the higher-order theory of Fligge, References 23
and 27,

Sewall et al. (17) studied freely supported circular cylinders
using Sander's shell theory and the Rayleigh.Ritz approach, The same
structure was stﬁdied (23) using Flugge shell theory. The results
obtained‘ from this study and those from References 17 and 23 are
shown in Table II for the longitudinal modes m = 1 and 2, The cor-
relation of the results from the three studies was excellent,

The experimental and analytical results of Reférence 28 for a
clamped-free, unstiffened, cirgular shell are compared to those of the
present analysis (for the longitudinal modes m =1 and 2) in Table IIIL
Comparisons were also made with the experimental results of Park et

al, (29), the analytical results of Egle and Soder (21), and the



COMPARISON OF ANALYTICAL FREQUENCIES OF A FREELY

TABLE I

SUPPORTED UNSTIFFENED CIRCULAR CYLINDER?

-36

n m Prese?t Béyd'b ForsbergC
Analysis & Rao

1 | 779 77&7 f78 |
2 2 2450 2449 2449

3 4254 4253 4253

i ” ‘623 ,‘ "628 o .627 )
3 2 1459 1458 1458

3 2683 2682 2681

1 “975H 974‘ 974

2 1305 1304 1303
’ 3 2023 2021 2020

4 2950 2947 2946

a)

c)

The geometry of the shell is given in Reference 27.

Reference 23.

Reference 27.



COMPARISON OF FREQUENCIES OF A FREELY

TABLE II

SUPPORTED CIRCULAR CYLINDER?

37

‘ —m=1 . m=2 —
G i
1‘ | 1565.3 | 1565.3 ‘1v565,0 ’2'309."3‘ B 230‘9'.‘3 230‘9.0 |
2 894, 1 894.1 - 894,1 1782, 4 1782.4 1782,0
3 529.9 529.8 529. 8 1314,9 1314.9 1315, 0
4 338.7 338.6 338.6 968. 4 968. 4 968, 4
5 235,6 235.6 235, 6 726, 3 726, 3 726, 3
6 182.2 182,1 182.1 560, 4 560. 3 560.3
7 162,2 162,2 162,2 448.6 448.6 448, 6
8 167.0 166, 9 166.9 377,2 377.2 377.2
9 188, 6 188.6 188, 6 338.2 338.1 338.1
10 221.4 221,3 221.3 325, 8 325, 7 325, 1
11 261, 7 261,77 261.7 335,1 335, 0 335,0
12 308,1 308.0 308, 0 361.2 361,—0 361.0
13 359.5 359,58 359.5 399, 6 399. 6 399, 5
14 415.6 415.6  415.6  447.5  447.5  447.5
a) The geometry of this shell is given in Reference 17.
b) Reference 23,

c)

Reference 17,



TABLE III
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COMPARISON OF ANALYTICAL AND EXPERIMENTAL
FREQUENCIES OF A CLAMPED-FREE

UNSTIFFENED CIRCULAR

CYLINDER?
m=1 m = 2
n  Present  SewallP SewallP Present  Sewall? Sewallb
Analysis Analysis Exp, Analysis ‘ Analysis Exp.
1 787,2 791.6 - 2017.5 >2000,0Q -
2 394, 2 395,9 - 1311,0 1314,0 -
201, 8
3 218.5 219,3 206. 2 875.0 876. 8 -
4 137.8 138.2 131.7 612.4 613.6 -
5 103.1 103.3 100, 8 449.0 449.7 429.1
326, 3
6 97,8 97.9 96,9 345. 8 346.3 334, 4
7 112,1 112.1 113.0 283.5 283, 8 273,58
8 138,1 138, 1 140, 4 252.4 252. 6 247, 4
9 171, 4 171, 3 174, 3 246.7 246, 8 244,2
10 210,1 210.1 214. 6 260.8 260.9 261.5
11 253,7 253.7 258.4 289.6 289.6 292.1
12 301, 7 301.7 307.6 328, 8 328. 8 335.2
. 381.1
13 354, 1 354.1 361,2 375.8 375, 8 393.2
416, 0 :
14 410. 8 %10.8 24,9 429.; .429.1 437, 8
a) The geometry of the shell is given in Reference 28,

b)

Reference 28,
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analytical results of Boyd and Rao (23), These are presented in Table
IV, Generally, the comparisons are good. The slight differences
might be attributed tq the difference in shell theories and to inexact
boundary conditions in the experiment.

The validity of the present analysis for the free-free boundary-
conditions case was established by comparing the results of this
analysis with the experimental and analytical results of Reference 17,

Table V shows good agreement between the results of the two studies,

Comparison of Results for St:cjinger—

Stiffen_ed C ircula,rv Shells

Egle and Sewall (20) presented frequencies obtained for freely
supported, circular cylinders, with and without stringers, using the
Donnell shell theory and neglecting the insurface inertias. Reference
23 presented results for the same structures using the Donnell theory
but including the insurface inertias, Table VI shows the results (for
the longitudinal modes m = 1 and 2) obtained from thig analysis and
those presented in References 20 and 23. The frequencies obtained by
Egle and Soder are slightly higher than those of Boyd and Rao. This
discrepancy is evidently attributable to the neglect of the insurface
inertias. The results of Boyd and Rao are higher' than those of the
present analysis, The differences might be attributed to differences

in compatibility relations used,



TABLE IV

COMPARISON OF ANALYTICAL AND EXPERIMENTAL
FREQUENCIES OF A CLAMPED-FREE
UNSTIFFENED CIRCULAR

40

CYLINDER?®
m=1 S " m=2
‘ s =y — N — T
n Present Boyd® Egle &¢ Park Present BoydP Egle &¢ Park
Analvsi & Rao Soder et al. Analvsi & Rao Soder et al,
» ysis Anal, Ana.l. Exp. v YSF ‘s ’Analq_ Ana.‘l. Exp.
2 104,1 104.4 104.4 s;’% 507.2 508, 2 - -
3 55.6 55,6 55.6 51,5 280,9 281,3 - -
4 52. 0 52.0 52,0 50. 4 177.7 177,.9 177,9 168, 5
170.2
5 71.6 71,6 - 70.9 135,3 135, 4 - 132, 8
128. 8
6 101,8 101.8 - 101, 4 132,0 132.0 - 130, 1
7 139,2 139.1 139.1 138.8 154.2 154,2 154.2 153,6
8 182,6 182.6 182.6 182,2 191.2 191.2 191.2 191.3
a) The geometry of the shell is given in Reference 29,
h) Reference 23,
c) Reference 21,

Reference 29,



TABLE V

COMPARISON OF ANALYTICAL AND EXPERIMENTAL

FREQUENCIES OF A FREE-FREE UNSTIFFENED

CIRCULAR CYLINDER?

41

m= 1 m=2
: T _ — — ‘
n Present Boyd Sewall® Sewall® Present Bayd Sewall¢ Sewall®
Anal & Rao Anal. Exp Anal & Rao Anal. Exp
" Anal, . ". "~ __Anal, _ )

1 2013,1 2Q12,0 2014.0 - 2289.6 2288,0 2293,0 -

2 8.2 7.5 7.5 7.7 1614,0 1613,0 1616,0 -

3 19,4 19.0 19,0 18.9 1066,8 1066,0 1068.0 -

4 34,4 34.2 34.2 35,7 717,3 716,9 717.8 -

5 53.5 53.4 53.4 53,0 504. 6 504.4 504.8 -

6 76.8 76.6 76,7 76,4 375.6 375,4 375.6 377.3
8 135,8 135, 7 135,7 135.3 262,3 262.6 262,2 22;‘11
9 171.5 171.4 171.5 170,7 253.5 253.6 253.4 2288

249.3

10 211.5 211,4 211,5 210,2 266,5 266.5 266.3 268.8
11 255.7 255,6 255,7 253,0 294,9 294.8 294.7 290.9
12 304.1 303,9 304.1 305.5 334.1 333,9 334,.0 327.6
13 356.7 356.5 356,7 352.0 381.2 381,2 381.1 -
14 41,3.5 413, 3 413.5 412.5 434,'71‘ 434, 7 ,434'7 436.6
a) The geometry of the shell is given in Reference 17,
b) Reference 23,

c)

Reference 17,



TABLE VI

COMPARISON OF FREQUENCIES OF A FREELY SUPPORTED
CIRCULAR CYLINDER WITH AND WITHOUT STRINGERS?2

Stringer Stiffened

. iff
Sym. Mode Antisym. Mode Unstiffened
b ] b d
. gf:sf:tt Boyd® Egle &° g:ecs:;t Boyd® Egle &% Pres.® Boyd® Egle &
¢ ‘e & Rao Sewall S -e & Rao Sewall Anal; & Rao Sewall
Analysis Analysis
3 i60 - 169 160 - 169 - - 171
4 99 - 103 103 - 108 - - 108
5 91 - 95 91 - 95 - - 98
6 106 - 109 112 - 116 - - 117
7 140 - 145 140 - 145 - - 151
8 179 - 183 187 - 192 - - 194
9 231 - 236 231 - 236 - - 243
10 273 - 278 291 - 297 - - 300
11 345 ~ 350 345 - 350 - - 362
i2 403 - 408 419 - 425 - - 431

(A%



TABLE VI {Continued)

Stringer Stiffened

Sym. Mode Antisym. Mode Unstiffened
b b
" §;secs::tte BoydC Egle &d §:e:::tte Boyd.C Egle &d Pres.b BoydC Egle &d
. & Rao Sewall S . & Rao Sewall Anal. - & Rao Sewall
Analysis Analysis
3 557 555 591 557 555 591 568 568 602
4 336 337 346 349 348 365 353 353 365
5 235 236 241 235 236 241 245 246 251
6 190 192 194 196 197 202 198 200 203
7 187 189 191 187 189 191 192 194 196
8 205 208 209 211 213 217 214 216 218
9 252 254 256 252 254 256 253 256 258
10 292 295 297 300 303 306 305 308 309
11 353 355 358 353 355 358 364 367 369
12 418 421 424 424 427 430 432 435 436

The geometry of the shell is given in Reference 20.
Love Theory and insurface inertias included.
Donnell Theory and insurface inertias included, Reference 23.

Donnell Theory and insurface inertias neglected, Reference 20.

1 %4
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Comparison of Results for Ring—Stiffenéd

Cirgular Shells

Al-Najafi and Warburton (30) presented both analytical and experi-
mental results for ring-stiffened circular shells with freely supported
and free-free boundary conditions. Their analytical results were
obtained usiné a finite element technique in which the insurface inertias
were neglected, Reference 23 presented results for the same struc-
ture including insurface inertias, A comparison is shown in Table VII
between the results of this study and those of References 23 and 30,
The frequencies obtained from the present analysis for the freely sup-
ported case are lower than the analytical values of References 23 and
30, This might be_wattributed to either the difference in shell theories
or the com@atibilit; relations used. For the free-free case, the finite
element results were, in general, observed to be closer to the experi-
mental values than the results obtained from either the present

analysis or Reference 23. In general, the results of this analysis and

those of References 23 and 30 show a good correlation,

Comparison of Results for Ring- and Stringer-

Stiffened Cirqular Shells

Park et al. (29) presented the results of an experimental study of
ring- and stringer-stiffened circular shells with clamped-free boundary

conditions. Egle and Soder (21) compared their analytical results with
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TABLE VII

COMPARISON OF FREQUENCIES OF A RING-
STIFFENED CIRCULAR SHEILL?2

| _Freely Suppqrted ' Free-Free
Boyd P War-¢ War-¢ | : Boyd b War-¢ War-G
m Present Present
Analysi & Rao burton burton Analysi & Rao burton burton
2°VS'® Anal, Anal., Exp, “7%V®'® Anal, Anal.  Exp.
0 - - - - 1540 1550 1547 1551
1 1848 1867 1873 1867 1536 1538 1537 1539

2 2070 2089 2091 2076 1765 1889 1895 1890
3 2630 2651 2650 2600 2290 2303 2290 2287

4 3391 3415 3429 3355 3055 3075 3044 3044

5 4215 4239 4270 - 3935 3955 3920 3916
6 4945 4925 5022 - 4776 4910 ] ;
7 5805 5846 ; . 5546 5548 ; ;
8 6548 6585 - _ 6303 6349 - -
9 7294 7330 ) - 7080 7103 . :

10 8046 8079 - - - - - -

a) The geometry of the shell is given in Reference 30, (5 rings,
d = 0.25 inches).
b) Reference 23,

c) Reference 30.
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the experimental results of Reference 29 for a ¢ircular cylinder with
three internal rings and sixteen internal stringers. Boyd and Rao (23)
studied the same stiffened shell, The results of the present analysis
are compared in Table VIII with those of References 21, 23 and 29.
The results of this analysis and those of Boyd and Rao (23) are consis-
tently lower than thos¢ of Egle and Spder (21). In general, the results
of this analysis compared favorably with those of Boyd and Rao (23).
The difference might be attributed to the differencé inﬁcom‘patibility

relations used.

Comparison of Results for Unstiffened

Noncire ular Shells

Elliptical shells were studied to substantiate the validity of the
analysis for noncircular shells, Sewall et al, (17) presented analytical
and experimental results for elliptical shells with yarious end condi-
tions. Analytical results for these shells were presented by Boyd and
Rao (23). 'Tables IX and X show the resuylts of this study and those of
References 17 and 23 for freely supported, elliptical shells having
eccentricities of 0.526 and 0. 760, respectively. It is evident from
Tables IX and X that the results of this analysis are in excellent agree-
ment with those of Reference 23 and with those for the lower

circumferential modes of Reference 17,
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COMPARISON OF ANALYTICAL AND EXPERIMENTAL
FREQUENCIES OF A CLAMPED-FREE RING- AND

STRINGER~STIFFENED CIRCULAR SHELL?2

414,0

: : - - — g
Present Boyd Egle & Park
m Analysi & Rao Soder et al,
ANatysis Anal, Anal. Exp.
- | | - ‘ ~ 80.2
1 100, 5 100.2 105.8 88. 2
2 433.9 432.2 433.9 -
3 915.9 907.0 - -
1 207, 1 207. 6 216,9 184,6
2 276, 3 276.0 285.9 251.5
397.0
3 440.0 437.? 447.1 430.4
1 313.4 308, 5 315.0 -
2 350.7 345,9 353.8 -
3 411,4 402, 6 -

a)

b)

d)

The geometry of the shell is given in Reference 29,

Reference 23.

Reference 21.

Reference 29.

(Model 1S),



COMPARISON OF FREQUENCIES OF A FREELY

TABLE IX

SUPPORTED ELLIPTICAL CYLINDER?
e = 0.526, m=1
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Symmetric v __Antisymmetric .
P e hae St SR Whae  Sewall
0 2550. 3 2556.'2 ‘2550.2 | - - -
1 1439,7 1439, 7 1440, 0 1685.7 1685.7 1686.0
2 876. 6 876.6 876.6 888.9 888.9 888, 9
3 524.1 524.1 524.1 524.2 524.,2 524.2
4 335.6 333.5 335.5 335.6 335.6 335,5
5 234.3 234.3 234.3 234, 4 1 234.3 234.2
6 184.3 184.2 184, 2 184, 3 184.2 184,2
7 156.9 156,9 157.1 157, 0 156.9 157.0
8 160.1 160,1 160, 2 160.2 160,2 160.2
9 189, 7 189.7 189.8 189.4 189.4 189, 8
10 221,5 221,5 221.9 221, 8 221, 8 221.9
11 260, 8 260.8 261,9 261.7 261, 7 261.9
12 307.7 307.6 308.1 307.9 307.9 308.1
13 348.9 348.9 359.5 355, 8 355. 8 359.5
14 4057  405.7 _ 415,6 413,9 4139 4156
a) The geometry of the shell is given in Reference 17.
b) Reference 23.

c)

Reference 17,



TABLE X

COMPARISON OF FREQUENCIES OF A FREELY
SUPPORTED ELLIPTICAL CYLINDER?2
¢ =0,76Q8, m=1
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| SYinrriétrTcl _ - ‘Ar{tisymmetrié. |

n Present Boyd ° ¢ Present Boyd P , c
Analysis & Rao ...Sewall Analysis & Rao SewaLl

0 2611, 8 2611, 8 2612.0 - - -
1 1237, 8 1237, 7 1238, 0 1855, 7 1855, 7 1856, 0
2 785, 1 785.1 785.2 858.5 858, 5 858, 5
3 491.1 491.1 491, 1 492,5 492.5 492, 4
4 319, 8 319.8 319.4 318.9 318.9 319.4
5 - - - 226, 6 226.6 226.9

6 - - - - - -
7 138.5 138.5 138,5 138, 6 138.5 138.5
8 140, 0 140,0 140,1 140.1 140, 1 140.1
177.8 177, 8 178.3 178.5 178,5 178,3

182.3 182,.3 184,1

‘ 184, . ’
K 226.1 226.1 226.9 84.1 184.0 184,1
10 221, 7 221, 7 223,9 223.5 223,5 223.9
11 261, 6 261.6 263,6 259.2 259,2 263.6
12 310, 6 310,6 307.3 296.9 296.9 307.3
13 378.4 378. 4 359.4 338.7 338, 6 359.4
14 464.9 464.8  417.1 _ 399.6  399.6  417.1

a) The geometry of the shell is given in Reference 17.

b) Reference 23.

c) Reference 17.
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The results for a free-free elliptical shell are presented in
Table XI. The results of this analysis give a good correlation with

those of References 17 and 23.

Comparison of Discrete and Smearing

Methods of Analysis

Having shown the validity of the discrete method of analysis,
solutions for stiffened circular shells were obtained from the smearing

and discrete methods of analysis and are compared in this section.

Effects of Smearing Stringers

The shell used by Egle and Soder (21) was selected as the case
for the comparison. Table XII presents the frequencies obtained for
the doubly symmetric (i.e., with res:peqt, to vertical and horizontal
axes through the centroid of the cylinder cross section) modes of this
shell stiffened with 4, 8, 16 and 60 stringers using both the discrete
and the conventional smearing methods of analysis. Indistinguishable
results were obtained from the two methods for the shell with 60
stringers, Even for the shells stiffened by 4, 8 and 16 stringers, the
lower frequencies obtained from the smearing method of analysis were
in good agreement with those obtained from the discrete analysis.

The effect of the ratio of stringer-mass to shell-mass (ms/mo)
was studied, The shell with four stringers was used for this study to

determine the effects for widely spaced stringer cases. Using both the



TABLE XI

COMPARISON OF FREQUENCIES OF A FREE-FREE
ELLIPTICAL CYLINDER,?2. »
¢ =0.,526, m=0
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c)

Reference 17,

Symmetric Antisymmetric
‘ 5 =t :
n Pres, Boyd Sewallc Sewa,llc Pres. Boyd Sewall® Sewall®
Anal & Rao Anal Ex Anal & Rao Anal Ex
- Anal, anal. p- | i Anal. _ ) p-

2 5.62 5.62 5, 62 5.6 5.68 5.68 5.68 5,6

3 15,89 15,89 15,89 16,1 15,89 15,89- 15,89 16,2

4 30.52 30.52 30,52 30,9 30,52 30.52 30,52 30. 8

5 49.42 49,42 49,41 50,1 49,42 49.42 49.41 50.1

6 72.54 72.54 72,54 74,8 72.54 72.54 72.54 74. 4

7 99,87 99,87 99.87 102.4 99,87 99.87 99,87 102,4

8 131.42 131.42 131.40 134.6 131.42 131,42 134.40 -

9 167.18 167,18 167,20 171.5 167.17 167.17 167.20 171,7
10 207,13 207.13 207,10 212.5 207.10 207.10 207,10 212.8
11 251,34 25}.34 251.30 258.8 251,26 251.26 251.30 258.4
12 299.46 299.46 299.60 312.1 299.72 299.72 299.60 -

: 362.3
13 351,95 351.95 352,20 363.,8 353,19 353.19 352,20 363. 0
14 408.14 408,14 409.00 423.2 411,17 411,17 409.00 -
a) The geometry of the shell is given in Reference 17.
b) Reference 23.



TABLE XII

COMPARISON OF FREQUENCIES OBTAINED FROM
DISCRETE AND CONVENTIONAL SMEARED
ANALYSES FOR STIFFENED
CIRCULAR SHELILS?

m =1
" Number Symmetric . - Conventional
Discrete .
of Modes . Smearing Error
. Analysis .
Stringers | _n » _Analysis
4 98. 81 100,99 2.21%
4 6 105. 56 108.55 2. 84%
8 178, 81 181. 87 1.71%
4 95, 57 98,57 3.14%
8 6 104, 81 104,98 0.16%
8 166,98 175.46 5.10%
4 94, 30 94, 46 0.17%
16 6 98.67 98.90 0.23%
8 151, 88 164, 52 8.35%
4 78.76 78.76 0.00%
60 6 80. 01 81,01 0. 00%

8 128, 39 128. 39 0.00%

a) The shell and stringer properties are given in Reference 21.
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discrete and conventional smearing methods of analysis, the fre-
quencies for the even (symmetric) modes were obtained for various
mass ratios., Figure 5 shows the ratio of the lowest frequencies
(wo/ws) versus the ratio of the masses, As would be expected, the
difference between the frequencies obtained from the two methods
increases as the mass-ratio increases.

The "'modified smearing'' method of analysis was studied con-
sidering the shell stiffened by four stringers, Table XIII presents the
results of this study. The frequencies obtained for the double sym-
metric modes converged monotonically to values close to the discrete
values. For the singly symmetric (i.e., with respect to the vertical
axis only) modes, the frequencies converged to values further from
the discrete values. Investigating the assumed mode shapes, it was
observed that if a stringer was located precisely at a nodal point of the
assumed displacement function, the modified smearing method evi-
dently added more energy to the system than was present in the
physical problem., This may explain the divergence of the singly sym-
metric modes of Table XIII from the frequencies obtained by the
discrete analysis.

The effect of mass-ratio was also studied using the modified
smearing method of analysis. Figure 6 shows the ratio of the lowest
frequencies (wo/ws) associated with the doubly symmetric modes ver-
sus the mass ratio for both smearing methods of analysis. For all

mass-ratios, the frequencies obtained using the modified smearing
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TABLE XIII

COMPARISON OF FREQUENCIES OBTAINED FROM
DISCRETE AND MODIFIED SMEARED ANALYSES
FOR STIFFENED CIRCULAR SHELLS?

m =1

Discrete Modified Smearing Method of Analysis

n .~ Iteration Iteration Iteration Iteration Iteration
Analysis
‘ 0 _ 1 ’ 2 _ _ 3 4
Even Modes
6 105, 56 108, 55 105,41 105.43 105. 43 105.43
0Odd Modes
5 90, 64 9Q. 84 90, 86 90,93 90,93 -
7 139,71 140, 86 141, 72 141,79 141,78 -
a) The shell and stringer properties are given in Reference 21,
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method were in closer agreement with those obtained from the dis-

crete method of analysis.

Results for Smeafrling Rings

Freely supported shells, stiffened by rings having various cross-
sectional areas, were studied. A shell stiffened with one ring having
a square cross section and located at the center of the shell was
studied firsgt, F'requ‘encies were ohtained for five cases by varying the
crossg-sectional area of the ring. A shell having two rings with identi-
cal square cross sectipns and located at a/4 and 3a/4 was also studied,
A range of frequencies was obtained by varying the cross-sectional
area of the rings. Figure 7 shows the ratios of frequencies obtained
by the two methods versus the ratios of ring-mass to shell-mass.

The difference between the frequencies obtained from the discrete and
smearing methods of analysis increases as the mass-ratip increases.
For a shell stiffened by only one ring, the frequencies obtained from
the conventional smearing method were closer to the discrete values
than those of the modified smearing me;',hod. However, for two or
more rings, the reverse occurred,

The longitudinal mode shapes associated with the fundamental
frequency are shown in Figure 8, having two different mass ratios, and
two rings for simply supported shells stiffened by one ring. These
were obtained using the discrete method of analysis. The smearing

methods of analysis used the sine function (in the longitudinal direction)
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to represent the w displacements of the fundamental mode. As thé
number of rings increased for a given mass ratio, the sine function
better approximated the fundamental longitudinal mode shape. There-
fore, the difference between the frequencies obtained from the
smearing methods of analysis and the discrete analysis decreases.
Table XIV presents the frequencies obtained using the three
methods of analysis for the simply supported shell stiffened by one
ring having a mass ratio of 0. 0228. For the even longitudinal mode
shapes, the frequeﬁcies obtained using the modified smearing method
of analysis are less than the discrete values. The torsional strain
energy is the predominant part of the strain energy for the case in
which the ring is located at the node point of the mode shape in the
physical problem. However, the smearing method of analysis uses
the same constant of proportionality for both the extensional and tor-
sional strain energies. Therefore, the rings evidently have more
extensional strain energy theoretically than is physicélly present.
The frequencies obtained will be lower as a result. This character-

istic is typical of shells with stiffeners located at (or near) node points.



TABLE XIV

COMPARISON OF FREQUENCIES OBTAINED FROM
DISCRETE AND SMEARING METHODS OF
ANALYSIS FOR A SHELL WITH

61

ONE RING?®

, Conventional =~ Modified

Discrete . :
n m Analvsis Smearing Smearing
y Analysis __Analysis

1 630.2 . 615.0 650, 1

2 1362.3 1371, 4 1345, 9

3 2182.9 2189.6 2191.5

4

4 2857,2 2858, 9 2822.6

5 3393.1 3400.3 3403, 9

6 3878.4 3881.3 3831.2

a) The shell and ring properties are given in Reference 30,

d = 0,25, R = 7,567 inches.



CHAPTER V

SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS

Two methods of analysis have been pregented in this study to
determine the natural frequencies and mode shapes of unstiffened or
stiffened, circular or noncircular, cylindrical shells, One method of
analysis congidered the stiffeners to be discretely located and the other
considered the stiffeners to be '"smeared" ovér the surface of the shell
(using an equivalent energy approach), Both methods employ the
Rayleigh-Ritz energy method. Cases for stiffened and unstiffened,
circular and noncircular cylindrical shells having various boundary
conditions were investigated using both methods of analysis. A sum-
mary of the results of this study, conclusions made from this study
and recommendations for future investigations are given in the fol-

lowing paragraphs,
Summary of the Results

The following results were obtained.
1, The natural frequencies obtained for discretely stiffened or

unstiffened, circular or noncircular cylinders using Love's

(]
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First Approximation Theory for thin elastic shells wel"e in
good agreerhent with those obtained by other investigators
using higher-order theories.

The discrete method of analysis presented in this study was
shown to be valid for simply supported, free-free and
clamped-free boundary conditions by comparisons with
results obtained by previous investigators.

For the discretely stiffened shells, the natural frequencies
obtained using the set of improved compatibility relations
were in goodv agreement with those obtained by other inves-
tigators using other compatibility relations.

The computation time required for problem solution and the
computer storage requirements for the discrete method of
analysis were about the same as required by other discrete
methods also using the Rayleigh-Ritz approach.

As the number of stringers increased, thé differences
between the frequencies obtained using the conventional
bsmearing method and the discrete method of analysis
decreased.

As the stringer mass-ratios increased, for a constant
number of stringers, the differences between the
lowest frequencies obtained from the conventional smearing

method and the discrete method increased.
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For stringer-stiffened cylinders, the frequencies obtained
for the doubly symmetric modes using the modified
smearing method converged to values close to the discrete
values, However, for the singly symmetric modes, the
iterative procedure did not improve the calculated fre-
quencies.

In general, the frequencies obtained from both smearing
methods of analysis were in good agreement with those
obtained using the discrete method of analysis.

As the number of rings increased, the difference between
the frequencies obtained from either smearing method and
the discrete method of analysis decreased.

For shells stiffened by two or more rings, the fundamental
frequencies obtained from the modified smearing method
were closer to the discrete values than those obtained from
the conventional smearing method.

As the mass-ratios increased for a constant number of
rings, the differences between the frequencies obtained
from the smearing methods and the discrete method of
analysis increased,

For ring-stiffened shells, the frequencies obtained for the
even longitudinal modes using the modified smearing

method converged to values less than the discrete values.
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Conclusions

The major conclusions made from this study are listed.

1,

For shells stiffened by either stringers or rings located at the
nodal points of the terms inthe assumed displacement series,
the best agreement between the smearing methods and the
discrete method of analysis can be obtained using the con-
ventional smearing method of analysis. However, if the
stiffeners are not located at the nodal points, the best
agreement is obtained using the modified smearing method
of analysis. Background of this conclusion is discussed in
Chapter IV.

Because stringers produce weak circumferential coupling,
comparable results can be pbtained from either the discrete

pr the smearing methods of analysis assuming the same num-

ber of terms in the displacement series is used, Therefore,

for a shell stiffened by only stringers, the computation time
required for problem solution and the computer storage
requirements for the smearing method of analysis are
nearly equal to those of the discrete method of analysis.

For a ring-stiffened shell, the difference between the values of the
frequencies obtained from the discrete and smearing
methods of analysis depends not only on the mass-ratio but
on the number of rings as well. When the results obtained

from the smearing and discrete methods are in good
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agreement, the smearing methods of analysis required
fewer terms in the displacement series than was required
by the discrete method of analysis. Thus, the computer
storage requirement is less for the smearing methods of
analysis than for the discrete methods of analysis. Suffi-
cient data was not available to compare the computer times

required by the three methods of analysis.,

Recommendations

The following recommendations are made for further study:

L,

The smearing method of analysis for ring-stiffened shells
should be studied further to define the limitations of this
method, The study should consider such parameters as
number of rings, mass ratios, and stiffener cross sec-
tion and shell stiffness parameters.

The modified smearing method of analysis should be
studied using three constants of proportionality instead of
the two (i,e., B and o) used in this study. One should be
associated with the kinetic energy of the stiffener and two
others with the extensional and torsional strain energies.
This approach should improve the modified smearing
method of analysis, particularly for those shells having
stiffeners located at (or near) the node points of the dis-

placement functions.
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APPENDIX A

DERIVATION OF THE COMPATIBILITY

RELATIONS

The compatibility relations for the stiffeners were derived hased
on the assumption that the stiffeners are attached to the shell along a
single line of attachment, The displacement vector of any point in the

cross section of the ith stiffener can be written as
OIRRONREC SIREC an
i ci i/ci i/ci
where

s for the stringer

-
"

r for the ring,

the displacement vector of an arbitrary point in the

—
0
—
—-
i

cross section of the stiffener,

Vastum
el

—
H

the displacement vector of the centroid of the stiffener,

the rotation-vector at an arbitrary point in the cross

—
\_?1/
2
0
N
i

section with respect to axes through the centroid of the
stiffener,
{Q} = the position vector of an arbitrary point in the craoss

section measured from the centroid of the stiffener,
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These vectors may be expanded as follows:

,

u
{q} =4 v
i
\w i
-~ N
u
c
{af  =qveq
ci
W
A CJI
r 3
]
x
{0} =30,
i/ci 6 (A2)
e 1. .
L 2 Ji/ci
- N
0
{Q} = { y; b (see Figure 2)
s/cs
7’
sa
)
X
r
{Q} =< 0 > (see Figure 3)
r/cr
ZI
r/

The displacement vector of the centroid of the ith stiffener can

be written as:
{of = A+l x{a} - (43)
ci o) ci/o ci/o
where
{q} = the displacement vector of an arbitrary point on the

o
' middle surface of the shell along the line of attachment,
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{(D} - = the angle of rotation vector through the centroid of the

ci/o

ith stiffener measured from the middle surface of the

~ shell axes,
{Q} = the position vector of the centroid of the ith stiffener
o measured from the line of attachment to the shell.
These vectors may be expanded as follows:

u

[ORE

‘ci/o
CN ) (A4)

cs/o

N

{Q} =< 0 >

cr/a

After Equation (A3) is substituted into Equation (Al), the fol-

lowing compatibility relations can be written:

{q}i - {q}o+ {¢}Ci/o x {a} . +{¢}i/ci x{a} . (a5

ci/ i/ci
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Assuming the Bernoulli theory of bending for the stiffeners and Love's
first approximation to the theory of thin elastic shells, the angle of

rotation vectors can be equated as follows:

{9} - {9} - {a}o (A6)

ci/o “i/ci

where
{ﬂ} = the angle of rotation vector of the middle surface of the
o
shell,

This vector may be expanded as:

g
X
fo} =+ 0y ¢ (A7)
o
g
z
L J O
where
w,e v
% °® R
we = -w’x
.-u,
_© for rings
p. =4 %
z
v, : for stringers
x

After Equations (A2), (A4) and (A7) are substituted into Equation
(A5), the compatibility relations of the stringer canbe written in terms of

displacements of the shell as follows:
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u-(z tz)w, -G tydv,
o ’ W'O v
faf =47 s (= ® s (48)
] | .
bty (R R)

-

Likewige, the compatibility relations of the ring can be written as:

f ~

u-(z_ +z')w,
't r

{q}r: 3 v - (;rvlrxl':)%@- - (;r,i.z;) (.v%_@_ ) &. (A9)

v
. —
R

w + (x +x')w,
g r r




APPENDIX B
ENERGY EXPRESSIONS FOR STRINGERS

h
The first variation of the kinetic energy of the /lt stringer

lpcated at 8, can be expressed as:

4

(V:, éu
X

4

a

_ 2 . o

éTsf. = pszw f{Asz(u6u+vév+w6w) ysI,As
0

1 1 1 1
+ uév,x + Rvéw RV e&w + Rwav - Rwéw, e)

-z A (w, Su+udw, -‘Z"Vav +-l—w, §v
X x R

‘s sk R )
tEvew, )b (32 A 41 J(v, v,  +=gve

R ‘0 Ysz sd 2z_, V’x Vig TREVOY
w8V - —gvéw,, + 05w, sw, ) + (2 2 A
TRV PV T REVOWrg TREV OV g) T 1E 4%y
+1 ) (w, 6w +-1—V6V —l"w &v '—l-vaw
s szz ,X ,X R2 - Rg ,e Rg pe
fw, W, )+ (y z A +1I Nw, v, +

R® g '8 Ys1%s0 s Y2, Wi ®Vrx
+ v, 6w, )} ‘ dx

0 = 92

. e . th
The first variation of the strain energy of the 4 stringer

located at 92 can be expressed as:
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a
6Usz i I{EszAsz(u’xau’ ) -y ) SZA z(“’xé"’
0
+V: éu’x) - ZSEESZASZ(u,XGW’ +W; 6u: )
2 2
tE z(y EASJ& t1 sl,) (V’xxsv’xx) +Es£(z EAsz
+IYYs£)( Xxéw’xx) +Esz(yszzsz st
+ I ) (V, 6W, +W, 6V;
vz XX XX XX
s4
+ (GJ) L ( Sw §v v, §
2 R¥Wex™ex T Wrex®Vx T V™ gx
+V, 6\’, )} l dX .
0 =0



APPENDIX C
ENERGY EXPRESSIONS FOR RINGS

The first variation of the kinetic energy of the kth ring located at

%, can be expressed as:
2m
= ? -
éTrk prkw j {Ark(uéu t+ vév + wow) zrkArk(uéw’x
0
2 1 1

+ w,xéu - RV'G'V iy RVGW, RW: 6V)

x A(1 5+-1—6 wew, - w,_ §w)

X rkR VTRY u,e '*x  T'x

1 1
2 ‘ — . —
+ (zzrk Ark + IXer) (W,XSW,X +.R2v5v Ravaw,e

—

1 1 1
_ + 2 I —=u, 8u,
Raw’eav REV’ 6W’9) ¥ (xrkArk * erk) (R?u 96u 8

+ W,XGW:X) + (er Zrk Ark + Ixzrk) (- E’éu,e

1 1 1
T REW Wiy " REVOW, +E§w,eéu,e)} | R_de
=x
k
. s . th .
The first variation of the strain energy of the k= ring located at

X, can be expressed as;

k
2nm
U f {-—H{—R_:ﬁ (v,eav,e + wav,e+ v,eaw + wsw)
0
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e
0

+'1§'V SO (-hlv>,ev5w - Tlf,w’eeéw <%> ew 6w>
+:E1_”k *;1;1; = <% Vig®Vig +E("f{f>,e"5v 6
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c '8 c '8
1( ) u, dw L dw
-5 \5 s > - 2L1, ’
Rc RC ’g 6 X686 Rc 06 X80
F R W 8% o)
c
2
z
. rk ?zrk rk _..L 3 .
R ( {<R >, Wik xe
C c '@

C c '8 C c 8
+ w Sw ) + (GJ) k _1- 5
2 "x08"" 'x00 R (Rca Hogotig
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+w, 6w + v, 6w, + wbéw, )
x 8 x x

fIaclan oy Y

i
1

e R
Rc RA\R ’g ‘8" '8

,{(.L> }"Vsu +-.1-<-1-> —
’R’e '8 RR,e"ee ‘e

+

+{<-1~) }zw du —Lv su '1— -1~ v
'R’e 6"’ R2 g @6 R<R>, oY

8
+ "Lw éu +*‘<'*> w, du
R® "’08" ‘g8 ' 6 06
"1—<'l-> u, 8v —l—u 5 +'l‘ )
R\R ’e ’e Je RE !ee V:e RW,X V,e
{(—*) }au év "1"(—1* u 6v + (— w, §v
) , ’ "R R>, >80 <> ’
e 8 2] o 8
+-L<—) dw +~i-u 8 - §W
R\R/, "6°% 00 "R2% 00"V 60 "R V'x"V" g0
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0 c ] c 0
Ll e e (2) () s
R R L‘L;ee V:e » :e‘ (R , <R >, :e W:e
c 8 ¢ '8

6 ¢ 6
171 11 1
- o\ -5 W s +=w, s
R(R ) %806 TRR. ™00 700 TRV W00
c’’e c
+ L --—-> u, +—=(z—) v, Su
&), &), vowe *=(70), Vred™
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APPENDIX D

ELEMENTS OF THE MASS AND

STIFFNESS MATRICES

The matrix elements of Equation (2. 38) are presented in this
appendix. The circumferential and longitudinal integrals (ISAi, ISBi,
IRAi, IRBi, and IXi), the stringer circumferential functions (SFi z)

and the ring longitudinal functions (RF ) used in these expressions

i, 4
are defined in Appendix E, Appendix F defines the remaining constants
which are various combinations of the material properties of the shell,
stringers and rings,

The elements of the mass and stiffness matrices of a stringer

and ring stiffened noncircular shell may be written as follows:

Contribution of the noncircular shell:

K“mn,r?aﬁ = SX,ISA,IX, + SXT, nn ISA,IX,

K2 o mn = STenlISA;IX, - SXT, n ISA,4IX,

KI3 = =- = ST,ISAIX,

K2z o mn = (5T, nn ISA, + ST,(nn ISA, + n ISB, + n ISB,
+ ISB,)} IX, + {SXT, ISAg + SXT, ISA,} IX,

K23 mn ¢ (ST, n ISAg + ST, (n®n ISA, + nn ISB, + n®ISB,
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+ n ISB,)} IX, - SX, (n ISA, + ISB) IX,

+ SXT, n ISA, IX,

= ‘ A g
K33 . =i = SX,ISA, IX; + SXT, nn IS4, IX, - SX,(n? ISA,
+n ISBg) IX, - ST;(n? ISA, + n ISB, )IX,
+ { 8T, ISA, + ST,(n?n® ISA, + nn? ISB,
+n®n ISB, + nn ISB,} IX,
M1l —- = SPC ISA, IX,
mn, mn i
M22_ —- = SPC ISAg IX,
mn, mn ;
M33__ —- = SPC ISA, IX,
mn, mn

Contribution of the zth stringer:

) .
K“mn,r?iﬁ B STRSzSFl,zI‘xl
4
K].Z - e ‘R" S
mn, mn ST '92 F4, !I,Lxl
o d e
K13 o, mn = ~STRIO SF,  IX,
2
—— 11 ‘ \ 1
Kzzmn, = STR1 ESF3, zIXI + STR ZI,SF6, [,IXZ
A ,
2 —_- = 13 ] ;
K 3mn’mn STR J?,SFZs ZIXI + STRIZzSFé, I,IXZ
) _ ‘
K33mn’ el STR14LSF1, I,le + STRlZESF6, [,IXZ
M11¥ . = STRI SF. IX
mn, mn 2 1,9 72
Mi2? . = _sTR2 SF. IX
mn, mn 2 4,49 2
2
1 —_—— = -
M 3mn, mn STR3£SF1, ZIXZ



M22 — -
mn, mn

M23
mn, m

p—

M33%

mn, mn

Contribution of the k

k11¥

—

mn, mn

k

K12 —
mn, mn

k

mn, mn

K13

= {RNGnk(ﬁ IRB, + n® IRA,) » RNG18

87

1

{ST‘RI,@SF3 z+ STR4 SF + STR5 SF

L 5,4 2

5 S
+STR6 SF,  }IX,+STR5 SF,

6, 4

IX
142

[-STR2 SF,  +STRS nSF,  +STR3 nSF

7, 6, 4 5,2

X

+ STRézn SFé, ﬂ} IX5 + STR?Z SFZ, . 5

]

1 SF -~ STR2 F - STR2 n SF
{ STR zS 1 TI an TR,an_7 ’

8,2 ;
+ STRSznn SF()? , + STRéznn SF6, L} IX5
+ STRézSFl, ,G,IXZ
th

ring:

= {RNG17, (nn IRB + n®n IRB, + nn? IRB,

+ RNGl4, nn IRA

2,9
+ n®n IRAl) K 5

. - 2. -]
+ RNGle(nn IRB6 + n<n IRB7 + nn IRB8

203
+ n°n IRAll)}RFl’k

) + RNG13. (nn IRB

= 1 N n=2
{ RNGI1 k(nn IRB9 + nn IRA12 X -

+ 12
6 + n®IRB )

-
+ nn IRAll 8

+n IRB

+ RNG21, (n IRB

I nn n?2
K 10+nnIRBll+n I,RB1

2

an?
+ nn IRA13)} RF3, I

k(nn IRB1

+ n®n IRBZ + nn? IRB, + n2n? IR_Al)
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+ RNG14, nn IRA

K 4" RNGISk nn IRA

2

- - o
+ RNGlzk (n 1339 +n IR.AIZ)] RFI, .

2 - 273
+ {RNG13k(n n IRB, +nn IRB(,J +n®n? IRA,

+ nn?® IRB8) + RNGllk(ﬁ IRB_ + n® IRAl )

9 2

+ RNGZlk(nr-l IRB.  +n®n IRB,, + nn? IRB

10 1 12

2,2
+ n®n IRA13)} RF3’k

K22 —- = { RNG8, nn IRA_ + RNG9, (2 nn IRA, + n IRB

mn, mn k 5 k 2 5

+ n IRB9) + RNGlok(nn IRA11 +n IRB8 +n IRB,7

+IRB,) + RNG20, (IRB, + n IRB, + n IRB

6 7 8

+ nn IRAll)}RFZ,k

+ nn IRB_

= {RNGS8, nIRA 5

K23 K 5

: 121
+ RNG‘)k(n n IRA12

mn, mn

- 2— -
+n IRAIZ + IRBg) + RNGlOk(n n IRAll + nn IRB8

+n®IRB_ +n IRBé) + RNGZOk(n IRB

7 + n? IRB

6 7

- nn 25 n
+nn]ZRB8 + n®n IRAll)} RFZ,k + {RNGllanRA5

+ RNG13 (n IRA

K 12 t IRBg) + RNG21

k (IRB9

+nIRA_ ) - RNG22. (n IRB. . + n®IRB

12 k 10 14

- 2z
+nn IRB, . + n®n I3A13)} RF4,k

5

K33 = {RNG8, IRA_ +RNG9, (n?IRA,, +n IRB

mn, mn 12 9

2 2.2
+n IRA1 +nIRB5) +RNG10k(n n IRA11

2
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H

[t}
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+ nn? IRB8 + n2n 13137 + nn IRB6)

+ Rchok(nﬁ IRB, + n®n IRB, + nnd IRB

6 8

+n9i=1RA“)}RF + {RNG17, IRA

2,k k 5

-RNGISk(n IRB, +n®IRA. +n IRB +n°IRA3)

3 3 4

+ RNG19k(nﬁ IRB, + n®n IRB, + nn? IRB,

+ n®n% IRAl) +.RNG14k nn IRA6

-2 RNG15. nn IRA, + RNGl6 nn IRAZ} RF,

k k

+n IRB )

+ { RNG11 , .

na
K IRA5 + RNG13k (n IRAl

+ RNGZlk(r-l IRB_ +n?® IRAlZ) - RNGzzk(na IRB

9 10

3 n? 2n2 IR ,
+nn IRB,, 1+ nn?IRB ; +nn IRA13)}RF4,1<

+ { RNG11 I.RA5 + RNGI12, IRA

k k 5

+ RNCrl?zk(n2 IRA.  +n IRBS) + RNGZlk(n IRB5

12

nn IRB.  + n2%n IRB

2
+n IRA.1 k( 10 11

- 2
2) RNG2

A3 2n2
+nn® IRB , +n®n IRA13)}RF?’,k

{RNGL,_IRA_ + RNG5 ni IRA JRF,

{ RNG2, nIRA +RNG7 n IRA9} RF3’

0 k

- 3 n IF
RNG K IRA7 RFl, Kk + RNG?k nn IRA9 RF3,k

{RNGL, IRA, + RNG4, IRA  + RNGékIRAg}RFZ’k

8 10



M23

M33

mn, mn

mn, mn

n

i

{ RNG3

{ RNG5

+ nn RNG6, IRAg} RF, , + RNG2, IRA, {RF

+ RF

4,k

k

k

IRA

1o T RNG6, nIRAJRF, |

+ RNGék} IRA7 RFl,k + {RNG1

Lk k

}

k

90

I‘RA7

3,k



APPENDIX E

FUNCTIONS AND INTEGRALS OF THE

MATRIX ELEMENTS

This appendix contains the functions and integrals used in the

equations in Appendix D. The circumferential integrals are evaluated

numerically using the eight-point Gaussian quadrature method with

four subintervals., The circumferential integrals are divided into four

groups (ISA‘i’ ISBi, IRAi, IRBi) and defined as follows:

1S4,

ISA,

ISA

ISA,

ISA,

ul
= IR cos nf cos ne de
0

sin ng sin ne de

1
o
-

nl -
= f 73 5in 06 sin 0o do
0

Ul

1 .
Eg cos nd cos ng de

il
O Yy

1

TT —
f cos ng cos np d
0

ail



ISA,

ISA

1SA,

ISA,

ISB,

ISB,

ISB

ISB,

IRA,

1l

-

i

]

#

TT
f sin ng sin ng de
0

-
sin n sin no de

3~

5

TT

= cos ng d
Rcos ne cos ng dg

o

I R sin np sin nd d@
0

> }2 sin ng sin ne de

blﬂ-—-

[ x{

{w'lia <-i1€>’e sin ng cos ng de

T
> sin n@ cos n@ dg
'8

b0 ] —

(

o

W
1 I
ﬁl—?:(E), cos nf sin ng dg

)

Jp (I]{) cQos nad sin ne de
o ®

TT .

1 -
f "7,:' cos np cos np de
0 C
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O

IRA, = J. —13 gin n® sin ne de
0

1 -
IRA.,a = f EECOS ng cos ng de
o ©
"o
IRA4 = I ~R—§s1n ne sin nede
0 c
T
IRA, = I E—- cos n6 cos ng de
0
L
IRA, = J’ T sinne sinne de
0
TT L.
IRA, = I R_cosng cos ne de
0
m -
IRA;, = f R sin ne sin ng dg
0
i Rc
IRA, = —% sin ne sin ne de
0
m R
IRA), = I i—c—sin ng sinnb de
0
Tl
IRA:,.1 -f{—'- E’ECOS ng cos ng dé

o

C
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IRA,

IRA,,

IRB,

IRB,

IRB

IRB,

IRB

IRB,

IRB,

IR B,

n

o

1

o ey

=

it

o

n

o
4

i

o t—py

:

o “ o t—

"L

i

T

s

s

=
R

cos nd cos ng dp

o=

c

wi._-
O »

—l;- cos nf cos ﬁe de

1 1 Y @ -
—li— {(-R-") } sin ne Sin ne de
2

c c '8
1 1 s o

5 (_]::{- ) cos nf sin ng dp
c €7

R

wIH

Hl-)slnneCS""d
R Qs ng dg

TN

( )-—l—.-c s no i n d
R o) s ng dg

c”’p

1 1 . -
5 (—-—) sin ng cos no do

o |

R
0

1 1 2 . -
-I—{—{<qR_> } sin ng sin ng deg

8

1.1 1 in no d
Yy < >, cos ne sin ne de

R
8

1 1 it
R <§>’e sin np cos np da
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"1, -
IRBg = J‘ Eﬂ'(‘ﬁ) cos nf sin ne dg
o ¢ 8
™
1 1 1 . .=
®By = [ 5 (R) (77),, einre sinio do
0 c :e c :e
T
1 -
IRBn = f %E—(§l—> cos np sin ng de
0 c "¢’'s
g 1 -
IRB,; = .J‘ E;(*) sin ng cos ne dp
o ¢ '8
1,1 -
: IRBm = Ii-*(—f{—-> sin n6 cos np de
0 © c’’e
ul 1 /1 ]
IRBM = .J‘ §-5<§-> cos n@ sin ng dg
o © '®
11 41 _ -
IRB,, = E R (E—-> sin ng cos no de
0 c c’’p

The closed-form expressions for the longitudinal integrals were
obtained from the table of formulas for integrals derived by Felgar
(31), These integrals may be defined by a general axial mode function,

3, as follows:

a
IX, = J. Q;’n @I’_ﬁﬁ dx
0
a

IX, = i

f 5’ &L dx
m
0
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IX, = [ 3 5—ax
. el
0
a
0
a
IX, = [ e, 0o ax
m

After Equations (2.35ato 2.35d) are substituted into the above equa-
tions, the longitudinal integrals for various boundary conditions may be

written as:

For freely supported cylinders:

m4.n.4 3
X, = 28
2_2 —_
X, = -IX, = -IX, = —2% > Form =m
IXg = a
~
IX, toIX, = 0 | For m # m
For clamped-free cylinders:
s ' —
gt a m=m
X, =< —
L0 m #m
o B (2+o B _a) m = m
m m m-m
48_B— —~
m - m m+m
= - - B3 _ 2
X, =1 gigz (1) (@=82 - o B2
m ~m m#m
_BrEBm(amBm ) r—ﬁB_)]




il

X

IX

IX,

For

IX

X,

IX,

For

IX,

X

IX,

~

clamped-clamped cylinders:

1

-I1X

= -!IX4

—
-

A

2 a2 -

I
c’mm

(o B 2-2)

"

Be - s

amBm(Z - amBma)
2 B - = —_—
| Lo P Pl g ga
e - :
B?ﬁ - Bm m m
oszm(Z - oszma)
< 48% (o0 B~ o—B~) —
Ja
0

[(‘I“l

_—
m+m

)

+1

]

81

81

Ik}
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81

81

81

51

31

g1

81

81

21|

51

81

81



IX,

IX,

IX,

IX,

X,

IX,

1

b ]

H

(k]

]

]:}(2 = IXS =
fo 1Pl
0

X, = IX, =

IX, = IX, =

1/a; IXg =

IXB = IXg =
- 4/a
0
4/a - 20’:&—1 1
0

IX, = IX, =
4Bm—lam~1
0

IX4': IX5 =

p
- 4/a

§ 0

r
4/a - Zam—l
0

. B

S
H

m-1

IX

1

v

2 odd only

98

}Fﬁzz

m > 2 even only

m > 2 odd only

)

34

g1

m

—
m

—

m
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m > 2 odd only
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odd only

~
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-
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o

1
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—_ 8 Ly
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¥ 1Pmo1 o 1B 2
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The stringer circumferential functions are defined as follows:

SFl,z

2,4

SF3,Z

SF4’!‘

H

1

11

cos ng cosn
eZ ef,

cOo8s n
0

sin ng
2

sin ng

4

sin ng

sih n cos n
9.6 e.@.



100

SF

1

i, .=
- sin n sin n
s ez GL

5, 4 R
SF, = —=sinne sin A
6,4 R? L L
SF = -1- cos nd ., sin no
7, 4 R 4 4
SF s = in n® cos nd
8,4 R ° 2 )

The ring longitudinal functions for different boundary conditions
are defined as follows:

For freely supported cylinders:

- 2
_ L, mmmn k k
RFl,k = 2 27 cos T cos =
mmx r?mxk
RFZ,k = 2 gin - sin - "
I'?],‘IT mmnx r_l:lTTxk
RF3,k = 2 S sin 2 ~—  COS§
mTx mmx
RF = 2 =7 cos k sin k
4,k a a a

For clamped-free cylinders:

RF

1l

Lk Bmer-ﬁ {sinh Bmxk + sin Bmxk (cosh B X

- o
m

- i —_ i — - sh B—
cos Bmxk)}{smh ﬁmxk + sin ﬁmxk ozm(cos =%,

- cos ﬁr-r-lxk)}

RF, o

{cosh ﬁmxk -cos B x

kT Otm(slnh Bmx

k

- sin Bmxk)}{cosh Brx

k

- cos ﬁr—ﬁxk - Qf;ﬁ(smh Bfﬁxk

- sin Bfﬁxk)}
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RF3,k = ﬁ;ﬁ{COSh Bmxk - cos Bmxk - otm(sinh Bmxk
- sin amxk)}fsinh 55’% + sin ﬁr—ﬁxk - aa(cosh ar-ﬁxk
- COS ﬁr—ﬁxk)}

RF4,k = ﬂm{sinh Bmxk + sin ﬁmxk - ozm(cosh Bmxk

- cos 6mxk)}{cosh Br—ﬁxk - cO8 B;lxk - cxﬁ—l(mnh B;lxk
-~ sSin Br?lxk)}

For clamped-free cylinders;
The expressions are the same as clamped-free except the
values of @, o —~, B -and p— are different,
m m’ "m m

For free-free cylinders:

m=0
RFl,k = RF3,k = RF4,k = 0
” m=20
RFZ,k = 1
RFl,k = RF4,k = 0
RFZ,k = xk/a - 2 > m=1
RF3,k = 1/a )
-~
RFl,k = RF4,k = 0
RFZ, K = cosh sfx_hlxk + cos 65_1xk > m > 2
- ozr?l_l(smh fo_h-lxk + sin Br-ﬁ-lxk)
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RF) x

RF

RF,

RFl,k

RFZ,k

RFS,k

RF -

RFZ,k

RF3,k

RF4,k

1

n

u

- sin p— .x

s"'-l{e'inb' Pa- m-1"k

¥k

- (cosh B—- R + cos 5‘*-1 k)}

RFS,k = 0

xk/a. - B

l/a
1/a%
xli/a.a +& - xk/a

= 2 -
RF4,k xk/a 1/2e

sq
-—?-—-—»— {sinh B— - sin B~ X%

-—1 k m-l k

(cosh B— X, +cos B

- Y™ lk

m.—l m-1 k)}

x
k 4
{ rallle E} {cosh af?l—lxk + cos ar-r_i—lxk

- o (sinh 8= x, + sin B

¥k el

X
I . .
Pmals "B simheg - sing

- Q'f'ﬁ_1(COSh 517;1_1Xk + cos Br—ﬁ—lxk)}

1
2 fcosh B— -
s Leosh B ¥ T oos B %y

-a= 1(smh a— * + sin B~

I'k m-1 k)}

X

m-1"k

102

81
v
[

81

31
I



RFl,k

RF, |

RF4,k

RFl,k

RF

RF3,k

RF4,k

RFl,k

H

H

U

1

1

H

L]

RF, 0 =0
cosh s xk-+cos B m-T5k
- 1(smh Bkt sin 8 -1xk)
T S

- (cosh B 1k + cos B _lxk)} :
m-1 {sinh B 155 sin B 1%y
- (cosh B ¥ 08 By 15
{vwv- é}{cosh By 1Xk T 08 B 1%y

o (smh B, % Tsing -1xk)}
-{cosh B 1™k T €08 B 1%y
- g(sinh B x +singx )]

Xy | .
{—a— - %} sm—lfsmh Bmmlxk - sin smHIXk
- 1(cosh B ¥y Tcos 8 —lxk)}
Bm i [smh B *x " sin Bm—lxk
- am_l(cosh ﬁmqlxk
+ cos Bm_lxk)}{sinh Bf{l—lxk - sin Bfﬁ—lxk

Q'-w-

(cosh B

X

I k

+ cos B— 1xk)}

J \
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F
RE .k

RF3,k

RF4,k

{cosh ﬁm-lxk + cos am—lxk

- qm" 1( sinh Bm-lxk

+ gin Em-lxk)}{COSh Brz—lxk + cos sr—fl—lxk

- az 1(smh s—- 1k + sin ﬁ-'- xk)}

[cosh B i +cos B 1%,

i CL/rn-l( sinh Brn--lxk

+ sin ﬁm_lxk)}{smh Br?i-lxk ~ sin Br-r_1~1xk

-v= (cosh B-— xk + cos B—— X,k)}

ﬁm*1{51nh Em— x sin B

1"k - m-lxk

- am_l(cosh Bmlek

+.cos Bm_lxk)}{cosh Bfﬁ-«lxk + cos 65_1xk

- afﬁql(smh Sr’ﬁ- et sin B—- " k)}
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APPENDIX F

CONSTANTS OF THE MATRIX ELEMENTS

This appendix contains the constants used in the equations in
Appendix D, These expressions contain various combinations of the

material properties of the shell, stringers and rings.

Constants of the Shell

ha
D m
1 12(1 - vxevex)
D = E Dl
X X
D = E_ D
8 g !
SX, = 2D_
SX, = ZDx\)Ke
24.-Dx
SX, = The
ST, = 2D
ST, = ZDe\)eX
24,D’e
ST, = The
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24D
6 ¥ ex
XT. =
SXT, ZGxeh
Gxeh:3
SXT, = —¢-
crxeh’3
SXT, = —
2G _h?
SXT, = —32
SPC = 2p_h
Constants of the Stringers
STR1 =
R 2 psg, s/
TR2 = A vy
S 4 psa 54 ys!,
= A .
STR3Z °sp. SJ?I‘ZM
STR4J?, = 2 ps [,Asz Zsﬂ
= v3 i
STRSR psz (YSILASI, * Izz )
s4
TR6 = z2 A 41
S 4 P2 (ZSI s£+ yy
sd
TR7 = vy oz
51 4 "sz(ysz ZszAserIyz )
sd
TRS8 = E A
STR £ s4{ sk
STR = E Ay
% s2 s s



TR10
3 )

STRI11
4

STR12
L

STR13

STR14

RNGI
RNG2
RNG3

RNG4k

RN GSk
RNGb6
RNG7

RNG8
RNG9k
RNGI1

N Ok

RNGIl1

H

Al

H

1

i

1l

i

n

1]

H

1l

¢ Z
sS4 54 si
(y? +1 )
sl "s4 8¢ zzsz
(GJ)S,L
s 4 HZ_SE-FSE £+I z )
' . 8 y s4
E (z® I )

4p rk A,rk zrk

-
Zprk (xrk Ark * Izz )

rk
2 2
prk (Zrk Ark * Ixx )
rk
2 X .z
P rk (er Zrk Ark * Ixz )
rk
ZErk Ark
ZErk Ark Zrk
-
ZErk Ark zrk
5 _

Erk Ark xrk
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RNGI12
RNG13
RNG14
RNGI15
RNGI 6k

RNG17k
RNGI18
RNGI19
RNG20
RNGZIk

RNGZZk

H

1

n -
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ZErk Arerk

2E Aok Frk Fri
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-
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rk
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ZErk Izz. zrk
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k
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