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CHAPTER I 

INTRODUCTION 

Background 

While the topic of reliability assessment did not appear in the 

literature prior to the Second World War, it. is a relatively old con­

cept. Generally speaking, the reliability of a product is the probabil­

ity that it will meet or exceed certain predetermined criteria. For 

example, the reliability of a light bulb might be the probability that 

it will burn for at least 500 hours. However, since all light bulbs 

produced by one manufacturer are not exactly alike, this probability 

could never be known with certainty unless all the bulbs were tested. 

For this reason, statistical methods known as reliability assessment 

methods were developed to help quantify the uncertainty about the true 

reliability of the product. 

Reliability assessment had its beginnings in the methods of quality 

control. Generally speaking, quality control is the practice of accept­

ing or rejecting lots of a product based on the performance of samples 

drawn from those lots. Since it is usually unreasonable to expect every 

item in the lot to meet the performance criteria, an agreement is 

reached beforehand on an acceptable fraction o;f unsatisfactory i terns 

which may be in a lot. The manufacturere and buyer must also decide 

what chance they would want to take of discarding a good lot or buying 

a bad lot, respectively, based on a sample from that lot. Using 



statistical methods, standards are set for the sample which will deter­

mine whether the lot is to be accepted or rejected. The desired frac­

tion of acceptable items in a lot could be referred to as the 

reliability of an item drawn at random from the lot since it gives the 

probability of an item meeting the criteria in a sampling frequency 

sense. However, the term "reliability" did not appear in the quality 

control literature prior to the 1950's. 

2 

Literature on quality control was available prior to the Second 

World War (e.g .. , (1) (2) (3) }, primarily of the nonparametric variety. 

The outbreak of hostilities with its vastly increased production of war 

materials, though, was the major catalyst to the development of more and 

better techniques of quality control (e.g., (4) (5) (6)). 

One quality control method that was more fully developed during the 

war was a method called tolerance limits. Briefly, tolerance limits are 

values computed from data on a random sample of items between which 

(say) 90% of the product lifetimes fall with (say) 99% confidence. (The 

meaning of "confidence" will be discussed below.) The fraction of life~ 

times which falls between the tolerance limits can be thought of as the 

reliability associated with the operating criteria given by the toler­

ance limits. For example, suppose the tolerance limits on 90% of light 

bulb lifetimes are computed to be from 52 hours to 639 hours, with 99% 

confidence. This means that one can be "99% confident" that the light 

bulbs are at least 90% reliable with respect to the operating criteria 

of lasting more than 52 hours but less than 639 hours. Stated another 

way, one would be "99% confident" that one could pick a light bulb at 

random 9 out of 10 times that would burn between 52 hours and 639 hours. 

Thus, tolerance limits provide a more direct means of making a statement 
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about the reliability of a product than earlier methods in quality 

control. 

Much of the work done on tolerance limits during the war was by 

Wald, Wilks, and Wolfowitz (e.g., (7) (8), (9) (io) (11). While 

much of the work was of a nonparametric nature, some work was done with 

the assumption of a normal distribution for the product lifetimes (7) 

(8). As understanding of engineering systems increased, tolerance 

limits were developed for such lifetime distributions as the exponential 
•. <' 

( 12) ( 13) , the Wei bull ( 13) , and the gamma ( 13) • Much of the 1 i tera-

ture of the 1950's on tolerance limits, life testing, and reliability 

is given in an article by Mendenhall (1~). 

Tolerance limits are also used to find the confidence with which 

one can say that a product is (say) 95% reliable ( 15). Exactly how this 

confidence is computed will be discussed in a later chapter. Generally, 

one first establishes the specification limit or qualification limit 

(QL) that the product should meet or exceed. For example, one may want 

his light bulbs to burn at least 500 hours. Next, a sample of products 

is tested. One then finds the confidence Y such that if one used that 

confidence and the sample data, one would compute a tolerance limit 

equal to the QL. This computed confidence y and its usage are the pri-

mary subjects of this dissertation. 

This computed confidence Y is more commonly referred to as the 

observed confidence or observed confidence coefficient. Little has been 

written about the observed confidence; however, much has been written 

about the observed significance level (SL), which is related toy by 

the identity 

y 1 ~ SL 



or SL = 1 - Y • 

It is apparent that any discussion about the nature of the SL would 

easily carry over to that for y (and vice-versa). 

A Review of the Observed Significance Level 

For a more complete discussion of the SL, one is referred to the 

text by Kempthorne and Folks (16) and papers by Anscombe (17) and 

Fisher (18). The following is a brief summary of the use and meaning 

of the SL in experimentation. While hardly rigorous, this presentation 

will serve to illustrate the uses and abuses of the SL and, 

concomitantly, y. 

Before beginning experimentation, one states some hypotheses about 

the true state of nature, such as the reliability of G.E. light bulbs, 

height of the average o.s.u. student, etc. This statement is commonly 

referred to as the null hypothesis (H) about the population of interest. 

To help determine the validity of H, one draws a random sample from the 

population of interest. One uses this sample to determine the degree of 

support (or validity) for H provided by the data. If H was that the 

average student height at o.s.u. was 72 inches and the average height of 

100 randomly chosen students was only 64: inches, this result would cast 

much doubt upon the validity of H. Conversely, if the average was 71.5 

inches, one could easily believe that the 100 students could have been 

drawn from a population whose overall average height was 72 inches. 

The SL provides one way of quantifying the degree of support given H by 

the data. 

The SL is computed as the probability of drawing a sample from the 

population no more in agreement with H than the sample actually drawn. 
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If SL is near zero, the sample obtained would be extremely rare if H is 

true. Under those circumstances, one might begin looking for another H 

which might better explain the observed data. Conversely, if SL is 

substantially greater than zero, this would say that the observed sample 

would not be unreasonable to e~pect if H were true. In that case, one 

would probably be satisfied to retain H as the apparent true state of 

nature. 

Among the many misuses of the SL is the interpretation of the SL 

as the probability that H is true. Obviously, H is true or false, 

irrespective of the data. Hence, the probability that H is true is 

either zero or one, not equal to SL. Another misuse stems from the 

notion of accepting or rejecting H, a practice taught in most statisti-

cal methods books (e.g., (19) (20)). If, prior to experimentation, one 

states that he will accept H if the SL > p (a predetermined value) and 
0 

reject H otherwise, then he will reject a true Hin nearly 100p % of his 
0 

experiments. ~he value p is commonly referred to as the probability of 
0 

a Type I error. Clearly, this scheme is of value in lot inspection 

problems, where p0 is the chance of destroying a good lot using this 

method. 

However, a common erroneous usage of the SL is to look at the SL 

from one experiment as the risk or chance of making an error if H is 

rejected when in fact it is true. For example, in testing missile com-

ponents, one sample of components might yield an SL~ 0.10. The con-

clusion usually drawn is that one would run a 10% risk 0£ being wrong 

if he rejected this lot of missile components. The fallacy in this 

thin~ing is apparent when one realizes that the SL is a function of the 

data and so will be di~ferent for each sample drawn from the same lot. 
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A manufacturer who would choose to keep a lot with only a 11 10% chance of 

being in error" might be surprised to find the risk computed from 

another sample from the lot to be more than enough to make him reject 

it (say 1%). Since the SL is strictly a function of the sample, it is 

hard to see how it could really be used as probability of error. 

The correct use of the SL from a single experiment is as a measure 

of the support given H by the data. How one chooses to weigh the SL 

in his evaluation is strictly a subjective matter; experience is usually 

the best gauge. Attempts to use values of the SL below 0.05 or 0.01 in 

deciding whether to accept or reject H are quite common. Such practices 

can usually be countered by asking what an SL of 0.05 or 0.01 means in 

the experimental context. Usually there is little basis for the use of 

such levels other than tradition. 

To compute the observed confidence y, one need only compute the 

SL and then Y = 1 - SL. While not normally stated as such, Y gives the 

degree of support for H provided by the data. If y is near unity, this 

is support for H; if Y is substantially less than unity, this is evi­

dence against H. 

Clearly, since the SL is a function of the data (i.e., a statistic), 

so is Y. As a statistic, Y has distributional characteristics which 

would be affected by the sample size, H, and the true state of nature. 

What these characteristics are and how they might influence the use of 

'Y by experimenters is the subject of the following chapters. 

Selection of Problems 

The problems in this dissertation refer to the choice of lifetime 

distributions and the tolerance limit formulas. The lifetime 
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distributions will be the normal (variance known and unknown), gamma, 

Weibull, and exponential. The tolerance limits will be primarily of the 

lower limit type. Two-sided tolerance limits for a normal distribution 

will also be considered. 

Two' ot)1.er distributions of interest to reliability assessers will 

also be considered. Tnese will be the binomial and the Poisson. These 

distributions count the number of items on trial which fail to meet the 

desired QL. 

Since tne results for the confidence coefficient y carry over to 

significance testing via the SL, ~ chapter will consider the impact of 

these findings on significance testing. Since little has been done in 

the way qf examining particular significance tests for their distribu­

tional characte~istics, this could prove to be a fruitful area of 

research. 



CHAPTER II 

EXPREssiNG THE CONFIDENCE COEFFICIENT 

AS A STATISTIC 

A matter of frequent interest to manufacturers is knowing the pro-

portion of their products which exceeds certain design criteria. Unfor-

tunately, it is often impossible to know this proportion with certainty 

since the operational parameters (e.g., failure rate) are unknown. By 

testing a random sample of products, though, one can use the test data 

to compute 

(a) a limit on performance which at least (say) 95% of the 

products will meet with (say) 99% confidence, or 

(b) the confidence with which one can say that 95% of tne 

products meet a predetermined level of performance. 

This first problem is called finding a tolerance limit while the second 

is called finding the observed confidence coefficient. How these two 

problems are interrelated is illustrated in the following discussion. 

One-Sided Tolerance Limits 

In general, the one-sided tolerance limit (OSTL) is an expression, 

say TL(S), that, for a sample S, has probability y of providing a value 

above which lies a proportion S of the population. For a particular 

sample S , the value TL(S ) has y confiqence of bounding S of the popu-
o 0 

lation. In reliability problems, 100S% is usually the desired 

Q 



reliability. The two-sic;led tolerance limits, on the other hand, use 

two formulas to bound S of the population. The topic of two-sided tol-

erance limits will be taken up in a later chapter. 

The OSTL problem has two forms: 

(a) a lower OSTL on at least S of the population, 

(b) an upper OSTL on at most S of the population. 

It will be shown that the other two possible forms 

(c) an upper OSTL on at most 1-S of the population, 

(d) a lower OSTL on at least 1-S of the population 

are actually the same as (a) and (b), respectively. 

Let S be a random sample of size n from a population with density 

function f(·). In a reliability problem, f(•) could be the density of 

lifetimes for the products. Then L(S) is a lower OSTL on at least S of 

the population with probability V· if 

Pr(J= f(y)dy ~ S) = Y 
L(S) 

Note that this is the same as 

L(S) 
Pr ( 1 - J f ( y) dy ~ S) y 

-eo 

or 
L(S) 

Pr(J f(y)dy ~ 1- S) y • 
-co 

Comparing (1) and (2), it is apparent that L(S) can perform the func-

tions stated in (a) and (c). 

In similar fashion, U(S) is an upper OSTL on at most of the 

:population if 

9 
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U(S) 
Pr(J f(y)dy < S) y • (3) 

-GO 

This is also expressible as 

co 

Pr(J f(y)dy2:1-S) 
U(S) 

y • ( 4) 

Comparing (3) and (4), it is apparent that U(S) can perform the func'-

tions stated in (b) and (d), respectively. 

The following discussion will beirimarily centered about the OSTL 

in (a) (and (c)), since this is the form of most interest to people in 

life testing. Results for the (b) and (d) cases could be obtained by 

slight modifications of the techniques used below. 

The Confidence Coefficient in a 

Reliability Problem 

Suppose a product must function for at least B hours to be con-

sidered acceptable. The user wishes to know with what confidence he can 

say that his products are at least 100S% reliable, based on the results 

of a sample. That is, how confident can he be that at least S of his 

production will have lifetimes gr~ater than B? 

In the OSTL problem, one ,asks: given S, Y, and a sample S , what 
0 

must L(S ) be so that one can be Y-confident that L(S ) is a lower bound 
0 0 

on at least S of the lifetimes? To find the observed confidence Y, 

though, one asks: given S, B, and S , what must Y be so that L(S ) 
0 0 

would be equal to B? The value of Y is the observed confidence for 

that sample S • Surely, as S changes as different samples are taken, 
0 0 

the value of Y must change so that L(S ) will always equal B. In this 
0 



way, the observed confidence Y is a function of the data (i.e., a 

statistic). As such, it has a distribution depending upon the type of 

lifetime population, the tolerance limit formula, B, n, and S· In the 

next chapter, the population parameters and B will be reparameterized 

into the parameter R, the true fraction of the population lying to the 

right of B. This will allow for a more general tabulation of the 

results for the confidence coefficient. 

11 



CHAPTER III 

RESULTS FOR SOME CONTINUOUS LIFETIME 

DISTRIBUTIONS 

For each lifetime distribution considered below, one OSTL formula 

was used to find the confidence coefficient y. While there is certainly 

more than one OSTL for each population, the OSTL's chosen here appear to 

have "good" properties and have appeared in reputable journals. The 

populations considered appear to be those that appear most commonly in 

reliability problems. 

Normal Distribution With Variance Unknown 

Let S be a random sample of size n from a normally distributed 

2 
population with unknown parameters µ and cr • Let L(S) = x - ks be a 

y-probability lower OSTL on at least ~ of the population, where k is a 

constant to be determined. Then 

Pr (f_00 dN(µ~cr2 ) > ~) = y 
x-ks 

where N(µ,cr2 ) is the distribution function of a normal random variable 

with meanµ and variance cr2 • The above equation can also be written as 

Pr (1- J x-ks dN(µ,02) .:'.: ~) y 
-oo 

19. 
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x-ks-µ 

= Pr CJ cr dN(0,1) < 1 - S) 
-oo 

= Pr ( G - ks - µ) / cr ~ IN ( 1 - S )) 

where IN(p) is the point below which the fraction p of a standard normal 

distribution lies. So 

y = Pr ( /i1 ( x - µ - IN ( 1 - S )) < /nks / cr) 
(j -

But the term on the left is a noncentral-t random variable with parame-

ter 8 = jtlIN( 1 - 13) = /i1IN( 13). Then 

where T0(•) is the distribution function of the noncentral-t random 

variable with parameter o and n-1 degrees of freedom (d.f.). Solving 

the above equation for k yields 

-1 'C k T0 (y)/,n 

and so L(S) can be written as 

Suppose a manufacturer establishes a minimum WL of B hours of 

operation. The value of y required so that L(S) will equal B is found 

by 13olving 



which yields 

y ( 1) 

Clearly, this establishes y as a function of the data. This writer 

acknowledges the 1968 article by Owen (19) which provided the inspira­

tion for this approach to finding y. The following is an example of how 

Equation (1) might be used to find the confidence in a reliability 

assessment problem. Suppose a tire manufacturer wants to know with what 

confidence he can claim that at least 95% of his tires will last at 

least 12,000 miles. He puts 9 tires on test and finds that the average 

tire life was 18,400 miles with a standard deviation for the 9 tires of 

J,000 miles. To use (1), of course, one must assume that tire life is 

normally distributed. Assuming this, the value of the noncentrality 

parameter 5 = /9IN(~95) = 3(1.645) = J.935. The value of 

.JnG:- B)/s = 6.4. Then Y T3 • 935 C6w4)~ To find this value, the tables 

by Resnikoff and Liebermann (20) on the noncentral-t were used. With a 

little interpolation, the value of y is found to be approximately 0.80. 

Thus, the manufacturer can claim his tires are 95% reliable with about 

80% confidence. 

Since Y is a statistic, it will have a distribution function. The 

distribution function of y will be denoted by D(y) in this and all 

other developments. In this case, 

D(y) Pr(T5 (/ilCX- b)/s) ~ y), o < y < 1 
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But /n(x - B)/s is a noncentral-t random variable with parameter 

8 = /i1(µ- B)/a and n-1 d.f. Thus, 

0 < y < 1. (2) 

Upon rexamining 8, it is apparent tnat 

-8 /n(B- µ)/cr - /i1IN(1- R) 

where R is the true fraction of the distribution to the left of B. But 

since 

IN( 1- R) -IN(R) 0 < R < 1, 

then e /nIN(R). Thus D(y) in (2) has parameters of n (sample size in 

test), ~ (desired reliability), and R (true reliability). 

The density of y is found by differentiating (2) with respect to y. 

The density or probability function of y in this and subsequent develop-

ments will be denoted by d(y). In this case, the density is 

d(y) 

where t 9(•) is the density of a noncentral-t random variable with param­

eter 9 and n-1 d.f. It is shown in the Appendix that 

1 

Bence, 

d(y) 
0 < y < 1 (J) 
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According to Resnikoff and Liebermann (20), one form of the 

noncentral-t density with parameter 6 and n-1 d.f. is 

1( f62) f+1 

_f ___ 1_f_l ___ e-2 f+x2 (~) 2 Hf[ -5x J 
f+x /f 2 

2 2 r< f/2 )./Tif + x 

where f = n- 1 

Substituting this into (3) yields 

d(y) (4) 

If d(y) is monotone increasing (decreasing) then increasing values 

of Y are more (less) likely. This can be shown by differentiating d(y) 

and determining under what circumstances d 1 (y) is greater than or less 

than zero. All attempts to do this for (4) have failed, although the 

plots of d(y) in Figures 1 to 6 do suggest that d(y) is increasing with 

y when R > ~ and decreasing with y when R < ~. This says that if R > ~ 

(the true reliability is greater than the desired reliability) that 

values of y near 1 are more likely. Conversely, if R < ~' values of y 

near zero are more likely than values of y greater than zero. 

The values of d(O) and d(1) are not discernible from the plots. 

To find the values, certain limits must be considered. 

-00 
-1 

and lim T5 (y) 
Y-<1-

00 • 

Thus, the first term in (4) has a limiting value of 1 whether Y-+0 or 
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y .... 1 since the T61(y) is squared. However. 

lim 
Hf[-ax//f + x2 J Hf(-8) 

::ic --+ 00 
= Hf(-9) 

Hf[-ex;v'~ + x2 J 
while 

lim 
Hf[-ax;{ + x2 J Hf(8) 

=.H;(9) . X-> co Hl ... ex;1r'+ x2 J 

Thus, the limiting values of d(O) and d(1) are 

and 

The limits of y 0 and Y = 1 ~re finite since Hf(•) is a finite func-

tion (20). 

The plots of d(y) s·eem to suggest a greater skewness towards y = 1 

when R > S than towards y = 0 when R < ~ by an equivalent amount. This 

skewness becomes more exaggerated with increasing sample size. This 

result may in part be due to the fact that all the values of S are near 

1.00. The skew is also greater the further R is from S. These early 

results sugg~st that if the true reliability (R) exceeds the desired 

reliability(~), a value of y near 1.00 woµld be expected. Also, a 

value of y near 1.00 appears unlikely if R is less than ~- Such a 

result appears more likely with an increased 'sample size, which seems 

reasonable since one can better assess the reliability with a larger 

sample9 If the sample size is relatively large (say 30 or more) a 



value of Y greater than about .95 should strongly suggest that R > S, 

while a value of y below about .Bo should be strong evidence that R is 

less than S. Values of y in between .80 and .95 would appear to be 

relatively inconclusive. However, the larger the sample size, the 

smaller the inconclusive range would appear to be; also a higher value 

of y (say .95) would be required to feel safe in conc!uding that R > S. 

One measure of how skewed the distribution is the moments of a 

random variable. In order to .-tabulate the mean and variance of y for 

th 
some combinations of n, R, and S the following expression for the p 

moment of y was developed. 

or 

T:P,en 

th 
The p moment is given by 

E(yP) = li yPd(y)dy 
0 

or y .T5 Cx) 

This expression provides a non-closed form for finding E(y) and 

2 2 Var(y) = E(y ) - E (y). Table I gives values of E(y) and Var(y) for 

selected values of n, R, and S. These calculations were done using 

Simpson's Rule in double precision. A method for calculating Hf(•) is 

given in (20). 



n = 10 

Desired 
Reliability (~) 

.90 

.95 

.99 

n = 20 

Desired 
.Reliability (~) 

.90 

.95 

.99 

n"" 30 

Desired 
Reliability (~) 

.90 

.95 

.99 

TABLE I 

TABULATIONS OF E(y) FOR THE NORMAL 
WITH VAR(y) IN PARENTHESES 

Actual Reliability (R) 

.70 .Bo .90 .95 

.0B29 .2225 .5000 .7061 
( .0245) ( .0610) ( .0B33) ( .. 0577) 

.02Bo .0970 .2935 .5000 
( .ooBB) ( .0392) ( .1603) ( .0B33) 

.0037 .01B1 .0B54 .2005 
(.0010) ( .0056) ( .0342) ( .09B2) 

Actual Reliability (R) 

.70 .Bo .90 .95 

.0235 .1365 .5000 .7794 
(.0054) ( .0376) ( .0B33) ( .0466) 

.0030 .030B .. 2167 .5000 
( .0005) (.00B7) ( .1046) ( .0B33) 

.. 0001 .0012 .0236 .1115 
( .0001) ( .0002) ( .0065) ( .0442) 

Actual Reliability (R) 

.70 .Bo .90 .. 95 

.0073 .oBB6 .5000 .B260 
(.0012) (.0234) ( .0B33) ( .03BB) 

.0004 .0106 .1671 .5000 
( .0001) ( .0022) ( .072B) ( .0B33) 

.0001 .0001 .0072 .0662 
(.0001) (.0001) ( .. 0014) ( .0220) 

25 

.99 

.B965 
(.1000) 

.7947 
( .6717) 

.5000 
( .0B33) 

.99 

.9076 
( .0629) 

.B642 
( .0742) 

.5000 
( .0B33) 

.99 

.9134 
( .0274) 

.9053 
( .. 0421) 

.5000 
( .OB33) 
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TABLE I (Continued) 

n = 40 Actual Reliability (R) 

Desired .70 .Bo .90 .95 .99 
Reliabil;ity (~) 

.0023 .0592 .5000 .8595 .9999 
.90 ( .0003) ( .0145) ( .0833) (.0329) ( .. 0001) 

.0001 .0038 .1316 .5000 .9227 
.95 (.0001) (.0006) ( .0523) ( .0833) ( .0342) 

.0001 .0001 .. 0023 .0405 .5000 
.99 (.0001) ( .000.1) ( .0003) (.0114) ( .. 0833) 
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These limited results tend to corroborate the earlier conclusions. 

The ability of y to discriminate between R > S and R < S appears to be 

quite good for large n (say 40 or more). Certainly, additional work 

here would appear to be potentially very fruitful. 

Normal Distribution With Variance Known 

Let S be a random sample of size n from a normally distributed 

population with unknown mean µ and known variance cr2 • Let L(S) = x - kcr 

be a y-probability lower OSTL on at least S of the population, where k 

is a constant to be 4etermined. Then 

where 

y = Pr (f _00 dN(µ,er 2 ) > S) 
x-kcr 

er CX-kcr,µ)/cr :"\ 
Pr dN ( 0 , 1 ) :S, 1 - S) 

- 00 

= Pr((x - µ)/cr - k < IN(1 - S)) 

Pr(/ii(i - µ)/cr ~ /D(k + IN(1 - S) 

CN (/TI ( k + IN ( 1 - S ) ) ) 
0 

CNd(•) is the cumulative distribution function of a N(d,1). 

Solving for k, 

k IN(y)//i1 - IN(1 - S) 

IN(y)//i1 + IN(S). 

Then L(S) i - (IN(y)//D + IN(S))cr. 



Suppose a lower QL of B is established by a manufacturer. Then 

the value of the observed confidence y is found by solving L(S ) = B 
0 

ip the form 

B = x.,. (IN(y)//ri + IN(a)). 

Solving this for y yields 

y CN (/ri((x - B)/a - IN(S))). 
0 

This provides a formula for the observed confidence for a desired 

reliability S, sample of size n, and QL = B. 
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In the previous example having to do with tire reliability, assume 

that all conditions remain the same except that the standard deviation 

:is known to be 3,000 miles. IN(.95) = 1.645 and /n(CX - B)/a - IN(S))) 

= 2.465. Using the cumulative normal tables in reference (16), the 

observed confidence y is found to be 0.9931. This says that if the 

manuf~cturer was certain that the standard deviation of tire lifetimes 

is 3,000 miles, he could claim his tires are at least 95% reliable with 

over 99% confidence, inste~d of 80% when a must be estimated from the 

data. 

Tne distribution function of y is 

D(y) Pr ( CN (/ii ( (i - B) /a - IN ( S ) ) ) < y ) 
0 -

Pr(/ri(x - B)/a ~ /ilIN(~) + !N(y)). 

But /il(x - B)/a is a normal random variable with mean 8 = /ii(µ - B)/a = 

/riIN(R), R being the fraction of the population to the right of B (i.e., 

the true reliability). Then 
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D(y) = CN9(/nIN(S) + IN(y)) 

or 

D(y) = CN (/ilIN(S) + IN(y) - /nIN(R)) 
0 

= CN (IN(y) + /il(IN(S) - IN(R))). 
0 

The. density of y is found by di:f;ferentiating d(y) with respect· to 

y, which yields 

d(y) f(IN(y) + /n(IN(S) - IN(R))) 
= f(IN(y)) 

where 

f(:x;) 1 -x2/2 = -. -.- e • 
/2iT 

Using this form of f(x), the density of y can be expressed as 

!":" 2 2 d(y) = exp-~((IN(y) + vn(IN(S) - IN(R))) - (IN(y )) ) 

or 

d(y) = e:x;p(c/nIN(y) - nc2/2) 0 < y < 1 ( 5) 

where c = IN(R) - IN(S). 

i 

To check for the inontonicity of d(y), the derivative of d(y) was 

examined to see when it is less than or greater than zero. The deriva-

tive is 

d'(y) = c/ild(y)/f(IN(y)) 

in which everything is positive, with the possible exception of the 

constant c. If R > S, then IN(R) > IN(S) and so c > O. In the case, 

d 1 (y) > 0 and so d(y) is monotone increasing for ally. In a similar 
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fashion, it can be shown that if R <~then c < 0 and d 1 (y) < o, in 

which case d(y) in monotone decreasing for all y. Hence, if tne true 

reliability R is greater than the desired reliability ~' values of y 

near 1.00 are the most likely; conversely, if R is less than ~' values 

of y close to 0.00 are most likelye 

Since IN(O) = -=and IN(1) = =, the value of d(O) and d(1) will be 

0 or oo, depending on the sign of c. Thus, 

{°' R> ~ 
d(O) = 

00, R< ~ 

{00' R> ~ 
d(1) = 

o, R< ~ 

The form of d(y) is reflected in the plots of d(y) in Figures 7 to 9. 

A cursory examination of the plots of d(y) indicate that generally 

the same conclusions would hold as those for d(y) when a is unknown. In 

the above example on tire reliability, it was shown that one can achieve 

a much higher confidence if a is known. This is reflected in the com-

posite plots in Figures 10 and 11 of the density of y when a is known 

and unknown. These results suggest that if a is known, it is easier to 

draw a conclusion on whether R is greater than ~ since high values of y 

are more likely than when a is unknown~ 

th 
The p moment of y is given by 

11 
0 

f(IN(y) + /i1c) dy 
f( rn{y)) 
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where 

c = IN(R) - IN(~). 

Let x = IN(y) 

Then 

or y = CN (x) 
0 

dy = f(x)dx. 
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2 2 
This provides a non-closed form for E(y) and Var(y) = E(y ) - E (y). No 

effort was made to tabulate values for this case. It is likely that 

such a compilation would show that E(y) would be closer to 1.00 and 

o.oo, as the case may be, with smaller variances in every case, than 

that seen when cr was unknown. 

A Gamma Distribution 

Let S be a random sample of size n from a population with a gamma 

distribution of the form 

x > 0 

where d > 0 is an unknown parameter. According to Bain and Weeks (13), 

one formula for a Y-probability lower OSTL on at least ~ of the popula-

tion is 

where 

G (•) is the incomplete gamma with parameter q 
q 

q is the solution to 



G O::x) = y. 
nq 

If a QL is set equal to B, then the value of y required to make 

L(S) =Bis given by (6), where q is the solution to 

or 

G (B) = 1 - [3. 
q 

This provides an implicit solution for the confidence y. 

The distribution function of y is given by 

D(y) = Pr(G CEx) < y) 
nq -

. 1 
= Pr(l:x < G- (y)). 

- nq 

o<y<1 

But l:x is a gamma random variable with parameter nd. Thus, 

D(y) 0 < y < 1. 

It would be desirable to replace d and B by a parameter R, the 
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(6) 

(7) 

fraction of the population to the right of B. The first step is to con-

sider the expression 

or 

1 - R. 

This leaves the parameter d as an implicit function .of R and B. It 

appears that D(y) will still have the QL of B as a parameter. This 
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would make tabulation of results for d(y), E(y), and Var(y) less general 

since they would depend on the particular choice of B. 

The density of y is given by 

d(y) 
0 < y < 1. 

Substituting the formula for the. gamma density yields 

d(y) 

Since G- 1 (y) is positive for all y, then d(y) will be a monotone 
nq 

(8) 

increasing (decreasing) function if (d- q) is greater than (less than) 

zero. Suppose R > S. Then 1 - R < 1- S. Using the implicit expressions 

.for d and q, it is apparent that 

which implies 

d > q. 

Hence, if R > S, d > q and so d(y) is monotone increasing. In a similar 

fashion, it can be shown that if R < p, d(y) is a manotone decreasing 

function of y. This is the same type of result seen in the normal 

distribution problems. 

Since G- 1 (o) = 0 and G- 1 (1) = ~, the values of d(O) and d(1) will 
nq nq 

be zero or infinity, depending on the sign of (d-q) in Equation (8). 

Considering the above findings on the sign of (d- q) with respect to 

the order of Rand S, 
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{o, R> ~ 
d(O) 

00' R< ~ 

{00' R> ~ 
d(1) 

O, R< ~ 

Hence, d(y) begins at zero and goes to infinity for all choices of R and 

~- The only matter is whether d(y) = 0 for y = 0 or y = 1. This is 

determined by the order of R and ~­

The pth moment of y is given by 

To perform this integration, let. 

or 

Then 

y = G (x) 
nq 

dy = G (x) dx. 
nq 

E(yP) = 1= Gp (x)g d(x)dx. 
0 nq n 

This provides a non-closed form for E(y) and Var(y) 

As stated above, tabulation of results would be qµite ungeneral since 

the value of d would depend on the choice of B. Removal of B as a 
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parameter would be a useful area of further research on this problem. 

The other alternative would be to find another formula for the tolerance 

limit which would have "good" statistical properties, and be easy to 

use. 

A Weibull Distribution 

Let S be a random sample of size n from a population with a Weibull 

distribution of the form 

x > 0 

in which b > 0 is known and a > 0 is unknown. According to Bain and 

Weeks ( 13), one formula for a y-probability lower OSTL on at least ~ of 

the population is 

where 

G (•) =incomplete gamma with parameter n. 
n 

Suppose a QL = B is set by the manufacturer. The required value 

of y to make L(S) B (i.e., the observed confidence) is found by 

solving 

which yields 

b b y = G (-L:x 077.~/B ) • 
n 

This provides a formula for the observed confidence y for any sample of 

size n, for desired reliability ~. 



As an example of how this might be used, suppose a manufacturer of 

high intensity lamps wishes to know with what cortfidence he can claim 

that at least 95% of his lamps will last over 15 days (i.e., have 95% 

reliability). To do this, he first put ten lamps on test with the 

following results: 

Lamp # 1 2 3 4 5 6 7 8 9 10 

lifetime 18 17 24 18 26 25 23 23 19 20 (days) 

The manufacturer knows from experience that light bulb lifetimes are 

Weibull-distributed and that b = 2. Using this data, the expression 

for y becomes 

The value of y is found by use of any tables on the incomplete gamma 

with parameter n = 10. Hence, the manufacturer can claim his lamps are 

95% reliable with about 1% confidence~ The lower OSTL with 95% confi-

dence is 3.89. 

The distribution function of y is given by 

D(y) 0 < y < 1 

b b -1 
Pr(L:(x/a) < - (B/a) G (y)/07!~) 

- n 

by dividing through by 
b 

a $ 

b 
But L:(x/a) is a gamma random variable with 

parameter n. Therefore 



Note that if a fraction R of the Weibull population lies above B, this 

is expressed by 

or 

or 

r 00 ~ b b-1 c / ) b '1s ba x exp- x a dx 

exp-(B/a)b R 

b 
-(B/a) =0nR. 

R 

Substituting this into (9) yields 

D(y) 0 < y < 1. 

The density of y is given by 

011.R 
d(y) = ~ -1 

g (G (y)) 
n n 

Substituting the formula of the gamma density into this expression 

yields 

011.R -1 
d ( y) ::: 0n S exp ( ( 1 - 011.R/ 0n ~) G n ( y) ) • 

Since d(y) is essentially e raised to a power, d(y) is monotone in-

creasing or decreasing depending only on the sign of the exponent. 
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Suppose R > ~. Then 011.R > 011.S, and 0nR/0n.S < 1, since the log of R and 

S will be negative. Then 

1 - 011.R/011.~ > o 

and so d(y) will be monotone increasing. In a similar fashion, it can 



be shown that if R < S, then d(y) is monotone decreasing. 

The values of d(y) for y = 0 and y = 1 are found by first noting 

that G- 1 (o) = 0 and G- 1 (1) = ~. The values of d(O) and d(1) will be n n 

determined by the sign of the exponent in the second term of d(y). 

Thus, 

= {~, R > S 
d(1) 

O, R < S 

These limits are partially illustrated in the plots of d(y) in Figures 

12 through 15. Of G-1(y) The values were found by using the 
n 

approximation 

G- 1 (y) • IN(y) + ;z.;:n:T. 
n 

These graphs show a very marked skewness in d(y), perhaps even more so 

than that seen in either of the normal problems considered earlier. 

This is at least partially verified in the composite plots of d(y) in 

Figure 16. In these figures, the graphs of d(y) are given for the same 

sample size n, R, and S for the Weibull, normal with a known and with a 

unknown. It would appear that y would be a more sensitive test for R 

being greater than S if the data is known to be Weibully distributed and 

y is computed using the Weibull formula. As an illustration, suppose 

one were to appeal to the Central Limit Theorem and compute y using 

Equation (1) (i.e., for the normal with CT unknown). Using the data in 

the lamp life example above, the observed confidence is found to be .45, 

instead of the value .01 when using the Weibull formula. This would 
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suggest that it would be quite worthwhile to determine the true model 

for the data, rather than appeal to the Central Limit Theorem as 

casually as many texts seem tp suggest. 

th 
To complete the presentation on the Weibull, the p moment is 

developed here. 
th 

The p moment is given by 

or 

dy 

where r = .enR/0n~. To integrate this more easily, let 

or 

Then 

or 

y G (x) 
n 

dY = g (x)dx. 
·n 

ri co Gp ( x ) g ( rx ) dx 
0 n n 

This provides a non-closed form for obtaining E(y) and Var(y). This 

writer feels that this would be an easier form to work with than the 

form involving the direct integration of y since finding inverse points 

of an incomplete gamma may be more difficult to find than values of the 

incomplete gamma itself. 



An Exponential Distribution 

Let S be a random sample of size n from a population with an 

exponential distribution of the form 

h (x) 
a 

1 · -x/a 
e 

a 
x > 0 

where a > 0 is unknown. This density is a special case of the Weibull 

density in which b == 1. Using the results from the Weibull yields 

y == G (-L:x0n~/B) 
n 

as the computational form for the observed confidence y. 

Tne distribution function of y for the Weibull population is 

wnich does not ~epend on the known parameter b in the Weibull. While 
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this result might at fi;rst seem surprising, it is no different than the 

apparent loss of cr as a parameter in the normal case where cr was known. 

The parameter cr was simply·incorporated into the parameter R, along with 

the QL of B. As a result, one Qan use the distribution function, 

density, and moments ofy for the Wedbull as those for the exponential. 



CHAPTER IV 

SOME RE~UL,TS ~N ATTRIBUTE TESTING 

The results of tbe prior ~hapters have utilized the measurement of 

a variable, such as time to failure. That approach is referred to as a 

variables testing procedure. Such testing requires a knowledge of the 

form of the variable's probability distribution. 

However, tbis di:::;tribution form is often unknown, particularly in 

exploratory testing. To avoid making any incorrect distrioutional 

assumptions, one can work nonpar-ametrically with the number of 

"failures" in the n samples on test. This approach is referred to as 

attribute testing and will be the type of testing considered in this 

chapter. 

A Binomial Model Result 

Let S be a random sample of size n from an unspecified population. 

Let N(S) be the number of sample values greater than a specified QL, say 

B$ That is, N(S) is the number of items on test which do not "fail". 

It is desired to express as a function of N(S) the confidence y that at 

least ~ of the population lies above B. 

Let R be the fraction of the population above B. Then R is a 

y-confidence lower limit on R (see (16)) if 

y = ! C~) ( 1) 

i=N(S) 
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The question of interest is: what must y be so that.!!_= S is a 

y-confidence lower limit on R? This value of y is obtained by letting 

R = S and computing y from Equation (1). 

n 

y I C ~) s i < 1 - s ) n-1. (2) 

i=N(S) 

The left side of (2) can be evalua~ed by the incomplete beta function 

Ib(N(S)·,c f<n+1) lSuN(S)-1(1+u)n-N(S)du. 
t-i = r(N(S) )t(n - N(S) + 1) 

0 

Hence, 

y = Ib(N(S);S). 

This provides a computational form for the observed confidence coeffi-

cient y for a given N(S) and S. 

The distribution function of y is 

D(y) = Pr(Ib(N(S);S) ~ y) 0 < y < 1 

Pr(N(S) < [Ib- 1 (y;S)]) 

where 

[x] is the largest integer ~ x. 

But N(S) is a binomial random variable with parameters n and R. Thus, 

[ Ib - 1 ( Y ; S ) ] 

D(y) = l (~)Ri(1- R)n-1 

i=O 

= 1 - Ib([Ib- 1 (y;S)] + 1; R), o < y < 1. 
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The probability mass function of y is 

0 < y < 1. 

This is easily obtained by writing the incomplete beta in its equivalent 

form as a cumulative binomial. Preliminary work with the probability 

mass function indicate that as R moves away from ~' the mode of the 

function moves towards either y = O.O or 1.0, depending in the usual 

manner on whether R is greater than or less than ~. While no work has 

been done on the effect of sample size, it would not be surprising if 

the movement of the mode towards the end points would be accentuated by 

an increasing sample size, as well as an increase in probability of the 

mode. 

A Poisson Model Result 

Suppose n randomly chosen items are placed on test for a time T and 

replaced as they faiL This is often done in tests of electronic sys­

tems made up of n components.so that the system remains operational. If 

the failure rate of the items is a constant value A, then the failures 

are said to follow a Poisson process (16). The number of failures in 

time T, say N(S), is a Poisson random variable with parameter nAT. 

The reliability R of the products on test is given in (16) as 

R exp(-AT). 

It is desired to find a y-confidence lower limit on R, say _g(s). The 

value of y for which _g(S) = ~ would give the confidence with which one 

could say the product is 100~% reliable. 



For a sample S of size n, let 

y::: Pr(R > R(S)). 

This is the same as saying 

::: Pr(-A.T > .0nR(S)) 

J?r(AT < -.0nR(S) ),,, 

The function -.0nR(S) is now a Y-confidence upper limit on A.T for a given 

value of s. Then 

y (J) 

X=O 

But in reference (16), it is shown that Equation (3) can be expressed as 

y = 1 - GN(S)- 1 (-n.0n _!!(S)) (4) 

where G (•) is the incomplete gamma with parameter a. Solving Equation 
a 

(4) yields 

-.0n R(S) 
-1 

GN(S)-1(1- y)/n. 

Then the value of y such that R(S) S) is 

y ::: 1 - GN(S)- 1 (-n.0n S) 

or 

where CP (•) is the cumulative Poisson with parameter ae This provides 
a 
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a computational form for the observed confidence for a given desired 

reliability ~ and number of failures equal to N(S). 

The distribution function of y is 

D(y) Pr(CP_n.0n~(N(S)) < y), 0 < y < 1 

But N(S) is a Poisson random variable with parameter nAT. Thus, 

But if R 
-AT 

e 

then - .0nR~ 

Thus, 

The distribution function of y is now expressed in terms of the sample 

size n, desired reliability ~' and actual reliability R. 

The probability mass function is given by 

d(y) 
x 0 < y < 1. 

Little work has been done on plotting d(y), but one would anticipate 

that the mode of d(y) would shift drastically towards 0.00 or 1.00, 

depending in the usual manner on whether R was greater or less than ~. 

The effect of increasing sample size should be to accentuate the shift 

and increase the probability of the mode. 



CHAPTER V 

A REVISED OSTL FOR THE NORMAL DISTRIBUTION 

In Chapter III, the OSTL for a normal population with cr unknown was 

L(S) (1) 

The question arises as to whether L(S) should ever be greater than x. 
For example, it is possible that x could equal 17.3 while L(S) would 

equal 26.8. It would seem reasonable to have x serve as the lower OSTL 

in such an event since one would seem to be sure of covering at least ~ 

of the population by using the minimum of the values of x and L(S). To 

do this, the form of L(S) suggests that T6 1 (y) should always be greater 

than or equal to zero, i.e.·, 

But if this is true, then 

What effect this type of restriction would have on the results of 

Chapter III is the subject of this chapter. 

-1 
If L(S) "" B, a specified QL, solving (1) for Tl) (y) yields 

/i1CX-B)/s. 

s6 
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If 

-1 
T5 (y) > 0 

then 

x > B. 

-Should x be less than B, it would seem reasonable to set 

or 

Then y takes on the values of 

x > B 

The distribution function of y will be found by applying the identity 

D(y) - D(yli ~ B)Pr(x ~ B) + D(ylx < B)Pr(x < B). 

Now 

D(ylx ~ B) 

But x > B 

is also expressible as 

;ncx - B)/s ~ o. 



Thus 

D(ylx;:: B) 
Pr(/i1(x - B)/s ~ T6 1 (y), /n(x - B)/s;:: o) 

PrC/n(x - B)/s .=:: O) 

Since /i1(x - B)/s is a noncentral-t random variable with parameter 

9 = /i1IN(R) and n-1 d~f., 

In addition, 

D(ylx < B) 

Using the fact that 

Pr(To(O) ~ y) 

{o, y < T0(o) 

1, y;:: T0(0) 

Pr(x < B) = Pr(/i1(x - B)/s < o) 

D(y) can be expressed as 

, y < T0(o) 

D(y) Te(O) y = To(o). 

-1 T8(T0 Cy)), y > T0(o) 

The distribution of y is a mixed distribution with a mass point at 
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T8 (o) and a density for y > T8 (o). Thus, the probability function of y 

is 

10 , y < T(O) 

d(y) 

t9(T51(y)) 
, y > T(O) . -1 

t8(T8 (y)) 

and 

Pr(y T0 (O)) 

Plots of d(y) are the same as those for the unrestricted OSTL except 

that d(y) equals zero when y< T0 (o) and has a mass point at T0(o). 

This approach to revising the OSTL does not increase the frequency 

of values of y above T0(o); it only excludes low values of y. What 

practical value this type of 0$TL might have for the manufacturer is not 

immediately apparent since reporting a value of y = T0(o) tells little 

except that x was less than B. If this should be unexpected under the 

circumstances, then perhaps this result is slightly useful. 



CHAPTER VI 

TWO-SIDED TOLERANCE LIMITS 

In the previous chapters, one formula was used to compute a 

y- probability OSTL on S of the population. Another common practice in 

industry is to use two formulas to compute lim~ts between whcih S of the 

population will lie with probability y. This set of formulas are called 

two-sided tolerance limits. The tolerance limits on the normal distri­

bution derived by Wald anct Wolfowitz (7) appear to be the ones most in 

use today. 

Wald-Wolfowitz Limits 

Let S be a random sample of size n from a normally distributed 

population with unknown mean and variance. Then, according to Wald and 

Wolfowitz, 

U(S) x + ks 

and 

L(S) x-ks 

are y-probability tolerance limits on the center S of the population if 

k r I IC ( ~ - S) 

where 

f n - 1 
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IC(p) = point on the chi-square with f d.f. below which 

a proportion p lies. 

'lrn+r 
y I dN(0,1). 

1 . 
//n-r 

To simplify the following presentation, the following notation is 

introduced. Let 

1//ri+r 
Y = J . dN(0,1) 6(r) 

1//ii'-r 

then 

r 

and 

It should be noted that U(S) and L(S) form only approximate tolerance 
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intervals; however, the error is insignificant for large n (20 or more). 

Suppose that upper and lower QL 1 s of U and L, respectively, are 

assigned. Setting U(S) = U and L(S) = L, one finds two values of y, 

denoted by YL and Yu' to be 

f(,IC (1 - ~) 
Yu = 6 U n ( 1) 

and 

(2) 



Unless U and L are symmetric about x, that is such that 

x 
(U + L) 

2 

the values Yu and yL will not be equal. 

Consider the following example of such a situation. 

L x u 

If yL is used as the observed confidence, then the tolerance limits for 

such a choice of y are shown by the parentheses. If Yu is used as the 

observed confidence, the tolerance limits in that case are shown by the 

brackets. It appears that Yu is the minimum confidence which allows for 

coverage of both QL 1s. Clearly, this is the larger of the confidences 

computed in (1) and (2). By inspecting the above drawing, it is also 

apparent that the larger confidence is the one associated with 

max( Ix - Lj ju - xi). Hence, if ju - xi is largest, y is given by 

(1); if Ii - Lj is largest, y is given by (2). 

I)efore developing the distribution function of y, consideration 

must be given to the situations which might arise in determining y. Let 

x take on any of the four positions shown below. 

L u 

(L + U)/2 

If x = x 1 or x 2 , tnen Equation (1) shouia be used to find y. (If (2) 

were used, the tolerance interval would touch L but not U.) Likewise, 

if x = x3 or i 4 , Equation (2) should be used to compute y. Upon inspec­

tion of the above figure, it is apparent that if x < (L + U)/2, y should 
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be comput~d by(:).); :i,.f x > (L+U)/2, y should be computed by Equation 

( 2). 

To obtain the distribution function D(y), the identity 

D(y) = D(ylx > (L + U)/2)Pr(i > (L + U)/2) 

+ D(yi x < (L + U)/2)Pr(i < (L + U)/2) 

will be used since the formula for y is conditional on x. For nota~ 

tional purposes, let 

w 
/IC ( 1 - S) 

n 

A denote x > (L + U)/2 

B denote x < (L + U)/2. 

Then 

D(yiA) = Pr(,6[(wG- L)/s)] ~ YIA) 

Pr ( w G - L) / s < 6 - 1 ( y) I A) • 

But (x- L)/s is not a noncentral-t since the expression is conditional 

on A (i.e., x). Hence, let 

or 

I 2 2 - -1 2 21 D(y A) = Pr((n- 1)s /cr ~ (n-1)(w(x- L)/6 (y)) /cr A). 

From Meyer (21), it is known that if Y has a chi-square distribution 

with n d. f. th~t 

/2Y ,.!.. N(/2n-1 , 1) 



for lfl,rge n. If /2(n - 1)s2/cr2
1 

is denoted by AN, then 

D(ylA) :;: Pr(AN > /2(n- 1)w<i- L)/!1- 1 (y)/crlA)• 

If H(i) is used to denote /2(n-t)w<i-L)/!1 ... 1 (y)/cr, then 

. . Nc;;w, 

where 

Then 

D(ylA) = Pr(AN ~ H(i:), x > (L + U)/2)/Pr(i > (L + U)/2) • 

Pr(i < (L + U)/2) = Pr(./ri'(x - (L + U)/2)/s ~ o) 

= T (o) 
a 

a = /n(µ - (L + U)/2)/cr. 

D(ylA) = J_a' dN(µ,cr2/n) JQO _ . dN(o,1)/(1 - T (o)) 
x=(L + U)/2 .. y=H(x) -~ a 

= J_= .·. , 1- CN(H{X) - )2n-'·1)dN(µ,cr2/n)/(1-Ta(O)) 
x=(L+ U)/2 . . 

where 

CN(•) is the C.D.F. of a standard normal random variable. 

Thus, 

Im - 2 
D(y,A) = 1- CN(H(x) - /2n-1)dN(µ,cr /n). 
· x;;:(L+U)/2 

In a si~ilar manner, it can be shown that 

J x= ( L + U) /2 - - 2 
D(y,.B) = 1- CN(J(x)-/2n-1)dN(µ,cr /n) 

-= 
where 
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J < x) I 2n - 1 w < u - i) I 6 - t < y) I a. 

Then 

D ( y) D ( y, A) : + D ( y, B). 

Efforts to make the form of D(y) more tractable have been unsuccessful. 

This may be due in part to the approximations used in this development. 

It would appear that the Wald-Wolfowitz approximate tolerance limits are 

not well suited to this type of analysis. Similar problems may arise if 

this type of analysis is tried on other approximate tolerance limits. 



CHAPTER VII 

SIGNIFICANCE TESTING OF QUANTILE VALUES 

In previous chapters, L(S) was de£ined to be a y-probability lower 

OSTL on at least S 0£ the population with density£(•) i£ 

Denoting F- 1 (1 - S) 

y = Pr c r= £(y)dy > S) 
-t(s) 

Pr(1 - F(L(S)) .::::_ S) 

= Pr(F(L(S)) < 1 - S) 

= Pr(L(S) < F-1 (1 - s)). 

by Qs (i.e. , the 1 - S quantile), 

Essentially, Equation (1) states that £or a given y and s, L(S) is a 

(1) 

1ooy% lower con£idence limit on QS. According to Bain (13), the value 

0£ y such that L(S) =.B, a speciiied QL, would be the signi£icance level 

(SL) for testing 

H: 

versus 

A: 

Since 

and 
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F(B) ;: R, the fraction above B, 

the hypothesis H and the alternative A can be restated as 

H: R = ~ 

versus 

A: R < ~c 

Upon reflection, it is apparent that the observed confidence values in 

the previous chapters are the SL values for the significance testing of 

quantile values. 

In the prior chapters, y was basically of the form 

y F(h(S)) (2a) 

or 

Pr(W < h(S)) (2b) 

where F(•) is the distribution function of a random variable W. 

For the normal population with unknown parameters in Chapter III, 

y = To (/i1CX- B)/s) 

= Pr ( t 0 ::: ;n ex - B) Is ) • 

In the context of significance testing, the test statistic is /n(x - B) /s 

with a null distribution of a noncentral-t with parameter o and n-1 d .. f. 

Referring back to Chapter III, if R = ~' then the parameter 8 = o, which 

verifies that /n(x- B)/s has a null distribution with parameter o. With 

reference to (2a), it would appear that h(S) would serve as the test 

statistic with a null distribution function of F(•). 

As further verification that y is actually a SL for quantile test­

ing, consider the form of d(y) when R = ~. Referring again to the nor­

mal case in Chapter III with unknown parameters, 
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d(y) 

If R ~, then 9°:5, as stated before, in which case 

d(y) 1 , o < y < 1. 

The fact that the SL has a uniform distribution on (0,1) under the null 

hypothesis is well known (e.g., see (16)). If one were to examine every 

expression for d(y) in the previous chapters, one would find that 

d(y) = 1 in every case where R = ~$ 

Distributions of Some Common Significance Levels 

It is interesting to note in the Normal case of Chapter III that if 

~ = .5, then Q. 5 = µ. 

lem becomes a test of 

If B = µ , then the above quantile testing prob­
o 

versus 

A: µ < µ 
0 

with a test statistic /n(x - µ )/s and a SL computed by 
Oc 

y T (/n(i - µ )/s) 
0 0 

Pr(t < /n<X- µ )/s). 
0 - 0 

This is ~asily recognizable as the SL for the t-test of the mean of a 

normal distribution. Plots of d(y) for the case ~ .05 are given in 

Figures 17 and 18. The formula for d(y) is of the form 

d(y) 



d('Y) 

3.0 

2.5 

2.0 

1. 5 

1. 0 

0.5 

0.0 
0.0 .1 . 2 • 3 .4 .5 

'Y 

.6 . 7 .. 8 . 9 1.0 

Figure 17. Densities of Y; One-tail t-test; R= .40 
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3.0 

2.5 

2.0 

d('Y) 

1. 5 

1. 0 

0.5 

0.0 

0. 0 .1 .2 .3 .4 .5 . 6 . 7 . 8 . 9 1.0 

)' 

Figure 18. Densities of Y; One-tail t-test; n=10 
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where 

9 = /n IN(R). 

Likewise, in the normal case where CT is known, letting ~ = 0.5 leads to 

the same set of H and A with the SL given by the expression 

The SL has the density 

y = cN <!n<i - µ )/cr) 
0 0 

d(y) 

Pr ( z < In <X - µ ) I cr ) • 
- 0 

f(IN(y) - /fi. IN(R)) 
:f (IN( y)) 

where f(•) is the standard normal density. This can be easily reduced 

to the form 

d(y) exp(/fi. IN(R)IN(y) - n IN(R) 2/2) , 0 < y < 1. 

Plots of d(y) for this case are given in Figures 19 and 20. 

To compare the curves for a known and unknown, composite graphs of 

the d(y) plots were made in Figure 21. Comparison of the curves show 

remarkably little difference on this scale for even n = 10. This would 

suggest that for testing the mean, the Z-test and t-test are about 

equally sensitive, unlike the cases where the desired reliability was 

nearer 1.00, as in Figures 10 and 11~ This is a very surprising result 

and should be more thoroughly pursued. 
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Figure 19· Densities of Y; 01;1-e-tail Z-test; R= .4o 
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Figu1 e 20. Densities of V; One-tail Z-test; n = 10 
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Figure 21. Densities of Y; One-tail t-test and 
Z-test; n = 10 
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CHAPTER v;u I 

EXTENSIONS 

The results of the previous chapters were all dependent on the 

choice of the tolerance limits for each distribution. Certainly other 

tolerance interval formulas should be used in further investigations to 

determine their distributional characteristics and compared to the re­

sults in this dissertation. Tolerance limits based on order statistics 

are contained in Bain and Weeks (13). 

It would also be worthwhile to investigate the behavior of Y when 

the assumed distribution for the population is not the correct one. 

Such errors might be quite common since the normal, gamma, and Weibull 

densities are not dissimilar in appearance. Attempts to investigate 

this problem have been unsuccessful due to difficulties with the dis­

tribution of the test statistic under a different distribution than that 

assumed by the statistic. Monte Carlo techniques may be required to 

investigate this problem. 

This writer has been unable to find work similar to that of Chapter 

VII on the distributional characteristics of the SL. While some work of 

a more general nature has been done (16), specific details for common 

significance tests have not been worked out. In addition to expanding 

th,e work done here on quantile tiesting, investigations should also be 

made into the SL for the chi-square test and F-test for variances. 

7') 
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Throughout this work, the density of Y for continuous parent 

populations has been generally of the form 

d(Y) ,O<Y<1· ( 1) 

It would be interesting to know if this is the general form for the 

density of Y in all significance tests based on continuous distribu-

tions. Furthermore, is d(Y) a monotone function for all Y in all sig-

nificance tests? If it is not, when is it monotone and for what 

philosophical reason? 

The fact that the ratio of two densities in (1) resembles a likeli-

hood ratio suggests an analogous development of significance testing to 

the theory of tests of hypotheses using the likelihood ratio approach. 

While the resemblance may only be illusory, a further development in 

this area might yield more connecting elem~nts between the two theories 

of testing. 



CHAPTER IX 

SUMMARY 

In reliability assessment today, the engineer will often compute 

the confidence Y with which he can say that a product is at least 100So/o 

reliable, using data from a random sample of products. Several common 

errors are commonly made in interpreting this observed confidence. 

First, the engineer often assumes that repeated samples of n products 

will yield the same observed confidence. In addition, he will interpret 

the result by saying he will take a 100(1=Y)o/o risk of being wrong if he 

says that the product is not 100S% reliable (with respect to the preset 

specifications). 

This thesis has shown that Y is actually an observed significance 

level for determining how well the data conform to the notion that the 

product is at least 100So/o reliable, as opposed to being less than 100S% 

reliable. If the observed confidence is near 1.00, he should consider 

this to be strong evidence that the product is at least 1oos% reliable; 

conversely, if the observed confidence is near O.O, he should consider 

this as casting doubt on the product being at least 100S°/o reliable" 

To find the observed confidence Y that a product is at least 100S% 

reliable, tolerance limits are used in conjunction with the specifica­

tion or qualification limit for the product. The observed confidence 

would be the value of Y which would be quired to have the tolerance 

limit equal the qualification limit. Both one-sided and two-sided 

77 



78 

tolerance limits were used to find the observed confidence, with the 

most meaningful results coming from the use of one-sided tolerance 

limits (OSTL 1 s). 

The lower OSTL's investigated were those based on the normal, 

gamma, Weibull, and exponential distributions. Additional work was 

done on lower tolerance limits for binomial and Poisson distributions. 

In all cases, the results showed that if the true reliability (R) ex-

ceeded the desired reliability (S), values of Y near 1.00 were the most • 
likely; conversely, if the true reliability was less than the desired 

reliability, values of Y near 0.00 were the most likely. The skewness 

of the density function of Y increased as the sample size increased 

and/or as the disparity between the true reliability and desired relia-

bility increased. 

The results for the normal with known and unknown variance indi-

cated that a knowledge of the variance led to a more sensitive test 

statistic in y. That is, Y was more likely to be near 1.00 when R > S 
2 2 when cr was known than when cr was unknown. An attempt to appeal to the 

Central Limit Theorem and use the normal tolerance limits on Weibull 

data showed a significant difference in results and possible conclu-

sions. These results suggest that failure to use any available infor-

mation about the population from which the sample was drawn may result 

in a marked difference in findings from the data. 

Investigations were also.made intq the use of Y as an observed sig-

nificance level (SL) for significance testing of quantile values. If 

the desired reliability was set equal to 0.5, the value of Y in the nor-

mal cases became a SL for one~tail tests of the mean. Preliminary 
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results show little difference in the sensitivity of the one-tail t-test 

and Z-test on the normal mean. This is an unexpected result that needs 

further verification before being accepted. 
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APPENDIX 

Given f (x) to be an integrable function of x with f (-=) = Oa 

F-1(y) Let be defined by 

-1(y) 
y = ~ f(x)dx 

-= 
(1) 

for all y between zero and one. 

Differentiating (1) with respect to y, 

or 
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