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CHAPTER I 

THE PROBLEM 

Introduction 

The transient solution for small, laminar disturbances in a fluid-

filled line has been reported many times in the literature, as is shown 

below: 

TABLE I 

LITERATURE SUMMARY 

Tvpe of Transient Disturbance 
Flow Small · Finite .Amplitude 

Laminar Laminar Turbulent 
Disturbances Disturbances Disturbances 

No Through Flow lberall (12) 
Nichols (13) 
Brown (3) 
Goodson( 10) 
Zielke (22) 
Kantola (13) : 

Laminar Orner (17) 
Incompressible 
Through Flow 

'.furbulent Brown, Margolis, Brown, Margolis, 
l'hrough Flow Shah (6) Shah (6) 
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The small laminar disturbance "models" of a fluid transmission line 

which have resulted from the anlyses shown above were sufficient to 

predict transients in instrumentation lines, most hydraulic systems, and 

selected pneumatic systems. In the simulation of hydraulic systems most 

of the transients occurred "slowly." The opening and closing of a 

valve or the movement of a control piston, for example, occurred over a 

relatively long period of time. The inputs to the hydraulic line were 

considered as a series of small disturbances, andthe small disturbance 

line model seemed to be adequate. 

With the advent of fluid logic devices that change output from 

14.7 psia to 18.7 psia in 4 or 5 milliseconds, hydraulic logic devices, 

and fast-response pneumatic control systems, the small disturbance line 

model often is inadequate - inadequate in the sense that the model 

can not predict transients accurately when it is subjected to these types 

of inputs: 

1. inputs with both high frequency content and low frequency 

content; 

2. inputs with or without through flow; and 

3. inputs 9f small and finite amplitude. 

The capability of the existing small disturbance of "acoustic'' 

models for predicting high and low frequency behavior is excellent, 

providing the pressure disturbances are sufficiently small. 

The small disturbance models do not include the effect of through 

flow. This is not due to any inherent deficiency in the small dis

turbance models, but rather to the general belief by engineers that the 

effect of through flow is negligible - that signal transmission in a 

fluid-filled line is not greatly altered by the addition of through flow 
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unless the through flow velocity approaches the acoustic speed of sound 

in the fluid. The acoustic speed of sound in air is on the order of 

1100 ft/sec, and in liquids is as high as 5000 ft/sec. In most practical 

applications through flow velocities are on the order of 100 ft/sec or 

less. Then the effect of through flow on dynamic behavior may be negli-

gible, and the small disturbance model which neglects through flow may 

be completely adeqq9te even when through flow is present. 

The principal shortcoming of the small disturbance line model is 
't 

its inability to meet requirement 3 above, that of predicting the response 

to both small and finite amplitude disturbances. The small disturbance 

ordinary differential equation line models are all linear models. 

Doubling the magnitude of the input doubles the·. magnitude of the output, 

and the output transients have the same percent of overshoot and rise 

time. 

But experiments with pneumatic lines, such as the ones conducted by 

Kantola (13), show that when one increases the magnitude of a step input 

to the line, the output transient overshoot decreases and the rise time 

increases. Part of Kantola 1 s experimental results are shown as Figure 1. 

Note the significant increase in apparent damping for the 1.0 psig step 

over the 0.1 psig step, and the accompanying increase in rise time. 

No linear small disturbance line model will predict Kantola 1 s 

results shown on Figure 1. A reexamination of the describing equations 

for the fluid-filled line is in order. By including the convective 

acceleration terms in the axial momentum and energy equations, it may be 

possible to predict the increase in apparent damping which occurs as 

the disturbance amplitude is increased. At least it may be possible to 

predict the trend in the output transient as disturbance amplitude 



1.2 

1.0 /.'-----·-----..,a-
I
P(o ut)I 
P(in) 

.8 

.6 

... 

.2 

© 

@ 0.1 PSIG 

Ci) 0.5 PSIG (15.2 TO 1.4.7 PSIA) 

C) l.O PSIG (15.7 TO 1.4.7 PSIA) 

, KANTOLA EXPERIMENTAL DATA 

STEP RESPONSES, 50.0 Ft line, 0 .19 inch diameter 

o ........ ---+----1'-----+-----t----+----+---+----+-----
.40 80 120 160 200 

TIME (milliseconds) 

Figure 1. Kantola Experimental Data 

~ 



5! 

increases. 

Previous Investigations 

Zielke(22) and Brown(5) investigated the problem of retaining the 

convective acceleration term v ~vz · h i.l t t' z ~ :i,.n t e ax a momen wn equa ion, 

as shown below. 

(1.1) 

They both concluded that the conve,ctive acceleration term should be 

evaluated as the i;olution progressed, ma~ing it a "weighting function" 

to force the left side of Equation (1.1). Their primary interest was in 

a highly accurate line model, and speed of computation was not essential. 

They solved Equation (1.1) bl- a method of characteristics, i:nodified by 

the weighting function (vz !:z ). The results were compared with data 

measured using small amplitude disturbances. 

If speed of computation is not essential, Equation (1.1) may ~lso 

be solved by finite difference methods. 

When speed of computation is ess~ntial, the methods of character-

istics and finite difference methods lead to accurate results but 

require significant storage and computational time. An ordinary differ-

ential equation model which approximates the true partial differential 

equation is less accurate, but is more compatible with the lumped 

parameter models or the ordinary differential equation models for the 

other components in the system. That is, the intended area of applica-

tion of the ~ine model is in simulation of complex hydraulic and pneu-

matic systems containing a wide variety of components. In a system 

simulation of this type, the high frequency portions of the input are 
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nonnally greatly attenuated by system components other than the line, 

regardless of what type of transmission line model is being used. For 

this reason, most simulation schemes use an ordinary differential 

equation line model which is capable of predicting transients in the low 

to medium frequency range. 

There are various types of ordinary differential equation models 

available, but the most common type used is the distributed parameter 

model. This model comes from a solution of the equations of motion, and 

the energy equation. The distributed parameter model is an infinite 

order ordinary differential equation system, and there is considerable 

literature ( (9), (16)~ and (19), for example) that discusses the best 

ways to truncate the infinite order system to a finite order for effici

ent use in a system simulation. 

Thesis Objective 

The objective of this thesis is to develop a generalized line model 

which is suitable for system simulation, a model which includes the 

effects of finite amplitude disturbances and through flow. The model is 

intended to be used primarily in hydraulic and pneumatic system simula

tions where the high frequency portions of input disturbances are 

attenuated significantly. Therefore, primary consideration will be 

given to the accurate prediction of transients with low to middle-range 

frequency content. 

Criteria for Judging Model Validity 

The criteria used to judge the suitability of the model will be 

the following (listed in order of importance): 
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1. The model should predict an increase in apparent damping as the 

magnitude of the disturbance input:.to ,the line is increased. A real 

transmission line has this behavior, as is shown on Figure 1. 

2. The model should be reducible to finite order by suitable 

approximations such that computational time and difficulty are reduced 

without severely limiting the accuracy of the model. Factors which may 

be considered in the suitability of a particular order model are rise 

time and apparent damping. 

3. The model response should be in reasonable agreement with the 

apparent fundamental mode of corresponding experimental responses. 

(There appears to be no totally definitive way to compare model responses 

and experimental responses.) 

Definition of Terms 

The following terms are used in several places in the thesis: 

1. Average Fluid Properties: The terms ~, \?, ,µ0 , T0 , and p0 

are time-averaged fluid properties about which the instantaneous 

variations e , VJ , ,.,«.. , T, p occur. 

2. Laminar ))isturbance: This is a disturbance in the transmission 

line of such a magnitude that the concentric layers of fluid retain 

their same relative radial position in the line. 

3. Small Amplitude Disturbance: This is a disturbance of small 

enough magnitude that none of the instantaneous fluid properties vary 

from their average fluid properties by more than 10%. 

4. Finite Amplitude Disturbance: This is a disturbance of such a 

magnitude that some of the instantaneo.us fluid properties vary from 
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their time-averaged values by more than 10%, but the disturbance is 

still laminar (see 2 above); 

5. Laminar Through Flaw: This is incompressible Poiseuille flow 

with the characteristic parabolic axial velocity profile. The Reynolds 

number of the through flow based on average axial velocity is less than 

2000 and the centerline Mach number is less than ~bout 0.4. 

Related Literature 

Goodson(10),(11) has published an excellent historical account and 

up-to-date summary of transmission line literature from the year 1808 to 

the present. Only that portion of the total literature which relates 

directly to this thesis is presented here. 

Small Amplitude Disturbance Models 

Iberall(12), 1950, developed the ~olution for vis~-0us attenuation 

in instrument lines, including heat transfer effects. His primary 
I 

objective was ·"to simplify the design of high-quality transmission lines 

for relatively low frequencies." The form of the axial momentum and 

energy equations which he used are shown below~ 

Axial Momentum. 

( 1. 2) 

Energy Equation (and Continuity). 

(1. 3) 
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where v = axial velocity z 

r = tube radius (0 ~ r ~ a) 

a· = tube .inner radius 

p = transient pressure 

T = transient temperature. 

Iberall showed that the viscous attenuation parameter (Pt ) for the line 

is of the form: 

where A= j j wO:ao and 
\90 

1+2. (~-1)J; (A.) 

A J(.(A) 

1 - 2. J", ( If') 
,,, :To ( "') 

'I'= j~ j ~~· 
J 0 and J 1 are Bessel Functions of the first kind, zeroeth and first 

order, respectively. 

The basic restrictions on Iberall's solution are: 

a) laminar axial disturbances, 

b) constant diameter, rigid transmission line, and 

( 1. 4) 

( 1. 5) 

c) mean flow velocity much less than the acoustic velocity in the 

fluid. 

These same restrictions apply to all of the analyses discussed in 

this section. 

Nichols(15), 1962, arrived at the same solution of the set of 

Equations (1.2) and (1.3), using small-signal analysis. He defined such 

terms as "shunt admittance" and "series impedance": 

Shunt admittance per unit length= Y1 ( 1. 6) 

Series impedance per unit length = z1 (1. 7) 
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where q = volume f lowrate 

6 p = pressure drop per unit length. 

Nichols concentrated on producing design curves and approximations for 

frequency response. 

Brown(3), 1962, explored thoroughly the realm. of step and impulse 

responses for the transmission line model which Iberall had solved in 

1950. Iberall and Nichols used Fourier analysis techniques, but Brown 

employed the Laplace transform, and made the first investigations in the 

time domain. The Iberall-Nichols-Brown model, in two-port form, is 

shown below: 

where subscripts "a" and "b" represent the two ends of the transmission 

line, 

r<s) = 

and z (S) - Co 
e -n"a..2. 

SL 
Co 

1+ ?('t-1)Jj(A) 
4 Jo<A\ 

1- 2. J,C'P) 
"' J;.<cr) 

.1 

(1 +2(~-i)Jj(.6))(1-2..T,(;i)) 
A JO (A) If .tC'fl) 

It will be convenient in this thesis to write r(s) and Z (S) as: 
e 

r<s) = s1...,ill9_ 
Co ~Di 

where N = ( 1 +· 2.(lf-1) Jj (A}) 
g A JoCA) 

A = ·~ sa. .. rr;,' 
J "° , and 

and Z (S) = 
e 1/ N8 0,' 

D = ( 1- 2 J';('I')) 
g lf'J°c('f) 

·wa.2 4'=J -

"" 

( 1. 9) 

(1.10) 

(1.11) 

( 1. 12) 

(1.13) 
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Brown(3) considered both gases and liquids in his analysis. For the 

liquid case,¥= 1.0 and Equations (1.11) reduce to a simpler form. 

Approximations for r(s) and Z (S) 
e---

In the frictionless case, r(s) SL =-c 
0 

c 
and Z (S) - ~0~ 

e - TTa2 
When 

friction is included however, r(s) and Z (S) take on the complex forms 
e 

of Equations (1.9) and (1.10). In this case the.Laplace domain model 

(Equation (1.8)) is very difficult to inverse transform. 

Goodson(lO), 1963, considered approximations for r(s) and Z (S) 
e 

for liquids, that is, when N = 1.0: 
g 

r(s) = SL,rr-=' 
liquids Co·~~ 

Z (S) .. =Co ... ~ 
e liquids rra..2 v~ 

where (D ) · = [1- 2Jj('l')l is ~(Cf') 
g exact lt iTo(Cfl)J ~('fl) 

and 

and DN = Damping Number = " 0 

a!-

( 1. 14) 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

th The quantity ~ (0 ,n) is the n zero of J 0 ( lf) and the qua~tity ~ (2 ,n) 

th is the n zero of J 2( Cf'). 

To solve for B1 and B2 in Equation (1.17), Goodson first required 

that the limit of the approximate function equal the limit of the exact 

function as ''S" approached (+) infinity. 
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( 1. 19) 

Then Goodson required that the value of B1 be chosen so that "the mag-

nitude at the value of s 
DN 

where the angle is maximum of the function 

involving B2 coincides with the magnitude of the infinite product at 

the Same Value Of DSN • 11 G d 1 lt B·,. 40 9 d B 56 6 oo son s resu s are 1 = • an 2 = · · 

Then: 

(D ) = __,.;s;...._...:..< ....;;s;;.......;..+_4..;...;0;...;;, • ...;..9....;;D=N;....,,.:,,.) ------.,.-
g approx ( S + 5.78 DN ) ( S + 56.6 DN ) 

(1.20) 

Equation (1.20) is equally valid when approximating r<s) for an 

ideal gas' but the factor 11N II of r<s) is not equal to 1. 0 in this 
g 

case (see Equation (3.4)). Plots of jngl exact and jngl approx are 

shown on Figure 2. The development of a corresponding approximation 

for N is considered in Chapter III. 
g 

Small Amplitude Disturbance Studies 

With Through Flow 

Orner(17), 1969, used the same type of Fourier analysis as Iberall 

and Nichols, but he included the convective acceleration term in the 

axial momentum equation to account for through flow. That is: 

Orner represented the axial velocity (v ) as the sum of two components -
z 

a steady-state incompressible through flow component plus a compressible 

transient flow component: 

v (t,r,z) = v (r) + vt(t,r,z) z c 
(1.22) 
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where v (r) is the parabolic (Poiseuille) flow profile. Then Orner c 

neglected the transient velocity (vt) compared to (vc)' and approximated 

the convective acceleration term as follows: 

v 
c 

( 1. 23) 

Orner 1 s solution is in terms of the confluent hypergeometric series, -,, 

which "have not been tabulated to date" (1969). He performed a pertur-

bation solution on his system of equations, but the solution did not 

compare well with the experimental data collected by his co-worker, 

Cooley(7). That is, Orner 1 s analytical solution did not predict the 

large changes in frequency response with and without through flow which 

Cooley found by experiment. 

Cooley(7), 1969, performed a series of experiments on a 0.125 inch 

diameter rigid line, 6~0 inches ~ong. He measured frequency responses 

with various through flows (up to a Reynolds number of 2200), with a 

constant time-average line pressure of 3.0 psi absolute. Throughout the 

experiments, Cooley kept a constant ratio of transient flow to steady 

flow of 0.1, so the transient flow magnitude was increased as the 

through flow was increased. A portion of his results are shown on 

Figure 16 (Chapter VI). 

Time Domain Studies 

Kantola(13), 1969, measured a series of step responses for pneu-

matic lines of different diameters and lengths. He generated the "step" 

input by placing a metal diaphragm over the open end of the line, 

charging or evacuating the line to some pressure above or below ambient 

pressure, then bursting the diaphragm by mechanical means. Part of 

Kantola's results are shown on Figure 1, in the introduction to this 



thesis. The responses demonstrate the nonlinear characteristics of a 

pneumatic ~ine when subjected to finite amplitude disturbances. 

Organization of the Thesis 

Chapter II 

This chapter discusses the solution of a linearized form of the 

~ vz 
axial momentum and energy equations. The convective terms v ~~ 

z ~z 

15 

and v ..11:_ are retained in these equations. The solution accounts 
z ~ z 

for the effects of through flow and finite amplitude disturbances. 

Chapter III 

The model derived in Chapter II includes terms such as Cosh r(s), 

Sirth r(s), and r(s). To use the model in the time domain for general 

cases, some approximations for these functions must be made. The 

approximations are listed in this chapter. 

Chapter IV 

Experimental procedures used to record small and large amplitude 

step responses for a blocked 60 ft, 0.40 inch diameter line are pre-

sented. The step responses were measured for positive-going and 

negative-going steps of± 0.25, 1, 2, 4, 6, 8, and 10 psig with an 

ambient pressure of 11.2 psia. The experimental work was conducted at 

the u. S. Air Force Academy, Department of Aeronautics. 

Chapter V 

This chapter compares the experimental results of Chapter IV with 



the analytical model from Chapters II and III, in the time domain. 

Computed responses for 0.25 and 4.0 psig steps are shown and compared 

with experimental results. The experimental results show considerable 

high frequency content but the computed responses display only low 

frequency content, as would be expected (since the approximations used 

in the Laplace domain model are low frequency approximations.) 
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To compare the effect of finite amplitude disturbances in the model 

and in the experiment, the model damping was adjusted so that the 

computed response to a 0.25 psig step approximated the apparent funda

mental mode (the low frequency mode) of the: corre,spondin.g experimental 

response. Then it was possible to compare the effect of finite ampli

tude disturbances in the model and in the experiment. 

Chapter VI 

Available test data for the frequency response of a small pneumatic 

line with through flow is examined briefly. It is concluded that the 

solution offered in this thesis cannot predict the large changes 

reported by Cooley(7). A similar conclusion is reached about the 

Orner(17) solution. 

Chapter VII 

The basic model derivation in Chapter II assumed an ideal gas. 

This chapter simplifies the model for use with liquids. Computed step 

responses using the hydraulic (liquid) equations with both small and 

finite amplitude steps are shown. 
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Chapter VIII 

This chapter includes a short surmnary, conclusions, and recommenda

tions for further work. 



. CHAPTER II 

ANALYTICAL MODEL 

This chapter presents a solution to a nonlinear form of the axial 

momentum and energy equations for flow of a compressible fluid in a 

rigid, circular transmission line. The solution considers finite 

amplitude disturbances, with and without through flow inthe line. 

The coordinate system for the .line is illustrated in Figure 3 

below. 

LINE 

Figure 3. Coordinate System 
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Basic Assumptions 

1. The line is rigid; circular in cross section, and has constant 

cross-sectional area. 

2. The fluid is Newtonian, either an ideal gas or a liquid. The 

analysis in this chapter is valid for ideal gases; Chapter VII will 

consider the simpler case of a liquid. 

3. The transient is "laminar" in nature (see t•Definition of 

Terms," in Chapter I). 

4. All fluid properties may be considered constant. These 

properties may be calculated at the average conditions in the line • .. 
5. The through flow is laminar, incompressible Poiseuille flow 

(see ''Definition of Terms", in Chapter I). 

6. The time-varying pressure is uniform across any given cross 

section of the transmission line; i.e., pressure is not a function of 

the radial coordinate, (r). 

7. ~21/i << 
~ zl-

and ~ 2 T ~ 2 T (D •Souza (8) ) • 
~z2 << ~r2 

8. The axial velocity, temperature, and pressure at any point 

.within- the line each may be represented as the sum of two components -

an incompressible steady-state component (subscripted with a "c~'), 
; 

and a compressible, time-varying component (subscripted with a 11 t 11 ) 

which is superimposed onto the steady-state part. Thus: 

'f'z ( t, z) = --f>c(Z) +-f>t- ( t, z) (2.1) 
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10. All partial derivatives with respect to e are O. 

11. Isothermal walls 

12. The line is long enough that radial end effects are negligible. 

Derivation 

The steps used in the derivation of the an,alytical model are 
' 

summarized below: 

1. Write the nonlinear Axial Momentum (AM) and Energy (EE) 

equations. 

2. Solve the linear small-disturbance (AM) and (EE) equations 

for steady-state operation, and substitute the results into the non-

linear (AM) and (EE) equations. The resulting (AM) and (EE) equations 

are "perturbations" about the steady-state. 

3. Nondimensionalize (AM) and (EE). 

,4. Linearize the resulting dimensionless (AM) and (EE) equations. 

5. Transform the linearized (AM) and (EE) equations, transient 

mass flowrate equation (TM), and integrated continuity equation (IC) to· 

the Laplace Domain to eliminate the independent variable, 11 time. 11 

6. Solve (AM) for the axial velocity profile V(S,R,Z), and 

substitute the solution into (TM). Solve (EE) for the axial temperature 

profile T(S,R,Z), and substitute the solution into (IC). 

7.' I~tegrate the (TM) and (IC) equations with respect to (R), 

and eliminate· the independent variable (R). 

8. Differentiate (TM) with respect to (Z), equate the result to 

(IC), and obtain a second order ordinary differential equation (SE) in 

P(S,Z). 
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9. Assume a solution for (SE) of the form: 

l'"'(S)Z -r<s)Z 
P < s, z) = C1 e + C2 e (2.3) 

Solve (SE) for P(S,Z); obtain the solution (SN). 

10. Apply boundary conditions at Z = 0 and Z = 1 to the system of 

equations composed of (SN) and (TM). Solve for arbitrary constants 

11. Write the final solution (the trnasmission line model) in 

standard matrix form. 

Basic Equations 

With fhe assumptions listed at the beginning of this chapter, the 

describing equations may be written as shown below. 

Axial Momentum 

Energy Eguation 

Equation of State (Ideal Gases) 

!:!.£=de+ dT 
..po {?o To 

(2.6) 



Continuity Equation (Transient Flow) 

l.e + ~ ( e24:) = o 
~t ~ z 

Equations (2.6) and (2.7) combine to yield: 

Integrated Continuity Equation (Transient Flow) 

r-=a. 

2.rr f~( e~) rdr
~ z 

t'=O 

t-=GL 

=- _2rrf ~e rdr
~t 

r=O 
r:GL 

:) ~ W(tl z) 
~ _ 277 f e. (.!. ~ _ J. ~T )rclr 

~z f>o ~t .To ~t 
r•O 

where w(t,z) is the time-varying mass flowrate superimposed 

through flow in the transmission line. That is: 

.1 

r=o.. 

w ( t, z) = 2. TT f ( p ?!;;) r cir 

t':O 

Steady-State Solutions 
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(2.7) 

(2.8) 

(2.9) 

(2.10) 

on the 

(2. 11) 

Equations (2.4) and (2.5) reduce to the linear (small amplitude) 

case when the convective terms are neglected. In the steady-state 

these equations become those listed below. 

Steady-State Axial Momentum 

(2.12) 



Steady-State Energy Equation 

The solution to Equation (2.12) is: 

where (v ) is the ce~terline velocity (r = 0), and max 

The solution to Equation (2.11) is 
- 1'' 

'. ·. 

T = constant 
c 
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(2. 13) 

(2.14) 

(2.15) 

(2.16) 

Substitution of Equations (2.12) and (2.13) into Equations (2.4) 

and (2.5) yields. the equations listed below. 

Axial Momentum 

(2.17) 

Energy Equation 

(2.18) 

Nondimensional Equations 

Equations (2.17), (2.18), (2.10), and (2.11) may be nondimension-

alized with the following substitutions: 



. 
) 

z z =r ) 

T= Ti: • 
To ' 

• 
) 

• 
) 

V= ~ 
Co 

• 
J 

where (C0 ) is the isentropic speed of sound in the fluid~ l<"fo 1 
• 

eo 
Axial Momentum 

Energy Equation (With Equation (2.8) ) 
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(2.19) 

(2.20). 

~T \to ~ fR ~T) - ()!-i)[~p +Qg(V(lP_ ~ ~T)-~~rll <2.21) °'it - G;.q2 R ~R~· lR - ~ ~t L ~z (t-1)~Z (1'-i))Z~ 

Integrated Continuity Equation 

1 

~Q(t,Z) = -2L ~(~P-~T)RdR 
~z caJ'~t ~t 

(2.22) 

0 
Transient Mass Flowrate 

1 

Q ( t. Z) = 2 f v ( t. RI Z) R cl R 
•,~ 0 

(2. 23) 

Approximations and Linearization 

An earlier investigation by Orner (17) neglected all the nonlinear 

tenns on the right side of Equation (2.21). The order of magnitude of 

these tenns may be examined by substituting the expressions for \f> 
~z 

and ~T which result from the small disturbance solution, Appendix A, 
~z. 
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into Equation (2.21) .• From Equations (A.51) and (A.52): 

~p _...L_ ~T ~ o 
~z cr-1) ~z 

(2.24) 

The remaining term vf lT 
ls" c)Z 

was also neglected by Orner (17) 

since fvfl ( 0.2 andl~il<<l~~I (D'Souza (8) ). With the above 

two approximations, Equation (2.21) reduces to the linear form: 

(2. 25) 

The order of magnitude of the right side of Equation '(2. 20) may 

also be examined by substituting in the known 

and ~v 
c\Z. 

from Appendix A. Using Equations 

expressions for ~~ 
(A.49) and (A.52), the 

right hand side of Equation(2.20) becomes: 

[.!. ~p .,_(\4+V).Ml] ~ -.b[~Q(t,o) + (V-F+V)~P(t,o)J 
r ~z c\Z Co ~t ~t 

(2.26) 

where Q(t,O) and P(t,O) are nondimensional boundary conditions at Z = O. 

For fast transients it appears that the value of the term (V_, +V)~PCt!o) 
~t 

may be of the same order or larger than the term lQ(t10) 

though (Vf +V) 
~t 

even may be small. 

There are three independent variables, ( t ,R, z), in the system of 

Equations (2.20), (2.25), (2.22), and (2.23). One way to eliminate the 

variable "time" is to apply the Laplace Transform to the system of 

equations. But Equation (2.20) must first be linearized. 

The method of linearization used by Zielke (22) and Brown (5) 

when they solved Equation (2.20) by a modified method of character-

istics was to make the term V ~V 
~z. 

a "weighting function" which 
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"forceq'' the hotrlqgg_u,e_g_l1S linear equation shown in Equation (2. 27) 

below. 

Axial Momentum 

(2.27) 

The term (Vf) is missing on the right side of Equation (2.27) 

since Zielke and Brown did not consider through flow in their analyses. 

In effect, the term Vt~ was assigned a constant value at sotrle 

spatial coordinate (R,Z) at a particular time (t). This method of 

linearization, with some modification, will be used in this thesis. 

The term V4'V in Equation (2.20) may be linearized by fixing 
AZ 

either (V) or(~~) at some particular time (t), but not both in the same 

term. That is, either (V) cl'r(!~) may be designated as a time-varying 

coefficient which must be recalculated and updated at intervals in the 

time domain solution. The time-varying coefficient will be designated 

in this thesis with a subscript (*). 

This type of linearization is valid only for sotrle small period of 

time (At), where (At) is much less than the reciprocal of the highest 

frequency of interest in the response of the line 

1 
(.At)<<~ 

""-'trw.~ 

where ~ is in radians per unit time. max 

('4) ). 
max. 

That is, 

(2.28) 

The term Vf o)V 
~:z 

in Equation (2. 20) is already linear since V.; 

is not a function of time. To calculate the time-varying coefficients, 

the form of their solutions frotrl the acoustic model (Appendix A) will 



be used. These fonns are given as Equations (A.48) and (A.49). 

By using Equations (A.48) and (A.49) the tenn VAV 
~z 

represented in the linear fonns shown below. 

Method 1. Fix V for a given time increment. 

VE ~ V" K 
~z ,...;. ~2 

where v* = [ - LZ ~P<t.o) + Q (t,o)] 
Co ~t * 

may be 

When this method of linearization is used, both (V) and (-t¥:} 
must be averaged over (R). (V) is represented by a unifonn axial 

velocity profile, and ~V 
~z 

must be averaged over (R) to make 

Equation (2.20) separable. 

where 

Method 2. Fix ~V 
AZ. 

for a given time increment. 

VK 
~z 
~ V (ti R, z.) (JV) 

~z }I: 

( ~V) = [-..!::.. ~PCt,o)] 
~:Z * Co At * 
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(2.29) 

(2.30) 

When this method of linearization is used, only ~V 
az. 

is aver-

aged over (R). Thus, method 2 should be a more accurate method of 

linearization, and is the only method pursued in the body of this 

thesis. Appendix C shows the result obtained by combining both Method 

1 and Method 2. This combination produced a model which was more 

stable numerically than the model which used the Method 2 linearization 

only, and may be useful under some circlllilstances as discussed in 

Chapter VIII (Summary and Conclusions). 

One of the criteria for the transmission line model (as stated in 

Chapter I) is that the model should exhibit greater apparent damping 
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as distu~bance amplitude increased. This criterion is based on obser

vation of actual experiments on pneumatic lines. The form for {!~)* 
shown as Equation (2.30) produced greater apparent damping as dis-

turbance amplitude increased for negative-going step inputs, but pro-

duced less apparent damping for large disturbance amplitudes on 

positive-going step inputs. To correct this discrepancy the following 

form was used for (..rL) 
J 'Z. "* 

This form for (~V) produced a line model which exhibited 
~z ·lf 

greater apparent damping for larger disturbances regardless of the 

sign of the disturbance. 

Rewriting the Axial Momentum Equation (2.20) using the second 

method of linearization yields: 

(2.31) 

(2.32) 

where (~V) is given as Equation (2.31), and Mb= (Vf) averaged over (R), 

where 

~z ·If- 1 

Mb ;; 2 f Vf Rd R = M cws = M ~.11 = 
0 

Mel = Mach number of the through flow based on centerline 

velocity, 

M = Mach nu.mber of the through flow based on average 
avg 

velocity, 

Re = Reynolds number based on average through flow velocity. 

(2.33) 
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Transfonnation Into the Laplace Domain 

For the skall increment of time (At) as defined in Equation (2.28), 

Equations (2.32), (2.25), (2.22), and (2.23) may be transfonned into. 

the Laplace domain. The results are shown below. 

Axial Momentum 

V(s, R,z)(1 + ~ (~). \ -~ ~ (R ~V<s.R.z)\ -
6L ~z. '*} s~R c)R ~R 7 

-~(.!. ~Pcs,z_)+ Mb ~V<siz.\\ 
SL 'ls' ~Z. ~z. J 

Energy Equation 

Integrated Continuity 

~Q(S,z) 

~z 

i 

- -2SLf( P(s,z)-T(SJR,=)) R dR 
Co 

0 

Transient Mass Flowrate 
, 1. 

Q(i;,z) = 2. f V(s,R,z) R dR 

0 

Solution of the Axial Momentum and Energy 
( 

Eguations 
! 

Equations (2.34) and (2.35) are made separable by assuming a 

product fonn of solution: 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 
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The term ~V(S,Z) on the right-hand side of Equation (2.34) may 
~z 

be approximated by its small disturbance solution, Equation (A.42). 

Rewriting Equations (2.34) and (2.35) with the substitution of Equa-

tions (2.38)and (A.42) yields the equations given below. 

Axial Momentum 

(2. 3 9) 

h Da - (1- 2 J, ('fl) ) from Equations (A.40) were ;i- lfJoCo/) 

and F'1* = Co ( ~V) = ( sgn P( t,o))( ~Pl t, o)) 
L ~"Z. ·If ~t * 

(2.40) 

Energy Equation 

G3 - Y'"o ~ ( R ~G3) - (1(-1.) p (2.41) -s <Jo a..-z.I<. ~R ~R G-+ ~ 

Choose Gz. - -il (~P - Co Os Mb f'P) (2.42) 
~SL .\Z. SL JZ2 

and G4 = (~-~) p (2. 43) 
"({" 

Let Cl( : j-J sa.2.(1 +~)' and A.= j ..J So...za;' (2.44) 
\S'o ~ 

Substitution of Equations (2.42), (2.43), and (2.44) into Equations 

(2.39) and (~.41) yields: 

and 

A homogeneous solution to Equation 

G-1.:. Ci. .To («R) + 
Jo(o<.) 

(2.45) is: 

Ca Yalo<.R) 
Yo<IO(> 

(2.45) 

(2.46) 

(2.47) 
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where J and Y are Bessel functions of the first and second kind, . 
0 0 

zeroeth order. A particular solution to Equation (2.45) is: 

G-1: 1 (2.48) 

Thenthe total solution to Equation (2.45) is: 

From the no-slip boundary condition c1JR=l = O, 

Ci.+Cz.=-1 

From the boundary condition ~G~I = o 
~ 

R=O 

Then c1 = -1 and: 

G-1... = -( J;. (o( R) - J"o(o<,)_\ 

'1'c. coe> I 

Cz =O 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

Application of the boundary conditions cJ = 0 and ~G~ = 0 3 R=1 --
~R R=O 

(2.41): yields the following solution for Equation 

(2. 53) 

where (~) is defined in Equation (2.44). 

The solution for the axial velocity profile becomes: 

( l;.(o<R)- JO(«)\~ (le - Co Os Mb j 2 p) 
V( ) = ;;:ro(~) 1 ~SL ~z SL . ~z20 SIR,z. 

(1~1¥) 
(2.54) 

The axial temperature profile becomes: 

(2.55) 
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Solutions of the Transient Mass Flowrate and 

Integrated Continuity Eguations 

By substituting Equation (2.54) into Equation (2.37) and inte-

grating with respect to (R), Equation (2.37) takes the form shown below. 

Transient Mass Flowrate 

(2.56) 

where D -= (1- 2. Ji («l ) a.. o<. J"oCo<) 
(2.57) 

(Dg) is given in Equations (A.40), (Mb) is Equation (2.33), and (F 1*) 

is Equation (2.40). 

Substitution of Equation (2.55) into (2.36) and integrating with 

respect to (R) yields the equation given below. 

Integrated Continuity 

~ Q (s, z) =- - SL Ng PCs,z.) 
~z. Cc 

where N9 = (1 +· a(V-1)JjC.A)) 
A J'0 (A) 

Differentiation of Equation (2.56) with respect to (Z) yields: 

(1+~) 
The purpose of this thesis is to derive a systems model for a 

transmission line which predicts transients accurately at low and 

medium frequencies, in the range 0 ( l~';I< 21T. The term 

(2.58) 

(2.59) 

(2.60) 
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involving ~ 3PCS z) in Equation (2. 60) is likely significant only at 
~z3 

high frequencies, and will be neglected in the analysis which follows. 

Ordinary Differential Equations 

Neglecting the tenn ~ 3 p,.s,·z.) 
AZ3 

in Equation (2.60), and 

equating Equation (2.60) with Equation (2.58) yields: 

where 

The solution to Equation (2.61) is of the fonn: 

fb(.S)Z. 
p(.s, z.) ==- Ci. e. 

-lb<s)Z. 
·r Ca e.. 

r,, (5) = 2,_{!:f.rt (1. + fu) I 
Co Da.. s 

(D ) is given as Equation (2.57) and (N ) is Equation (2.59). The 
a g 

accompanying equation which describes flow Q(S,Z) as a function of 

(2. 61) 

(2.62) 

(2. 63) 

pressure P(S,Z) is Equation (2.56). By substituting Equation (2.62) 

into Equations (2.61) and (2.56), this system of equations results: 

where 

and 

C r;;c.s)z 
p ( s I Z) = i. e. C -~(S)Z. 

·t- a e 
fb(.S) Z -/1,(S)Z. 

Q cs, z) = Ci.(if£(:i}) e.. - C2 (1-£<.s)) e 
A(S) 

Ac~) = - Co DQ.. Jb(.s) 
}{SL (1 + l=g·!f) 

E (S) - - Co Ds Mb ri,c.s) 
SL 

(2.64) 

(2.65) 

(2.66) 

(2.67) 
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Solutfon Completion 

To complete the solution of the system of Equations (2.64) and 

(2.65), the boundary conditions at Z=O and Z=1 must be applied. That 

is: 

~ ( PC-t:, o)) = P( s, o) 

(2.68) 

Applying these boundary conditions to Equations (2.64) and (2.65) 

yields: 

C1. = 1. (P(S>o)(1-E<s>) + O<s.o)) 
2 A<:s) 

C2 = ..!.(PlS,ol(i·f-E(s)) - Q(s,o)) 
2 Ac~ 

(2.69) 

A combination of Equations (2.64), (2.65), and (2.69) yields the 

final solution for the system of equations which are shown below. 

where 

fi,C~) = ~~ ~!/!. (1TF~) 1 (2.71) 

Yb (S) = Co D9 /bCs) = o,.J&. (1 + E,a\ I 

SL v Do.. s I 
(2. 72) 

(1 fg) (1+ ~) zb cs) = ~ sL + -i- = ¥ .;::, _ 
C.o Da.. rb CS) f.19 Do.. (2.73) 



N = (1 + z.('11'-~ Jj (A)) 
9 A ti;),A) 

• 
) 

D = (1- z ;r, < "'> ) 
3 "' \JO(lp) 

Da.. = ( 1 - z.. .:r, 'o() ) 
0( ~£0() 

A=:-R "V-oN 
DN = \9-o 

a!-
, 

• 
J 

lf = J~S I 
DN 

• 
J 

Mb = Average through flow mach number. 
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(2.74) 

(2.75) 

(2. 77) 

Equations (2.70) represent the solution of the linearized axial 

momentum equatiQn which includes the convective acceleration tenn 

Yi ~1./i ~(Equation (2.4) ) , and the linear energy equation. This 
~z 

system of equations will be transfonned to the time domain by using 

appropriate approximations for r(s), Cosh r(s), Sinh r(s), etc. 

The approximations are shown in Chapter III; transf onnation to the time 

domain is shown in Ch~pter V. 

Comparison to Existing Models 

Equations (2.70) reduce to the small disturbance solution of 

Apfendix A when through flow and finite amplitude disturbance effects 

are.deleted. That is: 

P(S,1) 

QCSi) 
' 

-S ihh r(s) 
Zc(.5) 

where r(s)~ SL i&' 
C.o ~ 

Cash res) (2.78) 

and (2. 79) 
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By deleting the effects o.f finite amplitt,1de disturbances, but 

• retaining through flow, the result is: 

P(S,1) 

Q(S 1) 

Cosh r(s) <:Ye(S) Mb S1nhr<s) -2.::(Sl ~inh res) . . rr<_s;o) 
-s In h r(.s) Co~h r(s)'-Yc<S) MbSinh i'(S) ~sio) ~ 

~ 

Z<:. (S) · 
{Z.80) 

where 

(2.81) 

Orner (17) derived Equation (2.80) by using the Poincare Pertur-

bation technique on the linearized axial momentum Equation (2.32), 

with Fi.w. = O. This is a valid representation when the disturbance 

amplitude is small and through flow is large. 

Orner's expression for Y (s) is: 
e 

(2.82) 

where (A) is given in Equations (2.75). Forf~:l>rr, Equations (2.81) 

and (2. 82) yield the same result; that is, IY~(S) I ~ f. .0 . But 

as frequency approaches zero, Equation (2.82) approachesoo, and 

Equation (2.81) approaches zero (since D -.o as S-+0). Orner's result 
g 

for Y (s) and this thesis result differ because Orner represented the 
e 

convective acceleration term as Mb ~ V(t, R, Z) while this thesis 
rz. 

used That is, this thesis used an average value of 

~V over the line cross section while Orner used an exact value of 
c\Z 
~V at each point (t, R, Z). 
~z. 

For this reason, Orner's result should be more accurate. The 



matter seems rather inconsequential, however, since the entire term 

(YeMb sinh r(s) ) in Equation (2.80) approaches zero so S~O, regard

less of which form of (Y ) is used. 
e 
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CHAPTER III 

APPROXIMATIONS FOR r(s), 

COSH r ( s) ' s INH r ( s) 

To transform Equations (2.70) to the time domain, it is necessary 

to choose approximations for the functions which appear in these 

equations. These approximations are listed below. 

Approximations for D , D , and N 
g a g 

The functions (D ), (D ), and (N ) are monotonically increasing or 
g a g 

decreasing functions as s~ao, so they may be approximated by rela~ 

tively simple expressions. Goodson (10) suggested this approximation 

for (D ), (see Figure 2): 
g 

S ( S + 40. q Dt-J) 
(6+5 .. 78 DN)(S+Sro., DN) 

where 

The basis for this approximation is given in Chapter I, "Related 

Literature." The Goodson approximation also applies to (D ) , by 
a 

a 

(3. 1) 

(3. 2) 

replacing (S) with (S + F1*), where (Fl*) is defined as Equation (2.76). 

Do.. ~ ( 5+ FA-·x-) (S+-40.'1 DN+F4-K-) 
(5+5 .. 76DN·f- F~*) (S +S6.G DN+ F~·lf) 

There are no published approximations for (N ), so this form 
g 

was used (Prandtl number= 0.70): 

38 

(3. 3) 
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N9 ~ (S+iO DN) 
(5+7.14DN) 

(3. 4) 

This approximation meets the requirements that I Ng' at S = 0 is 1.4, 

INgJ at S =OO is 1.0, and the differences between the approximate and 

exact magnitudes squared over the region 1 ~ I gN I ~ 1000 is a minimum. 

The exact and approximate magnitudes of (N ) are shown on Figure 4. 
g 

The exact expression for (N ) is shown below: . g 

Na = (1 + 2,(.-t)Jj (A')) 
J A J°o(A) 

and (A) is given in Equations (2.75). 

Approximations for Sinh r(s) and Coshr(s) 

The periodic functions Sinh r(s) and Cash r(s) each may be 

represented by a power series expansion. For example, Cash r(s) is 

given as Equation (3.6): 
a 

c osh rls) ~ 1 + r~~) 
• 

(3. 5) 

(3. 6) 

However, for such an expansion to be accurate when r(s) is large, 

an excessive number of terms must be retained. Also, improper 

truncation of such an expansion can lead to a numerical instability. 

Oldenburger (16) has shown that the product-term expansions shown 

below produce greater accuracy with fewer terms than the conventional 

power series expansions (like Equation (3.6) ), and the resulting 

series is not as likely to lead to numerical instabilities. 

Product-Term Expansions 

(3. 7) 



1.4 .... 

1.3 

INgl 
1.2 

1.1 

1.0 

1. 

......... ... 
.......... 

' ' ' ' ' ' ' ' \ 
\ 

' ' ' · APPROXIMATION 

(Equation 3.4) 
'\ 

' ', 

(Equation 3.5) 

', ', ......... 
........... 

........ ....__. ....... _____ --

10. 

lo~I 
100. 

Figure 4. Approximation of 11N 11 
g 

1000. 

~ 
0 

--



41 

e3. 8) 

For the step responses in Chapter V of this thesis, Cosh res) was 

approximated by both Equations e3.6) and e3.8). However, Equation 

e3.6) was numerically unstable for all but the smallest disturbance 

amplitudes, so it was discarded in favor of Equation e3.8). Figure 5 

illustrates the relative accuracies of one, two, and four product 

term approximations for Cosh res). For simplicity in plotting, res) 

was approximated (for this plot only) by the simple lossless form: 

re~) =- sL 
Co 

The exact form of Cosh res) is: 

( res) -r<sl ) 
Cosh r(.s) = ..!.. e. + e 

'2, 

e3. 9) 

e3. 10) 

The one, two, and four product-term expansions for Cosh res) based 

on the lossy form of res) are shown below: 

Let r 2 <s) =(.b.)2 M§l 
C.o 6(S) 

e3. 11) 

. A{S) = S 2 N9 
13(.S) Ds 

where 

Aes) and Bes) are polynomials in "S" which are introduced to simplify 

the algebra. 

One Product Term 

Cosh res) - 8(5) +."fOS.3(~)2°Acs) 
8(S) 

e3. 12) 
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Two Product Terms 

2. fl-)2 /I...\,,,. 2. Co sh r(s) = 8(S) +.4503\co AlS)8(S) + .01825lc;JA(s) (3.13) 

BGS)z... 

Four Product Terms 

Cosh rls) = 8(S)4+~~A(S)8(5)3+~z.A(St8(.Sir.+k3A(S)3B'5)+1<'..,.M6)4 (3.14) 
Bls)+ 

where "1. = ,4748(~0)'2 j k'Z. = .oz.cr4(;~o) + j k"l = .so,7xio3 (1Co)6 j ' 

-S/t.)8 
ct "'ot k~ = • 2 44 .i I( i.0 l c;; • 

Approximation 'for rb(s) 

z. 
The exact expression for rb(s), from Equation (2.71), is: 

11,2 Cs) =(~';, )2 ~ (1 + ~'") (3.15) 

where (Ng)' (Da)' and (F 1*) are given as Equations (2.74) and (2.76). 

The approximation for Equation (3.15), using Equations (3.3) and 

(3.4) is: 

Plots of the magnitude of ( ~) based on Equations (3.15) and 

(3.16) are shown on Figure 6 for the special case Fl*= O. In this 

case D = D • 
a g 

Equation (3.16) combined with Equations (3.12), (3.13) and (3.14) 

form the approximation "set" which will be used in Chapter V for numer-

ical integration of step responses. 
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CHAPTER IV 

EXPERIMENTAL PROCEDURES 

The line model derived in Chapter II includes the effects of 

finite amplitude disturbances and through flow. Kantola 1 s (13) 

experiments, as shown on Figure 1, were recorded for up to± 1.0 psig 

steps, but for no larger disturbances. Cooley (7) reported frequency 

response experiments with through flow and small transient disturbances. 

To validate the model from Chapter II for ~redicting finite amplitude 

disturbance effects, it was necessary to perform experiments at much 

higher disturbance levels than that reported by Kantola (13). It was 

necessary to examine only finite amplitude effects since the addition 

of through flow into the experiment makes it difficult to separate 

through flow effects from finite disturbance effects. 

For these reasons an experiment was set up to record pressure 

step responses of a pneumatic line blocked at one end. The experi

mental line was 60 ft long, 0.40 inch diameter, thick-walled copper 

tubing. The tubing remained in a roll about 20 inches in diameter. 

The experiment was designed to record the pressure at the blocked 

end of the line while subjecting the open end to positive-going and 

negative-going pressure steps of magnitude 0.25, 1, :2, 4, 6, 8, and 

10 psig. The 0~25 psig step was the smallest size step which produced 

consistent step responses. Since the atmospheric pressure .at the Air 

Force Academy is approximately 11.2 psia, a positive-going step of 

45 
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10 psig began with the line evacuated to 1.2 psia, and ended with th,e 

line pressure at 11.2 psia. A negative-going step of 10 psig began at 

22.2 psia and ended at 11.2 psia. 

The experiment was set up as shown in Figure 7. Two sets of two 

each pressure transducers were used, one set for the 0.25, 1, 2, and· 

4 psig steps, and the second set for the 4, 6, 8 and 10 psig steps. 

The pressure transducers were low output impedance, variable reluc-

tance type, Pace Series CP51 and Validyne Series P40, ± 5 and± 25 psi 

differential transducers. 

VALll>YNE 
PRESSURE 
TRANSDUCER 

0 

TJUGGER r----
ME"CMANISM -...! 

L---.a 

FILLER. Ll~f 
FOil PR.ESSUR.I 

OA. VACUUM 

MANOMETER ( Hg , O - 2'4 lhch) 

Figure 7. Experimental Apparatus 
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The pressure-time signals measured at the two ends of the line were 

recorded on polaroid film with a dual-beam Tektronix 555 oscilloscope. 

Two types of mechanical trigger mechanisms were used. The first 

mechanism was a fast opening manually operated ball valve. It took 

six to ten milliseconds to open fully. The valve added some volume to 

the line in the closed position and, particularly at low magnitude 

pressure steps (± 1/4 psig), it altered the wave front at the blocked 

end of the line/ This is shown on Figure 8 as input-output set #1. 

The second trigger mechanism added no volume to the line and 

opened fully in two to four milliseconds. It was a rubber stopper with 

a fishing line. attached through the center. Even when the line was 

charged to +10 psig the stopper remained in the opening until a signi-

ficant "jerk" was applied to the line. A typical result is shown on 

Figure 8 as input-output set #2. 

The line was 60 ft. long, so the pressure signal took approxi-

mately 53 milliseconds to travel the length of the line. The results 

shown on Figure 8 are for a step input of± 0.25 psig. All the experi-

mental results shown in this thesis were initiated by trigger mecha-

nism #2, the rubber stopper. 

The Pace and Validyne pressure transducers have a flat frequency 

response from 0 to 1000 hertz. It is possible that some of the very 

high frequency content was lost, but the loss is not significant. At 

the first resonant frequency of the line U>T = TT/2 (where 
e 

T = L/C = 53 milliseconds),(.\)*30 radians/sec, or 4.7 hertz. The 
e o 

second resonance occurred at 14.1 hertz, etc. 
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: 

Figure 9 includes thr total experimen~al results. These results 

will be shown again in Chapter V in conjunction with the computer 

integrated step responses. 
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CHAPTER V 

TIME DOMAIN EVALUATION 

The experimental results shown in Chapter IV include responses 

caused by both small and finite amplitude disturbances with µo through 

flow. This chapter compares computed step responses based on the 

analytical results of Chapters II and III with the measured step 

responses presented in Chapter IV. 

Preparation for N~erical Integration 

With no through flow (Mb= 0.), Equations (2.70) may be written as: 

[P(S, 1)] [ Cosh rb(S) 
Q(S,1) -Sinh rb(S) 

Zb(S) 

[

p (S ,O)] 
Q(S,O) 

(5.1) 

where rb(S) = SL Ng (1 + F~) 
Co Do. s 

(5.2) 

Zb(S) = ~ (1 f ~") 
N9 Do. 

(5.3) 

and (N ) , (D ) , and (F 1*) are given as Equations (2. 74) and (2. 76). g a , 

The Chapter IV experiments were conducted by blocking both ends of:_ 

a pneumatic line, charging or evacuating the line to a designated gage 

pressure, then opening one end of the line quickly to the atmosphe~e. 

The pressure transient at the end of the line which remained blocked 
I 
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was recorded as a function of time (see Figure 9). 

In the computed model, the end of the line where Z = 0 is 

permanently blocked and the end of the line where Z = 1 will be opened 

suddenly to atmospheric pressure. Since Q(S,O) = O;, Equation (5.1) may 

be rewritten as: 

_ P (S, 1) 
P(S,O) - Cosh rb(S) (5.4) 

where P(S,1) is the pressure input to the system and P(S,O) is the 

output. 

A fourth-order Runge-Kutta integrator was selected for the nu~eri-

cal investigation. This example will show the preparation for integra-

tion when the one product term expansion for Cosh rb(S) was used. By 

substituting Equation (3.12) into Equation (5.4), the result is: 

P (S, 1) P (S ,O) = ___ _...._...__. ___ a ___ \ 
( 1 +. +os3 (~J fj,2 (s)1 

(5.5) 

From Equation (3.16): 

( 
2 N (+2.. . r 2 (S) = SL) __g_ = L) A(S) 

b C D C B(S) 
o a o 

(5.6) 

where A(S) = S (S + 10DN) (S + 5.78DN +Fl*) (S + 56.6DN +Fl*) (5.7) 

and B(S) = (S + 7.14DN) (S + 40.9DN +Fl*) (5.8) 

Equation (5.5) may be written in the alternate form: 

p ( S , O) = ___ P_.(S_, 1 .... )_B .... (S_.).__ _ _,,,.... 
{ a<s) +. 4-cs3 (Z,)' A cs)) 

(5.9) 

or 
= P(S,1) [ G(l) + G(2) S + G(3) s2 J 

[ G(4) + G(5) S + G(6) s2 + G(7) s3 + G(8) s4J 
P(S,O) 

(5.10) 
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where G(l) through G(8) are functions of (DN), (L/C0 ), and (F 1*). The 

damping number (DN) and the isentropic delay time (L/C ) do not change 
0 

during the nUIIl.erical integration; the value of (F 1*) changes at every 

Runge-Kutta step. 

For this problem~ (L/C ) = .0532 and DN = 0.8. These numbers are 
0 

based on an average kinematic viscosity(~) of 0.032 in2/sec, at 72°F 
0 

and 11.2 psia. The tube tnner radius (a) = 0.20 in, the tube length= 

60 ft, and the isentropic speed of sound ~C ) = 1130 ft/sec. 
0 

Let M(S) = P(S l) 
[ G(4) + .... + G(8) s4] 

Then P(S,O) = M(S) [ G(l) + G{2) S + G(3) s2] 

and S P(S,O) = M(S) [ G(l) S + G(2) s2 +.G(3) s3J 

-4- 0 -.1 
Let Y(1) =~ LM(S) s ], )'."(2) =i.. [M(S) s], 

(5.11) 

(5.12) 

( 5. 13) 

Then Equations (5.11), 

(5.12), and (5.13) may be written in the time domain as: 

Y(10) = G~B) [P(t,1)-G(4) y(1)-G(5)y(2)-G(6)Y(3)-G(7)Y(4)] (5.14) 

P(t,O) = G(1)Y(1) + G(2)Y(2) + G(3)Y(3) (5.15) 

~P(t,O) = G(1)Y(2) + G(2)Y(3) + G(3)Y(4) (5.16) 
~t * 

Equations (5.14), (5.15), and (5.16) appear in the derivative function 

subroutine of the numerical integrator (see Appendix B). 
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Results 

Figure 10 shows the computed step responses which result from 

Equations (5.14), (5.15), and (5.16) at step input levels of 0.25 and 

4.0 psig. The experimental 0.25 and 4.0 psig step responses: from 

Chapter IV are shown as dashed lines. 

As shown on Figure 11, the one, two, and four product term 

expansions for Gosh rb(S) yield approximately the same overshoot for. 

the same input step size. The computed responses do not have as much 

"apparent damping" as that shown by the real fluid system. This 

disparity ts probably caused in part by the approximations used f~r 

rb(S) and Gosh rb(S) in the model, and in part by the restrictions on 

the model in the basic derivation. That is, the model neglects the 

effects of radial flows, developing flows at both ends of the line, and 

torroidal motion .• 

The experimental results shown on Figures 10 and 11 include 

significant high frequency content, as demonstrated by the sharp 

"corners" of the pressure response. The computed responses using a 

one product term.expansion for Gosh rb(S) shows only the fundamental 

'' mode of the step response. Results using higher order approximations 

(two and four product terms) are dominated by the fundamental mode as 

well. 

An unsuccessful attempt was made to "filter out" the high frequency 

content of the experimental step responses py a totally definitive 

mathematical method. However, one can still visualize a damped sinusoid 

which appears to be the effective fundamental mode of the experimental 

response. An approximate fundamental mode for the portion of the 
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experimental result between 50 and about 175 milliseconds is shown on 

Figure 11. Tnis fundamental mode was determined from the Fourier 

Analysis program, "For it. 11 

For purposes of comparison it is assumed (Criteria #3, p 7 ) that 

the damping associated.with the model response for small amplitude 

inputs should closely agree with the damping of the approximate funda-

mental mode of the corresponding experimental response. As shown on 

Figure 12, a damping number of 2.0 yields the desired model response at 

a step of 0.25 psig. Comparison of the computed results with experi-
•·· ! 

mental results at step levels of± 0.25, 2.0, 4.0, and 6~0 psig are 

made on Figure 13, based on a damping number of 2.0. 

The model is able to predict the increase in apparent damping for 

the 2.0_psig step, but not for the 4.0 and 6.0 psig steps. Since the 

model is based on the assumption of iaminar transient flow, and a 

pressure step of 4.0 or 6.0 psig may produce flow in the turbulent 

region, it is not surprising that the model cannot predict the large 

changes in apparent damping at the higher step levels. 

Figure 14 is the computed result for a two product term expansion 

for Cosh rb(S). It is quite evident that this higher order model is 

experiencing some type of instability. The four product term expansion 

model is unstable for all steps greater than+ 0.25 psig also. 

System Instability 

Oldenburger(16) reported that the conventional·power series 

expansion for Cosh r(s), Equation (3.6), may introduce instabilities 

into an otherwise stable system of equations. But Oldenburger also 

showed that the infinite product term expansion for Cosh r(s) and 
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Sinhr(s) are absolutely convergent. The computed step responses shown 

on Figure 14 clearly ~ndicate an instability in the solution, caused by 

either numerical instability (accumulated error, round-off, etc.) or by 

the presence of positive real roots in the denominator of the transfer 

functio~, Equation (5.4), or both. 

If the denominator of Equation (5.4) has positive real roots then 

the system of equations is unstable, regardless of the presence or 

absence of numerically induced instability. To examine the nature of 

the instability~ Routh 1 s Criterion was applied to the den~inator of 

Equation (5.4) for 9he and two product term expansions for Gosh r(s). 

Routh 1 s 9riterion 

For the one product term expansion for Gosh rb(S), the coefficients 

for Routh 1·s Criterion are given as the denominator of Equation (5.10): 

G(8) G(6) G(4) 

G(7) G(5) 

Bl B3 

Cl 

Dl 

where Bl=[ G(6) G(7) - G(8) G(5)] 
G(7) 

(5.17) 

, etc. (5.18) 

The terms G(l) through G(8).are functions of (F 1'i), (L/C0 ), and (DN). 

Each time the terms B1, Cl, or Dl change in sign., the denominator of 

Equation (5.10) has a positive real root and the system of equations is 



unstable. For the one product tenn expansion for Gosh rb(S) there is 

no change in sign for Bl, Cl,. or Dl ··. until (Fl*) ( 0; Fl">'< is always 
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greater than zero at the initial rise of the output to a step response, 

but it becomes negative as soon as the output reaches its maKimtnn over-

shoot. If there is no overshoot, Fl* is never less than zero. 

Fpr the two product tenn expansion for Co sh rb (S), Equation (5.4) 

may be written as: 

P(S,O) = P(S,1) [ G(l) + G(2) S + •••• + G(5) s4] 

[ G(6) +.G(7) S + .•••••• + G(14) s8] 
(5.19) 

Routh's Criterion was applied to the denominator of Equation (5.19) 

using nine different combinations of (L/C ) and (DN). The responses .. 
0 

shown on Figure 14 are for (L/C ) = .0532 and (DN) = 2.0. The regions 
0 

where the system of equations is stable is shown on Table II below. 

TABLE II 

REGIONS OF STABILITY 

(L/Cn) 
DN .0266 • 0532. .1064 

(L=30ft) (L=60ft) (L=120ft) 

:t..t < F1.M- (oo O L... F.1..1' < b o i.. F~.~ (4 

1.0 a.he;{ 1.' <. F1.*- <. o0 "'hat i."2. ( Fu <oo 

o L.. F1.* <. a.z 1 < F.1 .. * < 8 
O L.. F !!.* <.. o0 2.0 

o.no< 30 <. Fu <..o0 al'\ol 30( F~*<.o0 

4~0 2 < F:1..* <. 1.8 0 '- F~u- ( i.~ 

of Fd.J(- <. o0 
Q, hot 40<. F.:t.* < °'° o.hol So<. F-i.1t <.oo 
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As was true for the one product term expansion for Cash rb(S), the 

two product term expansion is .unstable for all Fl*< 0. But Routh 1 s 

Criterion also predicts instability for some combinations of (L/C0 ) 

and (DN) when Fl*) 0. When Fl* = 0 the model revert,s to the small 

disturbance "Acoustic" model of Appendix A, which ;ts st~ble for all 

values of .(L/C ) and (DN}. 
0 

There are some "grey areas" then where Routh 1 s Criterion predicts 

the system of equations to be unstable, but the numerical integration 

of the equations proceeds in a stable manner. Figure 14 is one 

example. The system of equations is stable for a 0.25 psig step, but 

unstable for a 1..0 psig step input. This instability is probably 

caused by a large negative value of Fl* immediately after the output 

reaches its initial overshoot position (at 150 milliseconds.) 

Figure :j:51 is a rep lot of the·· i. 0 psig step shown on Figure 14, but 

it also includes the magnitude 9f F 1 ~, during the transient. 

Routh 1 s criterion demonstrates that the system of equations will 

be unstable for all F l't< ( 0. However, in the case of one product term 

expansions the computed step responses are stable for all input step 

levels, even though F1*.( 0 for some portions of the transients. It 

must be concluded that the stabilizing influence when F1*)0 dominates 

over the unstabili.zing influence when F 1, ... ( O. In the case of two 

product term expansions, all responses for step input levels greater 

than some. small number (say 0.25 psig) are unstable. 

The stability of the system of equations is dependent on the form 

andtsign of Fl* as well as the approximations used for r(s), Cash r(s), 

and Sinh r(s). The example chosen in this thesis represents a worst 

case in the sense ofr. the quality of the approximations for res.) (see 
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Figure 6 when S/DN = 10.) However, the i:µ:ain difficulty associated with 

system instability appears to result from the form of F1J , rather than 
~ 

the quality of the approximations. 

Unless an improved form for Fl* can be synthesized, it is recommen

ded that only one product term expansions be used for Cosh r(s) and 

Sinh r(s) in this model. 



CHAPTER VI 

FREQUENCY DOMAIN EVALUATION 

In this chapter frequency response computed from the analytical 

model; Equation (2. 70), with through flow, is compared with the 

experimental results of Cooley(7); 

Cooley 1 s(7) experiments were conducted with small amplitude 

transient flow. Rewriting Equation (2.70) to meet these conditions 

(Mb=/= O, but F1* = 0) yields: 

Cosh r<.s)+Ye<s)MbSinhrcs) -Zc(s)Sinh res) ·~P(S,O) 
- Sihh r<s) Cosh r(s)-Ye(s)Mb5inhll'.S) Q(s,o) 

Zc(S) 
(6.1) 

where 
(6.2) 

Zc(S) = ~ = ~SL i 

-V w!f D; C.o ~ r(s) 
(6. 3) 

Ye(S) = iJ N~ Dtj' = Co D3 rc.s) 
SL 

(6.4) 

and (N ) , (D ) are given as Equations (2. 74). 
g g 

If the end of the line Z = 1 is subjected to a constant pressure, 

P(S,1) = O. Then Equation (9.1) may be rewritten as: 

Q(S,O) 

P(S 10) 
Cosh res) +Ye.Cs) Mb Sinh res) 

Zc(S) S!nh res) 
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(6.5) 

.; 
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Cooley(7) performed a series of frequency response experiments 

with a 6~0 inch line, 0~125 inches in inner diameter. He included 

through flow with an average Mach number, Mb' of 0.16. By substituting 

Mb= 0.16 and S = j W into Equation (6. 5), the "admittance" of the 

1 . IQ(S,O) I 
me, P(S,O) may be calculated. In this case no approximations are 

used for-(N ) and (D ) since their exact values may be computed from a 
g g 

Bessel Function subroutine. 

Figure 16 shows Cooley's experimental data for IQ (S '0) I 
P(S,O) 

and 

Equation (6.5) for Mb= 0.16 and DN = 30.0. At the first resonance 

(105oh )c 1 h . . ,Q(S,O)I f 32 "h ertz oo ey sows an increase in P(S,O) rom • wit out 

through flow to 5.21 with through flow, that is, an increase of 62% 

when through flow is included. Equation (6.5) predicts an increase in 

I Q(S,O) I from 3.2 to 3.3., a 3% increase. 
P(S,O) 

Orner(17) examined the frequency response of a transmission line 

with through flow by applying the Poincare' perturbation technique to: 

the axial momentum equation, including the convective acceleration term 

{11z. ~~). He arrived at Equation (6.1) with identical expressions for 

r(s) and Z (S) as are shown in Equations (6.2) and (6.3). His 
c 

expression for Y (S) is as follows: 
e 

y (S) = 1-(1- 8(~-1)(1- 2J.°(A'\\] 
e }{ A2 A J°o(A)) 

where A = J 1 500 a.•' 
~ 

(6.6) 

(6 ~ 7) 

The frequency response for Orner 1 s first perturbation solution-at 

Mb= 0.16 is approximately the same as this thesis result, as shown on 

Figure 16. His solution predicts a 3% increase in 

first resonance (1050 hertz.) 

IQ(S,O) I 
P(S,O) at the 
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Orner perfonned a second perturbation on the system of equations 

which predicted an additional increase in I Q(S,O) I of 9% at the 
1P(S,O) 

f . . 1 . . f" 1 1 f IQ(S,O)I f 3 6 irst resonance, resu ting in a ina va ue o P(S,O) o •• 

C 1 ' h I Q(S ,O) f 5 21 h" f oo ey s experiment s ows P(S:,Oc) as • at t is requency. 

Order of Magnitude Analysis for Y (S) 
e 
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If the Cooley experiTTlent is correct, and if the analyses of Orner 

and this thesis have included the significant tenns in the axial 

momentum equation to accourit for through flow, then Equation (6.5) 

should be able to predict an admittance IQ(S,0)1 
P(S,O) 

approximately equal 

to 5.21 at 1050 hertz when Mb= 0.16. 

At the first resonance (1050 hertz) the magnitude of Cosh r(s) is 

approximately 1.0. The magnitude of Sinh r(s) is approximately 0~22. 

Then may be approximated as: 

IQ(S,O)f ~ 
P(S,O) .._ 

i + .22 IMbYe.(s)I 
.22. 

(6.8) 

Equation (6.8) disregards the. complex nature of Cash r(s), Sinh r(s), 

and Ye(S), but it is acceptable for a rough bound on the tenn (MbYe(S))~ 

Given that IQ(S,O)I = 5.21 at 1050 hertz, then the minimum value for 
P(S,O) 

(Mb Ye(S)) is 4.2. Since Mb= 0~16, the minimum magnitude of Ye(S). 

is 26. 

Neither the Orner analysis nor this analysis could predict a 

magnitude of Ye(S) greater than 1.2 for any frequency (W), ~)TT . 
0 

The first resonance of the Cooley experiment occurs at W ~ = 9.3 TT . 
0 

Clearly, the effect of through flow on the frequency response 9f 

a small diameter line as reported by Cooley cannot be predicted by the 

model offered in this thesis. 
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However, Equation (6.5) does predict a rather dramatic result when 

'

P(S,0)1 
Q(S,O) 

, the line "impedance" is plotted; rather than I Q(S,O) r 
P(S,O) 

the line "adinittance. 11 This is shown on Figure 17~ Figure 17 is a 

recipJ"OCal plot of Figure i6, showing the ¢6mputed '.'!impedance" of the 
, 

line with through flow as a function of frequency~ (CU). Figure 17 is 

based on the same relatively high through flow rate, (Mb= 0.16), 

which yields a through flow velocity 9n the order of 180 ft/sec. 

Cooley(7) did not measure impedances in his experiment, and he 

reported that the signal-to-noise ratio of his instruments in the 

regions 400 to 800 hertz and 1400 to 1800 hertz was very low, negating 

the accuracy of the readings in these regions. So it would be 

inappropriate to take the reciprocal of the Cooley data from Figure 16 

and plot it 9n Figure 17. 
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CHAPTER VII 

THE HYDRAULIC CASE 

The basic line model, Equation (2. 70), is applicable when the fluid 

is an ideal gas or a liquid. This chapter shows the simplif icat~on of 

the ~odel when the fluid is a liquid. 

To use Equation (2. 70) the parameters (DN), (L/C0 ), and (Mb) must 

be known. In the liquid case: 

\% ~ 
DN=~=-2 

a 6 a 

L --= 

where ( ~ 0 ) is the bulk modulus of the fluid~ 

viscosity' and ( eo) is the fluid density. 

(7 .1) 

(7. 2) 

(t~~ ) is the absolute y--o 

M = Average through flow axial velocity 
b c (7 .3) 

0 

The speed of sound in the fluid, C , is at least four or five times 
0 

greate·r than the speed of sound in a pnemnatic system, so for the same 

through flow axial velocity, ~ f~'ftJie hyµraulic case ~is only ~>ne fifth 

as large as Mb in the pnemnatic case. In general, Mb(( 1.0, and it 

may be neglected in the system of :quations. 

Writing Equations (2.70) with this simplification (Mb=O) yields: 

[
P(S,1)] = 
Q(S,1) 

72 

Sinh rb(S~ IP(S,0~ 

Cosh rb(s)J LQ(S,O~ 
(7.4) 



73 

where rb(S) is given as Equation (2.71) and Zb(S) is Equation (2.72). 

When the fluid is a liquid, ~= 1.0, and the term (Ng) in rb(S) and 

Zb(S) is approximately equal to 1.0. From the approximations in 

Chapter III, Equations (3.16), rb2 (S) may be approximated as shown 

below for the liquid case: 

S (S + 5.78DN:+.F 1*) (S + 56.6DN + F1*) (7. 5) 

(S + 40.9DN +Fl*) 

where Fl* is given as Equation (2.76)~ 

Example 

The hydraulic line is 60 ft long, 0.40 inch inner diameter• Other 

parameters are p = 11.2 psia, DN = 2.0/sec, L/C = 0.0137 sec. The 
0 0 

line is subjected to pressure step ~nputs of 0.02 and 4.0 psig. 

Computed step responses based on approximations for Cash r(s) given 

in Chapter III and Equation (7.5) are shown on Figure 18. Note that 

the large disturbance; i.e., the 4.0 psig step, has a greatly damped 

response as compared to the small disturbance response. 
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CHAPTER VIII 

SUMMARY, CONCLUSION, AND 

RECOMMENDATIONS 

Summary 

The transmission line model developed in this thesis is an extension 

of the small amplitude (acoustic) model derived and utilized by lberall 

(12), Nichols(15), and Brown(3). This model includes the effect of 

finite amplitude disturbances and through flow. 

To include these effects, the nonlinear convective acceleration 

terms were retained in the axial momentum and energy equations: 

Axial Momentum 

(8.1) 

Energy Equation 

(8.2) 

·T 
Th 1 . v ~ z 

e non inear term · ·~ b z in the energy equation is of small 

order compared to the other terms in Equation (8.2), so it was neglected. 

v ~ vz 
But the term z -- in the axial momentum equation is not neglig-

~ z 

ible when the disturbance is of finite amplitude. 

The continuity equation and equation of state for ideal gases are 

used 
~vz 

to express ~ as a function of pz and T • z 
The initial 

development of the line model in Chapter II considers ideal gases as the 

7'1 
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working fluid. Chapter VII considers the simpler case where the fluid 

is a liquid. 

The axial pressure, temperature; and velocity are separated into a 

steady-state incompressible through flow component subscripted with a 

"c" and a time.:.varying compressible component subscripted with a "t". 

That is: 

v (t,r,z) z = v (r) c + vt(t,r,z) (8.3) 

T (t,r,z) 
z = T (r) c + Tt(t,r,z) (8.4) 

p (t,z) 
z = p (z) + p (t'z) 

c t ' 
'(8.5) 

Equations (8.3), (8.4), (8.5) and the known steady-state solutions 

for (v) and (p ) are substituted into Equations (8.1) and (8.2), 
c c 

resulting in these equations: 

Axial Momenttnn 

Energy Equation 

(~-1) lo ~"'Pr 
"to ~t 

(8.6) 

(8. 7) 

Equations (8.6) and (8.7) are nondimensionalized and the axial momenttnn 

equation is linearized by making the quantity ~~ in the axial 

momenttnn equation a time-varying coefficient which is updated for each 

time increment (At). That is: 

Axial Momenttnn 

(8.8) 



where (Mb) is the Mach number of the average through flow. The time 

increment (At) must be much less than the reciprocal of the highest 

frequency of interest in the line. That is: 
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(6.t)((-1-
wmax 

(8.9) 

where (l<l ) is in radians per unit time. 
max 

To derive a form for the time-varying coefficient(?~~* the 

solution of the small disturbance or "acoustic" model is used. This 

model is shown as Appendix A in the thesis. The form used for ( ~~ )~ 

in the thesis, as taken in part from the acoustic model, is: 

( ~V'\ = [ sgn P(t,O)] 1c I }.p~~,o)\ (8.10) 
TZJ~ o\ )~ 

The term [ sgn P(t,O) J is present to meet the criterion that the 

model must show an increase in apparent damping as disturbance amplitude 

increases, regardless of the sign of the disturbance (+ or -). This 

increase in apparent damping with increase in disturbance amplitude is 

an observed characteristic of real transmission lines, and it was 

necessary that the new model demonstrate the same characteristic. 

By transforming the energy equation shown as Equation (8.7) and 

the axial momentum equation, Equation (8.8), into the Laplace domain, 

applying boundary conditions on (R) and (Z), this transmission li.ne 

model resulted~ 

P (S, 1) 

Q (S, 1) -Sinh rb(S) 
Z (S) . 

b . 

P(3,0) ~ 

Q(S,O) 

(8.11) 
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where (P) and (Q) are non~imei:l.sional pressures and flow, 

SL ....,._ (8.12) 
Co 

Yb (S) = Co Ds n,(s) - Ds ~ (i+£¥) -SL 
(8. 13) 

Zb (S) SL ~ (i F'~1' )- )(' (1+~*) 
= 

Co Do.. rb (S) + "'3" - Ng DA. 
(8.14) 

N = r 1 .+- 2. ( l(-1.) J; (A)] 
g L . A .l;CA) 

D = [ 1 - 2. Ja (ip) J 
g . If ;r, l'fl) 

D = [ 1- Z Ji (o<) ] . 
a °' ~ (oe.) 

(8.15) 

A=j .. ~ VC>N ' o< = j~ ;N (i+F~*)' (8.16) 

DN = Fl*= 

and (Mb) = average through flow Mach ni.nnber. (8.18) 

This model, Equation (8.11), simplifies to the small disturbance model 

of Appendix when Fl*= O. and Mb= o: 

Chapter IV presents the experimental step responses recorded from a 

60 ft pneumatic line, 0.40 inch inner diameter. The step responses were 

initiated at gage pressures above and below atmospheric pressure, and 

tenninated at atmospheric pressure, (11.2 psia). Experimental step 

responses are presented for+ 0.25, 1.0, 2.0, 4.0, 6.0, and 10.0 psig 

(Figure 9). 

In Chapter V the experimental step responses of Chapter IV are 

compared with computed step responses from the analytical model. The 

computed step responses appeared too lightly damped, even at the smallest 

step size of + 0.25 psig. The computer model damping was increased at 
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this smallest step size so the computed step re$ponse and the approximate 

fundamental mode of the corresponding experimental response showed 

approximately the same percent of overshoot - indicating that approxi

mately the same amount of damping was present in the computed and actual 

step responses. This increase in apparent damping was accomplished by 

changing the damping number (DN) of the computer model from its calcul

ated value of 0.8~to a corrected value of 2.0. Then the transients 

predicted by the computer model with finite amplitude disturbances 

compared favorably with the experimental results of Chapter IV (see 

Figures 10,thtough 13)~ 

When more than one product term was used to expand the term Coshr(s) 

in the model, instabilities appeared (Figure 14). The cause of the 

instabilities is examined in the last section of Chapter V. 

Chapter VI is a brief look at frequency response data measured by 

Cooley(7) for a small pneumatic line with small amplitude sinusoidal 

disturbances and large through flow. Through flow is represented in 

the line model by the term (Mb)' which is the average through flow Mach 

number. 

Chapter VII presents the simplified model ~hen the fluid is a 

liquid. 

Conclusions 

The purpose of this thesis was to derive a generalized time-domain, 

ordinary differential equation line model which will predict flow and 

pressure transients in a fluid-filled line subjected to both small and 

finite amplitude disturbances, with and ~ithout through flow. The line 

model should meet the basic criteria outlined on page 7 of this thesis. 
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That is: 

1. The model should predict an increase in apparent damping as the 

magnitude of the disturbance input to the line is increased. As Figure 

13 shows, the model meets this criterion. 

2. Th~ model should be reducible to finite order by suitable 

approxi~ations such that computational time and difficulty are reduced 

without: severely limiting the accuracy of the model. The approximations 

for the terms r(s), Coshr(s), and Sinhf'<S) which appear in the Laplace 

domain model, Equation (<2. 70) and Equation (8.11), are given in Chapter 

III of this thesis. They enable the model to meet this criterion, but it 

is possible that the approximation for r(s) could be improved (see Figure 

2 (SL)2. N 6, where r (S) = C Dg 
0 g 

). 

3. The model response should be in reasonable agreement with the 

apparent fundamental mode of corresponding experimental responses. The 

line model in this thesis is a linearized model with a time-varying 

coefficient, Fl* (see Equations (8.17)). The model is designed 

primarily for numerical integration where fl* is updated at every ;inte

gration step. The low order polynomial approximations for Coshr(s) and 

Sinhr(s) which facilitate inverse transformation of the Laplace domain 

form of the model result in a low order differential equation model. 

Consequently, the model should predict the fundamental (low frequency) 

mode of a transient response, but not the high frequency modes. 

The model could be employed in applications requiring high frequency 

if suitable approximations for r(s), Coshr(s), and Sinhr(s) could be 

synthesized. 

The model, with its approximations given in Chapter III, is a low 

frequency model. This low frequency model produced responses which 
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appear to be too lightly damped, as shown on Figure 11. In this sense 

the model does not meet criterion #3 fully because the model responses 

(traces A, B, and C on Figure 11) are not in close agreement with the 

fundamental mode of the corresponding experimental result, which is 

also shown on Figure 11. It is possible that closer agreement between 

the computed traces and fundamental mode of the experimental trace could 

have been achieved by a better approximation for r(s), but this is 

sp~culation. 

The instability which occurred in the model when two or four 

product terms were used to expand Coshr(s) (see Figure 14) was not 

totally surprising. The two product term expansion for Coshr(s) yields 

a tenth-order differential equation and the four product term expansion 

yields a twentieth-order differential equation when step responses are 

computed (Equation 5.4). The tendancy toward numerical instability in 

the solution of high order differential equations containing a broad 

frequency spectrum is well known. 

But this model added a new dimension for possible instability with 

its time-varying coefficient, F1* (Equation 8.17). By applying Routh's 

Criterion to a two product term form of the model applicable to a special 

case (Equation 5.4) it was determined that the system of equation-s is 

unstable for all Fl* ( 0, and may be unstable for some values of Fl*> 0, 

depending on the particular line length, diameter, fluid kinematic 

viscosity, etc. Routh's Criterion was applied to the approximations for 

r(s) and Coshr(s), not their exact forms. So the approximations used 

for r(s) and Coshf'(S) may have contributed to the instability of the 

system of equations. 
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The transmission line model derived in the body of this thesis will 

1fredict an increase in apparent damping as disturbance amplitude - - . 

increases, making it the first generalized line model that is sensitive 

to input disturbance level. At very small disturbance levels the model 

becomes the "acoustic" model of Appendix A. 

If the user finds that the line model (Equation 2.70 or 8.11) tends 

to be unstable in his system simulation, he is referred to an alternate 

line model shown in Appendix C. The alternate line model does not 

predict as much increase in apparent damping with disturbance amplitude 

as does the primary model, but it is numerically stable for higher order 

approximations for Coshr(s) and Sinhr(s) (see Figures 20, 21, and 22 in 

Appendix C). 

The frequency response results given in Chapter VI show the 

following: 

1. This line model, nor any other line model derived to date, can 

predict the large changes in frequency response behavior which one 

experimentalist, Cooley(7), has reported when through flow is introduced 

into a pneumatic line (see Figure 16). 

2. The large discrepancy between analytical and experimental 

results in the through flow case merits further investigation. 
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Recommendations 

Based on the analysis and findings of this thesis, it is recommended 

that additional work be conducted in these areas: 

1. The synthesis of better forms for (F 1*) such that the resulting 

model is stable for high order approximations of Coshr(s) and Sinhr(s), 

and such that the implicit instability which results when F1*<. 0 is 

eliminated. 

2. The development of approximations for r(s), Coshr(s), and 

Sinhr(s) which agree more closely with the exact forms, but which retain 

the mathematical simplicity of the forms used in this thesis. 

3. Criteria #3, page 7 should be reexamined: and a definitive 

procedure should be established for assessing the quality of the model. 

4. A carefully planned experimental study should be made of the 

effect of through flow on the frequency response of a transmission line, 

to confirm the results of Cooley(7). 
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APPENDIX A 

SOLUTION FOR THE LINEAR PROBLEM 

Thi.s appendix presents a solution to the linear axial momentum 

equation and linear energy equation for the flow of a compressible 

fluid in a rigid circular transmission line. This solution is identical 

to solutions presented by Iberall (1!2) and Brown (3). 

Figure 19 identifies the line variables and coordinate system. 

r 

r"' a--...---------------.... 
·1.1NE 
: 

Figure 19. Coordinate System 
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Assumptions 

2. All partials with respect to S are zero. 

3. Small amplitude, laminar perturbations. 

4. No through flow. 

s. >,p/ ~ r := O. (Pressure is constant across any given cross section 

of the line. ) 

Basic Equations 

v =v (r' z, t) 
z z 

pz = p (z' t) 
z 

(A.1) 

T = T (r, z' t) 
z z 

Axial Momentum 

(A. 2) 

For small amplitude perturbations, the non-linear term (11Z!~) 

may be neglected (Brown (3), D1 Souza (8)). 

Energy Eguation 

_ - Ot'-1.) lo ~Vi 
~z. 

For small amplitude perturbations, the term 

neglected (Brown(3)). 



Eguation of State (Ideal gases) 

Continuity Equation 

For small amplitude perturbations, the term(VZ~) may be 

neglected (Brown(3)). Combining Equations (A.4) and (A.5) yields: 

Integrated Continuity Equation 

88 

(A. 4) 

(A. 5) 

(A. 6) 

r= o. t-=a.. . 

2.rr f )~i"Vi.) roh· = -2rr f ~ r-.lr- -a. (A. 7) 

r=o r-=o .,._ 

=> ~ ~(z, t) = ... '2TT ( tt[.! ~ -~ ~~] ~dr ~2 J4 ro<J o 
r=-o 

where q(z,t) is the mass flow rate in the transmission line. 
r:c:i.. 

q (z ,t) ~ 27f f {e"Ui) t'olr (A. 8) 

r=o 
By non-dimensionalizing Equations (A. 2) through (A. 8) with these 

substitutions: 

v 
v =2 

c 
0 

z z=-1 

T 
T =2 

T 
0 

Q=g(z,t) 2 eo Co lTa 

(isentropic speed of ~ound in the fluid), and by substituting the 

(A. 9) 

(A.10) 
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Equations of State (A.4) and Continuity Equation (A.5) into Equations 

(A.2), ~A.3), (A.7), and (A.8) the result is as follows. 

Axial Momentum 

Energy Equation 

Integrated Continuity Equation 

~ 

~ Q ( t, Z) = - 'Z..L f [ l P _ J T 1 R ol R 
~Z Co lt ~t 

0 
Mass Flowrate Equation 

1 

act,z.) = 2. f vct,R,-z)~o1.R 
0 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

By transfonning Equations (A.11) through (A.14) into the Laplace domain, 

the result is as follows. 

Axial Momentum 

s Vcs) _ ~ 1.. ( R. JV,sl) _ 
a...'3.ff! lR ~R 

Energy Equation 

s T(s) - l'o ..L ( R lTcs)\ -=- ( ¥-1) s Pcs) 
<Toa..z.R c)R c\ R ·j }( 

Integrated Continuity Equation 
1. 

~Q( s, z.) 
~z 

_ - 2.~L s( PlS)-T(S)) R.otR 
C.o 

0 

(A. 15) 

(A.16) 

(A.17) 
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Mass Flowrate 
1. 

Q(s,z) = 2. r V(S,R,7.) R..!F! (A.18) 

0 

Let Damping Number be DN = ~ , If= Jl~1 
a.: DN 

and A = j"'~ • (A.19) Vo;:J 

Rewriting Equations (A.15) and (A.16)~ the results are as follows. 

Axial Momentum 

Energy Eguation 

- Co ~ P(s) 
~SL c\Z 

(A.20) 

Tl.S)+_!_L (R.c:\T<.s>)= l¥-i) Pl5) (A.21) 
~R d R c}R 2t' 

A solution to the Axial Momentum Equation, Equation (A.20) is: 

where J 0 is the Bessel Function of the first kind, zeroeth order. This 

solution meets the boundary condition V(S,R,ZUR = 1 = O, the "no-slip" 

condition, and ~V(S ,R,Z) I = 0. 
~R JR= 0 

A solution to the Energy ~quation, Equation (A.21) is: 

T( SR z.) = -(J"0 (AR)-JoGA)) (}(-i) P<S) (A.Z3) 
I ' J';, (A) ¥ 

This solution meets the boundary condition T(S,R,z)j R = 1 = O, and 

~T(S,R,z)J = 0. From Equation (A.18): 
~R R = 0 

1. 
Q(S,Z) = ,'2Co lP<:.s) ((J"o(l/'~)-J°o('l))J<ol.R. 

)(SL ~ Z. ) J;. ('P) 
0 

(A. 24) 
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Q(S ,z) = - Co D8 J Pls) (A. 25) 
~SL JZ. 

where D = (1 - 2 J; (Ill)) 
g "' J;, (. 'f) 

(A. 26) 

By substituting the solution to the Energy Equation, Equation 

(A.23) into the Integrated Continuity Equation, Equation (A.i7), the 

result is: 

where 

~Q(S ,Z) = 
~z 

N = (1+'2.0(-j,) J;' (A)) 
g .4 J;; '4.) 

By differentiating Equation (A.25) with respect to "Z", and 

equating the result to Equation (A.27), the result ii: 

-~D~ ~.,_res, z.) 
~.SL.. ~z.'2 

or 

where 

A solution to Equation (A.30) is: 

rcs>z -rcs>z 
P(S,Z) = c1 e +. c2 e 

The nondimensional flow Q(S,Z) is given by Equation (A.25): 

Q(S:,z) = 
- Co D res) ( rcs>z C -f',.s)z) 
_¥_S __ L_3 - Ci. e. - 'Z. e. 

(A. 27) 

(A. 28) 

(A. 29) 

(A.30) 

(A. 31) 

(A. 32) 

(A. 33) 
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Equations (A.32) and (A.33) may be solved for constants c1 and c2 by 

applying boundary conditions at Z = 0 and Z = 1: 

£(P(t,O)) = P(S,0) , ~ (Q(t,O)) = Q(S,O) 

~.(P(t,1)) = P(S,1) , ~(Q(t,1)) = Q(S,1) 

The results are: 

c = A:. (PCs, o) - ¥SL Q(.S,O)' 
1 z ~Cc ) 

c2 = !.( PCS,o) + 'll~L Q(S,O)\ 
2 D~Co J 

Equations (A.32) and (A.33) may be rewritten as: 

(A. 34) 

(A. 35) 

P(S,Z) = Cosh r(s)z Pes,O) - Z {S) Sinh res)z Q(S,O) 
c 

qes,z) =:== -Sinh r es)z Pes,O). + 
Z es) 

Co sh r es)z qes ,O) (A.37) 

where Z (S) = 
c 

r<s~l)J 
~(S,1) 

c 

_ SL ~ 

Co D~ res) 

Summary 

[
Cosh r(s) 

- Sinh r(s) 
Z (S) 

c 

-zc (S) Sinh res )1 
Cosh res~ 

(A.38) 

rP(S '.O)] 
L Q(s ,o) 

eA.~ 9) 

where Z (S) is given as Equation (A.38) and r(s) = ~L~g • 
, c o D 

g 

N =··Li+- .2l¥-i)J,"lA)] • 
g · A J;, (4) ' 

D = [1-zJj('t')] 
g ., \l;i(41) 

6.=j~sao' 
ON 

o/ = j -rs-' V-o;J DN = !2 = "'"°2 
a ~a 

(A.40) 
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These important average values also come from this system of equations: 

V(S,Z) = 

~V(S,Z) _ 
~z -

T(S ,Z) = 

~T(S,Z) _ 
~ z -

- Co Ds ~ P<s,z.) 
'2(.SL ~z 

- Co Ds ) '2. P(S, z.) 
¥SL ~Z ... 

()(-1.) P(S,z.)(1-2.;JjC.6)) 
'( A ~(A) 

(¥-.1.) ~ p(.s,z) (1- zdi"C6)'\ 
¥ ~ z .4 :J°o(tl) J 

(A. 41) 

(A. 42) 

(A. 43) 

(A.44) 

~P(S,Z) - r(s) [P(S,O) Sinh r(s)z :- Z (S) Coshr(s)z Q(S,O)] c) z - c 
(A. 45) 

Equations (A.41) through (A.45) may be inverse transformed to the time 

domain if suitable approximations are made for Sinh r(s)z and Coshr(s)z. 

Let Sinh r(s)z ~ r<s)z 

Coshr(s)z~ 1. 

Then · 
V(t ,Z) ~ 

~V(t,Z)~ 
~z -

T(t,Z) ~ 

G Ct,o) - LZ. ~P(t,o) 
Co jt; 

-..J:._ .l p( t I 0) 

Co ~t 

(ll'-1) PC.i,o) - (¥-1.) LZ. ~Qlt,o) 
ls' Co ~ "t 

~T(t,Z) ~ - (¥-1) L ~ Q(-1: 1 O) 
~ Z - Co ~t: 

~ P(t,Z) ~ 
~ z -

-¥L ~Q(t,o) 
Co jt' 

Equations (A.41) through (A.52) will be used in the derivation in 

Chapter II. 

(A. 46) 

(A. 47) 

(A. 48) 

(A. 49) 

(A. 50) 

(A. 51) 

(A. 52) 



APPENDIX B 

COMPUTER PROGRAMS 

There are five computer programs listed in this appendix. Three 

are written in Fortran IV and two are written in Algol. 

1. Linear Freguency Response of a Transmission Line, with and 

· h Th h Fl Th. h · IP(s:,o)j d wit out roug ow: is program computes t e ratio Q(S,O) an 

I~~~:~~ I for the pneumatic line of Cooley (7), which is 6.0 inches 

long and 0.125 inches in inner diameter. Damping Number of the air in 

the line is 30.18, and the term (Damping Number/ Prandtl Number) is 

43.11. Average line pressure is approximately 3.0 psia. 

This program calls one subroutine, "Bessel," which generates· values 

for the complex Bessel Function of the first kind, zeroeth and first 

order. 

2. Coefficients for Step_Responses, Cne~ rwo, and Four Product 

Terms for Cosh r(s), Pneumatic: This is a convenience program, written 

to supply the necessary coefficients for.the "Step Response by Numeri-

cal Integration Program, Pneumatic." (See Chapter V) This program 

"NUMER" and "DENOM, 11 where: 

_ P(S,O) 
P(S,l) - Cosh r(s) 

2 {_]:!_:f A (S) 
where r (S) = rc=-J B (S) 

0 

= 
P(S ,O) x NUMER 

DEN OM 

and A(S) and B(S) are given as Equations (5.7) and (5.8). 
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(B. 1) 

(B.2) 
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3. Coefficients for Step Responses, One, Two, and Four Product 

Terms for Cosn r(s), Hydraulic: This program is identical to (2) 

above, but uses expressions for A(S) and B(S) which are given as the 

numerator and denominator respectively of Equation (7.5). This program 

supplies the coefficients for "Step Response by Numerical Integration 

Program, Hydraulic." 

4. Step Response by Numerical Integration, Pneumatic: This 

program -is a numerical integrator which integrates Equations (B.1). 

The user selects the one, two, or four product term expansion for 

Gosh r(s). 

The coefficients for subrou~irie "Derfun," the derivative function 

generator~ are read in from the punched card output of program (2-) 

listed above. . !-his program uses a fourth-order Runge-Kutta integrator, 

"Rkint 'II and has a built-in plot routine' "Xyplot. II 

5. Step Response by Numerical Integration, Hydraulic: This 

program reads in data cards for subroutine "Derfun" which have been 

generated from program (3) above. It is similar to program (4) above. 



C---- Trl!S PROGRAM COMPUTES LINEAR FREQUENCY RESPONSE RATIO FOR THE 
C COOL~Y LINE• rilTH AND w!THOUT TriROUGH-FLDWo JAN 73. 

CO"PLEX CMPLXoCFNloCFN"2oCFN3oAloA2oA3oA4oA5tAboDGAMoAGAMoGAMMAo 
2C05rloS!NnoCEXP,CSQRTtRAT!OoANSE~2•A7,A8 
Dl"E:~SION AHERTZ 130> 
ELOVC0=.4425E-3 
VA=·.!6 
Df'H=30.l8 
DN2=43. ll 
REAOISt!OOl 'IVALt CAHE1<TZCJhJ=ltl4l 

100 ~~~~OXc!~t~f~f 4~~Ab\s.200> IAHE~TZ(J)oJ=l5·30l 
wRITEl6o300l 

200 FORMATl16F5,ll 
300 FO~MAT11Hlo5Xo'FREQUENCY RESPONSE• COOL~Y LINE• WITH ANu oITHOCJT T 

2'lRJUGH-n.:ow: 'o/ o6Xt63 ( ··=q ''" l lXt 'FREQUENCY I ol 7Xt I RAT! o: ? IS> /Q IS 
3l ''•27Xt 1 RATIO: Q IS) /P ISl '•lo l2X,' I HERTZ>' t8Xt 1 'rilTH THROUGH-FLO•! 
4 NO THROUGH-FLOW··· 7X· '•ITH THROJGH-FLOW NO TrlROUGH-FLOw''•/• llXo 
S"'I( •-•;. 7JC, 11< 1 - 1 > ,4x., is<··-·> .rx.,11< ,_ .. , ,4x,, 1st•-•>,,, 

DO 20 KK=lti>IVAL 
wl=6.28318*AHERTZCKKl/0Nl 
w2=6o28318*A~ERTZCKKllDN2 
w3=6.28318*AtiERTZCKKl 
CF'll=CMPLXCO.,-wll 
CF'l2=CMPLX 10. ,-vi2l 
CF'l3=CMPLX ( 0•t1'3l 
."1 =CS QR TC CF"l ll 
A2=GSQ<H ICFr-12> 
CALL BESSELCAloA3oA4oASoNll 
CALL BESSELCA2tA6oA7oA8oN2l 
OGAM=c1 •• o.>-2.•A3/Al 
AGAM=c1 •• o.i+.B*A6/Al 
GA"MA=ELOVCO•CF"lJ*CSQ~TCAGAM/DGAMl 

COSH=.S*CCEX?CGAMMA)+CEXPl-GAMMAll 
SJ''lH=,5* CCEX? CGAMMAi-CEXP 1-bAMMAl l 
llATIO=l .4*ELOVCO•CFN3*S!'NH/ IDGAM*GAMMAl I ICOSH+VA•DGAM*GAMMA*SINH 

2/ICFN3*ELOVC0l l 
A"lSWER=CABSIRATIOl 
ANSER2=l .4*ELOVCO*CF·'l3*Sl"lH/ IDGAM*GAMMA•COSH) 
B3=CABS IA"4SE~2l 
84=1./ANSWER 
85=1./83 

20 ORITE16t400l ArlERTZIKKltANSwERo8Jo 84• B5 
400 FOKMATl10XoFl0olo4110XtF10.4l l 

STOP 
END 

FR 
FR 
FR 
FR 
FR 
FR 
FR 
F>l 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
Fil 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 
FR 

010 
020 
030 
o .. o 
050 
060 
070 
080 
090 
100 

m 
130 
135 
140 
150 
lbO 
163 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
3b0 
370 
380 
390 
400 
410 
420 
.. 30 
.... o 

SUdROUTlr-IE dESSEL ILoRJ,JO,Jl,"lTEl 
c---- THIS SU8ROUTI~[ COMPUTES VALUES FOR THE COMPLEX l:lESSEL FJ~CTIONS 

11JJ11 A"ID "Jl" FROM T~E BASIC SERIES EXPA,'lSIONt 11HANOBOO~ Or MATH
EMATICAL FUr-ICTIO~S"-ABRAMOWITz, PG 3b0t FOR"IULA 9.1.10. NEo TER"IS 

c 5 
c 
c 
c 

ARE ADDED IN THE SERIES UNTIL Trlt: CHANGE IN "JO" AND "Jl" b LESS 
THAN 0.01 ~. TtiE "40. OF TERMS IN THE SERIES IS GIVE'I tlY ">./TE"• 
CO~PLEX CMPLXoZtRJoJ0oJloTERMOoTERMloZOVER2,ZOSQ 
>rTE=o 
ZOVER2=.S*Z 
ZOSQ=-ZOVER2**2 
TERMl=ZOVER2 
Jl=ZOVER2 
TERMO=ll •• O.l 
JO=<l •• o.> 
A=l, 

10 TE~MO=TERMO*ZOSQIA**2 
JO=JO+TERMO 
TERMl=TERMl*ZOSQllA•IA+loll 
Jl=Jl+TER"ll 
'ITE=NTE+l 
BB=CABSITERMOl/CABSIJOl 
cc=CABSITERMll/CABSIJll 
IFIB~.LT •• 0001.A•D.CC.LT •• OOOll GU TO 20 
A=-4+1. 
GO TO 10 

20 QJzJl/JO 
RETURN 
E"l<l 

DATA 
30 200. 300. 400. 500. :.os. s10. 600. 100. aoo. 900.1000.1050.1os5.1000. 
1100.1200.1300;1400.1soo.1595.lb00.160:0.1100.1soo.1900.2000.2100.2145.21:.o.215;, 

'° °' 



~EGlN COM.,.ENT Trl!S P~OGRAM CO'IPJTES COSH !GAMMA I =DENU'1/h/J'IER FU~ 
ONE• TwO• AND FOUR PRODUCT TERMS C~NEJMAT!Cl. Ti-IE OUTPUT INCLLJD::~ 

H 
H 
H PUNCHED CAl<DS wHIC~ MAY BE ENTERED DlqECTLY INTO THE "STEP RESPO\bE ~y 

NUMERICAL lNTEGRATION--DNEclMAT!C" PROGRAM. FOR EXAMPLE· THC: "i•uMrnATDR. H 
0"1E PRODJCT TERM" ARRAY HAS 5 RO•S A>.ii) 4 COLUMNS. THE ARRAY rs D\JNC~Eu H 
BY Row. 5 PUNC ... ED CARDS wfTH 4 NUMBERS ON EACt< CARDI COMME·H H 

11L11, 
Tt<IS PROGRAM ~EADS 

Al>[D "RO": (FORMAT 
ll COLUMNS 1-10 
21 COLUMNS 11-20 

IN ONE DATA CAkU ·w!TH i'Al<A"1C:TERS "LICO"• "DN"• 
4fl0l 
RATIO OF LINE Lt:NGTH OVER !SEN. SPEED OF" ~OU'ID. 

DA~?!NG NUM3ER (RATIO OF ~!NEMATIC VISCOSITY 

H 
H 
H 

OVER TuB~ RADIUS**~). 
H 
H 
H 31 COLUMNS 21-JO Ll'IE LENGTrl CIN FEf::T>, FOR REFERENCE Q.'ILY• 

41 COLUMNS 31-<+0 LINE I"INER DlAMOER CI~CHESI, FOR REF". O'fLY. 
THE REMAINING DATA CARDS ARE THE COEFFICIENTS FOR ARRAYS !Al ANu 

!BJ. •HERE GAMMA=CS•L/COl*.*2*1Al/C~JI 

H 
H 
.; 

ARRAY A(0:6.0•3.o:31.aco:4.o:~.o:J1,5tl[O:H.u:4,Q:b1.AB[0:10.u:s.0•6 H 
l •AA[ O: 12•0•6•0:61,BllBBCO:l6,0:d,O:12l•AB88C0:18•0:9,0:121•AABi>C0 :20,0: I H 
0,0:121, AAAdC0:22,0:11,0:12!• AAAA[O:z4,0:12,o:J2l• DNCO:l2l• NJ~CO:lb• H 
o:J2J. Ui::NC0:24,0:12i. l~U'1ERCO: b.0:6], DENOM[U:J2.o:o],A~UF[0:6.0:3, H 
0:3J •. 8BJF[O:<+,o:2,0:3], ADOTC0:6,0:3J, BPUTC0:4,0:3]; H 
F{LE CARDIKIND=READERl;FILE LINECK!l>[O=PHINTERllFlLC: PUNCHIK!ND=?~NCH>; H 
INTEGER z,J,KI REAL ELOVCO•EL2•EL4•EL6•EL8,Ml,"f2,"f3,M4,MS.M6,M7,L•RI H 

FDR.>fAT TITLCXJO."COEF"FICIENTS FOQ ~TEP RESPONSES. ONE. Too. A••D FOU H 
R PRODUCT TEl'MS FO~ COSHCGA..,MAI • [i>NEJMAT!tJ. •/PUNCHED OUTi>UT:n,/,XIO, rl 
l}J(H:U) 9/); 

FOR"fAT Pl f/,X30•"ARRA'f 1'A 1·: "•/ tXJ0, 11----------" • /) ·; 
FOR'<fAT P2(/,XJQ, 11 AR~AY 1 0 1·: 11 ,1,x.30, 11----------11 .1>; 

H 
H 
H 

FOR..,AT P3Ct.X20•"NJMERATOR· Too ~RODUCT TC:RMS:O'•t.X20.29C"-"J ,/); H 
FOR..,AT P4(/,X20•"DENO..,IlllATOR, ToO PRODUCT TERMS:o•,t,X20•31 C"-"l •/JI H 
F"ORMAT P5C/,X20•"NUMERATUR• FOUR PRODUCT TEl<MS•"•l•X20,301"-"),/) I H 

FORMAT P6(1,X20•"DEl>l0MINATOR• FOLi~ PRODUCT Tt.RM5•"•/•X20•32("-"l .ti: 
f-~OR'efAT P7(X5t 11 5= 11 tllt 11 , Ot-l= 11 tllt 11 , K=O TO J: 11 ,x10,4E20.4• ) ; 
F'QR\lfAT P8(X5•"5= 11·,12, 11 , K=O TO 6:i•,X5t7El5.4t/ ) ; 

H 
H 
H 

FoR"'IAT iJ9c"x1, 11 s=11 ,12,11, K'.=0-12:u,x1,1JE9.2t/ >; H 
f."ORMAT Pl0Ct.~20•"NUMERATOR, ONE l'RODUCT TER>1'"•/•X20•2dC"-"J ,/)I H 
FOR"fAT PJ!Ct.X20,"DENO>l!NATOR• ONE PRODUCT TERM:o•,/,X20,301"-"lo/H H 
FoR~AT Pl2(X5t 11 S= 11 .11. 11 • K=O TO J:••,xs t4E25.4,/ ); H 
FOR"fAT Pl3CX5•"F0R THIS RUN• LICO = "•Wll·••" , DAMPING NO. = "• H 

Rll.tu" , L= 0 ,Rll.4•" FEET• AND TUBE l.O.= 11 ,Rl}.4, 11 • 11 ,/); H 
FORMAT Pl4C8EJ0.3ll H 
FOR~AT Pl514Fl0.311 H 
FOR~AT Plb('"IAJOR BRADEN, DFANo 30X CC• p;~EUMAT!C• ON=•,F6.3• H 

... L/CQ=H ft:t.s.11 :n); H 
PROCEDURE POLY"fJCX.Y.z.x1.x2.x3,y1,y2,y3); H 

ARRAY x.v.zco.0.011 INTEGEK xi.x2.x3.n,y2,y3; al::GlN INTEGER r.Il•J.JJ. H 
K•KKtZhZbZ31 Zl•=Xl+Y!; Z2:=X2+Y21 Z31=X3+YJ; FOR I:=O STEP I J.HIL Zl H 

DO FOR J:=o STE~ I UNTIL Z2 00 FOR ~·=o STEP I UNTIL Z3 uo zcr.J.KJ:=O. H 
; FOR r:=o STEP· 1 UNTIL XI DO FOR ll:=o STEP l Ut>/TIL YI DO F"OR J:=o ~TE H 
P I Ul>./TIL X2 DO FD~ JJ:=o STEP l UNTI~ Y2 DO FOR K:=Ci STEP l J'fflL X3 DO H 

F"OR KK:=o STEP 1 JNTIL Y3 DO zc1+II,J+JJ•K+K><J:=zc1+II,J+JJ•K+KKJ+ H 
Xll•J•Kl*YCil•JJ•K<ll ENDI H 

P~OCEDURE POLYADCx.v.z.x1.x2.x3,y1,y2.Y311 ARRAY x.v.zco.0.01; H 

010 
012 
014 
016 
018 
020 
021 
022 
023 
024 
()23 
026 
027 
02a 
029 
030 
040 
050 
060 
063 
.070 
080 
090 
100 
103 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
2b0 
2b3 
270 
280 
290 
300 
310 
320 
330 
340 
3:;u 
360 

INTC:GE~ x1.x2.x3,y1,v2,y3: llEGIN INTEGER z1.z2,z3,I,J.KI REAL X~Mb· H 370 
YNUM8• Zl•=Xll IF YI > Zl THEN Zl•=Yll l2•=X21 IF Y2 > Z2 THEN z~:=y~; n 380 
Z3:=x3: IF Y3 > Z3 TH£N Z3:=Y31 fO~ 1:=0 STEP I ~NTIL ZI DO FO~ J:=O H 390 
STEP I U~TIL l2 UO FUN K:=O STEP l UNTIL ZJ DO BEGIN IF I > XI O~ J > X2 H 400 

OR ' > X3 THEN XNJM~•=O tLSE XNUMci:=xCI·J·Kl: If !>YI OR J><2 o~ K>Y3 H 410 
THEN Yt~U~~:=O ELSE YNLl'l~:=YChJ•"ll ZCI.J,Kl:=i..NlJ"f~+Y"JUM!ll DliJI E"iiH rl 

REAJCCARD~PlS,ELOVCO,JNCll•L•Nll H 
~L2: =ELOVCO•ELOVCO; EL4: =EL2•1:L2; t:Lb: =EL2*~L<+I C:L8: =EL4~C:L4; H 

FJR !:=2 STE~ l UNTIL le DO DNCll:=UN[ll*DNll-111 H 
REAulCAwu.1.FOR I:=o STEP. I lNTI~ "6 DO FOR J:=o STEP I U'ITIL 3 00 H 

FOR K:=O STEP I UNTIL 3 DO A([,J,Kll; H 
REAJICARD,/,FOR 1:=0.1.2.3,4 DO •ON J:=o.1.2 DO FOR K•=o.1.2.3 DO 

b!I.J,~JI; 
wR I TE CLINE. T ITU; Yli>ITE ILn•E ,pJJ.ELOVCO.DNC l J.L .~,; 

>IR !TE CLINt.P 11; FOR I: =O STEP l UNTIL 6 Dll FOR J 
:=0•1•2•3 UO WWITE(LJNEtP7,l•J• fO-K K:=o,1,2,3 OU A[l•J,K]); 

WRITECLINE,P2>1 FOR I•=O•l•2•3•4 DU FOR J:=o,1,2 DO ~RITE<LlNE,?7. 
J,J, FDR Kl=0'1,2'3 DO BC!oJ,Kll; WRITUL!NECSK!P Ill; 

WP.!TECPUNCH•Pl6•DNCll•ELOVCOll 
COM"IC:NT SOLVE FO~ 'IU~£R• I PRODJCT TERM. NUMC:R = ARNAY[6J: 

H 
H 
H 
H 
H 
M 

H 
H 
H 

r"OR I•=O STEP I UNTIL 4 DO FOR J:=o.i.2 OU FOR K:=o.i.2.3 DO ~i:HJFCI.J. H 
KJ:=B[I,J,~ll H 

F"OR 1:=0.1.2.3,4 DO FOR J:=1.2 Du FOk K:=o.1.2.3 DO HBUFCl•J.Kl•=DN[Jl rl 
*BHUF[l,J,Kll FOR 1:=0.1.2.3,4 DO FO~ J:=o.1.2 uo FOR K:=o.1.2,3 DO H 

H 
H 

HPOTC I .Kl •=BPOTC 1.~r+BtlUFC I •J•K l; wRITE <LINE.PIO); FOR I :=0.1,2.J,4 DO 
YIRITE<LlNE,Dl2.r.~oR K:=o.!.2'3 DO ~DUTII.Kl>; 

FOR I•=O•l•2•3•<+ DO wRITECPJNCH.Pl<+• FO~ K:=o.1.2,J DO BPOTCI.Klll M 
COM"IENT SOLVo FOR DEi/OM• ONE P~OULiCT TERM! M7:=.<+053*EL21 H 

FOR I•=O STEP I Ul>lTIL b DO FOR J:=o.J,2,3 DO FOR ~:=0•1•2•3 JO A.i>UF[I,J, H 
KJ:=ACltJ,KJ•M7; ~OLYA0(~,A~UFtA8Vf,4,2,3,o,J,J); H 

F"oR I:=O STEP l U.llT!L 6 DO FOR .i:=i.2,3 00 FOR K•=o.i.2,3 DD H 
ABurcr.J.Kl:=ONCJl*A.i>UFCI,J.K]I FOR r:=o STEP 1 UNTIL 6 DO FOR J:=o.i. H 
z,3 DO FOR K:=o,1,2,3.DO APDTlI•Kl:=APOT[!,KJ+A8\JFCl•J•Kll H 

w'~ITECLINE,PIJ>; FOR r:=O STEP l UNTIL 6 DO ·wRITECLlNE•Pl2d· FOR H 
K•=o.i.2.3 DO APOTCZ.~l>; FUR I:=o.1.<:!,3,4,5,b DO wRITECf'UNCH.Pl<+. FOR H 
K:=O•l•2•3 UO APOTCl•Klll 

COM~ENT SOLV:: FOR NU"IER• 2 PRODJCT TERMS! 
PQLYt-flJCBt!:i,8ih4•2··];4,z,:H; 
FOR r:=o STEP I U"JT!L 8 DO FOR J:=l STEP l 

UNTIL 6 DO liB! I,J,K]:=DllCJl*BB! r,J,Kll 
FDR I:=O STEP I UNTIL 8 DO FOR J:=O STEP l 

l};<f!L b DO NUMER[!,Kl•=NJMERC!,1<,J+Bbll•J•Kll 
irlRITECUNE,P31 I FD~ 1'=0 STEP I JNT!L 8 DO 

0 STEP I UrHIL 6 DO NUMER!I.Kfll FOR r:=o STEP 
•Pl4• FOR K:=O STE' I UNTIL 6 DO NUMERC!,KJI; 

H 
H 
H 

UNTIL 4 DO FOR ~:=o STEP H 
H 

UNTIL 4 DO FOR ~:=o STEP H 
H 

W~ITECLINE,P~•l• FOR K•= H 
I UNTIL 8 DO MR!TEIP~CH H 

H 
COM"IENT SOLVE FOR DENOM• 2 PRODUCT TERMS; 
POLY~ucs.B.d8t4t2•3•4•2·3); POLY~U<A·B·AB.6t3t3•4·2·J); 

H 
H 

PQLfMUCAtAtAAt6•3t3•6•3tJ); 
MJ:=.450316*E~21 M2:=.0l8250b*EL41 
FOR l•=O STEP I uNTIL 10 DO FOR J:=o STEP 

STEP j U'ITIL 6 DO ABCI,J,K·J:=Ml*ABCI,J•KJI 
FDR l:=o STEP I UNTIL ll UO FOR J•=O STEP 

STEP l U'IT!L 6 DO AACI,J•Kl•="2*AA(I,J•Kll 

UNTIL 5 DO FOR ~:=o 

uNTIL b DO F"OR K:=o 

H 
H 
M 

H 
H 
H 

PoLY'AO<AA"Af:hAA·l2.6.6.10.s,61; i)OLYADCAA.Bb,AA.12.6.6,0,4,bJ; H 
EOR Z:=O STEP I U~TIL 12 DO FOR J:=I STEP I UNTIL 6 DO F"OR "=O 'i 

STEP l U'ITIL b DO AAll•J•Kl•=DNlJl*AA[!,J,KJI H 
F"OR r:=o STEP I UNTIL 12 DO FOR J:=o STEP l UNTIL 6 DO F"OR K•=O H 

STEP i U'ITIL 6 DO OENOMCI,Kl:=DENOMC!,Kl+AA[!,J,KJI H 
llRITECUNE,P41; FOR Z:=O STEP l JNTIL 12 DO wHITE<LlNE,PB,r. FOR K H 

:=o STEP l UNTIL 6 DO DENO"f[[,K r11 FOi< I :=o STEP I U'IT!L 12 DO WKITE ( H 

4i:U 
430 
4-33 
440 
450 
<+60 
470 
480 
4d3 
490 
500 
510 
51:; 
520 
521 
522 
523 
52Lf. 
523 
526 
527 
520 
52• 
530 
531 
532 
533 
:;34 
535 
537 
53d 
53~ 
5<+0 
550 
560 
570 
580 
390 
bOO 
603 
bl(; 
620 
630 
6<+0 
bSO 
660 
670 
6d0 
690 
700 
710 
7c0 
730 
740 
750 

'° -.J 



PUNCrl;Pl<t• FOR K:=O STEP l JNTI'L 6 DO Ut::NOM[l,Kll; 
COM'lENT SOLVE FOR ,'IJ"E><AfOt<. FO~R PRODUCT TERM5; 
POLYMUCB•HtB~,4,z,3,~,z,3); POLY~U(8B,BBtdBdbt8•4t6t8t4t_6); 

FOR 1:=0 STEP l u .. TIL lb DO fDR Jl=l STEP l JNTIL 8 uO FOR K:=o 
STEP l J'IT!L 12 DO BdBBCI,J,Kl:=DN!Jl•BBBB!IoJ1Kl; 

FOR 1:=0 STEP l U'ITIL lb DO f"O~ J:=o STEP l UNTIL d iJO FOR ~==o 
STEf>. i U'ITIL 12 DO NU•HloKll=NUMlI1Kl+t>dBB!I1J1KJ: 

jRJTEtLI~EoP5); FOR Il=O STEP l UNTIL 16 00 ~RITEtLINEoP9o lo FJR 
:=o STEP l UNTIL 12 DO "Llr~lloKl); FO'i I:=o 5TEP l U'ITIL 16 uo ··i<nEt 
PU'ICH.~l<t1 FDR K:=o STEP l lJNTIL 12· DO NUM[!oKll; 

t:L81 

COM"ENT SOLVE FOR DENO'f!NAfOR1 FOUR PRODUCT TERMS; 
POLYMUC8tBt8Bt4•2tlt4t2t3>; PulY"1UCAtthAt::h6t3-•3t4tlt3); 
POLYMuCAtAtAAt6t3t3t6t3tJ); . 
PQLY~UC88t8~·3B8Ht8t4t6t8t4t6); ~OLYMU{A8tBtitA8BBtlOt5t6td•~·6J; 

~OLYMUCAAt8~tAABBtl2t6tbt8•~•6); POLYMUCAAtAdtAAA~tllt6t6tl0tSt6J; 
POLYMulAAtAAtAAAAtl2t6tbtlCtOt6); 
-'"3:=,'t74778*£~2; M4:=.0C94*t..L.:i.; "'S:=.S06b79~00-3*EL6; M6:=.24'tll)i-:i* 

FOR I:=O STEP l U'ITIL 18 Du FOR J:=o STEP l LJNTIL Y DO FOR Kl=O 
STEP l ll'ITIL 12 DO ABBBll1J•Kl:;M3*A8i!BlloJoKJI 

FOR l:=O STEP l UNTIL 20 00 FOR Jl=O ~TEP l LJNlIL 10 DO FO~ K:=U 
ST~P l UNTIL 12 DD AAB8Cl,JoKll=M4*AA3o!l,JoKl; 

FOR l:=O STEP l LJ'ITlL 22 DO FD~ Jl=O STEP l JNT!L 11 DO FO~ K:=O 
STt::P l U'ITIL 12 DO AAAB!I1JoKll=Mj*AAAol!.J1Kll 

FOR I:=O STEP l U'lrIL 24 DO FOK J:=o STEP l UNTIL 12 DO Foq K:;u 
STEP l ll"TIL 12 DO AAAA!IoJoKll=M6*AAAA!IoJ~Kl; 

5TEP 

STEP 

POLYADIAAAAoAAAb,AAAA,24ol2•12,22•llol2J; 
POLYAUtAAAA,AA8BoAAAA,24ol2ol2120•10ol2ll 
POLYADtAAAA,A38BoAAAAo24ol2ol2ol8oY112J; 
POLYADtAAAAoB3BBoAAAAo24ol2•l2olb•8ol2l: 
FO~ I:=O 5TEP 1 llNrIL 24 DO FOR Jl=l STEP l UNTIL 12 00 FO~ K:=O 
l U"T!L 12 DO AAAAII,JoKll=ON!Jl*AAAA(IoJ•Kl; 
FOR I :=O STEP l U'ITIL 24 DCi FO~ Jl=O STEP l UNTIL 12 DO FOR K:=O 
l U"TlL 12 DO DEN!I1KJ:=DEN!loKl+AAAA!IoJ•Kl; 
>IRITEILlNEoP6l; FOR I:=O STEP l JNT!L 24 l>O w~ITE<LINEoP9.I• FOR K 

:=O STEP l UNTIL 12 DO DEN!I1KlH 
FOR I:=O STEP I UNTIL 24 DD WKJTE<PUNCH,Pl41 FOR K•=O STEP l UNTIL 

12 DO DE'llloKl)I •1'lTEIPUNCrlo<"END OF llATA CARDS"»; Et<IJ, 
DATA 

,0532 2. 60. ,4 
o.o.o.o.o.o,o.o,o.o.o.o,·o,o,o.o,o,o.o.o.o,u.o.o.o,o.o.o,o.o.o.o. 
o.o.o.o.o.o.o. lo •• o,o,62J.a.o. o, 3211.s.o.o. 
o.o.o. i .• 0.0,92.Ja,o. o, ·1s1s •• a.o. J211.s.o,o,o. 
0.0,3,,0, o. 154.76•0•0• ~so,9s,o,o,o. o.o.o,o. 
o. 3.,0.0. 12.Ja,o,o,o. o.o.a.o. o.o.o.o, 
i.·,o~o.o. o.o.o.o, o.o,o.o. o.o.o.o 
o.o.o.o. o,u,o.~1.14, 0.0,-292,oJ•O• 
o.o.o.-1 •• o.o.-48.o4.o. 
0.0.-1 •• 0. o. 7.l4•0t0t 
o. i .• o.o. 4a.04,o,o.o, 
i .• o.o.o, o.o.o.o. 

o.o.o,o, 
292.03,0,0,0 .• 
o.o.o.o. 

o.o.o.o 

H 
H 
H 
H 
H 
H 
H 
H 
H 
y 
H 

H 
H 
H 
rl 
H 
H 
>j 

H 
H 
rl 
H 
H 
H 
H 
H 
H 
rl 
H 
H 
H 
rl 
H 
H 
rl 
t1 

H 
H 

7~3 
760 
770 
780 
790 
800 
810 
820 
830 
83'; 
840 
850 
8b0 
870 
880 
89U 
900 
910 
920 
930 
940 
950 
960 
970. 
9d0 
990 

1000 
1010 
1020 
1030 
10'+0 
1050 
lOoO 
1070 
1080 
1090 
1100 
1110 

3Ei>I'I LO-~"'~NT Trll5 ?<OGRAM CUMPJTl:.S COSrltGAMMAJ=DENOM/NU'IE~ FOri 
ONE· T,,o. A1•D •ouq PKODJCT TE~'IS (HYD<AUL!Cl. Ti'tE; OUTPUT INCLUDC:~ 
PUNCHED CANDS •HIC~ MAY dC:: E'"TERrn Dl'lECTLY I1'iTO THE "STE.P RESPO\ISE. dY 
NUMER!CA• lNTEG~ATlO'•--HYJ'lAULIC" PROGRAM, FOo< EAAM>'LE• THE "NJMc:::;<ATOR• 
ONE. PRODJCT TER'f" ARKAY 'iAS '+ ROWS A·•D. '+ COLUM'IS. THE Ai<~.\y rs "JNCrlEiJ 
ciY RO~. • PU~CHED CA~OS WIT~ '+ NUMciENS UN EACH CA~D: COMMENT 

THIS Vi~O&~AM ~EADS l\l 01.JE DATA CA.t<U WlTH PAR:AME.TERS 11 L/CO"• 11 UN 11 t 

11 L11 • A\JD 11 t-<0 11 : lrJrP'1AT 4tl0J 
11 COLU·'f'I'> 1-10 RATIO Of LINE LtNGTH OVEt< !SEN, SPEED OF :.OU'ID, 
2> COLUMN5 ll-2U DA'fDlNG NUMBER IRATID OF <1NEMATIC VISCOSITY 

OVt:R TJdE KAD!LJS*~2), 
31 CULUM~5 21-30 Ll'IE LEN~TH IJN FEfT), FOR NC::FERENCE ONLY• 
4) CULlJ"lNS 31-40 L!'IE lN"'E.t< DIAMETE>< <INCHES>, FOR RE~-. o:;LY. 
T~E ~fMAl~ING DATA CA~~~ ~RE TrlE LOEfF!CfE~TS FOR AR~AYS CAI A~D 

CB)~ ~HE4E GAM~A=(;*L/CQJU*2U{A}/[d]; 

AQ~At A(O:s.0:2.o:JJ, ~[0:3,0:1.o:JJ~ B~{0:6,0:2,0:6J. A~(O:b,Q:J, 
o:b1, AA!o:10.0:4,o:b1. aaaa10:12.0:4,0:121. AdB~10:14,o:s.0:121. AAbB! 
O:l6oO:b•Oll21, AAAB!O:l8o0:710ll2l• AAAA!0:20,0:8,0:l21• DNCO:oJ, 
NUM[0:1200:121. DE~l0:20.o:i2i. NU•~E~(O:ti.o:o]o DENOM[0:10.o:i:>1. A!,!Uf'( 
o:~.0:2.0:31. A8UF[O:J,0:1.o:J1. APOT!Ol5o0:3]1 BPOT!O:J,0:31; 
nu:: CARJIKI'IO=~EAJE~> ;FILE Lll<EtKI'ID=Pf<lNTERJ ;FILE PUNCH(Kll~D=?JNCftl I 
INTEGER l,J,K; QEAL ELOVCOtEL2tEL4•EL6•ELdtMl,M~,M3tM4•M5,~6,~7•L•R; 

FOR~AT T!TL(XlO•"COEFF!ClEN15 FO'< ~TEP RESP.UNSES. ONC:O Two. ANO FOU 
R P~ODUCT TER~S FO" C05rl(GA~M•l· [HYD~AULICl. •/PUNCHED OUTPUT•"•/0Xl01 
llJ(t1=ll)t/)I 

F'O~MAT Pl (/,X30t 11 A~r.?AY 1 A1·:o,/,X30•"----------11 ,/)'; 

FOPM'AT P2(/,.<JQ, 11 AQRAY 18 1·: 11 ,/,XJQ, 11----------11,/): 

FOR~AT PJt1.x20. 11 ~J~ERAT-OR. T~o ~~ODUCT T~RMS:••.1.x20.29( 11 - 1'),/); 

F"OR..,.AT P'+_(/,X20• 11 DENO"flNAfOR• Two PRODUCT TE~1v1s: 11 ,1.x20.31 ( 11 - 11 ) ,,, ; 

FO~~AT P:,(1.x.20.- 11 ...,JME~ATOih ruu~ PKOOUCT TEt-<MS: 11 ,/,i(2-0t30( 11 - 11 ),/-); 

F011'MAT P6(/tX20, 11 UEi\/O"'!Ir..rATORt FQU~ f-IROOUCT TEWMS:n,/,X.20•32(11 - 11 ) •/); 

F~R~AT P7(X5t 11 S= 11 ,ll•'' • DN= 11 .11, 11 , K=O TO J:••,xl0,4E20.4• J; 
~OR~AT P8(XS. 11 s= 1•.12. 11 'K=~- TO 6: 11 .x~.7El5.4,/ ); 
F"OR~AT P9{Xlt 11 5="·12·"• K=O-l2:: 11 ,.x.1.13E9.2t/ ) ; 
FOR~Af PlOCt.x20.··~u~~RATO~. ONE ~ROOUCT_ 1E~M: 11 .1.~20.2Bc 11 - 11 >.1>; 
F"i>R"1AT Pll (/tX20t 11 DEN0"1lt-.iATCJi.<. O\l'E PRODUCT" TERr-..: 11 .1.x20.J0( 11 - 11 J·,,); 
roR~AT ?12<X~.··s= 11 .11.•1 • 'K=O TO J:••.xs .4E2S.4,/ ); 
FOR~AT Pl3(X~•''FO~ TrilS RUN• L/C~ = ''•Rll.4•'' , 0AMPING NO. = ''• 

Rll.4,•• • L= 11 .Pll.4t 11 FEET. A~D ruaE 1.0.= ••,kll.4•'' .••,/); 
fO~~AT Pl418El0,3); 
FOR"Al PlSl4Fl0.3ll 
FOR~AT Pl6( 11 "'1A.JOK H~AJEN• DFANt 30.X. CC, tiY0RAULlC• DN= 11 ,F'0,3• 

11 • L1Co= 11 F10.1,u :tfJ; 
PRDC~DURE POLY~U(.x..v,z,x1.x~ • .x.j,fl•Y2.YJ); 

ARRAY x.l'.Z!OoOoUJ: I'<TEGER x1.x2.x3,yi,y2,y3; dEGI~ INTEuEil !1Il•J.JJ. 
KoKK.f1'Z21Z31 Zl:=Xl+Yl; l2:=U+Y2; ZJ:=xJ+Y;,; FOR r:~o ~TEP l Jl•TIL Zl 

QO FU~ J:=o STEP l LJNTIL Z2 DO FOR K:=o STEP l UNTIL Z3 DO ZlloJ•KJ:=o. 
I FO'? I:=o STEC l LJNTJL XI Du FOR ll•=O snP l UlllTIL YI DO FOR J:=o STE 
" l UlllT!c X2 JO FO' JJ:=o STEP l UNTI. Y2 DO FOR ~:=o STEP l UNTIL XJ DO 

FUR ~~:=o STEP l JNT!L Y3 DO Zll+!IoJ+JJoK+KK]l=£!I+IIoJ+JJ,~+~~J+ 
A!IoJ.~l*YlII•JJoK~ll ENUI 

P~OCEUURE POLYAU(x,y,z,.x.1 • .x.2 • .x.3,v1.v2.vJ>; AQRAY x.v.zco,o,OJ; 

L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 

010 
012 
0 I'+ 
Olo 
OB 
020 
021 
022 
023 
024 
023 
02b 
027 
028 
02~ 

030 
040 
050 
060 
063 
070 
OtlO 
090 
100 
10'> 
110 
120 
130 
140 
150 
loO 
170 
lbO 
190 
200 
210 
220 
230 
232 
23'+ 
23b 
2Jb 
240 
244 
240 
250 
200 
270 
2bU 
290 
300 
310 

'° 00 



INTC:GER x1.x2.x3,y1,v2.v3; dE'3l1~ INTEUt.~ z1,zt!.lJ·l·J·I(; REAL X.~-UMEst 
Y'IUM8: .Zll=Kl: IF YI > ll PiEN Zll=Yll Lc•.=l<21 IF Ye.> Zi! lHC:!ll Z2•=Y21 
Z3•=x3: IF YJ > l3 THE" lJ:=Y3: FuR 11=0 $Ti:.P 1 UNTIL ll OD ·Foq J:=o 
STEP 1 UHIL Z2 DO FOR Kl=O STEP l Ll"TIL ZJ DU jjEG!N IF I > Xl D'< J > X2 

OR K > X3 THEN x;~J"ll:l:=O ~LSE XNU"4tH=•U•J,K];. IF l>Yl OR J>Y2 <l~ K>O 
THEN Y .. u~B•=O ELSE Y\IU"fiH=Y[l•J•Kll zc1.J.Kl•=l<NlJ·~l:l+)·\IUM1:1; ENDI E'lD; 

. QEAJ(CARO,Pl5oELOVCJ,O"ClloL•411 
DNfOJ:=llFOR I:=2 STEP I U\ITIL 8 DO D\fl.IJ:=UNCll*DNCI-111 
EL2•=ELOVCO*ELOVCO; ~L4:=EL2*EL21 ~Lb:=EL2* EL41 EL8•=EL4*EL41 

REA)(CAR0.1.FOR l:=o.i.2.3,4,5 . .,D FOR J:=u.i.2 IJO FOi'< K:=o.1.2.J 
00 ACI,J•Kll I 

REAO!CARu.1. ;o~ 1:=0.1.2.J 00 FOR J:=Ool DO fOR K•=O•l·2·3 DU 
1:1£ l•JoK I U wRITE !L!"iEtTITL> I WRITEILl"t..PlJoELOVCOtUN[ l I •L•~I; 

WQITEIL!"ibPll: FOR I:=o.1.2.J,4,5 00 FOR J:=o.1.2 ilO wlHTEILI~E.P7 
.r.J. FO~ K•=o.1.2.3 00 A[IoJtKDI 

w<HTEIL!NEoP21; FDR I:=Otlocd DO FOR J:=Ool llO wRITE!Ll\IEo~"f.IoJo 
FOR K:=O•lt2.J 00 3Cl•JtKlll WRITE!LI'<"i:.[SKIP llll 

wQITEIPU\ICrloUlboO'l!lJoELOVCUI: 
CDM"'ENT SOLVE FOR 'IUMER• 1 PRODUCT TE~M. NuMER= ARRAY!BJ: 
FOR I•=Oolo2o3 DO FO~ J:=Ool DO FU~ K:=o,1,2,3 uO BEGI~ odJF"l!oJor\J 

:=UNCJJ*3!IoJoKJ; 3POTlioKJ:=dPOTCioKJ+~BUFCI,JoKll E~OI 
wQlTE<LINE,PlOI: FOR I:=o.1.2.J JU wRITE<LINE.Pl2·I· FOR <:=0.1.2.3 

DO oPOTIIoKJI: FO~ I:=O•lt2oJ DO wRITE!PUNCHo~l4o FOR K:=O•lo2o3 UO 
BPOT[ I or\)): 

COM~ENT SOLVE FOR DEND~, ONE ~ROi>UCT TERMI M7:=.4053•EL21 
FOR I:=Otlt2t3t4o5 DO FOR J:=Oolo2 DO FO~ Kl=Oolo2o3 DU A8JF!loJoKJ 

:=M7*All•JoKll PDLYAulooA~JF.ABUF.J,1,3,5,2,311 
F6R I:=o.1.2,3,4,5 DO FOR J:=o.1.2 uo FOR K•=o.1.2,3 DO dEGI~ A~JF[ 

l•JtKJ:=DN!J)*ABUF[IoJoKll APOTCloKJ:=A~Ollio~l+ABUF!IoJor\ll E~JI 

o'lITE<L!NE.~llll FOR .r:=o.i.e,3.~.!:> 00 wRITEILINEoP12.!· FOil r\•=0.1 
•2•3 DO APOl!IoKlll FOR I:=Oolt2t3o415 00 ~RITElPUNCH,Pl4o FOil <•=Oolo2o 
3 00 ADQT!loKlll 

COM~ENT SOLVE FOR NUMEilo 2 PRODUCT TERMS; 
~OLYMlJ(d.a.sa.3.1,3,3,1,31; . 
FOR I:=o.1.z,3,4,5.b JO FOR J:=o.1.2 00 FOR (:=0.1.2,3,4,5,b DO 

NUMERII•<J:=NuMER!ItKl+ONCJl*d~!ltJtKll 
•RITE<LINEoP311 FOR I:=Oolo2t3t4o5tb 00 w~ITE<LI~EoPooI• FO'l Kl=Oo 

lo2t3o4t5tb DO NUMER!IoKlll rOR I:=Ool•2o314o51b DO >RITE!PUNCH,?l4o FOil 
K:=o.1.2.3,4,5,b 00 NuMER[I,KJll 

COMMENT SOLVE FOR DENOMt 2 PRODJCT TERMS! 
POLYMulAtBoABt5t2•3·3·1·311 POLY~UIAoAoAA•5·~·3,5,2,J11 

Ml:=.4503lb*EL21 ~2:=.01B250b*EL41 
FOR I:=o STEP 1 UlllTIL 8 o·o FOR J:=o.1.2,3 Du FOR K•=O STEP 1 U'ITIL 

6 00 ABCitJtKJ:=Ml•AB!IoJt~ll 
FOR I•=O STEP 1 Ll"ITIL 10 DO FO'l J:=o.r.2,3,4 00 FOR K:=o STEP 1 

UNTIL .b i:IO AA! !"oJ•< J:=M2*AA! I oJtK II 
POLYAD(AAoA~oAAoIOt4t6t8t3o611 ?OLfADCAAtdBoAA110o4obo6o2•611 
FOR I :=O STEP I UNTIL 10 DO FOR J•=O STEP 1 uNTIL 4 DO FOR ~-==o 

STEP 1 U~TIL 6 DO i:IENU~[IoKJ:=OENOM[loKl+ON!JJ•AAII•JtKll 
ioliHTElLINEoP41 I FOR 1:=0 SlE? l JNTIL 10 DO w'RITE<LINEoP8tlt FOR 

K:=o STE" 1 U·~TIL b DO DENOM!IoKJ)I FDR I:=O STEP 1 U"ITIL 10 DO iiiHTEI 
PUNCH,~!*• FOR K:=O STEP 1 UNTIL 6 DO DENOM!lor\]11 

CGM·~ENl SOLVE FOR NUofER• 4 flRODuCT TERMS; 
POLYMlJ!BBoB~o58b~t6•2tbo6o216ll 
EOR I:=o STEP 1 UNTIL 12 DO FOR J:=o STEP 1 LINTIL 4 DO FOR 'i(l=O 

STEP 1 U~TlL 12 DO 'IUM[IoKJ:zNuM!IoKJ+ON[JJ*B8B~IIoJtKll 
•RlTE<LINE.P5ll FOR i:=o STEP l uNTIL 12 00 iolRITEILINEtP9.I• FOR 

K:=o STED 1 uNTIL 12 DD NU"flroK))I FDR I•=O STEP l UNTIL 12 00 ollITEI 
PUNCHoPl4o FOR Kl=O STEP 1 JNTIL 12 DO NUM!IoKJI I 

COM~ENT SOLVE FOR DE"IOMo 4 PRODUCT TERMS! 

L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 

320 
330 
340 
350 
300 
370 
430 
440 
4'+5 
450 
460 
470 
4b0 
490 
:iOO 
510 
520 
523 
:i,jQ 
540 
550 
560 
5·10 
573 
51!0 
590 
bOO 
blO 
b20 
b3·0 
b40 
645 
&SO 
&bO 
670 
b60 
690 
700 
703 
710 
720 
730 
740 
750 
7b0 
770 
780 
790 
800 
810 
820 
823 
tl30 
840 
850 
8b0 
B70 
81!0 
885 
8"0 

POLYMU<~•8•Adt3•l•l•l•l•J); PULf~U(A•~•ABtSt~t3•3tltJ); 
POLY~U<A•AtAA·~·l·l·~.2.JJ; POLYMU<Aa.b~.A~~~.b.Je6tbt2•b>; 
POLYMU(AAtb81AAH~tl01416t6•2tb); POLY~U(AAtAB,-AAdtlOt-t6t8t3t6J; 
POLYMU!AA,AAoAAAAolOi4061lO•'+•bll 
M3:=.47:+77t,.*EL2; '-'!+:=. 0294*fL4; MS:=. 50bb71ili'-3*EL6; '"fb: =.244l I •-5*ELb; 

F"OR I:=O STEP 1 U'ITIL 20 U(J foil Jl=O STEI' l .UNTIL d 00 FOR ~==o 
STEP 1 U\ITIL 12 DO 3i:.~1N IF I LEU 14 AND J LEU 5 THEN A~BbCioJoi<J:=M3• 
ABtl~[I•J•r\11 IF l "EU 16 A~D J LEU 6 TH~N AAcd[IoJoKJ:=M4§AAdd[ItJoKll 
IF I LEQ lt! AND J _EU 7 Trl~N AAAt!CloJoKJ:=MS*A~AYCioJoKll AAAA!ItJoKJ:= 
M6*AAAAII•JoKll E~D; 

POLfADCAAAAoAAAS,AAAAo20oAol2ol8o7tl~ll POLYAU(AAAAtAAtlcoAAAA.ZOtt!t 
l2olbobol211 fl0LYAJ!AAAAoA9ddoAAAAo20obol2ol4o5ol211 DOLYADlAAAAobYBoo 
AAAA•20tBol2ol2o4ol211 

FO'l I:=o STE~ 1 JNTIL 20 DO FOR J:=o ST[~ l UNTIL 8 DO FOR ~·=o 
STEP 1 U~TlL 12 00 DC:NII1i<J:=nEN!IoKJ+IJN!JJ*AAAA!ItJ•i<ll 

0RITE<LINE•u51; FOR I:=O STEP 1 UNTIL 20 DU •RITEILINEoP9,Io fO~ 
Kl=O STE" l U·~TIL 12 LIO DE"CI.~111 FO~ l:=O STt:? 1 UNTIL 20 uo WRllE< 
PUNCHoPl4• tOR K:=o STEP l JNTIL 12 DO DEN[loKll: ~iHTE(PU"ICrlo<"i:.1"D OF 
UATA CARJS">l I ENJ, 

DATA 
.0137 2. bO. .40 

o.o.o.o.o.o,o.o.o.o.o.o.o.o.o.o.o.o.o.o.o.o.o.o. o.o.o. i.. o.o.b2.Ja.o, o. 321.1~.o.o, 

o.o.J .• o. o. 12~.16.0,0, J21.1s.o.o.o, 
o. 3~.0.0. 62.Ja.o.o.o. o.o.o.o, 
i •• o,a.o. o.o.o.o, o.o.o.o 
0.0.0.-1.. 0.0.-40.9,0. 
o. i .• o.o. 40.9.o,o.o. 

0.0.-1 •• 0. o.o,o.o, 
1 •• 0.0.0, o,o.o.o 

L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 
L 

900 
910 
920 
.,Ju 
~40 

9;;u 
\160 
9-ro 
9tl0 
~90 

lOOU 
1010 
1020 
1030 
1040 
1050 
lObO 
1070 
lObO 

"'° '° 



C---- SEP RESPONSO:S ,;IT>t TIME-DEPE'IDENT l'ARAM~TE.<S, PNEU·~AT IC CASE. S 
C Alf>•3.3J. ~[-..,,C,JJ. S 
c s 
c----c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c c 
c 
c 
c 
c 
c 
c----
c 

T>tlS PROGRAM USES 4 OR ~ DATA CARDS TO l'KESCRIBE PARAMETERS SUCrl 
AS STEP SIZE, LENGTH OF RUN ITl~E), ETC. THEN A SEKIES OF DATA 
CARDS wHICH rlAVt: dEE\I GE1\IERATED clY THE. P~OGRAM "PNEUMATIC" ARE 
Rt::AD INTO ARRAYS I Ah I 8 l• IC h [ D h IE l .CF] Tll PROVIDE THE NECt::SSAKY 
co::FFICI~NTS FOR SUclROUT!NE "DER~"UN". 

DATA CARD 1: THIS IS A HEADER CARD TO IDENTIFY ThE RUN (A80J. 

DATA CA<lu 2: 

s 
s 
s 
s 
s 
s 
s 
s s 

ll NUM3ER OF RUNS• IN COLJMN lo FOe<MAT<Ill. MAX=3. S 
2) IF RUN l USES ONE Pt<ODJCT TERM FOR COSrllGAMMA)o PJTA "l" S 

IN COLUM"I 11. hO PRODUCT TERMS, PUT A """ IN ll. FOUi< PROL>UCT S 
TERMS, PUT A "3" IN COLUMN 11. S 

3) PUT A !, 2, OR 3 IN 21 FOR TrlE SECOND RUN, IF APPLlCA~LE. S 
4) PUT A l • 2, OR 3 IN 3I FOR THE Hf!RD RUN, IF APPLICABLE. S 
5J NO. OF STEP SIZES (PSI> FOR EACrl kJN, CLMS 41-42• II2>. 
6) ~AX ORDI"IATE FOR PLOTT::R, CLMS 51-60• FORMAT F!O. 

s 
s 
s 

DATA CARD 3: S 
lJ RUN3E-KUTTA STEP SIZE FOil ONE-PRODUCT TERM RUN, C~MS 1-10 S 

FORMAT F!O• TrlEN NO. OF R-K STEPS IN CLMS 11-20, FORMAT 110. S 
2> STEP SIZE FOR TwO-PRODJCT TERMS, NO. OF R-K STEPS• 21-40. S 
3) STEP SIZE FOR FOUR-PRO~UCT TERMo• NO. OF R-K STEPS, 41-bO.s 
4) ATMOSPrlERIC PRESSURE (PSIA), COLUMNS bl-70, FORMAT F!O. S 

DATA CARDS 4 AND 5: 
l> FIRST B STEP SIZES• IN PSIG, FORMAT BFlO. 
2> IF ~ORE THAN 8 VALUES• PUT THEM ON DATA CARD 5. IF Nor 

MORE THA"I 8 VALUES, LEAVE DATA CARD 5 OUT. 

s 
s 
s 
s 
s 
s 

DATA CARDS b THRO~GH 123 ARE AS FOLLOwS: S 
1) 6 THROUGH 10 GO INTO !Al• NUMERATOR, ONE PRODUCT f~RM. S 
2) 11 THROUGH 17 GO INTO (BJ, DENOMINATOR, ONE PRODUCT TERM, S 
3) 18 THROUGH 26 GO INTO [CJ, NUMERATOR. Two. PRODuCT TERMS. s 
4) 27 THRU 39 GO !"'HO [DJ, DENOMINATOR. Two PRODlJCT TERMS. s 
5> 40 THRU 73 ~O INTO !El• NUMERATOR, FOUR PRODUCT TERMS. S 
6) 74 T~RU 123 GO INTO [Fl• DENOMINATOR• FOUR PRODUCT TERMS. S 

s 
TO REVERT TO TrlE LINEAR "BROWN" MODEL• USE A VERY SMALL STE'P SIZE. S 

s 
C---- AL." PRESSURES ARE NORMALIZED BY lJIV!DING BY "PATM", 
c 

s 
s 

CO~MON Y <I 02) S 
CO~MON/GOAL/~TllOl,21•STEP<3>•N~K,(3),NPM<31tKl,K2oK3,K4•CC,PAoPB• S 

2PATMtNPV,NRU~StArlEAD(B0) S 
CO~MON/FORM/A(201•B<281•Clo3>,D<91),E(221> 
CO~MON/SAGE/>1325) 
CO~MON/BL'OB/ YMAX I 
Dl~ENSION AHOLD(l6),IHOLDl31,IGOIJ),ARY<b> 

s 
s 
s 
s 

010 
020 
030 
040 
050 
060 
070 
080 
090 
100 
110 
120 
130 
140 
150 
160 
170 
180 
l~O 

200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
30u 
310 
320 
330 
340 
350 
3b0 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
482 
484 
490 
500 

DATA IG0/6ol2o24/ 
JATA ARV/'A 1 • 1 8 1 , 1t•',10 1 ,1£1, 1 F•/ 
~EADl~o200J IArlEAOIJl,J=l•80J 

200 FO~MATldOAlJ 
READ I'>• 300 I \IRUNSo lHOLD I l J • IHOLJ (2) o!HOLD <3J, l'IPV, YMAXI 

s 
s 
s 
s 
s 

300 FORMAT(4(!loill,12•8X•fl0,JI S 
~EAD <5,400 J STEP Ill, ~e<KS I l) 'STEP <2> •NRKS <21,STEP13) ,NRKS (3) •l'ATM S 

400 FORMATl41Fl0.3,Il0J) . S 
READ<5•420> IAHOLDIJJoJ=l•8> S 

420 FORMAT(8F!0,3J S 
IF (,~PV.GT ,8) REA~(S,420) (AHOLD (J) ,J=9, lb) S 

C---- PEAD I~ ARRAYS !Al THROUGH IFJ, S 
[)0 20 J=l ·5 s 
K=4 6 (J-1) S 

20 READ<5•430) (A(K+LJ oL=l,4J S 
DO 25 J=t.7 S 
K=4•(J-l> S 

25 REALl 150430 I (o <K+LJ •L=l •4> S 
430 FORMATIBEl0.3> s 

DO 30 J=J o9 S 
~=7•(J-ll s 

30 READl5o430> IC<K+LJoL=J,7J S 
DO 35 J=l .!3 S 
K=7• (·J-1) S 

35 READIS,430) <DIK+LJ •L=lo7) S 
DO 40 J=l•l7 S 
K=l3•1J-l> S 

40 REA015t430> <E<K+LJ •L=l.!31 S 
uO 45 J=1.2s s 
~=13•(J-l) s 

45 READl5•430) IF(K+LloL=l•l3> S 
WRITE<6o450> <AHEAD<J> ,J=l,80) S 

450 FORMAT (!HltlOX•BOAl) S 
wRITEl6•600) NRUNSoNPV, PATHo Y~AXI S 

600 FORHAT<l6X•'THERE wlLL BE '•llo' RUNS OF '•I2o' PRESSURE VALUES EA S 
2CH· ATMOSPHERIC PRESSURE'•l•l6Xt 1 1S 1 ~F6,3o' PSIG. FOR PLUTTING S 
]PlJ~POSES, YM"X. = ··,F:;.2. 1• • 1·,1.11x.aoC'= 1 )t/) s 

C---- wRITE OUT ARRAYS (AJ THROUGH IF], S 
WR(TE(6•700> ARY<!> S 

700 F'O~MATC20Xt 1 ARRAY c•·.A1.l'J:· .. ,,,2ox.,•---------- 1 .1> s 
DO 60 J=l•5 S 

510 
513 
520 
530 
540 
550 
560 
570 
560 
590 
600 
610 
620 
630 
641i 
650 
bbO 
670 
680 
690 
700 
71U 
720 
730 
740 
760 
770 
780 
790 
BOO 
810 
820 
830 
840 
850 
860 
870 
880 
890 
900 
910 

K=4•(J-l) 
60 WRITE16t720> IAIK+L>•L=l•4> 

720 FORMAT(4E20.3) 

s 9~0 

s 930 
s 940 

wRITE16t700> ARY<2> 
DO 65 J=i,7 
K=4• IJ-1) 

65 •~ITE<6•720> <BIK+L>•L=l•4> 
vfRITE<6•700> ARYl3J 
DO 70 J=!,9 
K=7• IJ-1) 

70 l'llllTE<6o740) IC(K+L>•L=l•7> 
WRITE(b•700) ARY(4) 

740 FORMAT17G!5.~) 
DO 75 J=t.13 
K=7• IJ-1> 

75 '1RITE<b•740) <DIK+L> •L=lo7> 
wR!TE(6t700) ARYl5> 
DO 80 J=l • 17 
K=l3•(J-l) 

s 950 
s "9b0 
s 970 
s 980 
s 990 
s 1000 
s 1010 
s 1020 
s 1030 
s 1040 
s 1050 
s 1060 
s 1070 
s 1080 
s 1090 
s 1100 

-1-'
o 
0 



80 1.rR!TE(6,760l <E<K+LJ.L=ld3l 
w~ITE<6o700l ARY<6l 
DO 85 J=l,2~ 
K=l3*(J-ll 

d5 WRITE(6,760) CFCK+L) •L=l.13> 
760 >O"MATC13Gl0.3l 

DO 100 JJ=l•~RUNS 
DO 100 r<K=ldPV 
PA=AHOLDCKK)/PATM 

s 1110 
s 1120 
s 1130 
s 1140 
s usu 
s 1160 
s 1170 
s 1180 

c---- K3 CONTROLS THE RECOMPUTING OF THE [(,] ARRAY IN DE~FUN. 
s 
s 
s 

11~0 
1200 
1210 

c----c c----

100 

c----c 

c----10 

K3=4 
Kl=! DENOTES ONE PRODUCT TERM. ~ DENOTES Two PRODUCT TERMS• 
ANJ 3 DENOTES FOU'R PRODUCT TERMS. 
K2 IS THE ORDER OF THE DIFFERENTIAL EQUATION. 
Kl=lrlDLDCJJ) 
K2=IGO !Kl> 
CALL GOTEAM 
C0"1TINUE 
STOP 
END 
SUdROUTINE DERFUN 
!P~EUMATIC CASEJ AC6•3t3l• BC4•2•3l 
QUTPUT "PB" IS 1"1 YCI02>, "Pi:lDOT" IS IN Y<lOO>. 

s 
s 
s 
s 
s 
s 
s 
s 
s 

1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 

DE 0010 
DE 0020 
DE 0030 

CO~MON Y CI02l DE 
CO~MON/GOAL/>TC!Olt2),STEPC3>•N"KSC3),NPM(3),Kl•K2,K3,r<4,CC,pA,?B, DE 

2PATM,NPV,NRU~S•AHEADC80) DE 

0040 
0050 
0060 

CO~MON/FORM/AC20),BC28),C!63),DC9l>•E<22l> DE 
CO~MON/SAGE/>(325> DE 

0062 
0064 
0070 Ol~ENSION G<•2> DE 

GO TOC10•20·30J, Kl DE 
ONE PRODUCT TERM FOR COSHCGAMMA), DE 

0080 
0090 
0100 K3=10+l DE 

!F<KJ,LJ,4) GO TO 12 DE 0110 
K3=0 DE 0120 
al=ABSCY<lOO>l DE 0130 
B2=t!l•Bl 
B3=Bl*B2 
G!ll=AC3l*B2+AC4l*B3 
G(2)=AC7>•B2+A(8)*83 
GC3>=AC9)+A(l0l*8l+A(ll>*~2 
GC4l=ACl3l+A(l4l*Bl 
G(Sl=A(l7) 
G<6l=8(3)*82+B(4J•83 
G (7J=8 (7J *B2+B (8J •BJ 
G(Bl=B<9l+l:IC10l*Bl+8(lll*B2+tl(J2l*B3 
G(9)=B<l3)+8(14)•81+3(15l*b2+B(l6l•83 
GC10l=o<l7)+3(18l*Bl+B(lQ)*82 
G ( 11 l =8 <2ll +B (22l *i:ll 

DE 0140 
DE 0150 
DE 0160 
ilE 0170 
DE 0180 
DE 0190 
DE 0200 
DE 0210 
DE 0220 
DE 0230 
DE 0240 
DE 0250 
DE 

G(l2l=8!25l DE 
12 DO 14 K=9.l3 DE 

0260 
0270 
0280 

14 Y(Kl=Y<K-7l DE 
Y(l4)~(PA-G(6)*Y<l>-G<7l*Y<2J-G(8l*YC3J-G(9)*YC4J-GC10l*YC5l-G<lll DE 

2*YC6lJ/GCl2> DE 
Y!l02J=G!l)*Y(l)+GC2l*YC2l+G<3>*Y(3)+G(4l*YC4l+GC5>*YC5> DE 
YCIOO>=G<l>*YC2>+GC2)*YC3)+GC3)*YC4)+G(4)*Y(5J+GC5l*YC6> DE 
RETURN DE 

0290 
0300 
0310 
0320 
0330 
0340 

C---- Ti(O PRODUCT TERMS FOR COSHCGAMMA>. 
20 1(3=1<3+1 

IFCK3,LT.4> GO TO 22 

DE 0350 
DE 0360 
DE 0370 

KJ=O DE 0380 

Bl=AcsSCYC100)) 
B2=tsl*Bl 
~3=81*82 
~4=8!<>83 
85=1:11*84 
~6=1:noB-5 

GCll=CC5>•B4+CCbl*B5+CC7l*ts6 
GC2>=CC12l*B4+CC!3l*BS+CCl4l*36 
G<3>=CC17l*o2+Cll8l*33+CCl9)*84+CC20l*85+CC2l>*Bb 
G<•l=CC24l*d2+CC25l*d3+CC26l*B4+CC27)*85 
GC5l=CC29J+CC30>•Bl+CC3ll*B2+CC32l*B3+CC33l•B4 
GC6l=CC36l+CC37>•dl+CC38l*l:S2+CC39l*B3 
GC7>=CC43l+CC44)*8l+CC45l*B2 
GC8l=CC50l+CCSl>•Bl 
GC9l=CC57) 
S(lQ>=D<S>*d4+0C6>•B5+0(7)*B6 
GClll=DC12l*o4+DC13>*B5+DCl4)•86 
G(lcl=DC17)*32+D<l8)*33+D<l~>•a4+U(20l•H5+0(2ll*B6 

G<l3J=D<24l*a2•D<25l*B3•D<26J*cs4+U<27l*b5•D<28><>B6 
G(l4)~DC2Ql+J(30)*Bl+DC3ll*82+0C32)*d3+DC33)*84+DC3•l*B5+0(35J•86 

GC15>=DC36l+)(37l*Bl+DC38)•cs2+DC39)*83+DC40)*84+0(4ll*d5+D(42l*B6 
GClbl=DC43)+il(44)*Bl+DC45l<>B2+DC46J*B3+DC47l*~4+0(4d)*d5+ilC49)*~b 
GC17>=DC50J+JC~ll*8l+DC52l*l:S2+DC53>*B3+DC5•>*84+DC55J*B5 

GCl8>=DC57)+)(58)*Bl+DC59l*B2+DC60)*83+DC6ll*b4 
GC19l=DC64l+D!b5l*tll+DC66)*82+DC67l*83 
GC20>=DC7ll+OC72)*8l+DC73l*d2 
GC2ll=DC78l+DC79l*Bl 
GC22>=DC85l 

22 DO 24 K=lS,25 
24 Y<K>=YCK-13l 

YC26l=(~A-GClO>*Yll>-GClll*YC2J-G(l2l*YC3l-GC13>•YC4)-G(l4l*YC5l-
2GC15>*YC6l-GCl6l*Y(7)-GCl7l*Y<B>-GCl8l*YC9l-G(!9)*YClO>-GC20>• 
3Ylll)-G(2l>*Y<l2ll/G(22) 

YCl02>=G<l>*Y<l>+GC2l*Yl2l+GC3l*YCJ>+GC4l*YC4l+GC5>*Y(5J+G(bl*1(6J 
2+GC7l*YC7)+GC8l*YC8l+GC9>*YC9> 

YCl00l=GCll*YC2l+G(2l*Y(J)+GC3l*Y(4)+G(4)*YC5)+G(5)*Y(b)+G(bl*Y(7) 
2+GC7l<>YC8>+GC8l*YC9)+G(9l*YClO> -
~ETURN 

C---- FOJR PRODUCT TERMS FOR COSHCGA~~Al. 
30 K3=K3+1 

IF(KJ,LT.41 GO TO 32 
~3=0 

Bl=ABSCYClOO>> 
82=81*81 
83=81*~2 
B4=Bl*83 
95=81•84 
B6=Bl*B5 
97=81*86 
o8=Bl•B7 
3Q=Bl*B8 
310=61*89 
Bll=Bl*BlO 
Bl2=Bl*dll 
GCl>=EC9>*88+EClO>*B9+E<lll*BlO+ECl2>*Bll+EC13l*812 
GC2l=EC22>*BB+EC23>*39+EC24l*BlO+EC25l*Bll+EC26>*Bl2 
GC3J=EC33>*1:l6+EC34l*37+EC35l*88+E(36l*b9+E(J7>*910+EC38J•Bll+EC39) 

2*812 -
GC4l=EC46l*B6+EC47l*S7+E(48l*B8+EC49l*tl9+El50l*Bl0+E(5l>*Bll+ECS2> 

2•1:ll2 

DE 0'.>90 
DE 0400 
DE 0410 
DE 0420 
DE 0430 
DE 0440 
DE 0450 
iJE 0460 
DC: 0470 
DE 0480 
DE 0490 
DE 0500 
DE 0510 
DE 0520 
DE 0530 
DE 0540 
DE 0550 
DE 05b0 
DE 0570 
DE 0580 
DE 0590 
ilE OoOO 
DE 0610 
DE Oo20 
DE 0630 
DE 0640 
DE 0650 
DE 0660 
DE 0670 
DE 0680 
DE 0690 
DE 0700 
DE 0710 
DE 0720 
DE 0730 
DE 0740 
DE 0750 
DE 0760 
DE 0770 
DE 0780 
DE 0790 
DE 0800 
DE 0810 
DE 0820 
DC. 0830 
DE 0840 
DE 0850 
DE 0860 
DE 0870 
DE 0880 
DE 0890 
DE 0900 
DE 0910 
DE 0920 
DE 0930 
DE 0940 
DE 09'j0 
DE 0960 
DE 0970 
DE 0980 

I-" 
0 
I-" 



Gl5l=E!57>•B4+E!58>•35+El5~>•B&+E!&O>*B7+E!6ll*B8+E162l*B9+i::l&3>* 
2310+E!&4l•Bll+E!65l•Bl2 
S!61=E1701*B4+E!7ll•85+E!72l*B&+E!73l*87+E!74l*3B+E!75l*B9+E!7bl* 

2Bl0+t:l771*1lll 
Gl7l=E1811*82+t:l82l•33+E!~31•34+t:!841*85+El851*~6+El8bl*B7+E!871• 

298+E1881•89+E!89l*Bl0 

2~~;& 7~~n1:~2+E 19:» •93+E !~&> *B4+E !971 •B5+E !98) •%+E 1991 •B7+i:: ( 100> • 

<> <•>=EI 105) +;::I 106) *Bl+i:: < 107) *B2+E ! 108> •i:l3+t: < 109> *B4+E ! 110> *c>S+ 
2E!l1li*b6+E!ll21*B7+E!ll3l~i:l8 
G!lOl=EflJ8l+E!ll9l•Bl+E!l20>•82+E!l2ll•B3+E!l22>*B4+E!l23)•85+ 

2Ell24) •Br,+E: 1125) •87 
Gllll=E!l3ll+E!l32>•Bl+E!l33l*d2+Ell34l*B3+E!l35>*84+E!l3&l*b5+ 

2Ell37> *86 
·G 1121=EI1441+EI1451 •Bl+E !1461*B2+EI1471 •o3+E ( 1<+8) *84+E 11491 •as 
G!l3l=E1157l+EllS8l•lll+EllS9)•82+Ell60l•B3+Ell6l)*B4 
Gll4l =E ( 170.> +E 1171) •Bl+E I 172> •t!2+E I 173) •!:13 
G!l5>=Ell83l+E!l84l•3l+Elld5)*82 
G!l&l=Ell96l+Ell97l•Bl 
G!l7l=El20\il 
G!lBl•f(9)*8B+fll0>•39+Fllll*8lO+Fll2l*t!ll+f (13l*Bl2 
Gll9l=Fl221*38+F!23i•B9+Fl24l*Bl0+F!25l•dll+F!2&1*i:ll2 
G !20) =F 1331 *36+F f341•97+F1351•i:lB+F13&1*!:19+F137> *BlO+F (381 •ol l+ 

2F! 39) •812 
G !21 I =F (461 *36+F !471 •B7+Fl4BI •BB+F (491 *B9+F ISOI •t>l0+F!51 I •BU+ 

2F(521•Bl2 
Gl221=Fl571•34+F!581•85+FIS91*86+F!601*c>7+F(611*&8+F!621"3>+ 

2F1631•BIO+Fl541*Bll+F1651"~12 . 
Gl231=~170l*34+F17ll*B5+Fl721*66+F1731*i:l7+F1741*BB+F(751*B~+ 
2Fl761•BlO+F!771*Bll+~(781*Bl2 

G 1241=F18ll *32+F !82i ··a3+F !83J •B4+F (tl4) *B5+1-' 185) *tl6+F lil6) •cs7+ 
2FIB7l•B8+Fl8Bl*B9+F189l*BlO+Fl90l*Bll+F!9ll•Bl2 

Gl251=Fl941*32+F195i*B3+Fl961*il4+F!97l*BS+F1981*B&+F!99l*97+ 
2F ( 100) •!l8+F ( 101l*B9+F(1021*BlO+fI1031 *Bl l+F ! 1041 *i:H2 

G 1261=FI1051+f"<106> •9l+F! 1071.*B2+F·I 10.8) •B3+F ( 1091•84+F(110 I *85+ 
2F!lll1*86+F!ll21*B7+F!ll3l•98+Flll41*&9+F!ll5l•Bl0+F!ll6l*oll+ 
3Flll7l*tH2 

G!27l=Flll81+F1119l•Bl+Fll201*62+F!l211*63+F(l22l*B4+F!l23l*BS+ 
2Fll241*d6+FIJ25l•B7+F1126l*B8+Fll271*B9+Fll281*810+F!l291*3ll+ 
3F 11301·*!112 

G 128) =F ! 1.Jll +FI 1321•Bl+F!1331 *B2+F ( 1341•B3+F!1351*B4+F!1361 *BS+ 
2F!l37i•B&+F(l3Bl*87+F!l39l*BB+Fll40)•89+F<l4ll*810+F(l42l*oll+ 
3F!l43l*Bl2 

Gl29l=F!l44)+F!l45l•8l+Fll46l*B2+F!l47l*d3+F(l48l*B4+F!l491*85+ 
2F!lSOi•B6+F115ll*B7+F!l52l*88+F(l53l•89+Fll54l*BIO+F!l~5l*oll+ 
3F 115&i *812 

Gl30l=Fll571+Fll58l•Bl+Fll59l•B2+F(l601•il3+F(l&ll*B4+F!l62l*BS+ 
2F(l63l*B6+Fll64l•B7+Fll6Sl*BB+Fll661*B9+F!l67l*BlO+fll68l*oll+ 
3F ( l69i *Bl2 

G 131) =F ( l 7·0l +f( 171) •Bl+F I 1721 •a2+F (1731 •cs3+F ( 1741*B4+f(1751 *BS+ 
2Fll76l*B6+F!l77l•B7+F1178l*Bil+Fll79l*tl9+F!l80l*BIO+F!l8ll*Oll 
G!32l=Fll831+Fll841•Bl+F!l851*82+F!l86l*B3+F!l87l*B4+f!l88l*B5+ 

·2F!l891*B6+F!l90l•B7+Fll9ll*Bil+Fll~2l*B9+Fll~3l*310 

G !33) =F ! 1961+FI1971 •Bl+Fll91ll *B2+F ( 1991 *B3+F !200 I *B4+F!2011 *BS+ 
2Fl202i•B6+F!203l•B7+Fl2041*il8+F!2051*B9 

Gl341=F12091+F<210l•Bl+F!2lll*B2+F!2121*B3+F!213l*B4+F(2141*BS+ 
2F!215l*B6+F!2161*B7+F!2171*88 

G !35) ;oFl2221 +F!2231 •Bl+F!·224l *82+F 1225> •B3+F 12261 *B4+Fl2271 *BS+ 
2F 12281*86+F12291 •87· . 

G(361=F(2351+Fl2361•Bl+F(237l*B2+F!238l•B3+F!2391*B4+F!2401*BS+ 

DE 0990 
DE 1000 
DE'lOlO 
DE 1020 
DE 1030 
DE 1040 
DE 1050 
DE 1060 
DE 1070 
DE 1080 
DE 109il 
DC: 1100 
DE 1110 
DE 1120 
DE 1130 
DE 1140 
DE llSO 
DE 11&0 
DE 1170 
DE 1180 
DE 1190 
DE 1200 
DE 1210 
DE 1220 
DE 1230 
DE 1240 
DE 1250 
DE 1260 
DE 1270 
DE 1280 

g~ ms 
DE 1310 
DE 1320 
DE 1330 
DE 1340 
DE 1350 
DE 1360 
DE 1370 
DE 1380 
DE 1390 
DE 1400 
DE 1410 
DE 1420 
DE 1430 
DE 1440 
DE 1450 
DE 146.0 
DE 1470 
DE 1480 
DE 14\10 
DE lSOO 
DE ISlO 
DE 1520 
DE 1S30 
DE 1540 
DE 1550 
DE 1560 
DE 1570 
DE 1580 

2F!2~ll*o~ . 
l> IJ71=F124ill +F <2491 *3l+F !250I*a2+F12~1I*tl3+F12521*l:l4+F12531 "EIS 
t>l381=F1261 I +F (2521 *3l+F !2t>3l *t12+F (2641•t!J+F1265> •t:l4 
G(391=F1274l+Fl27Sl•3l+Fl2761*d2+F!277l<>b3 
G1401=F!2871+Fl288l*3l+Fl2891*d2 
G14ll=F13001+Fl30ll•31 
Gl~2>=F13131 

32 llO 34 K=27o4; 
34 Y 1•0 =Y li(-251 

Y 1~01 = (PA-G ( 18) *Y (I) -G 119) *Y 121-G120> ,.:y <:i>-G 121 l *Y (41-G (22l *Y bl
?G 123l *Y l&l-G l241*YI7l-G 12~l *Y!Bl-G (2&l *Y !9)-G (27l *Y ! l01-G (281 •Y ! l l 
31-Gl29i*Yll2l-G!30l*YIJ31-Gl3ll*Y<l4l-G!32l*Yll51-G!33l•Y!lbl-

-· 4G(34l*Y!l7l-G!35l*Y!l8l-GIJ6l*Y!l9l-Gl37l*Yl20l-GIJB>•Y!2ll-G!39) 
5•Y!22l-G!40l•Yl23l-Gl4ll*Yl24ll/Gl421 

y I 102i =G (I l •v I u +G (2l *Y 121 +Gl31 •Y (31 +u l4l •Y l4l +G l~l •Y 15., +G (6) *Ylb) 
2+G 171 •Y !7) +l> 181*Y181 +G (91 *Y (Ill +GI 101 *YI lOl +G ( 11>*YI11l+GI121•·YI121 
3+GllJ>•Yll3l+Gll4l*Yll4l+Gll~l"Yll5l+G!l6l*Yll6l+G(l71*Y(l7l 

Yll001=Glll*Yl21+Gl21*Y!3l+Gl31*Y(41+G(41*Yl5~+Gl51•Ylbl+G!61• 
2Yl71+Gl7l•Y!9l+G!Bl*Y<91+Gl91•YllOl+GllOl*Y!lll+Gllll*Y!l2l+&!l2l 
3•Yll3l+Gll3l*Y!l4l+Gll4l*Yll51+Gll5l•Yll&l+Gllbl*Yll71+Gll7l•Yll81 

RETURN 
EN~ 
SU3ROUTINE GOTEAM 

C---- OUTPUT 11 PB 11 IS STORED IN YI 1021. 
CO~MON Yll02l . . 
CO~MON/GOAL/DT l10l o2l oSTEP I 31oN~KS131oNPM131 ,l(J ,K2oK3oK4oCCoPAo.P8o 

2PATMoNPVoNRU~SoAHE'ADl80) 
CO~MON/BLOB/YMAXl 
OI~ENSION TISOloU!IOOl 

10 ~RITElboJOOl IAHE.AO<J> oJ=loBOl 
100 FO~MAT!lHlo6X~80All. 

C---- ONE PRODUCT TERM FOR COSHIGAMMA), 
IF!Kl.EQ.11 •RITE1q.o200l 

200 FO~MATl15Xo 1 THIS RlN '1SES THE O\IE PRODUCT-TE·RM EXPANSIO!>I FO~ COSHI 
2GA~MAl. 1 l 

!F!Kl.EQ.21 wRITEC6,SOOl 
500 FQ~MATllSXo 1 THIS RUN USES THE ToO-PRODUCT TERM EXPANSION FOk COSH! 

2'GA~MAI •·'I 
IF!KJ.EQ.31 WRITE!6oo00l 

bOO FO~MATll5Xo 1THIS RLIN USES TH£ FOUR-PRODUCT TERM EXPANSION FOR COSH 
21GAMMAI, 'l 

?AD=PA•PATM 
'RITEl6•300l STEP(KlloPAP. 

300 FO~MATl15Xo 1 T.IME STE<> IS 1oF8.5o 1 , PRESSURE STEP INPUT = I .n2·.s. 
2. 1• • 1·.1,1sx.6ZC"*''>•I> 

wRITE16o400l 
400 FO~MAT< 16l\o 1 TIME 

211 1·_,/tl6Xt 1 CSECJ 
3/o 15Xo 1 -----

40 ~O 42 J=lol02 
42 Y(Jl=O, 

OUTPUT "P3/PA11 

!CONVERTEOl. 
TIME 

ISECI 
OUTPUT 11 PE:llPA 
! CONllEl<TEi) l o, 

-------~------ ··> 

C---- LOAD DELTA-TIME, 
Yl<2+21=STEP!Kll 

NO. OF R-K STEDSo ANO PRINT MULTIPLE• 

'lR(=NRll'.S (l(J I 
NP•NRK/100 

C---- LOAD "TIME" I'ITO PTll<oll AND lE~OES INTO PT!Ko21, 
DP=Y!K2+21 
DO 52 J=l.100 
PT!Jo21=0. 

52 PT(Joll=DP•(J-ll*NP 

DE 1590 
DE 1600 
OE 1610 
LlE lt>20 
DE 1630 
llE 1640 
OE 1&50 
DE lt>l>O 
DE 1&70 
DE 1680 
DE 1690 
DE 1700 
DE 1710 
DE 1720 
DE 1730 
DE 1740 
DE 1750 
DE 1760 
DE 1770 
DE l7b0 
DE 1790 
DE 1800 

...... 
0 
N 



c---- CALL THE !NTE:GKATOR. 
'IP~=O 

60 
65 

700 
c----

!K=l 
DO bO KK=l • "l~K 
'1P~=NPR+l 

CALL RKINTCK(,K2l 

mm~mm~~~T.YMAW GO TO b5 
!FCNPR,LT,NPl GO TO 60 
NPR=O 
!K=IK+l 
PTl!Ko2l=CONVRT 
CO'ITINUE 
wRITE.C6•700l CCPTCK,JJ,J=l•2l,(?TCK+SOoJl•J=l•2l•K=l•50J 
FO~MAT (50 11sx.F6,4,6X .G12.s. 7X' fb,4.bXoGl2.S,/)) 
DO NOT CALL ?LOTTER IF DATA· IS BAU,· 
!FCPTll0.21.rn.o.1 RETURN 

Cl C--~- LOAD DATA ~OR THE PLOTTER. 
oo so K=1.so 

c 

J=2*K-l 
TC~l=PTCJ.!) 
UC(l=l• 
:J((+SOl=<>TCJ,21 

dO IFCUCK+SO).LT.O.J uc~+SOl=O. 

CA~L XYPLOTCT.u.so.100.e.11.s.1 
i?ETURN 
ENil 
SU~ROUTINE ~KINT CLL•NSYSI 
THIS SUBROUTINE SOLVES DIFFERENTIAL EQUATIONS dY USING A RJ,•GE KJTTA 

C ...C:THOD 
DI"IENSION DELY(4,SOi.aET<3>·YUC501 
CO"IMilN YCl021 
DOJBLE PRECISION YU 
IF CLLoNE,11 GO TO 1001 
8ETCl>=O,S 
BETl21=0_.S 
£;ETC3l=l.O 
'112=NSYS+2 
NPl=NSYS+l 
XV=YINPll 
CAL.L DERFUN 
DO 320 l=ltNSYS 

320 YUi I I =Y CI I 
1001 DO 1034 K=l,4 

IF (K,EQ, ll GO TO 1002 
CAL.L DERFUN. 

1002 DO 1340 l=1''4SYS 
!P'i2=I+N2 

1340 DELYCK,Il=YC'i2l*YIIP"l21 
If IK,EQ,41 ~O TO 1034 

·no 1350 l=l•'ISYS 
1350 Y<Il=YU<li+BETIKl*D.ELYCK.!l 

YC"IPll=XV+BETIKl*YIN21 
1034 CO'ITINUE 

DO 1039 I=l•'ISYS 
DEL=CDELYI l •I I +2 .. 0*DELYl2o.I I +2.0*DELY 13, l I +DELY C<+. I 11 /6,0 
YUII I =YU CI I +::IEL 
I"ll 1 =vuu > 

1039 CO'ITINUE 
YC'IPll=XV+YC'i21 

CA~L DE!<FUN 
XV=YINPll 
RETURN 
El'ID 
SU~ROUTINE XV.PLOT cxx.vY."IX.NY.XLINCH;yLlNC~I 

CO"IMON/aL08/YMAXI 
DI '4ENS!O"I XX C 11, YY C ll dY C 10 I 
iH"IENSIO"I IPLOTClOOl •IMl"IUSClOOI dSYMEsLCIOI 
DATA IBLANK,!AAIS/lH ,}Hl/olPLOT•IM!NUS/lOO•lH •lOO*lH_/ 
[IATA !SYMBL/lHl, lH2, !HJ, lH4o lH5, lH6• lH7, lfll:i, IH9o IHO/ 
'IXSIZE = XLI"CH•6.0 
X!>IZt: = "'XSIZE 
YSIZE. = YLINC~•IO,O 
WS!ZE = YSIZE + l 
YSIZE = NYS!ZE - I 
NP1..0TS = NY/'IX 
XM!N=O, 
XMAX =XXINXI 
~X = XMAX - XM!N 

C---- JSE A FIXED At!SC I SSA, AS SHO*N 3E.LOW, 
C YM!N=YY Ill 
C DO 8 i=l•NY 
C d IFCYYl!l.LToYM!NI Y~l'i=YVIII 

C YMAX =YYCll 
C DO 10 !=loNY 
C 10 IFIYY<Il,GT.YMAXI YMAX=YYCll 
C DY=YMAX-YMIN 
C---- FIXED ABSCISSA 

YMIN=O, 
YMAX=YMAX! 
DY=l"MAXI 
WR!TEl6o61 Y~INoYMAX 

ofRITE<6• 11 Cl~INUS <JI oJ=l ,NYS!ZEI 
!P~OTC 11 = !AXIS 
IPLOTINYS!ZEI = !AXIS 
NLINE = .0 
00 30 I'=t.NX 
IX= CXXC!l- XMl~l/DX*XS!ZE 

32 If<IX - NLlNol 30,33,34 . 
34 oRITE Cb•4l I PL.OT CJI, J=t.Nl"SIZEI 

NLINE = NL!No + I 
GO TO 32 

33 NLINE = NLINE + I 
Kl = I 
DO 41 K=l,NP~OTS 
lYIKI = IYY<<II- YMI"ll/DY*YSIZE + 1.5 
!Y( = IYIKI 
rPL.OTCIYKI = !SY~l'ILIKI 

41 KI = Kl + NX 
WRITEl6•21XXCll•llPLOT<J>•J=l•NYSlZEI 
00 4i!. K=l,NPLOTS 
IY< = !YCKl . 

42 IPLOTClYKI = lbLANK 
!PL.OT<ll = !AXIS 
!P~OTCNYSIZEI = !AXIS 

30 CO>ITINUE 
wRITEC6•31 II"f!NUSCJI •J=t.NYSIZEI 
'IETURN 

I FO~MATC !.6X• '. ABSCISSA 1 o5X•l00All 
2 FO~MATl6XoEl0.3o5X,IOOAll 
3 FO~MATC1H+o20X•IOOAll 
4 FO'IMATC21X•l00All 
b FORMATCIHl•6X, 'MIN ORDlNATE 11 P"1!N11 

2AXM = "•Gl2.5) 
END 

··.G12.:;, I • MAX ORD I \fATE 11P'4 

XY 0030 
XY 0040 
X\' 0050 
XY ,1 [20 
xY o;Jo 
XY 0140 
XY 0170 
XY 0180 
Xl fJ!90 
..<'f ~:~:CC 

XY u~£0 

XY 02~0 

XY 0290 
XY 0300 
XY 0310 
XY 0320 
XY 0330 

XY 0350 
XY 0360 
XY 0370 
XY 0380 
XY 0390 
XY 0400 
XY 0410 

XY 0430 
XY 0440 
XY 0450 

XY 0470 
XY 0480 
XY 0490 
XY 0500 
XY 0510 
XY 0520 
XY 0530 
XY 0540 
XY 0060 
XY 0070 
XY OObO 
XY 0090 

XY OSSO 
!-"" 
0 
VJ 



c---- ST~P ~E~~ONS~S wlTrl Tl~E-U~P~ND~1~f PARAM~T~~s. ~Y0~AULlC CA~E. s 
c 
c 
c----
c 
c 
c 
c 
c 
c 
8 

A[3,Ct3}, d{3,l,3}, 

lHIS PR0b~A4 0S~S ~ J~ 5 D~TA CA~US TU P~ESC~IdE ~A~A~ TE~~ ~JL-1 
IS SfED SIZEo LENGTH OF ~UN CT!"Elo ETC. TrlE~ A SEMIE OF JATA 
CA~DS WrlICrl --JAVE ~EE\/ G£t.JEh!ATEU O'f THE P~00~A1"1 11 ~'.\IEU'-'1A IC 11 AHE 

~E~U INTO AR~AYS lA],{~J,lCJ,[DJtCEJ,{FJ TL ~~JVIDE T~ ~EL~SSA~Y 
COEFFICIENTS FO~ SlJt:j~QUT lt\iE HDE~Fut-J 11 • 

DATA CIMU 1: THIS IS I "EADE~ CARU TO !UENT!•Y THE ~JN CA•OI. 

DATA CAilD 2: 

s 
s 

s 
s 
5 
s 
5 

C ll NJ"l:>ER OF ~JNSo IN COLJMN lo fO~MATCJlJ, M~X=J. S 
C 2> IF ~UN l USES Ot\IE P~OJJCT TEl-?1'1" FOK COSrlCGAr'1MAJ, ;;,JT A 11 111 S 
C IN COLUMN 11. T~O P~QDUCT TER~S, PUT A 11 ~ 11 IN 11. FOJR ~~OuJCT S 
C TE~MS, PUT A 11 J 11 IN COLUMN 11. S 
C 31 PUT A lo 2o O>< J JN 21 fUri THE 5ECOND ~UN, IF IPPUCAoLE• S 
C 41 ~UT A lo 2, Qt< 3 !'' 31 FOR ThE THJ~D RUi<o IF A?PLlLA~cE. S 
C 51 "JO. OF ST~P SIZES (µSil FOR E.ACh ticJNo CLMS 41-420 1121. S 
C 61 MAX ORUJNAT' FOQ PLUTT~R, CLMS Sl-600 FORMAT FlO. S 
c s 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

DATA CARD 3: 
11 RcJr<:;E-KUTTA STEP 5llE COR ONl:-Pi'WDuCT TERM RUN. C~MS 

FO~MAT FlO• Trll:N NO. OF R-K STE•S IN CLMS ll-20• FORMAT 110. 

s 
1-10 s 

s 
21 STE, SJ ZE r-Q-l T •O-PROuJCT TERMS, NO. OF M-K STEPS, 21-40. 
31 STE> 5!ZE FOR FOUR-PROJUCT TERMS• NU. OF A-< STE•S• •l-bO,S 
41 ATMJSPHERJC PRl:SSURE C•S!Alo COLUMNS bl-700 FO"MAT Flo. s 

s 
DATA CARUS 4 AND 5: S 

11 FIRST 8 STEP srz~s. IN P~JG, FO~MAT 8FlO. s 
21 IF MORE THA~ a VALUES, PUT THEM ON DATA CA~D 5. IF NOT S 

~D'E THA"J 8 vALUESo LEAVE OATA CARDS OJT, S 
s 

C DATA CARDS o TKROJGH Jul ARE AS FOLLOWS: S 
c ll 0 TrlROUGH 'J GO INTO [Alo NUMERATOi<o ONE PRODUCT TcRM. s 
C 21 10 THROJGH 15 GO INTO CBlo DENOMINATOR, ONE PR)DJCT TE~M. S 
C 31 16 THRO'JGH 22 GO INTO [CJ, NUMERATOR, TvlO l'RODuCT IER~S. S 
C 41 23 THROUGH 33 INTO CDJ, OE~O~!NATURo TvlO PRODUCT TEK~S. S 
C 51 34 THROUGH 59 PHO [El, NUMERATORo FOUR PRODUCT Ti::RMS. S 
C 61 60 TrlROi.IGrl 101 !NTG CFJ• DE~OMINATORo FOUR PRODUCT TEM~S. S 
c s 
C---- TO ~EVERT TO THE LINEAR ·~ROWN" MODEL• U5E A VERY S~ALL STE~ SIZE. S 
c 
C---- ALL µRESSUkE5 ARE NOR~AL!lEU dY UlVJU!NG BY ''PAT•~. 
c 

s 
s 

CO~MON Y!IO~I 
CO~MON/GOAL/~T<lOl•2),STEPC3),~~KS(3)tNµM(3),~l.K2.~3,K4tCC•PAt?d, 5 

2?ATMoNPVoNRU~SoArlEADC601 S 
CO~MON/FORM/AC20lodl2~1•CC631oDC9lloEC2211 
CO~MON/SAGE/F(3251 
CO~MUN/dL08/YMAXl 

J!~ENS!0N AHOLUCl61olrlOLDCJlo!GOCJl,AMY!61 

s 
5 
s 
s 

VIO 
ucu 
030 
U40 
O:>u 
Ot>1..i 
070 
Otsu 
0-JO 
100 
110 
120 
130 
140 
150 
160 
170 
l tlO 
190 
200 
210 
Zi:'ll 
230 
240 
250 
260 
270 
2ts0 
290 
300 
310 
320 
330 
340 
350 
36\l 
37\l 
3bO 
390 
400 
410 
420 
430 
'+'+U 
450 
'+bO 
470 
473 
480 
41::13 
•90 
500 

,JATA JGois.io.201 s 
i'JATA Al-(Y/ 1 A'·'H', 1·c··, ·0 1·, 1 L 1 ' 1 F•/ 5 

~~AO<S•2UO) tAH~AUIJ),J=ltbO) S 
200 •O,~ATCdOA!I S 

:..>t::AO IS, 300 l \IRU1>1S, lrlJLU Cl l • ItiOLJ ( 2l • IHOLJ C 3) tNPv • i"'IAX I ':> 
JVO ~o~~AT('+(Il·~x>.12.~A.FlU.)) s 

..(t.AOl5t<+OOl ::,Tij.->(l) ,'4i:(K~Cll ,_jTf:.-'(~) •i'llF<K~lC) t!::.T!::;..:..(3) •:\iR'\S()),~AT-~ S 
~oo •O,MATC4CF!0.3oll011 s 

k'EAU(5•'+20> (AHULJIJ) •J=l•ij) 
420 FO,~AT{dFJ0.31 

IFl"ll--'V.GT.tS) ~t:A0(S,420l IArlUUJ(J),J='1,1bJ 

C---- ,tALl J:; AR"1AYS !Al Pi'lUJGrl C> J. 
uu ~u J;::;l•<+ 
I\=~'° (J-1) 

20 :...iEA.015•'+30) CA(K+LltL.=lt4l 
')0 25 J=l ·6 
o<=:+* L.J-1 l 

CS HEAOl:,.<+30l (ij(K+LI •L=l•'+l 
430 FO'M•TCoEl0.31 

JO 3J J=J,7 
<=7* (J-ll 

30 READ<5•430) <C(i'(+L> •L.=l,7J 
,jU 35 J=l ol I 
<=7•CJ-ll 

35 ~EA0(5,4JQ) ()(K+L>•L=l•7) 
DU 40 J=l .J 3 
K=l3• (J-lJ 

"+O ~EAD<5•"+3V) '(ECK+L) •L=l•l3> 
DO 45 J=lo21 
<=13• (J-11 

45 ~EA0(5•*30> (FCK+L)•L=l•l3} 
,/RITEC6•4501 CA.~EADCJI oJ=l•tiOI 

450 CQ,MAT Cl~J,10,,~0AJI 

,IRJTI: !606001 ~RUN"SoN"ov, PATMo f"Ml 
600 FO~MATfl6X, 1 THERE WILL dE 1 ,11, 1 ~Ui\JS OF '•I2, 1 PRESSJ~E 

CCrl. ATMOSPH~QIC P~E55URE 1 ,/,}bX• 1 IS '•Fb,J, 1 P5IG. FO-,< 
3PU~POSES, Yr.tA.X = 1 .Fs.2. 1· .•,1,11x.soc 1 = 1 >.1> 

C---- •Rill OJT AR~AYS CA] THROUGH CFJ. 
•RITEC6o7001 ARY!ll 

700 FO~MAT (COX. I A.RRAY (I' Al. I ) : I. I' 20X' I----------',/) 
iJO 60 J=l,4 
~=~.a. (J-1) 

bO >1RlTE{bo7201 CAC<+LJoL=lo41 
720 FO~MATC4E20.51 

o'RITEC6o7001 ARYC21 
DO 65 J=l •b 
K=!+*(J-l) 

65 ,riRITECbt-120> Ci::1Ct<.+LJ •L=l•4> 
•fRlH:C6o7001 A"Y (31 
~JO 70 J=lo7 
<=7• (J-11 

70 wRITE!6o7401 {C(,;+c) oL=J,71 
•RITEC6o7001 ARY{41 

7•0 F0,MAT{7Gl5.41 
DO 75 J=l .J l 
•=7• ( J-11 

715 wRlTEC6•740) (i)(K+L) tL:::l,7) 
wRITEC6o7001 ARYC51 
00 80 J=lol3 
<=13• (J-11 

s 
s 

s 
s 
s 
s 
s 
s 
s , 
s 

s 
s 
~ 

s 
s 
s 
5 
s 

VAt..VE.~ EA S 
;:>Lu TT I ·-..1G s 

~ 

s 
s 
s 
s 
s 
s 
5 
s 
s 
s 
s 
s 
s 
s 
5 
s 
s 
s 
s 
5 
s 
s 

Siu 
~j ·; 

52Ll 
=:13.J 
~4U 

s:,J 
3b0 
'"=170 
SbU 
:J~O 
6UD 

6lu 
620 
63U 
64U 
b~U 
660 
670 
6b0 
690 
7ou 
71 fJ 
no 
730 
74u 
76u 
TlO 
7bU 
79u 
tiOU 
810 
8(::0 

ti3J 
cl4U 
i:sSV 
ts bu 
b70 
tH::sG 
890 
900 
91 (i 
920 
930 
'i40 

':l:iO 
~bi) 
~70 

~tlU 

940 
IOOu 
lOlu 
1 OcO 
1030 
1040 
l O'>O 
1060 
1G7u 
lG~O 
1090 
1100 

,_,. 
0 
+:-



bO ~MlTtC~t760) CECK+L)•L=l•lJ) 
wqIT~<6o7001 AMY!61 
DO do J=lo21 
K=l3* <J-11 

8~ w~IT~C6t7b0) cF·c~+L>•L=l•lJJ 

760 FO'<MAT<l3G!0,3) 
ao 100 JJ=l.~RUNS 
uO 100 KK=lt\J.:>V 
PA=AHOLD<KK)/PAT~ 

c---- K3 CONT~OL~ TH~ AECO~?UTING UF THE [GJ AHR•Y IN OERfUN• 
K3=4 

c---- Kl=! DENOTES ONE PRODUCT TERM, 2 DENOTES Two PROOUCT TEqMSo 
ANO 3 DENOTES FOUR P'WDUCT TERMS. c c---- K2 IS TrlE OR)ER OF THE DIFFERENTIAL EQUATIO~. 
Kl=lrlOLDCJJ) 
K2=1l>O ('1) 
CALL GOTEAM 

l 00 CO'fflNUE 
STJP 
EN) 
suaROUTINE OERFUN 

C---- [H'fDMAULit C~SEJ A[5o2o3Jo lll3olo3J 
C OUT~UT "PB" IS IN Y<l02)o "PtlDOT" IS IN Y(l00), 

COMMON Y <l 021 
C0MMON/GOAL/?TllOlo2)oSTEP!3),~'K5(3)oNPM(3)oKloK2oK3oK4oCCo~A.Pdo 

ZDATMoNDV,NRU~SoAHEAO!BOI 

CO~MON/FORM/A(2011d(2Bl1C!63),D!~lloEl2211 

CO~MON/SAGE/>!325) 
Dl~ENSIO'I Gt421 
GO TO<l0o20o301 • Kl c---- ONE PRODUCT TERM FOR COSH!GAMMAlo 

10 K3=K3+1 
IF<K3,LT •. <+I GO TO 12 
K3=0 
ol=AtJS<Y!!OOI) 
B2=!ll•BI 
93=dl*B2 
Gll>=A<J>~B2+A{4)*03 

G<21=A<71•!l2 
G(3)=A(9)+A()0J*81 
Gt4l=AH31 
G(5)=8t31•o2+B(4)•B3 
G<7l=8<7l•o2 
G(8l=B(91+B(l0l•Bl+B(lll•B2+8(12)•83 
G<'I> =8<13J +8<14> •Hl+3<151 *~2 
G!l01=Btl7>+3()8)•8! 
G < l 11 =B <2ll 

12 DO l<+ K:·s.il 
14 Y<~l=Yl~-6) 

Y(l21=tPA-G(61*Y(l)-G(71•Yl2)-G(8)*Y(3)-G(9)•Y(4)-G(l0)•Y(~)l/G()) 

21 
'Y(l02J=G<ll•Ytll+G<21•Y(21+Gl31*Y(3l+G(41•Y(<+) 
Yll00)=G<ll*Y<21+G(21*Y(3l+GC31*Yl41+Gt4l*Y!51 
<iETURN 

C---- TWO P~OJJCT TERMS FO~ COSrlCGAMMA), 
20 K3=K3+l 

JF(K3.LT.41 GO TO 22 
K3=0 
Bl=A!lS!Y(IOOI) 
B2=Bl•Bl 

s 1110 
s 1120 
s 1130 
5 11'>0 
5 1150 
s 1160 
s 1170 
s 1180 
s 1190 
s 1200 
5 ldO 
s 1220 
s 1230 
s 1240 
s 1250 
s l2b0 
s 1270 
s 1280 
s 1290 
s 1300 
OE. 0010 
DE 0020 
iJE 0030 
DE 00<+0 
DE 0050 
DE 0060 
DE 0062 
DE 006• 
DE 0070 
DE OOilO 
DE 0090 
DE 0100 
OE 0110 
DE 0120 
DE O 130 
DE 0140 
DE 0150 
DE 0160 
<JC: 0170 
DE 0180 
OE 0190 
iJE 0210 
I>'_ 0220 
' - 0230 
iJE 0240 
DE 0250 
DE 0260 
DE 0280 
DE 0290 
DE 0300 
DE 0310 
DE 0320 
DE 0330 
DE 0340 
DE 0350 
DE 0360 
DE 0370 
DE 0380 
DE 0390 
DE 0400 

~J=til*cl2 
M4=~1wa3 

r6=tH*t:i4 
ri6=ol *85 
G(l)=C(?)*~~+C(~)*8~+C<7>*06 

G!21=C<l21*o4+C<l31•B5 
G<3>=C<l71*rl2+C!l8l*93+C!l9l•8<+ 
G<~>=Ct~~)*d2+C<2SJ~a3 

G<51=C!291+C!30l•Bl+C<3ll*d2 
G!51=C<36l+C!37l*ol 
r; <71 =c t43l 
G()Ol=D<s1•B•tiJ[6)*85+D(7)•o6 
G<ll>=D<l2J*34+D(l3)*8S 
G < 12) =D l 17> 0 32·+0 ( 18) *83+0 (19) *~'t-+L) (2U)*t:6+D <21) *i:S6 
G(l31=D<2•1•32+0(25>•3J+Dl2bl•a<t+Dt27l*B5 
G(l4l=Dl29l+)(30>*81+0<311•82+DC321•83+0t33>•B4+D(34l•d5+D(35)*~6 
G<l5l=DC361+0l371*Bl+D<381*82+D<J~l*B3+D(4ti)•c4+DC4l)•B5 

Gtl6)=0(4J)+)(44)*8l+DC45l*B2+Dl46)*d3+0l47)*H4 
G(l7l=DC501+D!5ll•bl+Dt52l*bc+D<531*~3 
G!l81=Dl57l+)(~~>*Bl+Dt591*tl2 

GC19l=Dl64l+D!651•~1 

G 120> =D 171 I 
22 DO 2<+ K=l3o2l 
24 Y!<l=Y<K-lll 

Yl221=tPA-GtlOl•Ytll-Gllll•Y(2)-l>(l2>•ft31-Gtl3l*Y(41-GCl~l•Y(5)-
2G(l5l*Y(61-GClbl•Y(7l-GC17l*Y(81-G(l8l*Y(9)-G(l9l*Y(l0lJ/G(20) 
Y(l02l=G(ll*Y()l+G!2l•Y(2)+~(31*Yl3l+GC4l*Y(4)+G[$)•Y(5)+G(b)*Y(b) 

2+G l 7l •Y ( 7) 
Y(l001=G<ll•Y(c)+G(21*Y(31+Gt3J•Y(4)+G(<+l*Y(5)+GC;l*Y(6)+G(61•Yl71 

2+G(7)•Y(81 
RETURN c---- FOJR PRODUCT TER~S FOR COSrl(GAMMAI, 

30 K3=K3+1 
IFiKJ.LT,4l GO TO 32 
'<3=0 
Bl=AtlSCY(!OOll 
B2=Esl•Bl 
'l3=8l•B2 
~<+=81•83 

35=tll*B'> 
86=Esl•BS 
87=Bl•B6 
aB=t3l*B7 
a9=Bl*B8 
310=tl!•d9 
Bll=til*tllO 
812=81*811 
Gtll=E<>>•88+E!lOl*B9+Etlll•blO+t<l2l*Bll+t<l3)*tll2 
Gt2l=E<22l*b8+E<2Jl•B9+Et24l*Bl0+~(2~l*Bll 
G(31~E<J3)*Es6+E(34l•37+E(J5)*B8+E(36)*B~+E<J7)•Bl0 

G(4l=E(461*86+E(47l•B7+E(<+bl*Bb+E(<+91*tl9 
G!51=EC;7l•B~+E(581•35+E!59>•36+E(60)*H7+EC6l)•tiB 
Gt61=tl701*8~+tC711•35+Et72)*c6+E(73)*87 

Gt7l=E!oll•B2+E!82l•33+E<83l*B<++E(8<+l*B5+EC85l*B6 
G<~>=E<Y41*b2+t(95)•33+EC96J*8•+E!971*85 
G(9)=Etl05l+EC106l*Bl+E(l01l•B2+E(l08l*B3+EtlOYl*b<+ 
Gtl0l=E<lltll+Elll9l•Bl+E<l20l•32+Etl2ll•BJ 
Gllll=E<l3ll+E!l321•9l+E!lJ3>•B2 
G<l21=E<l4<tl+E(l45l•31 
G ( 13! =El 157> 

tJE ·o4liJ 
OE O<t20 
OE 0430 
DC: 0440 
DE 0450 
DE Cl<t60 
DE 0470 
DE. 0480 
OE 0490 
i:JE 0500 
DE 0510 
DE 0540 
DE 0550 
uE 0560 
OE 0570 
DE 0580 
Dt: 0590 
Dt: 0600 
DE 06)U 
DE 0620 
DE 0630 
,JE 0640 
ik 0670 
DE 068v 
DE 0690 
DE 0700 
DE 0720 
DE 073u 
DE 0740 
DE 07">0 
OE 0760 
DE ono 
DE 0780 
DE 07<;0 
DE 0800 
Di:: 0810 
DE Ob20 
OE 0830 
DE 0d40 
DE 08~0 
DE OebO 
iJt: 0870 
DE OdbO 
Ot: 0d9U 
DE 0900 
OE 0910 
DE 0920 
DE 0'130 
DE 0940 
UE 09SU 
DE 0970 
DE 0990 
DC: 1010 
OE 1030 
DE 1050 
DE 1070 
DE 1090 
uE 111 O 
DC: 1130 
DE 11<>0 

I-'-
0 
\J1 



Gll8J=fl9J*dB+FllOJ•B9+Fllll*BlO+Fll2l*bll+F(l3>•Bl2 
Gll9>=Fl22l*38+F(23>•B9+F(24l*ol0+Fl25l•bll 
Gl20l=Fl33l*36+Fl34l*B7+FIJ5l*BB+Fl36l*d~+fl37l*dl0+Fl38l*dll+ 

2Fl39J*lll2 
G12ll=Fl46)*~6+F(47)*67+Fl~8l*Bd+Fl49)•d9+f 150l*dl0+Fl5ll*~il 

Gl22l=FIS7l*34+F(58)*85+F(59l*o6+F(b0l*d7+f(bll•d8+f(b~)•39+ 
2Flb3l*dlO+F lb4l*BlltFlb5l*~l~ 

bl23l=Fl70l*34+F17ll*BS+F 17~J•db+F173l*87+F174l*d8+F175>•a9+ 
2Fl7bl*BlU+Fl77l•Bll 
G(24)=F(8ll*32+F!B2i*B3+Fl83J*d4+Fl84l•a5+F(b5l*db+f(8bJ•~7+ 
2Fl87l*B8+Fl88l*d9+F(89l*3lO+Fl90J*Bll+Fl~lJ•lllc 

Gl25l=Fl94l*B2+f (95)•8J+Fl96)•c~+f (97l•dS+F(98l•ob+F(99)•37+ 
2Fll00l*db+F 110ll•B~+Fll02l*B&O+f(l03l*~ll 
r,(26l=F1105l+Fll06l*3l+Fll07l*de+Fll08l•B3+Fll09l*B~+Flll0l*BS+ 

2Flllll*Bo+Flll2l•B7+Fll!3l•Bb+Flll~l•o9+Flll5l•dl0+F(ll6l*~ll+ 
3F I 1171 *1'>12 
Gl27l=Flll8l+Flll9l•~l+Fll20l*32+F1121l*B3+Fll22l*B~+F11231*d5+ 

2Fll24)*d6+F(l2Sl*d7+F(l2bl*ll8+Fll271•ll9+Fll28l*BlO+F(l29l*B&l 
GC28l=Fll3ll+Fll32l•3l+FC133l*32+Fll34l•d3+FC135l*3*+FC1361*B5+ 

2F(l37l*B6+FC138)•ll7+F(lJ9l*B8+Fll~Ol*ll9+Fll4ll*olO 

GC29l=Fll44l+Fll45l•ol+F(l~6)*d2+FC1~7l•B3+FC1~8)*o*+Fll49l•B5+ 
2Fll50l*o6+Fll5ll•B7+Fll52l*ll8+F!l53l•ll9 

G 130, =F 1157> +F 1158) •3l+F ( 159) •a2+F llbO) •a3+F ( 16ll *34+F ( 1621 •BS+ 
2F l1b3) *B6+F ( 1641 •B7+F l1b5l *dB 

G (31, =F ( 170) +Fil 71 H•Bl+F ( 172> *o2+F ( 173) •d3+F ( 174) ·s~+F 1175) •E>S+ 
2F(l76l*86+f(l77l*d7 
G(32l•f (lB3l+FllB4l•Bl+Fll85l*82+f (186l•83+Fll87l*B~+Ffl8i:ll•BS+ 

2F lld9l •Bo 
G f33) =F ( l 9bl +F 1197) •dl+F 119d) *82+F (I 99) •t13+F (200) •i:l~+F(201 l •as 
G(34l=Fl209)+F(210l•91+FC2lll*B2+f(212l•dJ+Fl213l*B~ 

GIJ5l=Fl222l+f (223l•Sl+Fl224l*~2+f(225l•83 
Gl36l=f 1235l+F<236l•Bl+Fl237l*B2 
Gl37l=Fl248l+Fl249l*91 
Gl3Bl=Fl26ll 

32 QO 34 K=23o41 
34 Y(l(l=YIK-2ll 

Yl42l•<PA~G(l8l•Ylll-GC19l*Yl2l-G(20l*Y1Jl~G<2ll*Yl4l-G(22l*Ylj)-
2Gl23l•Y<6l-Gl24l*Yl7l-Gl25l*Y(8)-G(26l•Y(9l-Gl27l*YC10l-Gl2i:ll•Y(ll 
3J-Gl29l*Yll2l-GC30l*Yll3l-Gl3ll*Yll4l-GIJ2l*Yll~l-G(33l•Yll6l-
4Gl34l*Yll7l-G<35l*Yl1Bl-Gl36l*Yll9l-GIJ7l*Yl20ll/GIJBl 

Y(l02l=Glll*Ylll+G<2l*Yl2l+Gl3l•Yl3l+G(4l*Yl4l+G(5l•Y<5l+G(b)•Y(6) 
2+G(7l*Y<7>+G(dl•Yl8l+GC~l*Y(9l+GllOl•YC10l+G(lll*Y(lll+G(l2l*Yll2l 
3tG 1131*Y<131 

Yll00l=Glll*Y(2l+Gl2l*Yl3l+Gl3l*Y<4l+Gl4l*Y15l+G<Sl*Yl6l+Glbl* 
2Y 171+G17 l *Y IBI +G f8l *Y (9) +G (9) *YllOl +GI 1 Ol •Y 11ll+GI11 l *1'1121+G1121 
3•Yll3l+G(l3l*Yll4l 

'lETURN 
El>IJ 
SUilROUTINE GOTEA>f 

C--'-- OUTPL/T np13u IS STORED IN Yll02l. 
CO~MON Y 11021 
,CO"IMON/GOAL/~TllOlo2loSTEP<3loN~KSl3loNPMl3loKloK2oK3oK4oCCoPAoPB, 
2PATMoNPVoNRU'1SoAHEADl80l 

CO"IMON/FORM/A 120 l oB (281oC163), !)(91 l oE.122ll 
CO"IMON/SAGE/Fl325l 
CO"IMON/dLOB/YMAXI 
Dl"IENSION Tl50lollll00l 

10 wRITEC6ol00l IAHEAO(Jl oJ=lo!!Ol 
100 FO~MATl!Hlo6Xo80All 

C---- ONE PRODUCT TER'4 FOR COSHIGA>IMAl• 

DE llYO 
DE 1200 
DE 1210 
DE i220 
DE 1230 
DE 1250 
DE 1260 
DE 1270 
lJE 12!!0 
DE 1290 
DE 1300 
DE 1310 
DE 1320 
DE 1330 
DE 1340 
DE 1350 
OE 1360 
DE 1370 
DE 1390 
D~ 1400 
DE 1420 
DE 1430 
DE 1450 
DE 1460 
DE l4d0 
DE 1490 
DE 1500 
DE 1510 
DE 1520 
DE 1540 
DE 1560 
DE 1580 
DE l.600 
DE lblO 
DE 1660 
DE 1670 
uE l&&O 
DE 1690 
DE 1700 
DE 1710 
DE 1730 
DE 1740 
DE 1750 
DE 1760 
DE 1770 
DE 1780 
DE 1790 
DE 1800 

IFIKl.E0.11 ~RITEl&o200l 
200 FO~>IATl15Xo 1TrlIS RU•~ <JSES THE 0.'1E PIWDUCT-TEl<M EXPANSIDlll FOi< COSHI 

2GA"IMA). I I 
IFIK1.EQ.2l oRITElbo500l 

500 FO~"IATll~X.'THIS RUN JS~S THE ToU-PRODUCT TEl<M EXPANSION FOk COSH( 
2GA"IMAI • 1 > 

IFIKl.EQ.31 ~RITE15o500l 
600 FO~MATllSX•'T~IS RUN JSES TH£ FOUR-PRODUCT TERM EXPANSION •uK cos~ 

2!GAMlo!Al, 1·1 
C>Ai>=i'A*PATO'I 
•RITEC6o300l STEP(l(Jl,PAP 

300 F"O~MAT I 15Xo 'TIME STEP IS ,·,fd.5o' , PRE::~SURE STEP INPUT = '.n2.5 
2. 1• • 1 .1.1sx.02(1·• 1'>•I> 

wRIT£ lbo4001 
400 FOQMATllbXo 1 Tl"IE 

2111 .1.16x. 1 <s:::c> 
3/e lS·X, 1 -----

40 DO 42 J=lol02 
42 YIJl=O. 

C---- LOAD DELTA-TIM~. 
Y!(2+2l•STEPll(ll 
ilfR<=NRKS (Kll 
>IP=Nl'lK/100 

OUTPUT 11p~/"°A" 

ICONVEQnu> 
TIME OUTPUT 11 Pd/PA 

(SEC> !CONVEkTELll'• ______________ ,., 

NO. OF Q-K STEi>So AND PRINT MULTIPLE. 

C---- LOAD "TIME" INTO PT(l(,ll AND ZEQOES INTO PTIKo21 • 
OP=Y<K2+2) 
OD 52 J=lolOO 
e>TI Jo21 =o. 

52 PTIJoll=DP*IJ-ll*NP 
C---- CA~L THE INTEGRATOH. 

>IP~=O 

Il(=l 
OD 60 KK=loN~I( 
'll'R•NPR+l 
CALL Rl(INTIK<•K2l 
C0'1VRT=Yll0~1/PA 

IFIABSICONVRTl.GT,YMAXII GO TO 55 
If(NPR.LT,NP) GO TO 60 
"IP~•o 

IK=IK+l 
PTIIKt2l=CONVRT 

bO C0'1TINUE 
65 ~RITEl6o700l llPTIKoJloJ=l•2lolPTIK+50,JloJ=lo2l,K=lo50l 

700 >O~MATl50115XoF6.4o6XoG12.So7XoF&.4o6Xoul2.5o/ll 
C---- DO NOT CALL PLOTTER IF OATA IS 3AU. 

!FIPT110o2l.EQ.O.l RETURN 
C---- LOAD DATA FOQ THE PLOTTER. 

1)0 80 K=J.50 
J=2*K-l 
Tl<l=PTIJoll 
UIKl=l. 
U<<+SOl=PTIJo2l 

80 IFIUIK+SQl,LT,O.l UIK+SOl=O. 
CALL XYPLOTcr.u,50,100.8.17.a.1 
<iETURN 
ElllJ 
SU3ROUTINE ~KINT ILL•NSYS> 

C THIS SUElROuTfNI:: SOLVES DIF"FEllE~TlAL E.QUATIDlllS dY USING A RJ~GE KUTTA 
C METHOD 

Dl~ENSION DEcY(4o50lodET(JloYU(50l 
CO~MON Yll02l 

,_... 
0 
O' 



uOJBLE PqECISl0'1 YU 
IF (LL.NE.I! GO TO 100! 
~ET<ll=0.5 
-in<2l=O.':i 
~ETUl=!.O 
N2=NSY>+2 
'1Pl=NSYS+l 
xv=Y(NDll 
CAcL DE~FUN 
'10 320 l=J,~SYS 

320 YU<Il=Ylll 
1001 DO 1034 K=l•4 

If (K,EQ.ll 30 TO 1002 
CALL DERFUN 

1002 00 1340 l=lo'ISYS 
!P'l2=!+Nc 

1340 OELY(K,!i=Y('l2l*Y(JP'12l 
IF (K,EQ.4) :iO TO 1034 
DO 1350 l=lo'ISYS 

1350 y(!l=YU(!l+bETCKl*DELYCKoll 
y('IPll=XV+~ET<Kl*Y(N2) 

1034 COHINUE 
DO 1039 l=lo'ISYS 
DEc= lOEL Y< l • Il +2.0*"DEL Y <2• ll +2.0*llELY (3, Il +DELY (4, J l l 16.0 
YU ( 11 =YU ( Il +JEL 
Y<ll=YU(!l 

1039 CO'ITl"IUE 
Y('IP1J=XV+YC'l21 
CALL DERFUN 
xv=Y(NDl) 
RETURN 
END 
SU:l~OUTINE XYDLOT cxx.vv.NXdYoXL!NCHoYL!NCHI 
CO~MON/BLO~/YMAXI 
Dl~ENS!O"I XX(!) ,yy(j) dYClOl 
Dl~ENS!ON JPt.OTClOOlo!Ml"IUS<lOOlo!SYNdLClDl 
DATA !8LANK.JAX!S/lrl dHl/olPLOTdM!NUS/lOO•!H olOO*lH_/ 
DATA JSY~BL/lrllolH2,lrl3olH4olrl51lH6olH7olHd,jH9olHO/ 

~XSIZE = XLl'ICH•o,O 
XSIZE = NXSIZE 
YS!ZE = YLINCH*l0.0 
NYS!ZE = YS!ZE + l 
YS!ZE = NYSIZE - l 
NPcOTS = NY/'IX 
X~IN=O. 

XMAX =XX(NXI 
OX = XMAX - X'l!N 

c---- ~SE A FIXED ABSCISSA• AS SHOWN 3ELOW. 
YM!N=YY(l) c 

c 
c 
c 
c 
c 
c 

DO 8 !=l oNY 
8 !F<YYC!l .LT.Y'HNI YM!N=YY(!l 

, YMAX =YY C 11 
DO 10 !=t.NY 

10 JF<YYC!l.GT.YMAXl YMAX=YY(!l 
DY=YMAX-YM IN c---- F!XElJ AdSC!SSA 
YM!N=O, 
YMAX=YMAXI 
DY=YMAX I 

XY 0030 
XY 0040 
XY UOSO 
XY 0120 
XY 0130 
XY 0140 
XY 0170 
XY 0180 
XY O l ':10 
XY 0200 

XY 0220 

XY 0250 

~~ITE(b,ol Y~IN.YMAX 
"RlTUb•ll <HlNUS(JJ •J=l•NYS!ZU 
JPcOTCll = lAXiS 
JP_OTCNYSJZEl = !AXIS 
''1UNE = D 
'JO 30 l=!oNX 
IA = <XX<Il- X:~INl/OX*XS!ZE 

32 !F<Ix - >JL!-N:':) 30o33o34 
34 ,rRJTU6o4) CPLOT<Jl oJ=loNYS!ZEl 

NL!NE = NL!NE • l 
GO TO 32 

33 'JL!NE = !<LIN~ + J 
~I = I 
ao •l K=l.NPLOTS 
JY(K) = IYY<<ll- YM!Nl/DY*YS!ZE + J,5 
JH = IYC<l 
!Pc.OTC!Y~l = rsn_aLC<I 

4) <I = Kl ~ NX 
,JiUTt:C6o2lXXC!I, ClPLOTLJl •J=loNY~!ZEI 
:)Q 42. r<=1,1...iPLOTS 
IY< = !Y(Kl 

42 !PcOTC!YKl = !~LANK 
JP~OTCll = !AXIS 
JDcOTCNYS!ZEl = !AXIS 

:JO CO NT WUE 

4 
6 

,.rRITE Cb.JI I I ~!NUS (JI oJ=l ,r.YS!ZEI 
RETURN 
FO,MAT( lobXo' ABSCISSA '•~XolOOAll 
F0,MATC6Xo~J0.3o5Xol00All 

F0,MATC1H+o20Xol00AJI 
FO,MAT(clXolOOAl) 
FO~MAT<l1·H,6X, 1 fl>11N Oi:?DINATE 11 P"'1IN 11 = 1·,u12.:;,1 , 

2A.X 11 = I tG12.5) 
ENJ 

MAX O~O!\fATE "P'I 

XY 0290 
XY 0300 
XY 0310 
XY 0320 
KY 0330 

XY 0350 
XY 03bO 
XY 0370 
XY 0380 
XY 0390 
XY 0'+00 
XY 0'+10 

XY 0430 
XY Oc+c+O 
KY 04SU 

XY 0470 
XY 0<+80 
XY 0<+90 
XY 0500 
XY OSJU 
./..Y 0520 
XY 0530 
XY 0540 
XY 0060 
XY 0070 
XY 00~0 

XY 0090 

XY 0550 

1-'
o 
-..] 
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APPENDIX C 

AN ALTERNATE MODEL, WITHOUT 

THROUGH FLOW 

This appendix outlines an alternate solution to the nonlinear axial 

momentum equation, Equation (2.20), and the linear energy equation, 

Equation (2.25). This.model is reconnnended for use only when the 

primary model; Equations (2.70), tends to be unstable in a particular 

system simulation. 

The linearized, nondimensional axial momentum equation may be 

written in the form shown below when through flow is neglected: 

c\V{t,R,Z) ·t Co k(JV) Vll:,R,z)_ \90 ~ (RJV(t 1R1 i)) = (c.l) 
~t L Jz. a}·R. .)R JR 

_ Co [.i.. lPlt,z)+ (i-~) V*-JV{t1e)] 
L >I Jz lz. 

where (V)* = (.s~t\ P(t1o))( L "Z. j P(t1o) _ Q(~1 o)' 
c 0 l t- l'lr-

(C.2) 

from Equation (A.48), andf~v) = {S~h Plt:,o))(-t.\P(tp)) 
(~z ·/( o ~t- * (C.3) 

from Equation (A.49). 

By tr'ansforming Equations (C.1) and (2. 25) to the Laplace domain 

and solving these equations, the solutions for the transient axial 

velocity and transient axial temperature profiles result: 

Transient Axial Velocity 

= ( ~(o<R.) - J"o(o<)) Co ( ~ ~ P + { 1..-~) V*~) 
V(S,R,z.) J¢<@(.) SL ¥ .\Z .\Z 

(i _,. t ~Hf~) 
(C.4) 
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Transient Axial Temperature-.., 

T<S,R>Z.) =(Jo(AR)-J°;;C4)'\(-<¥-.1) Pl.SIZ.)) 
~(A) ") ~ 

(C.5) 

These equations correspond.to Equations (2.54) and (2.55) in the main 

body 9f the thesis. 

By substituting Equations (C. 4) and (C. 5): into Equations (2. 37) 

and (2.36) respectively, and integrating Equations (2.37) ancl (2.36) 

with respect to (R), the results are: 

and 

Q(S,Z) = 

.\Q(S,Z) = 
jZ 

_Co Dg.. [~ _ Q, C. (1.-K)V*".)2.p] 
}(-6L ~z SL n:z= 

[1 ·~ ~~ K(ffi.] 
:"' SL tJ~ r<s,z.) 

Co 

where (D ), (D ), and (N ) are given as Equations (2.74). 
a g g 

(C.6) 

(C. 7) 

By differentiating Equation (C.6) with respect to (Z), neglecting 

the hig~er order term ~ 3P(j,Z) , and equating the result to Equation 
. ~z 

(C.7), this ordinary differential equation results: 

_ (5L\2. ~ ( 51-k F:1.4) PlS1z.) 
Co) o~ (S-[1-k1D3Fi.*) 

(C.8) 

o ~ I<. L..1. 

where Fl* is given as Equation (2.76). 

The solution to Equation (C.8) is of the form: 

r:.t<S)'Z -Jd(S)Z 
P(S,Z) = cl e. + c2 e.. (C.9) 

(C.10) 
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Equations (C.9) and (C.6) form a system of equations in the spatial 

coordinate: (Z). By applying the boundary conditions at Z = 0 and 

Z = 1, this transmission line model results: 

P (S, 1) 

Q(S,1) 

Cosh rd(S) 

-Sinh rd(S) 

Zd(S) 

-Zd(S) Sinh rd(S) P(S,O) 

Cosh rd(S) Q(S,O) 

where rd(S) ~ SL 
Co Do- ( S-[1-K] F~*') 

(C.11) 

(C.12) 

.SL ¥ ( S +k: F"~l :: }{ .,f (.S+k F.H){ S-L1-1<1F:i,i2_, ' 
Co Do..IJ C.S) (.S-(i-kJ F~) V s-a.N'J Do. 

(C.13) 

The terms (N ) and (D ) are given as Equations (2.74), and g a 

(C.14) 

from Equation (2.76). 

In the special case where K = 1.0 above, this model becomes the 

same as the model in the main text, Equations (2.70). 

Using the approximations for (Ng)' (Da)' and Cosh r(s)_given in 

Chapter III, Equation (C.11) may be rewritten in the same form as 
I 

Equation (~.4) to compute step responses. That is, 

P(S,O) ( ) 
P(S,1) ~ Cosh r (S) C.15 

, I d 

The step responses which result from the one, two, and four product 

term expansions for Cosh rd(S) are shown as Figures 20; 21, and 22.: 

The computed step responses and the experimental step responses are 

shown for step inputs of o~is, 2.0, 4.0, and 6.0 psig. The computed 
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0.25 psig step (E) 0.25 psig step 
2.0 psig step (F) 2.0 psig step 
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step responses are based on parameters K = 0.5, DN = 2.0, L/C0 =.0532 

(the 60 ft pneumatic line discussed in Chapter V), 0.40 inch inner 

diameter, at an ambient pressure (p0 ) of 11.2 psia. 

114 

This model does not predict as great an increase in apparent 

damping as disturbance amplitude increases as that predicted by the 

model in the main text, Equations (2.70). (Compare Figures. 20, 21, 

and 22 with Figure 13.) But this model is more stable than Equations 

(2.70). 
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