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CHAPTER 1

THE PROBLEM

Introduction

The transient solution for small, laminar disturbances in a fluid-

filled line has been reported many times in the literature, as is shown

below:
TABLE 1
LITERATURE SUMMARY
Type of Transient Disturbance
Flow Small - Finite Amplitude
Laminar Laminar Turbulent
Disturbances Disturbances Disturbances

No Through Flow

Iberall (12)
Nichols (13)
Brown (3)
Goodson(10)
Zielke (22)
Kantola (13) .

Laminar
Incompressible
Through Flow

Orner (17)

Turbulent
Through Flow

Brown, Margolis,
Shah (6)

Brown, Margolis,
Shah (6)




The small laminar disturbance '"models'" of a fluid transmissiqn line
which have resulted from the anlyses shown above were sufficient to
predict transients in instrumentation lines, most hydraulic systems, and
selected pneumatic systems. In the simulation of hydraulic systems most
of the transients occurred "slowly." The opening and closing of a
valve or the movement of a control piston, for example, occurred over a
relatively long period of time. The inputs to the hydraulic line were
considered as a series of small disturbances, andthe small disturﬂance
line model seemed to be adequate.

With the advent of fluid logic devices that change output from
14.7 psia to 18.7 psia in 4 or 5 milliseconds, hydraulic logic devices,
and fast-response pneumatic control systems, the small disturbance line
model often is inadequate - inadequate in the sense that the model
can not predict transients accurately when it is subjected to these types
of inputs:

1. inputs with both high frequency content and low frequency

content;

2. inputs with or without through flow; and

3. inputs of small and finite amplitude.

The capability of the existing small disturbance of "acoustic"
models for predicting high and low frequency behavior is excellent,
providing the pressure disturbances are sufficiently small.

The small disturbance models do not include the effect of through
flow. This is not due to any inherent deficiency in the small dis~ .
turbance models, but rather to the general belief by engineer; that the
effect of through flow is negligible ~ that signal transmission in a

fluid-filled line is not greatly altered by the addition of through flow



unless the through flow velocity approaches the acoustic speed of sound
in the fluid. The acoustic speed of sound in air is on the order of
1100 ft/sec, and in liquids is as high as 5000 ft/sec. In most practical
applicaéions through flow velocities are on the order of 100 ft/sec or
less. Then the effect of through flow on dynamic behavior may be negli-
gible, and the small disturbance model which neglects through flow may
be completely adeqqgte even when th?ough flow is present.

The principal shortcoming of the small disturbance line model is

k]

its inability to meet requirement 3 above, that of predicting the response
to both small and finite amplitude aisturbances. The small disturbance
ordinary differential equation line models are all linear models.
Doubling the magnitude of the input doubles the magnitude of the output,
and the output transients have the same percent of overshoot and rise
time.

But experiments with pneumatic lines, such as the ones conducted by
Kantola (13), show that when one increases the magnitude of a step input
to the line, the output transient overshoot decreases and the rise time
increases. Part of Kantola's experimental results are shown as Figure 1.
Note the significant increase in apparent damping for the 1.0 psig step
over the 0.1 psig step, and the accompanying increase in rise time.

No linear small disturbance line model will predict Kantola's
results shown on Figure 1. A reexamination of the describing equations
for the fluid-filled line is in order. By including the convective
acceleration terms in the axial momentum and energy equations, it may be
possible to predict the increase in apparent damping which occurs as

the disturbance amplitude is increased. At least it may be possible to

predict the trend in the output transient as disturbance amplitude



@A 0.1 PSIG
® 0.5 PSIG (15.2 TO 14.7 PSIA)
© 1.0PSIG 157 TO 147 PSIA)

- KANTOLA EXPERIMENTAL DATA
STEP RESPONSES, 50.0 Ft line, 0.19 inch diameter

120 160 200
TIME (milliseconds)

Figure 1. Kantola Experimental Data



increases.
Previous Investigations

Zielke(22) and Brown(5) investigated the problem of retaining the

3z

. . v . .. .
convective acceleration term z 3z in the axial momentum equation,

as shown below.

W e (PME), A e e |
\E r 3r\ ¥r @ ¥z 3z
D——

They both concluded that the convective acceleration term should be
evaluated as the golution progressed, making it a "weighting function"

to force the left side of Equation (1.1), Their primary interest was in

-

a highly accurate line model, and speed of computation was not essential.

They solved Equation (1.1) by a method of characteristics, modified by

3z

the weighting function (vz > ). The results were compared with data
z

measured using small amplitude disturbances.

1f speed of computation is not essential, Equatioﬁ (1.1) may also
be solved by finite difference methods.

When speed of computation is essential, the methods of character-
istics and finite difference methods lead to accurate results but
require significant storage and computational time. An ordinary differ-
ential equation model which approximates the true partial differential
equation is less accurate, but is more compatible with the lumped
parameter models or the ordinary differential equation models for the
other components in the system. That is, the intended area of applica-
tion of the line model is in simulation of complex hydraulic and pneu-
matic systems containing a wide variety of components. 1In a system

simulation of this type, the high frequency portions of the input are



normally greatly attenuated by system components other than the line,
regardless of what type of transmission line model is being used. For
this reason, most simulation schemes use an ordinary differential
equation line model which is capable of predicting transients in the low
to medium frequency range.

There are various types of ordinary differential equation models
available, but the most common type used is the distributed parameter
model. This model comes from a solution of the equations of motion, and
the energy equation. The distributed parameter model 'is an infinite
order ordinary differential equation system, and there is considerable
literature ( (9), (16), and (19), for example) that discusses the best
ways to truncate the infinite order system to a finite order for effici-

ent use in a system simulation.

Thesis Objective

The objective of this thesis is to develop a generalized line model
which is suitable for system simulation, a model which includes the
effects of finite amplitude disturbances and through flow. The model is
intended to be used primarily in hydraulic and pneumatic system simula-
tions where the high frequency portions of input disturbances are
attenuated significantly. Therefore, primary consideration will be
given to the accurate prediction of transients with low to middle-range

frequency content.

Criteria for Judging Model Validity

The criteria used to judge the suitability of the model will be

the following (listed in order of importance):



1. The model should predict an increase in apparent damping as the
magnitude of the disturbance inpufito.the line is increased. A real

transmission line has this behavior, as is shown on Figure 1.

2. The model should be reducible to finite order by suitable
approximations such that computational time and difficulty are reduced
without severely limiting the accuracy of the model. Factors which may
be considered in the suitability of a particular order model are rise

time and apparent damping.

3. The model response should be in reasonable agreement with the
apparent fundamental mode of corresponding experimental responses.
(There appears to be no totally definitive way to compare'model responses

and experimental responses.)
Definition of Terms

The following terms are used in several places in the thesis:

1. Average Fluid Properties: The terms 6;, \% s Ao 5 To’ and P,

are time-averaged fluid properties about which the instantaneous
variations @ , A% s s T, p occur.

2. Laminar Disturbance: This is a disturbance in the transmission

line of such a magnitude that the concentric layers of fluid retain
their same relative radial position in the line.

3. Small Amplitude Disturbance: This is a disturbance of small

enough magnitude that none of the instantaneous fluid properties vary
from their average fluid properties by more than 10%.

4, TFinite Amplitude Disturbance: This is a disturbance of such a

magnitude that some of the instantaneous fluid properties vary from



their time-gveraged values by more than 10%, but the disturbance is
still laminar (see 2 above);

5. Laminar Through Flow: This is incompressible Poiseuille flow

with the characteristic parabolic axial velocity profile. The Reynolds
number of the through flow based on average axial velocity is less than

2000 and the centerline Mach number is.less than about 0.4.
Related Literature

Goodson(10),(11) has published an excellent historical account and
up-to~-date summary of transmission line literature from the year 1808 to
the present. Only that portion of the total literature which relates

directly to this thesis is presented here.

Small Amplitude Disturbance Models

Iberall(12), 1950, developed the solution for visgous attenuation
in instrument lines, including heat transfer effgcts. His primary
objective was -''to simplify‘the design of high-qﬁality transmission lines
for relatively low frequencigs." The form of the axial momentum and

energy equations which he used are shown below;

Axial Momentum.

3% _Y% B_(P&) =4 3P (1.2)
Y r 3\ Jr & Yz

Energy Equation (and Continuity).

O _¥% a_(ré_T.) - To (¥-1)p (1.3)
3t G ar\ S Y



where v, o= axial velocity
r = tube radius (0 £ rX a)
a- = tube inner radius
p = transient pressure
T = transient temperature.

Iberall ‘showed that the viscous attenuation parameter (9@ ) for the line

is of the form:

l+2(‘6’ :DJ'CA\

qy —_— A Jo Q)
¢t 1— ZJ—'((’)) (1.4)
¥ L)
where A= jq JWLR  ang Y = j J%Q_»z. (1.5)
Yo

jo and J1 are Bessel Functions of the first kind, zeroeth and first
order, respectively.

The basic restrictions on Iberall's solution are:

a) laminar axial disturbances,

b) constant diameter, rigid transmission line, and

c) mean flow velocity much less than the acoustic velocity in the

fluid.

These same restrictions apply to all of the analyses discussed in
this section.

Nichols(15), 1962, arrived at the same solution of the set of
Equations (1.2) and (1.3), using small-signal analysis. He defined such

terms as "shunt admittance" and "series impedance'':

it

Shunt admittance per unit length = Y1 = — (1.6)
&p
Series impedance per unit length = Z, = gﬁi—- (1.7)

N 1
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where q volume flowrate

§p = pressure drop per unit length.

Nichols concentrated on producing design curves and approximations for
frequency response.

Brown(3), 1962, explored thoroughly the realm of step and impulse
responses for the transmission line model which Iberall had solved in
1950. 1Iberall and Nichols used Fourier analysis techniques, but Brown
employed the Laplace transform, and made the first investigations in the
‘time domain.

The Iberall-Nichols-Brown model, in two-port form, is

shown below:

F - -

Py Cosh I'(s) -z (8) Sinh r'e) || »,
—_— (1.8)
W, -Sinh ['(8) Cosh [(8) w_
ze(S) |
N o - L. p

where subscripts "a" and "b" represent the two ends of the transmission

line, 1
(Y-1) J; (8
_ s | 1vEFEE
[(s) = (1.9)
Co 1__2.J7(‘P)
¥ Jo(¥)
w2 = Ly e (L0
T2 -, A
V(1+23209)(1-535)
It will be convenient in this thesis to write ['(8) and Ze(S) as:
re) =Sk Ng and z (8) = Tal (1.11)
o —ra_ .
2 V % T 55
sac 0y . *
——— 5 d = 1.13
A Vo an Y=y v, ( )
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Brown(3) considered both gases and liquids in his analysis. For the

liquid case, ¥ =1.0 and Equations (1.11) reduce to a simpler form.

Approximations for ['(S) and 7 (8)
c

C
o

TTa

and Ze(S) = When

In the frictionless case, ['(8) = SL 7 -

C_

)
friction is included however, ['(S) and Ze(S) take on the complex forms
of Eguations (1.9) and (1.10). 1In this case the.Laplace domain model

(Equation (1.8)) is very difficult to inverse transform.

Goodson(10), 1963, considered approximations for ['(S) and Ze(S)

for liquids, that is, when Ng = 1.0:
re),, .. = 2k i ~ SLqf_L (1.14)
liquids Co (Dg)exact Co | ( DS)"'PP”"
2,(5) 5 uigs = Co 1 a Lo i (1.15)
© B 1 - (Dg)emd‘ rat ¥ ( Dg)approx
K LS
where (@) - = [ A_z:r.w)],m«n ==Y |IL-oF@P | .16
g exact YWl T 8 i ¥=
T 2(on
[yz
and (D) =" ‘l’z(i"é;) = 5:18 B2 S (S+B4DN) (1.17)
g’approx g 2 2 S+5.18DN)(5+B,DN)
(1_%_7{3)(1_.5) 8 By (S+5.18DN)(5+B;
and w2=_$03' ) S=jW , DN = Damping Number = l"z (1.18)
Vo o.

The quantity O (0,n) is the nth zero of Jo(l}’) and the quantity & (2,n)
is the nth zero of JZ(‘P).
To solve for B1 and 32 in Equation (1.17), Goodson first required

that the limit of the approximate function equal the limit of the exact

function as "S" approached (+) infinity.
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= U _ = 8
a,Pme _&(Ds\ewd = i.o %% :Eﬁ—g (1. 19)

Him (D)

S0

Then Goodson required that the value of B, be chosen so that '"the mag-

1

nitude at the value of %ﬁ where the angle is maximum of the function

involving B, coincides with the magnitude of the infinite product at

2

the same value of %ﬁ " Goodson's results are Ei =i40.9 and B2 = 56.6.

Then:

® ) __ S5 (S+40.9DN) (1.20)
g approx (S+.5.78DN ) (S + 56.6 DN )

Equation (1.20) is equally valid when approximating [(S) for an
ideal gas, but the factor "Ng" of ['(S) is not equal to 1.0 in this
case (see Equation (3.4)). Plots of ngI exact and ,Dgl approx are
shown on Figure 2. The development of a corresponding approximation

for Ng is considered in Chapter III.

Small Amplitude Disturbance Studies

With Through Flow

Orner(17), 1969, used the same type of Fourier analysis as Iberall
and Nichols, but he included the convective acceleration term in the

axial momentum equation to account for through flow. That is:

RY/- R /1 -Yéé_(ré_ﬂ'z)z-i_& (1.21)
Yt iz rar\ & M)z

Orner represented the axial velocity (vz) as the sum of two components -
a steady-state incompressible through flow component plus a compressible
transient flow component:

vz(t,r,z) = vc(r) + vt(t,r,z) (1.22)



'GOODSON'S APPROXIMATION
- {Equation 1.20)

10¢ : . e e e — —

EXACT
(Equation 1.16)

|D;]

EXACT & APPROXIMATE

1. 10. S 100. . - 1000.
|3x

Figure 2. Goodson's Approximation for "Dé"

€1
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where vc(r) is the parabolic (Poiseuille) flow profile. Then Orner
neglected the transient velocity (Vt) compared to (Vc)’ and approximated
the convective acceleration term as follows:

v 3z ~ V. 3Vt (1.23)

Y dz

Orner's solution is in terms of the confluent hypergeometric series,
which "have not been tabulated to date'" (1969). He performed a pertur- \
bation solution on his system of equations, but the solution did not
compare well with the experimental data collected by his co-worker,
Cooley(7). That is, Orner's analytical solution did not predict the
large changes in frequency respoﬁse with and without thrpugh flow which
Cooley found by experiment.

Cooley(7), 1969, performed a series of experiments on a 0.125 inch
diameter rigid line, 6.0 inches long. He measured frequency responses
with various through flows (up to a Reynolds number of 2200), with a
constant time-average line pressure of 3.0 psi absolute. Throughout the
experiments, Cooley kept a constant ratio of transient flow to steady
flow of 0.1, so the transient flow magnitude was increased as the
through flow was increased. A portion of his results are shown on

Figure 16 (Chapter VI).

Time Domain Studies

Kantola(13), 1969, measured a series of step responses for pneu-
matic lines of different diameters and lengths. He generated the "'step"
input by placing a metal diaphragm over the open end of the line,
charging or evacuating the line to some pressure above or below ambient
pressure, then bursting the diaphragm by mechanical means. Part of

Kantola's results are shown on Figure 1, in the introduction to this
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thesis. The responses demonstrate the nonlinear characteristics of a

pneumatic line when subjected to finite amplitude disturbances.

Organization of the Thesis

Chapter II

This chapter discusses the solution of a linearized form of the
v

. . . . ' 4
axial momentum and energy equations. The :convective terms v, 3z

, a1
zZ )z

for the effects of through flow and finite amplitude disturbances.

and are retained in these equations. The solution accounts

Chapter II1

The model derived in Chapter II includes terms such as Cosh ['(S),
Sinh IM(S), and I"'(8). To use the model in the time domain for general
cases, some approximations for these functions must be made. The

approximations are listed in this chapter.

Chapter IV

Experimental procedures used to record small and large amplitude
step responses for a blocked 60 ft, 0.40 inch diameter line are pre-
sented. The step responses were measured for positive-going and
negative-going steps of + 0.25, 1, 2, 4, 6, 8, and 10 psig with an
ambient pressure of 11.2 psia. The experimental work was conducted at

the U. S. Air Force Academy, Department of Aeronautics.

Chapter V

This chapter compares the experimental results of Chapter IV with
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the analytical model from Chapters IT and III, in the time domain.
Computed responses for 0.25 and 4.0 psig steps are shown and compared
with experimental results. The experimental results show considerable
high frequency content but the computed responses display only low
frequency content, as would be expected (since the approximations used
in the Laplace domain model are low frequency approximations.)

To compare the effect of finite amplitude disturbances in the model
and in the experiment, the model damping was adjusted so that the
computed response to a 0.25 psig step approximated the apparent funda-
mental mode (the low frequency mode) of the!corresponding experimental

response. Then it was possible to compare the effect of finite ampli-

. tude disturbances in the model and in the experiment.

Chapter VI

Available test data for the frequency response of a small pneumatic
line with through flow is examined briefly. It is concluded that the
golution offered in this thesis cannot predict the large changes
reported by GCooley(7). A similar conclusion is reached about the

Orner(17) solution.

Chapter VII

The basic model derivation in Chapter II assumed an ideal gas.
This chapter simplifies the model for use with liquids. Computed step
responses using the hydraulic (liquid) equations with both small and

finite amplitude steps are shown.
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Chapter VIII

This chapter includes a short summary, conclusions, and recommenda-

tions for further work.



.CHAPTER 11
ANALYTICAL MODEL

This chapter presents a solution to 2 nonlinear form of the axial

momentum and energy equations for flow of a compressible fluid in a

rigid, circular transmission line. The solution considers finite

amplitude disturbances, with and without through flow inthe line.

The coordinate system for the .line is illustrated in Figure 3

below.

3 r«0 LINE
o . -

|
}to s 3’=

Figure 3. Coordinate System

r

18
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Basic Assumptions

1. The line is rigid; circular in cross section, and has constant
cross-sectional area.

2. The fluid is Newtonian, either an ideal gas or a liquid. The
analysis in this chapter is valid for ideal gases; Chapter VII will
consider the simpler case of a liquid. |

3. The transient is "laminar" in nature (see "Definition of
Terms," in Chapter I).

4, All fluid properties may be considered constant. These
properties may be calculated at the average conditions in the line.

5. The through flow is laminar, incompressible Poisé;ille flow
(see "Definition of Terms", in Chapter I). |

6. The time-varying pressure is uniform across any given cross

section of the transmission line; i.e., pressure is not a function of

the radial coordinate, (r).

7. §2;E L = and 527_2 << 3T (D'Souza (8) ).

3 LY ol 8z ¥ala

8. The axial velocity, temperature, and pressure at any point
~within the line each~may be represented as the sum of two components =~
an incompressible steady-state component (subscripted with a 'c™),
and a compressible, time-varying component (subscripted with a "t")

which is superimposed onto the steady-state part. Thus:
Yz (¢,r,2) = Us(r) +# Y (L, p, 2)

T.(r +T.(t,r z)

Tz(t,r,z)

/Pz(t,Z) =/pc(z) +’P*(t'2) (2.1)
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9. Ur = Us = O,
10. A1l partial derivatives with respect to & are O.
11, Isothermal walls

12, The line is long enough that radial end effects are negligible.
Derivation

The steps used in the derivation of the analytical model are
summarized below:

1. Write the nonlinear Axial Momentum (AM) and Energy (EE)
equations. |

2. Solve the linear small-disturbance (AM) and (EE) equations
for steady-state operation, and substitute the results into the non-
linear (AM) and (EE) equations. The resulting (AM) and (EE) equations
are "perturbations' about the steady-étate.

3. Nondimensionalize (AM) and (EE).

4. Linearize the resulting dimensionless (AM) and (EE) equations.

5. Transform the linearized (AM) and (EE) equations, transient
mass flowrate equation (TM), and integrated continuity equation (IC).to'
the Laplace Domain to eliminate the independent variable, "time."

6. Solve (AM) for the axial velocity profile V(S,R,Z), and
substitute the solution into (IM). Solve (EE) for the axial temperature
profile T(S,R,Z), and substitute the solution into (IC).

7." Integrate the (TM) and (IC) equations with respect to (R),
and eliminééé'the independent variable (R).

8. Differentiate (IM) with respect to (Z), equate the result to
(IC), and obtain a second order ordinary differential equation (SE) in

P(s,z).
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9. Agsume a solution for (SE) of the form:

N2 - ¢s)Z
P(s,2)=Cse 0% +Che

Solve (SE) for P(S,Z); obtain the solution (SN).

(2.3)

10. Apply boundary conditions at Z = 0 and Z = 1 to the system of
equations composed of (SN) and (IM). Solve for arbitrary constants
(Cl) and (Cz) in 9 above.

11. Write the final solution (the trnasmission line model) in

standard matrix form.
Basic Equations

With fhe assumptions listed at the beginning of this chapter, the

describing equations may be written as shown below.

Axial Momentum

Pyl +(v’+w)}_c (r;&zﬁz = -1 3Petpd
3t r g Y e ¥z .

Energy Equation

_éli _+(ZE{4U§)§1%,_ ¥ %

(2.5)
\ 3Z

s}_(l" 3(724-72)) -(¢-1)7; 3%z
o 8z

Equation of State (Ideal Gases)

dp_de ,dT _ de

[l

e(ié_f 43T

S-S A > P 3 | To ot
de _p (L P 13T
:-:;YZQ-,@,(% I Az) (2.6)
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Continuity Equation (Transient Flow)

RY- ___Q_) O = % _ (39 V_Q) o (2.7)
3t

iz

Equations (2.6) and (2.7) combine to yield:

é_vi_—_: ..(.l.é:.g _is—]—. —W(LA_IE -L)_T:) (2.8)
’Z Rt T Pyz Tz
Integrated Continuity Equation (Transient Flow)
rza r=a
2 (MeW)rdr _ _2m | 3@ rdr 2.9
3Z 3t
r=0 r=0
r=a
>dw(t,2) o _2m (e (130 LiT)rdr
bz ’Po Bt To d
reo (2.10)
where w(t,z) is the time-varying mass flowrate superimposed on the
through flow in the transmission line. That is:
! w(t,2) =2.Trf(p'2/£)ro(r
(2.11)

Steady-State Solutions

Equations (2.4) and (2.5) reduce to the linear (small amplitude)
case when the convective terms are neglected. 1In the steady-state

these equations become those listed below.

Steady~State Axial Momentum

Y (r = -1 3P
T \zzZ

(2.12)
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Steady-State Energy Equation

YW 8 [rdTe ).
?:?YF( F)"O (2.13)

The solution to Equation (2.12) is:

= r2
Ve = Vnae (1-£3) (2.16)

where (Vmax) is the centerline velocity (r = 0), and

~§13c - -4 Al 24;ax
2

3z o
The solution to Equation (2.11) is
T, = constant (2.16)

Substitution of Equations (2.12) and (2.13) into Equations (2.4)

and (2.5) yields. the equations listed below.

Axial Momentum

We , (Ue+ve)d0 _ Yo 3 ré@i):—iéﬁ |
y_tt+ ) t)ézt rér( ar o 3Z (277

Energy Equation

Me o (Uervg)dle _ ¥ % 8 (P&>= ~(-)T; 3% (2.18)
Y Az G ar\ yr 3Z

Nondimensional Equations

Equations (2.17), (2.18), (2.10), and (2.11) may be nondimension-

alized with the following substitutions:



_ T, _ , _ wit,d
T=g 5 k=g QT gTmas

where (Co) is the isentropic speed of sound in the fluid”J ¥R .
(-]

Axial Momentum

VY .L(R_Y) -.._(_4-,,§E (V+V)3V

@ R ¥R AR X3z

Energy Equation (With Equation (2.8) )

AT _ Yo 3 (RAT) - (X0)P, Cof V(P
3t Ga*R M?( AR) ¥ [;t i (az Gr-_)sz

Integrated Continuity Equation

1
3Q(t,z) _ -ZL 3P _ AT)RdR
\Z LYY 5
0
Transient Mass Flowrate
1
Q(t,Z)=2[V(t,R,Z)RdR

AR o
Approximations and Linearization

(2.

~~

(2.

(2.

2.

24

19)

.20),

21)

22)

23)

An earlier investigation by Orner (17) neglected all the nonlinear

terms on the right side of Equation (2.21). The order of magnitude of

these terms may be examined by substituting the expressions for AUEL

and‘él: which result from the small disturbance solution, Appendix A,

. YA



25

into Equation (2.21). From Equations (A.51) and (A4.52):

W _¥ M o
= (2.24)
3Z (X-l) 3Z
The remaining term M was also neglected by Orner (17)
since 'Vf ( 0.2 and )T << (D'Souza (8) ). With the above

two approximations, Equatlon (2 21) reduces to the linear form:

3T _ % _L( ) (¥-1) éP (2.25)
3t G"Q.zR 3R IR .1

The order of magnitude of the right side of Equation (2.20) may

also be examined by substituting in the known expressions for j—;
and _3_\_/_ from Appendix A. Using Equations (A.49) and (A.52), the

3Z
right hand side of Equation(2.20) becomes:

[1 P ,,(\/,:+V)_u] ~ -E[M + (Ve + VIO o)] (2.26)

where Q(t,0) and P(t,0) are nondimensional boundary conditions at Z = O.
For fast transients it appears that the value of the term (V.F*V)M:f:,o)
may be of the same order or larger than the term 3Q(%,0) R

even though (V;+V) may be small. 1

There are three independent variables, (t,R,Z), in the system of
Equations (2.20), (2.25), (2.22), and (2.23). One way to eliminate the
variable "time'" is to apply the Laplace Transform to the system of
equations. But Equation (2.20) must first be linearized.

The method of linearization used by Zielke (22) and Brown (5)

when they solved Equation (2.20) by a modified method of character-

istics was to make the term V3V a '"weighting function" which
3Z
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"forcedﬂ the homagepeous linear equation shown in Equation (2.27)

below.

Axial Momentum

ﬂ—l’q_L(R&).*-_Qgé.E = -Co V3V (2.27)
3\t a*R 3R 3R YL 3Z L YA

The term (Vf) is missing on the right side of Equation (2.27)
since Zielke and Brown did not consider through flow in their analyses.
In effect, the term V%%é was assigned a constant value at some
spatial coordinate (R,Z) at a particular time (t). This method of
linearization, with some modification, will be used in this thesis.

The term V4V  in Equation (2.20) may be linearized by fixing

3z
either (V) or(é!) at some particular time (t), but not both in the same

term. That is{zeither V) 5&(%%. may be designated as a time-varying
coefficient which must bg recalculated and updated at intervals in the
time domain solution. The time-varying coefficient will be designated
in this thesis with a subscript (*).

This type of linearization is valid only for some small period of

time (at), where (at) is much less than the reciprocal of the highest

frequency of interest in the response of the line (c%ax)' That: is,

1
(at) <<g5, (2.28)

where @) is in radians per unit time.
max
The term Vg3¥  in Equation (2.20) is already linear since Ve
is not a function of time. To calculate the time-varying coefficients,

the form of their solutions from the acoustic model (Appendix A) will
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be used. These forms are given as Equations (A.48) and (A.49).

By using Equations (A.48) and (A.49) the term VAY  may be

LYA
represented in the linear forms shown below.
Method 1. Fix V for a given time increment.
Vv oV &
sV * (2.29)
¥z 3z
where V, = [".‘:._Z_;_E(.'QQ + Q(t,O)]
CO At *

When this method of linearization is used, both (V) and c%%)
must be averaged over (R). (V) is represented by a uniform axial
velocity profile, and 3V must be averaged over (R) to make

Ly4
Equation (2.20) separable.

Method 2. Fix 3!1 for a given time increment.
3Z
vav. o V(¢t,R,2) él) C(2.30)
Z 3Z/y
here (ﬂ) - [__L_ P(to)]
3 % Co At *
When this method of linearization is used, only %%% is aver-

aged over (R). Thus, method 2 should be a more accurate method of
linearigzation, and is the only method pursued in the body of this
thesis. Appendix C shows the result obtained by combining both Method
1 and Method 2. This combination produced a model which was more
stable numerically than the model which used the Method 2 linearizatiom
only, and may be useful under some circumstances as discussed in
Chapter VIITI (Summary and Conclusions).

One of the criteria for the transmission line model (as stated in

Chapter I) is that the model should exhibit greater apparent damping
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as disturbance amplitude increased. This criterion is based on obser-

vation of actual experiments on pneumatic lines. The form for (%—;:)
%

shown as Equation (2.30) produced greater apparent damping as dis-
turbance amplitude increased for negative-going step inputs, but pro-

duced less apparent damping for large disturbance amplitudes on

positive-going step inputs. To correct this discrepancy the following

form was used for (ﬁ!ﬁ
aZ /%

p

32) - (sgn P(t,o))(_l—. 4P(t,0) (2.31)
*

Co 3t *

This form for (g_\z()* produced a line model which exhibited
greater apparent damping for larger disturbances regardless of the
sign of the disturbance.

Rewriting the Axial Momentum Equation (2.20) using the second

method of linearization yields:

W(E,R z)+g,(a;v_) V(tR2 - % 3 (RW(ER z))___
e L\Zk ZR4R\ IR

-Co(’iaP(t,z)+M,, V2)y  (2.32)
L\Y by4 3z

= (Vf) averaged over (R).

where(é!) is given as Equation (2.31), and My
OZ Jy N
Mp = aj\/{; RdR = Mqva; Mg = Yo Re (2.33)
- 2 26a

where
MCl = Mach number of the through flow based on centerline
velocity,
Mav§= Mach number of the through flow based on average

velocity,

Re = Reynolds number based on average through flow velocity.
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For the small increment of time (at) as defined in Equation (2.28),

Equations (2.32), (2.25), (2.22), and (2.23) may be transformed into .

the Laplace domain. The results are shown below.

V(s,R z)(1+ 2 (&Y

Axial Momentum

(R’ Y!S}R{Z§
gﬂ( MP(s z.)+MbM

¥ 3z

AZ)\) sa?-R 3R

Energy Equation

TGS,RD-_Yo 4 (R AT(S,R,Z)) = (¥-1) P(s,2)

S@.a*R AR AR X

Integrated Continuity

3Q(s,2) - -ZSLf(P(S 2)-T(S,R,2))R dR
32

Transient Mass Flowrate

1
Q(s,2) = afV(S,R,z) R dR

o

Solution of the Axial Momentum and Energy

Equdtions

.

Equations (2.34) and (2.35) are made separable by assuming a

product form of solutiom:

and

V(s,R,2) =Gy(5,R ((s,2)

T(S,R,2) = G3(5,R) G4(5,2)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)



The term &Y(5,Z) on the right-hand side of Equation (2.34) may
dZ
be approximated by its small disturbance solution, Equation (A.42).

Rewriting Equations (2.34) and (2.35) with the substitution of Equa-

tions (2.38) and (A.42) yields the equations given below.

Axial Momentum

Gy (1 +Ea) - Yo (R_A_@) = —L(Q_E—Q;Q_Qgﬂb.éiﬁ)

30

SR R\ IR G,¥SL\Z  SL yz2 (2.39)
where Dg =<1‘ %TJ;‘((;‘%)- from Eqtiations (A.40)
and Fax = Co (ﬂ) = (sgn P(t,o))(_é_ﬂi.ﬂ) (2.40)
L \¥Z/y 3t 43
Energy quation
Gz - (R = (-1 P (2.41)
S0, o.?'R 3R Ga ¥ -
Choose G, = -Co (E ~ Co Dg Mp 3*P (2.42)
¥XsSL\3z  SL 3z* _
and Gqe = gk“i) P (2.43)
¥
Let o = J s\}a"‘(1+%« ' and A= J4S%0  (2.44)
(-] o

Substitution of Equations (2.42), (2.43), and (2.44) into Equations

(2.39) and (2.41) yields:

Gut ’éR R(*{F) -1 @.
and G + AR(R&) 1 (2.

A homogeneous solution to Equation (2.45) is:

Gyp=C R | C, YolxR)
To (=) Yo (=) 2

45)

46)

J47)
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where Jo and Y0 are Bessel functions of the first and second kind,

zeroeth order. A particular solution to Equation (2.45) is:
Gy = 1 (2.48)

Thenthe total solution to Equation (2.45) is:

Jo (¢ R) Y, (xR)
= + Cg_ ° + C 0 .
G’ﬂ_ i —-—3_0(“) | 2 -—-\(‘> P~ (2.49)

From the no-slip boundary condition G1J R=1 = 0,

Cd_'l'Cz_ ='1 (2.50)

From the boundary condition G4 = O

3R
R=0
Cz=0 (2.51)
Then C1 = -1 and:
Gy =“( J;c«m—:fx&) (2.52)
Jo (X)

Application of the boundary conditions G3_l - = 0 and 38Gs3| = O
AR R=0
yields the following solution for Equation (2.41):

Gz = ..<32(AR)—I><A\> A (2.53)
Jo (&)

where (A) is defined in Equation (2.44).

The solution for the axial velocity profile becomes:

(J;(Q(R\‘J:)Ceﬂ) Co (Aj_ Co !b&!é AZP)
V(s,R,2) = T () ¥sL\3zZ SL 2%

(1+Eg)

The axial temperature profile becomes:

T(S,R,Z) = <J'O(Am-%cm>(_(y_1) P(s,2)
N J-o (A) X

(2.54)

(2.55)
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Solutions of the Transient Mass Flowrate and

Integrated Continuity Equations

By substituting Equation (2.54) into Equation (2.37) and inte-

grating with respect to (R), Equation (2.37) takes the form shown below.

Transient Mass Flowrate

a4

_C. Dy ( AP(5,2) _ Co DgMp é"‘P(s,z))
(2.56)

Q(s,2) =__¥SL 3z sL 3z2
(17
where 1 273(“)) (2.57)
ot Jg (X)

(Dg) is given in Equations (A.40), (Mb) is Equation (2.33), and (Fl*)
is Equation (2.40).
Substitution of Equation (2.55) into (2.36) and integrating with

respect to (R) yields the equation given below.

Integrated Continuity

dQ(s,2) = -SL Ng P(s,2) (2.58)
3Z Ceo
where  Ng =(1+ ?-If%’;ﬂ?j “‘) (2.59)

Differentiation of Equation (2.56) with respect to (Z) yields:

_CoDy (5" P(s, 2 _ Co DgMb é3P(s,z))
b?(sjz.) - __¥sL 3z* SL \Z3 (2.60)
Zz Fa,
(1+Bg)

The purpose of this thesis is to derive a systems model for a
transmission line which predicts transients accurately at low and

medium frequencies, in the range O < ISC_LI< 27T, The term
o
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involving _é_ESéjéL, in Equation (2.60) is likely significant only at

high frequenc1es, and will be neglected in the analysis which follows.

Ordinary Differential Equations

Neglecting the term _A_Jiéétéﬁ_ in Equation (2.60), and
3z '

equating Equation (2.60) with Equation (2.58) yields:

V2 P(S,2) _ ( (14_ F'4.,x> P(s,2) (2.61)
Y
The solution to Equation (2.61) is of the form:
RHZ -le)Z
Ps,z2)y = Cy €° + Cp e | (2.62)
where [p(S) = 1_+ _4&) (2.63)

(Da) is given as Equation (2.57) and (Ng) is Equation (2.59). The
accompanying equation which describes flow Q(S,Z) as a function of
pressure P(S,Z) is Equation (2.56). By substituting Equation (2.62)

into Equations (2.61) and (2.56), this system of equations results:

BeHZ “Bs)Z

P(s,z) = Cs e + Cze, (2.64)
a¢s -l(s)Z
Q (s,2) = C, (1+Ecs) e," - C;_(:L-Ew)e ‘ (2.65)

AL

where A(s) = - Co Da [¢s)

¥SL (1 + ) (2.66)

and Ec¢s) = -_Q_Q_Ds Mis I3 (S) (2.67)
SL.



34

Solution Completion

To complete the solution of the system of Equations (2.64) and
(2.65), the boundary conditions at Z=0 and Z=1 must be applied. That
is:

L ( P(¢,0) = P(s,0) 3 (Qt,0)=Q(s,0 ;

£ ( P(t,1)) = P(s,1) 5 (A, 1)=QCs, 1) (2.68)

Applying these boundary conditions to Equations (2.64) and (2.65)

yields:
Ce = i(?(s,o)(i-as)} + Qgs,o))
2 ACS)
(2.69)
Cz-= i(Pcs,o)(:U- Ecs)) - Qc_s_,g_)
2 A¢s)

A combination of Equations (2.64), (2.65), and (2.69) yields the

final solution for the system of equations which are shown below.

Summary
P(S,1) Cosh [3(8)+Y,(8) Mp Sinh I5¢8) -Zb(s) Sinh | |P(s,0)
Qs 0|~ | -Sinh R Qes,0)
Z,05) CoshTis)-Y5($) My, Sinh T¢s)
(2.70)
where
’N ¥
Ig () —--fﬂ-_‘/.ﬁ. (1+Eﬂ'_> (2.71)
Co | D s
Y, (s) = Co Dglbes) = Dgq[Ne F y (2.72)
b =G 7o (1+Ea
Fa. Fi
zyesy=ysu (1+58) x}/ (1+E2%)
Co Da Tb¢s) Ng Do (2.73)
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2.(¥-1) J, (&) . - 2J,(¥)
='(1-" To (&) ) J D3 - (1_ VJ:;cqa) (2.76)
(:1 21:n¢3&3
PEA™)
=1/S6 . Y= .11"6" . o<='l/£ Fi*) (2.75)
A bN Noy JDN(1+T
— va . Co P )
Mb = Average through flow mach number. (2.77)

Equations (2.70) represent the solution of the linearized axial
momentum equation which includes the convective acceleration term
'u2§y5 ~(Equation (2.4) ), and the linear energy equation. This
sy:zzm of equations will be transformed to the time domain by using
appropriate approximations for [(s), Gosh ['(s), Sinh [(s), etc;

The approximations are shown in Chapter III; transformation to the time

domain is shown in Chapter V.
Comparison to Existing Models

Equations (2.70) reduce to the small disturbance solution of
Appendix A when through flow and finite amplitude disturbance effects

are. deleted. That is:

— - - -

- -
P(s,1) Cosh Ies) -ch,s)Smh re) | | P(S,0)

Qs D -5 inh I'es) Cosh I'(s) Q(S,0) | (2.78)
- - L Zc (S - - -
where ['(S) = ;"g_ and Zc(8)= ¥ (2.79)

(10 [%? %;h@alsgi
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By deleting the effects of finite amplitude disturbances, but

. [
retaining through flow, the result is:

P(s, 0] Cosh 1) +Ye (S Mp SinhIs)  =2.(5) Sinh{(s) P(s,0)

Q(s, 1) B -Sinh I'¢s) Cosh I'E)-Ye($)Mp Sinh i) ||Qs,00}.
Ze(8) T (2.80)
where

Ye ($) = \/N3 Dg (2.81)

Orner (17) derived Equation (2.80) by using the Poincare Pertur-
bation technique on the linearized axial momentum Equation (2.32),
with Fi* = 0, This is a valid representation when the disturbance
amplitude is smallyand through flow is large.

Orner's expression for Ye(s) is:

Ye(s [1 8_17_)(1 3“’“‘\)] (2.82)

A Ju (A

where (A) is given in Equations (2.75). For |SL
Co

and (2.82) yield the same result; that is, IYQ(S)| 2 4.0 . But
as frequency approaches zero, Equation (2.82) approacheseo, and
Equation (2.81) approaches zero (since Dgﬁ»O as S=+0). Orner's result

for Ye(S) and this thesis result differ because Orner represented the

convective acceleration term as Mp A\/(tiR‘zs while this thesis
YZ
used Mp \/(t!Z) . That is, this thesis used an average value of
Yz

_é!: over the line cross section while Orner used an exact value of
3z

W at each point (t, R, Z).

aZ

For this reason, Orner's result should be more accurate. The



matter seems rather inconsequential, however, since the entire temm
(YeMb sinh ["(s) ) in Equation (2.80) approaches zero so $-»0, regard-

less of which form of (Ye) is used.

37



CHAPTER III

APPROXIMATIONS FOR ['(s),

COSH [*(s), SINH ['(s)

To transform Equations (2.70) to the time domain, it is necessary
to choose approximations for the functions which appear in these

equations. These approximations are listed below.
Approximations for Dg’ Da’ and N

The functions (Dg), (Da), and (Ng) are monotonically increasing or
decreasing functions as S-+®9, so they may be approximated by relas:
tively simple expressions. Goodson (10) suggested this approximation

for (Dg), (see Figure 2):

Dg = _S (s+40.9 DN) (.1
(6+5.78 DN)(S+56.6DN)
where DN = Damping Number = Yo (3.2)
0‘2

The basis for this approximation is given in Chapter I, '"Related
Literature." The Goodson approximation also applies to (Da), by

replacing (S) with (S + Fl*)’ where (Fl*) is defined as Equation (2.76).

Do, & _(S+Fax)($+40.9DN+Fax) (3.3)
($+5,78DN+ Fax) (S +56.6 DN+ Fyx)

There are no published approximations for (Ng), so this form

was used (Prandtl number = 0.70):

38
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Ng ~ (S+10DN) (3.4)
($+7.14DN)

This approximation meets the requirements that

N I at S = 0 is 1.4,
g
'Ng' at § =% is 1.0, and the differences between the approximate and

exact magnitudes squared over the region 1.5

S I . o
BN s 1000 is a minimum.
The exact and approximate magnitudes of (Ng) are shown on Figure 4.

The exact expression for (Ng) is shown below:

= 2.(-+)J(A\
Na (1 +—Z—J-.:—ci)— (3.5)

and (A) is given in Equations (2.75).

Approximations for Sinh [%(s) and Cosh [(s)

The periodic functions Sinh ['(s) and Cosh ["(s) each may be
represented by a power series expansion. For example, Cosh N(s) is
given as Equation (3.6):

rs) %) O
+—2 + Foees
Cosh sy ~ 1 21 41 Al (3.6)

However, for such an expansion to be accurate when M(s) is large,
an excessive number of terms must be retained. Also, improper
truncation of such an expansion can lead to a numerical instability.
Oldenburger (16) has shown that the product-term expansions shown
below produce greater accuracy with fewer terms than the conventional
power series expansions (like Equation (3.6) ), and the resulting

series is not as likely to lead to numerical instabilities.

Product-Term Expansions

Sinh (s) 2 I'(s) T—T (]_ Fz“)) (3.7)

k=1



1.1 ;

1.0

- APPROXIMATION [\

Py
(Equation 3.4) — | '\

EXACT
(Equation 3.5)

AN
N
AN
~
~N \
~
~
~o .
\\\ )
10. sl 100. 1000.
|on
Figure 4. Approximation of "Ng"

0%



41

Cosh I'i$) = TT(]_*—& ) (3.8)

K=4 (2k-4y*TT*
For the step responses in Chapter V of this thesis, Cosh [¥(s) was

approximated by both Equations (3.6) and (3.8). However, Equation
(3.6) was numerically unstable for all but the smallest disturbance
amplitudes, so it was discarded in favor of Equation (3.8). Figure 5
illustrates the relative accuracies of one, two, and four product
term approximations for Cosh [¥(s). For simplicity in plotting, [(s)

was approximated (for this plot only) by the simple lossless form:

= SL
) = 2= 3.9
res) C (3.9

o
The exact form of Cosh [(s) is:

e-—r‘cs) )

)
Cosh '¢s) =%(e, + (3.10)

The one, two, and four product-term expansions for Gosh ['(s) based

on the lossy form of ['(s) are shown below:

Let M2¢s) =(_L-_)2 Acs) (3.11)
| ol B(S)
where A(S) _ 5%Ng
B(s) Dy

A(S) and B(S) are polynomials in "S'" which are introduced to simplify

the algebra.

One Product Term

L 2.
Cosh Fee) = B +.4053(a:) A(s) (3.12)
B¢S)
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Two Product Terms

2 4
Cosh Peey = B +.4503E) A0 Bes) +.01825(E A (3.1)
Bes)=

Four Product Terms

Cosh 'es) = B(S)Y*+ K1 ACS) BES) + e ;\:S)‘BCS)Hk3Acs)3Bcs)+k+A<s)‘* (3.14)
B(S

where Ky = .4748(-2-;)2 ; K= .0294(E)"; Ke=.50¢1:0°(LY;

and Ke= .2441x16°(£)° .

Approximation ‘for [ (s)
D

2
The exact expression for rl(s), from Equation (2.71), is:

2 2 .
e (S =(—s-'—‘-) Ng (14.514 (3.15)
Col Do s
where (Ng)’ (Da), and (Fl*) are given as Equations (2.74) and (2.76).
The approximation for Equation (3.15), using Equations (3.3) and

(3.4) is:

2
M2¢s) ae(_L_ A(S) ;(L)a S (S+10DN)(S+5. T8N +Fax)(S+56.6DNH) (3. 16)
Co/B(s) 1Co)” ($+7.414DN) (S+40.9 DN+F1x)

Plots of the magnitude of (1!&) based on Equations (3.15) and

Dg

(3.16) are shown on Figure 6 for the special case F 0. 1In this

1%
case D =D .
a
Equation (3.16) combined with Equations (3.12), (3.13) and (3.14)

form the approximation "set" which will be used in Chapter V for numer-

ical integration of step responses.
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CHAPTER 1V
EXPERIMENTAL PROCEDURES

The line model derived in Chapter II includes the effects of
finite amplitude disturbances and through flow. Kantola's (13)
experiments, as shown on Figure 1, were recorded for up to + 1.0 psig
steps, but for no larger disturbances. Cooley (7) reported frequency
response experiments with through flow and small transient disturbances.
To validate the model from Chapter II for predicting finite amplitude
disturbance effects, it was necessary to perform experiments at much
higher disturbance levels than that reported by Kantola (13). It was
necessary to examine only finite amplitude effects since the addition
of through flow into the experiment makes it difficult to separate
through flow effects from finite disturbance effects.

For these reasons an experiment was set up to record pressure
step responses of a pneumatic line blocked at one end. The experi-~
mental line was 60 ft long, 0.40 inch diameter, thick-walled copper
tubing. The tubing remained in a roll about 20 inches in diameter.

The experiment was designed to record the pressure at the blocked
end of the line while subjecting the open end to positive-going and
negative-going pressure steps of magnitude 0.25, 1, 2, 4,.6, 8, and
10 psig. The 0.25 psig step was the émaliest size step which produced
consistent step responses. Since the atmospheric pressure at the Air

Force Academy is approximately 11.2 psia, a positive-going step of
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10 psig began with the line evacuated to 1.2 péia, and ended with the
line pressure at 11.2 psia. A negative-going step of 10 psig began at
22.2 psia and ended at 11.2 psia.

The experiment was set up as shown in Figure 7. Two sets of two
each préssure transducers were used, one set for the 0.25, 1, 2, and’
4 psig steps, and the second set for the 4, 6, 8 and 10 psig steps.
The pressure tfansducers were low oﬁtput impedance, variable reluc-
tance type, Pace‘Series CP51 and Validyne Series P40, + 5 and * 25 psi

differential transducers.

MANOMETER (Hgj © - 24 inch)

VALIDYNE
PRESSURE F
TRANSDUCER '

FILLER LINE
FOR PRESSURE
OR VACUUM

o ¢

PACE PRESSURE
TRANSODVCER

SCOPE
TRIGGER {'"@

MECHANISM —»1 |

| P

Figure 7. Experimental Apparatus
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The pressure-time signals measured at the two ends of the line were
recorded on polaroid film with a dual-beam Tektronix 555 oscilloscope.

Two types of mechanical trigger mechanisms were used. The first
mechanism was a fast opening manually operated ball valve. It took
six to ten milliseconds to open fully. The valve added some volume to
the line in the closed position and, particularly at low magnitude
pressure steps (+ 1/4 psig), it altered the wave front at the blocked
end of the line. This is shown on Figure 8 as input-output set #1.

The‘second trigger mechanism added no volume to the line and
opened fully in two to four milliseconds. It was a rubber stopper with
a fishing line attached through the center. Even when the line was
charged to +10 psig the stopper remained in the opening until a signi-
ficant ajerk" was applied to the line. A typical result is shown on
Figure 8 as input-output set #2.

The line was 60 ft. long, so the pressure signal took approxi-
matgly 53 milliseconds to travel the length of the line. The results
shown on Figure 8 are for a step input of + 0.25 psig. All the experi-
mental results shown in this thesis were initiated by trigger mecha-
nism #2, the rubber stopper.

The Pace and Validyne pressure transducers have a flat frequency
response from O to 1000 hertz. It is possible that some of the very
high frequency content was lost, but the loss is not significant. At
the first resonant frequency of the line Q)Te = TI/2 (where
T = L/C0 = 53 milliseconds), W=30 radians/sec, or 4.7 hertz. The

e

second resonance occurred at 14.1 hertz, etc.
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Figure 9 includes the total experimental results. These results
will be shown again in Chapter V in conjunction with the computer

integrated step responses.
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CHAPTER V
TIME DOMAIN EVALUATION

The experimental results shown in Chapter IV include responses
caused by both small and finite amplitude disturbances with no through
flow. This chapter compares computed step responses based on the
analytical results of Chapters II and III with the measured step

responses presented in Chapter IV.
Preparation for Numerical Integration

With no through flow (Mb = 0.), Equations (2.70) may be written as:

P(S,1) Cosh I" (s) -zb(s) Sinh r‘b(s) P(S,0)
Q(s,1) ~Sinh ") (8) Cosh I"'b(s) Q(s,0)
Z, (s)
(5.1)

where lﬁb(S) =

S N Far )
e (1+5%) o

=
z ()= ¥ (1+3) (5.3)
! Ny D

and (Ng), (Da), and (Fl*) are given as Equations (2.74) and (2.76).

3

The Chapter IV :experiments were conducted by blocking both énd§ of .
a pneumatic line; charging or evacuating the line to a designated gage
pressure, then opening one end of the line quickly to the atmosphere.
. The pressure transient at the end of the line which remained blockéd

i
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was recorded as a function of time (see Figure 9).

In the computed model, the end of the line where Z = 0 is
permanently blocked and the end of the line where Z = 1 will be opened
suddenly to atmospheric pressure. Since Q(S,0) = 0; Equation (5.1) may

be rewritten as:

_ _P(s,1)
P(s,0) —-Eggﬁifzzgj (5.4)

where P(S,1) is the pressure input to the system and P(S,0) is the
output.

A fourth-order Runge-Kutta“integrator was selected for the numeri-
cal investigation. This example will show the preparation for integra-
tion when the one product term expansion for Cosh rL(S) was used. By

substituting Equation (3.12) into Equation (5.4), the result is:

P(5,1)

P(5,0) = (5.5)
(1 +.4053(LF %)
From Equation (3.16):
2 N 2 :
2 _sLY g _[L\"_A(S)
'—'b(s)"(co) D_ _\c) B(S) (5.6)
where A(S) = S (S + 10DN) (8 + 5.78DN + F ) (5 + 56.6DN + F ) (5.7)
and B(S) = (S + 7.14DN) (S + 40.9DN + Fl*) (5.8)
Equation (5.5) may be written in the alternate form:
- P(S,1) B(S)
B(8,0) = (B(s) +. 4053 (L) A(S)) (5.9)
or 2
p(S,0) = P(s,1) [ 6(1) 4+ G(2) s + G(3) s° ]

[ G(4) + G(5) s + G(6) s + 6(7) sj + G(8) saj

(5.10)
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where G(1) through G(8) are functions of (DN), (L/Co), and (F The

1)
damping number (DN) and the isentropic delay time (L/Co) do not change
during the numerical integration; the value of (Fl*) changes at every
Runge-Kutta step.

For this problem, (L/Co) = .0532 and DN = 0.8. These numbers are
based on an average kinematic viscosity (\?o) of 0.032 in2/sec, at 72°F

and 11.2 psia. The tube inner radius (a) = 0.20 in, the tube length =

60 ft, and the isentropic speed of sound (CO) = 1130 ft/sec.

Let M(S) = B(S,1) - (5.11)
[ 6G4) + «uue +G(8) 5]

Then P(S,0) = M(S) [ G(1) + G(2) S + G(3) §°] (5.12)

and S P(S,0) =M(S) [ G(1) 8 + G(2) s? +.a(3) 5°] (5.13)

- - <L
Let Y(1) =i-'[M(S) sO], Y(2) ——:Zi[M(S) s], Y3) =¥ [M(s) 527,

Y(4) =Z.1[M(S) s3], and Y(10): =:['_1[M_(s) s"] . Then Equations (5.11),

(5.12), and (5.13) may be written in the time domain as:

Y(10) =—G—%8—) [P(t,1)-G(4) Y(1)-G(5)Y(2)-G(6)Y(3)-G(7)Y(4)] (5.14)

P(t,0) = G(1)Y(1) + G(2)Y(2) + G(3)Y(3) (5.15)
—)Lﬁ—’o—)*: G(1)Y(2) + G(2)Y(3) + G(3)Y(4) (5.16)

Equations (5.14), (5.15), and (5.16) appear in the derivative function

subroutine of the numerical integrator (see Appendix B).
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Results

Figure 10 shows the computed step responses which result from
Equations (5.14), (5.15), and (5.16) at step input levels of 0.25 and
4f0 psig. The experimental 0.25 and 4.0 psig step responses: from
Chapter IV are shown as dashed lines.

As shown on Figure 11, the one, two, and four product term
expansions for Gosh r%(S) yield approximately the same overshoot for
the same input step size. The computed responses do not have as much
"apparent damping'" as that shown by the real fluid systém. This
disparity is probably caused in part by the approximations used for
Fb(S) and Cosh rL(S) in the model, and in part by the restrictions on
the model in the basic derivation. iThat is, the model neglects the
effects of radial flows, developing flows at both ends of the line, and
torroidal motion.

The experimental results shown on Figures 10 and 11 include
significant high frequency content, as demonstrated by the sharp
"corners" of the pressure response. The computed responses using a
one product term expansion for Cosh rL(S) shows only the fundamental
mode 6f the step response. Results using higher order approximations
(two and four product terms) are dominated by the fundamental mode as
well,

An unsuccessful attempt was made to '"filter out" the high frequency
content of the experimental step responses by a totally definitive
mathematical method. However, one can still visualize a damped sinusoid
which appears to be the effective fundamental mode of ;he experimental

response. An approximate fundamental mode for the portion of the
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experimental result between 50 and about 175 milliseconds is shown on
Figure 11. This fundaﬁental mode was determined from the Fourier
Analysis program, "Forit."

For purposes of comparison it is assumed (Crizeria #3, p 7 ) that
the damping associated with the model response for small amplitude
inputs should closely agree with the damping of the approximate funda-
mental mode of the corresponding experimental response. As shown on
Figure 12, a damping number of 2.0 yields the désired model response at
a step of 0.25 psig. Compérison of the computed results with gg?eri-
mental results at step levels of + 0.25, 2.0, 4.0, and 6.0 psig ére
made on Figure 13, based on a damping number of 2.0.

The model is able to predict the increase ‘in épparent damping for
the 2.0 psig step, but not for the 4.0 and 6.0 psig steps. Since the
model is based on the assumption of laminar transient flow, and a
pressure step of 4.0 or 6.0 psig may produce flow in the turbulent
region, it is not surprising that the model cannot predict the large
changes in apparent damping at the higher step levels.

Figure 14 is the computed result for a two product term expansion
for Cosh rL(S). It is quite evident that this higher order model is
experiencing some type of instability. The four product term expénsion

model is unstable for all steps greater than + 0.25 psig also.
System Instability

Oldenburger(16) reported that the conventional power series
expansion for Cosh ['(S), Equation (3.6), may introduce instabilities
into an otherwise stable system of equations. But Oldenburger also

showed that the infinite product term expansion for Cosh "(s) and

t
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Sinh M'(8) are absolutely convefgent. The computed step responses shown
on Figure 14 clearly indicate an instability in the solution, caused by
either numerical instability (accumulated error, round-off, etc.) or by
the presence of positive real roots in the denominator of the transfer
function, Equation (5.4), or both. |

If the denominator of Equation (5.4) has positive real roots then
the system of equations is unstable, regardless of the presence or
absence of numerically induced instability. To examine the nature of
the instability, Routh's Criterion was applied to the denominator of

Equation (5.4) for one and two product term expansions for Cosh [M(§).
Routh's Griterion

For the one product term expansion for Cosh r%(S), the coefficients

for Routh's Criterion are given as the denominator of Equation (5.10):

G(8) G(6) G(4)
6(7) G5
B1 | B3
c1 i
o1 (5.17)
where Bl = & C¢6) G(7)G27§(8) ¢ 1, ete. (5.18)

The terms G(1) through G(8) are functions of (Fl*)’ (L/Co), and (DN).
Each time the terms Bl, Gl, or D1 . change in sign, the denominator of

Equation (5.10) has a positive real root and the system of equations is



62

unstable. For the one product term expansion for Cosh rL(S) there is
no change in sign for Bl, Cl, or D1 until (Fl*)<}k Fl* is always
greater than zero at the initial rise of the output to a step response,
but it becomes negative as soon as the output reaches its ma?imum over-
shoot. 1If there is no overshoot, Fl* is never less than zero.

For the two product term expansion for Cosh.rL(S), Equation (5.4)

may be written as:

p(s,0) = E(S,1) [ G(1) + G(2) S +....+ G(5) s“]
[ G(6) +.G(7) 5 + vuvuun. + G(14) 887

(5.19)

Routh's Criterion was applied to the denominator of Equation (5.19)
using nine different combinations of (L/Co) and (DN). The responses.

shown on Figure 14 are for (L/CO) = .0532 and (DN) = 2.0. The regions

where the system of equations is stable is shown on Table II below.

TABLE 1I

REGIONS OF STABILITY

(L/Gg)
DN .0266 .0532. . . 1064
(L=30ft) (L=60ft) (1=120ft)
1.4 < Fyy o0 04 Fay <6 04 Fax L4
1.0 and 16< Fiedo®  |and 12 Fax (oo
04 Fax L42 1<F1x <8 '
2.0 = ¥ 04 Fax Lo°
and 30LFix&oo  |and 30 Faxlo®
4,0 24 Fix < 18 0& Fax <16
O 4 Fax <
and 50L& Fax Lo and 404 Fax <@
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As was true for the one product term expansion for Cosh rL(S), the
two product term expansion is unstable for all Fl*'<: 0. But Routh's
Criterion also predicts instability for some combinations of (L/Co)

and (DN) when Fl*Z: 0. When F., = 0 the model reverts to the small

1%
disturbance "Acoustic'" model of Appendix A, which is stable for all
values of (L/Co) and (DN).

There are some ''grey areas' then where Routh's Criterion predicts
the system of equations to be unstable, but the numerical integration
of the equations proceeds in a stable manner. Figure 14 is one
example. The system of equations is stable for a 0.25 psig step, but
unstable for a i,O psig step input. This instability is probably

caused by a large negative value of F immediately after the output

1%
reaches its initial overshoot position (at 150 milliseconds.)
Figure 15 is a replot of the 1.0 psig step shown on Figure 14, but

it also includes the magnitude of F,, during the transient.

1
Routh's criterion demonstrates that the system of equations will

be unstable for all Fl* <:O. However, in the case of one product term

expansions the computed step responses are stable for all input step

levels, even though F <: 0 for some portions of the transients. It

1%
must be concludgd that the stabilizing influence when F1*>.0 dominates
over the unstabilizing influence when F1*<(L In ;he case of two
product term expansions, all responses for step inéut levgls greater
than some small number (say 0.25 psig) are unstable.

The stability of the system of equations is dependent on the form

andisign of F_, as well as the approximations used for sy, Gosh [(s),

1%

and Sinh [*(S8).  The example chosen in this thesis represents a worst

case in the sense of:the quality of the approximations for I'(s) (see
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Figure 6 when S/DN = 10.) However, the main difficulty associated with
system instability appears to result from the form of Fl*’ rather than
the quality of the approximations.

Unless an improved form for F,, can be synthesized, it is recommen-

1%

ded that only one product term expansions be used for Cosh '(s) and

Sinh ['(S) in this model.



CHAPTER VI
FREQUENCY DOMAIN EVALUATION

In this chapter frequency response computed from the analytical
model, Equation (2.70), with through flow, is compared with the
experimental results of Cooley(7):

Cooley's(7) experiments were conducted with small amplitude
transient flow. Rewriting Equation (2.70) to meet these conditions

(Mb # 0, but F

%= 0) yields:

P(s,1) Cosh I'¢s) +Ye(s)Mb Sinh '(s) -Z.(s)Sinh I'¢s) {|Ps,0)
Q| - Sinh ') Cosh I'ts)-Ye($)Mp Sinhis) | |Q(s,0)
Ze(8)
(6.1)
e o= S (6.2
Co | Dg
Zc(s) = __L_ = ¥SL 1 (6.3)

W Co Dy I'Gs)

Ye (sy =7Ng Dg ’gcf Dg T'(s) (6.4)

and (Ng), (Dg) are given as Equations (2.74).

i

If the end of the line Z = 1 is subjected to a constant pressure,

P(5,1) = 0. Then Equation (6.1) may be rewritten as:

Q(s,00 - _Cosh I'(S) +Ye(s) Mb Sinh I'(s)
P(s,0) - Zc(S) Sinh M) (6.5)
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Cooley(7) performed a series of frequency response experiments
with a 6.0 inch line, 0.125 inches in inner diameter. He included

through flow with an average Mach number, Mb’ of 0.16. By substituting

M = 0.16 and S = jW into Equation (6.5), the "admittance" of the
line, PE: 8; may be calculated. 1In this case no approximations are
3

used for~(Ng) and (Dg) since their exact values may be computed from a

Bessel Function subroutine.

Q(s,0)
P(S,0)

Equation (6.5) for M, = 0.16 and DN = 30.0. At the first resonance

b
9(820)‘ )
P(5,0) from 3.2 without

through flow to 5.21 with through flow, that is, an increase of 62%

Figure 16 shows Cooley's experimental data for and

(1050 hertz) Cooley shows an increase in

when through flow is included. 'Equation (6.5) predicts an increase in

Q(s,0)
I P(S,0)

from 3.2 to 3.3, a 3% increase.

Orner(17) examined the frequency response of a transmission line
with through flow by applying the Poincare! perturbation technique to!:
the axial momentum equation, including the convective acceleration term
(U‘ 32 ). He arrived at Equation (6.1) with identical expressions for

(s) and ZC(S) as are shown in Equations (6.2) and (6.3). His

expression for Ye(S) is as follows:

(%- ( _amas]
Y (8) = [1 L__» e (6.6)

where A = j ..;S_gé_;@i (6.7)
3

The frequency response for Orner's first perturbation solution at

M.b = 0.16 is approximately the same as this thesis result, as shown on

Q(s,0)

P(5,0) at the

Figure 16. His gsolution predicts a 3% increase in

first resonance (1050 hertz.)
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Orner performed a second perturbation on the system of equations

which predicted an additional increase in lPEg 8; of 9% at the
b4
first resonance, resulting in a final value of P§§ 83 of 3.6.
b
Cooley's experiment shows ng_gg as 5.21 at this frequency.
,0

Order of Magnitude Analysis for Ye(S)

If the Cooley experiment is correct, and if the analyses of Orner
and this thesis have included the significant terms in the axial

momentum equation to account for through flow, then Equation (6.5)

Q(s,0)

should be able to predict an admittance P(5,0)

approximately equal

to 5.21 at 1050 hertz when M. = 0.16.

b

At the first resonance (1050 hertz) the magnitude of Gosh [(S) is
approximately 1.0. The magnitude of Sinh ['(S) is approximately 0.22.

Then IPE: 8;! may be approximated as:

(6.8)

IMI ~ 1 +.22|MbYets)]
PG00 22

Equation (6.8) disregards the complex nature of Cosh ['(S), Sinh [(S),

and Ye(S), but it is acceptable for a rough bound on the term (MbYé(S));

Q(s,0)

Given that P(5,0)

= 5.21 at 1050 hertz, then the minimum value for

(Mb Ye(S)) is 4.2. Since Mb = 0,16, the minimum magnitude of Ye(S).

is 26.

Neither the Orner analysis mnor this analysis could predict a

magnitude of Ye(S) greater than 1.2 for any frequency ,(w),“%—)'lT

(o]

The first resonance of the Cooley experiment occurs at WL _ 9.37T

C
o

Clearly, the effect of through flow on the frequency response of

a small diameter line as reported by Cooley cannot be predicted by the

model offered in this thesis.



70

However, Equation (6.5) does predict a rather dramatic result when

P(S,0) . . . Q(SZO ‘
___..L_. 1 .
IQ(S 0) s, the line "impedance! is plotted, rather than lP(S 0)

the line "admittance." This is shown on Figure 17; Figure 17 is a
reciprocal plot of Figure 16, showing the computed :"impedance' of the
line with through flow as a function of freéuency; (). Figure 17 is
based on the same relatively high through flow rate, (Mb = 0,16),
which yields a through flow velocity on the order of 180 ft/sec.
Cooley(7) did not measure impedances in his experiment, and he
reported that the signal-to~noise ratio of his instruments in the -
regions 400 to 800 hertz and 1400 to 1800 hertz was very low, negating
the accuracy of the readings in these regions. So it would be
inappropriate to take the reciprocal of the Cooley data from Figure 16

and plot it on Figure 17.
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CHAPTER VII
THE HYDRAULIC CASE

The basic line model, Equation (2.70), is applicable when the fluid
is an ideal gas or a liquid. This chapter shows the simplification of
the model when the fluid is a liquid.

To use Equation (2.70) the parameters (DN), (L/Co), and (Mb) must

be known. In the liquid case:

DN='l:22=e%2 (7.1)

L Ly €
L _ ‘W{"— (7.2)
c, Go

where (@O) is the bulk modulus of the fluid, (/,4,0) is the absolute

viscosity, and (eo) is the fluid density.

. Average through flow axial velocity (7.3)
b [ ’
(o)

M

The speed of sound in the fluid, Co’ is at least four or five times
greater than the speed of sound in a pneumatic system, so for the same
through flow axial velocity, Mb iffehe hydraulié case.is only _ong fifth
as large as Mb in the pneumatic case. 1In general, Mb(( 1.0, and it
may be neglected in the system of equations.

Writing Equations (2.70) with this simplification (Mb-’———O) yields:

P(S,1) Cosh ', (s) -2, () Sinh l"b(s) P(S,0)
Q(s,1) R -Sinh [, (S) Cosh r‘b(s) .Q(S8,0)
Zp(5) (178)

12



73

where r%(S) is given as Equation (2.71) and Zb(S) is Equation (2.72).
When the fluid is a liquid, ¥ = 1.0, and the term (Ng) in rL(S) and
Zb(S) is approximately equal to 1.0. From the approximations in
Chapter III, Equations (3.16), lﬂbz(S) may be approximated as shown

below for the liquid case:

2 : \
r'bz(S)*f xé) « 5 (8+ 5.78DN.+F ) (8 + 56.6DN + F,.) (7.5)
Co (8 + 40.9DN + F, )

where F,, is given as Equation (2.76).

Example

The hydraulic line is 60 ft long, 0.40 inch inner diameter. Other
parameters are p_ = 11.2 psia, DN = 2.0/sec, L/C0 = 0,0137 sec. The
line is subjected to pressure step inputs of 0.02 and 4.0 psig.
Computed step responses based on approximations for Cosh [(S) given
in Chapter III and Equation (7.5) are shown on Figure 18. Note that
the large disturbance; i.e., the 4.0 psig step, has a greatly damped

response as compared to the small disturbance response.
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CHAPTER VIII

SUMMARY, CONCLUSION, AND

RECOMMENDATIONS
Summary

The transmission l%ne model developed in this thesis is an extension
of the small amplitude (acoustic) model derived and utilized by Iberall
(12), Nichols(15), and Brown(3). This model includes the effect of
finite amplitude disturbances and through flow.

To include these effects, the nonlinear convective acceleration

terms were retained in the axial momentum and energy equations:

Axial Momentum

DY/ ) AR/ _faé_(i”?’_'zé.)z-i.é_'& (8.1)
3yt a2 r ar 3 & Yz

Energy Equation

3Tz + % 3z _ ¥V 3 [r éTz) = -(¥-7% 2 (8.2)
3t YRS o [N Ys 3Z
TRANEENCENTE.
v sz ‘
The nonlinear term 'z—g;—— in the energy equation is of small
order compared to the other terms in Equation (8.2), so it was neglected...
v

But the term vz 5%2 £ in the axial momentum equation is not neglig-

ible when the disturbance is of finite amplitude.

The continuity equation and equation of state for ideal gases are
Yz
used to express 3z as a function of P, and Tz. The initial

development of the line model in Chapter II considers ideal gases as the

75
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working fluid. Chapter VII considers the siﬁpler case where the fluid
is a liquid.

The axial pressure, temperature, and velocity are separated into a
steady-state incompressible through flow component subscripted with a

"e!" and a time~varying compressible component subscripted with a "t'.

That is:
vz(t,r,z) = vc(r) + vt(t,r,z) (8.3)
Tz(t,r,z) = Tc(r) + Tt(t,r,z) (8.4)
p,(t,2) =p_ (z)+p (£52) {8.5)

Equations (8.3), (8.4), (8.5) and the known steady-state solutions
for (vc) and (pc) are substituted into Equations (8.1) and (8.2),

resulting in these equations:

Axial Momentum

UE (Ve +1e) U _ Ve L(réﬁ) =-4 3P (8.6)
VE 32 F ar\ 3r e

Energy Equation

My _ ¥V 3 (r T;t'_) = (¥-DT ¥P: (8.7)

yt  Gr 3 Po N

Equations (8.6) and (8.7) are nondimensionalized and the axial momentum
equation is linearized by making the quantity-é%%— in the axial

momentum equation a time-varying coefficient which is updated for each

time increment (A t). That is:

Axial Momentum

%%”" C(i\zl_ V- V;sR(R w) C‘Hr:’ SE‘ Mb'}z\i]

(8.8)
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where (Mb) is the Mach number of the average through flow. The time
increment (At) must be much less than the reciprocal of the highest

frequency of interest in the line. That is:

(at)K —wl—— (8.9)

max
where (éqnax) is in radians per unit time.
. . . . IV
To derive a form for the time-varying coefficient 57 A the
solution of the small disturbance or "acoustic! model is used. This

model is shown as Appendix A in the thesis. The form used for ¢ §Z )
*

in the thesis, as taken in part from the acoustic model, is:

3V _ L [ 3P(t,0)
(TZ)* = [ sgn P(t,0)] Co( o) (8.10)

TheJterm [ sgn P(t,0) ] is present to meet the criterion that the
model must show an increase in apparent damping as disturbance amplitude
increases, regardless of the sign of the disturbance (+ or -). This
increase in apparent damping with increase in disturbance amplitude is
an observed characteristic of real transmission lines, and it was
necessary that the new model demonstrate the same characteristic.

By transforming the energy equation shown as Equation (8.7) and
the axial momentum equation, Equation (8.8), into the Laplace domain,
applying boundary conditions on (R) and (Z), this transmission line

model resulted:

P(S,1) Cosh l’"b(s)+Yb(s)MbSinh l"b(s) -Zb(S')Sihht'T‘b(S:) P(8,0)] .
= ~-Sinh [® (8) N .
Q(s,1) 2, (5) = | "Cosh Fb(s)-Yb(s)Mbslnh l"b(s) Q(s,0)

(8.10D
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where (P) and {Q) are nonqimensionalvpréssures and flow,

(5) = Skl Ng ( F‘*) 8.12)
Iy Co‘\[ ~ 1+"% | (
Yb(-s) - Co Dg Mu(sy _ Dav_g 1+ Fax (8.13)
_sL ¥ Fax 1*‘—3‘*
‘zb(s) “Co DoTo(S) 1_+ ) \’ Ng Da. (8.14)
2.(¥-1)7, ) 3 _28w

K [ P %@ 4 % T [1 AT ’
_ (“)] (8.15)

Pa ~ (:1 ot (o) '

— 3 S0 - .."_3_ - .‘,S _4_

_w _ CofIV\ . (san Pt.o)SPEO . ..
DN = = , F -. L(bzy*'( 9 J )(—EJ—)+ (8.17)

and (Mb) = average through flow Mach nUmbér. (8.18)
This model, Equation (8.11), simplifies to the small disturbance modelll
of Appendix when Fl* = 0. and Mb = 0.

Chapter IV presents the experimental step responses recorded from a
60 ft pneumatic line, 0.40 inch inner diameter. The step responses were
initiated at gage pressures above and below atmospheric pressure, and
terminated at atmospheric pressure, (11.2 psia). Experimental step
responses are presented for + 0.25, 1.0, 2;0, 4.0, 6.0, and 10.0 psig
(Figure 9).

In Chapter V the experimental step responses of Chapter IV are
compared with computed step responses from the analytical model. The
computed step responses appeared too lightly damped, even at the smallest

step size of + 0.25 psig. The computer model damping was increased at
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this smallest step size so the computed step response and the approximate
fundamental mode of the corresponding experimental response showed

ly the same percent of overshoot - indicating that approxi-

approximatg ______
mately the same amount of damping was present in the computed and actual
step responses. This increase in apparent damping was accomplished by
changing the damping number (DN) of thé computer model from its calcul-
ated value of 0.8.to a corrected value of 2.0. Then the transients
predicted by the computer model with finite amplitude disturbances
compared favorably with the experimental results of Chapter IV (see
Figures 10. th¥ough 13),

When more than one product term was used to expand the term Cosh[XS)
in the model, instabilities appeared (Figure 14). The cause of the
instabilities is examined in the last section of Chapter V.

Chapter VI is a brief look at frequency response data measured by
Cooley(7) for a small pneumatic line with small amplitude sinusoidal
disturbances and large through flow. Through flow is represented in
the line model by the term (Mb), which is the average through flow Mach
number.

Chapter VII presents the simplified model when the fluid is a

liquid.
Conclusions

The purpose of this thesis was to derive a generalized time-domain,
ordinary differential quation line model which will predict flow and
pressure transients in a fluid-filled line subjected to both small and
finite amplitude disturbances, wiﬁh and without through flow. The line

model should meet the basic criteria outlined on page 7 of this thesis.
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That is:

1. The model should predict an increase in apparent damping as the
magnitude of the disturbance input to the line is increased. As Figure
13 sﬁows, the model meets this criterion.

2. The model should be reducible to finite order by suitable
approxiﬁations such that computational time and difficulty are reduced
without: severely limiting the accuracy of the model. The approximations
for the terms ['(S), Coshl(S), and SinhI(S) which appear in the Laplace
domain model, Equation (2.70) and Equation (8.11), are giveﬂ in Chapter
III of this thesis. They enable the model to meet this criterion, but it

is possible that the approximation for ['(S) could be improved (see Figure

2 N
6, where I"z(S) =(—2£)—-5g— ).
o g

3. The model response should be in reasonable agreement with the
apparent fundamental mode of corresponding experimental responses. The
line model in this thesis is a linearized model with a time~varying

coefficient, F (see Equations (8.17)). The model is designed

1*

primarily for numerical integration where F is updated at every inte-

1%
gration step. The low order polynomial approximations for Cosh[(S) and
Sinhl(S) which facilitate inverse transformation of the Laplace domain
form of the model result in a low order differential equation model.
Consequently, the model should predict the fundamental (low frequency)
mode of a transient response, but not the high frequency modes.

The model could be employed in applications requiring high frequency
if suitable approximations for [*(S), Coshl(S), and Sinh['(8) could be
synthesized.

The model, with its approximations given in Chapter III, is a low

frequency model. This low frequency model produced responses which
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appear to be too lightly damped, as shown on Figure 11. 1In this sense
the model does not meet criterion #3 fully because the model responses
(traces A, B, and C on Figure 11) are not in close agreement with the
fundamental mode of the corresponding experimental result, which is
also shown on Figure 11. It is possible that closer agreement between
the computed traces and fundamental mode of the experimental trace could
have been achieved by a better approximation for ['(S), but this is
speculation.

The instability which occurred in the model when two or four
product terms were used to expand Coshl(S) (see Figure 14) was not
totally surprising. The two product term expansion for Coshl'(8) yields
a tenth-order differential equation and the four product term expansion
yields a twentieth-order differential equation when step responses are
computed (Equation 5.4). The tendancy toward numerical instability in
the solution of high order differential equatioﬁs containing a broad
frequency spectrum is well known.

But this model added a new dimension for possible instability with
its time-varying coefficient, Fla (Equation 8.17). By applying Routh's
Criterion to a two product term form of the model applicable to a special
case (Equation 5.4) it was determined that the system of equations is
unstable for all F1*<_0, and may be unstable for some values of F,,>0,
depending on the particular line 1ength, diameter, fluid kinematic
viscosity, etc. Routh's Criterion was applied to the approximations for

M(S) and Coshl(S), not their exact forms. So the approximations used
for I"'(S) and Coshl(S) may have contributed to the instability of the

system of equatioms.
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The transmission line model derived in the body of this thesis will
predict an increase in apparent damping as disturbance amplitude -
increases, making it the first generalized line model that is sensitive
to input disturbance level. At very small disturbance levels the model
becomes the "acoustic" model of Appendix A.

If the user finds that the line model (Equation 2.70 or 8.11) tends
to be unstable in his system simulation, he is referred to an alternate
line model shown in Appendix C. The alternate line model does not
predict as much increase in apparent damping with disturbance amplitude
as does the primary model, but it is numerically stable for higher order
approximations for GCoshl(S) and Sinhl’(S) (see Figures 20, 21, and 22 in
Appendix C).

The frequency response results given in Chapter VI show the
following:

1. This line model, nor any other line model derived to date,'can
predict the large changes in frequency response behavior which one
experimentalist, Cooley(7), has reported when through flow is introduced
into a pneumatic line (see Figure 16).

2. The large discrepancy between analytical and experimental

results in the through flow case merits further investigation.
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Recommendations

Based on the analysis and findings of this thesis, it is recommended
that additional work be conducted in these areas:

1. The synthesis of better forms for (Fl*) such that the resulting
model is stable for high order approximations of Coshl(S) and Sinhl'(S),
and such that the implicit instability which results when Fl*A: 0 is
eliminated.

2. The development of approximations for ['(S), Coshl¥(S), and
SinhI(S) which agree more closely with the exact forms, but which retain
the mathematical simplicity of the forms used in this thesis.

3. Criteria #3, page 7 should be reexamined: and a definitive
procedure should be established for assessing the quality of the model.

4., A carefully planned experimental study should be made of the
effect of through flow on the frequency response of a transmission line,

to confirm the results of Cooley(7).
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APPENDIX A
SOLUTION FOR THE LINEAR PROBLEM

This appendix presents a solution to the linear axial momentum
equation and linear energy equation for the filow of a compressible
fluid in a rigid circular transmission line. This solution is identical
to solutions presented by Iberall (12) and Brown (3).

Figure 19 identifies the line variables and coordinate system.

r

 fea— '
3 feo LINE
A H
©

3°0 3L

Figure 19. Coordinate System
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Assumptions

2. All partials with respect to © are zero.

3. Small amplitude, laminar perturbations.

4., No through flow.

5, 3p/dr =0, (Pressure is cdnstant across any given cross section

of the line.)
" Basic Equations

v =Vz(r’ Z s t)

p,(z5 t) ’ (a.1)

e
i

T = Tz(r, zy t)

Axial Momentum

W L v Ve d (il =-19F

Y 3z r ar\ & )z .2)

For small amplitude perturbations, the non=-linear term (7]2 éli)
z

may be neglected (Brown (3), D'Souza (8)).

Energy Equation

Mz, Updlz _¥Vo (ré__TZ) AR Y

3t yZ G Ir\ 3r 3z

For small amplitude perturbations, the term .U’z;}_:g
3Z
neglected (Brown(3)).



Equation of State (Ideal gases)

- £iﬂ2-= 2&? +-2£I: = 3
Peo Co To

=

ok
il
D
| —
|l—\
e
§
I
15
[ FS——}

Continuity Equation

do L d(plg) = W __Llde L U58
iedgwoo > Wo-LPaule]

For small amplitude perturbations, the term(vigfs may be
. Z
neglected (Brown(3)). Combining Equations (A.4) and (A.5) yields:
élﬁi = - !: Jéj? _.Eé.él::l (A
3Z 'Po 3t T;: jt 4

Integrated Continuity Equation
r=o

r=a. .
a2 | MeW) rdr = —217]2_5 rdr n
3Z d rza

r=o0 r=o

ié_fg_iJT]rdk
= 4_1_53(27—*‘ =—21Tf@‘4_a;az-. T it
r=0
where q(z,t) is the mass flow rate in the transmission line.
raa

q(z,t) = aﬂf(@w) ralr  (a.

r=0
By non-dimensionalizing Equations (A.2) through (A.8) with these

substitutions:

v
Z Z
Vé-(:— s T=o Q = q(z,t) 2 (A.

where C0 = XRgas To (A,

(isentropic speed of sound in the fluid), and by substituting the
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Equations of State (A.4) and Continuity Equation (A.5) into Equations

(A.2), (A.3), (A.7), and (A.8) the result is as follows.

Axial Momentum

° (R. = —LQ_E (A.11)
a2R IR & Col 3z

Energy Equation

ST _ Yo & (RITY - (¥-DJP
it GBO&‘R AR( AR) ¥ ¥t (A.12)

Integrated Continuity Equation

i

VQ(*,Z) —ZJ—_{ AP _ 4T [RdR (A.13)
YZ o It Jt
o] .
Mass Flowrate Equation
1
Q(t, D) = ZfV(t,R,‘Z)RoUZ (A.14)

o

By transforming Equations (A.1ll) through (A.14) into the Laplace domain

the result is as follows.

Axial Momentum

SV _Yo_ 3 [RIVe) - _ Ho P
a*R ‘)R( 3R @,C}L YZ (A.15)

Energy Equation

sTes) = Yo (R 3T(9)) = (¥-1) S PXS) (A.16)
T, a*R <)R ¥

Integrated Continuity Eguation

1
)%{Zs z) _ -zzt. y(Pcs)‘TCS))RoUZ (4.17)
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Mass Flowrate

1
Q(s,z) = 2 fV(S,R,Z3 RAR (A.18)
o .

. V. .
Let Damping Number be DN =ii y¥=3 ng_l s, and A = j .g% . (A.19)

Rewriting Equations (A.15) and (A.16), the results are as follows.

Axial Momentum

Vesy , L3 (Ké)ﬁ@) = -Co 3PS (4.20)
YR IR\ 3R YSL 2

Energy Equation

T, 4 3 (Kc\__Tcs_) = (Y1) P (a.21)
AR 3R 3R .4 :

A solution to the Axial Momentum Equation, Equation (A.20) is:

-' = [T (er)-F () Co dFcs) )
V(S,R,Z) (-o J;w)o ) YL 3Z (a.22)

where Jo is the Bessel Function of the first kind, zeroeth order. This
solution meets the boundary condition V(S,R,Z%JR -1= 0, the '"no-slip"

condition, and 3¥V(S,R,Z) = 0.
3R R =0

A solution to the Energy Equation, Equation (A.21) is:

T($,R,2) = -(:ro (aR) -J;C&) (¥-1) P(S) (4.23)
Jo (& b4
This solution meets the boundary condition T(S,R,Z)J R=1 = 0, and
M(S,R,z)J = 0. From Equation (A.18):
dR R=20
1
05,2y = 2Co AP j(%(VR)‘J;("))RAK . 20)
¥YSL 3z Jo (¥)
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Q(s,2) = - gsoL Dg d PLs) (4.25)
=z
_ _2J¥)
where Dg (1 W) (A.26)

By substituting the solution to the Energy Equation, Equation
(A.23) into the Integrated Continuity Equation, Equation (A.17), the

result is:

MS’Z) _ ~SL_Ng Ps) (A.27)
¥Co
~1) J; (A
where N, = (1+%{LLA) (A.28)

By differentiating Equation (A.25) with respect to "Z", and

equating the result to Equation (A.27), the result is:

-Co Dg Y*P(S,2) - SL._ Ny P¢s, 2)
E ! = 2= Vg
XSL éz’ YCa ! (A.-29)
PGS, st\* N, ) >
or ($,2) - ( LY" Na P(s,2) = resy Pes)
3z* Co Dy
(A.30)
where res) = '%-‘:— -—A—lﬁ- (A.31)
°¥ Dy
A solution to Equation (A.30) is:
Ps)YZ - (9Z
P(s,z) = ¢, € +. G, e (A.32)

The nondimensional flow Q(S,Z) is given by Equation (A.25):

- rsz ~r¢s)z
Q(852) = ——%"-_'—Dﬂp—‘s)(Cﬂ_e, -Cz.e ) (A.33)
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Equations (A.32) and (A.33) may be solved for constants C, and C, by

applying boundary conditions at Z=0 and Z = 1:

&L (P(£,0)) = P(S,0) , & (Q(t,0)) =Qq(5,0) ,
&€ (P(t,1)) = P(S,1) , &LQ(t,1)) =q(s,1) . (A.34)

The results are:

41 ({pPes,0) - YSL Q(s0)
©=32 (Pes, %%;E: g ) (8.35)
c,= 4 L(Pes, 00+ 8L ¥SL. Q(s,0)
Pg C
3 Co
Since Cosh N(S)Z = % (er@zq.\ el‘(s)z) and Sinh ['(8)z = r<s)z. ~P(s)7)

(A.36)

Equations (A.32) and (A.33) may be rewritten as:

P(5,Z) = Cosh I'(s)z p(5,0) - zc(s) Sinh IM(S)z Q(S,0)

Q(8,z) = -Sinh " (8)Z P(S,0) - + Cosh I'(8)z Q(S,0) (A.37)

zc(s)
: - Y Y . {
where ZC(S) m = —-————-——Ca Dg o) (A.38)
Summary
P(831) Cosh I'(8) -z (8) sinh '(8)| |P(5,0)
Q(s,1) - sinn(S) Cosh "(s)| [Q(s,0)
Z.(8) (4.39)

SL

Co D
g

2(¥-DJ &) 2T .
" U, ZAX:Tmm ; D, = []_ W‘L‘(—g?’] ; (A.40)

A= 1’%%%% 3 Y =3j Vjé&; ; DN = zg =

where z, (S) is given as Equation (A.38) and I'(8) =

2l
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These important average values also come from this system of equations:

- Co Dg dP(s,2)

v(s,2) = YsL 3Z
3v(s,2) _ =Co Dy 3PS Z)
8z ySL  )Z*

(s,2) = (x 1) P(s, Z)<1 2.3, (a)

A J,(a)

"ms,z) N (X-:D AP(s yA) (1 ;?;,m
. - a o(A\

3 2Z

(A.41)

(A.42)

(A.43)

(A.44)

DE(5.2) _ re) [(p(s,0) sinh "(s)z - z.(8) Coshl'(s)z Q(s5,0)]
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(A.45)

Equations (A.41) through (A.45) may be inverse transformed to the time

domain if suitable approximations are made for Sinh I'(5)Z and Coshl¥(S)Z.

Let Sinh M(S)z = ['(S)z

CoshM"(8)z &= 1.

ther Vit,z) ® Q(t,0)-LZ IP(¢,0
Co ét
M ~ =L A P(¢,0)
32 Co At
T(t,z) = ,(A’:__Ptt 0) - (¥-1) LZ YQ(%,0)

Co

AT(t,2) o~ -(¥-D L Q(E,0)
32 Co T

3P(t,2) o~ =¥YL dQ(E,0)
LR Co AT

(A.46)

(A.47)

(A.48)

(A.49)

~(A.50)

(aA.51)

(A.52)

Equations (A.41) through (A.52) will be used in the derivation in

Chapter 1II.



APPENDIX B

COMPUTER PROGRAMS

There are five computer programs listed in this appendix. Three

are written in Fortran IV and two are written in Algol.

1. Linear Frequency Response of a Transmission Line, with and

without Through Flow: This program computes the ratio

P(sio)l and

Q(s,0)
lgﬁéigll for the pneumatic line of Cooley (7), which is 6.0 inches

P(s,0)
long and 0.125 inches in inner diameter. Damping Number of the air in
the line is 30.18, and the term (Damping Number/ Prandtl Number) is
43.11., Average line pressure is approximately 3.0 psia.
This program calls one subroutine, "Bessel," which generates values

for the complex Bessel Function of the first kind, zeroeth and first

order.

2. Goefficients for Step Responses, Cne, Two, and Four Product

Terms for Cosh ['(S), Pneumatic: This is a convenience program, written

to supply the necessary coefficients for the "Step Response by Numeri-
cal Integration Program, Pneumatic.!'" (See Chapter V) This program

"NUMER" and "DENOM,'" where:

P(5,0) _ P(S,0) x NUMER

P(S,1) = Goeh ()~ DENOM (B.1)
2 LY A(S)
where 2(s) = C) o (8.2)
(o]

and A(S) and B(S) are given as Equations (5.7) and (5.8).
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3. Coefficients for Step Responses, One, Two, and Four Product

Terms for Cosh I"(S), Hydraulic: This program is identical to (2)

above, but uses expressions for A(S) and B(S) which are given as the
numerator and denominator respectively of Equation (7.5). This program
supplies thé coefficients for "Step Response by Numerical Integration

Program, Hydraulic."

4. Step Response by Numerical Integration, Pneumatic: This -

progrém is a numerical integrator which integrates Equations (B.1).
The user selects the one, two, or four product term expansion for
Cosh ['(8).

The coefficients for subroutine '"Derfun," the derivative function
generator, are read in from the punched card output of program (2)
listed above. .This program uses a fourth-order Runge-Kutta integrator,

"Rkint," and has a built-in plot routine, "Xyplot."

5. Step Response by Numerical Integration, Hydraulic: This

program reads in data cards for subroutine "Derfun" which have been

!

generated from program (3) above. It is similar to program (4) above.



F— FR 010
c COOLEY LINEy WITH AND WITHOUT TARQUGH~FLOWy JAN 73. FR 020 C--=— THIS SUBROUTINE COMPUTES VALUES FOR THE COMPLEX BESSEL FJNCTIONS
COMPLEX CMPLXsCFNIsCFN2sCFN3sA10A21A3 s A% +A5sA6s DGAMs AGAMs GAMMA + FR 030 € 5 nJdH AND #J1W FROM THE BASIC SERIES EXPANSIONs "HANDBOOK OF MATH=
2C0SHsSINHs CEXPyCSARTsRATIO ANSER2 AT AB FR 040 ¢ EMATICAL FUNCTIONS"-ABRAMOWITZ, PG 360, FORMULA 9.1.10. NEW TERMS
DIMENSION AHERTZ (30) FR 050 c ARE ADDED IN THE SERIES UNTIL THE CHANGE IN "Jo® AND wJl» IS LESS
ELOVCO=,4425E8=3 FR 060 ¢ THAN 0.01 ¥. THE NO. OF TERMS IN THE SERIES IS GIVEN BY “NTEW.
VA=.16 FR 070 coprex CMPLX2ZsRJ+J0» U1+ TERMO s TERM1» ZOVER2, 7050
DN1=30.18 FR 080 NTE=
DN2=43.11 FR 090 F0vER2=.502
READ(S55100) VALs (AHERTZ(J)sJ=1s14) FR 100 705Q=-ZOVER2# %2
100 FORMAT(1248Xs14F3.1) ER- 118 TERM1=ZOVER2
TF(NVAL.GT.14) READ(5+200) (AHERTZ(J)+J=15430) Fr 120 JI=ZOVER2
WRITE (65300) FR 130 TERMO= (14404)
200 FORMAT (16F541) ) FR 133 JO=(14404)
300 FORMAT (IH1+5Xs*FREQUENCY RESPONSEs COOLEY LINEs WITH AND #ITHOUT T FR 140 A=l.
ZHROUGH=FLOW: 19/ 16Xs63("'="14//4 11Xy ' FREQUENCY ' 417X+ 'RATIOZ P(S)/Q(S FR 150 10 TERMO= TERMD“ZOSQ/A“#E
3)Te27%9 1RATIO Q(S)/P(S)Va/al2Xe! (HERTZ) ¥ 98Xs ' WITH THROUGH=FLON ~ FR 160 JO=JO+TE
3 NP THROUGH-PLOW s 7K 'WITH THROJGH-FLOW  NO THROUGH-FLOW's7011Xs FR 163 TRRMI=TERMI %2050/ (A% (A+14))
:9(‘-')-7K.l7('-')94&.15('-').7x,17('-').4x;15('-')'/) FR 170 Ji= JI#TERMI
DO 20 KK=1sNVAL FR 180 NTESNTE+
W1=6.28318#AHERTZ (KK) /DN1 FR 190 HBCCAGS (TERMO) /CABS (J0)
W2=6.28318%A-ERTZ (KK ) /DN2 FR 200 CC=CABS (TERM1) /CABS (J1)
W3564283184AHERTZ (KK) FR 210 [F(B84LT4.00014AND.CCaLT..0001) GU TO 20
CFVI=CMPLX (04s~H1) FR 220 A=ael,
CFN2=CMPLX (04 »~W2) FR 230 60 TO 10
CFN3=CMPLX (0, s w3) FR 240 20 RJEJ1I/JO
AL=CSGRT (CFNI) FR 250 RETURN
A2=CSGRT (CFN2) FR 260 END
CALL BESSEL (AlsA3sA4sASsN1) FR 270 DATA _ ~
CALL BESSEL (a2sA6+AT+ABsN2) FR 280 30 200. 300. 400, 500. 505, 510, 600, 700, 8G0. 900.1000.1050,1055.1060.
DGAM=(14904) =2, #A3/A1 FR 290 1100,120041300414004150041595.1600.1605.170041800,1900.2000.2100+2145,2150..2155.
AGAMS(14404) +o8%A6/A2 FR 300
GAMMA=ELOVCO*CFN3#CSQRT (AGAM/DGAM) FR 310
COSH=, 5*(C€XD(GAMMA)*CEXP(-GAMMA)) FR 320
SIVH’.S‘(CEXP(GAMMA)-CEXP( GAMMA FR 330
ATTOsT  EE DVON PN TR (D0 A+ BAMMA) / (COSHSVARDGAMBGAMMARSINH  Fi - 340
2/(CFN3“LLOVCO)) FR 350
ANSWER=CABS (RAT FR 360
NSERDT - 2261 OVEOPCFNI®S INH/ (DGAMS GAMMA®COSH) FR 370
33 CABS (ANSER2) FR 380
B4=] . /ANSWER FR 390
85=1,/83 FR 400
20 WRITE(6+400) AHERTZ(KK)+ANSWER+B3s Bas BS FR 410
400 FORMAT(10XsF1041s4(10XsF1044)) FR 420
sToP FR 430
FR 440

THIS PROGRAM COMPUTES LINEAR FREQUENCY RESPONSE ﬁATlO FOR THE

END

SU3ROUTINE dISSEL (ZeRJeJOsJ1sNTE)
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SEGIN  COMMENY THIS 2R0GRAM COMPUTES COSH(GAMMA) =DENUM/NUMER FUOR
ONEs TwOe AND FOUR PRODUCT TERMS [PNEUMATIC). THE OQUTPUT INCLUDLS
PUNCHED CARDS WwHICH MAY BE ENTERED DIRECTLY INTO THE ®STEP RESPONoE 3Y
NUMERICAL INTEGRATION--PNEUMATICY PROGRAM. FOR EXAMPLEs THE “NUMERATOR,
ouh PRODUCT TERM® ARRAY HAS 5 ROWS AND 4 COLUMNS. THE ARRAY_IS PUNCHED
Y ROWs > PUNCHED CARDS wWITH 4 NUMBERS ON EACH CARDS . COMMEANT
THI5 PROGRAM READS IN ONE DATA CAkU WITH PARAMETERS “L/CQts “DN¥,
Ly AND MROMI [FORMAT 4Fi0] - )
1} COLUMNS 1-10 RATIO OF LINE LENGTH OVER ISEN. SPEED OF SOUND.
2} COLUMNS 11-20 DAMPING NUM3ER (RATIO OF <INEMATIC VISCO3SITY
OVER. TuBE RADIUS®22), R u B
3) COLUMNS 2I~30 LINE LENGTH (IN FEET)s FOR REFERENCE ONLY.
4) COLUMNS 31-40 LINE INNER DIAMETER (INCHES)s FOR REF. ONLY,.
THE REMAINING DATA CARDS ARE THE COEFFICIENTS FOR ARRAYS [A]l AND
{B)s WHERE GAMMA=(S¥L/CO)w#az#[A]/(8]3
ARRAY A[0:6+0:3+03:31+310344022+0:31+68(028+,084+402615AB1021050:54036
J19AA[0212+0365026]+BBBBI0:1640:8+0312]15A888(0:1890:3+0212)+AA88{05204031
0+0212)s AAABL0:22+4031140212)¢ AAAA[D:2440212,0212)s ON[O312]e NUMIO:16,
02123« DENIDI244031219 NUMERIO: 5+0:6)s DENOM{OUZ Ide 619ABUFEG369023y
0231y BBJFI0:440:2+0337y APOT(0:6+0:31s BPUT(034+0:3]3
FILE CARD(KIND=READER) SFILE LlNE(KIVD“PRINTER).FILt FUNCH (K IND=PUNCH) $
INTEGER IvJvK- REAL ELOVCOSELZ2eEL4sELSIELBIML ¢M29M3oeMa MO aME9MToL o RS
RYAT TITL(X104"COEFFICIENTS FOR STEP RESPUNSESs ONEs TWOs AND FOU
R PRODJCT TERMS FOR COSH(GAMMA)s [PNEUMATICls #/PUNCHED QUTPUT:"9/4X10,
113(u=) /)y
FORMAT P1(/sX30+9ARRAY TA1IH,/4X30¢Nammmam ———ty /)3
FORMAT B2(/+X309ARRAY 'B'V31s/9X304 =1/}
FORMAT P3(/9 X209 "NUMERATORs TWO PRODUCT TERMS:®e/eX20929(1=1")0/)3
FORMYAT P4{/+X20+"DENOMINATORs TH0O PRODUCT TERMS:IH,/eX20e3L1(H~1)5/)3
FORMAT PS{/+X20+"NUMERATORs FOUR PRODUCT TERMS:"s/¢X20930(1=")s/}}
FORMAT P6(/9X20+*DENOMINATORe FOUR PRODUCT TERMS:%s/eX20932("-"}e/)3
FORMAT P7(XS+%S= #Hyf]e8 4y ONT Hylle® o K=0 TO 33%9X10+4E20.49 )3
FORMAT PB(XS5+MS= We]2¢% » K=0 TO 63MsX397E1Se49/ )3
fOR%AT POIXIeNS=ty [244y K=0-12:3%¢X1913E3.247 )3
FORMAT P10(/9X20s"NUMERATORs ONE PRODUCT TERM:iMe/eX20928("="}4/)3
FORMAT P11(/9X20+sMDENOMINATORs ONE PRODUCT TERMIN,/9X20+30("=")e/)3
FORMAT PL2(XS59MS= eJle® o K=0 TD 3iWyXS s4E25449/ )3
FORMAT P13(X5+"FOR THIS RUNe L/CO = M4R11.43" 9 DAMPING .NO, = "o
Rllete™ o L= MeR114b9% FEET» AND TUBE leDe= "eR1la&s" M4/} 3
FORMAT P14(8E1043)%
FORYAT P15(4F1043)3 - _
FORMAT Pl6("MAJOR BRAD:N0 OFANs 30X CCs PNEUMATICs DN="3F 6430
1y L/co—" FB.5e% 1) 3
PROCEDURE POLYMU (XY 2 ZsX19X29X39Y13Y2+Y3) .
ARRAY X9YeZI[0+0+015 INTEGER XloXZyX3.Y10Y2.Y3o SEGIN INTEGER I+1lsdsdds
KeKKoZ19ZZ9Z35 Z13=X14Y15 Z23=K2+Y23 23:=X3*V3. FOR 1:=0 STEP 1 UNTIL i}
0 STEP 1 UNTIL Z2 DO FOR STEP 1 UNTIL Z3 D0 Z{IsJsKii=0,
STEP. 1 UNTIL x1 DO FOR II'=0 STEP 1 UNTIL Y1 DO FOR J:=0 STE
P 1 UNTIL X2 DO FOR JJt=0 STEP 1 UNTIL Y2 DO FOR K:=0 STEP 1 UNTIL X3 DO
FOR KK$=0 STEP 1 JUNTIL Y3 DO ZII+IIsJ+JJsKeKKII=ZII+IToJrJJeK+KK]+
XUIsJexKI®YIIIsJJeKK]3 END3
PROCEDURE POLYAD (XsY9Z9X10X29X39Y19Y29Y3)3 ARRAY XsYeZ{0s0s0)3

ZITAIILTALIIILILIEII LI ZLXI XL L L IT L XL 2L 0 XXX IX L AT T TL T

010
012
0ls
0i6
018
020

021

Q922 -

023
024

025
027
028
023
030
040
050
060

070
080
090
100
103
110
iz¢0
138
130
160
170
180
19¢
200
210
220
230
240
250
260
263
276
280
290
300
310
320
330
340
350
360

INTEGER X19X29X39Y1leYZsY32 b:bIN INTEGER Zl-ZZoZ3oIvJ9Ko REAL X-¥UMBs
YNUMB: Zli=xls If vl > Z1 THEN Z1l:=Yl3 Z2:=X23 22 THEN l¢~—Y£o
Z3:=X3t IF ¥3 > Z3 THEN Z3:=Y3: ?OR 1:=0 STEP l JNTIL Z1 DO FOR U3
STEP 1 UVTIL Z2 DO FUR K3=0 STEP 1 UNTIL Z3 DO gEGIN IF I > X1 Ox J > X2
K > X3 THEN XNJMB:=0 £LSE XNUMS:=X[IsJeK}: IF I>Y1l OR J>Y2 IR X>Y3
THEN YMUWB==0 ELSE YNU“3==Y[10J’k11 Z(I'JoK]:=xNUMB*YNUHB: END3 NS
D{CARDsPIS+ELOVCOsDNL1TeL s ~
tLzs LLOVCU*ELOVCO. ELas=EL2%EL2ZS tL6 =EL2#ELad ELBISELA%EL 43
FOR I:=2 STEP 1 UNTIL 12 DO DNUIIS=DN{1]*DNLI-1]3
READ(CARD/9oFQR 13=0 STEP. 1 UNTIL 6 DO FOR J3=0 STEP 1 UNTIL 3 DU
FOR K3=0 STEP 1 UNTIL 3 DO AllsJeK])$
RFAD(CARUQ/vFOR 13=04192¢3«4 DO FOR U= 0+1+2 DO FOR K2
BlIeJex])
NRITE(LINE;TITL)' NPITE(LINE.P!J-ELOVCO;DV(I];Lw?)-
WRITE(LINESPL)S FOR 1:=0 STEP 1 UNTIL 6 DU FOR J
0'l~2v3 D0 wRITE(LINEIPTeIsds FOR K3Z09192¢3 DU AlleJsK])
WRITE(LINEWP2)3 FOR 1:=09192+344 DO FOR J3=0+1+2 DO‘HRITE(LINE.P?.
Tede FOR K:=0s142+3 DU BL{IsJeK1)5 WRITE(LINEISKIP 11)3
WRITE (PUNCH+P169DNI11+ELOVCO) 3
COMMENT  SOLVE FOR NUMERs 1 PRODJUCT TERM, NUMER = ARRAYIBI:
FOR 1:=0 STEP 1 UNTIL & DO FOR Ji=0sle2 DU FOR Ki=0s1+2¢3 D0 3BUFTIeJs

K1:=glIsJeK}s
For I:—59102'3,“ D0 FOR J:=1+2 DU FOK K:=0s1¢2+3 DO BBUF(IeJsK13=DNILJ]
*BBUF (19 JeK)3 FOR 12=09¢1+24394 DO FOR Ji=0s1e2 U0 FOR K:=091s2+3 DO
BPOTIIeK]):=BPOTII+<1+BBUF(1+JsK]3 NRITE(LINE’F]U)’ FOR 1:=0sle2e3s4 DO
WRITE(LINEGPIZ2oI+FOR Ki=0s14243 DO BPOTLIWK])
FOR 13=09lo2v3v“ DO WRITE(PUNCHPlas FOK K3 0-1'2v3 DO BPOTI{Is<1)3
COMMENT  SOLVE FOR DENOMe ONE PROUUCT TERM3 MT:=.4053%EL23
FOR I:=0 STEP 1 UNTIL 6 DO FOR Jt=0+s1+2+3 DO FOR K3=Gele2+3 D0 ASUFLIeds
]==A(1'JvK)“M79 SOLYAD (B4 ABUF s ABUF 9492+3+6+3+3) 3
I13=0 STEP 1 UNTIL 6 DO FOR J3=1e2e3 DU FOR =09142+3 DO
ABUF[IOJ!K $=ON[JI*acUFL{TsJeKis FOR I:=0 STEP 1 UNTIL 6 DO FOR Ji=0slo
293 DO FOR K:=0s1+42¢3.D0 APOTLI+K13=ARPOTL[+KI+ABUFIIvJoK]3
WRITE(LINE,PL11)3 FOR 1:=0 STEP 1 UNTIL 6 DO WRITE(LINE.P12s1s FOR
$=0+¢14293 DO APOTIIsKI)S FOR 13=041+2+3044546 DO WRITE(PUNCHePls FOR
2=0e1e293 VO APOT(1eK1}3
COMMENT  SOLVZ FOR_NUMER»s 2 PRODJCT TERMS:
POLYMU(B9BeBBrbs2e3949293) 3
FOR I:=0 SYEP 1 UNTIL 8 DO FOR J:
1 UNTIL 6 DO HB{IsJeKI3=DNIJI=*BBIIsJsK]$
FOR 13=0 STEP 1 UNTIL 8 DO FOR J:=0 STEP 1 UNTIL 4 DO FOR Xi
1 UNTIL 6 DO NUMERLT+K}:=NUMERII+K1+BELIIsJeKI3
RITE(LINEsP3)3 FOR I:=0 STEP 1 UNTIL B DO WRITE(LINE.P8BesIs FOR Ki=
] STEP 1 UNTIL 6 DO NUMER{I+KI?3 FOR I:=0 STEP 1 UNTIL 8 DO ARITE(PUNCH
sPl4éy FOR K:=0 STE> 1 UNTIL 6 DO NUMERII+K}); .
COMMENT SOLVE FOR DENOMs 2 PRODUCT TERMS;
POLYMU(BeBs3B94s243+492¢3)3 POLYMU(AWBsABe69393¢4e293)3
POLYMU(AsAvAAI6+393+693+3)3
M13=4450316%E.25 M23=,0182506%EL43
FOR I:3=0 STEP 1 UNTIL 10 DO FOR J:=0 STEP 1 UNTIL 5 DO FOR «:=
STEP 1 UNTIL 6 DO ABLIsJeKit=MI#ABIIsJeKI3
FOR 18=0 STEP 1 UNTIL 12 DO FQOR Ji=0 STEP 1 UNTIL 6 DO FOR X:
STEP 1 UNTIL & DO AA[I+JeK1=42#%AA(IsJeK]}
POLYAD(AAOAB’AAO12167691005’6)3 POLYAD (AA+BBEsAA+12+646983440) 3
FOR =0 STEP 1 UNTIL 12 D0 FOR Ji=1 STEP 1 UNTIL 6 DO FOR Ki=0
STEP 1 UVTIL © DO AAlI«JaK1:=DNIJI*AATLIoJeK]S
FOR 13 0 STEP 1 UNTIL 12 DO FOR Js3=0 STEP 1 UNTIL 6 DO FOR K:=0
STEP 1 UNTI DO DENOMII+K}:=DENOMIIsKI+AALIsJ
ﬂRITE(LINE-P#)% FOR I:=0 STEP 1 UNTIL 12 DO dRITE(LINE:PBvIv FOR K
=0 STEP 1 UNTIL 6 DO DENOMIIWK})3 FOR I:=0 STEP 1 UNTIL 12 DO WRITE(

=0s1+2+3 DO

=1 STEP 1 UNTIL 4 DO FOR <3=0 STEP

=0 STER

ITZTI IS ITIIINITIIITITILITIIALILIIL JILE FIIL XTI ZILX AT LI XX IXLT XL T XL L AL

370
380
390
400
410
4eu
430
435
440
450
460
470
480
483
49u

650
660
670
640
690

700
710

720

730
740

750

L6



PUNCHy P14y FOR K2:=0 STEP 1 JUNTIL 6 DO DENOMEI.KI)3

COMMENT SOLVE FOR NUMERATORe FOUR PRODUCT TERMSS

pOLYMU(BvBcBBv472939692v3)o POLYWU(BB.BB;EBGU.B-Q'Gvanvb)q

FOR 1:=0 STEP 1 UNTIL 16 D OR J3=1 STEP 1 UNTIL 8 00 FOR K:i=0
STEP 1 JUNTIL 12 DO BdBB[IvaK]"DN(J]'BBBB[IonK]v

FOR 1:=0 STEP 1 UNTIL lb DO FOR J:=0 STEP 1 UNTIL 8 DO FOR <:=¢
STEP- 1 UNTIL 12 00 NUMITex]i=NUMIIeK)+u8BBL1sJ9K1s

WRITE(LINEPS) S FOR I3 0 STEP 1 UNTIL 16 DO wRITE(LINE+P9s Is FOR K

=0 STEP 1 UNTIL 12 00 NuUM[Ie<]}s FOx [3=0 STEP 1 UVTIL 16 DO WRITEY
PUNCH;°1¢9 FOR K3=0 STEP 1 UNTIL 12 DO NUMiIek])
COMMENT SOLVE FOR DENOVINATORs FOUR PRQDUCT TERWS'

POLYMU (BsB9BBe43s253+949293) 5 POLYMU{AsBsABs6+3¢39442+3)3

POLYMU(AsArAAIE9393969393}5 . _ B

2OLYMU(BB+BB+388B+8+64+¢608+496)3 POLYMU(ABYBE+ABBBe10+596934446)3

POLYMU (AA«BByAABB125696s804+6) 35 POLYMU(AAIASyAAAB1Z2+6963103546)3

POLYMU(AAsAA9AAAAS 12469631 2+b46) 3 .
M3I=.4T4TTBRELZT MOI=,0294%EL 43 “5~—.506079W—3°EL6- M6i=,2441]8=-5%
EL83
FOR [3=0 STEP 1 UNTIL 18 DO FOR J:=0 STEF 1 UNTIL 9 DO FOR X:i=g
STEP 1 UNTIL 12 DO ABBBIIsJex)}:=M3#AB3BLIeJsK]S
FOR 13=0 STEP 1 UNTIL 20 20 FOR J$=0 STEP 1 UNTIL 10 DO FOR x:3i=0
STEP 1 UNTIL 12 D0 AABB{I,JsK}:=ta2AA3B{1e+JsK]S B
FOR 1:=0 STEP 1 UNTIL 22 DO FOR Ji=0 STEFP 1 UNTIL 11 DO FOR K:i=0
STEP 1} UVT‘L 12 DO AAABETIsJeK1:=MS#AAAB(IsJeK]S
FOR It STEP 1 UNTIL 24 DO FOR J3=0 STEP 1 UNTIL 12 DO FOR Ki=y
STEP 1 U‘TIL 12 DO ARAALI+JeK1:=M6#AAAALT+JeK]S
POLYAD (AAAA+AAAB s AARAY24912912422911412)3
DOLYAD (AAAA» AABBAAAAS24412912920010412)3
POLYAD (AAAAYASBBsAAAAG24y12+41291899912) 3%
POLYAD(‘AAA‘BBBB'AA“AQE“'1291201693'12)9
FOR 1t STEP 1 UNTIL 24 DO FOR J3=1 STEP 1 UNTIL 12 DO FOR K:=0
STEP 1 UVTIL 12 DO AAAALI,JeK]: =DNIJ)“AAAA[I'J K13
FOR 13=0 STEP 1 UNTIL 24 DO FOR J:=0 STEP 1 UNTIL 12 DO FOR K:=0
STEP 1 UNTIL 12 DO DENLI+K]:=DEN{IsKI+AAAALL«JsK]S
WRITE(LINE,PE)3 FOR 13=0 STEP 1 UNTIL 24 DO WRITE(LINEP9sIs FOR K
=0 STEP 1 UNTIL 12 DO DENII«XD)S$
FOR I3=0 STEP 1 UNTIL 24 DO WRITZ(PUNCHsPlas FOR Ki
12 00 DENELIeK]I)3 WRITE(PUNCHe<HEND OF DATA CARDS">)3§ ENUO
DATA
0532 60.
0'0-0'000o0000090'0,000;0,000'09O’Ov09000.090009090'0v01000'0v0’
09090+09090909 10o+ 090965234890+ 09 3271.5+0+0s
090909 les 090592.38s09 Os 1575090909 327145409040y
090e3,90¢ 0 1547690909 35095509090 09090+0s
Oy 349090s 72.3890940909 039090009 0409040
1e9090s09 09090909 09090909 0304040
09090409 Os09s09=Tolés 090s-292.03+00
0s0¢09~109030+=48.044+00 04090900
Oels=lor0r U9 Tel®%e0s0y 292,03¢000+0s
Os 1e9090s 48.044030400 09090400

les04090» 0e0s0s0¢ 0904000

0 STEP 1 UNTIL

L1 IT T ITILITILIFNIITLIIILL IXTX XIX ILX XTI T LT I X

753
760
770
780
790
800
819
82d
830
835
840
&850
860
870
880
89¢
900
910
520
93¢
349
950
960

970

980

990
1000
1010
1029
1030
1040
1050
1060
1070
1080
1090

1100
1110

BEGIN  COMMENT THIS PROGRAM COMPUTES COSH{GAMMA)=DENUM/NUMER FOR
ONEy TwOs AND FOUR PRODUCT TERMS [HYDRAULIC). _THE QUTPUT INCLUDE:
PUNCHED CA<DS wmiCH MAY Be ENTERED DIRECTLY INTO THE STEP RESPONSE 3Y
NUMERICA. INTEGWATION=-AYJRAULICY PROGRAM. FOR EXAMPLEs THE MNJMEWATORSs
ONE_PRODJCT TERM® ARRAY HAS « ROWS AND, 4 COLUMNS. THE ARRAY IS PUNCHED
8Y ROWs & PUNCHED CARDS wITH & NUMBERS ON EACH CARDS COMMENT
THIS PROGRAM READS IW ONE DATA CarD WITH PARAMETERS ML/CO".
MLW. AND MwOME [FORMAT 4F 10
17 CoLuune 12507 SAT10 0F LINE LENGTR OVER ISEN. SPEED OF SOUND.
2) COLUMNS 11-20 DAMPING NUMBER (RATIO OF <INEMATIC VISCOSITY
OVER TUBE RADIUSH##L) .
3} CULUMNG: 21-30 LINE LENGTH (IN FEET)e FOR <EFERENCE ONLY.
4)  COLUMNS 31-45 LINE INNER DIAMETER (INCMES)s FOR REF. OWLY.
THE KEMALNING DATA CARDs ARE TrE COEFFICIZNTS FOR ARKAYS [A} AND
{81s WHERE GAMMA=(3#L/C0)##25{al/1313
ARKAY AL0:59052+0:31s B10335031+033)¢ BEIUI69052+0:61s A3[0300530
16]s AALOS10903490361s 3383(03122034+0312]y ABBBI0214503550512)s AABS{
S PRIt TR I A T M TR TR STt 1M PP Rt 1 P
NUMIG212+03121s DENIQ:2090212)s NUMER[U36+036)s DENOMIO210+0261s ABUFL
055403250331y BBUF{0:3+02190331s APOTI035+0:3)y BPOTI0:3+0:313
FILE CARD(KIND=READER) sFILE LINE (KIND=PRINTER) sFILE PUNCH (KIND=PJNCH) 3
[NTEGEP TeJeKi REAL ELOVCOSsEL2+ELGELOSELSsMIyM2sM3sMas UG MEoMT oL RS
VAT TITL(X104WCOEFFICIENTS FOX STEP RESPONSESs ONts TwOs AND FOU
R PRODICT TERASFOR COST (GAVMAY o CHYDIAULTCT s wyPUNCHED DU TPUT %s v n10
113(n=n) /)3 ; :
FORMAT P1(/sX304"ARRAY TA'"s/aX300M
FORMAT P2(/sX30+"ARRAY 'B¥1t4/9X30 M=
FORMAT P3(/sX209¥NUMERATORs Tw0 PRODUCT TERMSIMe/eX20929 (M=")3/)3
FORMAT Pa.(/+X20 s "DENOMINATORs TwO PRODUCT TERMSI®y/ 9 X205 31 (H=1)e/) 3
FORMAT P5(/sX20s"NUMERATORs FOUR PRODUCT TERMSIW,/3X20+30("=)4/)3
FORMAT P6(/+X20+"OENOMINATORs FOUR PRODUCT TERMSIMe/9X20032("=11) /)3
FORMAT BT(X5eM5= fHalle® o DNT Wells™ o K=G TO 3:%eX10+6E20.4% )3
FORMAT 2B (X548 1,12, 4 K=0' TO 6ityXkbeTE13443/ 13
FORVMAT PY(X1+HS="a12s%y K=0=12:1,XLs13E9.257 )3
FORMAT P10 (/+X204"NUMERATORs ONE PRODUCT TERMI®4/¢X20928("=")4/)3
FORMAT PL1(/9X20s"DENOMINATURs ONE PRODUCT TERMINs/eX20530 (=" e/)3
FORMAT PL2(XSsHS= WeIls® o KSG TO 314X5 +4E2544e/ )3
FORMAT P13(X5+"FOR_THIS RUNs L/CO = "eR1iabs? s DAMPING N0 =
RIleboi o L= #iR1144s" FEETs AND TUBE leDa= Hekllebs™ ous/)3
FORMAT P14(BE10.3)3
FORMAT P15 (4F10,3)
EQRVAT P12 (MuAJGR BRADENS UFAN, 30X CCo HYDRAULICs DNSMsF6.3e
By L/COS" F104748 14)3
 PROCIDURE POLYMU(XeYeZsX1sX29K3sY1rY2eY3)
ARRAY Xs¥+Z10+04G15 INTEGER X1AKENRIHIIERVRA BEGIN INTEGER IeTleuedus
KoKKeZ19229Z33 Z13=X14Y13 Z2:=Xe+Y23 43--x40Y4, FOR 1:=0 STEP 1 UNTIL zx
5 0 STEP 1 UNTIL 72 DO_FOR STER 1 UNTIL 23 DO Z{IsJyk):
stis Nt Ie xEe080For 1Ti=0 8TEp § UNTIC ¥1 Do For'JiEgSRe
P 1 UNTIL X2 DO FOR JJ:=0 STEF 1 UNTI. Y2 DO FOR K:=g STEP 1 UNTIL X3 DO
FUR KXi=0 STEP 1 UNTIL Y3 DO ZI1+ITeJvJJIeK+KKIIZ2{I+1Ts +ddscecs]s
KEIsJe<I®YETI0JJeK<)s ENDS
PROCEVDURE POLYAD (XsY9ZyX1sX2¢X30Y1sY22Y3) % ARRAY XsYsZL0+0+013

UEN,

f"l—r:—rrr’r'r‘v‘r'r’r-r—rr—r'r“r-rr—r—r‘r‘rr‘rr‘r’r—r—r‘r'r'r'r'r‘r-r—r-r—rr'r—rr‘r‘r'r'r-f—r‘

010
012
Ola
0le
013
020
(1791
022
023
924

023
025

027
028
023
030
040
050
060
863
070
[12-21)
090
100
1635
110
120
130
140
150
160
170
180
198
200
210
220
230
232
234
236
236
240
264
246
250
260
270
284
290
300
310

86



INTEGER A1eX2943¢Y1aY24Y33  BESIN INTEGER ZleZ2ys3eleJeki REAL XNUH
YNUMH. Z13=x15 IF Y1 > 21 THEN Z13=Y1l$ £e2:=X2% IF YZ2 > Z2 THEN Z2:i=
$=X3: IF Y3 > Z3 THEN 23:3=Y35 FOR 1:=¢ STeP 1 UNTIL ZI DO FOR J:
STEP I UNTIL Z2 DO FORrR K2
OR K > X3 THEN XNJOMS:=0 ciSE XNUMpi=x{ledek}3 IF I>Y1 J>Yz OR K>Y3
THEN YNUMBI=0 ELSE YNUMBI=YIIeJdsK13 Z0IsJsK1: xVUM8+YVUMn‘ ENDS 2ND3
READ (CARD P59 ZLOVCO#ONI1 1ol eR)
DNTOY:=13FOR I:=2 STEP 1 UNTIL B DO ONUII:=DNILl#DNI{I-1]3
EL2:=ELOVCO®ELOVCO} cL&4I=EL2%EL2s L 6=t 2% EL%3 EL8I=EL4¥*EL4s
READ(CARD+/+FOR 1:=041+2+394+5 DO FOR J2=Us1e2 DO FOR X3i=0els2le3
D0 AlIsJeKi)s
READ(CARDs/s FOK 130919243 DO FOR Ji=0s1 DO FOR K3
B[loJ.K))y WRITE(LINESTITL)S NRITL(LIVtvP13'ELuVCOoDNIll'Lq ]
WRITE(LINEPL)YS FOR I8=0+192+30445 DO =09le2 DO wkITL(LINt-P7
1 Teds rOQ KiT0s19243 DG AfLedex1) 2
WRITE(LINESP2)3 FOR 15091323 DO FOR Ji=0s1 DO WRITE(LINE«TeleJs
FOR K:=0s1s2¢3 DO 3[IeJeK1)$ WRITE(LINVEISKIP [1)3
NRITE(PUNCHsP1beONL1 JoELOVCU)
CQWWtNT SOLVE FOR NUMERs 1 PRODUCT TERM. NUMER= ARRAY[B13
=0s1¢2¢3 DO FOR Ji=0sl DO FUR K$=0sle2¢3 u0 BEGIN B3JF
:=DN[J]'3[I-JvK]o 3P0TI1+x1:=8POTIIK1+oBUFIIedsr]s CNO3
WRITE(LINE.P1Q)S FOR =0¢is243 DU WRITE(LINEWPLIZ2e1y FOR <1308l
DO BPOTII«K1)E FOR I3=0e1s2¢3 DO WRITE(PUNCHsPlas FOR K3=0sle2l+3 DO
BPOT[Iek1)3
COMMENT SQLVE FOR_DENOMs, ONE PROJUCT TERM, M73=.40539EL25
FOR I2=09142+39495 DO FOR Ji=0s1e2 DO FOR K:=0s142+3 DO ABJF(IvJvK)
=MT#ATTeJeK]}3 POLYAU(BsABUF ¢ABUF 4391939542930
Fo 2=0901s2939495 DO FOR J=0,1+2 U0 FOR Ki=0s1+2+3 DO 3EGIV ABUF(
TeJdsKI:=DNIJI*ARUF [ Ivde)s APOTII+K]3=APOT{IsKI+ABUF{IeJdsx]3 END}
WRITEC(LINE#PL11)3 FOR I13=041+2+39995 DO WRITE(LINC+PLZs1s FOR K:=0s]
22¢3 DO APOTI1+K1)3 FOR I:=0sle2939495 DO WRITE(PUNCHPlay FOR <:=0+l1e2s
3 00 APQTII.KI)
COMMENT SOLVE FOR NUMERs 2 PRODUCT TERMSS
POLYMU(BeB+BBe¢39193939143)3 _
FOR I8=09192939%95+6 D0 FOR J3=0el92 D0 FOUR <:30+192435445+6 DO
NUMERT Io<]s=NUMER[ L+K1+DNIJ1=88B{10sJsK]3
HRITE(LINEGP3)3 FOR 1:=0919293949596 DO WRITE(LINEsPdeIe FOR
142930493546 DO NUMEZRIIWK1)3 FOR 1i=0+13293¢495s6 DO #RITE(PUNCHs?P
Ki=0e¢ls293+4495¢6 D0 NUMERII+K1}3
COMMENT SQLVE FOR DENOMs 2 PRODJCT TERMS;S
POLYMU(AsBsAB959293+939193)3% POLYMU(ASAsAAIS9Ze315+293) 3%
Mlz .450316'EL2~ M2:=.0182500%EL 43
13=0 STEP 1 UNTIL 8 DO FOR J:=0s1+42¢3 DU FOR K@
6 0O Ad[IvJvKJ =M12ABITeJeX1s
FOR I:=0 STEP 1 uUNTIL 10 DO FOR J3
UNTIL 6 DO AAl{TeJs<}i=M24AALIvJeK]3
POLYAD (AAsAB+AAs 1094959833613 POLYAD(AA,BBoAA,lOoh¢6960206)3
FOR 15=0 STEP ] UNTIL 10 DO FOR Jt=0 STEP 1 UNTIL 4 DO FOR K:
STEP 1 UNTIL 6 DO JENUMI{I+K]:=DENOMII+KI+DN{JI*AA{IsJsK]}
WRITE(LINE+P4) % FOR I:=0 STEP 1 UNTIL 10 D0 WRITE(LINEsP8+Is FOR
=0 STE® | U“TXL 5 00 DENDW[I.K]); FOR I:3=0 STEP  UNTIL 10 DO wRITE(
PUNCH;DIH' FO 2=0_STEP UNTIL 6 DO DENOMIIoNx])) 3
COMMENT SOLVE FOR NUMER’ 4 PRODUCT TERMS3
POLYMU (BB+BUs38Bbs6+2¢6960206) 3
FOR I:=0 STEP 1 UNTIL 12 DO FOR J3=0 STEP 1 UNTIL & DO FOR X:=0
STEP 1 UNTIL 12 DO NUMII+K]s=NUM{IKI+ONIJI*BBBBII+J9K]3
WRITE(LINE,PS) 3 FOR I:=0 STEP 1 JUNTIL 12 DO WRITE(LINEsP3I,Is» FOR
=0 STE® 1 JUNTIL 12 DO NUMII.K)}$ FOR I:=0 STEP 1 UNTIL 12 DO wRITz(
PUNCHeP14s FOR K:=0 STEP 1 JUNTIL 12 DO ~UMIIsKI}S
COMMENT SOLVE FOR DENDOMs & PRODUCT TERMS:

091’293 Do

tIeJex]

o3

=0 STEP 1 UNTIL
=091929394 DO FOR K3=0 STEP |}

=0_STEP L uNTIL 73 DU BEGIN IF I > Xp Ok J > X2

[ ot st sl n e ol ol ol i A Il M ol aut Y nd e ot sl s et vl sl and natll St ant mulll Sl ant natlt oull ot culll aull it sl S unl ot St md auul uutll st et el ottt aeul sl sl el ul o

460
470
450
490
500

510
520
525
330
540
550
56U
570
5735
580
590
600
610
620
630
640
645
650
660
670
680

690
700

705
710
120
730

740
750

760

770
780

790

800
810

820

830
840
85¢
860
870
883
890

POLYMU{B+BeB80e39193439193)5 PULYMUCAsHeAKI59293+439103)5
POLYMU(AvAeANs50293¢50243) % POLYMU(ABBBeABEBeBe346969246) 3
POLYMU(ARybBeAABEs10+6+6464246) % POLYMU(AAWABBAAES 100406989 396) 5
POL(MJ(AA-AA.AAAA;lOouvé-10-406)v
M33=,0T4TToRELZS Mat=,0296¥TLa3 M5:1=,5060T9a-3%EL63 M61=,244]1]%=3%EL 8}

FOR I:=0 STEP 1 UNTIL 20 DU FUR J3=0 STEP I UNTIL 4 DO FOR K:=0
STEP | UNTIL 12 DO 3EGIN IF I LEY 14 ARD J LEQ 5 THEN ABBS!lsJex)i=M3#
ABBBfIeJoK1s IF I LEQ 16 AND J LEQ 6 THEN AABB(X'JOK].=M“°AABB[11JvK]’
IF I LEQ 18 AND U _EW 7 THIN AAABLIsJeKII=MBHALABI[eJeK]5 AAMALTsJsK]:
ME#ARAALLI+JeK]S ENDS3
pOLYAD(AAAA.AAAB'AAAAvZOon12'13c79l£)s PULYAD {AAAA+AABBsAAAA«2UB
1201696912)3 POLYAD(AAAASASBEAAAA,20+Be12014s5912) 5 POLYAD (AAAAYBEBI,
AAAA-ZOvalZolZ»Qvlz)
FOR 1:=0 STE2 1 JUNTIL 20 D0 FOR J:=0 STEP 1 UNTIL 8 DO FOR K:=¢
STEP 1 UNTIL 12 DU DEN[TI+c1I3=DEN{IsKI+UNLJI*AAAALTsS9K]S
WRITE(LINE«P6) 3 FOR 13=0 STEP 1 UNTIL 20 DU WRITE(LINE+2GyIy FOR
=0 STE> 1 UNTIL 12 00 DEN[I«X1)3 FOx 13=0 STcP 1 UNTIL 20 0O wRITE(
PUNCH'DX~' FOR K3=0 STERP 1 UNTIL 12 DO DENIIex1}i WRITT(PUNCHs<"CND OF
UAS:TCAR)S">): END.
A

0137 - 60, a0

0;0'0n00U-Uy000900070v0v0'00000’0~090;0’0-090v09
0s0s los 0e0952.3890s 0o 327.15+0904

000.3..00 0o 124.76+0900 327415404040

Os 3.40400 620384040400 0402040

1e9G90900 0s0+0e00 030090

0s0+0e=les 0404=60.9+04 0s0v=1490s 0905090,
Os 1ee000s 40.9¢09090s 1es0sUels 0504090

il l an it ol ol sl sl e sl e

900
910
920
93y
940
950
960
976
980
390
1000
1010
102y
1030
1040
1050
1060
1070
1080
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DATA IGO/6v12e24/7 | . S Sio

DATA ARY/ZTAV'BY 4 1CV 1D, VE 4 'FI/ S 515

READ(59200) (AdEAD{(J) »J=1480) S 520

200 FORMAT(80A1} S 530

READ(54300) NRUNS«IHOLO (1) o IHOLD (2) 9 IHOLD (3) 9 NPV YMAX] s 540

300 FORMAT(4(T193X)2I1248XsF1043) S 550

READ(54400) STtP(l) MRKS(I)vSTED(Z)qNRKS(E)-STtp(3)yNRKS(3)vPATw S 560

400 FORMAT(4(F10.3+110 S 570

C==== STEP RESPONSZS WITH TIME-DEPENDENT PARAMETERSs PNEUMATIC CASE. S 010 READ(5+420) (AHOLD(J)-J 1+8) S 580
Cc AL5e343)y BL492+3). S 020 420 FORMAT(3F10.3) S 590
C S 030 IF(NPVL.GT.8) READ(54420) (AHOLD({J}+J=9,16) S 600
C===- THIS PROGRAM USES &4 DR 5 DATA CARDS TO PRESCRIBE PARAMETERS SUCH s 040 C--== PEAD IN ARRAYS [A]} THROUGH (Fl. S 610
[of AS STEP SI1ZEs LENGTH OF RUN (TIME)s ETC. THEN 4 SERIES OF DATA S 0590 N0 20 J=1+5 S 620
C CARDS WwHICH HAVE BEEN GENERATED BY THE PROGRAM “PNEUMATIC® ARE ) 060 =48 (J=1) S 630
[ READ INTO ARRAYS [A1sI8)s(C)s[D)s[E}+(F) TO PROVIDE THE NECESSARY S 070 20 READ(59430) (A(K+L) sL=14+4) S 640
C COSFFICIENTS FOR SUBROUTINE “DERFUN®, S 080 DO 25 J=1.7 S 650
C S 090 K=4# (J~1}) s 660
c DATA CARD 1: THIS IS A HEADER CARD TO IDENTIFY THE RUN (A80). S 100 25 READ(5+430) (B(K+L)sL=1e4) S 670
o} S 110 430 FORMAT(BE10.3) S 680
C DATA CARD 2: S 120 DO 30 J=1.9 S 690
C 1) NUMBER OF RUNSes IN COLJUMN 1+ FORMAT(I1). MAX=3, S 130 K=T*(J~1) S 700
C 2} IF RUN 1 USES ONE _PRODJCT TERM FOR COSH(GAMMA)e PJT A njn § 140 30 READ(5+430) (C(K+L)sL=1s7) S 710
c IN COLUMN 11. TwO PRODUCT TERMSs PUT A wze IN 11. FOUR PRODUCT S 159 DO 35 J=1.13 S 720
C TERMS, PUT A w3" IN COLUMN 11. S 160 K=T*(J=-1} S 730
[ 3) PUT A 1+ 24 OR 3 IN 21 FOR .THE SECOND RUNv IF APPLICABLE. S 170 35 READ(5+430) (D(K+L)sL=1s7) s 740
C 4) PUT A 1y 25 OR 3 IN 31 FOR THE THIRD RUNs IF APPLICABLE. S 180 DO 40 J=1417 S 760
c 3) NOe OF STEP SIZES (PSI) FOR EACH KuNe CLMS 41-42s (12). Y 190 K=13%(J=1) S 770
C 6) MAX OKDINATE FOR PLOTTERy CLMS 51-60s FORMAT Fl0. S 200 40 READ(S+430) (E(K+L)+L=1+13) S 760
[ S 2190 D0 4S5 J=1le25 S 790
[ DATA CARD 3t . S 220 K=13%(J=1) S 800
C 1) RUNSE-KUTTA STEP SIZE FOR ONE-PRODUCT TERM RUNs CLMS 1-10 § 230 45 READ(5+430) (F(K+L)sL=1913) S 810
C FORMAT F10s THEN NO. OF R=K STEPS IN CLMS 11-20s FORMAT I10. S 240 WRITE(6+450) (AHEAD (J)+J=1+80) S 820
(o} 2) STE® SIZE FOR TWO~PRODJCT TERMSs NO. OF R=- K STEPSs 2i=-40. S 250 450 FORMAT (1H1+10Xs804A1) S 830
C 3) STE2 SIZE FOR FOUR=~PROJUCT TERMSs NOQ. OF K _STEPSe 41=60.S 260 WRITE (65600) NRUNS«NPVe PATMs YMAXI S 840
C 4) ATMOSPHERIC PRESSURE (2SIA)s COLUMNS 61-70' FORMAT Fi0. S 270 600 FORMAT(16Xs'THERE WILL BE '+Ils" RUNS OF '+]2¢' PRESSURE VALUES EA S 850
C S 280 2CHe ATMOSPHERIC PRESSURE's/916Xs’IS '9F643s' PSIG, FOR PLUTTING S 860
o DATA CARDS 4 AND S 290 3PURPOSESy YMAX = 'yF35.,2e' oV9/s11Xs80(1=2) /) S 870
[of 1) FIRST 8 STED SIZESs IN PSIGs FORMAT 8F10. S 300 C==== WRITE OUT ARRAYS [Al THROUGH (Fle S 880 -
[ 2) IF MORE THAN 8 VALUESe PUT THEM ON DATA CARD 5. IF NOT S 310 WRITE(6+700) ARY (1) S 8906
Cc MOIE THAN B VALUESs LEAVE DATA CARD 5 OUT. ) 320 T00 FORMAT(20Xe 'ARRAY [19Alet )2V s/ g20Xy } mmmmmmm ———ly/) S 900
[ S 330 DO 60 J=1.5 . S 910
[ DATA CARDS 6 THROUGH 123 ARE AS FOLLOWS: s 340 K=4%(J=1) S 920
[of 1} 6 THROUGH 10 _GO INTQ [A)sy NUMERATORs ONE PRODUCT TERM. S 350 60 WRITE(69720) (A(K+L) +L=19+4) S 930
[ 2) 11 THROUGH 17 GO INTO [Ble DENOMINATORs ONE PRODUCT TERM. S 360 720 FORMAT(4E20.53) S 940
c 3) 18 THRQUGH 26 GO INTO [Cls NUMERATORs TWO.PRODUCT TERMS. S 370 WRITE(69700) ARY(2) S 350
[ 4) 27 THRU 39 GO INTO {D}s DENOMINATORs TWO PRODUCT_TERMS. S 380 DO 65 J=ie7 S 960
o} 5) 40 THRU 73 GO INTO [E1ls NUMERATORe FOUR PRODUCT TERMS. S 390 K=4#( J=1) S 970
C 6} 74 THRU 123 GO INTO [Fls DENOMINATORs FOUR PRODUCT TERMS. S 400 65 WRITE(64720) (B(K+L)sL=104) s 980
C X S 410 uRIYE(G-?OO) ARY (3) s 990
C~=~= TO REVERT TO THE LINEAR "BROWN" MODELs USE A VERY SMALL STEP SIZE. S 420 70 J=1.+9 S 1000
c . S 430 7'(J-1) S 1010
C===~ ALL PRESSURES ARE NORMALIZED BY DIVIDING BY "PATMM, S 440 70 NRITE(607QO) (C( YoL=1aT) S 1020
C S 450 WRITE(64700) ARY (&) S 1030
COMMON Y (102) S 460 740 FORMAT(7G15.4) S 1040
COWMON/GOAL/DT(101,2),STEP(3)qNQKS(B)-NP4(3)vKloKZvK3;KQ-CC9PA'PB- 5] 470 DO_75 J=1+13 S 1050
2PATMsNPV +NRUNS s AHEAD (8 S 480 K=7#*(J=1) S 1060
COWMON/FORM/A(ZO)vB(ZB)yC(b3)pD(9l)gE(221) S 482 75 WRITE(6+740) (D(K+L)oL=1sT7) S 1070
COMMON/SAGE/F (325) S 484 WRITE(6+4700) ARY(5) S 1080
COMMON/BLOB/ YMAXT S 490 DO 80 J=1417 S 1090
DIVENSION AHOLD(16)+IHOLD (3} +IGO(3)sARY (6) S 500 T OK=13%(J-1) S 1100

00T



80

85
760

Commme

[or—.

Cmmmm

100

Comme

WRITE (69760) {(E(X+L)+L=1413)

WRITE (6+700) ARY (6}

DO 85 J=1s25

K=13u(J-1) i

WRITE (697601 (F(K+L) sL=1513)

FORMAT (13610.3)

DO 100 JJ=1+NRUNS

DO 100 KK=1+NPV

PA=AHOLD (KK) /PATM

k3 CONTROLS THE RECOMPUTING OF THE [3) ARRAY IN DERFUN.

K3=4

k1=1 DENOTES ONE PRODUCT TERM» a DENOTES TwO PRODUCT TERMS»

AND 3 DENOTES FOUR PRODUCT TER

A2 2 DENOTESERO0R TR D iFFERENTIAL EGUATION.

K1=140LD (JJ)

K2=160 (K1)

CALL GOTEAM

CONTINUE

STOP

END

SUBROUT INE DERFUN
{PNEUMATIC CASE] Al693
OUTPUT wPEw IS IN Y(10
COMMON Y (102)
COWMON/GOAL/’T(IOI'Z)nSTEP(3)9NRKS(3)9NPM(3)-KI;KZ-KJnKkaCsPA.PB.

3)e Bi4e293)
Yo

1827, mPEDOTH 1S IN Y(100).

2PATMeNPV s NRUNS » AHEAD (80)

[

10 x3=

12
la

COMMON/FORM/A(20) 9B (28) 4C(63) 5D (91} +E(221)
COMMON/SAGE /¥ (325)
SIMENSION 6(42)
60 TO(10+20430)s K1
ONE PRODUCT TERM-FOR COSH(GAMMA) o
3=K3+1
IFIK3.LT.4) GO TO 12
K3=0
31=4B5(Y (100))
B2=B1+B1
33=81%82
G(1)=A(3) #B2+Al4) #83
5(2)=A (7)*B2+A (8) ¥B3
G(3)=A(9) +A(10) *B1+A (11)%B2
GlaI=a(13)+A(16) 281
G(3)=a(1T)
6(5)=g(3) #B2+B (4) *83
G(T)=B(T)=B2+B(8)*83
G(B)=B(9)+8(10) *B1+8(11)#B2+8(12) B3
G(9)=B(13)+B(14) *31+3(15) ¥62+B (16) *B3
$(10)=8(17)+3(18) #B81+8(19) #82
G(11)=B(21) +3(22) #*B1
G(12)=B1(25)
00 14 K=9,13
Y(K)'Y(K-7)
14)=(PA=G (6) #Y (1) =G (T) #Y (2) =6 (8) #Y (3) =G (9) #Y (4) =G (10) #Y (5} =G (11)

' 2*Y(6))/G(12

Commm

20

Y(102)=G(1)#Y (1) +G(2)#Y (2)+6(3) #Y (3) +G (4) #Y (4) +G(5) *Y(5)
Y(100)=G(1)*Y(2)+G(2) #Y (3)+G(3) &Y (4) +G(4) *Y(5) +G(5) #Y {6)
RETURN

TWO PRODUCT TERMS FOR COSH(GAMMA).
K3=K3+1

IF(K3+LT+4) 50 TO 22

K3=0

DO COU LWV Wm un | nny vy Ly nnn ey

DE

1110
1120
1130
1140
115
1160
1170
1180
1190
1200
121¢
1220
1230
1240
1250
1260
1270
1280
1290
1300
0010
0020

0030

0040
0050
0060

0062
0064

0070

0080

0090
0100

E 0110

0120
0130
0140
0150
0160
0170
0180
0190

10200

0210
0220
0230
0240
0250
0260
0270
0260
0290
0300
0310
0320
8330
0340
0350
0360
0370
0380

22
24

Cmmmm

30

B1=ABS(Y(100)}
B2=p1%81

33=81#82

34=B1 83

35=614B4

4681485

G(1)=C(5)#B4+C(6) 2B5+C(7) #86

6(2)=C(12) #B4+C(13) #¥35+C (14) #86
G(s)-0(17)é52+C(1a)*33+C(19)»344ctzo)-35¢C(21)*5b
GU%)=C(24) #82+C(25) #33+C(26) #84+C(27) *B

RE IR N WA N Pt P LW ST TN

G(6)=C(36) +C(37) #31+C (38) #*B2+C (39) #33
G(7)=C(43) +C(44) ¥B1+C (45) #B2

6{8)=C(50) +C(51)#B1

G(II=C(5T)

5(10)=D(5) #35+D (6) *BS+D (7) #B6

G(11)=D(12)#34+D(13)#B5+D (14) 86
G(le)-D(17)”52+D(1B)“B34D(19)*Bb*u(éO)*Ha*U(Zl)“Be

G(13)=D(24)#32+D (25) #8340 (26) #86+0 (27) #B5+D (28) #B

G(1a) 3(29)+3(30)“Bl*D(Sl)*BZ*D(Sd)“d3*D(33)*B~¢D(34)“83*0(33)686
GUI5)=D(36)+2(37)#B1+D (38) *H2+D (39) #B3+D(40) #B4+0 (41) #35+D (42) %36
G(16)=D(43)+D(44) #B1+D (45)#B24D (46) #B3+D (47) #84+D (48) #85+D (49) %16
G(17)=D(50)+3(51) #B1+D (52) #B2+D (53) #B3+D (54) #54+D (55) #B5
G(181=D(57)+2(58) #B1+D(59) #32+D(60) ¥B3+D (61) #b4

G(19)=D(64)+D(65) #B1+D(66) *BR2+D (67) =83

6(20)=D(71)+D(72) #81+D(73) #52

6(211=D(78)+D(79) *B1

6(22) =D (85)

DO 24 K=15,25

Y{X)=Y (K=13)
Y(26)=(PA=~G(10)*Y{1)=G(11)#Y(2)~6(12)*Y(3)=G(13)*Y(4)=G(1l4)%Y(5)~
2G(15)1#Y (6)=G(16) &Y (T)=G(17)#Y(8)~G(18)#Y (I} =G(19)#Y (10} =-G(20)+*

3Y(l1)=-G(211#Y(12)1/G(22)

Y(102)=G(1) #Y (1) +G(2) 5V (2) +G () ¥Y (3) +G(4) *Y (4)+5{5) #Y (5) +G(0) #Y (&)

2+G(T) =Y (T)+G(8)*Y (B) +G () ¥Y (9)

Y(100)=G(1)#Y(2)+6(2)#Y (3)+G(3) #Y (4) +G(4) #Y(5)+5(5) =Y (6)+Glb) #Y(T)

2+GAT) Y (B)+G(B)*Y () +G(F) *#Y(10)
RETURN

FOJR PRODUCT TERMS FOR COSH(GAMMA) .
K3=K3+1
IF(K3.LT.4)
K3=0
B1=ABS (Y (100))
82=g]1%81 .

50 TO 32

83=B1%82

B4=B1%33

35=8]%B4

36=81485

37=81%B6

38=B1#B7

39=81%88

310=81939

811=B1#810

Bl12=81#811

G(1)=E(9) *#BB+E (10) #BI+E (11) #*B10+E(12) #B81 1+E(13) 812
G{2)=E (22) #BB+E (23) #39+E (24) #B10+E (25) *B11+E (26) #812
G{3)=E(33) #36+E (34) #37+E (35) #BB+E (36) *59+E (37) *B10+E (38) #31 1 +E (39)

2#B12
GL4)=E(46) #B6+E (47) #3T+E (48) #BB+E (49) #B89+E(50) #B10+E (51) *BL1+E (52)
2#812

D&
D

DE
DE

0390
0400
0410
0420
0430

0440

E 0450

0460

" 0470

0480
0490

£ 0500

£ 0510
= 0520

T 0530

0540
0550

£ 0560

0570
0580
0590
2600
0610
0620
0630
0640
0650
0660
0670

£ 0680
Z 0690

0700
0710
0720

€ 0730
C 0740

0750
0760
0770
0780
0790
0800
0810
0820
0830
0840
0850
0860
0870
0880
ve90

0900
0910

E 0920
£ 0930

0940
0950

E 0960

0970
0980

107



5(3)=E(ST) *B4+E(58) #35+E(59) #B6+E(60) #8T+E (61 ) #BB+E(62) #BI+E (63} #
2310+E(64) #H11+E(65) #3412

G(OY=E(T0) #34+E(71) #35+E(T2) #86+E(T73) #3T+E{(74) #38+E(75) #89+E(Tn) &
2810+E£(77)4811 .

G(7)=E(81)%82+L (82) #33+E(83) #34+L (84) 2#B5+E (85) “R6+E(85) #BT+L (BT} %
23B+E(88) #BO+Z(89) ¥310

G{8)=E(94) #32+E (D) #33+E(96) #B4+E(97) #BS+E(98) #36+E(99) #*BT+E(100) ¢
238+E(101) %89

GIITECLOS)+Z (106 #BI+E(107) #B2+E(108) #8334+ (109) #B4+E(110) ¥s5+
2E(111)#b6+E(112)%8T7+2(113) %88

Gl0)Y=E(118) +E(119)#Bl+E(120) #B2+E (121)#83+E(122) #B4+E(123) #B5+
2E(124) %¥BA+E (125) #87

G(ll)= F(l3l)#E(132)*51*E(133)“62+E(134)°d3*c(133)“840:(]36)*53*
2E(137)#B6

G(l2)=E(164) +E(145) #BI+E(146) #B2+E {147) #33+E (148) *34+E{143) *35

G(I3)=E(15T)+E(138)#31+E(159) #52+E(160) #B3+E(16]1) #Ba

G(14)=E(}70)+E(1T1)#B1+E(172)#B2+E(173)#83

G(1S)=E(183)+E(184)#31+E(185) 82

G(lE)=E(196) +E(197)#81

G(17)=E(209)

G(18)=F () #BB+F (10) #30+F (11)#810+F (12)#511+F (13)=B]2

G(19)=F(22) #38+F (231 #B9+F (24)#B10+F (25)#31]1+F (26) #5312

G{20)=F (33) #36+F (34} #87+F (35) #BB+F (36) #BI+F (37} #B10+F (38)#cll+
2F(39)#812

G(21l)=F (46)2B6+F (4TI #BT+F (48) B8 +F (43) #85+F (50) #p10+F (51} %311+
2F(52)#8l2

G(22) =F {57) #34+F (58) #BS+F (59) #B6+F (60) #g7+F (61) #B8+F (62) #3833+
2F(63)#310+F (54)#B114F (65)*p]12

G{23)=F (T0) #34+F (T1) #BS+F {T2) #BO+F (T3) 437 +F (74} #BB+F (75) #39+
2F(76)#B10+F (77} #311+F(78)%B12

G(24)=F (8])#32+F (B2) #B3+4F (83) #*B4+F (84) #B5+F (85) ¢H6+F (86) #37+
2F (87)#BB+F (88) #B9+F (B83)*B10+F (30) *B11+F (31)#B]12

G{25)=F (94} #32+F (95) #33+4F (96) #34+F (GT) #B5+F (98) #BE6+F (39) #37+
2F(100)=08+F (101} #BO+F (102} #B10+F (103)#B11+F (104) #8112 _

G{26)=F (105) +F (106)#31+F (107) #B2+F(10B) #83+F (103) #34+F (110) #3835+
2F{111)#B6+F (112)#BT7+F (113)#38+F (114)#89+F (115)#B10+F(1i6)#bll+
3F(117)#812 .

G{2TI=F(118) +F (119)#B1+F {120)#B2+F (121)#83+F (122) #84+F (123) #E5+
ZF(124)“BG*F(125)§B7¢F(126)“BB*F(127)¢B9¢F(128)“810*F(129)¢511‘
3F(130)#812

6(28)‘F(131)#F(132)¢81*F(133)“82*F(134)*83*F(133)“8497(136)'85*
ZF(137)“dé*F(138)“B7+F(I39)“BB*F(100)*B9+F(141)“BlO*F(IQZ)“d11¢
3F({la3)«8

6(29)’F(164)&F(l“S)“Bl#F(l“b)’BZ*F(1b7)¢6397(l“B)”BQ?F(lA?)“B:*
2F (150} #B6+F (151} #BT+F (152) #BB+F (153) #B9+F (1541 #B10+F (155) #3111+
3F(156)#8]2 N

G(30)=F(157)+F {158)#B1+F (159) #82+F (160) #B3+F (161) #B4+F (162} #B5+
2F{163) #BO+F (164) #BT+F (165) #*B8+F (166) #BI+F (167) #B10+F (168) w811+
3F(l69) %812

G{31)=F(170)+F (171)#B1+F (172) #32+F (173)#B83+F (174) #B4+F (173) #B5+
2F(176)#364F (1771 #BT+F (178)#B8+F (179)#B9+F (180)#B10+F (181) %511l
G(32)=F(183)+F(184) #B1+F (185)*B2+F (186) *B3+F (17) #B4+F (188) «B5+
2F (189) #B6+F (190) #B7+F {191} #B8+F (132)#BO+F (153)#310

G{33)=F (196) +F (197)#B1+F (192) #82+F (199} #B3+F (200) #B4+F (201} =85+
2F{202)#B6+F (203) #87+F (204) #B8+F (205) #BY

G{34)=F (2093 +F (210) #31+F (211)*B2+F (2121 #33+F (213) #B4+F (214) *B5+
2F (215) #B6+F (216) #BT+F (217)#88

G(35)SF(222) +F (223) #B1+F (224) wB2+F (225) #B3+F (226) #B4+F (227} #B5+
2F (228) #B6+F (229) #BT

G{36)=F (235) +F (236) #B1+F (237) #B2+F (238) #B3+F (233) #B4+F (2640) *B5+

t 0990
E 1000

“’1010

1020
1030

1040
1050

E 1060

1070

£ 1080
t 1090
c 1100

1110
1120

£ 1130

1140
1150
1160
1170
1180

E 1190

1200
1210

1220

1230
1249

1250
1260
1270
1280

£ 1290

1300
1310
1320

£ 1330

1340

1350
1360

£ 1370

1380
136¢

1400
1410
1420
1430

1440
1450

£ 1460

14790
1480
1499
1500
1510

£t 1520

1530
1540
1550
1560
1570
1580

2F (2ul) %36 .
GL3T)I=F (248)+F (249) #31+F (250) #82+F {251) #83+F (252) #84+F (253) 5
G(IBI=F(261)+F (262) #31+F (263) #B2+F (264) #83+F {2635} #34
63 =F (274} +F (275) #B1+F (276) #82+F (277) #83
G(40)=F (2871 +F (288) #3]+F {28F) #3¢
G(41)=F(300)+F (301} %31
G(2)=F {313)
32 00 34 K=27+49
34 Y(K}=Y(K=25)
Y(30)=(PA=G{18)#Y(1)~G(19)2Y(2)~G(20)#Y(3}=G{2]1}#Y(4)}=-G(22)¢Y(5)~

DE
DE
DE
DE
318
DE
bE
DE

26(23)4Y(6) ~6(24) 8Y(T)=5(25) %Y (B) -0 {26} #Y (9)=G{27)#Y (10} -G (263 *Y (1]l DE

3)=5{(291 %Y (12)-6{(30)#Y (13} -G(31)1 %Y (14)-G(32) #Y (15)~G(33) #Y(16) -
- 65(34) %Y (17)=5(35) Y (18)=6G{36)#Y(19)~G(37}#Y(20)=G(38)#Y(21)-G(39)
3#Y(22) =G (40) #Y {231 -6{41)#Y(24)) /0 (42)

Y(102)1=G(1)#Y (11 +G(2) #Y(2)+G (31 %Y (31 +0(4) #Y () +G(5) #Y(5)+6(6) #Y (b6}
2+G(T14Y(T)+0L(8I2Y (B) +G(9)2Y () +G110)#Y(10)+G(11) oY (11)+G(12) %Y (12)
34G(13)2Y(13)+6(14)2Y (14)+6 (19 2Y(1S) +G (163 #Y (16)+G(1T)#Y(17)

Y{100)=G(1)#Y(2)+6(2) #Y(3)+G(3) Y (4) +G (&) #Y (S5} +3(5)vY (6) +G(6) *
2Y(7)*G(7)'Y(9)+G(8)*Y(9)+G(91’Y(10)+G(10)“Y(ll)+G(ll)“Y(12)'6()£
3#Y U3+ (13 #YL14) +6 (16} #Y (151 +G(1D5) %Y (163 +6(16) %Y (17)+5(17) #Y (18

RETURN

END
SUSROUTINE GOTEAM
oUTPUT "PB" IS STORED IN Y(IOZ).
COMMON Y(102)
COWMON/GOAL/DT(IOIQZ)'STEP(3)0VRKS(3)9NPM(J)0K10K20K3OKQ'CC9PAvP89
2PATMs NPV s NRUNS» AHEAD (80}
COMMON/BLOB/YMAX]
DIMENSION T(50}.Uil100)
10 WRITE(6100) (AHEAD(J);J—I.BO)
100 FORMAT (1H1+6Xs80
C==== ONZ PRODUCT TERM FOR COSH{GAMMA) &
IF{K1.EQ.1) ARITE(65200)
00222:::;(}?X9'TH15 RUN USES THE ONE PRODUCT-TERM EXPANSION FOr COSH(
IF(K1.EQ.2) WRITE(64500)
500 _FORMAT (15Xs ' THIS RUN USES THE TwO=PRODUCT TERM EXPANSION FOx COSH{(
2GAMMA) . ')
IF(K1EG.3) WRITE(64500)

600 Tgk:&x;lSX,'T*IS RUN JSES THE FOUR-PRODUCT TERM EXPANSION FOR COSH
.

PAP=PA#PATM
ARITE (64300) STEP(K1) +PAP
300 FOMAT(15Xs ! TIME STEP IS 'sF8.5st o

2.'" . fy/ylSXv62('“')9/)

Commmm

PRESSURE STEP INPUT = 'sF12.5

RITE (64400) .

400 FO?MAT(I6Xo TIME QUTPUT npP3/pPAM TIME OUTPUT wP3/PA
2"‘9/016X0‘(5 Cc) (CONVERTED) {SEC) (CONVERTED) t
3/91 )

40 0O 42 J 12102
42 Y{J¥=0.

C=—=~ 1| 0AD DELTA-TIME,
Y (K2+2)=STEP (K1}
NRL=NRKS (K1)
NP=NRK/100
LOAD "TIWE"
DP=Y (K2+2)
DO 52 _J=1+100
PT(J92)=0.

52 PT(Jsl)=DP#(J=-1)#NP

NO. OF R=-K STE®Ss AND PRINT MULTIPLE.

Commme

INTO PT(Ksl) AND ZEROES INTO PT(Ke2).

DE

DE
DE
D&
DE
DE
DE
DE
DE
DE

E 1590

1600
1610

lo20
1630

1640

. 1650

lo60
1670

1680
1650

1700

E 1710

1720
1730
1740
1750
1760
17790
1780
1790
1800

<01



C-—-= CALL THE INTZGRATOR,
GpR=g

IK=1

00_60 KK=1yNIK

NPR=NPR+1

CALL RKINT(K(;KZ)

CONVRT=Y (102}

IF(A&S(CONVRT)-GT YMAXIY G0 TO 65

IF(NPR.LT.NP) GO TO 60

NPR=0

IK=IK+1

PTLIK«2)=CONVRT
60 CONTINUE
65 WRITE(6+700) ((PT{KeJ)sJ=1+2) 2 (PTIK+504J) sJ=142}4K=1+50}
700 FORMATH(SO(15XsF6.496XeG12e5v7TXeF64446XeG1l2+547))

C—==~ DO NOT CALL 2LOTTER IFf DATA IS 3BAu, -
IF(PT(10+2)45Q.04) RETURN
({ Ce=== LOAD DATA FOR THE PLOTTER.
N0 _By K=1450
J=2#K=-1
T()I=PT(Us 1)

J(<I=1.
J(K+501=PT(Js2)

80 IF(UIK+50) LTW0.) U(K+50)=0,
CALL XYPLOT{TeUs50910018.1798,)
RETURN

. END
SU3ROUTINE _2IKINT LLoN SYS)
C THIS SUBROUTINE SOLVES DIFFERENTIAL EQUATIONS 8Y USING A RUNGE KUTTA
C “ETHOD
DIMENSION DE‘Y(“OSO)OBET(3)vYU(30)
COMMON Y (10

DOJBLE PRECISION YU
IF_(LL.NE«.l) G0 7O 1001
BET(1)=0.5
BET(2)=0.5
BET(3)=1.0
NZ=NSYS+e2
NP1=NSYS+1
XV=Y(NP1)
CALL DERFUN
DO 320 I=1+NSYS
320 YUli=Y{I)
1001 DO 1034 K=1+4
IF (K.EQ.1) GO TO 1002

CALL DERFUN
1002 D0 1340 I=14NSYS
IPN2=1+N2
1340 DELY(K;I) Y(VZ)“Y(IPNZ)
IF (K.EQ.4) G50 TO 103
DO 1350 I=1+NSYS
1350 Y(I) SYU (I} +BET(K) #DELY (Ks 1)
NPL)=XV+BET (K) *Y (N2)
1034 COVTINUE
DO 1039 I=1,NSYS
DEL=(DELY (1+1)+2.0%DELY (22 1) +2.0%DELY (351} +DELY (4411} /6.0
YULI)=YU(T)}+DEL
Y =yul(l
1039 CONTINUE
Y(NP1}=XV+Y (N2}

[nl

OO0 OO0 000

32
34

33

41

42

36 C

PN

CALL DERFUN
XVEY (NP1}

RETURN
END
SU3ROUTINE XYPLOT (XXsYYaNXsNYeXLINCHs YL INCH)

COMMON/BLOB/ YMAXT

DIMENSION XX(1)eYY(1)s1Y(10}
DIMENSION IPLOT(100)«IMINUS(100) ¢ ISYMBL(10)

DATA IBLANKeIAXIS/LIH +1HI/9IPLOT»IMINUS/L10U®1IH «100%1H_/

OATA ISYMBL/lHls1H2¢lHBvIHévlH:olH6-lH7-IHble9-lH0/
NXSIZE = XLINCH¥6.0

XSIZE = NXSIZE

YSIZE = YLINCH®10,0
NYSIZE = YSIZE + 1

YSIZE = NYSIZE = 1

NPLOTS = NY/NX
XMIN=0,

XMAX =XX(NX)

DX = XMAX = XMIN
JSE A FIXED A3SCISSAs AS SHOWN 3ELOW.

YMINSYY (1)

D0 8 I=1.NY .
IF(YY (1) LToYMIN) YMIN=YY (D)
YMAX =YY (1)

D0 10 I=1sNY
IFAYY (I3 .GTeYMAK) YMAX=YY(I)
DYSYMAX=YMIN

FIXED ABSCISSA

YMIN=0,

YMAXSYMAX]
DY=YMAXI
ARITE(6¢6) YMIN¢YMAX

WRITE(691) (IMINUS{J) o J=1eNYSIZE)}

I1PLOT (1) = _IaxIs
IPLOT(NYSIZE) = IAXIS

NL INE =_0

00 30 I=
IX = (XX(I)- XMIN) 7DX#XS1ZE

IF(IX = NLINE) 3043334

FRITE (634) (12LO0T (J)»J=1eNYSIZE)
NLINE = NLINE + 1

60 TO 32

NLINE = NLINZ + 1

I =1

DO 4«1 K=14NPLOTS

IY(K) = (YY(<I)}= YMIN)/DY#YSIZE + 1.5
IY( = IY(K)

IPLOT(IYK) = ISYMBL(K)
KI = KI + NX
WRITE(6+2) XX (1) ¢ (IPLOT(J) s J=1oNYSIZE)
DO 42 K=1,NPLOTS

1YK = IY(K)

IPLOT(IYK) = IBLANK

IPLOT(1) = laxIS

IPLOT(NYSIZE) = IAXIS

ONT INUE

WRITE (603) (IMINUS(J) s J=1sNYSIZE)
RETURN

FORMAT( /+6Xe!' ABSCISSA 'e5X+100A1)
FORMAT(6X+E10.3¢5X+100A1}

FORMAT (1H++20X+¢100A1)
FORMAT (21X+100A1)

FORMAT (1H1+6Xy 'MIN ORDINATE ®PMIN® = ¥3Gl2459"' & MAX ORDINATE "PM

2AXH = 14G1243)

END
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Cmemmn

oc

OO 000

OO0 000000000 0CONCCOCO0 000 CCO 00 000 0000

STIP RESPONSIS wiITd TIME-DrPLNDEINT PARAMETC=S»
Al342¢3)e B{3¢143),

HYDRAULIC CA>t.

THIS PROGRAM USES & 03 % DATA CARUS TU PRESCRISE PARAMETERD> SJln
AS STEP SIZEe LENGTH OF Run (TIME)e ETC. TrEN A SERILS OF uATA
CARDS WHICH HAVE SEEN GENERATED BY THE PROORAM WPNEUMATICH! ARE
READ INTO ARXIAYS [A}siB1etCleEDIs[E]N{F] TG PRUVIDE THE NECZSSARY
COSFFICIENTS FOR SUSROUTINE “DERFUN".

DATA CArD 1: THIS IS A mEADER CARD TO IUENTIFY THE RUN (Az0).

DATA CARD 2:

1) NJM3ER OF RUNSs IN COLJUMN ls FORMAT(Il). Max=3.
UN 1 USES ONE PRODUCT TERM FOR _COSH(GAMMA) . 24T A n1¥

IN COLSANIEI- PUT A wgn IN 1le FOUR »ROuUCT
TERMS, PUT A
3) pPUT
4} 2ayT
5) NO.

6) MAX

TWO PrRODUCT TERMS,
w3 IN COLUMN il
A'le 2¢ OR 3 IN 21 FUR THE SECOND RUNs
A L1y 29 OR 3 1w 31 FOR THE THIRD RUNs
OF STEP SIZES (PSI) FOR EACh ®UN»s CLMS 4l-u42s
ORDINATY FOR PLUTTERs CLMS 51-60s FORMAT F10.

1F APPLICASLE.
IF APPLICABLE.

{I2).

DATA CARD 33
1) RUNGE=-KJTTA STEP SIZE FOR ONE=PRODUCT TERM RUNs
FOIMAT F10s THEN NO. OF R=~K STE2S IN CLMS 11-20¢ FORMAT
2) STE> SIZE FOR TwO~PROUJCT TERMSs NO. OF R~K STEPS»
3) STE2 SIZE FOR FOUR=PRODUCT TERMSe NU. OF_R=K STEPS.

CLMS 1-10
110.

21=-40.
41=60.

4) ATM)OSPHERIC PRESSURE (PSIA)Ys COLUMNS 61=70s FORMAT F10.
DATA CARDS & AND 5:
1) FIRST 8 STc’ SIZESs IN P>IGs FORMAT BF10.

2) IF MORE THAN 3 VALUESs PUT THEM ON DATA CARD 5. IF NOT
MORE THAN 8 VALUES. LEAVE DATA CARD 5 OJTe.

DATA CARDS b THROJGH lul ARE AS FOLLOWS:
1) & THROUGH 39 GO INTU [A)y NUMERATOR, ONE PRODUCT TERM,
2) 10 THROJUGH 15 GO INTC (83s DENOMINATORe ONE PRODUIT TERM.
3) 16 THROUGH 22 GO INTO (CJs NUMERATORs TWG PROLUCT TERMS.
4) 23 THKOUGH 33 INTO [DJs DENOMINATURs TWO PRODJCT TERMS.
5} 34 THROUGH 59 INTC [Ele NUMERATORs FOUR PRODUCT TERMS.
6) 60 THROUGH 101 INTO [FJ]s DENOMINATORs FOUR PRODUCT TERMS.

TO REVERT TO THE LINEAR "SROWN' MODELs USE A VERY SMALL STEP SIZE.

ALL PRESSUKES ARE NORMALIZED 3Y UIVIDING 8Y "PATMM,

COMMON Y (102}
COMMON/GOAL/2T(101¢2) 9 STEP (3) 3 NRKS {3) sNPM(3) yK1aK2+K34KasCCoPAI P
2PATMe NPV yNRUNS + AHEAD (60)
COMMON/FORM/A(20) 9B (28) +C (53) 4 D(Y1)sE(221)

COMMON/SAGE/F (323)
COMMON/BLOB/ YMAX]

JIMENSIUN AHOLD (16} ¢« IHOLD (3) 9 IGO (3} +ARY (B)

WU U

(G RTN VU RVARV VNV

WYY VRN W VU BV RO BN RNV BN U0 o nnn oen nen

wlo
U2y
U390
vay
Gou
Gou
670
OBy
090
100
110
120
130
150
160
170
180
190
200
210
2290
239
240
250
260
270
c80
290
300
310
320
330
349
350
360
37¢
380
390
400
410
4290
430

450
460
476
475
480
483
490
500

200
3390
400

420

25
430

30

600

Cmwm—m

700

60
720

65

70

75

DATA 160/54100207 .
DATA ARY/VA el ¢ 101Dt ot F 1Y/
SCAD(Se200) (AHCAD (J) e U=les()
FORMAT(B0AL)
~EAD (54300
FORMAT (4 ([levX)el2e8AeF1043)
2EAD(Se400)
FOIMAT (6 (F10.34110))
REAU(5+420) (AHULD(J) e J=18)
FOIMAT(SF1043)
TFINPFVL.GT8) READ(34420) (AAULU(J) «J=5e15)
READ IN ARRAYS LA] THRUUGH (F].
DU 2V JTles
x=ae{J=-1)
READ(5+430)
20 25 J=le6
K=4%(J=1)
READ{59430) (B(K+L)sL=1vs)
FORMAT (5E103)
0 30 J=1.7
K=7T#(J=-1)
READ(54430)
a0 35 J=1y
<=7+ (J-1)
READ(5+430)
Dd 40 J=1e13
=13%(J-11
QEAD(S'*SV)
D0 45 J=1.21
X=}13% (J=1)
READ(59430)

(A(K+L) oL =104)

(C(K+L)oL=1eT)

{(DK+L) eL=107)
(E(K+L) «L=1e13)

(F(K+iL)oL=1e13)

ARITE(64450) (AHEAD(J) 9 J=1e88)
FORMAT (1H1s10X+50A]1)

WRITE (69600) NRUNSINOVe PATMs YMAXI

FOIMAT (16X ! THERE WILL BE 'sils! RUNS OF 'eI2s'
2CHe  ATMOSPHERIC DR‘:SURE'q/-lev'IS 'eFba3s! PSIG.
3PURPUSESy YMAX = '4FS5.2s! -‘q/vllKvBO("')s/)

WRITE QUT ARRAYS [A] THROUGH [F)

WRITE (69700) ARY (1)

FORMAT (20X« ' GRRAY ['9Ale' 1304/ 920Ks! emmmmmmemm ta/)
D0 60 J=1l44

K=4#(j=1)

WRITE(69720) (A(X+L)sL=1+4)

FORMAT (4E20.53)
WRITE(65700)
DO 65 JSlab
K=4%(J=1)
wRITE(6e720)
WRITE (64700)
00 70 J=le7
x=7#(J=1)
wRITE(6+740) (C
WRITE(54700) AR
FO?MAT(7GIS.+)
75 J=lall
K 7~( -1}
wRITE(6¢740)
wRITE(6'700)
D0 BU J=1a1l
k=13%(J~1)

ARY (2)

{B{K+L) oL =1e0)
ARY (3)

(K+L}sL=1eT)
Y{4)

(D(X+L)oL=1e7)
ARY (5)

NRUNS e IH0LU (1) o IHOLS (2) o IROLU(3) o NPV e YMAX]

STEP (1) g NRKS (1) 4 3TEZ(2) aiWRKS (2) « STER (33 o NRKS (3) v PATH

PRESSURE VALUES EA

FOR PLUTTING

(IR TRV R  VI7)

wu v e W

[ R T R R VT O T RV R I R VR IRV RV TGN )

[ R TV R Y VIRV RV Y RV TV RV R TRV VAV T

Siv
EIR)
524
539
54U
5549
560
570
5606
590
euu
61y
620
63u
640
650
660
670
6&0
690
7uv
710
7c0
730
Tav
760
770
T80
79y
80v
810
80
834
B4y
850
86u
876
850
890
300
910
920
930
w4
250
96U
970
280
950
1000u
1010
16¢a
1030
1640
1050
1060
107u
1660
1090
1100

70T



80

85
760

[opmpm—

Commmm

Pol—

100

Cmmme

ARITE (59 760) (E(K+L)aL=1e¢13)
wRITE (67001 ARY (5)

D0 85 J=l.21

K=13%(J=-1)

wRITE(6e760) (FAK+L)sL=1e13)
FOIMAT(13610.3)

00 100 JJ=1+NRUNS

00 100 KK=1sNPV
PA=AAOLD (KK) /PATYM

Kg EONTROLb Trt RECOMPUTING OF THE [06]1 AxRAY IN DERFUN.
K3=

K1=1 DENOTES ONE PRODUCT TERM. 2 DENOTES TwO PROOUCT TERMS»s
AND 3 DZINOTES FOUR PRODUCT TERM

K2 IS THE ORJER OF THE DIFFhRENTIAL EQUATION.

K1=IHOLD (JJ}
X2=160(x1}

CALL GOTEAM
CONTINUE

STOP

END

SUSROUTINE DERFUN
[HYDRAULIC CASE] Af
OUTPUT #PB® IS IN Y
COMMON Y (102}
COMMON/GOAL/2T{10192) oSTEP(3) aNRKS(3) oNPM(3) oK1 ¢K24K31K6sCLrPAIPB
2PATMy NPV NRUNS» AHEAD (80}
COMMON/FORM/A(20)98(28),C(63)4D(21)sE(221)

COMMON/SAGE/F (325)

DIMENSION G(42)

GO TO(10+20+30) Kl

5¢2+3)s B 3]
{102} *

{341
PEDOTH IS IN Y{(100).

Ce=== ONE PRODUCT TERM FOR COSH(GAMMA} .

10

i2
ia

K3=K3+1
IF(K3.LT.4) 30 TO 12

K320
B1=ABS(Y{100))

82=81%81

33=81%B2

G(lY=A(3)#B2+A(4) 283

G(2)=A(T)*82

G(3)=A(9)+A{10) 8]

Gl#)=ALL13)

G(5) B(3)°d2+8(4)*83

G{Ty=g(T)=

G(8)= B(9)¢6(10)“81*8(ll)*62+8(12)“83

G(IV)=B(13)+8(14)#B1+B(15)¥n2

G(10)=B(171+3({18)#8]

G(111=B(2}}

DO 14 K=8411

Y{K)=Y (K=5)

Y{12)=(PA=GIBI*Y (1) =GLTI#Y (2} -G (81 #Y(3)=6(9) Y (4)-G(10) #Y(3)}/G(11

2)

Y{102)=56(1
Y(100)=G 1
RETURN

C——== TW) PRODJCT TERMS FQOR COSH{GAMMA) .
K3I=K3+1

}# #Y (
) wY (

IF(K3.LT.4) 50 TO 22

K3=0
B1=ABS(Y(100))
82=81+81

3)
41+

+G(4) #Y (4)
Gla) Y (5)

(ST RV R VAV R ¥ TV R VR Vo VAR Ve R VeV W ARV VIR VR V)

1110
1120
1130
1140
1150
1160
117¢
1180
1190
1260
1210
1220
1230
1240
1259
1260
1270
1280
1290
1300
0010
0020
0030
0040

£ 0050

0060
0062

6064
0070

008G

£ 0090

¢io0

£ 0110

0120
01390

£ 0la0
2 0150

0le0

£ 0170

0180
0196
6210
0220
0230
0240
025¢
0260
0280
0290
0300
0310
0320
0330
0340
0350
0360
0370

E 03890

0350
0400

22
24

Cm—=m

30

$3=8lege

2431 %33

BER IR T

B6=51%85
G1)=C{o)#Ba+C () #35+L (T} #36
G(23=C{12)+B4+C(13) %35
G(3)=C{17)4d2+C{1B}#B3+C(19) %8s
Glu)=Cila)#d2+C(25) 433
G(3)=C(29)+C (301 #BL+C(31) %82
G(5)=C{36)+C (37181
G{T)1=C(43)
6(10)‘D(S)“du*D(&)“85+D(7)“B6
3{11)1=0(12)#34+0(13) %

G(lZ)-Dll7)“52*D(18)*83*0(19)“5“’0(20)“53*0(21)“66
G(13)=D(24)#32+0(25) #33+D(26) #84+D(27) ¥B5

G(14)=DL29)+D(30) #B1+D(31)*B2+0(32) #B3+0 (33} #84+D (34) ¥85+D (35) #36
GUIS)I=D (36} +0(37) 814D (38) #B2+D(3Y) #B3+D (40) ¥BA+D (41) #85

G{16)=D (43} +D (44} #3814+ (43) #B2+D (46) #u3+0 (47) ¥B&

G{17)=D(50)+D(51)*b}1+D(52) #B2+D(53)*p3
G{18)=D(57)+3(58)%B1+D{59) %52
G(19)=D(564) +D(65) 251

6(e03=D(71)

DO 24 K=13.21

Y{<)=Y (K-11)

Y(22)=(PA=G(L0)#Y{1}=6G(11)®Y(2)~b(12)*Y(3)=G(13)8Y(4)}=G(14)¥Y(5)~
26(15)§Y(6)-G(16)“Y(7)-6(17)*7(B)-b(l&)'Y(Q)—G(l9)“Y(10))/G(CO)

Y(102)‘G(l)*Y(l)‘G(Z)“Y(Z)#u(3)9Y(3)*6(4)*Y(4)+G(5)*Y(5)*0(0)'Y(b)
2+5(7) =Y
Y{100) G(l)“Y(£)+G(2)“Y(3)¢G(3)“Y(h)06(4)'Y(b)*G(D)*Y(b)'G(b)*Y(7)
2+6{T)#Y (B)

RETURN
FOJR PRODUCT TERMS FOR COSH(GAMMA) .

K3=K3+]
IF(K3.LT.4) GO TO 32
k3=0

Bl=AdS(Y(100))

87=81#86
B88=81+87
35=81+88

310=pl%dy
B11=814810
812=B1¥811

G(l)—E(9)'B8+E(10)’B9*E(ll)*BlO+t(12)’811*&(13)‘612

G{2)
G(3)

E(22)%B8+E (23) #B3+E (24)#B104L (25) *B

'(33)“BS*E(JQ)937*&(JS)“&B#E(36)'BV*E(37)“610

G{2)=E(46) #B35+4E (47) #BT+E (6b) #8E+E (49) %59

G{3)=E(94) ¥B2+L (95) #33+E (96) #34+E£(97) *B

53

G(l1)=E{]131)+E(132)81+E(133) %382
G(12)=E (144)+E(145) %31

G{13)=E(157}

G{3)=E(27) #*B4+E(58) »35+E (59) #86+E(60) *BT7+E(61) ¥B8
G(OI=E(T0) #BA+E (T1) #3%+E(72) #86+E(T73) ¥B7
GIT)=E(81) #B2+E (82) #33+E (83) #Bu+E (84) *B5+E (85) ¥Bo

5
(105)+E(106) *B1+E(107) #52+L (108) *B3I+E(109) #ba
G(I0Y=E(118)+E(119)#31+E(120)4#32+E(121)%83

IE

= 041y

0420

L 0430
. 0440
£ 0456
E (460
= 0470

CaBy

T 0490

0500

. 0510

0540
0550
0560

0576,

0580
0550
0600
0610
0628
0630
0640
0670

- 0680

0690
0700

0720

073y
G740

0750
0760
0770

= 0780

0790
U800

= 0810

0820
0830

£ Qs4l

0850
0860
ua70

c 0850
089v

= 0900
= 0910

0920
0930

0940
0950

= 0979

03%0

. 1010
£ 1030

1050

1070
- 1090

1110
1139
1140

SOt



G(18)=F (9)¥358+F (10) #B9+F (11)#B10+F (12) #b1]1+F (1339512 DE 1130
G191 =F (22) #38+F (23) #B9+F (24) 3310+F (25) %511 DE 1200
G(20)=F (33) #36+F (34) #BT+F (35) #B8+F (36) #89+F (37) #810+F (38) ¢311+ DE 1210
2F (39) %812 . DE 1220
GA21ISF (46) #36+F (47) #H7+F (48) #83+F (49) 459+t (50) #810+F (51) %311 DE 1230
6(22)=F (57)#36+F (58) #B3+F (59) #36+F (60) 237+ (61) #d8+F (62) #39+ DE 1250
2F(53) #319+F (56} ¥B11+F (65) ¥5l2 DE 1260
23D o (70} 534sF (71) #BO*F (721 B36+F (73)$RT+F (74) #58+F (75) 459+ DE 1270
2F (T6) #810+F (771 #811 LE 1280
G(24)=F (31) #32+F (82) #B34F (83) #3G+F (84) #B5+F (85) 236+F (86) #37+ GE 1290
2F (87)%BB+F (BB) #59+F (89) #310+F (I0) ¥BI1+F (I1) #B12 DE 1300
GU25) =F (94} #32+F (95) #BI+F (96) #Ba+F (97) ¥85+F (98) #56+F (39) #37+ DE 1310
2F(100) #Bu+F (101)%89+F (102) #B10+F (103) %ol ] DE 1320
(26 =F (105) +F (106) £313F (107) 402+F (LOB) #B3+F (109) #BasF (110) #55+ DE 1330
2F (111)¥Bo+F (112) #BT+F (113) #B+F (114) #B9+F (115) #810+F (1163 #311+ DE 1340
3F (11714812 DE 1350
GIRT)SF(118) +F (119) #31+F (120) #32+F (121) #B3+F (122) #Bu+F (123} #5+ DE 1360
BF{124) #B6+F (125) #BT+F (126) #B8+F (127) #B9+F (128) #B10+F (129) #8311 DE 1370
G(28)=F (131) +F (1321 #314F (133) 23247 (134) #334F (135) €34+F (136) #B5+ DE 139¢
2F (137)%B6+F (138) #BT+F (139) #BE+F (140) 9B9+F (141) #31 DE 1400
G(Z9)=F(144)4F(l43)431*F(146)“dZ*F(1~7)¢d3*F(1@8)*8~+F(149)“53¢ DE 1420
2F(150)%36+F (151) %BT+F (152) #B8+F (153) #89 DE 16430
G(30)=F (157) +F (158) #81+F (159) #82+F (160) #33+F (161) #34+F (162) #55+ DE 1450
2F (163) #86+F (164) #BT+F (165) #38 DE 1460
G(31)=F (1701 +F (1711 #B1+F (172) #82+F (173) #33+F (176) #Bu+F (175) #B5+ DE 1430
2F (176) #B6+F (177) 237 DE 1450
6(32) F(lBB)#F(lS«)#Bl#F(lBS)“BZ*F(186)“B3+F(1&7)§B~«F(188)955+ DE 1500
2F (18 DE 1510
B 38) LF 1061 +F (157) 531 +F (198) #82+F (199) #83+F (200) #8a+F (2011 485 DE 1520
G(364)=F (209) +F (210) #B1+F (21 1) #B2+F (212) #83+F (213) #8s DE 1540
G(35)=F (222) +F (223) #B1+F (224) *B2+F (225) #83 DE 1560
G(36)=F (235) +F (236) #31+F (237) #32 DE 1580
G(37)=F (248) +F (249) #3] DE 1600
6(38)=F (261) DE 1610
32 DO 34 K=23,41 DE 1660
© 34 Y(K)=SYIK=21) DE 1670

Y{42)F(PA=G(1B) *Y (1) =G(19) #Y(2)-6(20)#Y(3)=G(21)#Y(4)=G(22} %Y (3}~ ODE 1680
2G{23)*Y (6) =G (24) #Y (7) =G (25) #Y(B) =0 (26) #Y (9} =G(27)¥Y (10} -G(28)*#Y (11l DE 1690
3)=56(29) %Y (12)=6{30) %Y (13)-6(31)1 %Y {14)=G(32)#Y(15)=-6G(33)#Y(l6)~ DE 1700
4G(34) %Y (17)=5(35)=Y(18)-G{36)2Y(19)=-6(37)*Y(20)}/G(38) DE 1710

Y{102)=G(1)#Y (1) +G(2) #Y(2) +G(3) #Y (3} +5(4) *¥Y (4} +G (D) #Y (5) +G (o) #*Y(6) DE 1730
2+G(7)4Y(7)+G(8)PY(8)¢G(9)”Y(9)* (10)#Y(10)+GE11)=#Y(11)+G(12) %Y (12} DE 1740

3+G(13)2Y(13) DE 1750
Y(100)—0(1)*Y(Z)*G(Z)*Y(3)#G(3)“Y(A)*G(«)*Y(S)*G(S)“V(6)*G(b)* DE 1760

2YL(T)+G (T #Y () +G (B) #Y(9)+6(9) =Y (10)+GL10) *Y(11)+6G(11)#Y(12)+G(12) DE 177¢C

3#Y{13)+0(13) %Y (14) DE 1780
RETURN DE 179¢
END DE 1800
SUBROUTINE GOTE

C-=== QUTPUT BPg# IS STORED IN Y(102).

COMMON Y {102)
COMMON/GOAL/2T(101+2) « STEP(3) +NRKS(3) sNPM(3) 9K1sK29K39KasCCoPAWPB,
25ATMsNPV ¢« NRUNS» AHEAD (BO)
COMMON/FORM/A(20)+B(2B)9C{63)40(31),E(221)
COMMON/SAGE/F (325)
COMMON/oL 0B/ YMAXT
DIMENSION T{(50).U(100)

10 WRITE(6+100) (AHEAD(J) 9J=1+80)

100 FORMAT(IHI+6X280AL)

C==—= ONZ PRODUCT TERM FOR COSH(GAMMA).

209

500

600

300

400

Comme

52

ol

60
65
700

Commmmr

o0

8¢

IF{K1.EQs1) ARITE{6,200)

FOIMAT (15X 'THIS RUN USES THE ONE PRODUCT=TERM EXPANSION FOx COSH(
2GAMMA} L 1)

IF{K1.EQ.2) W#RITE(64500)

FORMAT (15X *THIS RUN USES THE TWU=-PRODUCT TERM EXPANSION FUK COSH(
2GAMMA} o 1)

IF{KL.EGe3) #RITE(5,500) _

FORMAT(ISXv‘Y IS RUN JSES THE FOUR-PRODUCT TERM EXPANSION TUR COSH
2(6AMMAY & 1)

PAPTPARPATM

WRITE(6+4300) STEP(K])+PAP

FORWAT(le-‘YIME STEP IS '"sF8.5¢' « PRESSURE STEP INPUT = '4F12.5
2 Pa/el5Ke062(120) /)

MRITt(bvaoo)

FORMAT (loXe! TIME OQUTPUT "pP3/pPAn TIME QUTPUT #P3/PA
2" 9/916XKe (SZC) {CONVERTED) {SEC) (CONVERTED) t
3/+15X,7 vy

DO 42 J=1.102

Y (J)=0.
LOAD DELTA-TIMEs NO. OF R=K STEPSs AND PRINT MULTIPLE.
Y{<2+2)=STEP (K1)

NRX=NRKS (K1)

NPENRK/100

LOAD "TIWE" INTU PT(Ks1) AND ZERUES INTO PT(Ks2).
DP=Y (K2+

55 5250100

PT(Js2}=0.

PT{Ja 1) ZDRS (J=1) #NP

CALL THE INTEIGRATOR.

NPR=(0

IK=1
DO 60 KK=LaNRK
NPR=NPR+1

CALL RKINT(KKeKZ)
CONVRT=Y (102)/PA

IF {ABS (CONVRT) o GT.YMAXI) GO TO 65
IF(NPR.LTWNP) GO TO 60
NPR=0

IK=IK+1

PT{IKs2)=CONVRT

CONTINUE

WRITE(6+700) ((PT(KsJ)sd=1s2) s (PTUK+509J) 9J=192) 9K=1450}
FORMAT (SO (15KeF6e4e6X9G12e507X9F00496X9G12e547/))
DO NOT CALL PLOGTTER IF DATA IS 3BAU.
IF(PT(1042).EQ.04) RETURN

LOAD DATA FOR THE PLOTTER.

D0 80 K=1.50

J=2%K-1

T()=PT(Js 1)

y<)=t.

U(<+50)=PT (Je2)

IF(U(K+30) oL Te04) UIK+50)=0.

CALL XYPLOT(T+Us509100+8.17+8,)

RETURN

END
SU3ROUTINE =RKINT (LLsNSYS)
THIS SUBROUTINE SOLVES DIFFERENTIAL EQUATIONS BY USING A RJNGE KUTTA

METHOD
DIMENSION DELY(4+450)43ET(3)+YU(50)

COMMON Y (102)

901
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000 o000 00

320
1001

1002
1340

103y

*x

—_
o

DOJBLE PRECISION YU

IF (LL.NE.1) GO TO 1001
SET(1)=0.5

BET(2)=0.5
AET(3)=1.0

N2=NSYS+2

NP1=NSYS$+1

XVEY (NPL)

CALL DERFUN

DO 320 I=1eNSYS
YU(I)—Y\I

DO 1034 K=l+4

IF (K. EQ 1) GO TO 1002
CALL BER

N0 1340 I—I'VSYS
IPN2=1+N2

DELY (Ke D) =Y (N2) RY (IPN2)
IF (K.EQ.o) JO TD 1036
DO 1350 1=l
Y(I)-YU(I)*b T(K)“O:LV(K.I)
Y (NPL)=XV+BET (K) =Y (nN2)
CONTINUE

D0 1039 I=14NSYS

DEL=(DELY (121142 0%¥DELY (20 1) +2,0%DELY (34 1) +DELY (451)) /640

YUz (gL
Yy =vul
covrluu:
YANPL)SAVY (N2)
CALL DERFUN
XVEY (NP1}
RETURN

END

SUSROUTINE XYPLOT (XXeYYsNXeNYs XLINCHs YLINCH)

COMMON/BLOB/ YMAXT
DIMENSION XX(1)eYY(1)aIY (10}

DIMENSION IPLOT(100)»IMINUS(I00) ¢ ISYHMBL(10)

DATA IBLANKseIAKIS/LH o1H1/eIPLOT 2 IMINUS/100%1H +100%1M./
DATA ISYMBL/1A1elH2s1H3s1H4s 159 1HO6v1HT 9 IHBy1HS«1HO/

NXSIZE = XLINCH#6.0

XSIZE = NXSIZE

YSIZE = YLINCH®*10.0

NYSIZE = YSIZE + 1

YSIZE = NYSIZE -1

NPLOTS = NY/NX

XMIN=0,

XMAX =XX(NK)

DX = XMAX = XMIN

JSE A FIXED A3SCISSAs AS SHOWN 3ELOW.
YMEIN=YY{1)

DO 8 I=1oNY
IFAYY (D) oL ToYMINY YMINSYY (D)

CYMAL =YY (1)

DO 10 I=14NY
IFAYY (1) .GT4YMAK) YMAX=YY (D)
OYZYMAX=-YMIN

FIXED AsSCISSA

YMIN=0.

YMAX=YMAX]
DY=YMAXI

XY
XY
XY
XY

XY
XY

XY
XY
XY
XY

XY

XY

0030
0040
0050
0l2u
0139
0140
0170
0180
0190
0200

0220

0250

32

33

“+1

42

3

o

O£ W =

WRITE(6e6) YMINeYMAX

HRITE (60 }) (IAINUS(J) e 0=1«NYSIZE}
IPLOT (1) = IAXiS

) faf™ OT(NV:IZE) = IAXIS

NLINE = 0

DO 30 1=1eNX

Ix = {XX{(I)~- XMIM)/DX*XSIZE
IF(Ix = NLINZ) 30433434

HRITE (624) {IPLOT (D) 4 u= lvaSIZE)
NLINE = NLINE +» ]

GO TO 3¢2

NLINE = NLINZ + 1

I =1

D0 4l K=1+NPLOTS |

IY(K) = er(<1)- YMIN) Z7DY#YSIZE + 1.5
IYK = [v(x

IPLQT(IYK) = ISYMBL(X)

<1 = KI + NX
NRITt(bqZ)xX(I)'
D0 42 K=1yWPLOTS
1Y< = IY(x)
IPLOT(IYK) = IoLA
IPLOT (1) = IaxIS
IPLOT (NYSIZE) =
CONTINUE

NRITE(G~3)(IWINUS(J)»J 1eNYSIZE)
RETURN

FORMAT ( /e6X9* ABSCISSA '+5Xs100A1)
FORMAT (6X+E104345X0100A1)
FoaMAT(1n~,zox.100A1)

FOIMAT (21X+100A1

fOQMAT(lHIvﬁlo'MIN ORDINATE "PMIN" =
28K = 14G124.5)

END

(IPLOT(JU) s J=1sNYSIZE)

NK

1AXIS

MAX ORDINATE »pM

Xy
XY

XY
XY

XY

XY
XY

XY
XY

XY
XY
XY

XY
XY

XY

XY
XY

AY
13 ¢

Xy
AY
XY
XY

XY
XY

XY

XY

0290
0300
0310
0320
G330

G350
0360

0370
6380

G390

0400
0410

0439
Oua0

GuS0

0470
0489
0490
0500
0510
05¢0
U539
0540
0060
0070
Gouo
0090

Lot
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APPENDIX C

AN ALTERNATE MODEL, WITHOUT

THROUGH FLOW

This appendix outlines an alternate solution to the nonlinear axial
momentum equation, Equation (2.20), and the linear energy equation,
Equation (2.25). This model is recommended for use only when the
primary model, Equations (2.70), tends to be unstable in a particular
system simulation.

The 1inegrized; nondimensional axial momentum equation may be

written in the form shown below when through flow is neglected:

V(t,R,2) , Co K JV) V(Z R, Z) ¥ R V(t R 2
\E t T (Jz :R AR( ——4—,»—) (c.1)
IPCt Z-)+ (1-K) V*.AV(“:,Z}]
L x AZ
where (V)* - (Sar\ P(‘l': O))( LZ )';i’f D) Q('& 0)* (C..2)
from i . n = (sqn P(%, o)) APt 0) .
from Equation (A.48), a d(_g_\é) . 9 (Co 3T e (C-3)

from Equation (A.49).
By transforming Equations (C.1) and (2.25) to the Laplace domain
and solving these equations, the solutions for the transient axial

velocity and transient axial temperature profiles result:

Transient Axial Velocity

To(XR) = Ty (x) Co 1 3P |, (1-K)V.
V(5,R,2) = ( Jo () (x 3zt *AJL

(1+%‘_’- “@35))

(c.4)
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Transient Axial Temperatufe-

T(5,R,2) -——-(ifg_t:\m m)( () Pes,2)) (c.5)

These equations correspond to Equations (2.54) and (2.55) in the main
body of the thesis.

By substituting Equations (C.4) and (C.5). into Equations (2.37)
and (2.36) respectively, and integrating Equations (2.375 and (2.36)

with respect to (R), the results are:

-CoDg [ 3P _Dgq G (4-K)Vi 2P
Lo Dg | 3P _31_( *Ti"]

Q(s,2z) = ¥sL L 3Z (C.6)
[ vV
[ +2E0, ]
and
39(s,2) _ ~SL Ng P(s,2) ©.7)
dz Co ’

where (Da), (Dg), and (Ng) are given as Equations (2.74).
By differentiating Equation (G.6) with respect to (Z), neglecting
the higher order term 33P(§zz) , and equating the result to Equation

(C.7), this ordinary differential equation results:

k5

d°P(sS,2) P{S Z) (SL_ Ng (S+K Fax) P(s,2) c.8)

Da. ($-L1-K1DgFax)

os<ked
where Fl* is givén as Equation (2.76).
The solution to Equation (C.8) is of the form:
sz -jesHz

P(S,Z) = C1e- + G, e (c.9)

' _ 'Vg (S +K Fux)
where r'd(S)— ( ) Do (5 ti‘k]Dgﬁ (C.10)
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Equations (C.9) and (C.6) form a system of equations in the spatial
coordinate. (Z). By applying the boundary conditions at Z = 0 and

Z =1, this transmission line model results:

o - — =t gu— —

P(S,1) Cosh rh(S) -24(8) Sinh Fh(s) P(s,0)
Q(s,1) = -Sinh Fd(s) Gosh [',(S) | 1Q(8,0)
] l i zd(s) 1L i
(c.11)
here [*,(s) = SL Ng (S+K Fax) (C.12)
T e Co V Da. (5-L4-KI1F1)
L= SLY  (SHEFR) oY (sekFa)(s-Tikar,) -
d Co Du I} (8) ($-[1-KI Fyax) $*Ng Da.
(c.13)
The terms (Ng) and (Da) are given as Equations (2.74), and
= (Sqn P(£,0))[AP(E,0) .
F gn Pee, )(‘T{"')* (G.14)

from Equation (2.76).

In the special case where K = 1.0 above, this model becomes the
same as the model in the main text, Equations (2.70).

Using the approximations for (Ng), (Da), and Cosh [1(8),g?ven in
Chapter III, Equation (C.11) may be rewritten in the same form as

i
Equation (5.4) to compute step responses. That is,

P(5,0)
P(S,l} = Cosh rd(s) (C.15)

The step responses which result from the one, two, and four product
term expansions for Cosh Pd(S) are shown as Figures 20, 21, and 22..
The computed step responses and the experimental step responses are

shown for step inputs of 0.25, 2.0, 4.0, and 6.0 psig. The computed .
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- COMPUTED RESULTS

EXPERIMENTAL RESULTS

1571
(A) 025 psigstep (E) 0.25 psig step
(B} 2.0 psigstep (F) 20 psig step
1.254 (C) 4.0 psigstep (G) 4.0 psig step
(D) 6.0 psigstep . (H) 6.0 psig step
1.0 ; e e —
\<_'_'—_____l.
Pout ~ FN
Pin 4
~ ~.
J5¢+
504 STEP RESPONSES
| One Product Term For COSH I'(s)
1 DN =20, L/Co=.0532
251 ' Fix = 05 x [sgnP (t,0)] e
! . ot
|
|
0 l + + ' : +
200 300 400 500

0 100

TIME (milliseconds)

Figure 20.

Alternate Model Step Responses, One Product Term
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1

-1.25

1.0

Pout

Pin

J5¢

COMPUTED RESULTS EXPERIMENTAL RESULTS

5 [

(B)
(c)
(D)

251

“(A)

0.25
2.0

4.0
6.0

Two

psig step (E) 0.25 psig step
psig step (F) 2.0 psig step
psig step (G) 4.0 psig step
psig step (H) 6.0 psigstep

STEP RESPONSES

Product Terms For COSH I'(s)

DN=20, L/Co=.0532
aP(t,0)

Fi+ = 05 x [sgn P (t, 0)] 3t

200
TIME (milliseconds)

Figure 21.

300

Alternate Model Step Responses, Two Product Terms
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COMPUTED RESULTS EXPERIMENTAL RESULTS

1.5 .
T v (A) 0.25 psigstep (E) 0.25 psig step
(B} 2.0  psigstep (F) 2.0  psigstep
{C) 4.0  psigstep (G) 4.0 psigstep
1.25 1 (D) 6.0 psig step (H) 6.0 psig step
INPUT —."._./\ -._/\

1.0+ v v

Pout \/ U v
Pin
757 ® is unstable
/7 7 d
’ ’
/7
/7
, )
501 7 STEP RESPONSES
Four Product Terms For COSH I'(s}
DN=20, L/Co=.0532
25T
Fix = 05 x [sgnP (t,0)] a—%')'
0 t + t + +

0 100 200 300 400 500

TIME (milliseconds)

Figure 22. Alternate Model Step Responses, Four Product Terms

€Tt



114

step responses are based on parameters K = 0.5, DN = 2.0, L/C&=.0532
(the 60 ft pneumatic line discussed in Chapter V), 0.40 inch inner
diameter, at an ambient pressure (po) of 11.2 psia.

This model does not predict as great an increase in apparent
damping as disturbance amplitude increases as that predicted by the
model in the main text, Equations (2.70). (Compare Figures. 20, 21,A
and 22 with Figure 13.) But this modgl is more stable than Equations

(2.70).
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