FLUID LINE DYNANICS WITH THROUGH FLOW

AND FINITE AMPLITUDE DISTURBANCES

Ey
RICHARD PAUL ERADEN
Bachelor of Nechanical Engineering Georgia Institute of Technology
Atlanta, Georgia
1959
Niaster of Science
University of New Mexico Albuquerque, New Nexico 1967

Submitted to the Faculty of the Graduate College

 of the Oklahoma State University

 in partial fulfillment for the requirements

 for the Degree of

 DOCTOR OF PHILOSOPHY

 July, 1973
 > Thesis
> 1473 D
> B7983f

$$
\operatorname{cop} .2
$$

$$
1,1 i 1,5-1,1 i
$$

FLUID LINE DYNAMICS WITH THROUGH FLOW

AND FINITE AMPLITUDE DISTURBANCES

Thesis Approved:

ACKNOWLEDGEMENTS

The writer wishes to express his indebtedness to many people who helped to make this thesis possible:

To Dr. Karl N. Reid, Chairman of my Committee, for his continued support, guidance, and constructive criticism throughout my Ph. D. program.

To Dr. D. F. Kincannon, Dr. W. G. Tiederman, and Dr. J. E. Bose who also served on my thesis committee, for their interest and guidance throughout the program.

To the Department of Aeronautics, U. S. Air Force Academy, and especially to Colonel D. H. Daley, who allowed me to pursue a doctoral program.

To Mr. C. Hollenbaugh for his assistance and suggestions in setting up the experimental portion of this thesis.

To Mrs. Batson, Mrs. Kemper, and Mrs. Kaffoglou for their computer assistance.

To Donna Sanders and Mrs. Barbara Moore for their typing assistance.
To my family for their patience, and especially to my wife, Pat, for her understanding and encouragement over the last three years.
table of contents
Chapter Page
I. THE PROBLEM. 1
Introduction 1
Previous Investigations 5
Thesis Objective. 6
Criteria for Judging Model Validity 6
Definition of Terms 7
Related Literature. 8
Organization of the Thesis. 15
II. ANALYTICAL MODEL 18
Basic Assumptions 19
Derivation. 20
Basic Equations. 21
Steady-State Solutions 22
Nondimensional Equations 23
Approximations and Linearization 24
Transformation into the Laplace Domain 29
Solution of the Axial Momentum and Energy Equations. 29
Solution of Transient Mass Flowrate and
Integrated Continuity Equations 32
Ordinary Differential Equations 33
Solution Completion. 34
Comparison to Existing Models 35
III. APPROXIMATIONS FOR $\Gamma_{b}(s), \cosh \Gamma_{b}(s)$ 38
IV. EXPERIMENTAL PROCEDURES 45
V. TIME DOMAIN EVALUATION 51
VI. FREQUENCY DOMAIN EVALUATION 66
VII. THE HYDRAULIC CASE 72
VIII. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS. 75
BIBLIOGRAPHY. 84
Chapter Page
APPENDIXES
A. DERIVATION OF THE SMALL DISTURBANCE MODEL 86
B. COMPUTER PROGRAMS 94
G. AN ALTERNATE MODEL 108

LIST OF TABLES

Table Page
I. Literature Summary. 1
II. Regions of Stability 62

LIST OF FIGURES

Figure Page

1. Kantola Experimental Data. 4
2. Goodson's Approximation for "D ${ }^{\prime}$ " 13
3. Coordinate System. 18
4. Approximation of ${ }^{\prime N}{ }_{g}$ 40
5. $|\operatorname{Cosh} \Gamma(s)|$ for One, Two, and Four Product Terms 42
6. Exact and Approximate $\left|N_{g} / D_{g}\right|$. 44
7. Experimental Apparatus 46
8. Relative Effects of Trigger Mechanisms 48
9. Experimental Results 50
10. Computed Responses Versus Experimental Responses 55
11. Experimental and Computed Traces at 0.25 psig Step 56
12. Computed Step Responses at Various Damping Numbers 58
13. Step Responses, One Product Term 59
14. Step Responses, Two Product Terms. 60
15. Step Response and $\mathrm{F}_{1 *}$. 63
16. Experimental and Computed Frequency Response 68
17. Computed Frequency Response With and Without Through Flow. 71
18. Computed Step Responses, 60 Ft Hydraulic Line 74
19. Coordinate System. 86
20. Alternate Model Step Responses, One Product Term 111
21. Alternate Model Step Responses, Two Product Terms. 112
22. Alternate Model Step Responses, Four Product Terms 113
$\beta_{0} \quad$ Time-averaged bulk modulus of a liquid, $\mathrm{lb}_{\mathrm{f}} / \mathrm{in}^{2}$ $\mu_{0} \quad$ Time-averaged absolute viscosity, $1 b_{f} \sec / \mathrm{in}^{2}$ $V_{0} \quad$ Time-averaged kinematic viscosity, in ${ }^{2} / \mathrm{sec}$ Po Time-averaged fluid density, $1 b_{f} \sec ^{2} / i n^{4}$
$\sigma_{0} \quad$ Brandt 1 number
$\mathrm{p}_{0} \quad$ Time-averaged static pressure, psia
To Time-averaged fluid temperature, ${ }^{\circ}$ Rankine
$\alpha \quad j \sqrt{\frac{s a^{2}}{v_{0}}\left(1+\frac{F_{1 *}}{s}\right)}$
$\gamma \quad$ Ratio of specific heats C_{p} / C_{v}
δp Pressure drop per unit length, $1 b_{f} /$ in 3
$\Gamma(\mathrm{s}) \quad \frac{s L}{c_{0}} \sqrt{\frac{N_{g}}{D_{g}}}$
$\Gamma_{b}(s) \quad \frac{s L}{C_{0}} \sqrt{\frac{N_{g}}{D_{a}}\left(1+\frac{F_{F_{t}}}{s}\right)}$
$\Gamma_{d}^{(s)} \quad \frac{S L}{C_{0}} \sqrt{\frac{N_{g}\left(S+K F_{4}\right)}{D_{a}\left(S-[1-K] F_{1 *} x\right)}}$ $0 \leq K \leq 1$
$\Delta \quad j \sqrt{\frac{s a^{2} \sigma_{0}}{v_{0}}}$
$\Psi_{t} \quad V i s c o u s$ attenuation parameter, dimensionless

θ	Tangential coordinate, radians
μ	Instantaneous absolute viscosity, $\mathrm{lb}_{\mathrm{f}} \mathrm{sec} / \mathrm{in}{ }^{2}$
v	Instantaneous kinematic viscosity, in ${ }^{2} / \mathrm{sec}$
e	Instantaneous fluid density, $\mathrm{lb}_{\mathrm{f}} \mathrm{sec}^{2} / \mathrm{in}{ }^{4}$
ψ	$j \sqrt{\frac{s a^{2}}{v_{0}}}$
ω	Frequency, radians/sec
a	Line inner radius, inches
j	$\sqrt{-1}$
p_{a}	Pressure, psig
p_{b}	Pressure, psig
P_{c}	Steady-state component of fluid axial pressure, psia
p_{t}	Transient axial pressure, psig
q	Volume flowrate, in 3
r	Radial coordinate, inches
t	Time, seconds
v_{c}	Steady-state component of axial velocity, in/sec
V_{f}	Dimensionless steady-state axial velocity, $\mathrm{v}_{\mathrm{c}} / \mathrm{C}_{0}$
v_{z}	Axial velocity, in/sec
v_{t}	Transient axial velocity, in/sec
${ }^{\mathrm{w}}$ a	Mass $\mathrm{flowrate}, \mathrm{lb}_{\mathrm{f}} \mathrm{sec} / \mathrm{in}$
w_{b}	Mass flowrate, $\mathrm{lb}_{\mathrm{f}} \mathrm{sec} / \mathrm{in}$
${ }^{W}$ t	Mass flowrate, $\mathrm{lb}_{\mathrm{f}} \mathrm{sec} / \mathrm{in}$
A(s)	Polynomial in "s"

Axial momentum equation
B(s) Polynomial in "s"
$C_{o} \quad$ Isentropic speed of sound in the fluid, $\sqrt{\frac{\gamma P_{0}}{\rho_{0}}}$ or $\sqrt{\gamma R_{\text {gas }} T_{0}}$
$C_{p} \quad$ Specific heat at constant pressure, $B t u / l b_{m}{ }^{o_{R}}$
$\mathrm{C}_{\mathrm{v}} \quad$ Specific heat at constant volume, $\mathrm{Btu} / 1 \mathrm{~b}_{\mathrm{m}}{ }_{\mathrm{o}}^{\mathrm{R}}$
$D_{a}(s) \quad\left(1-\frac{2 J_{1}(\alpha)}{\alpha J_{0}(\alpha)}\right)$
$D_{g}(s) \quad\left(1-\frac{2 J_{1}(\psi)}{\psi J_{0}(\psi)}\right)$
DN Damping number, $\quad \vartheta_{o} / a^{2}, 1 / \sec$

EE Energy equation
$F_{1 *} \quad \frac{C_{0}}{L}\left(\frac{\partial V}{\partial Z}\right)_{*}=(\operatorname{sgn} P(t, 0))\left(\frac{\partial P(t, 0)}{\partial t}\right)_{*}$

IC Integrated continuity equation
Jo Bessel function of the first kind, zeroeth order
$J_{1} \quad$ Bessel function of the first kind, first order
$J_{2} \quad$ Bessel function of the first kind, second order
L. Line length, inches
\mathcal{L} Laplace transform
$\mathscr{L}^{-1} \quad$ Inverse Laplace transform
M Mach number
$M_{b} \quad$ Average through flow Mach number
M(s) Arbitrary function
$N_{g} \quad\left(1+\frac{2(\gamma-1) J_{1}(\Delta)}{\Delta J_{0}(\Delta)}\right)$

P	Nondimensional transient axial pressure, $\mathrm{p}_{\mathrm{t}} / \mathrm{p}_{0}$
$\mathrm{P}_{\text {out }}$	Nondimensional transient output pressure
$\mathrm{P}_{\text {in }}$	Nondimensional transient input pressure
Q	Nondimensional transient flow, $W_{t} / P_{0} C_{0} \pi a^{2}$
R	Nondimensional radial coordinate, r/a
$\mathrm{R}_{\mathrm{gas}}$	Gas constant, in ${ }^{2} / \sec ^{2} \mathrm{o}_{\mathrm{R}}$
S	Laplace variable
SE	Second order differential equation
SN	Solution to the second order differential equation
T	Nondimensional transient axial temperature, $\mathrm{T}_{t} / \mathrm{T}_{0}$
T_{c}	Steady-state axial temperature, ${ }^{\circ} \mathrm{R}$
T_{e}	Isentropic delay time, L / C_{0}, seconds
T_{t}	Transient axial temperature, ${ }^{0} \mathrm{R}$
TM	Transient mass flowrate equation
V	Nondimensional transient axial velocity, v_{t} / C_{0}
Y_{0}	Bessel function of the second kind, zeroeth order
Y_{1}	Shunt, admittance per unit length, in ${ }^{5} / 1 b_{f}$
$Y_{b}(s)$	Nondimensional admittance, $D_{g} \sqrt{\frac{\mathrm{~N}_{g}}{\mathrm{D}_{a}}\left(1+\frac{F_{1 *}}{s}\right)}$
$Y_{e}(s)$	Nondimensional admittance, $\sqrt{\mathrm{N}_{\mathrm{g}} \mathrm{g}}$
Z	Nondimensional axial coordinate, z / L
Z_{1}	Series impedance per unit length, ${1 b_{f}} /$ in ${ }^{6}$
$Z_{b}(s)$	$\text { Nondimensional impedance, } \quad \gamma \sqrt{\frac{\left(1+\frac{F_{1 *}}{5}\right)}{N_{g} D_{a}}}$

$$
\begin{aligned}
& z_{c}(s): \quad \text { Nondimensional impedance, } \\
& z_{d}(s) \quad \text { Nondimensional impedance, } \quad \gamma \sqrt{\frac{\gamma}{N_{g} D_{g}}} \\
& z_{e}(s) \quad \text { Impedance }, \quad \frac{C_{0}}{\pi a^{2}} \sqrt{\frac{1}{N_{g} D_{g} N_{g} D_{a}}}
\end{aligned}
$$

CHAPTER I

THE PROBLEM

Introduction

The transient solution for small, laminar disturbances in a fluidfilled line has been reported many times in the literature, as is shown below:

TABLE I

LITERATURE SUMMARY

Flow	Type of Transient Disturbance		
No Through Flow	Small Laminar Disturbances	Finite Amplitude Laminar Disturbances	Turbulent Disturbances
	Iberall (12) Nichols (13) Brown (3) Goodson (10) Zielke (22) Kantola (13)		
Laminar Incompressible Through Flow	Orner (17)		
Turbulent			
Through Flow			

The small laminar disturbance "models" of a fluid transmission line which have resulted from the anlyses shown above were sufficient to predict transients in instrumentation lines, most hydraulic systems, and selected pneumatic systems. In the simulation of hydraulic systems most of the transients occurred "slowly." The opening and closing of a valve or the movement of a control piston, for example, occurred over a relatively long period of time. The inputs to the hydraulic line were considered as a series of small disturbances, andthe small disturbance line model seemed to be adequate.

With the advent of fluid logic devices that change output from 14.7 psia to 18.7 psia in 4 or 5 milliseconds, hydraulic logic devices, and fast-response pneumatic control systems, the small disturbance line model often is inadequate - inadequate in the sense that the model can not predict transients accurately when it is subjected to the se types of inputs:

1. inputs with both high frequency content and low frequency content;
2. inputs with or without through f low; and
3. inputs of small and finite amplitude.

The capability of the existing small disturbance of "acoustic" models for predicting high and low frequency behavior is excellent, providing the pressure disturbances are sufficiently small.

The small disturbance models do not include the effect of through flow. This is not due to any inherent deficiency in the small disturbance models, but rather to the general belief by engineers that the effect of through flow is negligible - that signal transmission in a fluid-filled line is not greatly altered by the addition of through flow
unless the through flow velocity approaches the acoustic speed of sound in the fluid. The acoustic speed of sound in air is on the order of $1100 \mathrm{ft} / \mathrm{sec}$, and in liquids is as high as $5000 \mathrm{ft} / \mathrm{sec}$. In most practical applications through flow velocities are on the order of $100 \mathrm{ft} / \mathrm{sec}$ or less. Then the effect of through flow on dynamic behavior may be negligible, and the small disturbance model which neglects through flow may be completely adequate even when through flow is present.

The principal shortcoming of the small disturbance line model is its inability to meet requirement 3 above, that of predicting the response to both small and finite amplitude disturbances. The small disturbance ordinary differential equation line models are all linear models. Doubling the magnitude of the input doubles the magnitude of the output, and the output transients have the same percent of overshoot and rise time.

But experiments with pneumatic lines, such as the ones conducted by Kantola (13), show that when one increases the magnitude of a step input to the line, the output transient overshoot decreases and the rise time increases. Part of Kantola's experimental results are shown as Figure 1. Note the significant increase in apparent damping for the 1.0 psig step over the 0.1 psig step, and the accompanying increase in rise time.

No linear small disturbance line model will predict Kantola's results shown on Figure 1. A reexamination of the describing equations for the fluid-filled line is in order. By including the convective acceleration terms in the axial momentum and energy equations, it may be possible to predict the increase in apparent damping which occurs as the disturbance amplitude is increased. At least it may be possible to predict the trend in the output transient as disturbance amplitude

Figure 1. Kantola Experimental Data
increases.

Previous Investigations

Zielke(22) and Brown(5) investigated the problem of retaining the convective acceleration term $v_{z} \frac{\partial_{z}}{\partial z}$ in the axial momentum equation, as shown below.

$$
\begin{equation*}
\frac{\partial v_{z}}{\partial t}-\frac{v_{0}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)+\frac{1}{\varepsilon_{0}} \frac{\partial p_{z}}{\partial z}=-v_{z} \frac{\partial v_{z}}{\partial z} \tag{1.1}
\end{equation*}
$$

They both concluded that the convective acceleration term should be evaluated as the solution progressed, making it a "weighting function" to force the left side of Equation (1.1). Their primary interest was in a highly accurate line model, and speed of computation was not essential. They solved Equation (1.1) by a method of characteristics, modified by the weighting function $\left(v_{z} \frac{\partial v_{z}}{\partial z}\right)$. The results were compared with data measured using small amplitude disturbances.

If speed of computation is not essential, Equation (1.1) may also be solved by finite difference methods.

When speed of computation is essential, the methods of characteristics and finite difference methods lead to accurate results but require significant storage and computational time. An ordinary differential equation model which approximates the true partial differential equation is less accurate, but is more compatible with the lumped parameter models or the ordinary differential equation models for the other components in the system. That is, the intended area of application of the line model is in simulation of complex hydraulic and pneumatic systems containing a wide variety of components. In a system simulation of this type, the high frequency portions of the input are
normally greatly attenuated by system components other than the line, regardless of what type of transmission line model is being used. For this reason, most simulation schemes use an ordinary differential equation line model which is capable of predicting transients in the low to medium frequency range.

There are various types of ordinary differential equation models available, but the most common type used is the distributed parameter model. This model comes from a solution of the equations of motion, and the energy equation. The distributed parameter model is an infinite order ordinary differential equation system, and there is considerable literature (9), (16), and (19), for example) that discusses the best ways to truncate the infinite order system to a finite order for efficient use in a system simulation.

Thesis Objective

The objective of this thesis is to develop a generalized line model which is suitable for system simulation, a model which includes the effects of finite amplitude disturbances and through flow. The model is intended to be used primarily in hydraulic and pneumatic system simulations where the high frequency portions of input disturbances are attenuated significantly. Therefore, primary consideration will be given to the accurate prediction of transients with low to middle-range frequency content.

Criteria for Judging Model Validity

The criteria used to judge the suitability of the model will be the following (listed in order of importance):

1. The model should predict an increase in apparent damping as the magnitude of the disturbance input to the line is increased. A real transmission line has this behavior, as is shown on Figure 1 .
2. The model should be reducible to finite order by suitable approximations such that computational time and difficulty are reduced without severely limiting the accuracy of the model. Factors which may be considered in the suitability of a particular order model are rise time and apparent damping.
3. The model response should be in reasonable agreement with the apparent fundamental mode of corresponding experimental responses. (There appears to be no totally definitive way to compare model responses and experimental responses.)

Definition of Terms

The following terms are used in several places in the thesis:

1. Average Fluid Properties: The terms $\mathcal{C}_{8}, V_{0}, \mu_{0}, T_{0}$, and p_{0} are time-averaged fluid properties about which the instantaneous variations e, V, μ, T, p occur.
2. Laminar Disturbance: This is a disturbance in the transmission line of such a magnitude that the concentric layers of fluid retain their same relative radial position in the line.
3. Small Amplitude Disturbance: This is a disturbance of small enough magnitude that none of the instantaneous fluid properties vary from their average fluid properties by more than 10%.
4. Finite Amplitude Disturbance: This is a disturbance of such a magnitude that some of the instantaneous fluid properties vary from
their time-averaged values by more than 10%, but the disturbance is still laminar (see 2 above),
5. Laminar Through Flow: This is incompressible Poiseuille flow with the characteristic parabolic axial velocity profile. The Reynolds number of the through flow based on average axial velocity is less than 2000 and the centerline Mach number is less than about 0.4.

Related Literature

Goodson(10),(11) has published an excellent historical account and up-to-date summary of transmission line literature from the year 1808 to the present. Only that portion of the total Iterature which relates directly to this thesis is presented here.

Small Amplitude Disturbance Models

Iberall(12), 1950, developed the solution for visçous attenuation in instrument lines, including heat transfer effects. His primary objective was .'"to simplify the design of high-quality transmission lines for relatively low frequencies." The form of the axial momentum and energy equations which he used are shown below;

Axial Momentum.

$$
\begin{equation*}
\frac{\partial v_{z}}{\partial t}-\frac{v_{0}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)=\frac{1}{\theta_{0}} \frac{\partial p_{z}}{\partial z} \tag{1.2}
\end{equation*}
$$

Energy Equation (and Continuity).

$$
\begin{equation*}
\frac{\partial T}{\partial t}-\frac{\gamma \vartheta_{0}}{\sigma_{0} r} \frac{\partial}{\partial r}\left(r \frac{\partial T}{\partial r}\right)=\frac{T_{0}}{e_{0}}(\gamma-1) \frac{\partial \rho}{\partial t} \tag{1.3}
\end{equation*}
$$

where

$$
\mathrm{v}_{\mathrm{z}}=\text { axial velocity }
$$

$r=$ tube radius $(0 \leq r \leq a)$
$\mathrm{a} \quad=$ tube inner radius
p $=$ transient pressure
$\mathrm{T}=$ transient temperature .

Iberal1 showed that the viscous attenuation parameter (Ψ_{t}) for the line is of the form:

$$
\begin{equation*}
\Psi_{t}=\sqrt{\frac{1+\frac{2(\gamma-1) J_{1}(\Delta)}{\Delta J_{0}(\Delta)}}{1-\frac{2 J_{1}(\psi)}{\psi J_{0}(\psi)}}} \tag{1.4}
\end{equation*}
$$

where $\quad \Delta=j \sqrt{j \frac{\omega a^{2} \sigma_{0}}{v_{0}}} \quad$ and $\quad \psi=j \sqrt{j \frac{\omega a^{2}}{v_{0}}}$
J_{0} and J_{1} are Bessel Functions of the first kind, zeroeth and first order, respectively.

The basic restrictions on Iberall's solution are:
a) laminar axial disturbances,
b) constant diameter, rigid transmission line, and
c) mean flow velocity much less than the acoustic velocity in the fluid.

These same restrictions apply to all of the analyses discussed in this section.

Nichols(15), 1962, arrived at the same solution of the set of Equations (1.2) and (1.3), using small-signal analysis. He defined such terms as "shunt admittance" and "series impedance":

Shunt admittance per unit length $=Y_{1}=\frac{-\frac{\partial q}{\partial z}}{\delta p}$
Series impedance per unit length $=z_{1}=\frac{\frac{j z}{q}}{q}$
where $\mathrm{q}=$ volume flowrate
$\delta p=$ pressure drop per unit length.

Nichols concentrated on producing design curves and approximations for frequency response.

Brown(3), 1962, explored thoroughly the realm of step and impulse responses for the transmission line model which Iberall had solved in 1950. Iberall and Nichols used Fourier analysis techniques, but Brown employed the Laplace transform, and made the first investigations in the time domain. The Iberall-Nichols-Brown model, in two-port form, is shown below:

$$
\left[\begin{array}{l}
\mathrm{p}_{\mathrm{b}} \tag{1.8}\\
\mathrm{w}_{\mathrm{b}}
\end{array}\right]=\left[\begin{array}{ll}
\cosh \Gamma(\mathrm{s}) & -\mathrm{z}_{\mathrm{e}}(\mathrm{~s}) \sinh \Gamma(\mathrm{s}) \\
\frac{-\sinh \Gamma(\mathrm{s})}{\mathrm{z}_{\mathrm{e}}(\mathrm{~s})} & \\
\cosh \Gamma(\mathrm{s})
\end{array}\right]\left[\begin{array}{l}
\mathrm{p}_{a} \\
\mathrm{w}_{\mathrm{a}} \\
\end{array}\right]
$$

where subscripts "a" and "b" represent the two ends of the transmission line,

$$
\begin{equation*}
\Gamma(S)=\frac{S L}{C_{0}} \sqrt{\frac{1+\frac{2(\gamma-1) J_{1}(\Delta)}{\Delta J_{0}(\Delta)}}{1-\frac{2 J_{1}(\psi)}{\psi J_{0}(\psi)}}} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{e}(s)=-\frac{C_{0}}{\pi a^{2}} \frac{1}{\sqrt{\left(1+\frac{2(\gamma-1) J_{1}(\Delta)}{\Delta J_{0}(\Delta)}\right)\left(1-\frac{2 J_{1}(\psi)}{\Psi J_{0}(\psi)}\right)}} \tag{1.10}
\end{equation*}
$$

It will be convenient in this thesis to write $\Gamma(S)$ and $Z_{e}(S)$ as:

$$
\begin{equation*}
\Gamma(s)=\frac{S_{L}}{C_{0}} \sqrt{\frac{N_{g}}{D_{g}}} \quad \text { and } \quad z_{e}(s)=\frac{\frac{C_{0}}{\pi a^{2}}}{\sqrt{N_{g} D_{g}}} \tag{1.11}
\end{equation*}
$$

where $N_{g}=\left(1+\frac{2(\gamma-1) J_{1}(\Delta)}{\Delta J_{0}(\Delta)}\right) \quad, \quad D_{g}=\left(1-\frac{2 J_{1}(\psi)}{\psi J_{0}(\psi)}\right)$

$$
\begin{equation*}
\Delta=j \sqrt{\frac{s a^{2} \sigma_{0}}{v_{0}}} \quad, \text { and } \quad \psi=j \sqrt{\frac{s a^{2}}{v_{0}}} \tag{1.13}
\end{equation*}
$$

Brown(3) considered both gases and liquids in his analysis. For the liquid case, $\gamma=1.0$ and Equations (1.11) reduce to a simpler form.

Approximations for $\Gamma(S)$ and $Z_{e}^{(S)}$

In the frictionless case, $\Gamma(S)=\frac{S L}{C_{0}}$ and $Z_{e}(S)=\frac{C_{0}}{\pi a^{2}}$. When friction is included however, $\Gamma(S)$ and $Z_{e}(S)$ take on the complex forms of Equations (1.9) and (1.10). In this case the Laplace domain model (Equation (1.8)) is very difficult to inverse transform. Goodson(10), 1963, considered approximations for $\Gamma(S)$ and $Z_{e}(S)$ for liquids, that is, when $\mathrm{N}_{\mathrm{g}}=1.0$:

$$
\begin{align*}
& T^{(S)_{1 \text { iquids }}}=\frac{S L_{0}}{C_{0}} \sqrt{\frac{1}{\left(D_{g}\right)_{\text {exact }}}} \approx \frac{S L}{C_{0}} \sqrt{\frac{1}{\left(D_{g}\right)_{a p p r o x}}} \tag{1.14}\\
& Z_{e}(S)_{1 \text { iquids }}=\frac{C_{0}}{T a^{2}} \sqrt{\frac{1}{\left(D_{g}\right)_{e x a c t}}} \approx \frac{C_{0}}{\pi a^{2}} \sqrt{\frac{1}{\left(D_{g}\right. \text { lapprox }}} \tag{1.15}
\end{align*}
$$

where $\quad\left(D_{g}\right)_{\text {exact }}=\left[1-\frac{2 J_{1}(\psi)}{\psi J_{0}(\psi)}\right]=\frac{J_{2}(\psi)}{J_{0}(\psi)}=-\frac{\psi^{2}}{8} \prod_{n=1}^{\infty}\left[\frac{1-\frac{\psi^{2}}{\alpha^{2}(2, n)}}{1-\frac{\psi^{2}}{\alpha^{2}(0, n)}}\right]$
and $\quad\left(D_{g}\right)_{\text {approx }}=\frac{-\psi^{2}\left(1-\frac{\psi^{2}}{B_{1}}\right)}{8\left(1-\frac{\psi^{2}}{5.78}\right)\left(1-\frac{\psi^{2}}{B_{2}}\right)}=\frac{5.78 B_{2} S\left(S+B_{1} D N\right)}{8 B_{1}(5+5.78 D N)\left(S+B_{2} D N\right)}$
and $\psi^{2}=-\frac{S a^{2}}{V_{0}}, S=j \omega, \quad D N=$ Damping Number $=\frac{V_{0}}{a^{2}}$

The quantity $\propto(0, n)$ is the $n^{\text {th }}$ zero of $J_{0}(\psi)$ and the quantity $\propto(2, n)$ is the $n^{\text {th }}$ zero of $J_{2}(\Psi)$.

To solve for B_{1} and B_{2} in Equation (1.17), Goodson first required that the limit of the approximate function equal the limit of the exact function as "S" approached (+) infinity.

$$
\begin{equation*}
\lim _{s \rightarrow \infty}\left(D_{g}\right)_{\text {approx }}=\lim _{s \rightarrow \infty}\left(D_{g}\right)_{\text {exact }}=1.0 \Rightarrow \frac{B_{2}}{B_{1}}=\frac{8}{5.78} \tag{1.19}
\end{equation*}
$$

Then Goodson required that the value of B_{1} be chosen so that "the magnitude at the value of $\frac{S}{D N}$ where the angle is maximum of the function involving B_{2} coincides with the magnitude of the infinite product at the same value of $\frac{S}{D N} \cdot "$ Goodson's results are $B_{1}^{\prime}=40.9$ and $B_{2}=56.6$. Then:

$$
\begin{equation*}
\left(\mathrm{D}_{\mathrm{g}}\right)_{\text {approx }}=\frac{\mathrm{S}(\mathrm{~S}+40.9 \mathrm{DN})}{(\mathrm{S}+5.78 \mathrm{DN})(\mathrm{S}+56.6 \mathrm{DN})} \tag{1.20}
\end{equation*}
$$

Equation (1.20) is equally valid when approximating Γ (s) for an ideal gas, but the factor ' N_{g} " of $\Gamma(S)$ is not equal to 1.0 in this case (see Equation (3.4)). Plots of $\left|D_{g}\right|$ exact and $\left|D_{g}\right|$ approx are shown on Figure 2. The development of a corresponding approximation for N_{g} is considered in Chapter III.

Small Amplitude Disturbance Studies

With Through Flow

Orner(17), 1969, used the same type of Fourier analysis as Iberall and Nichols, but he included the convective acceleration term in the axial momentum equation to account for through flow. That is:

$$
\begin{equation*}
\frac{\partial v_{z}}{\partial t}+v_{z} \frac{\partial v_{z}}{\partial z}-\frac{v_{0}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)=-\frac{1}{e_{0}} \frac{\partial p_{z}}{\partial z} \tag{1.21}
\end{equation*}
$$

Orner represented the axial velocity $\left(v_{z}\right)$ as the sum of two components a steady-state incompressible through flow component plus a compressible transient flow component:

$$
\begin{equation*}
v_{z}(t, r, z)=v_{c}(r)+v_{t}(t, r, z) \tag{1.22}
\end{equation*}
$$

Figure 2. Goodson's Approximation for " g "
where $v_{c}(r)$ is the parabolic (Poiseuille) flow profile. Then Orner neglected the transient velocity (v_{t}) compared to (v_{c}), and approximated the convective acceleration term as follows:

$$
\begin{equation*}
v_{z} \frac{\partial v_{z}}{\partial z} \approx v_{c} \frac{\partial v_{t}}{\partial z} \tag{1.23}
\end{equation*}
$$

Orner's solution is in terms of the confluent hypergeometric series, which "have not been tabulated to date" (1969). He performed a perturbation solution on his system of equations, but the solution did not compare well with the experimental data collected by his co-worker, Cooley(7). That is, Orner's analytical solution did not predict the large changes in frequency response with and without through flow which Cooley found by experiment.

Cooley(7), 1969, performed a series of experiments on a 0.125 inch diameter rigid line, 6.0 inches long. He measured frequency responses with various through flows (up to a Reynolds number of 2200), with a constant time-average line pressure of 3.0 psi absolute. Throughout the experiments, Cooley kept a constant ratio of transient flow to steady flow of 0.1 , so the transient flow magnitude was increased as the through flow was increased. A portion of his results are shown on Figure 16 (Chapter VI).

Time Domain Studies

Kantola(13), 1969, measured a series of step responses for pneumatic lines of different diameters and lengths. He generated the "step" input by placing a metal diaphragm over the open end of the line, charging or evacuating the line to some pressure above or below ambient pressure, then bursting the diaphragm by mechanical means. Part of Kantola's results are shown on Figure 1, in the introduction to this
thesis. The responses demonstrate the nonlinear characteristics of a pneumatic line when subjected to finite amplitude disturbances.

Organization of the Thesis

Chapter II

This chapter discusses the solution of a linearized form of the axial momentum and energy equations. The convective terms $v_{z} \frac{\partial_{z}}{\partial z}$ and $\quad v_{z} \frac{\partial T}{\partial z}$ are retained in these equations. The solution accounts for the effects of through flow and finite amplitude disturbances.

Chapter III

The model derived in Chapter II includes terms such as Cosh $\Gamma(S)$, Sinh $\Gamma(S)$, and $\Gamma(S)$. To use the model in the time domain for general cases, some approximations for these functions must be made. The approximations are listed in this chapter.

Chapter IV

Experimental procedures used to record small and large amplitude step responses for a blocked $60 \mathrm{ft}, 0.40$ inch diameter line are presented. The step responses were measured for positive-going and negative-going steps of $\pm 0.25,1,2,4,6,8$, and 10 psig with an ambient pressure of 11.2 psia. The experimental work was conducted at the U. S. Air Force Academy, Department of Aeronautics.

Chapter V

This chapter compares the experimental results of Chapter IV with
the analytical model from Chapters II and III, in the time domain. Computed responses for 0.25 and 4.0 psig steps are shown and compared with experimental results. The experimental results show considerable high frequency content but the computed responses display only low frequency content, as would be expected (since the approximations used in the Laplace domain model are low frequency approximations.)

To compare the effect of finite amplitude disturbances in the model and in the experiment, the model damping was adjusted so that the computed response to a 0.25 psig step approximated the apparent fundamental mode (the low frequency mode) of the corresponding experimental response. Then it was possible to compare the effect of finite amplitude disturbances in the model and in the experiment.

Chapter VI

Available test data for the frequency response of a small pneumatic line with through flow is examined briefly. It is concluded that the solution offered in this thesis cannot predict the large changes reported by Cooley(7). A similar conclusion is reached about the Orner(17) solution.

Ghapter VII

The basic model derivation in Chapter II assumed an ideal gas. This chapter simplifies the model for use with liquids. Computed step responses using the hydraulic (liquid) equations with both small and finite amplitude steps are shown.

Chapter VIII

This chapter includes a short summary, conclusions, and recommendations for further work.

CHAPTER II

ANALYTICAL MODEL

This chapter presents a solution to a nonlinear form of the axial momentum and energy equations for flow of a compressible fluid in a rigid, circular transmission line. The solution considers finite amplitude disturbances, with and without through flow inthe line.

The coordinate system for the line is illustrated in Figure 3 below.

Figure 3. Coordinate System

Basic Assumptions

1. The line is rigid, circular in cross section, and has constant cross-sectional area.
2. The fluid is Newtonian, either an ideal gas or a liquid. The analysis in this chapter is valid for ideal gases; Chapter VII will consider the simpler case of a liquid.
3. The transient is "laminar" in nature (see "Definition of Terms," in Chapter I).
4. All fluid properties may be considered constant. These properties may be calculated at the average conditions in the line.
5. The through flow is laminar, incompressible Poiseuille flow (see "Definition of Terms", in Chapter I).
6. The time-varying pressure is uniform across any given cross section of the transmission line; ie., pressure is not a function of the radial coordinate, (r).
7. $\frac{\partial^{2} v_{z}}{\partial z^{2}} \ll \frac{\partial^{2} v_{z}}{\partial r^{2}}$ and $\frac{\partial^{2} T}{\partial z^{2}} \ll \frac{\partial^{2} T}{\partial r^{2}}$ (D'Souza (8)).
8. The axial velocity, temperature, and pressure at any point within the line each may be represented as the sum of two components an incompressible steady-state component (subscripted with a "c!), and a compressible, time-varying component (subscripted with a "t") which is superimposed onto the steady-state part. Thus:

$$
\begin{align*}
& v_{z}(t, r, z)=v_{c}(r)+v_{t}(t, r, z) \\
& T_{z}(t, r, z)=T_{c}(r)+T_{t}(t, r, z) \\
& p_{z}(t, z)=p_{c}(z)+p_{t}(t, z) \tag{2.1}
\end{align*}
$$

9. $v_{r}=v_{\theta}=0$.
10. All partial derivatives with respect to θ are 0 .
11. Isothermal walls
12. The line is long enough that radial end effects are negligible.

Derivation

The steps used in the derivation of the analytical model are summarized below:

1. Write the nonlinear Axial Momentum (AM) and Energy (EE) equations.
2. Solve the linear small-disturbance (AM) and (EE) equations for steady-state operation, and substitute the results into the nonlinear ($A M$) and (EE) equations. The resulting ($A M$) and (EE) equations are "perturbations" about the steady-state.
3. Nondimensionalize (AM) and (EE).
4. Linearize the resulting dimensionless (AM) and (EE) equations.
5. Transform the linearized (AM) and (EE) equations, transient mass flowrate equation (TM), and integrated continuity equation (IC) to the Laplace Domain to eliminate the independent variable, "time."
6. Solve (AM) for the axial velocity profile $V(S, R, Z)$, and substitute the solution into (TM). Solve (EE) for the axial temperature profile $T(S, R, Z)$, and substitute the solution into (IC).
7. Integrate the (TM) and (IC) equations with respect to (R), and eliminate the independent variable (R).
8. Differentiate (TM) with respect to (2), equate the result to (IC), and obtain a second order ordiñary differential equation (SE) in $P(S, Z)$.
9. Assume a solution for (SE) of the form:

$$
\begin{equation*}
P(s, z)=C_{1} e^{\Gamma(s) z}+C_{2} e^{-\Gamma(s) z} \tag{2.3}
\end{equation*}
$$

Solve (SE) for $\mathrm{P}(\mathrm{S}, \mathrm{Z})$; obtain the solution (SN).
10. Apply boundary conditions at $Z=0$ and $Z=1$ to the system of equations composed of (SN) and (TM). Solve for arbitrary constants $\left(C_{1}\right)$ and $\left(C_{2}\right)$ in 9 above.
11. Write the final solution (the trnasmission line model) in standard matrix form.

Basic Equations

With the assumptions listed at the beginning of this chapter, the describing equations may be written as shown below.

Axial Momentum

$$
\begin{equation*}
\frac{\partial v_{t}}{\partial t}+\left(v_{c}+v_{t}\right) \frac{\partial v_{t}}{\partial z}-\frac{v_{0}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial\left(v_{c}+v_{t}\right)}{\partial r}\right)=-\frac{1}{\rho_{0}} \frac{\partial\left(p_{c}+p p_{t}\right)}{\partial z} \tag{2.4}
\end{equation*}
$$

Energy Equation

$$
\begin{equation*}
\frac{\partial T_{t}}{\partial t}+\left(v_{c}+v_{\bar{t}}\right) \frac{\partial T_{t}}{\partial z}-\frac{\gamma \eta_{o}}{\sigma_{0} r} \frac{\partial}{\partial r}\left(r \frac{\partial\left(T_{c}+T_{t}\right)}{\partial r}\right)=-(\gamma-1) T_{0} \frac{\partial v_{t}}{\partial z} \tag{2.5}
\end{equation*}
$$

Equation of State (Ideal Gases)

$$
\begin{align*}
\frac{d p}{p_{0}}=\frac{d e}{e_{0}}+\frac{d T}{T_{0}} & \Rightarrow \frac{\partial e}{\partial t}=e_{0}\left(\frac{1}{p_{0}} \frac{\partial p}{\partial t}-\frac{1}{T_{0}} \frac{\partial T}{\partial t}\right) \\
& \Rightarrow \frac{\partial e}{\partial z}=\rho_{0}\left(\frac{1}{p_{0}} \frac{\partial p}{\partial z}-\frac{1}{T_{0}} \frac{\partial T}{\partial z}\right) \tag{2.6}
\end{align*}
$$

Continuity Equation (Transient Flow)

$$
\begin{equation*}
\frac{\partial e}{\partial t}+\frac{\partial\left(\rho v_{t}\right)}{\partial z}=0 \Rightarrow \frac{\partial v_{t}}{\partial z}=-\frac{1}{e_{0}}\left(\frac{\partial \rho}{\partial t}+v_{t} \frac{\partial e}{\partial z}\right) \tag{2.7}
\end{equation*}
$$

Equations (2.6) and (2.7) combine to yield:

$$
\begin{equation*}
\frac{\partial V_{t}}{\partial z}=-\left(\frac{1}{p_{0}} \frac{\partial p}{\partial t}-\frac{1}{T_{0}} \frac{\partial T}{\partial t}\right)-v_{t}\left(\frac{1}{p_{0}} \frac{\partial p}{\partial z}-\frac{1}{T_{0}} \frac{\partial T}{\partial z}\right) \tag{2.8}
\end{equation*}
$$

Integrated Continuity Equation (Transient Flow)

$$
\begin{align*}
& 2 \pi \int_{r=0}^{r=a} \frac{\partial\left(\rho v_{t}\right)}{\partial z} r d r=-2 \pi \int_{r=0}^{r=a} \frac{\partial e}{\partial t} r d r \tag{2.9}\\
& \Rightarrow \frac{\partial W(t, z)}{\partial z} \approx-2 \pi \int_{r=0}^{r=a} e_{0}\left(\frac{1}{p_{0}} \frac{\partial p}{\partial t}-\frac{1}{T_{0}} \frac{\partial T}{\partial t}\right) r d r \tag{2.10}
\end{align*}
$$

where $w(t, z)$ is the time-varying mass flowrate superimposed on the through flow in the transmission line. That is:

$$
\begin{equation*}
w(t, z)=2 \pi \int_{r=0}^{r=a}\left(\rho V_{t}\right) r d r \tag{2.11}
\end{equation*}
$$

Steady-State Solutions

Equations (2.4) and (2.5) reduce to the linear (small amplitude) case when the convective terms are neglected. In the steady-state these equations become those listed below.

Steady-State Axial Momentum

$$
\begin{equation*}
\frac{v_{0}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{c}}{\partial r}\right)=-\frac{1}{e_{0}} \frac{\partial p_{c}}{\partial z} \tag{2.12}
\end{equation*}
$$

Steady-State Energy Equation

$$
\begin{equation*}
\frac{\gamma v_{0}}{\sigma_{0} r} \frac{\partial}{\partial r}\left(r \frac{\partial T_{c}}{\partial r}\right)=0 \tag{2.13}
\end{equation*}
$$

The solution to Equation (2.12) is:

$$
\begin{equation*}
v_{c}=v_{\max }\left(1-\frac{r^{2}}{a^{2}}\right) \tag{2.14}
\end{equation*}
$$

where $\left(v_{\max }\right)$ is the centerline velocity $(r=0)$, and

$$
\begin{equation*}
\frac{\partial p_{c}}{\partial z}=\frac{-4 \mu_{0} v_{\max }}{a^{2}} \tag{2.15}
\end{equation*}
$$

The solution to Equation (2.11) is

$$
\begin{equation*}
\mathrm{T}_{\mathrm{c}}=\text { constant } \tag{2.16}
\end{equation*}
$$

Substitution of Equations (2.12) and (2.13) into Equations (2.4) and (2.5) yields the equations listed below.

Axial Momentum

$$
\begin{equation*}
\frac{\partial v_{t}}{\partial t}+\left(v_{c}+v_{t}\right) \frac{\partial v_{t}}{\partial z}-\frac{v_{0}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{t}}{\partial r}\right)=-\frac{1}{e_{0}} \frac{\partial p_{t}}{\partial z} \tag{2.17}
\end{equation*}
$$

Energy Equation

$$
\begin{equation*}
\frac{\partial T_{t}}{\partial t}+\left(v_{c}+v_{t}\right) \frac{\partial T_{t}}{d z}-\frac{\gamma v_{0}}{\sigma_{0} r} \frac{\partial}{\partial r}\left(r \frac{\partial T_{t}}{\partial r}\right)=-(\gamma-1) T_{0} \frac{\partial v_{t}}{\partial z} \tag{2.18}
\end{equation*}
$$

Nondimensional Equations

Equations (2.17), (2.18), (2.10), and (2.11) may be nondimensionalized with the following substitutions:

$$
\begin{align*}
& R=\frac{r}{a} ; Z=\frac{z}{L} ; P=\frac{p_{t}}{p_{0}} ; V=\frac{v_{z}}{C_{0}} ; \\
& T=\frac{T_{t}}{T_{0}} ; \quad V_{f}=\frac{v_{c}}{C_{0}} ; Q=\frac{w(t, z)}{e_{0} C_{0} \pi a^{2}} \tag{2.19}
\end{align*}
$$

where $\left(C_{0}\right)$ is the isentropic speed of sound in the fluid $\sqrt{\frac{\gamma p_{0}}{\rho_{0}}}$.

Axial Momentum

$$
\begin{equation*}
\frac{\partial V}{\partial t}-\frac{V_{o}}{a^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial V}{\partial R}\right)=-\frac{C_{o}}{L}\left(\frac{1}{\gamma} \frac{\partial P}{\partial Z}+\left(V_{f}+V\right) \frac{\partial V}{\partial Z}\right) \tag{2.20}
\end{equation*}
$$

Energy Equation (With Equation (2.8))

$$
\begin{equation*}
\frac{\partial T}{\partial t}-\frac{v_{0}}{\sigma_{0} a^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial T}{\partial R}\right)=\frac{(\gamma-1)}{\gamma}\left[\frac{\partial P}{\partial t}+\frac{C_{0}}{L}\left\{V\left(\frac{\partial P}{\partial Z}-\frac{\gamma}{(\gamma-1)} \frac{\partial T}{\partial Z}\right)-\frac{V_{f}}{(\gamma-1)} \frac{\partial T}{\partial Z}\right\}\right] \tag{2.21}
\end{equation*}
$$

Integrated Continuity Equation

$$
\begin{equation*}
\frac{\partial Q(t, z)}{\partial z}=\frac{-2 L}{C_{0}} \int_{0}^{1}\left(\frac{\partial P}{\partial t}-\frac{\partial T}{\partial t}\right) R d R \tag{2.22}
\end{equation*}
$$

Transient Mass Flowrate

$$
\begin{equation*}
Q(t, z)=2 \int_{0}^{1} V(t, R, z) R d R \tag{2.23}
\end{equation*}
$$

Approximations and Linearization

An earlier investigation by Orner (17) neglected all the nonlinear terms on the right side of Equation (2.21). The order of magnitude of these terms may be examined by substituting the expressions for $\frac{\partial P}{\partial Z}$ and $\frac{\partial T}{\partial Z}$ which result from the small disturbance solution, Appendix A, ∂Z
into Equation (2.21). From Equations (A.51) and (A.52):

$$
\begin{equation*}
\frac{\partial P}{\partial Z}-\frac{\gamma}{(\gamma-1)} \frac{\partial T}{\partial Z} \approx 0 \tag{2.24}
\end{equation*}
$$

The remaining term $\frac{V_{f}}{\gamma} \frac{\partial T}{\partial Z}$ was also neglected by Orner (17) since $\left|v_{f}\right|<0.2$ and $\left|\begin{array}{l}\partial T \\ \partial Z\end{array}\right| \ll\left|\begin{array}{l}\partial P \\ \partial t\end{array}\right| \quad$ (D'Souza (8)). With the above two approximations, Equation (2.21) reduces to the linear form:

$$
\begin{equation*}
\frac{\partial T}{\partial t}-\frac{\nu_{0}}{\sigma_{0} a^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial T}{\partial R}\right)=\frac{(\gamma-1)}{\gamma} \frac{\partial P}{\partial t} \tag{2.25}
\end{equation*}
$$

The order of magnitude of the right side of Equation (2.20) may also be examined by substituting in the known expressions for $\frac{\partial P}{\partial Z}$ and $\frac{\partial V}{\partial Z}$ from Appendix A. Using Equations (A.49) and (A.52), the right hand side of Equation(2.20) becomes:

$$
\begin{equation*}
\left[\frac{1}{\gamma} \frac{\partial P}{\partial Z}+\left(V_{f}+V\right) \frac{\partial V}{\partial Z}\right] \approx-\frac{L}{c_{0}}\left[\frac{\partial Q(t, 0)}{\partial t}+\left(V_{f}+V\right) \frac{\partial P(t, 0)}{\partial t}\right] \tag{2.26}
\end{equation*}
$$

where $Q(t, 0)$ and $P(t, 0)$ are nondimensional boundary conditions at $Z=0$. For fast transients it appears that the value of the term $\left(V_{f}+V\right) \frac{\partial P(t, 0)}{\partial t}$ may be of the same order or larger than the term $\frac{d Q(t, 0)}{d t}$, even though $\left(V_{f}+V\right)$ may be small.

There are three independent variables, (t, R, Z), in the system of Equations (2.20), (2.25), (2.22), and (2.23). One way to eliminate the variable "time" is to apply the Laplace Transform to the system of equations. But Equation (2.20) must first be linearized.

The method of linearization used by Zielke (22) and Brown (5) when they solved Equation (2.20) by a modified method of characteristics was to make the term $V \frac{d V}{d Z}$ a "weighting function" which
"forced" the homageneous linear equation shown in Equation (2.27) below.

Axial Momentum

$$
\begin{equation*}
\frac{\partial V}{\partial t}-\frac{V_{0}}{a^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial V}{\partial R}\right)+\frac{C_{0}}{\gamma L} \frac{\partial P}{\partial Z}=-\frac{C_{0}}{L} V \frac{\partial V}{\partial Z} \tag{2.27}
\end{equation*}
$$

The term $\left(V_{f}\right)$ is missing on the right side of Equation (2.27) since Zielke and Brown did not consider through flow in their analyses. In effect, the term $V \frac{\partial V}{\partial Z}$ was assigned a constant value at some spatial coordinate (R, Z) at a particular time (t). This method of linearization, with some modification, will be used in this thesis.

The term $V \frac{\partial V}{\partial Z}$ in Equation (2.20) may be linearized by fixing either (V) or $\left(\frac{\partial V}{\partial Z}\right)$ at some particular time (t), but not both in the same term. That is, either (V) or $\left(\frac{\partial V}{\partial Z}\right)$ may be designated as a time-varying coefficient which must be recalculated and updated at intervals in the time domain solution. The time-varying coefficient will be designated in this thesis with a subscript (*).

This type of linearization is valid only for some small period of time (Δt), where (Δt) is much less than the reciprocal of the highest frequency of interest in the response of the line ($\boldsymbol{\omega}_{\max }$). That is,

$$
\begin{equation*}
(\Delta t) \ll \frac{1}{\omega_{\max }} \tag{2.28}
\end{equation*}
$$

where $\mathcal{C}_{\text {max }}$ is in radians per unit time.
The term $V_{f} \frac{\partial V}{\partial Z}$ in Equation (2.20) is already linear since V_{f} is not a function of time. To calculate the time-varying coefficients, the form of their solutions from the acoustic model (Appendix A) will
be used. These forms are given as Equations (A.48) and (A.49).
By using Equations (A.48) and (A.49) the term $V \frac{\partial V}{\partial Z}$ may be represented in the linear forms shown below.

Method 1. Fix V for a given time increment.

$$
\begin{equation*}
V \frac{\partial V}{\partial Z} \approx V_{*} \frac{\partial V}{\partial Z} \tag{2.29}
\end{equation*}
$$

where $v_{*}=\left[-\frac{L Z}{C_{0}} \frac{\partial P(t, 0)}{\partial t}+Q(t, 0)\right]_{*}$
When this method of linearization is used, both (V) and ($\frac{\partial V}{\partial Z}$) must be averaged over (R). (V) is represented by a uniform axial velocity profile, and $\frac{\partial V}{\partial Z}$ must be averaged over (R) to make Equation (2.20) separable.

Method 2. Fix $\frac{\partial V}{\partial Z}$ for a given time increment.
$V \frac{\partial V}{\partial Z} \approx V(t, R, Z)\left(\frac{d V}{\partial Z}\right)_{k}$
where $\left(\frac{\partial V}{\partial Z}\right)_{*}=\left[-\frac{L}{C_{0}} \frac{\partial P(t, 0)}{\partial t}\right]_{*}$
When this method of linearization is used, only $\frac{\partial V}{\partial Z}$ is averaged over (R). Thus, method 2 should be a more accurate method of linearization, and is the only method pursued in the body of this thesis. Appendix C shows the result obtained by combining both Method 1 and Method 2. This combination produced a model which was more stable numerically than the model which used the Method 2 linearization only, and may be useful under some circumstances as discussed in Chapter VIII (Summary and Conclusions).

One of the criteria for the transmission line model (as stated in Chapter I) is that the model should exhibit greater apparent damping
as disturbance amplitude increased. This criterion is based on observation of actual experiments on pneumatic lines. The form for $\left(\frac{\partial V}{\partial Z}\right)_{*}$ shown as Equation (2.30) produced greater apparent damping as disturbance amplitude increased for negative-going step inputs, but produced less apparent damping for large disturbance amplitudes on positive-going step inputs. To correct this discrepancy the following form was used for $\left(\frac{\partial V}{\partial Z}\right)_{*}$:

$$
\begin{equation*}
\left(\frac{\partial V}{\partial Z}\right)_{*}=(\operatorname{sgn} P(t, 0))\left(\frac{L}{c_{0}} \frac{\partial P(t, 0)}{\partial t}\right)_{*} \tag{2.31}
\end{equation*}
$$

This form for $\left(\frac{\partial V}{\partial Z}\right)_{*}$ produced a line model which exhibited greater apparent damping for larger disturbances regardless of the sign of the disturbance.

Rewriting the Axial Momentum Equation (2.20) using the second
method of linearization yields:

$$
\begin{align*}
\frac{\partial V(t, R, Z)}{\partial t}+\frac{C_{0}}{L}\left(\frac{\partial V}{\partial Z}\right)_{*} V(t, R, Z)-\frac{y_{0}}{a^{2} R} & \frac{\partial}{\partial R}\left(\frac{R V(t, R, Z)}{\partial R}\right)= \\
& -C_{0}\left(\frac{1}{\gamma} \frac{\partial P(t, z)}{\partial Z}+M_{b} \frac{\partial V(t, z)}{\partial Z}\right) \tag{2.32}
\end{align*}
$$

where $\left(\frac{\partial V}{\partial Z}\right)_{*}$ is given as Equation (2.31), and $M_{b}=\left(V_{f}\right)$ averaged over (R).

$$
\begin{equation*}
M_{b}=2 \int_{0}^{1} V_{f} R d R=M_{\text {avg }}=\frac{M_{c \ell}}{2}=\frac{v_{0} R e}{2 C_{0} a} \tag{2.33}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{M}_{\mathrm{c} 1}= & \text { Mach number of the through flow based on centerline } \\
& \text { velocity, } \\
\mathrm{M}_{\mathrm{avg}}= & \text { Mach number of the through flow based on average } \\
& \text { velocity, } \\
\operatorname{Re}= & \text { Reynolds number based on average through flow velocity. }
\end{aligned}
$$

Transformation Into the Laplace Domain

For the small increment of time (Δt) as defined in Equation (2.28), Equations (2.32), (2.25), (2.22), and (2.23) may be transformed into the Laplace domain. The results are shown below.

Axial Momentum

$$
\begin{align*}
V(S, R, Z)\left(1+\frac{C_{0}}{S L}\left(\frac{\partial V}{\partial Z}\right)_{*}\right)-\frac{Y_{0}}{S a^{2} R} \frac{\partial}{\partial R}(& \left(\frac{\partial V(S, R, Z)}{\partial R}\right)= \\
& -\frac{C_{0}}{S L}\left(\frac{1}{\gamma} \frac{\partial P(S, z)}{\partial z}+M_{b} \frac{\partial V(S, Z)}{\partial Z}\right) \tag{2.34}
\end{align*}
$$

Energy Equation

$$
\begin{equation*}
T(S, R, z)-\frac{v_{0}}{S \sigma_{0} a^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial T(s, R, z)}{\partial R}\right)=\frac{(\gamma-1)}{\gamma} P(s, z) \tag{2.35}
\end{equation*}
$$

Integrated Continuity

$$
\begin{equation*}
\frac{\partial Q(S, z)}{\partial z}=\frac{-2 S L}{C_{0}} \int_{0}^{1}(P(S, z)-T(S, R, z)) R d R \tag{2.36}
\end{equation*}
$$

Transient Mass Flowrate

$$
\begin{equation*}
Q(s, z)=2 \int_{0}^{1} V(S, R, z) R d R \tag{2.37}
\end{equation*}
$$

Solution of the Axial Momentum and Energy

Equations

Equations (2.34) and (2.35) are made separable by assuming a product form of solution:

$$
\begin{equation*}
V(S, R, z)=G_{1}(S, R) \quad G_{2}(S, z) \tag{2.38}
\end{equation*}
$$

and

$$
T(S, R, z)=G_{3}(S, R) \quad G_{4}(S, z)
$$

The term $\frac{\partial V(S, Z)}{\partial Z}$ on the right-hand side of Equation (2.34) may be approximated by its small disturbance solution, Equation (A.42). Rewriting Equations (2.34) and (2.35) with the substitution of Equaltions (2.38) and (A.42) yields the equations given below.

Axial Momentum

$G_{1}\left(1+\frac{F_{1 *}}{S}\right)-\frac{V_{0}}{S a^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial G_{1}}{\partial R}\right)=-\frac{C_{0}}{G_{z} \gamma S L}\left(\frac{\partial P}{\partial Z}-\frac{C_{0} D_{g} M_{b}}{S L} \frac{\partial^{2} P}{\partial Z^{2}}\right)$
where $D_{g}=\left(1-\frac{2 J_{1}(\psi)}{\psi J_{0}(\psi)}\right) \quad$ from Equations (A.40)
and $\quad F_{1 *}=\frac{C_{0}}{L}\left(\frac{\partial V}{\partial Z}\right)_{*}=(\operatorname{sgn} P(t, 0))\left(\frac{\partial P(t, 0)}{\partial t}\right)_{*}$

Energy Equation

$$
\begin{equation*}
G_{3}-\frac{v_{0}}{s \sigma_{0} a^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial G_{3}}{\partial R}\right)=\frac{(\gamma-1)}{G_{4} \gamma} P \tag{2.41}
\end{equation*}
$$

Choose $\quad G_{z}=-\frac{C_{0}}{\gamma S L}\left(\frac{\partial P}{\partial z}-\frac{C_{0} D_{g} M_{b}}{S L} \frac{\partial^{2} P}{\partial Z^{2}}\right)$
and $\quad G_{4}=\frac{(\gamma-1) P}{\gamma}$
Let $\quad \alpha=j \sqrt{\frac{s a^{2}}{v_{0}}\left(1+\frac{F_{1 *}}{s}\right)} \quad$ and $\quad \Delta=j \sqrt{\frac{s a^{2} \sigma_{0}}{v_{0}}}$
Substitution of Equations (2.42), (2.43), and (2.44) into Equations (2.39) and (2.41) yields:

$$
\begin{equation*}
G_{1}+\frac{1}{\alpha^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial G_{1}}{\partial R}\right)=1 \tag{2.45}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{3}+\frac{1}{\Delta^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial G_{3}}{\partial R}\right)=1 \tag{2.46}
\end{equation*}
$$

A homogeneous solution to Equation (2.45) is:

$$
\begin{equation*}
G_{1}=C_{1} \frac{J_{0}(\alpha R)}{J_{0}(\alpha)}+C_{2} \frac{Y_{0}(\alpha R)}{Y_{0}(\alpha)} \tag{2.47}
\end{equation*}
$$

where J_{0} and Y_{0} are Bessel functions of the first and second kind, zeroeth order. A particular solution to Equation (2.45) is:

$$
\begin{equation*}
G_{1}=1 \tag{2.48}
\end{equation*}
$$

Thenthe total solution to Equation (2.45) is:

$$
\begin{equation*}
G_{1}=1+C_{1} \frac{J_{0}(\alpha R)}{J_{0}(\alpha)}+C_{2} \frac{Y_{0}(\alpha R)}{Y_{0}(\alpha)} \tag{2.49}
\end{equation*}
$$

From the no-slip boundary condition $G_{1} \|_{R=1}=0$,

$$
\begin{equation*}
C_{1}+C_{2}=-1 \tag{2.50}
\end{equation*}
$$

From the boundary condition $\frac{\partial G_{1}}{\left.\partial\right|_{R=0}}=0$

$$
\begin{equation*}
C_{2}=0 \tag{2.51}
\end{equation*}
$$

Then $C_{1}=-1$ and:

$$
\begin{equation*}
G_{1}=-\left(\frac{J_{0}(\alpha R)-J_{0}(\alpha)}{J_{0}(\alpha)}\right) \tag{2.52}
\end{equation*}
$$

Application of the boundary conditions $\left.G_{3}\right|_{R=1}=0$ and $\left.\frac{\partial G_{3}}{\partial R}\right|_{R=0}=0$ yields the following solution for Equation (2.41):

$$
\begin{equation*}
G_{3}=-\left(\frac{J_{0}(\Delta R)-J_{0}(\Delta)}{J_{0}(\Delta)}\right) \tag{2.53}
\end{equation*}
$$

where ($\mathbf{\Delta}$) is defined in Equation (2.44).
The solution for the axial velocity profile becomes:

$$
\begin{equation*}
V(S, R, z)=\frac{\left(\frac{J_{0}(\alpha R)-J_{0}(\alpha)}{J_{0}(\alpha)}\right) \frac{C_{0}}{\gamma S L}\left(\frac{\partial P}{\partial Z}-\frac{C_{0} D_{0} M_{b}}{S L} \frac{\partial^{2} P}{\partial Z^{2}}\right)}{\left(1+\frac{F_{0, x}}{S}\right)} \tag{2.54}
\end{equation*}
$$

The axial temperature profile becomes:

$$
\begin{equation*}
T(S, R, z)=\left(\frac{J_{0}(\Delta R)-J_{0}(\Delta)}{J_{0}(\Delta)}\right)\left(-\frac{(\gamma-1)}{\gamma} P(S, z)\right) \tag{2.55}
\end{equation*}
$$

Integrated Continuity Equations

By substituting Equation (2.54) into Equation (2.37) and intergrating with respect to (R), Equation (2.37) takes the form shown below.

Transient Mass Flowrate

$$
\begin{equation*}
Q(S, z)=\frac{-\frac{C_{0} D_{Q}}{\gamma S L}\left(\frac{\partial P(S, z)}{\partial z}-\frac{C_{0} D_{g} M_{b}}{S L} \frac{\partial^{2} P(S, z)}{\partial z^{2}}\right)}{r} \tag{2.56}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{a}=\left(1-\frac{2 J_{1}(\alpha)}{\alpha J_{0}(\alpha)}\right) \tag{2.57}
\end{equation*}
$$

$$
\left(1+\frac{F_{1 *}}{s}\right)
$$

$\left(D_{g}\right)$ is given in Equations (A.40), $\left(M_{b}\right)$ is Equation (2.33), and ($F_{1 *}$) is Equation (2.40).

Substitution of Equation (2.55) into (2.36) and integrating with respect to (R) yields the equation given below.

Integrated Continuity

$$
\begin{equation*}
\frac{\partial Q(s, z)}{\partial Z}=-\frac{S L N_{g}}{C_{0}} P(s, z) \tag{2.58}
\end{equation*}
$$

where $\quad N_{9}=\left(1+\frac{2(\gamma-1) J_{1}(\Delta)}{\Delta J_{0}(\Delta)}\right)$
Differentiation of Equation (2.56) with respect to (z) yields:

$$
\begin{equation*}
\underset{\partial Z}{\partial Q(s, z)}=\frac{-\frac{C_{0} D_{a}}{\gamma S L}\left(\frac{\partial^{2} P(s, z)}{\partial z^{2}}-\frac{C_{0} D_{g} M_{b}}{S L} \frac{d^{3} P(s, z)}{\partial z^{3}}\right)}{\left(1+\frac{F_{1 *}}{S}\right)} \tag{2.60}
\end{equation*}
$$

The purpose of this thesis is to derive a systems model for a transmission line which predicts transients accurately at low and medium frequencies, in the range $0<\left|S_{C o}\right|<2 \pi$. The term
involving $\frac{d^{3} P(S, Z)}{\partial Z^{3}}$ in Equation (2.60) is likely significant only at high frequencies, and will be neglected in the analysis which follows.

Ordinary Differential Equations

Neglecting the term $\frac{\partial^{3} P(S, Z)}{\partial Z^{3}}$ in Equation (2.60), and equating Equation (2.60) with Equation (2.58) yields:

$$
\begin{equation*}
\frac{\partial^{2} P(s, z)}{\partial z^{2}}=\left(\frac{s L}{C_{0}}\right)^{2} \frac{N_{g}}{D_{a}}\left(1+\frac{F_{1 *}}{s}\right) P(s, z) \tag{2.61}
\end{equation*}
$$

The solution to Equation (2.61) is of the form:
where $\quad \Gamma_{b}(s)=\frac{S L}{C_{0}} \sqrt{\frac{N_{g}}{D_{a}}\left(1+\frac{F_{1 *}}{s}\right)}$
(D_{a}) is given as Equation (2.57) and (N_{g}) is Equation (2.59). The accompanying equation which describes flow $Q(S, Z)$ as a function of pressure $P(s, z)$ is Equation (2.56). By substituting Equation (2.62) into Equations (2.61) and (2.56), this system of equations results:

$$
\begin{align*}
& P(s, z)=C_{1} e^{\Gamma_{D}(s) z}+C_{2} e^{-\Gamma_{b}(s) z} \tag{2.64}\\
& \frac{Q(s, z)}{A(s)}=C_{1}(1+E(s)) e^{\Gamma_{b}(s) z}-C_{2}(1-E(s)) e^{-\Gamma_{1}(s) z} \tag{2.65}
\end{align*}
$$

where $\quad A(s)=-\frac{C_{0} D_{a} \Gamma_{b}(s)}{\gamma S L\left(1+\frac{F_{1 *}}{s}\right)}$
and

$$
\begin{equation*}
E(s)=-\frac{C_{0}}{S L} D_{g} M_{b D} \Gamma_{D D}(S) \tag{2.67}
\end{equation*}
$$

Solution Completion

To complete the solution of the system of Equations (2.64) and (2.65), the boundary conditions at $Z=0$ and $Z=1$ must be applied. That is:

$$
\begin{array}{ll}
\mathscr{L}(P(t, 0))=P(s, 0) & ; \mathcal{L}(Q(t, 0))=Q(s, 0) ; \\
\mathscr{L}(P(t, 1))=P(s, 1) & ; \mathcal{L}(Q(t, 1))=Q(s, 1) \tag{2.68}
\end{array}
$$

Applying these boundary conditions to Equations (2.64) and (2.65) yields:

$$
\begin{align*}
& C_{1}=\frac{1}{2}\left(P(s, 0)(1-E(s))+\frac{Q(s, 0)}{A(s)}\right) \\
& C_{2}=\frac{1}{2}\left(P(s, 0)(1+E(s))-\frac{Q(s, 0)}{A(s)}\right) \tag{2.69}
\end{align*}
$$

A combination of Equations (2.64), (2.65), and (2.69) yields the final solution for the system of equations which are shown below.

Summary

$$
\left[\begin{array}{l}
P(s, 1) \tag{2.70}\\
Q(s, 1)
\end{array}\right]=\left[\begin{array}{cc}
\operatorname{Cosh} \Gamma_{b}(s)+Y_{b}(s) M_{b} \sinh \Gamma_{b}(s) & -Z_{b}(s) \sinh \Gamma_{b}(s) \\
-\frac{\operatorname{Sinh} \Gamma_{b}(s)}{Z_{b}(s)} & \operatorname{Cosh} \Gamma_{b}(s)-Y_{b}(s) M_{b} \sinh \Gamma_{b}(s)
\end{array}\right]\left[\begin{array}{l}
P(s, 0) \\
Q(s, 0)
\end{array}\right]
$$

where

$$
\begin{align*}
& \Gamma_{b}(s)=\frac{s L}{C_{0}} \sqrt{\frac{N_{g}}{D_{a}}\left(1+\frac{F_{9 *}}{s}\right)} \tag{2.71}\\
& Y_{b}(s)=\frac{C_{0}}{s L} D_{g} \Gamma_{b}(s)=D_{g} \sqrt{\frac{N_{g}}{D_{a}}\left(1+\frac{F_{1 *}}{s}\right)} \tag{2.72}\\
& Z_{b}(s)=\frac{\gamma s L\left(1+\frac{F_{1 *}}{s}\right)}{C_{0}}=\gamma \sqrt{\frac{\left(1+\frac{F_{1 *}}{s}\right)}{D_{g}} \Gamma_{b}(s)} \tag{2.73}
\end{align*}
$$

$$
\begin{align*}
& N g=\left(1+\frac{2(\gamma-1) J_{1}(\Delta)}{\Delta J_{0}(\Delta)}\right) ; \quad D_{g}=\left(1-\frac{2 J_{1}(\psi)}{\psi J_{0}(\psi)}\right) \tag{2.74}\\
& D_{a}=\left(1-\frac{2 J_{1}(\alpha)}{\alpha J_{0}(\alpha)}\right) \\
& \Delta=j \sqrt{\frac{S \sigma_{0}}{D N}} ; \quad \psi=j \sqrt{\frac{S}{D N}} ; \quad \alpha=j \sqrt{\frac{S}{D N}\left(1+\frac{F_{1 *}}{5}\right)} \tag{2.75}\\
& D N=\frac{V_{0}}{a^{2}} ; \quad F_{1 *}=\frac{C_{0}}{L}\left(\frac{\partial V}{\partial Z}\right)_{*}=(\operatorname{sgn} P(t, 0))\left(\frac{\partial P(t, 0)}{\partial t}\right)_{*} \tag{2.76}
\end{align*}
$$

$$
\begin{equation*}
M_{b}=\text { Average through flow mach number. } \tag{2.77}
\end{equation*}
$$

Equations (2.70) represent the solution of the linearized axial momentum equation which includes the convective acceleration term $V_{z} \frac{\partial V_{z}}{\partial z}$ (Equation (2.4)), and the linear energy equation. This system of equations will be transformed to the time domain by using appropriate approximations for $\Gamma(s), \operatorname{losh} \Gamma(s), \sinh \Gamma(s)$, etc. The approximations are shown in Chapter III; transformation to the time domain is shown in Chapter V.

Comparison to Existing Models

Equations (2.70) reduce to the small disturbance solution of Appendix A when through flow and finite amplitude disturbance effects are deleted. That is:
$\left[\begin{array}{l}P(s, 1) \\ Q(s, 1)\end{array}\right]=\left[\begin{array}{cc}\cosh \Gamma(s) & -Z_{c}(s) \sinh \Gamma(s) \\ \frac{-\sinh \Gamma(s)}{Z_{c}(s)} & \cosh \Gamma(s)\end{array}\right]\left[\begin{array}{l}P(s, 0) \\ Q(s, 0)\end{array}\right]$
where $\Gamma(s)=\frac{S L}{C_{0}} \sqrt{\frac{N_{g}}{D_{g}}} \quad$ and $\quad Z_{c}(s)=\frac{\gamma}{\sqrt{N_{g} D g}}$

Ey deleting the effects of finite amplitude disturbances, but retaining through flow, the result is:
$\left[\begin{array}{l}P(s, 1) \\ Q(s, 1)\end{array}\right]=\left[\begin{array}{cc}\operatorname{Cosh} \Gamma(s)+Y_{e}(s) M_{b} \operatorname{Sinh} \Gamma(s) & -Z_{c}(s) \operatorname{Sinh} \Gamma(s) \\ \frac{-S \operatorname{Sinh} \Gamma(s)}{Z_{c}(s)} & \operatorname{Cosh} \Gamma(s)-Y_{e}(s) M_{b} \operatorname{Sinh} \Gamma(s)\end{array}\right]\left[\begin{array}{l}P(s, 0) \\ Q(s, 0)\end{array}\right]$,
where

$$
\begin{equation*}
Y_{e}(s)=\sqrt{N_{g} D_{g}} \tag{2.81}
\end{equation*}
$$

Orner (17) derived Equation (2.80) by using the Poincare Perturbation technique on the linearized axial momentum Equation (2.32), with $F_{1 *}=0$. This is a valid representation when the disturbance amplitude is small and through flow is large.

$$
\text { Orner's expression for } Y_{e}(s) \text { is: }
$$

$$
\begin{equation*}
Y_{e}(s)=\frac{1}{\gamma}\left[1-\frac{8(\gamma-1)}{\Delta^{2}}\left(1-\frac{2 \bar{J}_{1}(\Delta)}{\Delta J_{0}(\Delta)}\right)\right] \tag{2.82}
\end{equation*}
$$

where (Δ) is given in Equations (2.75). For $\left|\frac{S L}{C_{0}}\right|>\pi$, Equations (2.81) and (2.82) yield the same result; that is, $\left|Y_{e}(s)\right| \approx 1.0$. But as frequency approaches zero, Equation (2.82) approaches ∞, and Equation (2.81) approaches zero (since $D_{g} \rightarrow 0$ as $S \rightarrow 0$). Orner!'s result for $Y_{e}(s)$ and this thesis result differ because Orner represented the convective acceleration term as $M_{b} \frac{\partial V(t, R, Z)}{\partial Z}$ while this thesis used $M_{b} \frac{d V(t, z)}{\partial Z}$. That is, this thesis used an average value of $\frac{\partial V}{\partial}$ over the line cross section while Orner used an exact value of $\frac{\partial V}{\partial z}$
$\frac{d V}{d Z}$ at each point (t, R, Z).
For this reason, Orner's result should be more accurate. The
matter seems rather inconsequential, however, since the entire term ($Y_{e} M_{b} \sinh \Gamma(s)$) in Equation (2.80) approaches zero so $S \rightarrow 0$, regardless of which form of (Y_{e}) is used.

$$
\begin{gathered}
\text { APPROXIMATIONS FOR } \Gamma(\mathrm{s}), \\
\operatorname{COSH} \Gamma(\mathrm{s}), \text { SINH } \Gamma(\mathrm{s})
\end{gathered}
$$

To transform Equations (2.70) to the time domain, it is necessary to choose approximations for the functions which appear in these equations. These approximations are listed below.

$$
\text { Approximations for } \mathrm{D}_{\mathrm{g}}, \mathrm{D}_{\mathrm{a}} \text {, and } \mathrm{N}_{g}
$$

The functions $\left(D_{g}\right),\left(D_{a}\right)$, and $\left(N_{g}\right)$ are monotonically increasing or decreasing functions as $S \rightarrow \infty$, so they may be approximated by rela tively simple expressions. Goodson (10) suggested this approximation for $\left(D_{g}\right)$, (see Figure 2):

$$
\begin{equation*}
D_{g} \approx \frac{S(S+40.9 D N)}{(S+5.78 D N)(S+56.6 D N)} \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
D N=\text { Damping Number }=\frac{v_{0}}{a^{2}} \tag{3.2}
\end{equation*}
$$

The basis for this approximation is given in Chapter I, "Related Literature." The Goodson approximation also applies to (D_{a}), by replacing (S) with $\left(S+F_{1 *}\right)$, where $\left(F_{1 *}\right)$ is defined as Equation (2.76).

$$
\begin{equation*}
D_{a} \approx \frac{\left(S+F_{1 *}\right)\left(S+40.9 D N+F_{1 *}\right)}{\left(S+5.78 D N+F_{1 *}\right)\left(S+56.6 D N+F_{1 *}\right)} \tag{3.3}
\end{equation*}
$$

There are no published approximations for (N_{g}), so this form was used (Prandtl number $=0.70$):

$$
\begin{equation*}
N_{g} \approx \frac{(S+10 D N)}{(S+7.14 D N)} \tag{3.4}
\end{equation*}
$$

This approximation meets the requirements that $\left|N_{\mathrm{g}}\right|$ at $\mathrm{S}=0$ is 1.4, $\left|N_{g}\right|$ at $S=\infty$ is 1.0 , and the differences between the approximate and exact magnitudes squared over the region $1 \leq\left|\frac{s}{D N}\right| \leq 1000$ is a minimum. The exact and approximate magnitudes of $\left(\mathrm{N}_{\mathrm{g}}\right)$ are shown on Figure 4. The exact expression for $\left(\mathrm{N}_{\mathrm{g}}\right)$ is shown below:

$$
\begin{equation*}
N_{g}=\left(1+\frac{2(.4) J_{1}(\Delta)}{\Delta J_{0}(\Delta)}\right) \tag{3.5}
\end{equation*}
$$

and $(\boldsymbol{\Delta})$ is given in Equations (2.75).

Approximations for $\sinh \Gamma(s)$ and $\operatorname{Cosh} \Gamma(s)$

The periodic functions $\operatorname{Sinh} \Gamma(s)$ and $\operatorname{Cosh} \Gamma(s)$ each may be represented by a power series expansion. For example, $\cosh \Gamma(s)$ is given as Equation (3.6):

$$
\begin{equation*}
\operatorname{Cosh} \Gamma(s) \approx 1+\frac{\Gamma^{2}(s)}{2!}+\frac{\Gamma^{4}(s)}{4!}+\frac{\Gamma^{6}(s)}{6!}+\ldots \tag{3.6}
\end{equation*}
$$

However, for such an expansion to be accurate when $\Gamma(s)$ is large, an excessive number of terms must be retained. Also, improper truncation of such an expansion can lead to a numerical instability. Oldenburger (16) has shown that the product-term expansions shown below produce greater accuracy with fewer terms than the conventional power series expansions (like Equation (3.6)), and the resulting series is not as likely to lead to numerical instabilities.

Product-Term Expansions

$$
\begin{equation*}
\sinh \Gamma(s) \approx \Gamma(s) \prod_{k=1}^{\infty}\left(1+\frac{\Gamma^{2}(s)}{k^{2} \pi^{2}}\right) \tag{3.7}
\end{equation*}
$$

Figure 4. Approximation of "Ng"

$$
\begin{equation*}
\operatorname{Cosh} \Gamma(s) \approx \prod_{k=1}^{\infty}\left(1+\frac{4 \Gamma^{2}(s)}{(2 k-1)^{2} \pi^{2}}\right) \tag{3.8}
\end{equation*}
$$

For the step responses in Chapter V of this thesis, $\operatorname{Cosh} \Gamma$ (s) was approximated by both Equations (3.6) and (3.8). However, Equation (3.6) was numerically unstable for all but the smallest disturbance amplitudes, so it was discarded in favor of Equation (3.8). Figure 5 illustrates the relative accuracies of one, two, and four product term approximations for $\operatorname{Cosh} \Gamma(s)$. For simplicity in plotting, $\Gamma(s)$ was approximated (for this plot only) by the simple lossless form:

$$
\begin{equation*}
\Gamma(s)=\frac{S L}{C_{0}} \tag{3.9}
\end{equation*}
$$

The exact form of $\cosh \Gamma(s)$ is:

$$
\begin{equation*}
\operatorname{Cosh} \Gamma(s)=\frac{1}{2}\left(e^{\Gamma(s)}+e^{-\Gamma(s)}\right) \tag{3.10}
\end{equation*}
$$

The one, two, and four product-term expansions for Cosh Γ (s) based on the lossy form of $\Gamma(s)$ are shown below:

$$
\begin{equation*}
\text { Let } \quad \Gamma^{2}(s)=\left(\frac{L}{C_{0}}\right)^{2} \frac{A(s)}{B(s)} \tag{3.11}
\end{equation*}
$$

where

$$
\frac{A(S)}{B(S)}=S^{2} \frac{\mathrm{Ng}}{D_{g}}
$$

$A(S)$ and $B(S)$ are polynomials in "S" which are introduced to simplify the algebra.

One Product Term

$$
\begin{equation*}
\cosh \Gamma(s)=\frac{B(s)+.4053\left(\frac{L}{c_{0}}\right)^{2} A(s)}{B(s)} \tag{3.12}
\end{equation*}
$$

Figure 5. \mid cosh $\Gamma(\mathrm{s}) \mid$ for One, Two, and Four Product Term

$$
\begin{equation*}
\operatorname{Cosh} \Gamma(s)=\frac{B(s)^{2}+.4503\left(\frac{L}{c_{0}}\right)^{2} A(s) B(s)+.01825\left(\frac{L}{c_{0}}\right)^{4} A(s)^{2}}{B(s)^{2}} \tag{3.13}
\end{equation*}
$$

Four Product Terms

$$
\operatorname{Cosh} \Gamma(s)=\frac{B(s)^{4}+K_{1} A(s) B(s)^{3}+K_{2} A(s)^{2} B(s)^{2}+K_{3} A(s)^{3} B(s)+K_{4} A(s)^{4}}{B(S)^{4}}
$$

where $K_{1}=.4748\left(\frac{L}{C_{0}}\right)^{2} ; K_{2}=.0294\left(\frac{L}{C_{0}}\right)^{4} ; K_{3}=.5067 \times 10^{-3}\left(\frac{L}{C_{0}}\right)^{6} ;$ and $K_{4}=.2441 \times 10^{-5}\left(\frac{L}{c_{0}}\right)^{8}$.

Approximation for Γ_{b} (s)

The exact expression for $\Gamma_{\mathrm{b}}^{2}(\mathrm{~s})$, from Equation (2.71), is:

$$
\begin{equation*}
\Gamma_{b}^{2}(s)=\left(\frac{S L}{C_{0}}\right)^{2} \frac{N_{g}}{D_{a}}\left(1+\frac{F_{1 *}}{s}\right) \tag{3.15}
\end{equation*}
$$

where $\left(N_{g}\right),\left(D_{a}\right)$, and ($F_{1 *}$) are given as Equations (2.74) and (2.76).
The approximation for Equation (3.15), using Equations (3.3) and (3.4) is:

$$
\Gamma_{\mathrm{b}}^{2}(S) \approx\left(\frac{L}{C_{0}}\right)^{2} \frac{A(S)}{B(S)}=\left(\frac{L}{C_{0}}\right)^{2} \frac{S(S+10 D N)\left(S+5.780 N+F_{1 *}\right)\left(S+56.6 D N+F_{1 *}\right)(3.16)}{(S+7.14 D N)\left(S+40.9 D N+F_{1 *}\right)}
$$

Plots of the magnitude of $\left(\frac{\mathrm{Ng}_{g}}{\mathrm{D}_{g}}\right)$ based on Equations (3.15) and (3.16) are shown on Figure 6 for the special case $F_{1 *}=0$. In this case $D_{a}=D_{g}$.

Equation (3.16) combined with Equations (3.12), (3.13) and (3.14)
form the approximation "set" which will be used in Chapter V for numerical integration of step responses.

Figure 6. Exact and Approximate $\left|\mathrm{N}_{\mathrm{g}} / \mathrm{D}\right|$

CHAPTER IV

EXPERIMENTAL PROCEDURES

The line model derived in Chapter II includes the effects of finite amplitude disturbances and through flow. Kantola's (13) experiments, as shown on Figure 1 , were recorded for up to ± 1.0 psig steps, but for no larger disturbances. Cooley (7) reported frequency response experiments with through flow and small transient disturbances. To validate the model from Chapter II for predicting finite amplitude disturbance effects, it was necessary to perform experiments at much higher disturbance levels than that reported by Kantola (13). It was necessary to examine only finite amplitude effects since the addition of through flow into the experiment makes it difficult to separate through flow effects from finite disturbance effects.

For these reasons an experiment was set up to record pressure step responses of a pneumatic line blocked at one end. The experimental line was 60 ft long, 0.40 inch diameter, thick-walled copper tubing. The tubing remained in a roll about 20 inches in diameter.

The experiment was designed to record the pressure at the blocked end of the line while subjecting the open end to positive-going and negative-going pressure steps of magnitude $0.25,1,2,4,6,8$, and 10 psig. The 0.25 psig step was the smallest size step which produced consistent step responses. Since the atmospheric pressure at the Air Force Academy is approximately 11.2 psia, a positive-going step of

10 psig began with the line evacuated to 1.2 psia, and ended with the line pressure at 11.2 psia. A negative-going step of 10 psig began at 22.2 psia and ended at 11.2 psia.

The experiment was set up as shown in Figure 7. Two sets of two each pressure transducers were used, one set for the $0.25,1,2$, and 4 psig steps, and the second set for the $4,6,8$ and 10 psig steps. The pressure transducers were low output impedance, variable reluctance type, Pace Series CP 51 and Validyne Series $\mathrm{P} 40, \pm 5$ and ± 25 psi differential transducers.

Figure 7. Experimental Apparatus

The pressure-time signals measured at the two ends of the line were recorded on polaroid film with a dual-beam Tektronix 555 oscilloscope. Two types of mechanical trigger mechanisms were used. The first mechanism was a fast opening manually operated ball valve. It took six to ten milliseconds to open fully. The valve added some volume to the line in the closed position and, particularly at low magnitude pressure steps ($\pm 1 / 4 \mathrm{psig}$), it altered the wave front at the blocked end of the line. This is shown on Figure 8 as input-output set \#1.

The second trigger mechanism added no volume to the line and opened fully in two to four milliseconds. It was a rubber stopper with a fishing line attached through the center. Even when the line was charged to +10 psig the stopper remained in the opening until a significant "jerk" was applied to the line. A typical result is shown on Figure 8 as input-output set \#2.

The line was 60 ft . long, so the pressure signal took approximately 53 milliseconds to travel the length of the line. The results shown on Figure 8 are for a step input of ± 0.25 psig. All the experimental results shown in this thesis were initiated by trigger mechanism \#2, the rubber stopper.

The Pace and Validyne pressure transducers have a flat frequency response from 0 to 1000 hertz. It is possible that some of the very high frequency content was lost, but the loss is not significant. At the first resonant frequency of the line $\omega_{\mathrm{T}}=\pi / 2$ (where $T_{e}=L / C_{o}=53$ milliseconds), $\omega \approx 30$ radians $/ \mathrm{sec}$, or 4.7 hertz. The second resonance occurred at 14.1 hertz, etc.

Figure 8. Relative Effects of Trigger Mechanisms

Figure 9 includes the total experimental results. These results will be shown again in Chapter V in conjunction with the computer integrated step responses.

CHAPTER V

TIME DOMAIN EVALUATION

The experimental results shown in Chapter IV include responses caused by both small and finite amplitude disturbances with no through flow. This chapter compares computed step responses based on the analytical results of Chapters II and III with the measured step responses presented in Chapter IV.

Preparation for Numerical Integration

With no through flow $\left(M_{b}=0.\right)$, Equations (2.70) may be written as:

$$
\left[\begin{array}{l}
P(S, 1) \tag{5.1}\\
Q(S, 1)
\end{array}\right]=\left[\begin{array}{rr}
\operatorname{Cosh} \Gamma_{b}(S) & -Z_{b}(S) \\
\operatorname{Sinh} \Gamma_{b}(S) \\
\frac{-S i n h}{} \Gamma_{b}(S) & \operatorname{Cosh} \Gamma_{b}(S)
\end{array}\right]\left[\begin{array}{l}
P(S, 0) \\
Q(S, 0)
\end{array}\right]
$$

where $\Gamma_{b}(s)=\frac{S L}{C_{0}} \sqrt{\frac{N_{g}}{D_{a}}\left(1+\frac{F_{1 *}}{s}\right)}$

$$
\begin{equation*}
z_{b}(s)=\gamma \sqrt{\frac{\left(1+\frac{F_{1 *}}{s}\right)}{N_{g} D_{a}}} \tag{5.3}
\end{equation*}
$$

and $\left(N_{g}\right),\left(D_{a}\right)$, and $\left(F_{1 *}\right)$ are given as Equations (2.74) and (2.76).
The Chapter IV experiments were conducted by blocking both ends of . a pneumatic line, charging or evacuating the line to a designated gage pressure, then opening one end of the line quickly to the atmosphere. The pressure transient at the end of the line which remained blocked
was recorded as a function of time (see Figure 9).
In the computed model, the end of the line where $Z=0$ is permanently blocked and the end of the line where $Z=1$ will be opened suddenly to atmospheric pressure. Since $Q(S, 0)=0$, Equation (5.1) may be rewritten as:

$$
\begin{equation*}
P(S, 0)=\frac{P(S, 1)}{\cosh \Gamma_{b}(S)} \tag{5.4}
\end{equation*}
$$

where $P(S, 1)$ is the pressure input to the system and $P(S, 0)$ is the output.

A fourth-order Runge-Kutta integrator was selected for the numerical investigation. This example will show the preparation for integration when the one product term expansion for Cosh $\Gamma_{b}(S)$ was used. By substituting Equation (3.12) into Equation (5.4), the result is:

$$
\begin{equation*}
P(S, 0)=\frac{P(S, 1)}{\left(1+.4053\left(\frac{L}{C_{0}}\right)^{2} \Gamma_{b}^{2}(S)\right)} \tag{5.5}
\end{equation*}
$$

From Equation (3.16):

$$
\begin{equation*}
\Gamma_{b}^{2}(S)=\left(\frac{S L}{C_{0}}\right)^{2} \frac{N_{g}}{D_{a}}=\left(\frac{L}{C_{o}}\right)^{2} \frac{A(S)}{B(S)} \tag{5.6}
\end{equation*}
$$

where $A(S)=S(S+10 \mathrm{DN})\left(S+5.78 \mathrm{DN}+\mathrm{F}_{1 *}\right)\left(\mathrm{S}+56.6 \mathrm{DN}+\mathrm{F}_{1 *}\right)$ and $B(S)=(S+7.14 \mathrm{DN})\left(S+40.9 \mathrm{DN}+\mathrm{F}_{1 *}\right)$

Equation (5.5) may be written in the alternate form:

$$
\begin{equation*}
P(S, 0)=\frac{P(S, 1) B(S)}{\left(B(S)+.4053\left(\frac{L}{C_{0}}\right)^{2} A(S)\right)} \tag{5.9}
\end{equation*}
$$

or

$$
\begin{equation*}
P(S, 0)=\frac{P(S, 1)\left[G(1)+G(2) s+G(3) s^{2}\right]}{\left[G(4)+G(5) s+G(6) s^{2}+G(7) s^{3}+G(8) s^{4}\right]} \tag{5.10}
\end{equation*}
$$

where $G(1)$ through $G(8)$ are functions of ($D N$), (L / C_{o}), and ($F_{1 \%}$). The damping number ($D N$) and the isentropic delay time (L / C_{o}) do not change during the numerical integration; the value of ($\mathrm{F}_{1 *}$) changes at every Runge-Kutta step.

For this problem, $\left(L / C_{0}\right)=.0532$ and $D N=0.8$. These numbers are based on an average kinematic viscosity (\mathcal{V}_{0}) of $0.032 \mathrm{in}^{2} / \mathrm{sec}$, at $72^{\circ} \mathrm{F}$ and 11.2 psia. The tube inner radius $(a)=0.20$ ins the tube length $=$ 60 ft , and the isentropic speed of sound $\left(\mathrm{c}_{\mathrm{o}}\right)=1130 \mathrm{ft} / \mathrm{sec}$.

Let $M(S)=\frac{P(S, 1)}{\left[G(4)+\ldots+G(8) S^{4}\right]}$

Then $P(S, 0)=M(S)\left[G(1)+G(2) S+G(3) S^{2}\right]$
and $S P(S, 0)=M(S)\left[G(1) S+G(2) S^{2}+G(3) S^{3}\right]$
Let $Y(1)=\mathcal{L}^{-4}\left[M(S) s^{0}\right], Y(2)=\mathcal{L}^{-1}[M(S) s], \quad Y(3)=\mathcal{L}^{-1}\left[M(S) s^{2}\right]$,
$Y(4)=\mathcal{L}^{-1}\left[M(S) s^{3}\right]$, and $Y(10)=\mathcal{L}^{-1}\left[M(S) s^{4}\right]$. Then Equations (5.11), (5.12), and (5.13) may be written in the time domain as:

$$
\begin{align*}
Y(10) & =\frac{1}{G(8)}[P(t, 1)-G(4) Y(1)-G(5) Y(2)-G(6) Y(3)-G(7) Y(4)] \tag{5.14}\\
P(t, 0) & =G(1) Y(1)+G(2) Y(2)+G(3) Y(3) \tag{5.15}\\
\frac{\partial P(t, 0)}{\partial t} & =G(1) Y(2)+G(2) Y(3)+G(3) Y(4) \tag{5.16}
\end{align*}
$$

Equations (5.14), (5.15), and (5.16) appear in the derivative function subroutine of the numerical integrator (see Appendix B).

Results

Figure 10 shows the computed step responses which result from Equations (5.14), (5.15), and (5.16) at step input levels of 0.25 and 4.0 psig. The experimental 0.25 and 4.0 psig step responses. from Chapter IV are shown as dashed lines.

As shown on Figure 11, the one, two, and four product term expansions for $\operatorname{Cosh} \Gamma_{b}(S)$ yield approximately the same overshoot for the same input step size. The computed responses do not have as much "apparent damping" as that shown by the real fluid system. This disparity is probably caused in part by the approximations used for $\Gamma_{b}(S)$ and $\operatorname{Cosh} \Gamma_{b}(S)$ in the model, and in part by the restrictions on the model in the basic derivation. That is, the model neglects the effects of radial flows, developing flows at both ends of the 1 ine, and torroidal motion.

The experimental results shown on Figures 10 and 11 include significant high frequency content, as demonstrated by the sharp "corners" of the pressure response. The computed responses using a one product term expansion for $\operatorname{Cosh} \Gamma_{b}(S)$ shows only the fundamental mode of the step response. Results using higher order approximations (two and four product terms) are dominated by the fundamental mode as we 11.

An unsuccessful attempt was made to "filter out" the high frequency content of the experimental step responses by a totally definitive mathematical method. However, one can still visualize a damped sinusoid which appears to be the effective fundamental mode of the experimental response. An approximate fundamental mode for the portion of the

Figure 10. Computed Responses Versus Experimental Responses

experimental result between 50 and about 175 milliseconds is shown on Figure 11. This fundamental mode was determined from the Fourier Analysis program, "Forit."

For purposes of comparison it is assumed (Criseria \#3, p 7) that the damping associated with the model response for small amplitude inputs should closely agree with the damping of the approximate fundamental mode of the corresponding experimental response. As shown on Figure 12, a damping number of 2.0 yields the desired model response at a step of 0.25 psig. Comparison of the computed results with experimental results at step levels of $\pm 0.25,2.0,4.0$, and 6.0 psig are made on Figure 13, based on a damping number of 2.0 .

The model is able to predict the increase in apparent damping for the 2.0.psig step, but not for the 4.0 and 6.0 psig steps. Since the model is based on the assumption of laminar transient flow, and a pressure step of 4.0 or 6.0 psig may produce f low in the turbulent region, it is not surprising that the model cannot predict the large changes in apparent damping at the higher step levels.

Figure 14 is the computed result for a two product term expansion for $\cosh \Gamma_{b}(S)$. It is quite evident that this higher order model is experiencing some type of instability. The four product term expansion model is unstable for all steps greater than ± 0.25 psig also.

System Instability

Oldenburger(16) reported that the conventional power series expansion for $\operatorname{Cosh} \Gamma(S)$, Equation (3.6), may introduce instabilities into an otherwise stable system of equations. But Oldenburger also showed that the infinite product term expansion for $\operatorname{Cosh} \Gamma(S)$ and

Figure 12. Computed Step Responses at Various Damping Numbers

Figure 13. Step Responses, One Product Term

Figure 14. Step Responses, Two Product Terms

Sinh $\Gamma(S)$ are absolutely convergent. The computed step responses shown on Figure 14 clearly indicate an instability in the solution, caused by either numerical instability (accumulated error, round-off, etc.) or by the presence of positive real roots in the denominator of the transfer function, Equation (5.4), or both.

If the denominator of Equation (5.4) has positive real roots then the system of equations is unstable, regardless of the presence or absence of numerically induced instability. To examine the nature of the instability; Routh's Criterion was applied to the denominator of Equation (5.4) for one and two product term expansions for $\cosh \Gamma(S)$.

Routh's C̣iterion

For the one product term expansion for $\operatorname{Cosh} \Gamma_{b}(S)$, the coefficients for Routh's Criterion are given as the denominator of Equation (5.10):
$G(8) \quad G(6) \quad G(4)$
$G(7) \quad G(5)$
B1 B3

C1

D1
where $B 1=\frac{[G(6) G(7)-G(8) G(5)]}{G(7)}$, etc.

The terms $G(1)$ through $G(8)$ are functions of $\left(F_{1 *}\right),\left(L / C_{o}\right)$, and (DN). Each time the terms B1, C1, or D1. change in sign, the denominator of Equation (5.10) has a positive real root and the system of equations is
unstable. For the one product term expansion for $\operatorname{Cosh} \Gamma_{b}(S)$ there is no change in sign for $B 1, C 1$, or $D 1$. until $\left(F_{1 *}\right)<0 ; F_{1 *}$ is always greater than zero at the initial rise of the output to a step response, but it becomes negative as soon as the output reaches its maximum overshoot. If there is no overshoot, $\mathrm{F}_{1 *}$ is never less than zero.

For the two product term expansion for $\operatorname{Cosh} \Gamma_{b}(S)$, Equation (5.4) may be written as:

$$
\begin{equation*}
P(S, 0)=\frac{P(S, 1)\left[G(1)+G(2) S+\ldots+G(5) S^{4}\right]}{\left[G(6)+G(7) S+\ldots \ldots+G(14) S^{8}\right]} \tag{5.19}
\end{equation*}
$$

Routh's Criterion was applied to the denominator of Equation (5.19) using nine different combinations of ($\mathrm{L} / \mathrm{C}_{\mathrm{o}}$) and (DN). The responses, shown on Figure 14 are for $\left(L / C_{o}\right)=.0532$ and ($D N$) $=2.0$. The regions where the system of equations is stable is shown on Table II below.

TABLE II
REGIONS OF STABILITY

DN	$\left(\mathrm{L} / \mathrm{C}_{\mathrm{O}}\right)$		
	$\begin{gathered} .0266 \\ (\mathrm{~L}=30 \mathrm{ft}) \end{gathered}$	$\begin{gathered} .0532 \\ (\mathrm{~L}=60 \mathrm{ft}) \end{gathered}$	$\begin{gathered} .1064 \\ (\mathrm{~L}=120 \mathrm{ft} \mathrm{t}) \end{gathered}$
1.0	$1.4<F_{1 *}<\infty$	$\begin{gathered} 0 \leq F_{1 *}<6 \\ \text { and } 16<F_{1 *}<\infty \end{gathered}$	$\begin{aligned} & 0 \leq F_{1 *}<4 \\ & \text { and } 12<F_{1 *}<\infty \end{aligned}$
2.0	$\left\lvert\, \begin{aligned} & 0 \leq F_{1 *}<12 \\ & \text { and } 30<F_{1 *}<\infty \end{aligned}\right.$	$1<F_{1 *}<8$ and $30<F_{1 *}<\infty$	$0 \leq F_{1 *}<\infty$
4.0	$\begin{aligned} & 2<F_{1 *}<18 \\ & \text { and } 50<F_{1 *}<\infty \end{aligned}$	$0 \leq F_{1 *}<\infty$	$\begin{aligned} & 0 \leq F_{1 *}<16 \\ & \text { and } 40<F_{1 *}<\infty \end{aligned}$

Figure 15. Step Response and $\mathrm{F}_{1 \text { 米 }}$

As was true for the one product term expansion for $\operatorname{Cosh} \Gamma_{\mathrm{b}}(\mathrm{S})$, the two product term expansion is unstable for all $\mathrm{F}_{1 *}<0$. But Routh's Criterion also predicts instability for some combinations of (L / C_{o}) and (DN) when $\mathrm{F}_{1 *} \geq 0$. When $\mathrm{F}_{1 *}=0$ the model reverts to the small disturbance "Acoustic" model of Appendix A, which is stable for all values of ($\mathrm{L} / \mathrm{C}_{\mathrm{o}}$) and (DN).

There are some "grey areas" then where Routh's Criterion predicts the system of equations to be unstable, but the numerical integration of the equations proceeds in a stable manner. Figure 14 is one example. The system of equations is stable for a 0.25 psig step, but unstable for a 1.0 psig step input. This instability is probably caused by a large negative value of $\mathrm{F}_{1 \%}$ immediately after the output reaches its initial overshoot position (at 150 milliseconds.)

Figure 15 is a replot of the 1.0 psig step shown on Figure 14 , but it also includes the magnitude of $\mathrm{F}_{1 *}$ during the transient.

Routh's criterion demonstrates that the system of equations will be unstable for all $\mathrm{F}_{1 \%}<0$. However, in the case of one product term expansions the computed step responses are stable for all input step levels, even though $\mathrm{F}_{1 *}<0$ for some portions of the transients. It must be concluded that the stabilizing influence when $\mathrm{F}_{1 \%}>0$ dominates over the unstabilizing influence when $\mathrm{F}_{1 *}<0$. In the case of two product term expansions, all responses for step input levels greater than some small number (say 0.25 psig) are unstable.

The stability of the system of equations is dependent on the form and sign of $\mathrm{F}_{1 *}$ as well as the approximations used for $\Gamma(\mathrm{S}), \cosh \Gamma(\mathrm{S})$, and $\operatorname{Sinh} \Gamma(\mathrm{S})$. The example chosen in this thesis represents a worst case in the sense of the quality of the approximations for $\Gamma(\mathrm{s})$ (see

Figure 6 when $S / D N=10$.$) However, the main difficulty associated with$ system instability appears to result from the form of $\mathrm{F}_{1 \%}$, rather than the quality of the approximations.

Unless an improved form for $\mathrm{F}_{1 *}$ can be synthesized, it is recommended that only one product term expansions be used for $\cosh \Gamma(S)$ and Sinh $\Gamma(S)$ in this model.

CHAPTER VI

FREQUENCY DOMAIN EVALUATION

In this chapter frequency response computed from the analytical model, Equation (2.70), with through flow, is compared with the experimental results of Cooley(7):

Cooley's(7) experiments were conducted with small amplitude transient flow. Rewriting Equation (2.70) to meet these conditions $\left(M_{b} \neq 0\right.$, but $\left.F_{1 *}=0\right)$ yields:
$\left[\begin{array}{l}P(s, 1) \\ Q(s, 1)\end{array}\right]=\left[\begin{array}{cc}\operatorname{Cosh} \Gamma(s)+Y_{e}(s) M_{b} \operatorname{Sinh} \Gamma(s) & -Z_{c}(s) \operatorname{Sinh} \Gamma(s) \\ \frac{-\operatorname{Sinh} \Gamma(s)}{Z_{c}(s)} & \operatorname{Cosh} \Gamma(s)-Y_{e}(s) M_{b} \operatorname{Sinh} /(s)\end{array}\right]\left[\begin{array}{l}P(s, 0) \\ Q(s, 0)\end{array}\right]$
where

$$
\begin{align*}
& \Gamma(s)=\frac{S L}{C_{0}} \sqrt{\frac{N_{g}}{D_{g}}} \tag{6.2}\\
& Z_{c}(S)=\frac{\gamma}{\sqrt{N_{g} D_{g}}}=\frac{\gamma S L}{C_{0} D_{g} \Gamma(s)} \tag{6.3}\\
& Y_{e}(S)=\sqrt{N_{g} D_{g}}=\frac{C_{0}}{S L} D_{g} \Gamma(s) \tag{6.4}
\end{align*}
$$

and $\left(N_{g}\right),\left(D_{g}\right)$ are given as Equations (2.74).

If the end of the line $Z=1$ is subjected to a constant pressure, $P(S, 1)=0$. Then Equation (6.1) may be rewritten as:

$$
\begin{equation*}
\frac{Q(s, 0)}{P\left(s_{0} 0\right)}=\frac{\operatorname{Cosh} \Gamma(s)+Y_{e}(s) M_{b} \operatorname{Sinh} \Gamma(s)}{Z_{c}(s) \operatorname{Sinh} \Gamma(s)} \tag{6.5}
\end{equation*}
$$

Cooley(7) performed a series of frequency response experiments with a 6.0 inch line, 0.125 inches in inner diameter. He included through flow with an average Mach number, M_{b}, of 0.16 . By substituting $M_{b}=0.16$ and $S=j \omega$ into Equation (6.5), the "admittance" of the line, $\left|\frac{Q(S, O)}{P(S, O)}\right|$ may be calculated. In this case no approximations are used for $-\left(N_{g}\right)$ and $\left(D_{g}\right)$ since their exact values may be computed from a Bessel Function subroutine.

Figure 16 shows Cooley's experimental data for $\left|\frac{Q(S, 0)}{P(S, 0)}\right|$ and Equation (6.5) for $M_{b}=0.16$ and $D N=30.0$. At the first. resonance (1050 hertz) Cooley shows an increase in $\left|\frac{Q(S, 0)}{P(S, 0)}\right|$ from 3.2 without through flow to 5.21 with through flow, that is, an increase of 62% when through flow is included. Equation (6.5) predicts an increase in $\left|\frac{\mathrm{Q}(\mathrm{S}, 0)}{\mathrm{P}(\mathrm{S}, 0)}\right|$ from 3.2 to 3.3 , a 3% increase.

Orner(17) examined the frequency response of a transmission line with through flow by applying the Poincare' perturbation technique to the axial momentum equation, including the convective acceleration term $\left(V_{z} \frac{\partial V_{z}}{\partial z}\right)$. He arrived at Equation (6.1) with identical expressions for $\Gamma(S)$ and $Z_{c}(S)$ as are shown in Equations (6.2) and (6.3). His expression for $Y_{e}(S)$ is as follows:

$$
\begin{equation*}
Y_{e}(S)=\frac{1}{\gamma}\left[1-\frac{8(\gamma-1)}{\Delta^{2}}\left(1-\frac{2 J_{1}(\Delta)}{\Delta J_{0}(\Delta)}\right)\right] \tag{6.6}
\end{equation*}
$$

where $\Delta=j \sqrt{\frac{S \sigma_{Q} a^{2}}{P_{0}}}$
The frequency response for Orner's first perturbation solution at $M_{b}=0.16$ is approximately the same as this thesis result, as shown on Figure 16. His solution predicts a 3% increase in $\left|\frac{Q(S, 0)}{P(S, 0)}\right|$ at the first resonance (1050 hertz.)

Figure 16. Experimental and Computed Frequency Response

Orner performed a second perturbation on the system of equations which predicted an additional increase in $\left|\frac{Q(S, O)}{P(S, O)}\right|$ of 9% at the first resonance, resulting in a final value of $\left|\frac{Q(S, 0)}{P(S, 0)}\right|$ of 3.6. Cooley's experiment shows $\left|\frac{Q(S, 0)}{P(S, 0)}\right|$ as 5.21 at this frequency.

$$
\text { Order of Magnitude Analysis for } \mathrm{Y}_{\mathrm{e}}(\mathrm{~S})
$$

If the Cooley experiment is correct, and if the analyses of Orner and this thesis have included the significant terms in the axial momentum equation to account for through flow, then Equation (6.5) should be able to predict an admittance $\left|\frac{Q(S, 0)}{P(S, 0)}\right|$ approximately equal to 5.21 at 1050 hertz when $M_{b}=0.16$.

At the first resonance (1050 hertz) the magnitude of $\operatorname{Cosh} \Gamma(S)$ is approximately 1.0 . The magnitude of $\sinh \Gamma(S)$ is approximately 0.22 . Then $\left|\frac{Q(S, 0)}{P(S, 0)}\right|$ may be approximated as:

$$
\begin{equation*}
\left|\frac{Q(s, 0)}{P(s, 0)}\right| \approx \frac{1+.22\left|M_{b} Y_{e}(s)\right|}{.22} \tag{6.8}
\end{equation*}
$$

Equation (6.8) disregards the complex nature of $\cosh \Gamma(s), \sinh \Gamma(s)$, and $Y_{e}(S)$, but it is acceptable for a rough bound on the term ($M_{b} Y_{e}(S)$), Given that $\left|\frac{Q(S, 0)}{P(S, 0)}\right|=5.21$ at 1050 hertz, then the minimum value for $\left(M_{b} Y_{e}(S)\right)$ is 4.2. Since $M_{b}=0.16$, the minimum magnitude of $Y_{e}(S)$. is 26 .

Neither the Orner analysis nor this analysis could predict a magnitude of $Y_{e}(S)$ greater than 1.2 for any frequency (ω), $\frac{\omega L}{C_{0}}>\Pi$. The first resonance of the Cooley experiment occurs at $\frac{\omega L}{C_{0}}=9.3 \mathrm{~T}$.

Clearly, the effect of through flow on the frequency response of a small diameter line as reported by Cooley cannot be predicted by the model offered in this thesis.

However, Equation (6.5) does predict a rather dramatic result when $\left|\frac{P(S, 0)}{Q(S, 0)}\right|$, the line "impedance" is plotted, rather than $\left|\frac{Q(S, 0)}{P(S, 0)}\right|$, the line "admittance." This is shown on Figure 17: Figure 17 is a reciprocal plot of Figure 16 , showing the computed :"impedance" of the line with through flow as a function of frequency; ($\boldsymbol{\omega}$). Figure 17 is based on the same relatively high through flow rate, $\left(M_{b}=0.16\right)$, which yields a through flow velocity on the order of $180 \mathrm{ft} / \mathrm{sec}$.

Cooley(7) did not measure impedances in his experiment, and he reported that the signal-tomoise ratio of his instruments in the regions 400 to 800 hertz and 1400 to 1800 hertz was very low, negating the accuracy of the readings in these regions. So it would be inappropriate to take the reciprocal of the Cooley data from Figure 16 and plot it on Figure 17.
(WITH AND WITHOUT THROUGH FLOW)

Figure 17. Computed Frequency Response With and Without Through Flow

THE HYDRAULIC CASE

The basic line model, Equation (2.70), is applicable when the fluid is an ideal gas or a liquid. This chapter shows the simplification of the model when the fluid is a liquid.

To use Equation (2.70) the parameters (DN), (L / C_{0}), and (M_{b}) must be known. In the liquid case:

$$
\begin{align*}
& \mathrm{DN}=\frac{\vartheta_{0}}{a^{2}}=\frac{\mu_{0}}{\rho_{0} a} 2 \tag{7.1}\\
& \frac{L}{c_{0}}=\mathrm{L} \sqrt{\frac{\ell_{0}}{\beta_{0}}} \tag{7.2}
\end{align*}
$$

where (β_{0}) is the bulk modulus of the $f l u i d,\left(\mu_{0}\right)$ is the absolute viscosity, and $\left(e_{0}\right)$ is the fluid density.

$$
\begin{equation*}
M_{b}=\frac{\text { Average through flow axial velocity }}{C_{o}} \tag{7.3}
\end{equation*}
$$

The speed of sound in the $f l u i d, C_{o}$, is at least four or five times greater than the speed of sound in a pneumatic system, so for the same through flow axial velocity, M_{b} inthe hydraulic case is only one fifth as large as M_{b} in the pneumatic case. In general, $M_{b} \ll 1.0$, and it may be neglected in the system of equations.

Writing Equations (2.70) with this simplification ($M_{b}=0$) yields:

$$
\left[\begin{array}{l}
\mathrm{P}(\mathrm{~S}, 1) \tag{7.4}\\
\mathrm{Q}(\mathrm{~S}, 1)
\end{array}\right]=\left[\begin{array}{c}
\cosh \Gamma_{\mathrm{b}}(\mathrm{~S}) \\
\frac{-\mathrm{Sinh} \Gamma_{\mathrm{b}}(\mathrm{~S})}{\mathrm{Zb}(\mathrm{~S})}
\end{array}\right.
$$

$$
\left.\begin{array}{r}
-z_{b}(S) \sinh \Gamma_{b}(S) \\
\cosh \Gamma_{b}(s)
\end{array}\right]\left[\begin{array}{l}
P(S, 0) \\
Q(S, 0)
\end{array}\right]
$$

where $\Gamma_{b}(S)$ is given as Equation (2.71) and $Z_{b}(S)$ is Equation (2.72). When the fluid is a liquid, $\gamma=1.0$, and the term $\left(N_{g}\right)$ in $\Gamma_{b}(S)$ and $Z_{b}(S)$ is approximately equal to 1.0 . From the approximations in Chapter III, Equations (3.16), $\Gamma_{b}{ }^{2}(S)$ may be approximated as shown below for the liquid case:

$$
\begin{equation*}
\Gamma_{b}^{2}(S) \approx\left(\frac{L}{C_{0}}\right)^{2} \times \frac{S\left(S+5.78 D N+F_{1 *}\right)\left(S+56.6 D N+F_{1 *}\right)}{\left(S+40.9 D N+F_{1 *}\right)} \tag{7.5}
\end{equation*}
$$

where $\mathrm{F}_{1 *}$ is given as Equation (2.76).

Example

The hydraulic line is 60 ft long, 0.40 inch inner diameter. Other parameters are $p_{0}=11.2 \mathrm{psia}, \mathrm{DN}=2.0 / \mathrm{sec}, \mathrm{L} / \mathrm{C}_{\mathrm{O}}=0.0137 \mathrm{sec}$. The line is subjected to pressure step inputs of 0.02 and 4.0 psig. Computed step responses based on approximations for $\operatorname{Cosh} \Gamma(S)$ given in Chapter III and Equation (7.5) are shown on Figure 18. Note that the large disturbance; i.e., the 4.0 psig step, has a greatly damped response as compared to the small disturbance response.

Figure 18. Computed Step Responses, 60 Ft Hydraulic Line

SUMMARY, CONCLUSION, AND RECOMMENDATIONS

Summary

The transmission line model developed in this thesis is an extension of the small amplitude (acoustic) model derived and utilized by Iberall (12), Nichols(15), and Brown(3). This model includes the effect of finite amplitude disturbances and through flow.

To include these effects, the nonlinear convective acceleration terms were retained in the axial momentum and energy equations:

Axial Momentum

$$
\begin{equation*}
\frac{\partial v_{z}}{\partial t}+v_{\Sigma} \frac{\partial v_{z}}{\partial z}-\frac{v_{0}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)=-\frac{1}{e_{0}} \frac{\partial p_{z}}{\partial z} \tag{8.1}
\end{equation*}
$$

Energy Equation

$$
\begin{equation*}
\frac{\partial T_{z}}{\partial t}+v_{z} \frac{\partial T_{z}}{\partial z}-\frac{\gamma \nu_{0}}{\sigma_{0} r} \frac{\partial}{\partial r}\left(r \frac{\partial T_{z}}{\partial r}\right)=-(\gamma-1) T_{0} \frac{\partial v_{z}}{\partial z} \tag{8.2}
\end{equation*}
$$

The nonlinear term $V_{\frac{\partial}{} \frac{\partial T}{\partial z}}^{\partial z}$ in the energy equation is of small order compared to the other terms in Equation (8.2), so it was neglected. But the term $v_{z} \frac{\partial v_{z}}{\partial z}$ in the axial momentum equation is not negligible when the disturbance is of finite amplitude.

The continuity equation and equation of state for ideal gases are used to express $\frac{\partial^{v} z}{\partial z}$ as a function of p_{z} and T_{z}. The initial development of the line model in Chapter II considers ideal gases as the
working fluid. Chapter VII considers the simpler case where the fluid is a liquid.

The axial pressure, temperature; and velocity are separated into a steady-state incompressible through flow component subscripted with a "c" and a time-varying compressible component subscripted with a "t". That is:

$$
\begin{align*}
& v_{z}(t, r, z)=v_{c}(r)+v_{t}(t, r, z) \tag{8.3}\\
& T_{z}(t, r, z)=T_{c}(r)+T_{t}(t, r, z) \tag{8.4}\\
& p_{z}(t, z)=p_{c}(z)+p_{t}(t, z) \tag{8.5}
\end{align*}
$$

Equations (8.3), (8.4), (8.5) and the known steady-state solutions for $\left(v_{c}\right)$ and (p_{c}) are substituted into Equations (8.1) and (8.2), resulting in these equations:

Axial Momentum

$$
\begin{equation*}
\frac{\partial V_{t}}{\partial t}+\left(V_{c}+v_{t}\right) \frac{\partial V_{t}}{\partial z}-\frac{\vartheta_{0}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V_{t}}{\partial r}\right)=-\frac{1}{e_{0}} \frac{\partial p_{t}}{\partial z} \tag{8.6}
\end{equation*}
$$

Energy Equation

$$
\begin{equation*}
\frac{\partial T_{t}}{\partial t}-\frac{\gamma V_{0}}{\sigma_{0} r} \frac{\partial}{\partial r}\left(r \frac{\partial T_{t}}{\partial r}\right)=(\gamma-1) \frac{T_{0}}{p_{0}} \frac{\partial p_{t}}{\partial t} \tag{8.7}
\end{equation*}
$$

Equations (8.6) and (8.7) are nondimensionalized and the axial momentum equation is linearized by making the quantity $\frac{\partial V}{\partial Z}$ in the axial momentum equation a time-varying coefficient which is updated for each time increment ($\Delta \mathrm{t}$). That is:

Axial Momentum

$$
\begin{equation*}
\frac{\partial V}{\partial t}+\frac{C_{0}}{L}\left(\frac{\partial V}{\partial Z}\right)_{*} V-\frac{V_{0}}{a^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial V}{\partial R}\right)=-\frac{C_{e}}{L}\left[\frac{1}{\gamma} \frac{\partial P}{\partial Z}+M_{b} \frac{\partial V}{\partial Z}\right] \tag{8.8}
\end{equation*}
$$

where $\left(M_{b}\right)$ is the Mach number of the average through flow. The time increment (Δt) must be much less than the reciprocal of the highest frequency of interest in the line. That is:

$$
\begin{equation*}
(\Delta t) \ll \frac{1}{\omega_{\max }} \tag{8.9}
\end{equation*}
$$

where $\left(\omega_{\text {max }}\right)$ is in radians per unit time.
To derive a form for the time-varying coefficient $\left(\frac{\partial V}{\partial Z}\right)_{*}$ the solution of the small disturbance or "acoustic" model is used. This model is shown as Appendix A in the thesis. The form used for $\left(\frac{\partial V}{\partial Z}\right)_{*}$ in the thesis, as taken in part from the acoustic model, is:

$$
\begin{equation*}
\left(\frac{\partial V}{\partial Z}\right)_{*}=[\operatorname{sgn} P(t, 0)] \frac{L}{C_{0}}\left(\frac{\partial P(t, 0)}{\partial t}\right)_{*} \tag{8.10}
\end{equation*}
$$

The term $[\operatorname{sgn} P(t, 0)]$ is present to meet the criterion that the model must show an increase in apparent damping as disturbance amplitude increases, regardless of the sign of the disturbance (+ or -). This increase in apparent damping with increase in disturbance amplitude is an observed characteristic of real transmission lines, and it was necessary that the new model demonstrate the same characteristic.

By transforming the energy equation shown as Equation (8.7) and the axial momentum equation, Equation (8.8), into the Laplace domain, applying boundary conditions on (R) and (Z) , this transmission line model resulted:

$$
\left[\begin{array}{l}
P(S, 1) \\
Q(S, 1)
\end{array}\right]=\left[\begin{array}{cc}
\cosh \Gamma_{b}(S)+Y_{b}(S) M_{b} \operatorname{Sinh} \Gamma_{b}(S) & -Z_{b}(S) \operatorname{Sinh} \Gamma_{b}(S) \\
\frac{-S i n h}{Z_{b}(S)} \Gamma_{b}(S) & \operatorname{Cosh} \Gamma_{b}(S)-Y_{b}(S) M_{b} \operatorname{Sinh} \Gamma_{b}(S)
\end{array}\right]\left[\begin{array}{l}
P(S, 0) \\
Q(S, 0)
\end{array}\right] .
$$

where (P) and (Q) are nondimensional pressures and flow,

$$
\begin{align*}
& \Gamma_{b}(s)=\frac{S L}{C_{0}} \sqrt{\frac{N_{g}}{D_{a}}\left(1+F_{s}{ }_{s}\right)} \tag{8.12}\\
& Y_{b}(s)=\frac{C_{0}}{S L} D_{g} \Gamma_{b}(s)=D_{g} \sqrt{\frac{N_{g}}{D_{a}}\left(1+\frac{F_{1 *}}{s}\right)} \tag{8.13}\\
& z_{b}(s)=\frac{S_{L} \gamma}{C_{0} D_{a} \Gamma_{b}(s)}\left(1+\frac{F_{1} x}{s}\right)=\gamma \sqrt{\frac{\left(1+\frac{F_{1} *}{s}\right)}{N_{g} D_{a}}} \tag{8.14}\\
& N_{g}=\left[1+\frac{2(\gamma-1) J_{1}(\Delta)}{\Delta J_{0}(\Delta)}\right], \quad D_{g}=\left[1-\frac{2 J_{1}(\psi)}{\psi J_{0}(\psi)}\right], \\
& D_{a}=\left[1-\frac{2 J_{1}(\alpha)}{\alpha J_{0}(\alpha)}\right] \tag{8.15}\\
& \Delta=j \sqrt{\frac{S \sigma_{0}}{D N}} \quad, \quad \psi=j \sqrt{\frac{S}{D N}} \quad, \quad \alpha=j \sqrt{\frac{S}{D N}\left(1+\frac{F_{4 *}}{S}\right)} \tag{8.16}\\
& \text { DN }=\frac{V_{0}}{a^{2}}, \quad F_{1 *}=\frac{C_{0}}{L}\left(\frac{\partial V}{\partial Z}\right)_{*}=(\operatorname{sgn} P(t, 0))\left(\frac{\partial P(t, 0)}{\partial t}\right)_{*} \tag{8.17}
\end{align*}
$$

and $\left(M_{b}\right)=$ average through flow Mach number.
This model, Equation (8.11), simplifies to the small disturbance model of Appendix when $F_{1 *}=0$, and $M_{b}=0$:

Chapter IV presents the experimental step responses recorded from a 60 ft pneumatic line, 0.40 inch inner diameter. The step responses were initiated at gage pressures above and below atmospheric pressure, and terminated at atmospheric pressure, (11.2 psia). Experimental step responses are presented for $\pm 0.25,1.0,2.0,4.0,6.0$, and 10.0 psig (Figure 9).

In Chapter V the experimental step responses of Chapter IV are compared with computed step responses from the analytical model. The computed step responses appeared too lightly damped, even at the smallest step size of ± 0.25 psig. The computer model damping was increased at
this smallest step size so the computed step response and the approximate fundamental mode of the corresponding experimental response showed approximately the same percent of overshoot - indicating that approximately the same amount of damping was present in the computed and actual step responses. This increase in apparent damping was accomplished by changing the damping number (DN) of the computer model from its calculated value of 0.8 to a corrected value of 2.0 . Then the transients predicted by the computer model with finite amplitude disturbances compared favorably with the experimental results of Chapter IV (see Figures 10 through 13),

When more than one product term was used to expand the term $\operatorname{Cosh} \Gamma^{\Gamma}(S)$ in the model, instabilities appeared (Figure 14). The cause of the instabilities is examined in the last section of Chapter V.

Chapter VI is a brief look at frequency response data measured by Cooley(7) for a small pneumatic line with small amplitude sinusoidal disturbances and large through flow. Through flow is represented in the line model by the term $\left(M_{b}\right)$, which is the average through flow Mach number.

Chapter VII presents the simplified model when the fluid is a liquid.

Conclusions

The purpose of this thesis was to derive a generalized time-domain, ordinary differential equation line model which will predict flow and pressure transients in a fluid-filled line subjected to both small and finite amplitude disturbances, with and without through flow. The line model should meet the basic criteria outlined on page 7 of this thesis.

That is:

1. The model should predict an increase in apparent damping as the magnitude of the disturbance input to the line is increased. As Figure 13 shows, the model meets this criterion.
2. The model should be reducible to finite order by suitable approximations such that computational time and difficulty are reduced without severely limiting the accuracy of the model. The approximations for the terms $\Gamma(S), \cosh \Gamma(S)$, and $S i n h \Gamma(S)$ which appear in the Laplace domain mode1, Equation (2.70) and Equation (8.11), are given in Chapter III of this thesis. They enable the model to meet this criterion, but it is possible that the approximation for $\Gamma(S)$ could be improved (see Figure 6 , where $\Gamma^{2}(S)=\left(\frac{S L}{C_{0}}\right)^{2} \frac{N_{g}}{D_{g}} \quad$.
3. The model response should be in reasonable agreement with the apparent fundamental mode of corresponding experimental responses. The line model in this thesis is a linearized model with a time-varying coefficient, $\mathrm{F}_{1 *}$ (see Equations (8.17)). The model is designed primarily for numerical integration where $F_{1 \%}$ is updated at every integration step. The low order polynomial approximations for $\operatorname{Cosh} \Gamma(S)$ and Sinh $\Gamma(S)$ which facilitate inverse transformation of the Laplace domain form of the model result in a low order differential equation model. Consequently, the model should predict the fundamental (low frequency) mode of a transient response, but not the high frequency modes.

The model could be employed in applications requiring high frequency if suitable approximations for $\Gamma(S), \operatorname{Cosh} \Gamma(S)$, and $\sinh \Gamma(S)$ could be synthesized.

The model, with its approximations given in Chapter III, is a low frequency model. This low frequency model produced responses which
appear to be too lightly damped, as shown on Figure 11. In this sense the model does not meet criterion \#3 fully because the mode1 responses (traces A, B, and C on Figure 11) are not in close agreement with the fundamental mode of the corresponding experimental result, which is also shown on Figure 11. It is possible that closer agreement between the computed traces and fundamental mode of the experimental trace could have been achieved by a better approximation for $\Gamma(S)$, but this is speculation.

The instability which occurred in the model when two or four product terms were used to expand Cosh Γ (S) (see Figure 14) was not totally surprising. The two product term expansion for $\cosh \Gamma(S)$ yields a tenth-order differential equation and the four product term expansion yields a twentieth-order differential equation when step responses are computed (Equation 5.4). The tendancy toward numerical instability in the solution of high order differential equations containing a broad frequency spectrum is well known.

But this model added a new dimension for possible instability with its time-varying coefficient, $\mathrm{F}_{1 *}$ (Equation 8.17). By applying Routh's Criterion to a two product term form of the model applicable to a special case (Equation 5.4) it was determined that the system of equations is unstable for all $\mathrm{F}_{1 *}<0$, and may be unstable for some values of $\mathrm{F}_{1 *}>0$, depending on the particular line length, diameter, fluid kinematic viscosity, etc. Routh's Criterion was applied to the approximations for $\Gamma(S)$ and $\operatorname{Cosh} \Gamma(S)$, not their exact forms. So the approximations used for $\Gamma(S)$ and $C o s h \Gamma(S)$ may have contributed to the instability of the system of equations.

The transmission line model derived in the body of this thesis will predict an increase in apparent damping as disturbance amplitude increases, making it the first generalized line model that is sensitive to input disturbance level. At very small disturbance levels the model becomes the "acoustic" model of Appendix A.

If the user finds that the line model (Equation 2.70 or 8.11) tends to be unstable in his system simulation, he is referred to an alternate line model shown in Appendix C. The alternate line model does not predict as much increase in apparent damping with disturbance amplitude as does the primary model, but it is numerically stable for higher order approximations for $\operatorname{Cosh} \Gamma(S)$ and $S i n h \Gamma(S)$ (see Figures 20, 21, and 22 in Appendix C).

The frequency response results given in Chapter VI show the following:

1. This line model, nor any other line model derived to date, can predict the large changes in frequency response behavior which one experimentalist, Cooley(7), has reported when through flow is introduced into a pneumatic line (see Figure 16).
2. The large discrepancy between analytical and experimental results in the through flow case merits further investigation.

Recommendations

Based on the analysis and findings of this thesis, it is recommended that additional work be conducted in these areas:

1. The synthesis of better forms for ($\mathrm{F}_{1 \times}$) such that the resulting model is stable for high order approximations of $\operatorname{Cosh} \Gamma(S)$ and $S i n h \Gamma(S)$, and such that the implicit instability which results when $\mathrm{F}_{1 \times 2}<0$ is eliminated.
2. The development of approximations for $\Gamma(S), \cosh \Gamma(S)$, and Sinh ${ }^{(S}(S)$ which agree more closely with the exact forms, but which retain the mathematical simplicity of the forms used in this thesis.
3. Criteria \#3, page 7 should be reexamined and a definitive procedure should be established for assessing the quality of the model.
4. A carefully planned experimental study should be made of the effect of through flow on the frequency response of a transmission line, to confirm the results of Cooley(7).

SELECTED BIBLIOGRAPHY

1. Bell, C. J., L. R. Hester, and C. E. Price. "Experimental Study of Pneumatic Pulse Transmission in Circular Tubes." Instrument Society of America, Advances in Instrumentation, Vol. 26, Part 4, Paper \#71-809.
2. Blackburn, J. F., G. Reethof, and J. L. Shearer. Fluid Power Control. M. I. T. Press, Cambridge, Mass., 1960;
3. Brown, F. T. "Pneumatic Pulse Transmission With Bistable-JetRelay Reception and Amplification." Sc. D. Thesis, Massachusetts Institute of Technology, 1962.
4. Brown, F. T., and S.E. Nelson. "Step Responses of Liquid Lines With Frequency Dependent Effects of Viscosity." Transactions of the ASME, Journal of Basic Engineering, Series D, Vol. 89, No. 2, June 1965, pp. 504-510.
5. Brown, F. T. "A Quasi Method of Characteristics With Application to Fluid Lines With Frequency Dependent Wall Shear and Heat Transfer." Transactions of the ASME, Journal of Basic Engineering, Series D, Vol. 91, No. 2, June 1969, pp. 217-227.
6. Brown, F. T., D. L. Margolis, and R. P. Shah. "Small Amplitude Frequency Behavior of Fluid Lines With Turbulent Flow." Transactions of the ASME, Journal of Basic Engineering, Series D, Vol. 91, No. 4, December 1969, pp. 678-693.
7. Cooley, W. C. "Experimental Study of Through-Flowing Pneumatic Lines." M. S. Thesis, Case Western Reserve University, 1969.
8. D'Souza, A. F., and R. Oldenburger. "Dynamic Response of F1uid Lines." Transactions of the ASME, Journal of Basic Engineering, Series D, Vol. 86, No. 3, September 1964, pp. 589-598.
9. Gerlach, C. R. "Dynamic Models for Hydraulic Conduits." Fluid Power Research Conference, Oklahoma State University, July, 1967.
10. Goodson, R. E. "Viscous and Boundary Effects in Fluid Lines." Ph. D. Thesis, Purdue University, 1963.
11. Goodson, R. E., and R. G. Leonard. "A Survey of Modeling Techniques for Fluid Line Transients." Transactions of the ASME, Journal of Basic Engineering, Series D, Vol. 94, No. 2, June 1972, pp. 474-482.
12. Iberall, A. S. "Attenuation of Oscillatory Pressures in Instrument Lines." Journal of Research, National Bureau of Standards, Vol. 45, 1950, RP2115.
13. Kantola, R. "Transient Response of Fluid Lines, Including Frequency Modulated Inputs." Ph. D. Thesis, Polytechnic Institute of Brooklyn, 1969.
14. Karam, J. T. "A Simple Time Domain Model for Fluid Transmission Line Systems." Ph. D. Thesis, Purdue University, 1972.
15. Nichols, N. B. "The Linear Properties of Pneumatic Transmission Lines." ISA Transactions, Vol. 1, No. 1, January, 1962.
16. Oldenburger, R., and R. E. Goodson. "Simplifications of Hydraulic Line Dynamics by Use of Infinite Products." Transactions of the ASME, Journal of Basic Engineering, Series D, Vol. 86, No. 1, March 1964, pp. 1-10.
17. Orner, P. A. "Linear Dynamic Modeling of Flowing Fluid Lines." Transactions of the ASME, Journal of Basic Engineering, Series D, Vol. 91, No. 4, December 1969, pp. 740-749.
18. Peeler, R. L., and J. Green. 'Measurement of Bulk Modulus of Hydraulic Fluids." ASTM Bulletin, January, 1959.
19. Reid, K. N. "Dynamic Models of Fluid Transmission Lines." Proceedings of the Symposium on Fluidics and Internal Flows, Pennsylvania State University, October, 1968.
20. Schuder, C. B., and R. C. Binder. "The Response of Pneumatic Transmission Lines to Step Inputs." Transactions of the ASME, Journal of Basic Engineering, Series D, Vol. 81, No. 4, December 1959, pp. 578-584.
21. Shapiro, A. H. The Dynamics and Thermodynamics of Compressible Fluid Flow. Vol. II, The Ronald Press, New York, New York, 1954.
22. Zielke, W. "Frequency Dependent Friction in Transient Pipe Flow." Transactions of the ASME, Journal of Basic Engineering, Series D, Vol. 90, No. 1, March, 1968, pp. 109-115.

APPENDIX A

SOLUTION FOR THE LINEAR PROBLEM

This appendix presents a solution to the linear axial momentum equation and linear energy equation for the flow of a compressible fluid in a rigid circular transmission line. This solution is identical to solutions presented by Iberall (12) and Brown (3).

Figure 19 identifies the line variables and coordinate system.

Figure 19. Coordinate System

Assumptions

1. $v_{r}=v_{\theta}=0$.
2. All partials with respect to θ are zero.
3. Small amplitude, laminar perturbations.
4. No through flow.
5. $\partial \mathrm{p} / \partial \mathrm{r} \equiv 0$. (Pressure is constant across any given cross section of the line.)

Basic Equations

$$
\begin{align*}
& \mathrm{v}_{\mathrm{z}}=\mathrm{v}_{\mathrm{z}}(\mathrm{r}, \mathrm{z}, \mathrm{t}) \\
& \mathrm{p}_{\mathrm{z}}=\mathrm{p}_{\mathrm{z}}(\mathrm{z}, \mathrm{t}) \tag{A.1}\\
& \mathrm{T}_{\mathrm{z}}=\mathrm{T}_{\mathrm{z}}(\mathrm{r}, \mathrm{z}, \mathrm{t})
\end{align*}
$$

Axial Momentum

$$
\begin{equation*}
\frac{\partial v_{z}}{\partial t}+v_{z} \frac{\partial v_{z}}{\partial z}-\frac{v_{0}}{r} \frac{\partial}{\partial r}\left(r \frac{\partial v_{z}}{\partial r}\right)=-\frac{1}{e_{0}} \frac{\partial p_{z}}{\partial z} \tag{A.2}
\end{equation*}
$$

For small amplitude perturbations, the non-1inear $\operatorname{term}\left(V_{z} \frac{\partial V_{z}}{\partial Z}\right)$
may be neglected (Brown (3), D'Souza (8)).

Energy Equation

$$
\frac{\partial T_{z}}{\partial t}+V_{z} \frac{\partial T_{z}}{\partial z}-\frac{\gamma \nu_{0}}{\sigma_{0} r} \frac{\partial}{\partial r}\left(r \frac{\partial T_{z}}{\partial r}\right)=-(\gamma-1) T_{0} \frac{\partial V_{z}}{\partial z}
$$

For small amplitude perturbations, the term $\mathcal{V}_{\mathbf{z}} \frac{\partial \boldsymbol{T}_{\mathbf{z}}}{\partial z}$

$$
\begin{align*}
\frac{d p}{p_{0}}=\frac{d p}{\rho_{0}}+\frac{d T}{T_{0}} & \Rightarrow \frac{\partial p}{\partial t}=e_{0}\left[\frac{1}{p_{0}} \frac{\partial p}{\partial t}-\frac{1}{T_{0}} \frac{\partial T}{\partial t}\right] \tag{A.4}\\
& \Rightarrow \frac{\partial e}{\partial z}=e_{0}\left[\frac{1}{p_{0}} \frac{\partial p}{\partial z}-\frac{1}{T_{0}} \frac{\partial T}{\partial z}\right]
\end{align*}
$$

Continuity Equation

$$
\begin{equation*}
\frac{\partial e}{\partial t}+\frac{\partial\left(\rho v_{z}\right)}{\partial z}=0 \Rightarrow \frac{\partial v_{z}}{\partial z}=-\frac{1}{e_{0}}\left[\frac{\partial \rho}{\partial t}+v_{z} \frac{\partial \rho}{\partial z}\right] \tag{A.5}
\end{equation*}
$$

For small amplitude perturbations, the term $\left(\nu_{z} \frac{\partial \rho}{\partial Z}\right)$ may be neglected (Brow n(3)). Combining Equations (A.4) and (A.5) yields:

$$
\begin{equation*}
\frac{\partial v_{z}}{\partial z}=-\left[\frac{1}{p_{0}} \frac{\partial p}{\partial t}-\frac{1}{T_{0}} \frac{\partial T}{\partial t}\right] \tag{A.6}
\end{equation*}
$$

Integrated Continuity Equation

$$
\begin{align*}
& 2 \pi \int_{r=0}^{r=a} \frac{\partial\left(e v_{2}\right)}{\partial z} r d r=-2 \pi \int_{r=0}^{r=a} \frac{\partial \rho}{\partial t} r d r \tag{A.7}\\
& \quad \Rightarrow \quad \frac{\partial g(z, t)}{\partial z}=-2 \pi \int_{r=0}^{r=a} e_{0}\left[\frac{1}{p_{0}} \frac{\partial p}{\partial t}-\frac{1}{T_{0}} \frac{\partial T}{\partial t}\right] r d r
\end{align*}
$$

where $\mathrm{q}(\mathrm{z}, \mathrm{t})$ is the mass flow rate in the transmission line.

$$
q(z, t)=2 \pi \int_{r=0}^{r=a}\left(p v_{2}\right) r d r
$$

By non-dimensionalizing Equations (A.2) through (A.8) with these substitutions:

$$
\begin{align*}
& R=\frac{r}{a} \quad, \quad Z=\frac{z}{1} \quad, \quad P=\frac{p}{p_{o}}, \\
& V=\frac{v_{z}}{C_{0}} \quad, \quad T=\frac{T_{z}}{T_{0}} \quad, \quad Q=\frac{q(z, t)}{\rho_{0} C_{0} \pi \pi^{2}} \tag{A.9}
\end{align*}
$$

where $c_{o}=\sqrt{\gamma_{\text {gas }} T_{o}}$
(isentropic speed of sound in the fluid), and by substituting the

Equations of State (A.4) and Continuity Equation (A.5) into Equations (A.2), (A.3), (A.7), and (A.8) the result is as follows.

Axial Momentum

$$
\begin{equation*}
\frac{\partial V}{\partial t}-\frac{V_{0}}{a^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial V}{\partial R}\right)=-\frac{P_{0}}{P_{0} C_{0} L} \frac{\partial P}{\partial Z} \tag{A.11}
\end{equation*}
$$

Energy Equation

$$
\begin{equation*}
\frac{\partial T}{\partial t}-\frac{\gamma_{0}}{\sigma_{0} a^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial T}{\partial R}\right)=\frac{(\gamma-1)}{\gamma} \frac{\partial P}{\partial t} \tag{A.12}
\end{equation*}
$$

Integrated Continuity Equation

$$
\begin{equation*}
\frac{\partial Q(t, z)}{\partial Z}=\frac{-Z L}{C_{0}} \int_{0}^{1}\left[\frac{\partial P}{\partial t}-\frac{\partial T}{\partial t}\right] R d R \tag{A.13}
\end{equation*}
$$

Mass Flowrate Equation

$$
\begin{equation*}
Q(t, z)=2 \int_{0}^{1} V(t, R, z) R d R \tag{A.14}
\end{equation*}
$$

By transforming Equations (A.11) through (A.14) into the Laplace domain, the result is as follows.

Axial Momentum

$$
\begin{equation*}
s V(s)-\frac{Y_{0}}{a^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial V(s)}{\partial R}\right)=-\frac{\rho_{0}}{\rho_{0} c_{0} L} \frac{\partial P(s)}{\partial Z} \tag{A.15}
\end{equation*}
$$

Energy Equation

$$
\begin{equation*}
S T(s)-\frac{\gamma_{0}}{\sigma_{0} a^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial T(s)}{\partial R}\right)=\frac{(\gamma-1)}{\gamma} S P(s) \tag{A.16}
\end{equation*}
$$

Integrated Continuity Equation

$$
\begin{equation*}
\frac{\partial Q(S, z)}{\partial Z}=\frac{-2 S L}{C_{0}} \int_{0}^{1}(P(S)-T(S)) R d R \tag{A.17}
\end{equation*}
$$

Mass Flowrate

$$
\begin{equation*}
Q(S, z)=2 \int_{0}^{1} V(S, R, z) R d R \tag{A.18}
\end{equation*}
$$

Let Damping Number be $\mathrm{DN}=\frac{\hat{0}_{0}}{a^{2}}, \psi=j \sqrt{\frac{S}{D N}} \quad$, and $\Delta=j \sqrt{\frac{S \sigma_{0}}{D N}} \cdot$ (A.19)
Rewriting Equations (A.15) and (A.16), the results are as follows.

Axial Momentum

$$
\begin{equation*}
V(s)+\frac{1}{4 R} \frac{\partial}{\partial R}\left(R \frac{\partial V(s)}{\partial R}\right)=-\frac{C_{0}}{\gamma S L} \frac{\partial P(s)}{\partial Z} \tag{A.20}
\end{equation*}
$$

Energy Equation

$$
\begin{equation*}
T(s)+\frac{1}{\Delta R} \frac{\partial}{\partial R}\left(R \frac{\partial T(s)}{\partial R}\right)=\frac{(\gamma-1)}{\gamma} P(s) \tag{A.21}
\end{equation*}
$$

A solution to the Axial Momentum Equation, Equation (A.20) is:

$$
\begin{equation*}
V(S, R, Z)=\left(\frac{J_{0}(\psi R)-J_{0}(\psi)}{J_{0}(\psi)}\right) \frac{C_{0}}{\gamma S L} \frac{d P(S)}{\partial Z} \tag{A.22}
\end{equation*}
$$

where J_{0} is the Bessel Function of the first kind, zeroeth order. This solution meets the boundary condition $V(S, R, Z)\rfloor_{R=1}=0$, the "no-slip" condition, and $\frac{\partial V(S, R, Z)}{\partial R} \int_{R}=0=0$.

A solution to the Energy Equation, Equation (A.21) is:

$$
\begin{equation*}
T(S, R, z)=-\left(\frac{J_{0}(\Delta R)-J_{0}(\Delta)}{J_{0}(\Delta)}\right) \frac{(\gamma-1)}{\gamma} P(S) \tag{A.23}
\end{equation*}
$$

This solution meets the boundary condition $T(S, R, Z)\rfloor_{R=1}=0$, and

$$
\begin{align*}
& \left.\frac{\partial T(S, R, Z)}{\partial R}\right\rfloor_{R}=0=0 . \quad \text { From Equation (A.18); } \\
& Q(S, Z)=\frac{2 C_{0}}{\gamma S L} \frac{\partial P(S)}{\partial Z} \int_{0}^{1}\left(\frac{J_{0}(\psi R)-J_{0}(\psi)}{J_{0}(\psi)}\right) R d R \tag{A.24}
\end{align*}
$$

$$
\begin{equation*}
Q(s, z)=-\frac{C_{0} D_{g}}{\gamma S L} \frac{\partial P(s)}{\partial z} \tag{A.25}
\end{equation*}
$$

where $D_{g}=\left(1-\frac{2 J_{1}(\psi)}{4 J_{0}(\psi)}\right)$
By substituting the solution to the Energy Equation, Equation (A.23) into the Integrated Continuity Equation, Equation (A.17), the result is:

$$
\begin{equation*}
\frac{\partial Q(S, Z)}{\partial Z}=-\frac{S L}{\gamma C_{0}} N_{g} P(S) \tag{A.27}
\end{equation*}
$$

where $N_{g}=\left(1+\frac{2(\gamma-1) J_{1}(\Delta)}{\Delta J_{0}(\Delta)}\right)$
By differentiating Equation (A.25) with respect to " Z ", and equating the result to Equation (A.27), the result fos:

$$
\begin{equation*}
\frac{-C_{0}}{\gamma S L} D_{g} \frac{\partial^{2} P(S, z)}{\partial z^{2}}=\frac{-S L}{\gamma C_{0}} N_{g} P(s, z) \tag{A.29}
\end{equation*}
$$

or $\quad \frac{d^{2} P(S, Z)}{d Z^{2}}=\left(\frac{S L}{C_{0}}\right)^{2} \frac{N_{g}}{D_{g}} P(S, Z)=\Gamma(S)^{2} P(S)$
where $\quad \Gamma(S)=\frac{S L}{C_{0}} \sqrt{\frac{N_{g}}{D_{g}}}$

A solution to Equation (A.30) is:

$$
\begin{equation*}
P(s, z)=c_{1} e^{\Gamma(s) z}+c_{2} e^{-\Gamma(s) z} \tag{A.32}
\end{equation*}
$$

The nondimensional flow $Q(S, z)$ is given by Equation (A.25):

$$
\begin{equation*}
Q(s ; z)=\frac{-C_{0} D_{g}}{\gamma s L} \frac{\Gamma(s)}{\gamma}\left(C_{1} e^{\Gamma(s) z}-C_{z} e^{-\Gamma(s) z}\right) \tag{A.33}
\end{equation*}
$$

Equations (A.32) and (A.33) may be solved for constants C_{1} and C_{2} by applying boundary conditions at $Z=0$ and $Z=1$:

$$
\begin{align*}
& \mathscr{L}(P(t, 0))=P(S, 0), \mathscr{L}(Q(t, 0))=Q(S, 0), \\
& \mathscr{L}(P(t, 1))=P(S, 1), \mathcal{L}(Q(t, 1))=Q(S, 1) \tag{A.34}
\end{align*}
$$

The results are:

$$
\begin{align*}
& c_{1}=\frac{1}{2}\left(P(S, 0)-\frac{\gamma S L}{D_{g} C_{0}} Q(S, 0)\right) \tag{A.35}\\
& c_{2}=\frac{1}{2}\left(P(S, 0)+\frac{\gamma S L}{D_{g} C_{0}} Q(S, 0)\right)
\end{align*}
$$

Since $\cosh \Gamma(s) z=\frac{1}{2}:\left(e^{\Gamma(s) z}+e^{-\Gamma(s) z}\right)$ and $\sinh \Gamma(s) z=\frac{1}{2}\left(e^{\Gamma(s) z} e^{-\Gamma(s) z}\right)$

Equations (A.32) and (A.33) may be rewritten as:

$$
\begin{align*}
& P(S, Z)=\cosh \Gamma(S) Z P(S, 0)-Z_{c}(S) \sinh \Gamma(S) Z Q(S, 0) \\
& Q(S, Z)=\frac{-\sinh \Gamma(S) Z P(S, 0)+\cosh \Gamma(S) Z Q(S, 0)}{Z_{c}(S)}+\quad . \tag{A.37}
\end{align*}
$$

where $Z_{c}(s)=\frac{\gamma}{\sqrt{N_{g} D_{g}}}=\frac{S L \gamma}{C_{o} D_{g} \Gamma(s)}$

Summary

$$
\left[\begin{array}{rr}
P(S ; 1) \\
Q(S, 1)
\end{array}\right]=\left[\begin{array}{lr}
\cosh \Gamma(S) & -Z_{c}(S) \sinh \Gamma(S) \\
\frac{-\sinh \Gamma(S)}{Z_{c}(S)} & \cosh \Gamma(S)
\end{array}\right]\left[\begin{array}{l}
P(S, 0) \\
Q(S, 0)
\end{array}\right]
$$

where. $Z_{c}(S)$ is given as Equation (A.38) and $\Gamma(S)=\frac{S L}{C_{o}} \sqrt{\frac{N_{g}}{D_{g}}}$.

$$
\begin{align*}
& N_{g}=\left[1+\frac{2(\gamma-1) J_{1}(\Delta)}{\Delta J_{0}(\Delta)}\right] ; \quad D_{g}=\left[1-\frac{2 J_{1}(\psi)}{\psi J_{0}(\psi)}\right] ; \tag{A.40}\\
& \Delta=j \sqrt{\frac{S \sigma_{0}}{D N}} ; \quad \psi=j \sqrt{\frac{S}{D N}} \quad ; \quad D N=\frac{\vartheta_{0}}{a^{2}}=\frac{\mu_{0}}{e_{0} a} 2
\end{align*}
$$

These important average values also come from this system of equations:

$$
\begin{align*}
& V(S, Z)=-\frac{C_{0} D_{g}}{\gamma S L} \frac{\partial P(S, Z)}{\partial Z} \tag{A.41}\\
& \frac{\partial V(S, Z)}{\partial Z}=\frac{-C_{0} D_{g}}{\gamma S L} \frac{\partial^{2} P(S, Z)}{\partial Z^{z}} \tag{A.42}\\
& T(S, Z)=\frac{(\gamma-1)}{\gamma} P(S, Z)\left(1-\frac{2 J_{1}(\Delta)}{\Delta J_{0}(\Delta)}\right) \tag{A.43}\\
& \frac{\partial T(S, Z)}{\partial Z}=\frac{(\gamma-1)}{\gamma} \frac{\partial P(S, Z)}{\partial Z}\left(1-\frac{Z J_{1}(\Delta)}{\Delta J_{0}(\Delta)}\right) \tag{A.44}\\
& \frac{\partial P(S, Z)}{\partial Z}=\Gamma(S)\left[P(S, 0) \sinh \Gamma(S) Z-Z_{c}(S) \cosh \Gamma(S) Z Q(S, 0)\right] \tag{A.45}
\end{align*}
$$

Equations (A.41) through (A.45) may be inverse transformed to the time domain if suitable approximations are made for $S \sinh \Gamma(S) z$ and $\operatorname{Cosh} \Gamma(S) z$.

$$
\text { Let } \begin{align*}
\sinh \Gamma(s) z & \approx \Gamma(s) z \tag{A.46}\\
\cosh \Gamma(s) z & \approx 1 \tag{A.47}
\end{align*}
$$

Then

$$
\begin{align*}
& V(t, z) \cong Q(t, 0)-\frac{L Z}{C_{0}} \frac{\partial P(t, 0)}{\partial t} \tag{A.48}\\
& \frac{\partial V(t, z)}{\partial Z} \cong \frac{-L}{C_{0}} \frac{\partial P(t, 0)}{\partial t} \tag{A.49}\\
& T(t, z) \cong \frac{(\gamma-1) P(t, 0)-\frac{(\gamma-1) L Z}{C_{0}} \frac{\partial Q(t, 0)}{\partial t}}{\frac{\partial T(t, z)}{\partial Z} \cong \frac{-(\gamma-1) L}{C_{0}} \frac{\partial Q(t, 0)}{\partial t}} \tag{A.50}\\
& \frac{\partial P(t, z)}{\partial Z} \cong \frac{-\gamma L}{C_{0}} \frac{\partial Q(t, 0)}{\partial t} \tag{A.51}
\end{align*}
$$

Equations (A.41) through (A.52) will be used in the derivation in Chapter II.

APPENDIX B

GOMPUTER PROGRAMS

There are five computer programs listed in this appendix. Three are written in Fortran IV and two are written in Algol.

1. Linear Frequency Response of a Transmission Line, with and without Through Flow: This program computes the ratio $\left|\frac{P(S, 0)}{Q(S, 0)}\right|$ and $\left|\frac{Q(S, 0)}{P(S, 0)}\right|$ for the pneumatic line of Cooley (7), which is 6.0 inches long and 0.125 inches in inner diameter. Damping Number of the air in the line is 30.18 , and the term (Damping Number/ Prandtl Number) is 43.11. Average line pressure is approximately 3.0 psia.

This program calls one subroutine, "Bessel," which generates values for the complex Bessel Function of the first kind, zeroeth and first order.
2. Coefficients for Step Responses, Cne, Two, and Four Product Terms for Cosh $\Gamma(S)$, Pneumatic: This is a convenience program, written to supply the necessary coefficients for the "Step Response by Numerical Integration Program, Pneumatic." (See Chapter V) This program 'NUMER" and "DENOM," where:

$$
\begin{equation*}
P(S, 1)=\frac{P(S, 0)}{\operatorname{Cosh} \Gamma(S)}=P(S, 0) \times \frac{\text { NUMER }}{\text { DENOM }} \tag{B.1}
\end{equation*}
$$

where $\Gamma^{2}(S)=\left(\frac{L}{C_{0}}\right)^{2} \frac{A(S)}{B(S)}$
and $A(S)$ and $B(S)$ are given as Equations (5.7) and (5.8).
3. Coefficients for Step Responses, One, Two, and Four Product Terms for Cosh $\Gamma(S)$, Hydraulic: This program is identical to (2) above, but uses expressions for $A(S)$ and $B(S)$ which are given as the numerator and denominator respectively of Equation (7.5). This program supplies the coefficients for "Step Response by Numerical Integration Program, Hydraulic."
4. Step Response by Numerical Integration, Pneumatic: This program is a numerical integrator which integrates Equations (B.1). The user selects the one, two, or four product term expansion for $\operatorname{Cosh} \Gamma(S)$.

The coefficients for subroutine "Derfun," the derivative function generator, are read in from the punched card output of program (2) listed above. This program uses a fourth-order Runge-Kutta integrator, "Rkint," and has a built-in plot routine, "Xyplot."
5. Step Response by Numerical Integration, Hydraulic: This program reads in data cards for subroutine "Derfun"' which have been generated from program (3) above. It is similar to program (4) above.

c----	this program computes linear frequency response ratio for the	FR	010
		FR	${ }_{0} 020$
	2COSH,SINH, CEXP, CSQRT, RATIO, ANSE22,AT,AB	FR	040
	DIMEVSION AHERTZ (30)	FR	050 060
	$V A=.16$	Fir	070
	$\bigcirc \mathrm{ONL}_{2}=30.18$	FR	080
	READ (5,100) VVAL. (AHERTZ $(\mathrm{J}), \mathrm{J}=1,14$)	FR	100
		Fri	120
	WRITE $(6,300)$	FR	130
	FORMAT (16F5.1), ${ }^{\text {FORMAT }}$ (1H1.5X, FREQUENCY RESPONSE, COOLEY LINE, WITH AND WITHOUT	FR	135 140
	2HRJUGH-FLOW:',/,6x,63('='),//,11X,'FREQUENCY',17x, 'RATIO: 戸(S)/QIS	R	150
		FR	160
	4 NO THROUGH-FLOW', $7 \times$.'WITH THROJGH-FLOW NO THROUGH-FLOw', 111 X ,	FR	165
	54(1-1),7x,17(1-1),4x,15(1-1),7x,17(1-'), 4x, 15('-1), ${ }^{(1)}$	FR	170
		FR	180 190
	W2=6.28318*AAERTZ (KK)/ON2	FR	200
	W $3=6.28318 \pm$ AHERT 2 (KK)	FR	210
	CFV $2=C M P L \times(0,0-w 2)$	Fi	230
	CF V3=CMPL \times (0,0 ; 3)	FR	240
	A1 $=$ CSQRT (CFNi)	FR	250
	$42=C S U R T$ (CFN2)	FR	260
	CALL BESSEL (A1,A3,A4,A5,N1)	FR	270
	DGAM $=(11 .+0.1-2 . * A 3 / A 1$	FR	290
		$\begin{aligned} & \text { FR } \\ & \text { FR } \end{aligned}$	300 310
	COSH=.5* (CEXP (GAMMA) + CEXP ($^{\text {(-GAMMA }}$))	FR	320
		FR	330
		Fir	340
	$2 /(C F N 3 * E L O V C O)!~$	Fi	350
		${ }_{\text {FR }}$	360 370
	b3=Cabs (ANSER2)	FR	380
	84=1./ANSWER	Fi	390
	WRITE (6,400) AHERTZ (KX), ANSWER, $33, \mathrm{B4}, 85$	FR	410
400	FORMAT(10X,F10.1,4(10X,F10.4))	FR	420
	Stop	FR	430

 COSN, SINH, CEXP,CSQRT,RATIO, ANSERZ, A7,A8
VOVCO $=44$ AEERT3 (30)
$A=.16$
$\mathrm{ONL}=30.18$
$\mathrm{CNE}=43.11$
READ (5,100) VVAL: (AHERTZ(J), J=1, 14
RITE $(6,300)$ READ $(5,200)($ AHERTZ $(J), J=15 \cdot 30)$ VRITE 6,300)

2HRJUGH-FLO 5 , 'FREQUENCY RESPONSE, COOLEY LINE, WITH AND WITHOIT
 (1)

$W 3=6.28318 * A+E R T Z(K K)$
$C F I=C M P 1 \times(0,-W 1)$
CFVZ $=$ CMPLX($0, \ldots,-w 2$)
$C F V 3=C M P L X(0)$
$A 1=C S G R T(C F N i)$
$2=C S U R T$ (CFN2)
CALL BESSEL ($A 2, A G, A 7 ; A B$:NZ $)$
АGAM= $=(1,0.0$

SIVH= $5 *(C E X P(G A M M A)-C E X P(-G A M M A))$
RATIO $=1.4 * E L O V C O * C F N 3 * S I N H /(O G A M * G A M M) /(C O S H+V A * D G A M * G A M M A * S I N H ~$ (CCFN3"ELOVCO))
ANSWER $=C A B S$ RATIO)
ANSER2 $=1.4{ }^{2} E L O V C O * C F N 3 * S I N H /(D G A M * G A M M A * C O S H) ~$ $4=1: / A N S W E R$
$5=1: 183$

20 WRITE (6,400) AHERTZ(KX),ANSWER.B3, B4, 85

STOP
END

SUBROUTINE dESSEL (L,RJ, JO, JI,NTE

隹 EMATICAL FUNCTIONS"-ABRAMOWITZ, PG 360, FORMULA 9.1.10. NEW TERMS ARE ADDED IN THE SERIES UNTIL THE CHANGE IN "JO"AND "JI"IS LESS COMPLEX CMPLX.Z,RJ. Jo, J1. TERMO. TERMI , ZOVER2. ZOSNTE $=0$ ORER $=.5 * Z$
ZOSQ=-ZOVER2**
TERM1 $=$ ZOVER2
$J 1=Z O V E R 2$
TERMO $=(1 ., 0$.
$\mathrm{J}=(1.00 .1$
$A=1$.
10 TERMO=TERMO*ZOSQ/A**2

TE $\mathrm{J}=\mathrm{JM}=\mathrm{T}=\mathrm{TERMO}$ ERM $\# Z O S Q /(A *(A+1)$.

JI=J1+TERM1
$V E E N T E+1$
$B C A B S$
(TERMO)/CABS (JO)
CC=CABS (TERMI) CABS(JI)
$\underset{A}{I F}(8+1+L T . .0001 \cdot A V D \cdot C C \cdot L T . .0001)$ GU TO 20
GO TO 10
$20 \begin{gathered}\text { RJFINJJ0 } \\ \text { RETURN }\end{gathered}$
Evo
$30^{\text {DAT }}$
30 200.300. 400. 500. 505. 510. 600. 700. 800. 900.1000.1050.1055.1000. 1100.1200 .1300 .1400 .1500 .1595 .1600 .1605 .1700 .1800 .1900 .2000 .2100 .2145 .2150 .2155.

GEGIN COMMENT THIS PROGRAM COMPJTES COSH(GAMMA)=DENUM/NJMER FUR ONE, TWO AND FOUR PRODUCT TERS [PNEJMATIGI THE OUPUT INCLUE S NUMERICAL INTEGRATION--DNEJMATIC" PROGRAM. FOR EXAMPLE, THE "INMMERATOR, ONE PRODJCT TERM: ARRAY HAS 5 ROWS AND 4 COLUMNS ORTHE ARKAY IS PUNCHEU THIS PROGRAM READS IN ONE DATA CAKL WITH PAKAMETERS "L/CO", "DN",

2) COLUMNS 11-20. DAMPING NUMGER (RATIO OF KINEMATIC VISCOSITY OVER TUBE RADIUS\#\#2) ${ }^{3}$)
4) COLUMNS 31-40 LIVE INNER OIAMETER (INCHES), FOR REF. ONLY. (81, THE REMAINING DATA CARDS ARE THE

ARRAY $A[0: 5,0: 3,0: 31,3[0: 4,0: 2,0: 31, E \in[0: 8,0: 4,0: 0], A B[0: 10,0: 5,0: 6 \mathrm{H}$ 1, AACO:12, $0: 6,0: 61,88 B E 10: 16,0: 8,0: 121, A B B B 10: 18,0: 9,0: 121 ; A A B E 10: 20: 0: 1$ H 0:121, UENL0:24,0:121, NUMER[0: 8,0:6], DENOML0:12,0:61,ABUF[0:6,0:3,
 INTEGER I,J,K: REAL ELOVCU,ELZ,EL4,ELS,ELQ,M1,M2,M3,M4,M5,M6,M7,L,R:
 113("=ㅜ), /):

FORMAT PG (/, X20,"OENOMINATOR. FOUR PRODUCT TERMS: $\because, 1, \times 20,32(11, \cdots) ; 1$; H

 FORYAT P14 (8E10.3):
 ", L/CO=" Fも.5." :");

 P 1 UNTLL X2 DO FOR JJ:=0 STEP 1 UNTIL Y2 DO FOR $K:=0$ STEN 1 UNTIL $\times 3$ DO H

Z3: : X 3: IF Y3, 23 THEN 23:=Y3; FOR $1:=0$ STEP 1 JNTIL 21 DO FOR $J:=0$

 THEN Y:NUMG:=0 ELSE YNUMB:=Y[I,J, KI; Z[I,J.K1:=XNUME+YNUMB; END; END;

FOR I:=2 STEP 1 UNTIL 12 DO DN(II:=UNT1]=UN(I-1):

READICARU, $1, F$ FOR $1:=0,1,2,3,4$ DO FOK J: $=0,1,2$ DO FOR $K:=0,1,2,3$ DO
BII.JQKI); (LINE,TITL): WRITE LLINE, PI 3,ELOVCO, ONITI,L,R);
$:=0$ WRITELINE,PII: FOR $1:=0$ STEP UNTIL 5 OU FOR J 1.J. FOR K: $=0,1,2,3$ DU E[I,J,KI); WRITEILINETSKIP 11);

FOR $1:=0$ STEP 1 UNTIL 4 DO FOR $J:=0,1,2$ DO FOR K:=0.1.2.3 DO SUUFII.J. H
 *BBUF $11, J, K 1 ;$ FOR $I:=0,1,2.3,4$ DO FOR $J:=0,1,2$ vO FOR K:=0,1,2,3 DO H
 FOR I: $=0,1,2,3,4$ DO WRITEIPJNCHOP14, FOK K: $=0,1,2,3$ UO BPOTII,KII:

 2,3 DO FOR K:=0,1,2,3. DO APOTII,KI:=APUTII,KI+ABUFII,J,KI;
 $k:=0.1,2,3$ ט 0 APOT(I,K1);

COMYENT SOLVE FOR NUMER,
POLYU
S PRODUCT TERMS;
FOR I:=0 STEP 1 UNTIL 8 DO FOR $j:=1$ STEP 1 UNTIL 4 DO FOR K:=0 STEP H

1 UiNTIL 6 DO NUMER[I,K]:=NUMER $[1, K]+B G[1, J, K] ;$
 -P14, FOR $k:=0$ STE 1 UNTIL 6 DO NUMERII,KJI;

COMMENT SOLVE FOR DENOM, 2 PRODUCT TERMS;
POLYMU(A,A,AA,6,3,3,6,3,3);

STEP 1 UVTIL 6 DO ABII,J.KI:=MI\#ABII, J,KI:

POLYAD (AA, AE, AA $12,6.6,10,5,61$: POLYAD (AA, BE, AA, 12,6.6, $8,4,0)$;
 STEP FOR 1:=0 STEP 1 UNTIL 12 DO FOR J:=0 STEP 1 UNTIL 6 DO FOR K:=0 STEP I UNTIL 6 OO DENOMII
523
529
536${ }_{533}{ }_{53}$

570
580580
590
600390
600
600605
616620
630630
640
650650
600600
670
600660
600
690690
700700
710720

PUNCH, P14, FOR K: $=0$ STEP 1 JNTLL DO DENOMII, KII:
COMKENT SOLVE FOR NUERATOR, FOJR PRODUCT TERMS;

 STEP 1 UNTIL o 00 F
 :=0 STEP 1 UNTIL 12 DO NUMII:KII: FOF I:=0 STEP 1 UNTIL 16 DO WRITE

POLYMU(B,8, BE,4,2,3,4,2,3); PULYMU(A, B, AB, $6,3,3,4,2,3)$; POLYMU(A;A,AA,5,3,3,6,3,3): OOL YMU (AA
 ELs:

FOR I:=0 STEP I UNTIL 20 JU FOR J:=0 STEP 1 UNTIL 10 DO FOR $\mathrm{K}:=0$
 STEP 1 UVTIL 12 DO AAABI I, J.K $3:=M 5 \neq A A A B(I, J, K) ;$
STEP FOR I:=0 STEP 1 UNTIL 24 UO FOR $1:=0$ STEP 1 UNTIL 12 DO FOQ $k:=0$ POLYAD(AAAA,AAAB,AAAA,24,12,12,22,11,12): POLYAU $(A A A A, A A E B, A A A A, 24,12,12 ; 20,10,121$
 STEP 1 UNT:=0 STEP 1 UNTIL 24 DU FOR J:=0 STEP 1 UNTIL 12 DO FOR K:=0

ITE (LINE,P6) ; FOR $I:=0$ STEP 1 JNTIL 2400 WRITEUINE,P9,I, FOR K 12 FOR I:=0 STEP 1 UNTIL 24 DO WNITEIPUNCHPP14, FOR K:=0 STEP 1 UNTIL
 DATA
$0.05320,0,{ }^{2}, 0,0,0,0,0,0,0,0,0^{4}, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,10 ., 0,0,623.8,0,0,3271,5,0,0$,
$0,0,0,1,0,0,92,38,0,0,1575,0,0,327,5,0,0,0$
$0,0,3.00,0,154.78 * 0,0,750,95,0,0,0,0,0,0$,

$0,0 \cdot 0,-1,0,0,-48.04,0$, 0,0,0,0,
0:0,-1:0, $0,7 \cdot 14 ; 0,0, \quad$ 292:03:0,0,0,
$1,0,0,0,0,0,0,0$, $0,0,0.0$

BEOIN COMMENT THIS PROGRAM CUMPJTLS COSH(GAMMA)=DENOM/NUME: FOR ONE, TWO AND FOUR PRODUCT TEAMS IHYDZAULICI THTE THOTPUT INCLUDES NUMERICA INTEGUATIDN--HYJRAULICO: PROSRAM. FOR EXAMLLE, THE MNJMEFATOR, ONE PROLCT TERYR ARRAY HAS 4 ROWS AND. 4 COLUMVS. THE ARRÁY IS PUNCHEU this program zeads in dine data cariu with parameters "l/co", "dn", "L", AVO "roul ifjpiat 4riol of Line length over isen. speed of souvo. 2) COLUMNS 11-20 DAYDING NUMBER (RATIO OF KINEMATIC VISCOSITY

OVER TJBE CUAUIUS**C)
4) COLUMNS 31-40 LIVE INNEHE DIAMETEK (INCTEES), FOR REFF. OVLYY.
[8]. THE REMAINING DATA CAZVJ ARE THE
ARFAY A10:5,0:2,0:31, B[0:3,0:1,0:3], BE[0:0,0:2,0:6], A310:0,0:3.
 NUML $0: 12,0: 123$. DEVI $0: 20,0: 121$, NWERE $0: 6,0: 61$, DENOML $0: 10,0: 61$, ABUFL

113("=ツ), 1)

FORYAT P3 $/ /, \times 20$, "NJMERATOR, TwO DRODUCT TERMS:"•/.x20,29("-"), $) ;$

 FORYAT P9(X1,"5=",I2,"; K=0-12: $1, \times 1,13 E 9 . \overline{2}, 1$):

 FORYAT P14(BE10.3):
FORYAI P15(4F10.3):

- L/CO=" F10.7," :");

$P 1$ UNTIL X2 DO FOR JJ:=0 STEP 1 UNTIL Y2 DO FOR K:=0 STEP 1 UNTIL X 3 DO L

DROCEUURE DOLYADIX,Y,Z,XI=X2.X3,Y1,YZ,Y3); ARRAY X,Y,ZI0,0,01;

23:=x3: IF Y3 > 23 THEN 23:=Y3; FOR $1:=0$ STEP 1 UNTIL 21 DO FOR $J:=6$

ELz: =ELOVCO\#ELOVCO; $\mathrm{LL} 4:=E L 2 * E L 2 ; ~ E L 6:=E L 2 * E L 4 ;$ ELQ: EEL4*EL4;
READICARi $/$ /FOR $1:=0,1,2,3,4,5$ jo FOR $j:=0,1,2$ vo FOiX $x:=0,1,2,3$
a Readicari
READ ICARU./, FOK $1:=0,1,2,3$ DO FOR $\mathrm{J}:=0,1$ DU FOR $\mathrm{K}:=0,1,2, j$ DO

I.J. FOR $\mathrm{K}==0,1,2,3$ DO Af1, , K11:

 Brotirall:

 COMMENT SOLVE FUR NUMER, 2 PRODJCT TERMS;

DO FUR $x:=0.1,2,3,4,5,6$ do
 $\mathrm{K}:=0.1,2,3,4,5,6$ OD NUMERI I, K1);
 1: =.450310*EL2: M2: $=0.0132506 * E L 4 ;$
 FOR $I:=0$ STEP 1 UNTIL 10 DO FOR $3:=0,1,2,3,4$ UO FOR $k:=0$ STEP 1
 FOR I:=0 STEP 1 UNILL 10 DO FOR $j:=0$ STEP 1 UNTIL 4 DO FOR $k:=0$
 :=0 STED 1 USTIL S OO OENDMI , KII; FOR I:=0 STEP I UNTIL 1000 WRITE

 COMMENT SOLVE FOR DENOM, 4 PRODUCT TERMS:

 M6*AAAALI, J.Kİ EVD:

 CATA CAROS">): ENJ.
.0137
2.
60.
. 40
$0,0: 0,0,0,0,0,0,0,0,0,0: 0,0,0,0,0,0,0,0,0: 0,0,0$,
$0.0 \cdot 3.00,0,{ }^{124.76 \cdot 0,0,} 327.15 \cdot 0 \cdot 0,0$,

$0,0,0 .-1, \quad 0,0,-40.9,0, \quad 0,0,-1,0,0,0,0,0$,

010
020
030
040
050
060
070
080
090
100
110
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
482
484
490
500
 ATA ARY/IA.
FEAD(S. 300) VRUNS.IHOLO(1), IHOLJ(2). IHOLD(3), , (XPV, YMAXI
00 FORMAT(4(11, 7 x$), 12,8 x+510,3)$
 (AHOLD (J), J=1,8)
20 FORMAT (8F10; ${ }^{3}$)
dead in arrays [a] trrough [F].
$x=4 \%(j-1) \cdot 5$
$20 \operatorname{READ}(5,430)(A(K+L), L=1,4)$ ${ }_{k=4 *(J=1)}^{00} 25 \cdot 7$
25 PEAU $(5,430)(B(K+L), L=1,4)$
REAU(5.430)
FORMAT 8 BE 10.3)
DO 30 J=1.9
$k=7 *(J-1)$
$30 \underset{\sim}{\operatorname{PEAD}(5,430)}(C(K+L), L=1,7)$ $k=7 *(J-1)$
 ${ }_{k=13 *} \quad J=1,17$
$40 \begin{gathered}\mathrm{READ}(\mathrm{S}, 430) \\ \mathrm{DO} \\ 45 \mathrm{~J}=1,25 \\ (E(K+L)+L=1,13)\end{gathered}$ $K=13 *(J-1)$

450 FORMAT ($1 \mathrm{HI}, 10 \mathrm{X}, 80 \mathrm{Al}$)
 2CH. ATMOSPHERIC PRESSURE', $/ 16 X, 1$ IS $1, F 6.3, '$ PSIG. FOR PLOTTING

WRITE $(6,700)$ ARY(1)
 Do $60 \quad J=1,5$
$K=4 \#(J-1)$
60 WRITE $(6,720)$
20 FORMAT $4 E 20.5)^{(A(K+L), L=1,4)}$ RITE(6,700) ARY(2)

$65 \operatorname{WRITE}(6,720) \quad(B(K+L) \cdot L=1.4)$

$k=7 *(J-1)$

740 FORMAT(7G15.4)
D0 $75 \quad J=1,13$
$k=7(J-1)$
75 KRITE $(6,740) \quad(0(K+L), L=1,7)$
WRITE $(6,740)(D(K+L)$
WRITE $(6,700)$ ARY(5)
DO $80(1,17$
$k=13 *(J-1)$

510
515
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
760
770
760
790
800
810
860
830
840
850
860
870
880
890
900
910
920
930
940
950
900
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
 DO $85 \mathrm{~J}=1,25$

PA＝AHOLD（KK）／PATM
$K 3$ CONTROLS THE RECOMPUTING OF THE［G］ARRAY IN DERFUN．
－－－－$k 1=1$ denotes one product term， 2 denotes two product terms

100 COVTINUE STOP
END
c－－－
ENJTROUTINE DERFUN
 COMMON Y（102）

T T0（10．20．30），K1
－－－
IF（K3．LT．4） 60 TO 12
${ }_{8}^{23}=0$
$31=4 B S(r(1001)$
$82=81 * 81$
$33=81 * 82$
$33=11=A(3) * B 2+A(4) * B 3$
$6(1)$
$G(2)=A(7) * B 2+A(8) * B 3$
$G(3)=A(9)+A(10) * 1+A+A 1) * B 2$
$6(3)=A(9)+A(10)+B 1+A$
$G(1)=A(13)+A(14)=B 1$
$G(5)=A(17)$
$G(5)=8(3) * B 2+8(4) * 83$
$G(7)=8(7) * B 2+8(8) * 83$
$G(8)=B(9)+8(10) * B 1+8(11) * B 2+B(12) * B 3$
$G(9)=B(13)+8(14) * B 1+B(15) * 甘 2+B(16) * B 3$
$G(10)=8(17)+3(18) \& B 1+G(19) * B 2$
G（11）$=8(21)+3(22) \approx 31$
$12 \begin{aligned} & \mathrm{G}(12)=\mathrm{B}(25) \\ & 0014 \\ & \mathrm{~K}=9,13\end{aligned}$
$14 Y(K)=Y(K-7)$
$Y(14)=(P A-G()$
$24 Y(6)) / G(12)$
$Y(102)=G(1) * Y(1)+G(2) * Y(2)+G(3) * Y(3)+G(4) * Y(4)+G(5) * Y(5)$ $Y(100)=G(1) * Y(2)+G(2) * Y(3)+G(3) * Y(4)+G(4) * Y(5)+G(5) \# Y(6)$
－TWO PRODUCT TERMS FOR COSH（GAMMA）．
 к $3=0$

1110
1120
1130 1140
1150 1160 1170
1180 1190 1200
1210 1220 1230
1240 1240
1250 1250 1260
1270 1280 1290
1300 E 0010 DE 0010 E 0030 DE 0050 $\begin{array}{ll}\text { DE } & 0062 \\ \text { DE } \\ 0064 \\ 0.070\end{array}$ DE 0070
DE 0080 0080
0090
0100 0090
0100
0110 0100
0
01120
0130 01120
0130
0 0140 DEE 0150 0 E 0180 DE． 0200 DE 0200
DE 0210
$D E$

0220 DE 0220 DE 0230 DE 0260 | DE 0270 |
| :--- |
| DE 0280 | DE 0290 DE 0300 DE 0310 DE 0320 DE 0340 DE 0330

DE 0370

[^0] $33=11 \% 32$
$34=81 * 83$
$35=81434$
$35=81484$
$G(1)=C(5) * B 4+C(6) * B 5+C(7) * 36$
$G(2)=C(12) * B+C(13) * B 5+C(14) * 30$
$\mathrm{G}(3)=\mathrm{C}(17) * 22+C(18) * 33+C(19) * \forall 4+C(20) * B 5+C(21) * 30$
$G(4)=C(24) * B 2+C(25) * B 3+C(26) * B 4+C(27) * B 5$
$G(5)=C(29)+C(30) * B 1+C(31) * B 2+C(32) * B 3+C(33) * B 4$
（6）$=\mathrm{C}(36)+\mathrm{C}(37) * 31+\mathrm{C}(38) *+2+\mathrm{C}(39) * B 3$
$G(7)=C(43)+C(44) * B 1+C(45) * B 2$
$(1)=C(50)+C(51) * B 1$
（9）$=\mathrm{C}(57)$
$(10)=D(5) * * 4+D(6) * 55+D(7) * B 6$
$G(11)=0(12) * 34+D(13) * B 5+D(14) * 36$
$(12)=0(17) * 32+D(18) * 33+D(19) * 34+U(20) * B 5+1)(21) * B 6$
$(14) 0(29)+j(30) \& B 1+0(31) * B 2+0(32) * B+D(33) * B 4+D(34) * B 5+0(35) * B 6$ $(16)=D(43)+D(44) * 41+0(45) * B 2+(45)+B$ $(17)=D(50)+D(5) * * 1+D(52) * B 2+D(53) * B 3+D(54) * E 4+D(46) * B S$
$G(18)=0(57)+2(58) * 81+D(59) * B 2+D(60) * 83+D(61) * * 4$
$G(19)=0(64)+0(65) * 81+3(66) * 82+D(67) * B 3$
$G(21)=0(78)+2(79) * B 1$
22 00 24 K $=15,25$
24 Y（x）＝Y（K－13）
$Y(26)=(P A-G(10) * Y(1)-G(11) * Y(2)-G(12) * Y(3)-G(13) * Y(4)-G(14) * Y(5)-$
$2 G(15) \# Y(6)-G(16) * Y(7)-G(17) \# Y(8)-G(18) * Y(9)-G(19) * Y(10)-G(20) *$ 3Y（11）－G（21）＊Y（12））／G（22）
$(3) * Y(3)+G(4) * Y(4)+G(5) * Y(5)+G(0) * Y(6) \quad D$ $Y(102)=G(1) * Y(1)+G(2) \# Y(2)+G(3) * Y(3)+G(4) * Y(4)+G(5) * Y(5)+G(0) * Y(6)$
$2+G(7) * Y(7)+G(8) \# Y(8)+G(9) * Y(9)$ $2+G(7) * Y(8)+G(8) \# Y(9)+G(9) \# Y(10)$
FOJR proouct terms for cosh（gammal．

$<3=0$
$31=A B S(Y(100))$
$32=81 * B 1$

$34=81 * 83$
$35=81 * 84$
$36=41 * 35$
$37=81 * 86$
$38=81 * 87$
$39=31 * 38$
$810=81 * 39$
$811=5 \% 310$
$812=610811$
$G(1)=E(9) * B 8+E(10) * B 9+E(11) * 甘 10+E(12) * B 11+E(13) * 812$
$G(2)=E(22) * 甘 B+E(23) * S 9+E(24) * B 10+E(25) * B 1+E(26) * B 12$
$\underset{2}{G}(3)=E(33) * B 6+E(34) * 37+E(35) * B 8+E(36) * b 9+E(37) * B 10+E(38) * B 11+E(39)$
 $2 \% 12$
$G(5)=E(57) * S 4+E(58) * 35+E(59) * B 6+E(60) * B 7+E(61) * 58+E(62) * B 9+E(63) * ~$
$2910+E(64) * 411+E(65) * 312$ G（6）$=E(70) * 34+E(71) * 85+E(72) * 36+E(73) * 87+E(74) * B 8+E(75) * B 9+E(70) *$ $2610+E(77) * 甘 11$ $238+E(B 8) * B 9+E(89) * 210$
$G(8)=E(94) * 32+E(95) * 33+E(96) * 84+E(97) * B 5+E(98) * B 6+E(99) * B 7+E(100)$
$248+E(101)$ $\dot{G}(y)=E(105)+E(105) * 31+E(107) * 82+E(108) * B 3+E(109) * 84+E(110) * \Delta 5$
 2E（124） $4 \mathrm{~B}+\mathrm{F}(125) * 87$
$G(11)=E(131)+E(132) * 31+E(133) * 32+E(134) * 33+E(135) * B 4+E(136) * B 5+$
$G(12)=E(144)+E(145) * 31+E(146) * B 2+E(147) * 33+E(148) * 34+E(149) * 35$ $G(13)=E(157)+E(158) * H+E(159) * G 2+E(160) * 83+E(161) * B 4$
$G(14)=E(170)+E(171) * B 1+E(172) * B 2+E(173) * 33$
$G(15)=E(183)+E(184) * 31+E(185) *$ B？
$G(16)=E(196)+E(197) * 51$
$G(18)=F(9) * B 3+F(10) * 39+F(11) * 810+F(12) * 811+F(13) * 812$
 $2 F(39) 4812$
$\frac{G}{G}(21)=F(46) * 36+F(47) * B 7+F(48) * 38+F(49) * 39+F(50) * \Delta 10+F(51) * 311+$
（5（22）$=F(57) * 34+F(58) * B 5+F(59) * B 6+F(60) * \Delta 7+F(61) * 88+F(62) * 37+$
$2 F(63) * B 10+F(54) * E 11+F(65) * E 12 * B 6+F(73) * 37+F(74) * B 8+F(75) * 3 j+$
$G(23)=F(70) * 34+F(71) * B 5+F(72) * B 6(7)$ $F(76) * 810+F(77) * 311+F(78) * B 12$
$G(24)=F(81) * 32+F(82) * B 3+F(123) * B 4+F(84) * 85+F(85) * 86+F(86) * 37+$
$F(97) * 38+F(88) * B 9+F(89) * B 10+F(90) * B 11+F(91) * 812 *)$
$G(25)=F(94) * 32+F(95) * 33+F(96) * B 4+F(97) * B 5+F(98) * 36+F(99) * 37+$
$2 F(100) * 68+F(101) * B 9+F(102) * 810+F(103) * B 11+F(104) * 812$
$G(26)=F(105)+F(106) * B 1+F(107) * a 2+F(108) * 33+F(109) * B 4+$

$3 F(117) * 812$
$G(27)=F(118)+F(119) * 31+F(120) * B 2+F(121) * 83+F(122) * 84+F(123) * 55+$

$G(29)=F(144)+F(145) * 31+F(146) * B 2+F(147) * 33+F(148) * B 4+F(149) * B 5+~$ $2 F(150) * 86+F(151) * B 7+F(152) * B 8+F(153) * B 9+F(154) * B 10+F(155) * E 11+$ $\underset{G}{ } \mathrm{G}(150)=F(157)+F(158) * B 1+F(159) * B 2+F(160) * B 3+F(161) * B 4+F(162) * 35+$ $2 F(163) * B 6+F(164) * 37+F(165) * B 8+F(166) * B 9+F(167) * B 10+F(168) * 311+$ $G(31)=F(170)+F(171) * 81+F(172) * 32+F(173) * E 3+F(174) * B 4+F(175) * B 5+$ $2 F(176) * 36+F(177) * B 7+F(178) * 34+F(179) * B 9+F(180) * B 10+F(181) * 811$ $G(32)=F(183)+F(184) * B 1+F(185) * B 2+F(186) * B 3+F(187) * 84+F(188) * B 5+$
$2 F(189) * B 6+F(190) * S 7+F(191) * B 8+F(192) * B 9+F(193) * 310$ $G(33)=F(196)+F(197) * B 1+F(198) * B 2+F(199) * B 3+F(200) * B 4+F(201) * B 5+$ $2 F(202) * B 6+F(203) * B 7+F(204) * B 8+F(205) * B 9$
$G(34)=F(209)+F(210) * 31+F(211) * B 2+F(212) * 33+F(213) * B 4+F(214) * B 5+~$ $2 F(215) * 36+F(216) * 37+F(217) * 88$
$G(35)=F(222)+F(223) * B 1+F(224) * B 2+F(225) * 33+F(226) * 34+F(227) * 35+$ $F(228) * 86+F(229) * 37$
$G(36)=F(235)+F(236) * B 1+F(237) * B 2+F(238) * 33+F(239) * 84+F(240) * B 5+$

2F $(241) * 36$ $G(38)=F(251)+F(252) * 31+F(203) * 82+F(264) * 33+F(265) * 34$ $G(39)=F(274)+F(275) * 31+F(276) * 32+F(277) * b 3$
$G(40)=F(287)+F(288) * 31+F(289) * J \sum$
$G(4))=F(300)+F(301) * 31$

$34 \quad Y(\alpha)=Y(K-25)$
 RG $G 3) \approx Y(6)-G(24) \# Y(7)-G(25) * Y(8)-G(26) * Y(9)-G(27) * Y(10)-G(28) * Y(11$ DE 16990 $4 G(34) * Y(17)-G(35) * Y(18)-G(36) * Y(19)-G(37) \# Y(20)-G(38) \# Y(21)-G(39)$ $Y(102)=0(1)$＊Y（ $231-G(41) * Y(24)) / G(42) \quad$ DE 1710 $Y(102)=G(1) * Y(1)+G(2) * Y(2)+G(3) * Y(3)+G(4)+Y(4)+G(5) * Y(5)+G(6) * Y(0)$
$Z+G(7) * Y(7)+G(8) * Y(8)+G(9) * Y(4)+G(10) * Y(10)+G(11) \notin Y(11)+G(12) * Y(12)$
 $Y(100)=G(1) * Y(2)+G(2) * Y(3)+G(3) * Y(4)+G(4) * Y(5)+G(5) * Y(6)+G(5) *$ $2 Y(7)+G(7) * Y(8)+G(8) * Y(H)+G(9) * Y(10)+G(10) * Y(11)+G(11) * Y(12)+G(12)$
$3 * Y(13)+G(13) 甘 Y(14)+G(14) * Y(15)+G(15) * Y(16)+G(16) \& Y(17)+G(17) * Y(18)$ RETURN

DE
DE
1590
DE

DE 1650
$D E 1060$ DE 1770 $D E$
$D E 30$
$D E$
$D E$
1750
$D E$
1760 DE 1740
DE 1756
DE 1760 DE 1760

ENOBROUTINE GOTEAM
C－－－－OUTPUT＂PB＂IS STORED IN Y（102）．
COMMON Y（102）（101，2），STEP（3），NRKS（3），NPM（3），K1，K2，K3，K4，CC，PA，PB， ZRAIM，NPV，NRUVS，AHEAD（80）
COYMON／BLOB／YMAXI
OIMENSION T（DO）SU（100）
10 WRITE $(6 \cdot 100)$（AHEAD（ J ），$J=1,80$ ）
 IFIKI．EQ．1）WRITE $(6,200)$
200 FORMAT（15X，THIS RUN JSES THE ONE PRODUCT－TERM EXPANSION FOR COSH IF（K1．EQ．2）WRITE（6，500）

IF（K1．EQ．3）WRITE 6,500 ）
G00 FORMAT15X，THIS RUN USES THE FOUR－PRODUCT TERM EXPANSION FOH COS
Z（GAMMA）．1） PA $=P A * P A T M$

400 WRITE (69400) OUAT TIGX，TIME TIME OUTPUT＂PB／PA＂ 2＂＇， 1 ＇16x，（SEC）（CONVERTED）（SEC）（CONVERTED）：
40 00 4 C ， $\mathrm{J=1,102}$
$42 Y(J)=0$ ．

- YOAD DELTA－TIME，NO．OF R－K STEOS，AND PRINT MULTIPLE．

NRK＝NRKS（K1）
 DP＝Y（K2＋2）

52 PT（J，1）$=0$ P $(\mathrm{J}-1) * N P$

TK=1

CALL FKINT(K<,K2)

GOVVRT $=Y(102) / P A$
IF (ADS CONVRT).GT.YMAXI) $60 ~$
1065

F(NPR.LT.NP) Go To 60

PT(IK•2)=CONVRT

700 FОマМАТ (50 (15x,F6.4.6X.G12.5,7X,F6.4.6X.G12.5,1))
C-- DO NOT CALL DLOTTER IF OATA IS BAU.
(C--L LOAD OATA =OR THE PLOTTER.

$T(<)=P T(J, 1)$

80 IF $(U(K+50) . L T .0) U.(K+50)=0$.
CALL XYPLOI (T, U, 50, 100, B.17,8.)
ENO

COYMON Y(102)

BET (2) $=0.5$

NPI $=$ NSYS +1
$\mathrm{XV}=\mathrm{Y}$ (NP 1)
CALL
DO $320 I=1$, NSYS
320
1001 YU(I) $1034(I)$
$K=1,4$
IF (K.EQ.1) GO TO 1002
1002 CALL DERFUN. $1340 \quad \mathrm{I}=1$, VSYS
IPV2 $=1+\mathrm{N} 2$

DO $1350 \quad I=1$, VSYS
$1350 \begin{aligned} & Y(1)=Y U(I)+B E T(K) \\ & Y(N P I)=X V+B E T(K) W Y(N 2)\end{aligned}$
1034 covtinue

Yu(I) $=$ YU(I) + JEL
$1039 \begin{aligned} & Y(1)=Y U(I) \\ & \text { CONINUE }\end{aligned}$
$Y(N P 1)=X V+Y\left(Y_{2}\right)$

CALL DEEFUN
$X V=Y$ (NPLI)
RETUAN
SUBROUTINE XYPLOT (XX,YY,NX,NY,XLINCH,YLINCH)
COMMON/OLOA/YMAXI
BIMENSION XX(1), MY(1), IY(10)
ATA IBLANK, IAXIS/Hal

xSIZE $=\mathrm{V} \times$ SIZE
YSIZE $=Y$ YIINCHE 10.0
YSIZE = NYSIZE -
YSIZE $=$ NYSIZE
NPLOTS $=N Y / V X$
$X M A X=X X(N X)$

YMIN=YY(1)

$\begin{array}{ll}c & \text { DY=YMAX-YMIN } \\ \text { C---- FIXED ABSCISSA }\end{array}$
YMAX=YMAXI

DYEMMAXI
RRITE(6,1)(IMINUS(J),J=1,NYSIZE) \quad XY 0290

NLINE $=0$
$10030(X=1, N X(1)-X M I N) / D X * X S I Z E$

NLINE (6,4) (IDLINET(J), J=1-NYSIZE
601032
33 NLINE $=$ NLINE +1
DO $41 \mathrm{K=1,NPLOTS}$
IY $(K)=$ IY
IY
K
IYK $=$ IY (K)
IPLOT (IYK) $=$ ISYMBL (K)
 D0 $42 \mathrm{k}=1$,NPLOTS
$42 \underset{\text { IPLOT }}{\mathrm{I}} \mathrm{IY}(\mathrm{IY}(\mathrm{K})=$ IBLANK IPLOT(1) = IAXIS

IPLOT (NYSIZE) $=$ IAXIS COVTINUE

COVTINUE
WRITE $(6,3)$ (IMINUS (J), $j=1$, NYSIZE)
RETURN FORMAT $1,6 x .1$ ABSCISSA $1.5 x \cdot 100 A 1)$
FORMAT (6 . E10. $3.5 \mathrm{X}, 100 \mathrm{~A} 1$)

6 FORMAT (IHI, 6 X, 'MIN ORDINATE HPMIN゙" $=1, G 12.5,1$, MAX ORDIVATE "PM $\underset{\text { ENO }}{\text { 2axn }}=$ ',G12.51
--.-- 5

THIS PROURAM USES 4 JR 5 UATA CAKUS TU PRESCRIDE PARAMETERa DU-

data card 1: this is a meader card to inentify the rjn (aso).
DATA CARD 2 :

TERMS, PUT A "j" IN COLUME il.
3) PUT A 1 ; 2, OR 3 IN 21 FUR THE SECOND RUN, IF APPLICASLE.
5) NO. OF STEP SIZES (USI) FOR EACM MUNA, CLMS 4I-42, (I2).
6) MAX OROINATE FOR PLUTIER, CLMS Sl-S0, FORMAT FIO.
DATA CARO 3:
FORMAT ${ }^{11}$ R10. RUNGE-KUTA STED SILE FOR ONE-PRODUCT TERM RUN, CLMS $1-10$ SK
2) STED SIZE FOR THO-PROUJCT TERMS, NO. OF K-K STEPS, 21-40. 5
3) STE SIZE FOR FOUR-PROJUCT TERMS. NU. OF R-K STESS, 41-60.
2) IF MORE thav a values, put them on data card j. IF not
MORE THAN 8 VALUES, LEAVE UATA CARO 5 OUT.
data cards o throjgh lul are as follows:

2) 10 THROJGH 15 GO INTO [B3. DENOMINATOR. ONE PRJOUT TERYM.

$$
\text { 3) } 16 \text { THROJGH 2? GO INTO (CJ. NUMERATOR, TWO PROLUCT TERYS. }
$$

C---- to REvERT to the Livear "browivi model, use a very small steu sile. s

all pressures are noryalized or uiviuing or "patm".

COYMON/FORM/A(20), ठ(23),C(53),D(91), E(221)
COMMON/SAUE/F (325)
COMMON/BLOB/YMAXI)
JIMENSIUN AHOLU(16), IHOLD (3), IGO(3), ARY(6)

2) IF mORE THAV 3 VALJES, PUT THEM ON DATA CARD 5. IF NOT YOZE THAN 8 VALUES

$$
\begin{aligned}
& \text { 5) } 34 \text { THROJG 59 INTO IEJ. NUMERAMOR, FOUR PRODUCT TERIMS. } \\
& \text { 6) } 60 \text { THROJGH IOI INTO [F], OENGINATOR, FOUR PRUDUCT TEMS. } \\
& \text { VERT TO THE LINEAR "GRONN" MODEL, USE A VERY SMALL STEU SILE. }
\end{aligned}
$$

CO MMON/SAUE/F (325)
COMMON/BLOB/YMAXIJIMENSION AHOLU(16), IHOLD (3), IGO(3), ARY (6)

300 नОZMAT(4(I), +X)•12.8A.F10.3)

REAU(5,420) (AHULO (J).J=1, B)

---- zeau in arpars [a] thruugh itl.

20 2EAO ($5 \cdot 430)(A(K+L), 1=1,4)$

CS REAOSOM30) (is ($\mathrm{K}+\mathrm{L}$) $\cdot(=1,4$)
430 FORMAT (9E10.3)
$x=7+(J-1)$
$30 \operatorname{READ}(5,430)(C(k+L), 1=1,7)$ $\sum_{0=7 \times(J-1)} 0$

$40 \begin{gathered}K=13 *(J-1) \\ \text { QEAD }(5,430) \\ D 045(E), 21\end{gathered}(E(K+L), L=1 \cdot 13)$
K=13*(J-1)

450 नОRMAT ($1 \mathrm{H} 1,10 \mathrm{x}, \mathrm{SOA} 1)$

WRITE (6,700) AFY (1)
 $30<0 \quad \mathrm{~J}=1$,
$k=4 \times(\mathrm{J}-1)$
720 सRITE (6,720$)(4(x+L), L=1,4)$ WRITE $(6,706)$ ARY(2) $00 \quad 65 J=1,6$
$k=4 *(J-1)$
65 WRITE (0,720) ($5(x+L), L=1,4)$

$$
x=7+(J-1)
$$

740 FORMAT(7G15.4)

75 WKITE $(6.740)(D(K+L), L=1,7)$ WRITE (5,700) ARY(5) $2080 \mathrm{~J}=1,13$
$k=13 *(\mathrm{~J}-1)$

00 ه5 $\mathrm{J}=1,21$

760 FORMAT（ 13 BG 10.3 ）

PA＝AHOLD（KK）／PATM

－－－－K1＝1 DENOTES ONE PRODUCT TERM， 2 DENOTES TwO PROUUCT TERMS
C
$\mathrm{K} 1=1$ HOLO（JJ）
K2 $=I G O(R 1)$
CALL GOIEAM
100 continue
STOP
EN
suaroutine derfun
 COMMON Y（102）

COMMON／FORM／A（20），D（28），C（63），D（41），E（221）
COYMON／SAGE／F（325）
DIYENSION G 42 （
GO TO（10，20，30），K1
C－－D ONE PRODUCT TERM FOR COSH（GAMMA）．
IF（K3．LT．4）SO 1012
$\times 3=0$
$\therefore 1=A B S(Y(100)$
$32=31 * 81$
$83=81 * 82$
G（1）＝A（3）＊B2＋A（4）＊B3
$G(2)=A(7) * B 2$
$G(3)=A(9)+A(10) * B 1$
$G(4)=A(13)$
$G(4)=A(13)$
$G(5)=B(3) * B 2+B(4) * 83$
$G(7)=8(7) *+2$
$C(8)=8(4)+E(10) * 31+B(11) * B 2+B(12) * B 3$
$G(9)=B(13)+B(14) * B 1+B(15) * 52$
$G(10)=8(17)+3(18) * B 1$
$20014 \mathrm{~K}=8,11$
$20014 K=8,1$
$\begin{aligned}Y(1)=Y) & =\left(P_{A}-G(5) * Y(1)-G(7) \# Y(2)-G(8) * Y(3)-G(9) \# Y(4)-G(10) * Y(j) / / G(1)\right.\end{aligned}$ ${ }_{3}^{2)}$
$Y(102)=G(1) * Y(1)+G(2) \neq Y(2)+G(3) \| Y(3)+G(4) * Y(4)$
$Y(100)=G(1) * Y(2)+G(2) * Y(3)+G(3) * Y(4)+G(4) * Y(5)$ GETURN

IF（K3．LT．4）GO TO 22
$\mathrm{K} 3=0$
$B 1=A \in S(Y(100))$
B2＝81＊B1
$33=81 * 32$
$-34=\rightarrow 1 * 33$
$63=81 * 34$
$06=81 * 85$
$6(1)=C(5) * 84+C(0) * 35+C(7) * 36$
$G(2)=C(12) * 84+C(13) * 35$

$G(4)=C(24) * \Delta 2+C(25) * 33$
$G(5)=C(27)+C(30) * 81+C(31) * B 2$
$G(5)=C(36)+C(37) * B 1$
$G(5)=C(36)+C(37) * B 1$
$G(7)=C(43)$
$G(10)=D(5) * 84+D(6) * B 5+D(7) * b$

$\mathrm{G}(13)=\mathrm{D}(24) * 32+0(25) * 33+\mathrm{D}(20) * 84+\mathrm{D}(27) * B 5$
 （16）$=0(431+0(44) * 31+0)(45) * B 2+0(46) * 83+0(46) * 84$

（19）$=0(54)+3(65) * 51$
$22 \mathrm{G}_{\mathrm{G}}^{\mathrm{G}(20)=0171)} \mathrm{K}=13.21$
 $Y(102)=G(1) * Y(1)+G(2) * Y(2)+G(3) * Y(3)+G(4) * Y(4)+G(5) \times Y(5)+G(0) * Y(0)$ DE 0720
 2＋G（7）\＃Y（B）
RETURN PRODUCT IERMS FOR COSH（GAMMA）
$30<3=\kappa 3+1$

$31=A d S$（Y（100）
$82=81 * 81$
$93=81 * 82$
34 $=81683$
$35=81 * 84$
$86=81 * 85$
87＝81＊36
$88=81 * 37$
$-9=81 * 88$
$310=81 * 89$
$811=81 * 810$
$812=61 * 甘 11$
$812=81 * 甘 11$
$G(1)=E(9) * B 8+E(10) * 39+E(11) * E 10+E(12) * B 11+E(13) * 812$
$G(2) E E(22) * 甘 3+E(23) * 39+E(24) * 310+E(25) * B 11$
$G(3)=E(33) * B 5+E(34) * B 7+E(35) * 38+E(36) * 39+E 137) * B 10$ $G(4)=E(46) * 35+E(47) * 37+E(48) * 36+E(49) * 59$
$G(5)=E(37) * B 4+E(58) * 35+E(59) * 36+E(60) * H 7+E(61) * 38$
$G(6)=E(70) * 84+E(71) * B 5+E(72) * B 6+E(73) * 甘 7$
$G(7)=E(81) * B 2+E(82) * 33+E(83) * B 4+E(84) * 35+E(85) * 30$ $G(3)=E(94) * B 2+E(95) * 33+E(46) * 3++E(97) * B 5$
$G(\exists)=E(105)+E(106) * B 1+E(107) * E Z+E(108) * B 3+E(109) * B 4$ $G(10)=E(118)+E(119) * B 1+E(120) * 32+E(121) * E 3$ $G(11)=E(131)+E(132) * 41+E(133) * B 2$
$G(12)=E(144)+E(145) * 31$
$G(13)=E(157)$

UE 0410
DE 0420
DE 0430
DE 0430
DE
DE 0440
O
DE 0450
DE 6460
DE
OE 0470
DE 0480
DE 0480
$D E$
0490
DE 0490
DE 0500
DE 0540
DE 0550
DE
DE 0550
DE 0560
0.0570
DE 0570
DE 0580
DE 0600
DE 06610
DE 0630
DE 0640

DE 0730
OE 0750
DE 0760
DE 0700
DE 0740
DE 0810
DE 0820
DE
OE
O
O
OE 0840
DE 0830
OE 0800
O
OE 08800
DE 0870
DE 0870
DE 0800
DE 080
DE 0900
OE OYIO
DE 0930
DE $\begin{gathered}0940 \\ \text { DE } \\ \text { OS50 }\end{gathered}$
DE 0970
DE 0990
DE 1030
DE 1050
DE 1090

DE
DE
GE
I11
1140

$G(20)=F(33) * 36+F(34) * B 7+F(35) * 83+F(36) * B 9+F(37) * b 10+F(38) * 011+$
 $G(22)=F(57) * 34+F(58) * 5 j+F(54) 406+F(60) * 67+F(61) * 38+F(62) * 39$ $2 F(53) * 810+F(54) * 811+F(05) * 812$
$(, 123)=F(70) * 34+F(71) * 85+F(7 \mathcal{C}) * 86+F(73) * B 7+F(74) * d 8+F(75) * 39+$ $2 F(76) * 310+F(77) * B 11$
 $F(87) * B 8+F(a 8) * \delta \xi+F(89) * 310+F(40) * E 11+F(91) * E 1 C$
$2 F(100) * B 8+F(101) * 89+F(102) * B 10+F(103) * 01 i$
$G(26)=F(105)+F(106) * 31+F(107) * B C+F(108) * 33+F(109) * B 4+F(110) * 85+$

 2F $(124) * * 6+F(125) * B 7+F(126) * 88+F(127) * B 9+F(128) * 810+F(129) * 311$
 $G(29)=F(144)+F(145) * 31+F(146) * 02+F(147) * 03+F(148) * 84+F(149) * 05+$ $\operatorname{GF}(150)=F(157)+F(158) *+B 1+F(159) * B 2+F(160) * 33+F(161) * 34+F(162) * 35+$ $2 F(163) * 86+F(164) * B 7+F(165) * 88$

$G(32)=F(183)+F(184) * \overline{8} 1+F(185) * 32+F(186) * 33+F(187) * B 4+F(188) * 35+$
$\underset{G}{2 F}(189)=F(196)+F(197) * 31+F(193) * 82+F(199) * 33+F(200) * 84+F(201) * 35$
$6(34)=F(209)+F(210) * 31+F(211) * 82+F(212) * 33+F(213) * 84$
$G(35)=F(222)+F(223) * 3 i+F(224) * 82+F(225) * 33$
$G(36)=F(235)+F(236) * 31+F(237) * B 2$
$\mathrm{G}(37)=\mathrm{F}(248)+F(249) 41$
$G(38)=F(261)$
$D 034 \mathrm{~K}=23,41$
$34 \quad Y(K)=Y(K-21)$
$Y(42)=(P A-G(18) * Y(1)-G(19) * Y(2)-G(20) * Y(3)-G(21) * Y(4)-G(22) * Y(9)-$
$2 G(23) * Y(6)-G(24) * Y(7)-G(25) * Y(8)-6(26) * Y(9)-G(27) * Y(10)-G(28) * Y(11$ 3) $-G(29) * Y(12)-G(30) \approx Y(13)-G(31) \# Y(14)-G(32) * Y(15)-G(33) * Y(16)-$
 $2+G(7) * Y(7)+G(8) * Y(8)+G(7) * Y(9)+G(10) * Y(10)+G(11) * Y(11)+G(12) * Y(12)$ $3+G(13) * Y(13)$
$Y(100)=G(1) * Y(2)+G(2) * Y(3)+G(3) * Y(4)+G(4) * Y(5)+G(5) * Y(6)+G(0) *$ $2 Y(7)+G(7) * Y(3)+G(8) * Y(9)+G(9) * Y(10)+G(10) * Y(11)+G(11) * Y(12)+G(12)$ 3\#Y(13) +G(13) \#Y(14) EVJ
SUJROUTINE GOTEAM
COMMON Y(102)
COMMON/GOALOT (101, 2),STEP(3),N2KS(3),NPM(3),K1,K2,K3,K4,CC,PA,PB,
COMMON/FORM/A(20),B(28),C(63),0(91),E(221)
COMMON/SAGE/F(325)
COYMON/OLOB/YMAXI
OIMENSION T(50), U(100)

已GAMMA..'1
 (GAMMA).'1
 $2(G A M M A) \cdot{ }^{\circ}$
PAPFPA世PATM
WRITE $(6,300)$ STEP(K1), PAP
300 FORMAT (15X.'TIME STED IS ',FB.5.' . PRESSURE STEP INPUT $=1, F 12.5$

400 FORMAT(IOX,' TIME DUTPUT "PFZ/PA" TIME OUTPUT MPGPA
 ICONVERTED \qquad SEC) (CONVEKTED):
40 00 $42 \quad j=1,102$

KRK $=$ NRKS $(K 1)$
$N P=N R K 1100$
C--- LOAD "TIMEH INTU PT(K.l) AND zEROES INTO PT(K,Z). DO $52 \mathrm{Y} \times 2=1,100$
PT $(J, 2)=0$.
C-S? PT(J, THE INTEGRATOR.
$\mathrm{NPR}=0$
$\begin{array}{lll}1 K=1 \\ D 0 & K K=1, N R K\end{array}$
$\mathrm{VPR}=\mathrm{NPR}+1$
CALL RKINT (KKNㅡㄹ
If(ANS (CONVRT). GT. YMAXI) GO TO 55
IF (NPR.LT.ND) 60 TO 60
IK=1 $\mathrm{K}+1$
PI (IK +2) $=$ CONVRT
COVTINUE
65 RITE $(6,700)($ (PT $(K, j), J=1,2),(P T(K+50, j), J=1, Z), K=1,50$
 fot call loit io data is bai.
IF(PTIIO.2).EO.O.) RETURN.
$j=2 \pi K-1$
$\mathrm{J}=\mathrm{C} * \mathrm{~K}-\mathrm{K}$
$1(x)=1$.
5) $=2 T(J .2)$

QETURN
ENGROUTINE RKINT (LL,NSYS)
c this sugroutine solves differential equations br using a ruivge kutta METHOD DIMENSION DELY(4,50), SET (3), YU(5O)
COMMON Y(102)

HET(1) $=0.5$
SET $(2)=0.5$
N2=NSYS+2
$\mathrm{VP} \mathrm{I}=\mathrm{NSYS}$
$\mathrm{XV}=\mathrm{Y}(\mathrm{NO} \mathrm{I}$
CALL DERFUN
320 Yu(1) $320 \mathrm{Y}(\mathrm{I}=1 \cdot$ NSYS
$001001034 \mathrm{~K}=1$
IF (K.EA.1) So To 1002
$002001340 \quad I=1$, VSYS

IF (K.EQ.4) GO TO 1034
$1350 \begin{aligned} & \text { DO } \\ & Y(1)=Y U(I) \\ & \text { 1 }\end{aligned}$
$Y(V P 1)=X V+B E T(K)$ OY(N2)
034 COVTINUE $1=1$,VSYS
$D E L=(0 E L Y(1,1)+2.0 * 0 E L Y(2,1)+2.0 * D E L Y(3.1)+D E L Y(4,1)) / 6.0$ $Y U(I)=Y U(I)+J E L$
1039 covtinue
Y(VP1) $=x V+Y(N Z)$
CALL DERFUN
$x=Y$ (NP1)
RENUR
SUBZOUTINE XYPLOT (XX,YY•NX,NY,XLINCH, YLINCH)
COYMON/BLOB/YMAXI
DIMENSION XX(1), YY(i), IY(IO)
TVENSION IP

NXSIZE $=\mathrm{XLIVCH} * 6.0$
XSIZE $=$ NXSIZE
NYSIZE $=$ YSIZE +1
YSIZE $=$ NYSIZE -1
NPLOTS $=$ NY/VX
X MIN $=0$.
XMAX $=$ XX
XX
XMAX
---- USE A FIXED ABSCISSA, AS SHOWN BELOW.

- IF(YY(I).LT.YAIN) YMIN=YY(I)

IPLOT(1) = IAXIS
$X Y$
$X Y$
$X Y$
X
IPOT(NYSIZE) $=$ IAXIS
VLINE
$00301=1$, Nx

34 FRITE(6,4) (IPLOT(J), $j=1$, NYSILE $)$

33 VLINE = NLINE +

IY(K) $=$ (YY(<1)- YMIN)/OY\#YSIZE +1.5

$41 \times I=K 1+N X$

IYK $=\operatorname{Ir}(x)$

IP_{C} OT (NYSIZE) $=14 \times 15$
30 COVTINUE WRITE (6.3 (IMINUS(J), J=1,NYSIZE)
RETURN $6 \times$, ABSCISSA $\cdot 5 x, 100 A 11$

3 FORMAT(Int,20x, 100 Al$)$

 ENO $=1,6(2.5)$

XY 0550
xy 0030
$\begin{array}{ll}X Y & 0040 \\ X Y & 0050\end{array}$
xy 0120
$\begin{array}{ll}\text { XY } & 0120 \\ X Y & 130 \\ X Y & 0140\end{array}$
$\begin{array}{ll}\text { XY } & 170 \\ \text { XY }\end{array}$
$\begin{array}{ll}X Y & 0170 \\ X Y & 180 \\ X Y & 0190\end{array}$
XY 0200
xy 0220

C--- FYEYMAX-YMIN
YMIN=0.
YMIN $=0$ M
YMAX Y MAX
OY $=$ YMAXI

APPENDIX C
an alternate model, without
THROUGH FLOW

This appendix.outlines an alternate solution to the nonlinear axial momentum equation, Equation (2.20), and the linear energy equation, Equation (2.25). This model is recomended for use only when the primary model, Equations (2.70), tends to be unstable in a particular system simulation.

The linearized, nondimensional axial momentum equation may be written in the form shown below when through flow is neglected:

$$
\begin{align*}
\frac{\partial V(t, R, z)}{\partial t}+\frac{C_{0} K}{L}\left(\frac{\partial V}{\partial z}\right)_{*} V(t, R, z)- & -\frac{V_{0}}{a^{2} R} \frac{\partial}{\partial R}\left(R \frac{\partial V(t, R, z)}{\partial R}\right)= \tag{C.2}\\
& -C_{0}\left[\frac{1}{\gamma} \frac{\partial P(t, z)}{\partial z}+(1-K) V_{*} \frac{\partial V(t, z)}{\partial z}\right]
\end{align*}
$$

where $(\mathrm{V})_{*}=(\operatorname{sgn} P(t, 0))\left(\frac{L Z}{C_{0}} \frac{\partial P(t, 0)}{\partial t}-Q(t, 0)\right)_{*}$
from Equation (A.48), and $\left(\frac{\partial V}{\partial Z}\right)_{*}=(\operatorname{sgn} P(t, 0))\left(\frac{L}{C_{0}} \frac{\partial P(t, 0)}{\partial t}\right)_{*}$
from Equation (A.49).
By transforming Equations (C.1) and (2.25) to the Laplace domain and solving these equations, the solutions for the transient axial velocity and transient axial temperature profiles result:

$$
V(S, R, z)=\frac{\left(\frac{J_{0}(\alpha R)-J_{0}(\alpha)}{J_{0}(\alpha)}\right) \frac{C_{0}}{S L}\left(\frac{1}{\gamma} \frac{\partial P}{\partial Z}+(1-K) V_{*} \frac{\partial V}{\partial Z}\right)}{\left(1+\frac{C_{0} K}{L}\left(\frac{\partial V}{\partial Z}\right)_{*}\right)}
$$

Transient Axial Temperature

$$
\begin{equation*}
T(s, R, z)=\left(\frac{J_{0}(\Delta R)-J_{0}(\Delta)}{J_{0}(\Delta)}\right)\left(-\frac{(\gamma-1)}{\gamma} P(s, z)\right) \tag{C.5}
\end{equation*}
$$

These equations correspond to Equations (2.54) and (2.55) in the main body of the thesis.

By substituting Equations (C.4) and (C.5) into Equations (2.37)
and (2.36) respectively, and integrating Equations (2.37) and (2.36) with respect to (R), the results are:
and

$$
\begin{equation*}
Q(S, z)=\frac{-\frac{C_{0} D_{G}}{\gamma S L}\left[\frac{\partial P}{\partial Z}-D_{g} \frac{C_{0}}{S L}(1-K) V_{*} \frac{\partial^{2} P}{\partial Z^{2}}\right]}{\left[1+\frac{C_{0} K}{S L}\left(\frac{\partial V}{\partial z}\right)_{*}\right]} \tag{c.6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial O(S, z)}{\partial z}=-\frac{S L}{C_{0}} N g P(s, z) \tag{c.7}
\end{equation*}
$$

where (D_{a}), (D_{g}), and (N_{g}) are given as Equations (2.74).
By differentiating Equation (C.6) with respect to (Z), neglecting the higher order term $\frac{\partial^{3} P(\mathcal{S}, Z)}{\partial Z}$, and equating the result to Equation (C.7), this ordinary differential equation results:

$$
\frac{\partial^{2} P(S, z)}{\partial z^{2}}=\left(\frac{S L}{C_{0}}\right)^{2} \frac{N_{g}}{D_{a}} \frac{\left(S+K F_{1 *}\right)}{\left(S-[1-K] D_{g} F_{1 *}\right)} P(S, z)
$$

$$
0 \leq K \leq 1
$$

where $\mathrm{F}_{1 *}$ is given as Equation (2.76).

The solution to Equation (C.8) is of the form:

$$
\begin{equation*}
P(s, z)=c_{1} e^{\Gamma_{d}(s) z}+c_{2} e^{-\Gamma_{d}(s) z} \tag{C.9}
\end{equation*}
$$

where $\Gamma_{d}(S)=\binom{S L}{C_{0}} \sqrt{\frac{N_{g}\left(S+K F_{1 *}\right)}{D_{a}\left(S-[1-K] D_{g} F_{1 *}\right)}}$

Equations (C.9) and (C.6) form a system of equations in the spatial coordinate (Z). By applying the boundary conditions at $Z=0$ and $\mathrm{Z}=1$, this transmission line model results:

$$
\left[\begin{array}{l}
P(s, 1) \tag{c.11}\\
Q(S, 1)
\end{array}\right]=\left[\begin{array}{cc}
\cosh \Gamma_{d}(s) & -z_{d}(s) \\
\sinh \Gamma_{d}(s) \\
\frac{-\sinh \Gamma_{d}(s)}{Z_{d}(S)} & \cosh \Gamma_{d}(S)
\end{array}\right]\left[\begin{array}{l}
P(s, 0) \\
Q(s, 0)
\end{array}\right]
$$

where $\Gamma_{d}(S) \cong \frac{S L}{C_{0}} \sqrt{\frac{N_{g}\left(S+K F_{1 *}\right)}{D_{a}\left(S-[1-K] F_{1 *}\right)}}$
$z_{d}(s) \cong \frac{s L \gamma}{C_{0} D_{a} \Gamma_{d}(s)\left(s-[1-k] F_{1 x}\right)}=\gamma \sqrt{\frac{\left(s+K F_{1 x}\right)\left(s-[1-k] F_{1, k}\right)}{s^{2} N_{g} D_{a}}}$ (c,13)
The terms (N_{g}) and (D_{a}) are given as Equations (2.74), and

$$
\begin{equation*}
F_{1^{*}}=(\operatorname{sgn} P(t, 0))\left(\frac{\partial P(t, 0)}{\partial t}\right)_{*} \tag{C.14}
\end{equation*}
$$

from Equation (2.76).
In the special case where $K=1.0$ above, this model becomes the same as the model in the main text, Equations (2.70).

Using the approximations for $\left(N_{g}\right),\left(D_{a}\right)$, and $\operatorname{Cosh} \Gamma(S)$ given in Chapter III, Equation (C.11) may be rewritten in the same form as Equation (5.4) to compute step responses. That is,

$$
\begin{equation*}
P(S, 1)=\frac{P(S, 0)}{\cosh \Gamma_{d}(S)} \tag{c.15}
\end{equation*}
$$

The step responses which result from the one, two, and four product term expansions for $\operatorname{Cosh} \Gamma_{\mathrm{d}}(\mathrm{s})$ are shown as Figures 20, 21, and 22. The computed step responses and the experimental step responses are shown for step inputs of $0.25,2.0,4.0$, and 6.0 psig. The computed.

Figure 20. Alternate Model Step Responses, One Product Term

Figure 21. Alternate Model Step Responses, Two Product Tems

Figure 22. Alternate Model Step Responses, Four Product Terms
step responses are based on parameters $\mathrm{K}=0.5, \mathrm{DN}=2.0, \mathrm{~L} / \mathrm{C}_{\mathrm{o}}=.0532$
(the 60 ft pneumatic line discussed in Chapter V), 0.40 inch inner diameter, at an ambient pressure (p_{0}) of 11.2 psia.

This model does not predict as great an increase in apparent damping as disturbance amplitude increases as that predicted by the model in the main text, Equations (2.70). (Compare Figures. 20, 21, and 22 with Figure 13.) But this model is more stable than Equations (2.70).

VITA

Richard Paul Braden
Candidate for the Degree of
Doctor of Philosophy

Thesis: FLUID LINE DYNAMICS WITH THROUGH FLOW AND FINITE AMPLITUDE DISTURBANCES

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born in Warren, Ohio, March 17, 1937, the son of Harriet Pawlowski Braden and Paul Braden. Married to Patricia Ligon Braden on August 9, 1959. Three children: Lisa, Annalori, and Jill.

Education: Graduated from High School, Zephyrhills, Florida in May, 1954. Received Bachelor of Mechanical Engineering degree from Georgia Institute of Technology, 1959, and Master of Science degree in Mechanical Engineering from University of New Mexico, 1967. Completed requirements for the Doctor of Philosophy degree in Mechanical and Aerospace Engineering from Oklahoma State University in July, 1973.

Professional Experience: Propulsion Systems Engineer with Lockheed Aircraft Corporation, Marietta, Georgia, 1955 through 1959. Associated with U. S. Army missile program, 1959 to 1963. Schooled in Air Force weapons systems, then assigned to Air Force Weapons Laboratory, Albuquerque, New Mexico, 1964 to 1967. Assigned to U. S. Air Force Academy, Department of Mathematics, 1967 to 1969. Began coursework for Ph. D. in 1969. Presently assigned to Department of Aeronautics, USAFA, as an Assistant Professor of Aeronautics.

[^0]:
 DE 0410
 DE 0420
 0.0430
 0420
 0430
 0440
 E
 0440
 0450
 0460
 04450
 0460
 0470 E 0470
 O480
 0490

 DE 09
 DE 0980

