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CHAPTER I
PROBLEM DEFINITION
Introduction

Although most of the research to date in the area of optimal con-
trol has been limited in application to systems described by ordinaxy
differential equations, much interest in the optimal control of distrib-
uted parameter systems has been demonstrated in the literature. How-
ever, the gap between the theory and its applications remains large.

Most methods of handling optimal control problems involving distributed
parameter systems are limited to relatively simple problems because of
the theoretical limitations of the methods or the impractical complexity
of the application of the methods to more realistic problems. Problems
involving one spatial dimension do not contain the possible boundary
complexity of those of multiple spatial dimensions. Also, while controls
may be theoretically completely distributed in space, realistic prob-
lems often contain controls which are constrained to regions which may
be obtimally located. These practically oriented problems form the bgsis

of this research.
Statement of the Problem

This research involves an investigation of an optimal control prob-
- lem for a class of distributed parameter systems and the development of

a procedure for its solution. The class of systems under consideration



is constrained to include only those which can be described by a set of
coupled, parabolic partial differential equations. Both gystems with
one spatial independent variable and systems with two spatial independ-
ent variables together with the single temporal independent variable are
included, An irregularly shaped spatial domain is allowed in the case
of two spatial independent variables. System initial conditions and
gpatial boundary conditions are to be completely specified, The one or
more spatially distributed controls are to be constrained to exist only
in a finite number of spatial regions, the optimal locations and time-

dependent amplitudes of which are to be determined.
Research Objectives

The fundamental research objective was the development of a proce-
dure for determining the optimum open-loop control for a class of re-
gionally controlled distributed parameter systems. This objective has
been reached through the completion of a natural series of lesser objec=-
tives, the first of which was the conduction of a survey of the litera-
ture pertaining to the optimal control of distributed parameter systems.
This survey contains information pertaining to the clagsification of
optimal control problems involving distributed parameter systems, a dis-
cussion of formulations of the optimal control problem found in the 1lit=
erature, and background material directly related to the optimal region-
al control problem.

The second objective was the mathematical formulation of the opti-
mal, open-loop, regional control problem for the class of distributed
parameter systems described above, This problem was formulated as a con=-
strained minimization problem. The employment of the Lagrange multiplie-

ers allowed the adjoining of the partial differential equation constraint



and initial and boundary condition constraints to the integral perform-
ance index. Application of calculus of variations then resulted in a
set of conditions necessary for optimality in the form of a boundary
value problem.

The third objective was the develompment of a method for the solu~-
tion of the boﬁndary value problem, Various approximation techniques
were considered and the Galerkin method was chosen for the reduction of
the partial differential equations to sets of ordinary differential equa=
tions. Eigenfunctions, Hermite interpolation polynomials and funda~
mental splines were considered for fuhctional expansions to be employed
in conjunction with the Galerkin method, Application of a gradient ap-
proach in conjunction with the Galerkin approximation resulted in a com=-
putational algorithm for the boundary value problem solution.

The last objective waé the application of the algoritlm developed
to example problems in one and two spatiél independent variables. Ex-
ample solutions were obtained for the open~loop control of the tempera-
ture distribution along 2 thin rod and on a thin, irregularly shaped
plate.

The literature survey, mathematical formulation, boundary wvalue
problem solutibn, and applications comprise Chapter IT through Chaptér
V. Chapter VI contains a discussion of the principal results of this

research and recommendations for further study.



CHAPTER II
LITERATURE SURVEY
Background

In the past ten or twenty years optimal control theory for lumped
parameter systems has been given much attention., Many texts as well as
countless papers have been written on the topic. The theory upon which
optimal control is based dates back to the end of the 17th century when
Bernoulli posed the Brachistochrone problem. The extenéive research
conducted in the area of optimal control theory has lead to its ape
plication to continually expanding classes of problems.

Optimal control theory has been extended into the realm of distribe-
uted parameter systems as a result of interest in the control of systems
described by partial differential equations. Although the problem had
more than likely been mathematically considered earlier, Butkovskii and
Lerner (14) presented the first work aimed at a practical, physical sit~
uation, the one-sided heating of a thin lamina moving through‘a furnace.
Since 1960, interest has spread to more complex solid mechanics problems
such as the stress constrained temperature control of the solid fuel rock-
et (7). The breadth of the field of possible application has even ex~
panded to include the presently popular area of pollution control (31,
49). Before considering some of the contributions, some background in-
formation about distributed parameter systems might be of value.

The first question, "Why a distributed parameter model?” must be



given some attention, The common approach, lumped parameter modeling,

is a mathematical statement that the system of interest is adequately
described in general, by a finite set of timewise continuous but spatially
discrete functions (48). In practice, lumped parameter modeling is often
sufficient and many times demanded by the physical situation; however,
situations also exist where spatial discretizing imposes unrealistic
constraints on the system, and thus detracts from the model accuracy and
subsequently any optimization performed on that model., In this case, a
discretized model must lead to a suboptimal control policy. Consequently,
in what cases is the suboptimal control policy resulting from discretized
modeling significantly different in comparison with the one which might
result from optimization performed on a distributed parameter model?
More accurately, when is the performance of the system significantly
hampered by the employment of discretized modeling? Needless to say, a
question of this magnitude is beyond the scope of this work, but is
worth consideration. Undoubtedly, the complications introduced by the
distributed parameter modeling over lumper parameter modeling must be
justified, if only by the resulting insight into the physical situation,
It should be noted that insight from lumped parameter optimal control

has resulted in many approaches to suboptimally, but practically, con=-
trolling inherently lumped parameter systems.

Along the lines of suboptimal control resulting from discretizing
another question must be posed, If optimization is to be performed
computationally, at what point in the optimization procedure, modeling
included, should the necessary discretizing take place? Athans (3)
recommends the obvious, that the distributed parameter mathematical

model be maintained as long as possible.



Another question of generality equal to those above involves the
problem of performance indices. The optimization procedures so far
developed for lumped parameter system models plague the engineer with
the problem of selecting the proper performance index., This problem
can only be compounded by the expansion from lumped parameter modeling
to distributed parameter modeling. The possible choices of performance
indices for distributed parameter systems becomes unimaginable with in=
clusion of equally many more varied physical situvations to which the
theory applies.

Above are only a few of the extremely general problems of interest
to one considering the significant step from lumped parameter analysis
to distributed parameter analysis. Féllpwing a brief review of a few of
the physical situations to which distributed parameter optimization hasg
been applied some more specific problems will be considered along with

a clasgification of distributed parameter optimal control problems.
Classification of Optimal Control Problems

For the sake of organization of the distributed parameter system
optimal control problem, it is of value to classify the types of optimal
control problems under consideration., Although a listing of some ex-
amples cited by wvarious authors could not be construed as a satisfactory
method of classification, inclusion of such a discussion is appropriate.
The most common example cited is the optimal temperature control prob-
lem where the plant is described by the nonhomogeneous heat conduction
equation, a one~dimensional, linear, parabolic partial differential
equation, (1, 4, 9, 11, 12, 13, 14, 17, 20, 23, 25, 29, 30, 36, 38, 39,

42, 44, 51, 53, 54). In the field of heat transfer, authors have



considered various other examples, such as: the optimal control of cool=-
ant flow rate through a nuclear rocket to control the temperature gradi-
ent in fuel cells, the optimal control of é tubular reactor with radial
diffusion, the optimal control of heat exchangers, and an optimal control
problem involving an ablative shield on a.nv aerodynamic re-entry vehicle
(7, 16, 29, 31, 32, 33, 38)., Other authors have cited examples involving
the wave equation or the beam equation (8, 23, 29)s The theory of the
optimal control of distributed parameter systems has been applied to the
optimal aeriation of a polluted river in order to control the biochemical
oxygen demand (37, 49). The listing of interesting examples of applica-
tions of the theory could easily be extended,

Several authors have attempted the classification of optimal control
problems involving plants described by the partial differential equations
(8, 10, 38, 52, 53). Wang and Tung (53) and Wang (52) give a fairly
comprehensive listing of classification possibilities. The most general
of their classifications Vis concerned with the domain on which the gys-
tem equation is defined, Fixed-~domain systems are those having a speci-
fied spatial domain, while variable domain systems are those having
domain boundaries which vary with time or certain variables defined on
the domain. The state of the system defined on a variable domain must
include additional variables which specify the instantaneous boundary
motion.

A gecond common classification is according to the types of control
variables involved, namely distributed control variables defined on the
interior of the system domain, possibly at only specified points, and
boundary control variables defined on the boundary or part of the sys-

tem domain (52),



Classification of output transformation is another type of possi-
bility suggested by Wang, These transformations may either be spatially
dependent or spatially independent, i.e., a weighted spatial averagé.

Constaints provide a fourth classification approach. As in the
lunped parameter case, constraints may be either equalities or inequal-
ities, Hﬁwever, equality constraints may be spatial boundary conditions
as well as initial‘conditions or temporal conditions. Inequality con-
straints might be bounded input amplitudes, bounded stated functions or
bounded integral constraints,

Performance indices usually involve a spatial integral (terminal
control) or spatial and time integrals. Closely associated with the
pérformance indiées is the basic objective of the problem, for example
minimum energy or time optimal control.

| Most lumped parameter optimal control work has delt with systems
described by a set of coupled, first order oidinaxy differential equa~
tions. In most optimal control literature concerned with distributed
parameter systems, the parallel approach of considering systems re-
ducible to a set of partial differential equations of the first order

in time is employed (4, 16, 26, 26, 31, 42, 43, 53, 54).
5,(4,X) = F(5(£,X),S;(t,X,0000,8:k(t,X),0(t,X), t,X) (1)

The above canonical form allows classiication according to the number
of state variables, the number of control variables, the mmber of inde-
pendent spatial variables, and the highest order, possibly mixed, spatial
partial differential operator.

By the above discussion of classifications of optimal control probe
lems involving distributed parameter systems, the breadth of the field

should be apparent. Some of the complications resulting from distributed



parameter system modeling as opposed to lumped parameter system modeling
can be seen in the above classifications while others may remain hidden

without a general mathematical formulation of the optimal control problem,

An Optimal Control Problem Formulation

In the following section different formulations of the optimal cone-
trol problem are discussed, various approaches to the derivation of nec-
essary conditions are cited and several schemes for the solution of the
resulting problem are congidered. The objective of this discussion is
to point out some of the more subtle problems associated with distributed
parameter systems and their optimal control as well as to review some of

the work presented in the literature.

Mathematical Statement of the Problem

The objective of the optimal control problem is to determine the
control, unspecified initial conditions, unspecified terminal conditions,
and unspecified boundary conditions such that, for the system described
by a given set of partial differential equations, initial conditions,
terminal conditions, boundary conditions and inequality constraints, the
performance index is a minimum,

A discussion of literature involving the above optimal control prob-
lem begins with some comments concerning the partial differential equa-
tion set. As noted previously, most authors have utilized a foxm similar
to the one presented above. Some authors have been somewhat more spe=-
cific in their definition of a canonical form by considering linear equa=-
tions of the form:

St(t,X) = LX o 8(t,X) + U(t,x), (2)
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where LX is a linear, spatial, partial differential operator, (4, 5, 8).
A third common approach is to begin with an integral equation which can

be derived from the original partial differential equation (51).
t
5(t,%) = [ K(X,%,0)0(r)at (3)
o

Some problems arise in transforming higher order partial differential
equations into the form of equation (1), Elliptic equations are not
"wvell=posed” as initial value problems according to Brogun (5). He
also notes that the obvious transformation for the one-dimensional wave
equation leades to a set of two partial differential equations of sec-
ond order in X which are not "well-posed’.

Initial, terminal and boundary conditions give rise to a second
area of problems. In most of the literature, the common problem of a
completely specified set of initial conditions is considered. However,
the general problem should include the possibility of the parallel of
the initial condition manifold of the lumped parameter problem. This
might be expressed in the form of a set of constraints on the initial
state., Similarly, terminal conditions are usually unspecified; however,
they might be totally specified or partially specified. The most inter=
esting of the three specifications is boundary conditions. Completely
specified boundary conditions are commonly considered. It is interesting
to note that the unspecified boundary conditions may be viewed as bound-
ary control functions to be specified by the optimization procedure., It
is also interesting that there may exist problems in the specification
of boundary conditions for a partial differential equation. The number
of boundary conditions necessary for the solution of a particular partial
differential equation depends on the type of eguation being considered.

In some instances, not all of the possible spatial derivatives may be
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independently specified on the boundary. Some references in which the
boundary forcing function problem is considered are (8, 11, 16, 17, 25,
38, 44, 45, 54). Although most authors have considered only the uncone
strained problem, a few have considered the problems of magnitude con=-
straints on the distributed control function (1, 10, 11, 14, 45, 51).
As in the case of lumped pa.rametgr optimization, constraints on the
state variables are expected to cause additional difficulties (7, 13).

A variety of performance indices are utilized by authors in the
literature, A spatial integral at the final time might be used for prob=
lems involving the deviation from a desired final state (1, 16, 29, 44,
51 ), while time integrals at a particular spatial point might be used for
problems involving a time averaged deviation from a desired state at a
fixed point in a spatial domain (9, 10, 11, 30). More general perform~
ance indices might be specified as-a space-time integral (13, 16, 54),

a space-time integral plus a space integral (26, 31, 42, 43), or a space~
time integral plus a time integral (16, 25, 26). It should be noted that
by suitable definition, different types may be converted to other types.
The unfortunate usage of different forms of performance indices slightly

alters the appearance of necessary conditions for optimality.

Formulation of Necesgary Conditions

Most of the approaches to the formulation of necessary conditions
follow three basic lines: calculus of variations, dynamic programming
and functional analysis. Some authors employing the calculus of varia-
tions include Butovskii, Ergov and Iurie (13), Demn, Gray and Ferron
(16), Hahn, Fan and Whang (26), Sage (43, 44), Sakawa (44, 45), Wiberg

(54), and Brogan (8). Grahma and D*Souza (25) and Wang and Tung (53)
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employ dynamic programming to obtain necessary conditions. Axelband (5),
Fleming (22), Lattes (34) and Lions (35) base their work on functional
analysis.

The results of the application of the calculus of variations demon=-
gtrated in Chapter III compare with those found in the literature,
Sage (42,43) considers the fixed initial and final time problem with
specified initial and houndary conditions and no inequality constraints.
Hahn (26) considers basically the same problem with the exception that
boundary conditions are only partially specified. The result is a par-
tial set of boundary conditions on the adjoint variables. Denn, Gray
and Ferron (16) include a set of unknown functions of time in the bound-
ary condition constrgint functions. They employ spatial integrals of
terminal condition constraint functions for a specialized application.
Once the boundary value problem is formulated, the next step is to con-

gider various methods of its solution,

Approaches to Boundary Value Problem Solution

Analytic solutions to optimal control problems involving the dige
tributed parameter systems are difficult to obtain. Brogan (8) presents
a Green's function approach and utilizes an "extended definition of the
operator" to handle problems with boundary control functions. He pree
sents analytical solutions for several common equations (the diffusion
equation, the wave equation and the beam equation). The solutions ine-
herently involve infinite series.

Various authors have contributed to the list of approximation teche
niques. Two basic approximation methods exist: discretization and

eigenfunction truncation. In the first, the set of partial differential
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equations is spatially discretized and then handled with lumped para-
meter techniques., This method of reduction to a single independent
variable by using finite differences is often called the method of
lines (21). Butovskii (11), Sage (42, 43) and others discuss discre-
tization methods. Wang and Tung (53) discuss some problems associated
with discrete approximation, such as the controlability of approximate
systems,

In their listing of forms of approximation, Wang and Tung (53) also
mention spatial harmonic truncation, i.e., eignefunction truncation,
Singh (47) discusses the eigenfunction method for conversion of partial
differential equations to an infinite set of ordinary differential
equations., This approach is basically the Green's function method which
has not been taken to completion. A comparable approach, presented by
Goodson (24) and Khatri and Goodson (30), is‘one in which transcendental
terms found in the transfer functions of linear distributed parameter
systems are approximated by infinite product expansions, However, it
should be noted that in Xhatri and Goodson's paper (20) only problems
involving boundary control functions with pexformance indices involving
time integrals are considered., In other words, the method is good for
fairly accurate control at a particular spatial location,

Computational procedures for the solution of the optimal control
problem have been presented in the literature, Denn, Gray and Ferron
(29) and Hahn, Fan and Hvang (26) present gradient search techniques for
distributed parameter systems. In both cases a suboptimal control is
guessed and then iteratively improved. Sage (43) discusses a gradient
approach and presents a method utilizing quasilinearization. He notes

the two possibilities of linearization of the partial differential
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equation and linearization of a set of ordinary differential equations
obtained by spatial discretizing., Brogan (8 ) presents several com-

putational schemes for specialized problems.
The Regional Control Problem

Distributed parameter systems often involve inputs which can not»be
arbitrarily specified over the entire spatial domain, However, distri-
buted inputs are commonly considered either spatially constant or spa-
tially unconstrained. Athans (3 ) suggests that controls should be
constrained to act at a finite number of locations, which might be op-
timally selected. He also notes that these controls should not be
treated spatially as impulses. A somewhat specialized version of this
problem is considered by Foster and Orner (23),

Fogter and Orner formulate a linear regulator problem for a class of
linear distributed parameter systems with two indepen@ent variables. The
digtributed inputs are constrained to a finite number of optimally loc-
ated zones and the state of the system is observed at a finite nuber
of optimal locations. They suggest two methods of reduction of the system
partial differential equation to a finite order system of ordinary dif-
ferential equations., The first method is a truncated eigenfunction
expansion and the second is the Bubnov-Galerkin method. The solution of
a matrix Riccati differential equation provides the feedback control law
and a linear time-invarient dynamical observer is designed ta provide an
estimate of the state of the system,

The solution of an open-loop, regional control problem has not been
- found in literature. The remaining chapters are devoted to an approach

for its solution,



CHAPTER III

MATHEMATICAL FORMULATION

The optimal control problem can be divided into two parts which are
the mathematical formulation of the problem and the solution of the assoe
ciated boundary value problem., The first step in the mathematical formu-
lation of the optimal control problem is the transformation of a physically
oriented statement of the problem to a mathematically oriented statement
in the form of a constrained minimization problem. The constrained mini-
zation' problem is then converted to a set of conditions necessary for
optimality by the application of Lagrange multipliers and the calculus of

variations.
Constrained Minimization Problem

In this section, a general form of the open-~loop, opt‘ima.l, regional
control problem with one spatial independent variable is formulated as a
constrained minimization problem. Then the additional generality of two
spatial independent variables is added.

Consider a system with a state vector S(t,x) which is described by
a set of coupled, parabolic, partial differential equations defined for

- all tG(to,tf) and_xe(xa,xb). That iss
St(tyx) - I‘(S(tox)’xx(t,x)’Sﬁ(t,x)vu(tox)'ttx)o
The system is constrained by a possibly partial set of initial and terminal

15
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conditions and a complete set of boundary conditions.

1°(s($,%)4x) = O ; v xe(x,,%,),t = b
I\Tf(S(’c,x),x) =0 3 v xe(xa,xb),t =t
Na(S('b,x).Sx(t,x)) =0 3 ¥ te(t b)Y % = x
(s(t,%),5. (6,%)) =0 3 Y be(t b px = x,

The control vector, U(t,x), is constrained such that each element, ui(t,x),
is the product of a vector of temporal functions and a vector of spatial
distribution funciions.

u,(,%) = Z;%j(t) 9, 5(x,13)

The spatial distribution function, ¢ij(x’lij) are specified continuous
functions of the parameters, 1ij’ which determine the location or shape

of the control and the temporal control functions,ﬁéij(t), are unspecified
but have continuwous first derivitives.

The objective is to determine the temporal control functions,<3ij(t),
and the spatial distribution function parameters, lij' such that the state
equation, initial conditions, terminal conditions, and boundary conditions
are satisfied and such that a scalar performance index, J, is a minimum,
The performance index may contain temporal integrals, spatial integrals

and integrals over space and time.

%
5o I Rs,5 (60,8 |+ (s(h,,5,08,00,8) | ans
1 x=xa =3

x.b

J 5°(s(s,%), X)Jt - yf(S(t,x),x)tl— ax+

X
a tf
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be
P8 as(s,%),8,(6,%),8_ (6,%),0(t,%),t,x)axat
. .

X
0 a

A similar problem in two spatial dimensions can be formulated, Con-
sider a two dimensional spatial domain, {l , with a boundanyj}.b which is
specified in fterms of a linear parameter, p, representing distance along

the boundary curve.

ﬂb = {X = (X1 ,X2) X.] = X1(p)0x2 = X2(P)} -
The state equation and the initial, terminal, and boundary conditions can

be written in the vector form.

St('t,X) = F(S(t,X) 3 Sx(t,X) ’ S}(X(tyx) ,U(‘b,X) ’t’X)

HO(5(%,X),%X) = 0 ; XeQ, t =t
Mt (s(t,%),8) = 0 ; Xefl, t = b,
N(S(‘b,X),SX('t,X)) =0 H tG(‘to,tf) ,Xiﬂb

For the two-dimensional location of each of the control gpatial distri-
butions, a vector set of parameters, Lij’ is required. The elements,

Ui(t,X), of the total control, U(t,X), become:
u, (t,%) = ’%'e'ij(t)d)ij(x’Lij)'

The performance index for the problem in itwo spatial dimensions may con-
tain integrals over the time interval and along the spatial boundary,
integrals over the spatial domain and integrals over the time interval

and the spatial domain,

%
£
J =£ ﬂ{) w(s(t,x),sx(t,x),t,xg{lﬂb dpdt +
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IF s, |+ yis(,0,0 l a0+
QO =t t=t,

t
U IS m () 5 (5554 8, (£,%) (5, %), 8,%) anat
t

The constrained minimization problem remains to determine the temporal

control functions,f&ij(t), and the parameter vectors, Lij’ such that the
state equation and initial, terminal, and boundary conditions are satise
fied and such that the performance index is a minimum.

Additional generality might be added to the above constrained minie-
mization problems, for example, by allowing an unspecified terminal time
or inequality constraints. Once the constrained minimization problem is
established, necessary conditions in the form of a boundary value problem

can be derived,

Kecessary Conditions

The derivation of conditions necessary for optimality begins with
the adjoining of the state partial differential equation to the performe
ance index with a Lagrénge miltiplier vector., The Hamiltonian is then
defined and the first variation of the modified performance index is ob-
tained., For the performance index to be a minimum, it is necessary that
the first varigtion of the modifiéd performance index be zero, This re-
quirement yields the necessary conditions in the form of a boundary value
problem.

Consider the constrained minimization problem in one spatial dimen-~
sion. Adjoining the state partial differential egquation to the performe~

ance index yields the modified performance index, J¥,



19

ot
+y

X_b
g =3+ { 2%,%).

X
e} a

133

[F(S(t,x),Sx(t,x),Sxx(t,x),U(t,x),t,x) - St(tsx)] dxdt

The Hamiltonian, h, is then defined

>

h(S(t,x),Sx(t,x),Sxx(t,x),U(t,x),A(t,x)t,x)
Z(S(t,x),Sx(t,x),sxx(ﬁ,x),U(t,X),t,X) +
AT(tsx) F(S(t,x),gx(t,x),sxx(t,x),U(t,x),t,x)

end the first variation of the modified performance index is obtained.

tal T T T T
f a a b b
oM_. oW aw- | o faw
§I% = i = §3 + (as” ssx + (as ]Sa + asx 58}: at +
ol X=X_ X=Xy
r m
}fb Y 2y- :
4 (as 88 + 155 58S ! dx +
a L.
t=0 t—tf
t !
[ }% 2B ss 4 (2B g5 4 [RB
|35 5 xt |38
t x x
o “a
20\ ) Pss - 6% s | axat
2 A - t " Pt
Application of Green's Theorem is conjunction with the relationships
55, = <o (65), 85 - (83), &S -—-—22’2 (83)
t ~ at Y T T oox VT o dX
and the control definition in terms of temporal functions and spatial
function parameters yields a simplified form of §J%,
g Ceafutm )
bw d dh dw__ _oh_
= an 3153 }J 53+{an 55 85, +
= X=X
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AW >h > [3h } . [éw dh } l at +
5{3 |- | e—— | et 58
= 13 3

S 25, 7 % { sm) 55, ( sm) o
> T T
jb 2, 4l 83 ‘ S P ’ ax
25 * +135 - +

a t=t t=%

o) f

£ T
Jf}{b dn_ _ (Z’h 22 2 )-,-@ 55 +

AN EE % 35, 252 lsXX t

C 3 X

3h W ou; 3 s
Z[‘é‘{l" ) ey v w81 } axat
i J

ral By ij " ij

T™e first variation of the initial, terminal and boundary condition
constraint functions must be zero when evaluated at t=to, t=tf, X=X g and

x:xb respectively,

- ]
;.1°t|=to .-._-%— ( 1»10) }s stlbo =0
m
smftitf =»-a%- (nf)T} 5 St’:‘cf =0
> T" > g
szsa‘xlxa ={3§-(Na’} ] S + {asx (Naﬂ SSXX,I_X =0
a
T 7
snbxlxb - {S%"' (Nb)T] §3 + [;:Sx (Nb)T} 5 sxxJ:Xb =0

From the first variation of the modified performance index come the

following relationships which in conjunction with the above relationships
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and the initial, fterminal, and boundary conditions on the state equation

form the boundary value problem’

>h
Sg = 35
, __2n .3 (ah\__a? 2
5 T T8 dx 38{’ dx< QSXX
3 +° T
{7;§— +.A} $S I =0
t=b_
o 1 |
{as -A} $s =0
b=t
7 T
r a 2
| W 3 h d ' 2h C ol QW dh B
R “axlas-)} 55*‘[33 - 3% } 55, 0
X XX p. x ==Xa
T T
{bw P 2B ( g b 58S + 2 + 38 } §s =0
{38 S, " ox 133 \ 3s S i X B
X 3 hd po i szb

The set of admissable controls are those of class C'; therefore,
the temporal control functions and spetial function parameters are re-

quired to satisfy the following relationships.

aui

== dx = 0 ; tE€(t ,t,)
Uy &eij o’ 'f

o
ojos
I¥

wodus 0.
g“ 55 = ajfﬂ dxdt = O
Ui %13 ij

o S o
o Tl

o
A similar develomment of the necessary conditions is possible in the
case of the problem in two spatial dimensions. The modified performance

index becomes:
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e
3¢ =3+ 1 4%(4,%)e
t N

o)

[B(5(5,%),8(%,%),8

r(80X)5 (8,20, 8,0) -8, (+,%) | anat .

The Hamiltoniam is defined in the same manner as for the problem in one
spatial dimension
h(s(t,X),5,(t,X),8 (t,X)U(t X),A(t,X),t,X) =

Z(S(t OX) ’ SX(“b,X) yS

XX(t ,X)U('b,X) stsX) +

A7 (5,%)  F(S(8,X), 8 (£,%) 8, (5,%) , 1%, %), £,X)

and the first variation of the modified performance index is obtained .

tf R T ) T
s3% = [ {[-——”ﬁ SS+-—ESSJ dpdt +
toﬂb (as) ( SK) X xto,
T T
b
(1 [B2) o] +8E) 5] Jans
o : £t t=tf

’1‘ i
[( )53 (gz;;] SSX+(3§—S§1&-) 55,

T T

T
(%%_) ST *{g%) SA - S, sA-A&St]de’c .

The boundary line integral may be written in terms of the independent

variables X, and Xpe Application of Green's Theorem and the Divergence

Theorem yields a simplified form of the first variation.

T
AENEIES I35 o, |22 -

<+\—\d"
b‘ih
=

b *
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The first variation of the modified performance index, the initial, ter-
minal, and boundary conditions and their zero first variations yield the
following boundary value problem. The state and adjoint partial differ=

ential equations ares

Oh
5 =31
2h . O (dn 312 32| on
At='§§-+é;;(é§7)+éx2 (Sﬁ;’)"@x (asx1x1)‘
52 () - 3% [ b }
©x1dx2 asx1}:2 6x§ aS}c2x2 y
The initial and terminal conditions are specified by:
W | =0 , il | =0
ta‘tc{ tatf
2 o1\t l 2 oI |
(-a-S-(M))ss =0 , —~5 (0)7) 68 =0
tato 'h::tf
o T > £ T
o)
T &8 =0 <4 - 4] 88 ‘ =0.
(f;S +A) t-’:to ’ ( S ) twtf

The boundary conditions are specified by:

N l = 0

=0

x5

T q

T s + (-3-’-— (N)T) 58
x 108

1 X5 Yeq

(xg9x ) €,

2 s ofz—
*
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r{(éli_)Tser(bw )Tss é.’L]T(SS ]g_g_+
\L 33 as}:1 %, asx2 | 3%
T T
3
5‘?‘{;(5‘2‘: ) 53-(%8—;") Ssz..
T2 22
T T
TR I
“0 xs,]k,l 1 (X1 ,351)€Qb
3 : T T
: D ] . s
U-SS—{) s +{5—‘;-:1) 55»1 + (E-é-}'fz) 5QA2]S§_2,_
5n | T
3 (2a | g5 |2 )
S:;‘l_ ( 3?3{1:{1) 88 4 (asx1x1) be1 +
T 7
(%'l'sq';) 53“5%;(2—%3{) $s) -0,
1 b 172 (K1’X2)€Qb

The temporal control functions and spatial function varameters must

satisfy the following relationshivs,

jy 2 duy ax,dx, = 0 5 V1€t ,t.)

Once the necessary conditions are established, some form of approx=-
imation must be made in order to solve the boundary value problem, The

next chapter deals with approximation methods and a solutiow approach,



CHAPTER IV
BOUNDARY VALUE FROBLEM SOLUTION
Approximation Technique

The application of caleculus of variations to the optimal regional
control problem yields the original partial differential equation ox
equations governing the state of the distributed parameter system and
the same number of adjoint partial differvential equations together with
initial, terminal and boundary conditions. Several approaches to the
reduction of these partial differential equations to sets of ordinary
differential equations are available, Among these are the method of
lines, the collocation method, the subdomain method, the least squares .
approximation method, and Galerkin's method. All of these are functional
expansion methods, with the exception of the first which is a finite dif=-
ference method. Table I contains a brief description of the functional
expansion methods.,

Consider Galerkin's method for the reduction of partial differential
equations to sets of ordinary differential egquations. In the case of an
equation in two independent variables, one of the independent variables
may be eliminated by the assumption that the dependent variable can be
expressed ag the vector product of a specified set of basis functions of
the one independent variable and a vector of unknown functions of the
other independent variable. The requirement that the basis functions be

each orthogonal to the error introduced in the equation by the substitution

26



TABLE I

METHODS FOR THE REDUCTION OF PARTIAL
DIFFERENTTAL EQUATIONS TO SETS OF
ORDINARY DIFFERENTTAL EQUATIONS

COmeATIoN ] = o ; j = 1,2,.00,11
X
J
SUBDOMATN f eax=o0 35 = 1,2,000,n
a,
3
LEAST > 2
SQUARES > ‘{e dx = 0 31 = 1,2,000ym
GALERKIN feridxa() 3i®m 1,2,000,m
n

Differential Equation: s, = (s n,sx,s,u)
Functional Expansion: s(t,x) = QT(t)R(x) -3 R(x) specified
Error of Approximationt e = QTRE- f(QTBH,QTRx,QTR,u)

2T
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of the vector product for the dependent variable be zero provides a number
of basis functions equal to the mmber of new dependent variables,

it is only required that the basis functions be chosen such that the
boundary conditions which are eliminated in the reduction eof the partial

differential equations to ordinary differential equations are satisfied.

Eigenfunctions

Three tyves of functional expansions have been considered for ap-
plication in conjunction with Galerkin's method for the reduction of par-
tial differential equations to ordinary differential equations. The
first type of basis functions considered is the traditional truncated
eigenfunction expansion. This type has the basic advantage that it is an
orthogonal set of functions, thus elinminating matrix inversion problems
associated with nonorthogonal basis functions., Wwhile it is good for lin-
ear problems with regular boundaries, its application in the case of non-
linear problems is restricted to the approximation with the eigenfunctions
of a similar linear equation. Complications also arise in the cagse of .

irregular boundaries.

Hermite Interpolation Polynomials

The second type of basis functions considered is the Hermite inter-
volation polynomials., This set of basis functions is similar to the
Lagrangian interpolation functions., Iagrangian interpolation between two
points is merely straight line interpolation, which is shown in Figure 1.
From Figures 1 and 2, the value of f(%) at a point J , betweenl, and T,

may be revresented as the sum of two functions

£(3,) = £ N(T,00,8,) + £C)N 5(8,,T,51,)
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The combination of adjacent functions of this type results in the
"hat" functions shown in Figures 3 and 4. Note that each "hat" funciion
or Lagrange intervolation polynomial which is not centered at a boundary
grid point, is nonzero over two subintervals and zero over all other sub-
intervals, The Lagrange interpolation polynomials which are centered at
the boundary grid points are nonzero over one subinterval and zero over
all other subintervals. Therefore, all nonadjacent Lagrange interpola=-
tion polynomials are orthogonal over the total interval., They are piece~
wise polynomials. The Lagrange interpolation polynomials are elements of
class C;, i.e. continuous with piecewise continuous first derivatives and
are elements of class C1 within each of the subintervals. They obey the

the relationship

at the grid points and are defined by

-e

(3-8, )/ -T5) €[t 1]
200 =0 Crpy sD/Cppy =) 5 €[ 150 ]

0 8 g0 D235y

-

Hermite interpolation between two points of a discrete set involves
knowledge of the first derivatives at the grid points as well as the
values of the fuwction at the grid points, Therefore, when Hermite inter-
polation between two points is employed, the interpolated value at a
point between two points where the function values and its first deriva-
tives are known is represented by the sum of four functions evaluated at

that point, as shown in Figures 5 and 6.
£(3,) = £ (50,0, + ST (5,58,,8,) +

£ (1T ,) + £ (E0a(T,5,L,)
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The combination of adjacent functions of this type results in a set
f Hermite interpolation nolynomials, half of which are smgoth "hat" funce
tions. The Hermite interpolation polynomials have additional continuity
over the lLagrange interpolation polynomials, The Hermite interpolation
volynomials are also piecewise polynomials, but they are elements of Ci,
i.e., continuously differentiable with piecewise continuous second deriva~-
tives, and are elements of class 02 within each of the subintervals, Like
the Lagrange interpolation polynomials, the Hermite interpolation poly-
romials are zero except over the two subintervals between which the func-

tions are centered. See Figures T through 10, The Hermite interpolation

polynonials obey the following relationships at the grid points.

e

N3y - 71(13) =0

5 4

-

7 (8, =0 N l(lj) =

They are defined as follpws.
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The one-dimensional Hermite internolation polynomials are cubic funce-
tions of the independent varizble on a given subinterval with specific
conditions met at the grid points, Similarly, the two=dimensional Her-
mite polynomials are bicubic functions of the itwo independent variables.
on a given subdomain with specific conditions met zalong the grid edges
and at the corners, They are elements of class 02 on a given subdomain
in each of the two dimensions and Cg on the total two-dimensional domain
in each of the two dimensions,

Two basic subdomain or grid block shapes, a rectangle and a right'
triangle, may be combined to form a somewhat general class of polygons.
Arbitrary shapes as well as those polygons which can not be exactly formed
by the connection of a series of grid intersections, i.e. by the combina=-
tion of rectangles and right triangles, can be aprroximated this way.

Consider the two~dimensional Hermite interpolation polynomials asgo-
ciated with the rectangular grid block. While two Hermite interpolation
polynomials are centered at each grid point in the one-dimensional case,
four Hermite interpolation polynomials are centered at each grid inter-
section in the.two-dimensional case, The interpolated value of a function
at a point within a rectangle formed by four points at which the function

value, its first derivative in both directions and the cross derivative
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are known, is given by the sum cof sixteen weighted Hermite interpolation

functions evaluated at the desired noint.

2 2
SRR [f(zi,ﬁjwf;;‘; (3,857,705, 05, +
i=1 j= - :
1 [e) .
fE(Ii,’&j)yi:j (Ea,Ea,r1,12,€1,E2) +
0,1
fﬁ(gl’za)‘lyl:,‘j (139§a511912,g1v22) +

1,1 .
f‘;‘%(gi’zj)vi,j (La’§a111 112921922)
Bach of the two-~dimensional Hermite interpolation polymomials is the

product of two one~dimensional Hermite intervolation polynomials,
Vg €4,8) = nie) ny(e)
The four tﬁo-dimensional Bermite interpolation polynomials centered at a
grid intersection are shown in Figures 11 through 14. They are nonzero
over at most the four adjagent rectangular grid blocks for which the grid
intersection polynomial center is a common corner point. A two-dimensional
Hermite interpolation polynomial is nonzero over less than four rectangular
grid blocks only if the grid intersection about which it is centered lies
on the system boundery., This is similar to the one—dimensional Hermite
interpolation polynomial which is centered at one of the two end points
of the system interval and, therefore, nonzero over only one subinterval.
The two-dimensional Hermite interpolation polynomials for rectangular
grid blocks satisfy zrid edge regquirements as well as grid intersection:
requirenments, While the one~dimensional Hermite interpolation polynomials
are continuous and have a continuous slope at the points common to two

subintervala, the two-dimensional Hermite interpalation polynomials for
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LLLZ 777 77
Figure 11, One Two-Dimensional Figure 12, One Two~-Dimensional
Hermite Interpola= Hermite Interpola-
tion Polynomial tion Polynomial
Type = Zero-Zero : Type « One=Zero

Figure 13, One Two-Dimensional Figure 14. One Two-Dimensional
Hermite Interpola- Hermite Interpolaw
tion Polynomial tion Polynomial
Type = Zero-One Type = One-One
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rectangular grid blocks are continuous and have continuous first deriv-
atives in each direction and a continuous cross derivative along the grid
block edges which are not sections of the boundary,

It was noted that a requirement of Galerkin's method for the reduce
tion of partial differential equations to sets of ordinary differential
equations is that the basis functions must be chosen such that 2ll bound-
ary conditions eliminated in the application of the method must be satis-
fied by the functional expansion. In the case involving one spatial inde-
pendent variable, boundary conditions must be met at boundary points.

For homogeneous Dirichlet or Neumann boundary conditions, substitution of
the complete functional expansion into the boundary condition function
and evaluation of the spatial functions at the boundary yields the require-
ment that one of the time varying coefficients of one of the Hermite
interpolation polynomials must be zero. This simply eliminates one of
the terms of the funchional expansion. For the homogeneous boundary con=
dition involving a function of the state and the normal derivative, the
boundary condition provides a relationship between two of the time vary-
ing coefficients., The result is the replacement of two of the Hermite
interpolation polynomials with a single modified Hermite interpolation
polynomial which forces the satisfying of the boundary condition. Non-
homogeneous boundary conditions result in terms in the functional expan-
sion which do not contain unspecified time varying coefficients.

Similar requirements are obtained for the application of Galerkin's
method to the problem involving two spatial dimensions. However, in the
two=dimensional case, boundary conditions may be functions of the distance
along the boundary. Four two-dimensional Hermite interpolation polynomials

are centered at each grid intersection. Therefore, along a rectangular
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grid edge which forms a section of the system boundary, eight of the two-
dimensional Hermite interpolation polynomials in the functional expansion
must be considered in the satisfying of boundary conditions, All other
terms in the expansion will be zero and will have a zero normal deriva-
tive a2long the grid edge under consideration., For a homogeneous Dirichlet
boundary condition, the four tevms involving nonzero Hermite interpola=
tion polynomials must have zero coefficients and be eliminated from the
functional expansion. For a homogeneous Neumamnn boundary condition, the
four terms involving Hermite interpolation polynomials with nonzero nor-
mal derivatives must have zero coefficients., For a homogeneous boundary
condition, the eight Hermite interpolation polynomials are replaced by
four modified Hermite interpolation polynomials and for a nonhomogeneous
boundary condition, the functional expansion must contain a term without
an unspecified time varying coefficient,

Rectangular grid blocks provide only a step approximation to oblique
boundaries, Therefore, the right trlangle is considered as a second
grid block shape. VWhile no set of bicubics satisfies all of the grid
edge requirements, in particular those along the diagonal edge, C., A,
Hall (27) describes a set of bicubics which allow the matching of the
Dirichlet . boundary condition along the diagonal edge. B. L., Fume (28)
has modified this set in order to satisfy the Neumann boundary condition
along the diagonal edge. These sets of bicubics are compatable with the
set asgociated with the rectangular grid block;ﬁ that is, the bicubics
for the rectangular grid block match those for the right triangle grid
block along grid edges. Note that only the two legs of the right tri-
angle can also be edges of rectangular grid blocks., The piecewise defi-

nition of the two-dimensional Hermite interpolation polynomials centered
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at a given grid intersection depends on the types of grid blocks for
which it provides a corner point., The two-dimensional Hermite interpola~
tion polynomial remains an element of class C; even though it may be def-

ined over various combinations of right triangles and rectangles,

Fundamental Svlines

A third tyve of expansion is a series of fundamental splines. The
fundamental spliﬁes are similar to the Hermite interpolétion polynomials
in that for the one~dimensional spproximation they are cubic polynomials
in each subinterval of a given total intexval., However, the fundamental
gplines are.elements of class Cz. The function value of the piecewise
polynomial and its first and second derivatives are continuous at the
points separating the subintervalg. While the Hermite interpolation poly-
nomials are nonzero over at most two subintervals and, therefore, demon=-
strate "banded orthogonality," the fundamental splines may be nonzero
over all subintervals and are completely nonorthogonal,

A unicue viecewise polynomial composed of cubics defined on each of
n subintervals is specified by 4n conditions., Let fi(Z) be a cubic poly-
nomial in the subinterval between the nodes at‘);i_1 and‘Ei with the set
of nodes numbered from 0 to n., Continuity of the function value and its

fivst and second derivatives yields 3(n-1) conditions.

fi(zi..‘;) = fi—1(§i-1) H 1=1y2500syn=1
a d .

ar £,(1;.4) = d3 £435) 3 1=1y2,000,m-1
2 2

d d .

a2 155 9) = 392 5540 ) ; i=1,2y000,n-1

Specification of the value of the piecewise polynomial at each of the nodes

yields n+1 conditions.,
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The last two conditions are obtained from the specification of the first

derivative of the piecewise polynomial at the two end nodes,

d
ay f1(lo) =60
d

TT L) =0

The seriés of fundamental splines is a particular subset of the set
of piecewise polynomials which satisfy the above 4n conditions. The
series of fundamental splines is formed by choosing combinations of the
n+3% constants c\’i and @j' A single fundamental spline results when one

of the constants ig chosen to be 1 and all others are chosen to be zero.

°<i = Si].{ H is= O,1,oot,n
kzo,1,.c¢,n
gj = o H j = O,n
di-'-“-o ; i=O,1,...,n
k = O,n
@j =6jk 3 ' j=0,n

One fundamental splin§ is centered at each interior node and two are cen~-
tered at the end nodes, |

The definition of two-dimensional fundamental splines is considerably
more complex than that of one~dimensional fundamental splines., Continuity
requivenents must be satisfied along the grid edges as well as at grid
intersections. For each grid bhlock, the sixteen coefficients of the bi-

cubic for each fundamental spline must be determined.

Compaxrison of kxpansions

Both the Hermite interpolation polynomials and the fundamental splines
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have the disadvantage of being nonorthogonal, while the orthogonality of
the eigenfunction allows reduced computation, The disadvantage of none
orthogonality appears to be inportant in one-dimensional expansions, but
irregular boundaries provide sufficient justification for nonorthogonal
expansions in miltiple dimensions, In addition to the boundary advan=
tages in multidimensional expansions, the Hermite interpolation poly-
nomials and the fundamental splines allow varying accuracy over & region
of interest by allowing irregular nodal spacing., However, this advantage
is of questionable value in the case of the search for the optimum loca=
tion of the region requiring the most accuracy. The Hermite interpolaw
tion polynomials have less continuity than the fundamehtal splines, but

allow less initial computation.
Computational Algorithm

Optimization involves a search for one or more constants which cause
the minimization of some performance index, There are basically two dif-
ferent directions to take in establishing an optimization procedure., One
is to base the direction of change of the vector of constants to be opti-
mized on the values of the performance index which result from changes in
one or more of the constants. The other is to base that change on calcu~
lations in addition to that of the performance index at one point in the
multidimensgional space of the vector of constants. For example, the gra-
dient direction for change of the vector of constants may.be determined
from samples or from gradient calculations at a single point.

Application of the caleculus of variations with the Lagrange multiplier
method provides a natural foundation for a gradient approach based on

caleulation of the gradient at a single point. The necessary conditions
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for optimality include the state equations, the adjoint equations, bound-
ary conditions and conditions on the control, For the fixed time problem
with specified initial conditions and balanced and specified spatial
boundary conditions, the solution proceeds by the assumption of the con-
trol, All of the necessary conditions except those on the control are
satisfied by forward integration of the state equations and backward in-
tegration of the adjoint equations. The variation of the performance
index with constraints adjoined with respect to each of the control ele=-
ments and evaluated along the state and adjoint trajectories provides a
sradient direction for modification of the control.

Two slightly different approaches to the solution of the optimal con-
trol problem after apnlication of Galerkin's method are possible. First,
the time dependent control amplitude is disofetized with an interval
equal to the integration interval, creating a vector of constants equal
in length to the number of time steps plus one, This vector of constants
is searched for simultaneously with the constant locating the control,
The second approach ig to assume a polynomial series expansion for the
time~dependent control amplitude and search for the coefficients of the
series together with the constant locating the control,

Consider first the problem with one spatizl independent variable.

The gradient direction of the control modification is determined by exame
ining the terms remaining in the firgt variation of the performance index
after the extraction of the state and adjoint partial differential equa-

tions and the initial, terminal and boundary conditions.

t

£ %
) dh duy dus  od; 3
§J% = { { g[ Z(-—‘-Sﬁ- -i~---4-a(1>lJ --J'-b] JSlij)] dxdt
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Suppose that the time integral in the first term is discretized with
the same time step as the state and adjoint equation integration., The
parameters lij are constants and their variation can be taken out from
under the two integrals, and the functionsﬁ91j before temporal discretiza-
tion are functions of time only. The resulting approximation yields a
form for the first varistion of the modified performance index in terms

of a set of parameterS‘Gij(tk) and 1ij'

sae =3 [ %;1}; Z—:—&f—' ax Soy at +
i to z, i ] ij

o g ij i3
X, \
dh Uy
=ZZ;[AJG f ou. 30.. dx IJSG (tk) +
i3 " 1 1J £
“a k

dh dus acb’
DI 23 axat 51,

aui a¢ij ) 1ij

The change in the control shbuld be in the direction in parameter space

which maximizes the nezative change in J¥,

© . 2 . 2. E
88,58 = =X ?ijk/[gzj§?ijk ) g% i ]

RRR IR 2 1%
Bliy ‘K"id/[ RIARCIAR L O‘iﬁ]
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5 x, i3 9713

Suppose that the time dependent control amplitudes are to be expres-

sed as polynomial series in time,
\ —
eij(t/ “§ 813k

In this case the first variation of the modified performance index be=-

comes a function of temporal varameters and spatial parameters.

T % .
>
§J% = =3 Ld3 -—-’i-a d:cdt]&g
ggg[,{ }{ aul 69 13k
o a
te %,
ZZ[ [9-‘%— %—%a’- g%a dxd‘b]&l
TTL o, T TP T J
o] a

The change in the control parameters should then be
- 2 . 5
%5 * = X9upd | FIL S TE %
- - 2 . 2 1%
Blis = =KOy s/ [g%:%")ijk _‘ g%dij]

dh  duy :&ij dxdt
ou; Iy Oy

te 3,
?ijkﬁ j }
t X

2
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yla - [ { XM a(‘) 31.3. dxdb
£t % 1 1]

0 a

The basic optimization approach is to integrate the state equations
forward in time and check the performance index for a decrease. If a
decrease in the performance index is obtained, integrate the adjoint
equations backwards in time and calculate a new control based on the gra=
dient described above. If a decrease in the performance index is not
obtained, the past change in the control is reduced along the gradient
and the step size constant, W, is reduced. This loop is maintained until
a minimum control step size or a maximum number of iterations is reached.

For the problem involving two spatial independent variables, the
spatial line integrals in the control changes become surface integrals.
The first variation of the modified performance index after extraction
of the sgtate and adjoint equations and the initial, terminal and boundary
conditions is a function of the variation in the temporal control funce

tions and the spatial diztribution parameters.

e

§7%=Y Y jjj%%— -g-;-::- axax, 69, ; &t +
i] 1 Q 1 ij
(o]

by

TYT N 2 a2y

1TE s 2% 0y Olig

1dx2dt 6 1ijk

If the temporal control is discretized, the gradient change in the

discrete temporal control values and in the épatial distribution para~-

neters becomes:?
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[ " o8+ ZZ@crfal,]
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?i,jm=Atffau 3%, x4 3%, l
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ijk 5 a ) 3P, lijk 1

If the temporal control is approximated by a polynomial series in
time, the gradient change in the temporal control parameters and in the

spatial distribution parameters becomes:

igm = X %1/ {ZZZ?J.JID 22;5; 1ng
1y = X0 5/ {Za;?lgm + Z§§ lgk}

0
]

t

£
dh du; 99
9.. & f L o33 ax,dx,dt
+Jm [f au:'L ae‘ij aglam
t
'S ah bui a¢13
P B il v S S L C L
£ a i i ijk

Scaling for Equal Sensitivity

Scaling is performed in oxder to correct for the problem of varige
tions in the relative sensitivity of the performance index to changes

in the variables to be optimizeds The control variables are’ scaled
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such that the second derivatives of the performance index with respect
to each of the control variables to be optimized are equal,
Consider a performance index which is a function of two variables

which are free to be optimized and a linear transformation of the variables.

The performance index and its first and secend derivatives can be ex-
pressed as function of the new variables §, and ¥, and the scale facw

tors X1 and 82.'

J = f(?S1E1,2$2§2)

aJ . 2f 3L, . df

33 _df 3l _
oI, 9%, 2%, 2 %,

2 2. 13 2 2
IR CYLAREE S

2
Py Fr %, 2
3%3 - 332 13%, 2 313

&

Setting the second derivatives equal yields one equation and two un-
knowns. Arbitrary specification of one of the scale factors allows deter-

mination of the other.

2

i}
-
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P

Pr [¥r
313/313

The scaled zradient changes in §1 and 12 are:
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Application of the above method of scaling to the optimal control
problem in one spatial independent variable results in the following gra-

dient changes in the control variables in the discretized version.

5
2 2 2 2 2
803 5(6) = =X ¥y Qg /L TT Bige Soax *4 L VE5 0
1] 14

' %
AL, = - u .0 /FZZ 5 3k 131c+z}: 13%3 ]
1r1f‘=1

:omy [ 20,
123 el éliq

¥ /“*‘Jrk)

If the time dependent control amplitude is expressed as a polynomial
function of time, the changes in the control parameters are scaled simi=-
larly. Scaling for problems in two spatial independent variables di=-.

rectly parallels that for problems in one spatial independent variable,



CHAPTER V
APPLICATIONS

Pogsible applications of the algorithm include the river and lake
aeriation problems and the o0il reservoir problem. In the aeriation probe
lem described by Tarassov, Perlis and Davidson (49), the system is model~
edl by a pair of partial ditfei'ential equations desoribing the biological
oxygen demand and the dissolved oxygen level in the body of water. The
objective is to determine an optimal aeriation policy for changing the
BOD level, They consider three possible types of controls: a control
which is free to vary in time and space, a control which is free to vary"
in time but constant in space, and a control which is freé to vary in
space but constant in time, The possibility of a reg:léna.l cptimal ocon=-
trol as described in this résearch is not considered in their paper.

In the oil field reservoir problem, the objective is the proper
placement of wells for water flooding of an oil field. Price and Varga
(40) consider solutions of the diffusion-oonvection equation which is a
simplified versibn of the h:l._gher order analog used to describe fluid flow
in porous medium. Although this problem is ext remely complex, the appli-
cation of optimal regional control theory appears to be possible.

A third possible application would be in the area of thermosetting
plastics. Accurate tempersture profiles are required for the molds used
for forming these pla.stié parts. A possible exténsion could include the
location of the heaters in the three-dimensional molds and determination

48
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of the required time=dependent amplitudes of those heaters.

The approach to the solution of the optimal regional control probe
lem discussed in the previous chapters is demonstrated by its applicaw~
tion to systems which are described by the diffusion equation, The re=-
mainder of this chapter contains a discussion of example solutions
obtained for problems involving di ffusion systems with one and two spa=-
tial dimensions, In each case, the constrained minimization problem is
formulated, necessary conditions are derived, the approximation technique
is applied, and the gradient algoritim is used in obtaining numerical

solutions,
A Two=dimengional System

A typical example of an optimal regional control problem is to de=-
termine the heat input to a thin rod of finite length such that the tem-
perature distribution will approach a desired final temperature distribu=-
tion in some optimum sense. The two-dimensional temperature distribution
is a function of distance along the rod and time,

The state of the system, i.e., the temperature ‘distribution which
has been transformed sueh that the desired final temperature distribution
is z.éro, mst satisfy the diffusion equation with associated boumdary and
initial conditions,

5y (6%) = o (5,3) +u(b,x) 5V telhytp)yxele,m)

s(t,x) = s c,(x) VX (xa,xb),tat o

-

byy8(tsx) + by (t,%) = by 3 vt (5 ,tp),x=x,

b123(t,x) + b22(t,x) = b, s vt (to,tf),xaxb
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The control, u(t,x), is defined as the sum of a finite number of
regional controls which are the products of specified spatial distribu-

tions, @i(E), about unspecified means, li’ and unspecified time depend-

ent amplitudes fii(té.
u(t,x) = 28, (£)$,(x-1,)
i

To be determined are the locations of the means of the control regions
and the time~dependent amplitudes of the control functions such that the
state satisfies the state equation with the associated initial conditions
and boundary conditions and such that the performance index, J, is a minimum,
tr % A
2
J=%/ ] A °(t,x) +1/{Z~ei(t)¢i(x-1i)] axdt
i

t x
o a

Adjoining the state partial differential equation to the performance
index with a two-dimensional Lagrange multiplier, a(t,x), yields the

modified performance index, J¥*,

T %y
=3+ [ [ a(t,x) [sxx(t,x) + 78 (£)0,(x-1,) - 8,(t,x) } dxdt
t x +

The Hamiltonian is defined as follows,
' 2
hdigs® 4 %V[gej_(t)d)i(x—li)J + a(t,x) [s o (£9%) +Ziei (t)<l>i(x-1i)J

Application of the calculus of variations yields the original state
equation with initial and boundary conditions and the adjoint equation

with terminal and boundary conditions.
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at(tsx) = - caxx(t,x) -/(s(t,x) HEA te(to,tf),xe(xa,xb)

a(t,x) = 0 v xe(xa,xb),tntf

e

bﬁa(t,x) + b21ax(t,x) =0 s Vte(to,tf),x=xa

b21a(t,x) + b22ax(t,x) =0 Vte(to,tf),xaxb

-s

Remaining in the first variation of the modified performance index are

the terms involving the first variations of ~e-i(t) and 1;.

tr %
§a% =3 f f{vz{e»j(t)ebj(x-lj)] +
+ t x J

[¢]

a(t,x)) P, (x-1, JaxSer (t)at +

tf xb{

Since the control amplitudes, ei(t), and locations, 1,, are uncon-

strained, it is assumed that there exist optimum &i(t) and 1, such that

i

the first variation of the modified performance index is zero., Therefore,

the following conditions must hold.

x,b
J (v %[eg(t)cbj(x-lj)} + a(t.x)}‘bi(x-li)dx =0

X
a

by xb} "
J J\VZ[Q‘j(t)fbj(x-lj)] + a(t,x) —-a-i-gl‘-"-l—il axe(t)at = 0
t x|\ 9 *
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Application of Galerkin's Method

Assume that the state of the system may be expressed as the vector
product of a series of time dependent variables and a series of gpace
dependent basis functions which when combined satisfy the boundary con-
ditions. Since the differential equation and boundary conditions are

gelf-adjoint, the same basis functions are used for the adjoint variable.

5(t,x) = 0§ ()R(x)
a(t,x) = Q(£)R(x)

BEach of the basis functions is required to be orthogonal to the error
in the partial differential equations introduced by substitution of

the approximating vector product.

)
/ R(x)[st(t,x) - csxx(t,x) - u(t,x)]dx =0
*p
f R(x)[at(t,x) + ca_ (t,x) +,¢(s(t,x)]dx =0

Integration by parts before substitution of the vector product yields

simplified equation forms,

) )
J [R(x) st(t,x) + cRx(x)i:(t,x) - R(x)u(t,x)]dx(- R(x)sx(t,x)| =0
x x,

X

[2(0) a,(t,x) = B (x)a (t,x) +4R(x)s(t,x)}ax + RGx)a(t,x)| =0

o T

X
a
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For the special case of one adiabatic end (b11 = byy = 0) and one iso-

thermal end (b22 = b32 = 0), the terms evaluated at the boundaries are

zero. Substitution of the vector product yields:

% s
Q (8) == o J BB (ax | | J R GRI(x)ax] q(t) +
xa Xa,
% S
J R rlat | L | S R4, (x=1,)ax & (t)
X * Xa
%, o,
Qy(8) = c| J R(x)a%)axJ J Rx<x>ai(x>dx] a,(t) -
#Q,(t)

The state initial condition and adjoint terminal condition are transformed

by expansion in terms of the basis functions,

Xb 1
[ R(x) [8(ty5%) = 5,(x) | ax = 0

X
a

x |
[ R(x) [a(tf,x) - o} dx = 0

X
a

Introduction of the vector product for s(t,x) and a(t,x) yields Q1(to)
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and Q,(t,),
-1
b %
Q(t,) =) BER'(x)ax | | S R(x)s (x)ax
lt) =0

The truncated eigenfumction expansion for the diffusion equation

with one adiabatic end and one isothermal end at zero is:

Ri(x) = cos &; %{‘biL:“:)}i)T (x - xa) $ 1= 1,2,4004n
a

In the case of the Hermite interpols tion polynomial expansion, the proper
elements of a complete expansion must be chosen to have zero coefficients
in order that the boundary conditions are satisfied., Referring to pre-
vious definitions for the Hermite functions, the coefficients of“VZﬂx) and
ngﬁx) must.be zero, For n + 1 nodal points numbered from O to n, the Here

mite interpolation polynomial expansion includes the following terms,

R(x) = <r1(x), rz(x),...,rzn(x)>

r (x) =7o(x)
r, (x) =N 3(x)
*p141(X) = }71(")

r, (x) =7} (x)

i = 1,2,0.0,1‘1"1

The matrices of spatial integrals of R(x)R?(x) and Rx(x)Bg(x) re-
sulting from the application of Galexkin's method are single diagonal
matrices in the case of the eigenfunction expansion due to the orthogon=-

ality of the elements. In the case of the Hermite interpolation polynomial
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expansion, these matrices are symmetric with zero elements in all but
the seven center-most diagonals and, therefore, exhibit "banded orthogon=-
a.lityo"

Gradient Control Modification

The gradient direction of the control modification is determined by
examining the terms remaining in the first variation after extraction of
the state and adjoint equations and initial, terminal and boundary cone
ditions. If the temporal control amplitudes, e-i(t), are discretized with
the same time step as the state and adjoint equation integration interval,
the iterative change in the control amplitudes and locations are gi‘venr
by the following relations, Note that these changes have been scaled for

equal sensitivities.

A (t ) = "K?fi;j 913/ [Zz?fij?ij E;Vi"i }
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te %,
v % [or(t)e (t)at f ¢k(x-1k) S ";‘1 ax] *
t
te %p 24
Z{f 4(t)e(t)at [ r (x) 3—-1-(3‘-;-’& axJ /
mly_ x 218
Jf.b
A% u{ I ¢i(x—11)dx}
X,

a

If the temporal control amplitude is expressed as a polynomial in

time,
J=1
e-i(t) = %: 8:th ’

the iterative changes in the control polynomial coefficients and loca=

tions are expressed in a similar manner,
2 2 2 22 %
A8yy = =¥ 13514/ Z; K13 913 * a0

ISH “"f‘fi o;/ | };2‘;2{13915 giog_]

Py ® ;

e ,
fe'(t) a@ jt at [fbk(x-lk)qb (x-1 ) d.x} +

0 8.

m

be %
Z[ [ apy(#) -%—giiﬁ-ﬂ at f rm(x)¢i(x-1i)de

[ a
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te
oy v%[ [o,(t)e, (t)at “’k(x‘lk) —-315-—1-1 de +

a

t, x
) [f O AOLIERED 3%%-&1). dx}
" X
° a
vf 21
te x 2
via v{fef(t)dt[ (-321.(65%11) dx] .
o xa,
by x,
vy [f o (t)e(t)at [ q;k(x.lk) 1.(_:5-_1)_ dx} .
k ' .
t, x,
Z[f a4, (t¥F;(t)at [ x (x) .(15.:.1.). J /
m xa

23 %
{ [ f-e-i(t)dt[ (ad’g.(.x:.h.l) dx} .
%

o

tf x_b
v [[ 0, (t)8;(t)at [, (x=1,) ‘*’ 8(91‘:5%1). dx} +
i

° a.

t

I/ b 326 (x 1)
L [ [ app(t)g(t)at ,{ () —ﬁ?&' dx}
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i X,
v[fef(t)dt J (9-9-1-(3‘:—1-1) dx] +
t X

tp b 524
vy [ Je(tyey(t)at [ & (x-1.) -—-g-l%‘:%)- dx:l +
k 1

1] a

't T
7 [ f ap(8)0(8)at [ = (x) —-gf;--ld dx} /

1

o] a
PRI T

[/ (-B—i ) at fo3(x-1,) ax
tO xa.

Computational Algoritha

The computational algorithm for the solution of the optimal regional
control problem can be divided into four fundamental sections which are
initialization, state equation integration, adjoint equation integration
and control modification, The initialization section includes data input
and the ocaloulation of integrals which are not affected by changes in the
control. These include the calculation of the matrix spatial integrals
of B(x)R (%), R (x)Rg(x) and R(x)s (x). The inverse of the integral of
R(x)R (x) and the initial condition on Q.1(t) are also calculated,

The optimization loop conta.ins the remaining three sectiong, 1In
the state equation integration section, the matrix spatial integral of
R(x)'ﬁr(x-—L) where §(X~-L) is the control spatial distribution vector conw

taining elements ¢J(x-lj), is first calculated. Then the state equation is



INITIALIZATION

STATE EQUATION
INTEGRATION

PERFORMANCE INDEX
AND ITERATION
\ NUMBER CHECK

ADJOTINT EQUATION
INTEGRATION

CONTROL
MODIFICATION

Figure 15, Fundamental Sections of Computational
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integrated forward in time, Calculation of the matrix integrals of

e, (%) .Qf(t), (X-L)3 (X-L) ando(t)ei(t) allows caloulation of the pere
formance index,

Between the state‘ equation integration and the adjoint integration
section, the performance index is compared with the performance index of
the past iteration except in the first iteration, If a decrease in the
performance index is not obtained, the adjoint integration section is by~
passed, If the iteration mummber is the preset maximum, the program is
stopped.

The adjoint equation integration section containe only the background
integration of the adjoint equation. The spatial integrals required for
the coefficients in the adjoint equation have been previously calculated
and the control in the adjoint equation is fhe system state, obtained in
the state equation integration,

The control modification section contains a subsection for each of
two types of control change caleulations, If the new performance index
is less than the past performance index indicating a control improvement,
the gradient control changes are calculated, If the performance index
change is not an improvement, the past control change is reduced along the
past gradient and the gradient constant,¥ , is reduced. The optimization

loop is then closed by the return to the state equation integration section,

Example Solutions

Example solutions have been obtained for the following state equation,

initial condition, boundary conditions and performance index,

54(tx) = 8 (4,%) +§-ej—_(t)d§_(x-li) s Vt€(0,.1),xe(0,1)
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8(o,x) = so(x) 3 sx(*b,o) =0 3 s(t,1) =0

o1 . 0
J=% | [{,{S"‘(t,x) * [‘éei(t)q’i(x.‘ 11)J )dxd'b

The spatial control distributions are specified to be normal distributions
and solutions have been obtained for standard deviations of .2 and .1,

: 2

¢, (x=1,) = exp {-(-};%g—-&-;}. J
which appear in Figure 162 and b, Figure 17a and b show a comparison of
the error resulting from the expansion of the spatial control distribution
in terms of the first ten eigenfunctions for the above system and in terms
of the Hermite interpolation piecewise polynomials associated with the
spatial domain divided into five subdomains. The approximate value of ¢
is referred to as $ and R represents the vector whose elements are those

of the particular expansion,
-1

1 1
(x-1) = R“’(x){ J R(x)n’”(x)dx} {fﬂ(x)cb(x-l)ax

It may be noted that the errors in the approximate values of the control
utilizing the eigenfunction expansion and the Hermite interpolation poly~-
nomial expansion are nearly equivalent for a standard deviation of .1,
while the eigehfunction expansion is significantly more accurate for a
standard deviation of ,2.

Example solutions have been obtained for problems involving one, two,
and three control regions. ZEigenfunction expansions and Hermite interpo-
lation polynomial expansions are utilized. The temporal control functions
are either dexcretized or constrained 'to be polynomial functions of time,

The results are summarized in TPable II, Appendix A contains plots of the
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TABLE II
FXAMPLE SOLUTIONS OF A TWO-DIMENSIONAL REGIONAL CONTROL PROBLEM

Number of |

8 ' ,§ u 9l i~ Figure Numbers
28 898 |uBadafi |28s] &Ess | qfis |- sppond. 4] Chapt
KBS 3% °§8 o S8 = @ g 0-d 2E839 |ddo & o |Append. pt. 5
. o W e 8034—" HO§+’ « O - O O M ~~ [}

58 Bab laididdfliiel—cS e R
Sl gad  (\BESHSHEAE [T I o] ] S1a88]8 88 | 342388

Bigen. |Poly. |.2 | 100 3-30t] .50 .236 1471 1.095 |43 [ 45 | 18] 19

Hermite {Poly. | " | " | * | ® -~ 1.236 1.152 | 1.079 | 43 | 45

Bigen, (Disc. | " | " |5=s50t| * 241 1,471 | 1,095 | 44 | 46

Eigen, |Disc. | * | " | 5 |.00 .243 1,203 | 1.095 | 44 | 46

Hermite |Disc. | " | " |s5-50t} .50 .244 1.152 | 1.079 | 44 | 46

Hermite |Disc. | " [ " { 5 |.00 244 1.185 | 1.079 | 44 | 46

Eigen, Poly. " " 13230t} .33 .66 «1391.527 1.137 1,051 | 47 | 49 | 20} 21

Hermite |Poly, | " | » | | | » 134} .527 1.106 | 1.037 | 47 | 49

Eigen, (Disc, | " | " | = | » | = .243|,242 1,124 | 1,095 | 48 | 50

Hermite |Disc | " | ® | n | w ] » .238}.237] 1.106 | 1.079 | 48 | 50

Eigen. |{Poly. { * | * | * [.10}{.% .144| .534 1,169 | 1.052 | 51 { 53

Hermite |Poly, [ " [ " | " | * | * .149}.534 1,150 | 1.037 {51 | 53

Eigen, |Disc. | " | " | * | v} *» 162} ,460 1.169 | 1.059 | 52 | 54

Hermite |Disc. | " | " | " [ " { " 155|402 1.150 | 1.052 | 52 | 54

Eigen, Poly. |.1 " " .33} .66 .112}.360 1.194 1.097 155 | 57 § 221 23

Hermite |Poly. | " | * | = | " | » .122].375 1.174 | 1,080 } 55 | 57

Eigen, |Disc. | " [ w | » | » | » .186}.329 1,194 | 1.130 | 56 | 58

Hermite |Disc. | " | * mofowton .180] .349] 1.174 | 1.101 | 56 | 58

Eigen. |Poly. {.2 ftoco|] " | = | » .420] ,081 10.40 | 5.47 |59 | 60

Eigen. |Poly. | ™ 100} " J.25f.50) .75].081}.359] .6491.105 | 1.047 | 61 | 62 | 24| 25
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control amplitudes versus time and of the control location versus itera-
tion number for each case,.

The control amplitudes and control locations for the gingle controi
region problem resulting from the application of both the eigenfu#ction
expansion and the Hermite interpolation polynomial expansioh together with
both a polynomial temporal control and a'discretized.temporal control dem= -
onstrate good correlation., A typical state surface and the corresponding
control surface are shown in Figures 18 and 19. Control location conver-
gence to an optimal location is obtained from different gusssed locations.
See Figures 43 through 46 in Appendix A,

For the two control region problem, example solutions are presented
for different starting guesses, different control standard deviations and
different performance index coefficients. A comparison of the solutions
of the discretized versions of the problem for different starting locations
indicates that the perfoimance index hypersurfacé~is not unimodal. The com=
posite control for one of the étarting,locatians is egsentially the same as
the optimal control of the single_control problem, while the control reg-
ions resulting from the other starting guess are separated and yield a
. better performance index., The polynomial temporal control wversions yield
separated control regioﬁé for both startiné locations. See figures 47
through 54 in Appendix A, A typical state surface and control surface
are shown in Figures 20 and 21, |

The resulting controls for the smaller standard deviation are closer
together and closer to the adiabatic end of the rod. The state surface
and control surface for two control regions with standard deviations of
.1 are shown in Figures 22 and 23,

An increase in the coefficient of the state squared term in the
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Figure 22, State Surface = Two
Control Regions,
Polynomial Temporal
Control Functien,
Eigenfunction
Expansion
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Figure 23, Control Surface - Two Cone
trol Regions, Polynomial
Temporal Control Funectionm,
Eigenfunction Expansion
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performance index yields a rise in the control amplitudes and a further
separation of the control regions.

The addition of a third control region provides a smaller decrease
in the performance index than the decrease obtained by the addition of
the second control. The state surface and control surface are given for
the three control problem in Figures 24 and 25.

The employment of the eigenfunction expansion is desirable for linear,
two-dimensional problems due to the reduced computational time resulting
from the orthogonality of its elements., In the case of nonlinear probiems,
the employment of the Hermite interpolation polynomial expansion may be
Justified,

For multiple control regions, the polynomial temporal control appears

to exhibit better convergence than the discretized temporal control.

A Three-dimengional System

A typical example of a three-~dimensional, optimal regional control
problem results from the extension of the temperature control problem for
a thin rod to that for a thin plate., The temperature distribution is now
a function of time and the two spatial dimensions,

The state of the system must satisfy the diffusi;n equation within
the spatial domain, f), and associated initial condition and boundary condi=-
tions along the spatisal Eoundazyflb.

st(t,x1,x2) - c(sx1x1(t,x1,x2) 4 sxzxe(t,xj,xz)} + u(t,x1,x2) :
vte(toitf)’(x»] 9x2) €N
3(t111 932) = so(x1 9x2) H V(x1 9x2)€ﬂst - to

b1s(t,x1,x2) + bzsn(t,x1,x2) =b; 3 ~dt€(to,tf%§x1;x2)€ﬂh



f !
i
i
i

‘ /L;/L/ 1H
’x

N,
N

Figure 24, State Surface = Three z
Control Regions, Z

Polynomial Temporal
Control Function,

Eigenfunction Z (/

Expansion

sz

Figure 25, Control Surface - Three Con-
trol Regions, Polynomial
Temporal Control Function,
Eigenfunction Expansion

70




T1

The control, u(t,x1,x2), is defined as the sum of a finite number

of regional controls similar to those in the problem with one spatial di-

mension.
u(tyxy,x)) = zi,:ei(t) by(xy = 1549%5 = 155)

To be determined are the control locations, which are specifiéd by 111
and 112, and time dependent amplitudes of the control functions such
that the state satisfies the stale equation with associated initial and

boundary conditions and such that the performance index, J, is a minimum,

%
£
2
T =% [ [f {4 (tmpx)) + [Zg(t)@i(x1 - 1%, " 112)} ax, dx,at
£ _Q. 1 ’ .
(o]

The modified performance index is formed by adjoining the state equa-

tion to the performance index above with a three-dimensional lagrange mul-~
tiplier, a(t,x1 ,xg).

tp

J* = J 4 [ ff'a(t,x1,x2) [c(sx < * 5y
t Q ™

) +
2%2

Zizei(t)d)i(ﬁ = Liq0%p = 1p) =s(t,x,,%,) ] dx,dx,dt

The application of calculus of variations yields the original state
equation with initial and boundary conditions and the adjoint eguation

with terminal and boundary conditions.
a;(t,x,%,) = - <=(ax1x1 + axaxz) -4§(t1x1,x2) ;

Y 'té('b'o,tf) i(x-" ,x2)€_ﬂ_



T2

a(t,x1,x2) =0 \-/(x1,x2)€Q. =t

£

»

b1a(t,x1,x2) + bzan(t,x1,x2) =0 ; V‘té(to,tf),(x1,x2)€Qb
The control amplitudes and location parameters must satisfy the fol-

lowing conditions,
(htfontn 2]

a.(t,x)} ¢i(x1 “lexy = 1,) &x =0

t
f
\{ jnj V§h(t)¢d(x1 " gt T ljz)J '

a,(t,x)} -2-)91-(-’-‘1%116’-‘-2:'-1-121 a8, (t) ax = 0
ik

Application of Galerkin's Method

The application of Galerkin's method to the three-dimensional prob-
lem follows directly its application to the two-dimensional problem con-
gidered previously, The state of the system is approximated by the vector
product of a series of time dependent variables and a series of space de=-
pendent basis functions. The basis functions for t@evadjoint variable
are the same as those for the state variable providing the state equation

and boundary conditions are self-adjoint.
5(t,%y5%,) = @ (£)R(x, %,)
T
a(t9x1 ,JC2) = Qz(t)R(x1 ,X2)

The orthogonality requirement of Galerkin's method yields relations

for the new state and adjoint vectors, Q1(t)'and Q2(t).
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_{)_j R(:c1 ;xz) {ot(t.,x1 ,:cz) - c_[sx#;' (1:,::1 ,xz) +

sxzxz(t,x1 ,xz)} - u(t,x1,x2) )‘ dx,dx,, -. 0
{{ R(xj,xz) {a.t(t,xvxz) + cl:ax1x1(t,x1,x2) +
| a.xzxg('?:,x1 ,xz)}-i» A :=1(1;,x1 ,xz)} dx1dx2 =0

The application of Green's tbeorm yields simplified forms of these vector

equations.
_fn-f {R&' ,xz)z!‘!;('t,x1 ,x2) +c {Rx1 (x1 ,12)8x1 (t,x1 X,) +
sz(x.' ,xa)s xz(t,x1 ,xz)} - R.(:t1 ,xz)u(t,x1 ,1:2) / dx,dx, +

g R(x1,12)s 11(1;,::1 ,ch)dx2 - ﬁ R(x1 ,xz)axz(ﬂl:,x1 ,xz) dx, = 0
. .

b
f;{ {11(::1 i%,)a, (t,%,,%,) - c[Rx1(x1 ,xz)éx1(t,x1 ’X,) +
sz(x1 ,xz)axz(t,x1 ,12)]+A( 11(::1,11:2)3(’(:,x1 ?12)> dx,dx, -

f R(x1 912)31 (t’x«' ,12)(1!2 +§ R(x1 !xz)Qx (t’x1912) dx1 =0
(¢} A n 2
b b
For the special case of boundary segments being either adiabatic or
homogeneous isothermal, the boundary terms in the above equations are zero
or cancel each other. The new state and adjoint equations result from
substitution of the vector product into each of these equations,
1 =1

Qua(8) = = o] Jf 2y ey e, | -

4

: T
{1} Rx1 (11 ,::Q)RI1 (x ’ 1%, )ax, dsz +
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[f‘[R (11!12)3 (11’12)611512] Q1(t) +
-i
[ffﬂ(x1 .12)R (x5%,)ax, ‘kz] .
; [UR(::1 oX,) P (xg = 140,%, = 1) dx ax i(t)}

i | | .
Gy(t) = © {{ R(JF,-xz)RT.(xvxz)dx@xa] .

{ 113, oy Ry oy |

tg | R£2(11 "‘z)Rx:(’% "2)‘1‘1"‘2]} Q(t) -
4q,(t)

The state initial condition and adjoint terminal condition become initial

conditiona'on Q.1(t) and terminal conditions on Q.2(t) respectively.

Q(t,) = [R(x1,xz)RT(x1,12)dx1dx2 -1,

[R(x1 ,xz)so(x1 ,xz)dxi dx,

(tg) =0 |

The two-dimensional Hermite interpolation polynomial expansion is
chosen for the basis function set in order to accommodate irregular spatial
boundaries. A possibly irreguarly spaced grid which covers the spatial do-
main mist be established. Grid lines are straight and para.llel‘. or perpen-
dicular. Each is continuous through the spatial domain, An edge of a
given grid block is also an edge of, at most, one other grid block., Bound=-
ary grid blocks are rectangular or right-triangular. Four two-dimensional
Hormite interpolation polynomials are céntered at each interior grid inter-

section point. At grid intersection points which lie on the boundary, the

proper two~dimensional Hermite interpolation polynomials are chosen to have
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zZero Qoefficients such that the boundary conditions are satisfied. For
example, consider a rectangular spatial domain with grid intersections nume~
bered O to n and O to m in the two dimensions. A homogeneous isothermal
boundary along the edge between the points (n,0) and (n,m) requires that
the coeffiecients of\{rgg(x1 ,12) and ’#:}(;1 ,xz) for j = 0y1,.40,m be zexo,
An adiabatic boundary between the points (0,m) and (n,m) requires that the
coefficients of ¥° (x1,x2) and Vim X 0%, ) for i = 0,1,...,n be zero.

The matrices of spatial integrals of R(x1 ,xZ)R (x1 ,xz), (1:1 ,12)
R£1 (x 12) and sz(x.l ,x2)R (x ,x2) are not single diagonal mtrices due
to the nonorthogonality of the two-dimensional Hermite interpolation poly-
nomial expansion., The loéa.tion of nonzero elements in the matrices is de-
pendent on the ordei' of the two~dimensional Hermite interpolation poly=-

nomials in the vector R(x1 ,xa).
G nt Control Modification

Examination of the terms remaining in the first variation after ex-
traction of the state and adjoint equations and initial, terminal a.nd |
boundary conditions yields the gradient direction of the control modifica~
tion. If the control amplitudes 63.(1:) are expressed as polynomials in
time,

V-G-.j.(t) _zjgijt3-1,

then the scaled changes in the polynomial coefficients 8 j and the spatial

distribution parameter 1 1 8re specified bys
' %
2 2
ELY =034 ?13/[22313913 +§§Vikqik]
%
81 = ")Wik n«/[z 513 13 + Z):Vik 1k]
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: - _ a?é).-(-
Jf ‘bk(x.! - lk1’12 - lkz) e 6111 1""2"—12')' dx 612 +

tf‘

Ul app(t) &y (t)at
Ty

[[r (x) == -(—612 11-‘-2———12-)- d::1d.x2 /

1

( i.(_l) dt]jtbz(x - 1%, - 1,,) dx,dx,

Computational Algorithm

The basic algorithm for determining the optimum, open-loop regional
control for the three-dimensional, parabolic, diffusion system is essen-
' tially an extension of that for the fwo—dimensional system discussed above.
It includes an initialization section and an optimization loop in which the
performance index is calculated and the gradient direction for the itera-
tive modification of the control parameters is determined. The linearily
of the problem being considered is utilized in that a transition matrix
approach is foliowed for solving the state and adjoint sets of ordinary
differential equations rather than numerical integration as in the case of
the two-dimensional problem. While the initialization time is extended by
the inclusion of the eigenvalue problem, the time per optimization itera-
tion is shortened., Expression of the temporal control amplitudes as poly-
ﬁomials in time allows analytical precalculation of the convolution inte-

gral, In the initialization section grid block data, boundary conditions
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and control guesses are read into the program. The matrices of spatial

7 T Gy
integrals of RR™, Rxfﬂx‘ and sznxz
of the first of theae_a.nd the initial condition on Q,1 are calculated.

ave calculated, Then the inverse

Also included in the initialization section are the calculation of the
eigenvalues and eigenvector matrix associated with the coefficient matrix
of the state vector in the state differential equation set and the in=
verse of the eigenvector matrix,

In the state integration section which is the first section of the
optimization loop, the matrix of spatial integrals of r;0, is firet cal-
culated. Then the state squared portion of the performance index is di-
rectly calculated. Calculation of the time dependent state is optional, |
After the control squared portion of the performnce. index is calculated,
the total performance index is available to be checked with that of the
previocus iteratiom.

If an improvement in the performance index is obtained and the max-
imun number of iterations has not been reached, the adjoint integration
section is entered. The matrices of temporal integrals of q, 1(393/5311:)
and 9, 163 which are required for the gradient control modification are
directly calculated, without calculation of the adjoint vecto:r.f, Qe The
gradient direction for the control parameter modification is calculated.

If an improvement in the performance index is not obtained, the past
control change is reduced along the past gradient and the gradient cone
stant, X, is reduced. The optimization loop is then closed by the return

to the state integration section.

le Solutions

Eumple solutions have been obtained for the following state equation
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and performance index.

xi(t,x1,12) + Sxaxz(t,x1,x2) +

| gei(t)@i(x, - 10Ty = 1) 5 Ve(0,01),(xy 0%, )8

| « >
J = % [{"( 82(t1x19x2) +[Z%(t)¢i(x1 - 1111 - 112)} dx1dx2
0 . :

The temporal control functions,43i(t), are expressed as polynomial fun-

ctions of time,
€ () = 3
J
and the spatial distribution functions, i(x1 - 111,x2 - 112)’ are two=

dimensional normal distributions,

2
- - o oxp | ofBeqmdiq—
?y(xy = 1yq0%y = 1;,) = exp (stJ. Tov)

- (B |

The solutions of the optimal regional control problem for four dif-

ferent spatial domain shapes with one and two fegional controlé are shown
in Table III, First, a rectangular domain was considered for comparison
with the rod problem in two dimensions, space and time, considered in the
pm§vious section., The vesulting control locations for the three-dimensional
problem match well those obtained in the neaily equivalent two-dimensional
| problem for both one and two regional controls., See Figures 26 through 29,
Also, a study was conducted to determine if the control location found by
by the program for the single regional control problem was an optimum,

The pertinent conitrol location parameter was held constantAat several non-
optimal values and the other parameters were left free to be optimized, |
The constrained optimal solutions obtained were found to be suboptimal

when compared with the optimal solution, A plot of the constrained optimal
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performance index versus control location is given in Figure 30.

The other spatial domain shapes considered were a triangular shape,
an L-shape and a U-shape, The spatial domains with boundary conditions
and grids indicated, the state initial condition surfaces, and the com-
posite control surfaces at the initial time, a midpoint time and the ter-
minal time for both one and two regional controls are given for each of
these three spatial domain shapes in Figures 31 through 42,

In the case of the triangular spatial domain, right triangular grid
blocks used along the diagonal allow a more accurate matching of the sba-
tial boundary. However, the use of the traingular grid blocks increases
computation time due to the inability to calgulate and multiply together
a pair of line integrals. The initial condition on the state is assumed
to be a planar surface which has a zero value along the diagonal boundary.
The boundaxry conditions include adiabatic edges along the legs of the trie
angular domain and a homogeneous isothermal edge along the diagonal., In
both the single and double control region problems the control locations
moved from initial guesses near the isothermal diagonal edge to optimal
locations nearer the adiabatic edges as expected. An improvement in the
performance index is obtained by the addition of a second control over
that of a single control,

In the cases of the L-shpaed and U-shaped spatial domains, rectan-
gular grid blocks were employed. In both cases, one edge was specified to
have a homogeneous isothermal boundary condition with all other edges adi-
abatic. In both cases, a single control tended to move toward regions
partially bounded by adiabatic edges, as expected., The addition of second
control regions provided improved performance indices. The control nearer

the isothermal edge had lower time dependent amplitudes.,
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CHAPTER VI
SUMMARY
Principal Results

A procedure has been developed to determine the optimum, open=loop
regional control for systems governed by sets of parabolic partial differe
ential equations. The regional controls have been consirained to be prod-
ucts of temporal control amplitudes and spatial distribution functicns.
The temporal conitrol amplitudes have been considered as either discretized
functions or polynomial functions of time. The spatizl distribuftion func-
tions have been treated as specified functions with location parameters
which are free to be optimized. Problems involving one=~dimensional and
irregular, two-dimensional spatial domains have been considered.

The procedure begins with a mathematical statement of the constrained
minimization problem. The application of calculus of variations to the
constrained minimization problem yields a set of conditions necessary
for optimality in the form of a boundary value problem., The state and
adjoint partial differential equations of the boundary value problem are
reduced to ordinary differential equation sets by the application of
Galerkin's method. Both one~dimensional Hermite interpolation polynomials
and truncated eigenfunction expansions are used as basis function sets in
the case of problems in two independent variables, i.e., one spatial ine
dependent variable and time, Two-dimensional Hermite interpolation poly-

nomials are used in the case of problems in three independent variables,
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i.e., two spatial independent variables and time, An iterative algorithm,
based on the gradient direction for the control modification is developed
for the solution of the approximated boundary value problem,

The distributed nature of the system description is maintained
throughout the develoment of the conditions necessary for optimality
rather than an approximation technique being applied before the applica-
tion of variational calculus. Galerkin's method provides a convenient
approach for the reduction of the state and adjoint partial differertial
equations to sets of ordinary differential equations. For linear systems
defined on one~dimensional spatial domains, the orthogonality of the elew
ments of the itruncated eigenfunction expansion makes this series more
desirable than nonorthogonal series, However, for nonlinear systems, an
eigenfunction expansion for a similar linear operator would have to be
employed, This would make the application of one~dimensional Hermite
interpolation polynomials more desirable., In the case of linear systems
defined on regular, two-dimensional spatial domains, the truncated eigen-
function expansion appears to be most desirable, For irregular, twoe
dimensional spatial domains, the series of two=dimensional Hermite
interpolation polynomials is applicable. System nonlinearity would also
provide a justification for the use of a series of nonorthogonal basis
functions., It should be noted that the proper choice of a series of
basis functions depends on the system equations and boundaries to be
approximated,

The computer program developed for the solution of the two=dimensional
problem with one spatial independent variable and one temporal independw
ent variable utilizes numerical integration for the solution of the‘state

and adjoint ordinary differential equations sets, while a transition matrix
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approach is utilized in the program for three-dimensional systems, Al-
though the transition matrix approach is limited to linear systems, a
significant amount of time is saved by the direct calculation of terms in
the performance index and in the gradient direction for iterative control
modification, This approach also eliminates the problems associated with
the numerical integration of different equation sets with widely varying
eigenvalues,

Example solutions have been obtained for systems described by the
diffusion equation defined on one~dimensional and irregular two=dimensional
spatial domains, A quadratic performance index composed of the spatial
and temporal integral of the system state squared plus the composite cone
trol sgquared has been minimized by the optimization of the time dependent
amplitudes and the means of the normally distributed spatial functions of
each of one, itwo or three regional controls. Although the unimodality of
the performance index hyperxsurface is in guestion in the case of multiple
regional controls, convergence is demonstrated in nearly all cases con=
sidered by the obtaining of essentially the same solutions from different

starting control guesses.
Recommendations for Further Study

Further investigation of the problem of determining the optimal
regional control of distributed parameter systems might be centered in
any of three major arveas. The first area might be the extension of this
work to a larger class of systems. Although only three~dimensional sys-
tems defined on two=dimensional spatial domains are considered here, a
direct extension to systems defined on three-dimensional spatial domains

is possible. Also, multiple systems which are coupled through a common
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boundary might be considered. An example of this might be the tempera=
ture control of a mold which is in fturn controlling the temperature of
the material being formed, The input might be constrained to exist along
a line to be determined rather than about a point in space as in this
worke There are a -vast number of possibilities for extending the class
of systems under consideration.

The second area for further investigation is that of the choice of
basis functions. The use of fundamental spline functions might be de-
sirable because of the resulting reduction in the dimensionality of the
approximate sets of ordinary differential equations., While four two=-
dimensional Hexrmite interpolation polynomials are centered at each grid
intersection poinit, only one fundamental spline function would be centered
at each grid intersection point. However, increased initialization tiume
would be required and irregular spatial boundaries would cause some dife
ficulty.

The third and most closely related area might include the represen-
tation of the control amplitude by a series of orthogonal functions rathm
er than discrete values or polynomials. Also, a study might be conducted
on the uniqueness of the solutions for problems with multiple control rege-

ions and the unimodality of the performance index hypersuxface.
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APPENDIX A

PLOTS OF TWO-DIMENSIONAL OPTIMAL
REGIONAL CONTROL PROBLEM
SOLUTIONS
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APPERDIX B

A TRANSITION MATRIX APPROACH FOR THE

THREE-DIMENSTONAL PROBLEM

In order to eliminate the numerical integration of the state equa~
tion ‘set and the adjoint equation set, a transition matrix approach can
be employed for linear problems. The n-dimensional state equation and
initial condition for the optimal control problem in two spatial indepen-

~dent variables considered in Chapter V can be written as:
8 = <[] 1, ] (9 + [ gl
0@ - ] " [ss,)

where

7
[m]= £ [RR" ax,dx,
[ ,
.IRxRx] = '£[(Rx1Rx1 + RXZRXZ) dx dx,

ms] - ([ R®"dx, dx,
a

hIRSOJ = /[ Rs, dx,dx, .
0
The solution of this ordinary differential equation set is a function of
the eigenvalues, A, and the eigenvector matrix, M, of the coefficient
R -1 '
matriz -[IRR] [ ®E_|.
Q (%) = M[exp(At)]M"1 Q,(0) +

%
f M[exp(./\(t -1:))]M"1 [IRRJ =1 [IR@]F@(’C)G.‘C
0
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If the temporal control amplitude vector, «=(t), is expressed as a poly=-

nomial in time,

m o1
() = ) G,
J=1

the state squared term in the performance index can be expressed as:

te te
ff[s dx,dx,dt = [[[ RRQ.1dxdedt
0 n
th T
m n
AL LRI

e ]n (A,t)] dtﬂ'1Yj},

where
= Q1(0)
1 - [IRR]'1 [IRQ] G, 3 i=1,2..,n
[ (n,8)] = [exp(a,b)
St
[“i(A-,t)] = f [exp(A(t -’c))} ¥ at ;1 =1,2,0..,m
0

The matrices, [o( i(A ,t)] o are diagonal, The time dependent portions of
each term of the matrix integral can be analytically integrated.

by
[ o) 45(Rq,1) at 3 1,3 = Oplyeeeqm
0 k,l = 1,2,-..,1!

If the eigenvalues, the eigenvector matrix, the state initial condition

and the polynomial control coefficients are given, the state squared temm
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in the performance index can be calculated without the numerical integra-
tion of the state equation,
Consider the two terms involving the adjoint vector,

e

[ ay(t)
0

gi 3

i

[ a(t)e,(t) at,

0]
which are required for the calculation of the gradient changes in the
control parameters. The coefficient matrix of the adjoint vector in the

adjoint equation,

-1
Qy (%) = -[m} meax] Q(t*) + 4 0, (+%),
is the same as that of the state equation if the independent variable time
is transformed by:

tntf-t*.

The terminal condition for the adjoint vector becomes an initial condition

for backward integration.
Qz(t = tf) = Qz(t* =0) =0

The adjoint equation solution can be expressed in texrms of the eigenvalues

and eigenvectors matrix as:

Qz(t*) = /fMiZo [65_(-/\- 9t*)} M-1 Yj_} ’

where
%

B, (i) = [ [t (At =T)|[x (A8, =7)] an.
0
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For a polynomial temporzl control,
e -
gij .

The two integrals of interest can now be expressed as:
t

£

[ (%) (4, = 937 atx -

0

2 DI [ﬁi(./\.,t*)] (t=t%)3"" ate wly,
i=0 0
and
t t
£ o £

g1y [ (%) (t, - 3" awe),
0

[ y(e)ey(e) ar = J
0

Note that the integrals,

e

[[8y(Ast9)] (5 = )3T atx,
0

can be analytically calculated.
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DESCRIPTION OF COMPUTER PROGRAMS
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CONTROL PROBLEMS
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TABLE IV

COMPUTATIONAL STEPS FOR OPTIMAL
" REGIONAL CONTROL PROBLEM
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Subroutine
2D 3D
Step Calculation Program | Program
1 |Enter data DPSOPT | DPSOPT
2 |/ mlax " HHINT
3 | /B Rax " "
4 [ f RRde] -1 " DPSOPT
5 |/ Bsjdx " HSINT
6 |[/re"ax]"] [ ax] " DPSOPT
7 {9,(0) " AINTGR
8 |7 roTax " HPINT
o |1 [ ] »  |owsorr
10 |State Equation Integration L 2s | ammmer
1 | /a,Qlat DPSOPT "
12 | foeTat n DPSOPT
13 | /77 Tax " PPINT
14 |3 n DPSOPF
15 |output n n
16 |IP ITER = 1, go to 18 " "
17 |1F TTER = TTERMAX, STOP " n
18 |1F 3> 01D J, GO TO 32 " n
19 |Adjoint Equation Integration RRIN24 | 4 yymer

DERFUN



PTABLE IV (Continued)
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20 |fa,(30/36) at IPsoPT | amrem
21 |foyorat . "
22 |/8(s? /2 1) ax " PPINT
25 |Je(a2/01%)ex . -
24 |J(@d/00)(20/01) ax " "
25 |fR(30/51)%ax " HPTNT
26 |/R(3%20/01%)ax " "
21 | feqoe/s ¢)Tat " IPSOPT
2 |p " "
29 o " "
30 |%2 " .
b3 v? " " ‘
2 |AL " "
33 |a6 (polynomtal) . "
Mo (discretized) " "
34 JGoT08 | " "
35 |OL = « % OLD AL " "
36 |AG = = # OLD AG (polynomial) n "
A6t = = & OLD A6(discretized) " "
37 |x = % omd ¥ " -
38 |comos " "
Fote: For progrm listings, Dr. Karl N, Reid may be con-

tacted through the School of Mechanical and Aero-
space Engineering, Oklahoma State University.
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