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Abstract

In this thesis, a statistical learning method is leveraged to create a novel measure

for conducting post-hoc matching between a treatment group and a candidate

set. Post-hoc matching is a necessary element in many non-random observational

studies and arises in diverse �elds such as economics, medicine, marketing, and

others.

Post-hoc matching has been in use for many years and di�erent methods have

been used. A common measure to match the two groups, called the propensity

score, can be estimated in a variety of ways. A recent method to estimate it was

introduced in 2013 using random forests.

The method introduced in this work utilizes random forest to develop an al-

ternative measure to the propensity score. The new measure, proximity matrix

method, is intuitive and potentially captures more similarities between subjects.

In order to compare the propensity score method with the novel post-hoc match-

ing method, data sets are generated which logically re�ect observational studies

with various assumptions regarding treatment selection. Experiments are con-

ducted to evaluate the average treatment e�ect between the treatment and the

control group that are matched. The empirical analysis shows promising results

for the proximity matrix method. In particular, the technique has superior results
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when the treatment selection is made using complex rules, namely, a non-linear

model, and when the bag is used to estimate the proximity matrix.

This study demonstrates signi�cant potential of the novel method for both

researchers and practitioners interested in matching candidates to a test set to

estimate the average treatment e�ect within an observational study when there

is an unknown, and possibly complex multivariate relationship with the initial

treatment selection.
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Chapter 1

Background

1.1. Introduction

In observational (non-randomized) studies, the goal is often to determine the

e�ect of treatment on a test group. Applications arise in various �elds and for

di�erent reasons and often are performed on people or animals (e.g., drug trials,

marketing promotions). For convenience, the term �subject� will be used when

referring to test, control, and candidate populations; however, the application of

the work in this study is broadly inclusive of the type of objects included any

observational study. In order to estimate the e�ect of a treatment on a group,

a comparison between subjects exposed to a treatment and subjects in a control

group needs to be made. In randomized studies, the assignment of subjects

to a treatment group or control group is random and therefore the groups are

statistically similar. In observational studies, the assignment rule of subjects to

the treatment group is unknown. Therefore, the distribution of pre-treatment

covariates can be di�erent between the groups (treatment and non-treatment)
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and comparisons may be misleading since their di�erences cannot be attributed

to the treatment e�ect. A primary issue for observational studies is to determine

an unbiased treatment e�ect when a randomized control group is non-existent.

The main problem is to �nd a subset of the candidate pool (non-treatment

group) similar to the treatment group. Post-hoc matching is one approach to

address this issue. A number of studies relating to post-hoc matching has been

performed in a variety of areas, such as law (Epstein et al. 2005), economics

(Abadie and Imbens 2006), statistics (Rosenbaum 2002, Rubin 2006), medicine

(Rubin 1997), political science (Herron and Wand 2007) and others. The selected

subset will become the control for the treatment group and allow for a better

estimation of the treatment e�ect.

1.2. Literature review

For e�ective matching, there need to be some common support between the two

groups, or else the matching will be done based on subjects that don't have any

values in covariates in common. Common support between the treatment and

the control group is de�ned as an overlap of every of the covariate distributions.

The matching procedure has existed for around 70 years but an actual tech-

nique was not developed until Cochran and Rubin (1973) and Rubin (1973). At

this time, data sets with only one covariate were used. If there was more than

one covariate, it was mostly a computational problem because it was harder to

�nd a good match where all the covariates would have a close value between a

treatment and a candidate. They used "nearest available" matching method by

ordering treatment subjects randomly and then picking the closest subject (using
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the Mahalanobis distance) to assign a match. The Mahalanobis equation is as

follows:

Dij =
√

(Xi −Xj)TC−1(Xi −Xj)

where Xi and Xj are the covariates for units i and j, C
−1 is the inverse sample

covariance matrix of X and T is the matrix transpose.

Ideally, we would want to have the same distributions of X (the covariates) in

both groups, which means that each treated subject would be exactly matched on

all of their covariates to a corresponding control. Rosenbaum and Rubin (1983)

showed that matching on a balancing score is su�cient. In 1983, a new method

was introduced: the propensity score. The propensity score was de�ned as the

conditional probability of a subject being assigned to the treatment group given

a set of covariates, that is

e(X) = Pr(Z = 1|X) (1.1)

where X is the set of covariates for a subject and Z the binary treatment variable

whether the subject was treated (Z = 1) or not (Z = 0). Subjects matched

according to their propensity score will then have the same distribution. The

true value of the propensity score cannot be known and must be estimated from

the available data. It is estimated by a logistic regression with the treatment as

the dependent variable and the covariates as the independent variables.

The optimal matching was introduced by Rosenbaum (1989), using distances

to match the subjects. Distances can be de�ned in many ways that relates the

covariates. In their research, two covariates are used to de�ne the distance,

where their values are replaced by their rank, and the distance between two
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subjects is the sum of the two absolute di�erences in their ranks on the two

covariates. Optimal matching is superior to greedy matching in that with greedy

matching, the order in which the treated subjects are matched can change the

quality of matches, but with the optimal matching this issue is avoided. With

greedy matching, the lowest distance is considered �rst and so on until every

treatment has a match, whereas with the optimal matching method, the overall

sum of pair-wise distances is minimized. Although, the same controls are usually

picked out with optimal matching, but the di�erence is that this technique does

a better job at assigning each individual match to a treatment subject.

Another measure that can be use while matching is a caliper. This was in-

troduced by Cochran and Rubin (1973). It is de�ned as a restricted subset of

controls whose propensity score is within a speci�ed amount of the treatment

subject's propensity score. A caliper is used in order to avoid poor matches when

matching is done without any restrictions. With this, the match subject will only

be selected if it is within the caliper.

Among these methods, the propensity score is the one that is most commonly

used to-date. When it was �rst designed, it was estimated via logistic regression.

A variety of statistical learning methods are now being used, such as Classi�-

cation and Regression Trees (Luellen et al. 2005), Random Forest (Lee et al.

2010), Neural Networks (Setoguchi et al. 2008), Generalized Boosted Modeling

(McCa�rey et al. 2004) or even Support Vector Machines (Westreich et al. 2010).

A recent study from Cham (2013) showed how random forest (Breiman 2001),

an ensemble learning method for classi�cation regression and other task, was

performing for estimating propensity score. With that technique, classi�cation

trees to predict the treatment group are built and the propensity score is average
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over the multiple trees from the random forest from the terminal nodes.

Porro and Iacus (2009) used a di�erent type of method than Cham (2013),

called the Random Recursive Partitioning (RRP) method. This method is di�er-

ent in a way that regression trees are built and it is not to predict the treatment

group but a �ctitious response variable that is created for each new regression

tree.

When building decision trees, such as with random forest, to evaluate the

propensity score, some terminal nodes can have the same proportion of treated

subjects, therefore the propensity score for all those subjects is the same even

though their covariates were not the same since they were not in the same terminal

node. Treated and candidates subjects could have a close propensity score and

be matched on that and have completely di�erent values from their covariates.

The new method presented in this paper will take into account, before matching,

the fact that two observations falls into the same node which means that they

have similar covariates.
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Chapter 2

Methods

This chapter describes existing methods to �nd control subjects to match to the

treatment group. The novel approach is also detailed.

Full sample

Treatment
group

Non random selection

Candidate
set

Remaining sample

Control
group

Post-hoc matching
selection

Equal?

Figure 2.1: Overview of non-randomized study and post-hoc matching

6



All the methods follow the same type of process shown in Figure 2.1. First,

the entire data set represents the full sample (FS). A non-random selection is then

made from the full sample to de�ne the treatment group. Non-random selection

happens in di�erent �elds, such as economics, statistics, sociology, medicine and

even law. For example in medicine, if the e�ect of exposure to a particular drug

needs to be estimated and the subjects in the treatment group are typically older

than the subjects not given the drug, the treatment assignment is not random.

The remaining sample represents the candidate set. From this candidate set, a

subset must be identi�ed to match the treatment group. A variety of modeling

techniques exist to enable this selection. This can be done with logistic regression,

decision trees, or random forests, etc. Models may be built so as to produce a

score to use for the next step called post-hoc matching. The matching process

will �nd observations in the candidate set to match each observations in the

treatment group based on the model score. After a control group is created

from this step, a comparison between the two groups can be made in order to

evaluate the matching process. That is, quantify relevant di�erences between the

treatment group and the matched control group.

One well known approach for �nding matches to the treatment group is to use

the propensity score, the conditional probability listed in Equation 1.1. Over the

years, multiple di�erent methods have been used to estimate the propensity score.

A common technique is to use logistic regression (Cox 1970) for the treatment Z,

log

(
e (X)

1− e (X)

)
= α + βTf (X)

where α and β are parameters, f(X) is a speci�ed function and e(X) is the

propensity score.
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Estimation of the propensity score using random forest is another possibility

(Cham 2013), and will be detailed in Section 2.1. An alternative to the propensity

score is the proximity matrix, a novel method, which will be introduced in Section

2.2.

2.1. Estimating the propensity score using ran-

dom forest

Figure 2.2: Classi�cation tree

The propensity score was designed in order to have a representative value to

match on subjects from the candidate set to the treatment group. Cham (2013)

uses the random forest method to estimate the propensity score. The random
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forest is the process used for the post-hoc matching selection in Figure 2.1.

The random forest method (Breiman 2001) is an ensemble learning method for

classi�cation, regression and other tasks. Given a data set D = (X,Z) with n > 0

observations and where X is the set of covariates and Z is the response variable, a

random forest induces multiple individual decision trees in an ensemble approach.

Each of the trees is built from a bootstrap sampling of D. Bootstrapping is

sampling with replacement in which each sample is of size n. Observations not

selected in the bootstrap sample are called "out-of-bag" (OOB) sample. To

decorrelate trees in the "forest", only a randomly chosen subset of covariates

is considered for the split at each node.

The goal is to build multiple classi�cation trees in order to classify a percent-

age of observations according to their covariates in a terminal node. An example

of a classi�cation tree from the random forest can be seen on Figure 2.2. The

�rst split occurs at node 1 with the covariate o1 and the value 1. All observa-

tions with a value equal or less than 1 will go to the left node and the others

will go to the right node. A total of 4 more splits will occur before having the

6 �nal terminal nodes. Subjects in the same terminal node will have a particu-

lar propensity score, that will represent the proportion of treatment subject in

that terminal node, for example in the node 5, the propensity score value for all

50 observations will be 0.3845. This operation is repeated until the number of

classi�cation trees requested has been reached. A di�erent sample of subjects is

chosen for each classi�cation tree. The propensity score obtained at the end of

each classi�cation tree is then averaged for each subject, and will be their �nal

propensity score. The next step is the matching process. Cham (2013) uses the

nearest neighbor method to �nd a control match for each of the treatment sub-

jects. The nearest neighbor method is computed using the propensity score as
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the distance to �nd the best possible match. That is, a subject from the candi-

date set which has a similar propensity score as a subject in the treatment group

will be matched. This is done to �nd only one match for each treatment subject

and without replacement. A caliper of 0.25 times the standard deviation of the

estimated propensity scores is used during the matching process in order to avoid

matching observations that are too di�erent, but this will result in potentially

not matching all the treated subjects. Finally, a control group has been found

and a comparison between the two groups can be made in order to evaluate the

matching process.

2.2. The proximity matrix method

The way the propensity score is estimated with classi�cations trees only takes

into account in which terminal node a particular subject is and does not look

at the other subjects in the same terminal node. This information could be

important and relevant to the matching process because if a treatment and a

control subject are in the same terminal node of a classi�cation tree, it means

that they were subjected to the same criteria at a splitting node, and therefore

have close values for the covariates that were used in the classi�cation tree. This

new method takes into account this information. In order to apply this method,

a series of classi�cation trees needs to be computed. The model will be built with

the treatment variable (1 for the treated group and 0 for the candidate set) as the

response variable against all the covariates of the data set. Essentially the idea is

to use the stochastic nature of the random forest classi�cation supervised learning

approach to consider observations (subjects) from a variety of perspectives with

respect to the treatment class. Observations which occur in multiple leaf nodes
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together across multiple trees are likely to be inherently similar with respect to

classi�cation.

A variation of this approach is presented in Porro and Iacus (2009), however

their technique relies on regression trees and a �ctitious response variable drawn

from a uniform distribution. Similar to Cham (2013), they also employ calipers

and additionally �lter observations based on a common support threshold. Doing

a preliminary reduction of the data and setting a caliper for matching can result

in not matching all of the treated observations.

The way the proximity matrix is built is as follows: it takes information from

each computed tree by looking if an observation i is in the same terminal node

as an observation j. The matrix at the end represents the fractions of trees where

observations were in the same terminal node. The values are between 0 and

1. The closest the value is to 1, the more times observations i and j were in

the same terminal node, meaning their covariates are similar with respect to the

likelihood of being chosen as a treatment observation. Only the rows representing

the treatment observations and the columns representing the candidates are kept,

since the information necessary for this study is the similarity between treatment

and candidates observations. The proximity matrix can be built using the bag

data or the FS. Since for each tree we only take a random sample of the data,

the bag data represents all the observations that were use for the particular tree.

Each bag sample is assign to a terminal node and the proximity matrix is then

build according to the outcomes from each tree. An excerpt from an example

proximity matrix is depicted in Table 2.1.
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Table 2.1: Example of the proximity matrix
Candidate cases

Treatment 8 9 10 11 12

18 0.00515 0.01648 0.04278 0 0.00510
30 0.01064 0.01081 0 0.00518 0
34 0.00510 0.02083 0.01562 0.00985 0.00490
36 0.01005 0.01657 0.05208 0.00526 0.04000
39 0.01538 0 0.00510 0.01546 0.00995

The matching process is done with this proximity matrix. Looking at the

highest value in the proximity matrix, the control is matched to the corresponding

treatment observation. This procedure is repeated until each treatment has the

requisite number of pre-determined controls assigned. The matching can be done

with or without replacement, meaning that a control can be matched only once

or more than once to treatment observations.

2.3. R implementation

Empirical analysis will be performed using R. Several packages and functions are

available to do this.

To build a random forest, two functions are available from di�erent packages;

the function randomforest from the R package randomforest 4.6-10 (Liaw and

Wiener 2015) and the cforest function from the R package party 1.0-23 (Hothorn

et al. 2015). The di�erence between the two is the covariate and split value selec-

tion criterion. There are two possible choices, the Gini index or the conditional

signi�cance test decision rule. The function randomforest uses the former whereas

the function cforest uses the latter. In our preliminary testing, we found condi-
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tional signi�cance test to outperform the Gini index. The default function is the

following:

cforest(formula, data=list(), subset=NULL, weights=NULL,

controls=cforest_unbiased(),

xtrafo=ptrafo, ytrafo=ptrafo, scores=NULL)

From this function, the parameters used for the experiments are the following:

− formula: description of the model to be �t.

− data: the input data.

− controls : list of parameters to control the aspect and the creation of the

trees. The default parameters are the following:

cforest_control(teststat = "max",

testtype = "Teststatistic",

mincriterion = qnorm(0.9),

savesplitstats = FALSE,

ntree = 500, mtry = 5, replace = TRUE,

fraction = 0.632, trace = FALSE, ...)

From these di�erent parameters, the following will be used:

− ntree: number of trees to grow in the random forest.

− mtry : number of covariates randomly selected for potential splitting at each

node.

13



− replace: logical value to determine if the sampling of observations is done

with or without replacement.

− fraction: the fraction of observations to draw from the sample without

replacement.

− minbucket : minimum number of observations required in a terminal node.

Hence, an object of class RandomForest-class will be created, containing each

single tree that was computed. This will store information on each single tree,

for example in which terminal node each observation was, the response variable

(either a class identi�cation for classi�cation or a prediction for regression), etc.

This information is necessary to create the proximity matrix. It can be created

from the following function from the same package:

proximity(object, newdata = NULL) (2.1)

In this function, the object represents the object computed from the cforest func-

tion. It will produce an proximity matrix using the bag data. There is also the

possibility to build the proximity matrix using the FS, by using the argument

newdata in the proximity function.

After obtaining the proximity matrix, a matching process is required. The

goal is to �nd a match in the candidate set for each treatment. It can be done with

or without replacement. With replacement means that a particular candidate can

be matched more than once to a treatment. In our preliminary testing, we found

matching with replacement to outperform matching without replacement. The

algorithm to describe the matching process is detailed in Algorithm 1.

The solution will be returned as a list of controls for each treatment. In

14



Algorithm 1 Match each treatment to C controls

Require: M (proximity matrix), C (number of controls needed)
Ensure: ListC (list of matched controls to each treatment)
Create an empty list for the controls to match each treatment, ListC, with
treatment names as the rownames
Create a vector, V , of values from M by decreasing order
col← −99 (initialization)
k ← 0
for i = 1 to (number of row in M ∗ C) do

repeat
bool = false
k ← k + 1
maxV al = Value in M corresponding to V [k] (may be more than one)
row = Treatment id from maxV al
col = Candidates id from maxV al
for l = 1 to length(row) do

if treatment row[l] doesn't have C controls yet then
bool = true
exitforloop

end if
end for

until bool = true
Control found, col[l], corresponding to treatment row[l] added to ListC

end for
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order to �nd the best possible match for each treatment, the algorithm will �nd

the highest value in the proximity matrix, M [i, j], meaning that the candidate

j and the treatment i were the most often in the same terminal node. The

process then matches treatment i to candidate j and adds this pair to ListC

if treatment i has less than C controls already assigned. If treatment i already

has all the required controls, the algorithm will look for the next highest value

in the proximity matrix and repeat the process. When a matched is found, the

algorithm continues looking at the next highest value in the proximity matrix

until all treatments have exactly C matched controls each. This process is done

with replacement, in order to optimize the results. Indeed, if a candidate has

been in the same terminal node of numerous treatments, it may be a good match

for all of them.
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Chapter 3

Experimentation

This chapter describes how the data sets are generated and how the di�erent

experiments will be conducted. The simulated data in this study is constructed

based on Cham (2013), which in turn was constructed based on an empirical

example Im et al. (2013) and simulation studies from Austin (2012), Lee et al.

(2010), and Setoguchi et al. (2008). Most of the simulated covariates and models

are kept and created the same way, but an important modi�cation is introduced

with respect to the balance of the test and candidate pool.

3.1. Generated data

A series of data and models are created. An overview of the di�erent steps follow:

• Create 64 covariates for two data sets, of size 600 and 2,000 observations.

• Generate the treatment group based on di�erent models:

� Linear propensity score model

17



� Nonlinear propensity score model

• Compute two response outcomes based on the two di�erent models. They

are created with a particular average treatment e�ect:

� 0.0 average treatment e�ect

� 0.73 average treatment e�ect

Covariates

In the data sets, a total of 64 covariates are randomly generated. Out of those

64 covariates, 16 are binary (b1 through b16), 40 are continuous (c1 through

c40) and 8 are ordered categorical (o1 through o8). The binary covariate are

dummy coded 0.0 and 1.0 with a mean of 0.245. The continuous covariates are

generated as a standard normal distribution. The ordered-categorical covariates

are generated based on discretization of normally distributed random variable,

with 7 categories (0 to 6) and are approximately symmetrically distributed. The

covariates are manipulated to have two levels of correlation, low and high, and

values of correlations betweens those levels are pre-determined identically to that

of Cham (2013).

Propensity score models

Two di�erent propensity score models are created based on simulation study

designs by Austin (2012). The linear propensity score model is created so that

all of the covariates are linearly related to the propensity score in the form of the

following logistic regression:

ln

(
e(X)

1− e(X)

)
= γ0 + γ1b1 + ...+ γ19c1 + ...+ γ64o8
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e(X) is the propensity score, and the regression coe�cients of the covariates (γ1

to γ64) are set at two levels, low and high, separately for each type of covariate.

As for the intercept γ0, Cham (2013) set it so that the average propensity score

was about 0.38 for the linear model and 0.45 for the nonlinear model, which

would give approximately the same as of the proportion of the treatment group.

In this study, γ0 is decreased to adjust the balance between the treatment group

and the candidate pool. Hence, the proportion of the treatment group is reduced

to 0.15 for the linear model and 0.22 for the nonlinear model, thereby increasing

the relative size of the candidate pool. This represents a variety of real-world

scenarios in which a relatively small control group must be selected from a large

subset of the population. On the other hand, if 50% of the group were assigned

as a treatment group, and a one-to-one match with the candidate pool is desired,

then no matching strategy is necessary. The entire candidate pool would be used

as the control. However, when required to select out a one-to-one match when

85% of the cases are available as candidates, then there are many possible choices

and the matching method will need to be more accurate.

The nonlinear propensity score model is created from the linear propensity

score model but with other terms describing nonlinear relationships between the

covariates. Three di�erent types of nonlinear relationships are added to a subset

of the predictors: two-way interactions, quadratic e�ects, and two-way interaction

with quadratic e�ects.

The two propensity score models are created to decide what the treatment

assignment Z for all observations will be. Each case has a random number that

follows a uniform distribution between 0.0 and 1.0 assigned. If that random

number is smaller than the corresponding propensity score, the observation is

assigned to the treatment group (Z = 1). Otherwise, the observation is assigned
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to the candidate set (Z = 0).

Treatment-outcome model

The continuous outcome Y for this study is based on Austin (2012), Lee et al.

(2010) and Setoguchi et al. (2008). The outcome is created such that the treat-

ment and the covariates are linearly related to it, as follows:

Y = β0 + β1b1 + ...+ β17c1 + ...+ β64o8 + (ATE)Z + ε

Z is the treatment assignment (1 for treatment, 0 for candidates), ε is randomly

generated normally distributed residual, β0 is the intercept and the regression

coe�cients (β1 to β64) are manipulated to have two levels, low and high, for

each type of covariate Cham (2013). The average treatment e�ect (ATE) is

manipulated to have two levels: a null ATE (0.0) and a non-zero ATE (0.73)

according to Cohen (1988) guidelines. The data sets will have two outcome

variables depending on the level of the ATE: ATE0 and ATE073.

Sample size

Two data sets with di�erent sizes are generated; one with 600 observations and

another one with 2,000 observations.

3.2. Random forest speci�cations

When building a random forest, certain modeling parameters must be speci�ed.

These parameters and the values used in this investigation are now detailed.
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Covariate and split value selection

When building the tree, a decision needs to be made at each node to decide

on what covariate the node will be split and on which value. This decision will

need to be made starting at the root node and for all subsequent nodes until

all observations have been classi�ed into a terminal node. A common focus to

�nd the best covariate and its split value is the impurity of a node. When

we split it, the less impurity the better, which means that the split value that

clearly separates the binary treatment into two distinct groups will be chosen.

To calculate the impurity of the node, the Gini index can be use, represented by

2p(1−p) (Berk 2008, Hastie et al. 2001) where p represents the proportion of the

treatment group participants in the node. It will select the covariate and its split

value simultaneously. When the data contains di�erent types of covariates such

as binary, categorical and continuous, this method has a disadvantage and it is

biased when selecting a covariate at a node towards categorical and continuous

variables instead of binary variables.

Another approach is the conditional signi�cance test (Hothorn et al. 2006) in

which the choice of the covariate and its split value are not done simultaneously.

The �rst step consists of choosing which covariate will be used for splitting. To

do that, for each node, a statistical test is conducted for each covariate. The

covariate selected is the one that has the smallest p-value. This implies that it is

statistically signi�cant that the covariate is associated with the treatment group.

Two di�erent test statistics exist to do this. No splitting will occur if the smallest

p-value is greater than the pre-speci�ed nominal level α (Hothorn et al. 2006).

Once the covariate has been selected in the �rst step, a second permutation test

can be performed to determine the split value of that covariate. The covariate

value with the largest test statistic will be selected, meaning that the proportions
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of treatment group participants are equal between the two nodes.

In our experimentation, the conditional signi�cance test was found to outper-

form the Gini index, since separated tests are used for selecting the covariate and

the split value which reduces bias.

Methods for estimating the propensity score and the proximity matrix

This speci�cations has two levels; the use of the FS or the OOB data to esti-

mate the propensity score and the FS or the bag data to estimate the proximity

matrix. In Cham's study, the out-of-bag is preferred to the full sample due to

the fact that it reduces the tendency for propensity scores to be estimated that

are biased toward the extreme values of 0.0 and 1.0 (Berk 2008, Strobl et al.

2009). The full sample to estimate the propensity score shows better results in

this experimentation since some modi�cations regarding the proportion of the

candidate group was made. With the proximity matrix method, the goal is to see

which observations from both the treatment group and the candidate set are in

the same terminal node to create the proximity matrix re�ecting the connection

between the observations. The bag data is used to estimate the proximity matrix

since each tree from the random forest is built using that data and this is the

information needed. The out-of-bag data is not relevant in this case because we

are not looking at new data to estimate the proximity matrix but at the data use

to create each single tree from the random forest.

To �nd a control match to each treatment, the nearest neighbor matching is

used for the propensity score method. For the proximity matrix, Algorithm 1 is

use.
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Default arguments

All of the other random forest arguments are set to their default values. Those

arguments included are the following:

• Number of classi�cation trees, set to 500;

• Number of covariates randomly selected for potential splitting at each node,

set to 8 (square root of the total number of covariates, 64);

• Minimum number of observations required in a terminal node, set to 5;

• Fraction of observations to draw from the sample without replacement, set

to 0.632;

3.3. Di�erent experiments according to the

models

From all those di�erent models for the data sets, multiple experiments have been

done in order to address the primary research question. For both of the data

sets, two propensity score models and 2 di�erent outcomes were created. Either

the full sample or the out-of-bag sample can be used to estimate the propensity

score, and the full sample or the bag data is used to estimate the proximity

matrix. Finally, either 1 or 2 controls can be matched to a subject from the

treatment group. This gives a total of 32 di�erent experiments. Each of those

experiments are replicated 200 times. A summary of the simulation study design

is presented in Table 3.1 along with notation that will be used in later chapters.
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Table 3.1: Summary of the simulation study

Between-subject (Replication)
factors

Levels and Notations

1. Propensity Score Models Linear (L), Nonlinear (N)
2. Average Treatment E�ect 0, 0.73
3. Sample Size 600, 2000

Within-subject (Replication)
factors

4. Benchmark Methods Propensity Score Matching without re-
placement (PS), Proximity Matrix Match-
ing with replacement (PM)

5. Covariate and Split value selec-
tion

Conditional Signi�cance Test

6. Methods to Estimate Propensity
Scores or Proximity Matrix

Full Sample (FS), Out-Of-Bag Sample
(OOB), Bag sample

7. Number of controls variables to
be matched

1 control (1C), 2 controls (2C)
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Chapter 4

Results

In order to answer the primary question, the results from the simulation study

are presented in the following sections.

The goal of the matching process is to �nd a good match for the treatment

group that produces an unbiased estimate of the average treatment e�ect (ATE).

Two di�erent ATEs have been created in order to have either a 0 average treat-

ment e�ect or a 0.73 average treatment e�ect. For the experimentation in which

ATE = 0, the more successful matching process will produce a smaller di�erence

between the average outcomes of treatment and control. With respect to the ex-

perimentation for ATE = 0.73, the average treatment outcome minus the average

control outcome should approach 0.73.

Tables 4.1 and 4.2 represent the percentage of success of the proximity matrix

(PM) method over the propensity score (PS) method according to the type of

data used to estimate either of those methods (FS or OOB data for the propen-

sity score and FS or bag data for the proximity matrix). Success is de�ned by

producing an estimated ATE closer to the true value (ATE = 0 or ATE = 0.73).
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Each row corresponds to a di�erent problem. For example, ATE0-L-1C denotes

experimentation on the data which has ATE = 0 generated using a linear propen-

sity score model and the matching requires 1 control per treatment observation.

Whereas ATE073-N-2C denotes experimentation on the data which has ATE =

0.73 generated using a nonlinear propensity score model and the matching process

requires 2 controls per treatment observation.

Table 4.1: Table of the percentage of success for the data set containing 600
observations.

Problems Percentage FS Percentage OOB/bag

ATE0-L-1C 36.5 96.5
ATE0-L-2C 95.5 100.0
ATE0-N-1C 61.5 100.0
ATE0-N-2C 100.0 100.0

ATE073-L-1C 8.0 65.5
ATE073-L-2C 49.5 97.0
ATE073-N-1C 17.5 94.5
ATE073-N-2C 100.0 100.0

Table 4.2: Table of the percentage of success for the data set containing 2,000
observations.

Problems Percentage FS Percentage OOB/bag

ATE0-L-1C 0.0 73.5
ATE0-L-2C 11.0 100.0
ATE0-N-1C 77.0 100.0
ATE0-N-2C 100.0 100.0

ATE073-L-1C 0.0 81.0
ATE073-L-2C 21.5 100.0
ATE073-N-1C 66.5 99.5
ATE073-N-2C 100.0 100.0

Table 4.1 reports the results for all eight problems using data with 600 obser-
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vations each. The column "Percentage FS" reports the percentage of success of

the proximity matrix over the propensity score method on the full sample across

all 200 replications. Similarly, the "Percentage OOB/bag" column reports the

similar results but on the out-of-bag or bag sample. The results demonstrate

that when estimating the propensity score and the proximity matrix with the full

sample, the proximity matrix method performs better (more than 50%) 4 times

out of the 8 di�erent problems. In 2 problems, PM outperforms PS in 100%

of the instances. For the ATE073-L-2C, the results are mixed in that PM out-

performs PS only about 50% of the time. On contrary, when evaluating success

on the OOB/bag data, the proximity matrix method is clearly better than the

propensity score method outperforming PS in all eight problems. PM has more

than 65% success and has a 100% success rate for 4 of the experiments.

From Table 4.2 representing the 2,000 observations data, the results are similar

to Table 4.1. When the FS is use to estimate the propensity score and the

proximity matrix, the PM method performs better (more than 50%) 4 times out

of the 8 di�erent problems with ATE0-N-2C and ATE073-N-2C outperforming

PS in 100% of the instances. When the OOB/bag data is used, the PM method is,

again, outperforming PS for the 8 problems. The same 4 problems from Table 4.1

(ATE0-L-2C, ATE0-N-1C, ATE0-N-2C and ATE073-N-2C) have a 100% success

rate, and ATE073-L-1C, ATE073-L-2C and ATE073-N-1C have a higher success

rate than with the 600 observations data.

Tables 4.3-4.6 are also arranged in 8 rows for each of the problems and 3

columns. The �rst column represents the average of the mean of the ATE for all

of 200 replications, and the associated standard deviation. The second column

has the same type of values but for the proximity matrix method. A paired t-test

is computed and the p-value is listed in the last column.
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Table 4.3: Table of the ATE Mean, Standard Deviation and p-value for the
experimentation on the 600 observations data and the matching process using
the FS.

Problems Propensity Score Proximity Matrix p-value

ATE0-L-1C
0.31668 0.34029 1.7181E-4
(0.05074) (0.08015)

ATE0-L-2C
0.50808 0.36085 6.27E-64
(0.02876) (0.08190)

ATE0-N-1C
0.24674 0.23135 0.00032
(0.02511) (0.05838)

ATE0-N-2C
0.59106 0.26972 3.79E-145
(0.01519) (0.06209)

ATE073-L-1C
1.01195 1.12839 2.44E-54
(0.03777) (0.07271)

ATE073-L-2C
1.13306 1.13286 0.96979
(0.02648) (0.07346)

ATE073-N-1C
0.92469 0.97965 1.98E-30
(0.02164) (0.05462)

ATE073-N-2C
1.22409 1.02492 3.21E-108
(0.01247) (0.06073)
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Table 4.4: Table of the ATE Mean, Standard Deviation and p-value for the
experimentation on the 600 observations data and the matching process using
the OOB/bag data.

Problems Propensity Score Proximity Matrix p-value

ATE0-L-1C
0.32637 0.12399 9.19E-75
(0.06506) (0.08221)

ATE0-L-2C
0.51936 0.11860 2.20E-147
(0.02949) (0.07482)

ATE0-N-1C
0.26600 0.06018 5.04E-114
(0.03697) (0.04806)

ATE0-N-2C
0.59049 0.06081 2.64E-207
(0.01774) (0.04601)

ATE073-L-1C
1.02496 0.99375 2.70E-05
(0.06116) (0.07957)

ATE073-L-2C
1.13942 0.98247 3.74E-71
(0.02886) (0.07390)

ATE073-N-1C
0.94230 0.79835 1.12E-60
(0.03665) (0.07702)

ATE073-N-2C
1.22660 0.80171 4.47E-159
(0.01533) (0.06935)
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Table 4.5: Table of the ATE Mean, Standard Deviation and p-value for the
experimentation on the 2,000 observations data and the matching process using
the FS.

Problems Propensity Score Proximity Matrix p-value

ATE0-L-1C
0.35717 0.51481 4.45E-98
(0.04250) (0.04158)

ATE0-L-2C
0.45363 0.50614 6.81E-40
(0.01700) (0.04277)

ATE0-N-1C
0.33292 0.30429 8.88E-25
(0.01258) (0.03266)

ATE0-N-2C
0.69069 0.30202 2.35E-216
(0.00644) (0.03299)

ATE073-L-1C
1.19625 1.34119 3.07E-102
(0.03718) (0.03847)

ATE073-L-2C
1.31131 1.33853 6.12E-17
(0.01573) (0.04035)

ATE073-N-1C
1.09727 1.08144 8.62E-11
(0.01165) (0.03071)

ATE073-N-2C
1.39691 1.08659 2.19E-200
(0.00671) (0.03088)
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Table 4.6: Table of the ATE Mean, Standard Deviation and p-value for the
experimentation on the 2,000 observations data and the matching process using
the OOB/bag data.

Problems Propensity Score Proximity Matrix p-value

ATE0-L-1C
0.36490 0.32987 4.87E-14
(0.04074) (0.05436)

ATE0-L-2C
0.46021 0.31945 4.14E-93
(0.01537) (0.05279)

ATE0-N-1C
0.34718 0.14644 4.51E-127
(0.01775) (0.04319)

ATE0-N-2C
0.69058 0.14992 9.29E-219
(0.00852) (0.04496)

ATE073-L-1C
1.21193 1.16595 3.53E-20
(0.03729) (0.05331)

ATE073-L-2C
1.31906 1.16601 1.43E-101
(0.01577) (0.05028)

ATE073-N-1C
1.10578 0.93222 9.29E-115
(0.01650) (0.04278)

ATE073-N-2C
1.39839 0.93996 7.43E-213
(0.00807) (0.04002)

The success of the proximity matrix over the propensity score method is no-

table in Tables 4.3-4.6. From Table 4.1 where the proximity matrix method suc-

cess was over 50% for all 8 test data with the OOB/bag data, the corresponding

mean also shows better results in Table 4.4. For ATE0-L-1C, ATE0-L-2C, ATE0-

N-1C and ATE0-N-2C where the ATE should be closer to 0, the PM technique

outperforms the PS technique by being closer to 0 with 0.12399, 0.11860, 0.06018

and 0.06081 respectively, whereas the propensity score is doing poorly with a

relative high ATE of 0.32637, 0.51936, 0.266 and 0.59049 respectively. On that

same table, for the problem where the ATE should be 0.73, the proximity matrix

method is also doing much better by having an ATE between 0.79835 (ATE073-N-

1C) and 0.99375 (ATE073-L-1C) for all 4 test data whereas the propensity score
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method have an ATE between 0.94230 (ATE073-N-1C) and 1.2266 (ATE073-N-

2C). Regarding the experimentation using the 2,000 observations data and the

OOB/bag data where on Table 4.2 the proximity matrix method success was over

50% for all 8 problems, the related average ATE di�erences and statistical tests

are reported in Table 4.6. The results are not as good as for the ones with the

600 observations using the OOB/bag data, but the ATE for the proximity matrix

method for ATE0-L-1C, ATE0-L-2C, ATE0-N-1C and ATE0-N-2C are closer to

0 than the ATE for the propensity score method. The same can be observed re-

garding the ATE of 0.73; for the proximity matrix method the results are between

0.93222 (ATE073-N-1C) and 1.16601 (ATE073-L-2C) whereas for the propensity

score the ATE goes up to 1.39839 (ATE073-N-2C). From these two tables, the

standard deviation for each of the test data is always smaller for the PS method

and is usually around 0.1, whereas for the proximity matrix method it is more

around 0.3 or 0.6.

Although the propensity score method has a smaller standard deviation for

each problems, the results in Table 4.4 and Table 4.6, the PMmethod outperforms

the PS method consistently. The associated p-values indicates the di�erence in

means is highly signi�cant. By having a really low p-value and having more than

50% of success out of the 8 test data for both of those experiments, it is clear than

the proximity matrix method is outperforming the propensity score method.

On Tables 4.3 and 4.5 where the experiments are performed on the full sample

data, results are mixed. For the 600 observation data, as said previously, the

proximity matrix success was over 50% for 3 of the test data (ATE0-L-2C, ATE0-

N-1C and ATE0-N-2C) regarding the ATE of 0, which can be seen in the average

mean from Table 4.3. The p-values indicates that the performance of PM is

statistically di�erent than that of PS in all cases except for ATE073-L-2C. Note
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while the di�erence in performance is statistically signi�cant, the absolute value

of the di�erence is rather small. Compare this for example to the problem ATE0-

L-2C where the PM method success is 95.5% with an average mean of 0.36085 to

an average mean of 0.50808 for the PS method with a small p-value of 6.27×10−64.

As for the problems where the ATE should be 0.73, the PM method having a

low success for the problems ATE073-L-1C and ATE073-N-1C is seen with an

average mean of 1.12839 and 0.97965 respectively compared to an average mean

of 1.01195 and 0.92469 for the PS method. With the problem ATE073-N-2C,

the PM outperforms the PS method with 100% success and the average mean is

clearly better. Regarding the experimentation using the 2,000 observations data

and the FS from Table 4.5, the success rate of the PM method for the problems

ATE0-L-1C, ATE0-L-2C, ATE073-L-1C and ATE073-L-2C is low and goes from

0.0 to 21.5%, but the PS is not outperforming the PM method by much for

the problems ATE0-L-2C and ATE073-L-2C by having an average mean not too

di�erent. Whereas for the problems ATE0-N-2C and ATE073-N-2C where the

success rate of the PM method is 100%, it is clearly outperforming by having a

much better average mean. The p-value is consistently small, showing that the

di�erence in means between the two methods is highly statistically di�erent. Only

problem ATE073-L-2C in Table 4.3 has a larger p-value of 0.96979. From those

two tables, the standard deviation for each of the problems is always smaller for

the PS method and ranges from 0.00671 to 0.05074, whereas for the PM method

ranges from 0.03071 to 0.08190.

From both Tables 4.3 and 4.5, the proximity matrix method is performing

better 8 times out of the 16 problems and is close for one of the problems. For

the other problems where the PS method has a better success rate, it is not

outperforming the PM method by much.
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Figures 4.1 and 4.2 shows the density of the di�erent ATE magnitude (0

and 0.73) for the propensity score and the proximity matrix method for the 600

observation data set and the type of data used to estimate the PS and the PM

(FS, OOB and bag data). Figures 4.3 and 4.4 represent the same information on

the 2,000 observations data set.
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Figure 4.1: Density of the ATE value using the FS data and the 600 observations
data set.
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Figure 4.2: Density of the ATE value using the OOB/bag data and the 600
observations data set.
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Figure 4.3: Density of the ATE value using the FS data and the 2,000 observations
data set.
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Figure 4.4: Density of the ATE value using the OOB/bag data and the 2,000
observations data set.
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Figures 4.1-4.4 correspond to results from Tables 4.3-4.6. Each graph, going

from top to bottom and from left to right, represents a di�erent problem cor-

responding to each row of the previous tables. From Table 4.1 where the PM

method success was over 50% for all 8 problems using the OOB/bag data, those

results can be seen on Figure 4.2. Indeed, the density curve of the ATE value

for all 8 graphs are much closer to 0 and 0.73 for the PM method than for the

PS method. A larger range of values is also observed for the PM method. For

the problem ATE073-L-1C, the density for both methods is close, but since the

PM method has a wider range, it has more values close to 0.73 than the PS

method. For the problems ATE0-L-2C, ATE0-N-2C and ATE073-N-2C, PM out-

performs PS by having an ATE value much closer to 0. The two density curves

are also not overlapping at all, meaning that the PS method is doing poorly. As

for the problems ATE0-L-1C, ATE0-N-1C, ATE073-L-2C and ATE073-N-1, PM

also outperforms PS but the two curves are overlapping showing some common

values.

As for the 8 problems using the FS data corresponding to Figure 4.1, the results

are mixed. PM clearly outperforms PS method for the problems ATE0-N-2C and

ATE073-N-2C by having closer values to 0 and 0.73 and not overlapping the PS

curve. The problems ATE0-L-2C and ATE0-N-1C shows that PM also outper-

forms PS, and for ATE073-L-2C the results are more tight. The PM densities

have greater spread compared to the PS densities, but also have some better

values than the PS method. The other problems show that the PS approach is

doing better than the PM method.

Results from Table 4.2 can be seen in Figures 4.3 and 4.4 representing the FS

and OOB/bag data respectively. Similar patterns can be seen between Figure

4.3 and Figure 4.1 for problems ATE0-N-1C, ATE0-N-2C, ATE073-L-2C and
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ATE073-N-2C. Between Figure 4.4 and Figure 4.2, a clear pattern can be observed

between each of the 8 problems. Only for the problem ATE0-L-1C a closer range

is seen and for ATE073-N-1C there is a wider range between the two density

curves.

Tables 4.7 and 4.8 are arranged in 8 rows for each of the problems and 4

columns, each representing one of the methods; propensity score method using

the full sample or the out-of-bag data and the proximity matrix method using the

full sample or the bag data. The mean of the ATE for all of the 200 replications

from the previous tables is represented.

Table 4.7: Summary table of the mean of all the methods for the 600 observations
data set

Problems PS with FS PS with OOB PM with FS PM with bag

ATE0-L-1C 0.31668 0.32637 0.34029 0.12399
ATE0-L-2C 0.50808 0.51936 0.36085 0.11860
ATE0-N-1C 0.24674 0.26600 0.23135 0.06018
ATE0-N-2C 0.59106 0.59049 0.26972 0.06081

ATE073-L-1C 1.01195 1.02496 1.12839 0.99375
ATE073-L-2C 1.13306 1.13942 1.13286 0.98247
ATE073-N-1C 0.92469 0.94230 0.97965 0.79835
ATE073-N-2C 1.22409 1.22660 1.02492 0.80171
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Table 4.8: Summary table of the mean of all methods for the 2,000 observations
data set

Problems PS with FS PS with OOB PM with FS PM with bag

ATE0-L-1C 0.35717 0.36490 0.51481 0.32987
ATE0-L-2C 0.45363 0.46021 0.50614 0.31945
ATE0-N-1C 0.33292 0.34718 0.30429 0.14644
ATE0-N-2C 0.69069 0.69058 0.30202 0.14992

ATE073-L-1C 1.19625 1.21193 1.34119 1.16595
ATE073-L-2C 1.31131 1.31906 1.33853 1.16601
ATE073-N-1C 1.09727 1.10578 1.08144 0.93222
ATE073-N-2C 1.39691 1.39839 1.08659 0.93996

The success of the proximity matrix method using the bag data over the other

3 methods can clearly be seen in tables 4.7 and 4.8. For the �rst 4 problems

regarding the ATE0, the mean of the ATE is much more closer to 0 than the

other methods. The same results can be observed regarding the ATE073 where

the mean of the ATE is much more closer to 0.73 when the matching is done

with the proximity matrix method using the bag data than the other methods.

In summary, for all 16 problems over the 2 di�erent data sets, the proximity

matrix method using the bag data is outperforming all other methods.
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Chapter 5

Conclusion

A primary issue for observational studies is the lack of an identi�ed statistically

equivalent control group to help determine an unbiased treatment e�ect. This

issue can be addressed by matching a control group similar to the treatment group

based on a particular score that will de�ne their similarities. The propensity score

is a well known and popular score used to match subjects and has been in use

for many years. The random forest technique is an e�ective method to estimate

the propensity score (Cham 2013). The propensity score being the conditional

probability of a subject being assigned to the treatment group given a set of

covariates, and representing the value of the proportion of treatment in a terminal

node of a decision tree, subjects could have the same value and be in a di�erent

node if the proportion of treatment subjects in di�erent terminal nodes are the

same. This means that subjects could be matched on their propensity score but

have di�erent values for their covariates. The new method introduced in this

thesis takes into account when treatment and candidate subjects fall into the

same terminal node of a decision tree.

The new approach uses a proximity matrix M , whereMij represents the frac-
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tion of trees where subjects i and j were in the same terminal node. Control sub-

jects are found to match each treatment subject from this matrix. This approach

is compared to the propensity score method from Cham (2013). To compare

the methods, the data from Cham (2013) is reproduced logically with a change

regarding the proportion of the treatment and the candidate set. The proportion

of subjects representing the treatment group was around 0.38, which does not

leave a lot of choices regarding the candidates observations. This was changed

to have approximately a proportion of the treatment group of 0.15, which gives

a better representation of reality and forces the matching method to be more

accurate since there will be more candidates to choose from.

The experimentation conducted on the di�erent data sets shows good per-

formance of the novel post-hoc matching method, compared to the competing

propensity score method. The proximity matrix method clearly outperforms the

propensity score method when the out-of-bag or the bag data is used to create

the matching scores. This is consistent for each of the 8 problems and for both

data sets. When the full sample is used, the proximity matrix method outper-

forms 8 out of 16 times, and the two methods are essentially equivalent for 1

problem. The proximity matrix method does much better for the problems using

the non-linear propensity score model and when 2 controls are matched to each

treatment. With these results, we conclude that the proximity matrix method

has advantages in the matching process and does a better job than the propensity

score method most of the time. Finally, when comparing the proximity matrix

using the bag data to the other 3 methods, it is clearly outperforming for all of

the problems.

The goal of this research being to �nd matches to the treatment group that

have the same average treatment e�ect, the similarities between the distributions
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of the covariates was not evaluated. In other studies, such as in medicine, this type

of information can be relevant and therefore comparison between the covariates

of each group could be done. Additionally, a caliper could be use before �nding

control matches for each subject of the treatment group. The aim of the research

was to �nd a match for every subject in the treatment group. Therefore, the

subject matched from the candidate set to a subject in the treatment group can

be really di�erent. By adding a caliper to the matching process, it will prevent

matching subjects that are too di�erent and have no common support, and will

also result in not matching every subject from the treatment group. In future,

such modi�cations can be studied to further improve the high quality results we

observe from proximity matrix matching.
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