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CHAPTER I
INTRODUCTION

Estiination of variance components is one of the basic tools of
research in several fields of scientific investigation. In any type of
estimation, the pro'perties of the estimators, such as whether or not
the estimator is efficient, sufficient, consistent, unbiaséd, minimum
variance, etc., should be known to the researcher so that he can as-
certain which estimator is best suited to the ﬁeeds of the particular
froblem he is considering. In ﬁracfice? estimators which are unbiased
and have minimum variance have proved useful to experimenters in
many areas. Tﬁerefore, any investigation leading to minimum variance
umbiased estimators would prove:useful to those who do experimentation.

At present, if an experimental situation dictates the use of an in-
complete block design, estimators have been proposed which have not
been shown to possess the properties of being best (minimum Va,rianée)
unbiased. In this thesis we shall be cong;erned with solving the problem
of finding best unbiased estimators for the general two-way classification
and for special types of incomplete block designs.

Any estimator which is to be best unbiased must be based on the

observed values which are obtained in an experiment. A set of sufficient
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statistics has the property of containing all the in.for_matidn in the sample
about the parameters of the model. Now, it would be very utilifarian if
we could find a set of sufficient statistics which has the additional property
of being minimal, that is, if ( Ss SZ,’ eees Sk } is any set of sufficient sta-
tistics and ( sig s?z, se ey sr'n) is a set of minimal sufficient statistics, then
k > m. This latter concept has been set forth by L.ehmann and-Scheifei“,
[1]

The determinati®n of a set of minimal sufficient statistics is: not
only useful when considered in the light of the discussion in the previous
paragraph but such a determination is given stature when we consider
a theorem proved by Rao and Blackwell [ 2] which states if T is a minimal
sufficient statistic for 6 and f(x) is an unbiased estimate of g(8), then .
h{T) = E[£f(x)[ T] is also an unbiased estimate of g(6) based on T and such
that wi > @"Z unless £ = h. Thus we see if we are interested in determining
minimum variance unbiased estimators of functions of the parameters,
thése estimators must be based on a set of minimal sufficient statistics.

The theorem does not enable us to determine which estimator is best
if two or more unbiased estimators exist for a function g(f) and each is
based on a set of minimal sufficient statistics. If the density function
from which the minimal set was obtained has the property of being com-
plete, then an unbiased estimate of g(6) based on the minimal sufficient

statistics is unique and thus has minimum variance and the problem is

solved. Unfortunately, none of the designs considered here possess



dengity functions which are complete when an Eisenhart Model Il is as~
sumed. [ 3]

The problems of this thesis will be to consider the general two-way
classification in order to determine bounds on the number of sufficient
sta,ti,st,icé in a minimal set and to determine what these statistics are in
terms of functions of the observed random variables. Sets of minimal
sufficient statistics will be found for the balanced incomplete block des-irg‘n
and the grpup divisible, partially balanced incomplete block designs with
two associate classes, The distribution of each statistic will be deter~

mined and stochastic independence of statistics in a set determined.



CHAPTER II
NOTATION AND LEMMAS

“We sha;ll,.prgzsent here the definitions of symbols which are frequent-
ly used in the body of the thesis. We divide them into two parts, those sym-
bols which are scalars and those which are matrices. -
(1) Scalars:

a. tis equal to the number of treatments in a design.

b. b is equal to the number of blocks in a design.

c. r is equal to the number of replicates of each treatment.

d. kis equal to the number of experimental units in each block.

e. BIB is an abbreviation for balanced incomplete block.

f. PBIB is an abbreviation for partially balanced incomplete block..

g.- GD-PBIB is an abbreviation for group divisibleg, partially bal-
anced incomplete block design. If GD is prefixed by S,SR or R it will de-
note the singular, semi-regular or regular group divisible, partially
balanced incomplete block design respectively.

h. )\ denotes in a BIB, the number of times two.treatments occur
together in all blocks.

i. xi (i =1,2) denotes in-a PBIB, the number of times two treat-
ments which are i-th associates occur together in all blocks.

Jj- )‘j is the non-centrality parameter of the non-central chi-square



distribution.

k. M is the total number of observations in a design.

1. nis the number of groups in a GD-PBIB design.

m. m is the number of treatments per group in a GD-PBIB design.

n. v = k“l(rk T4 = k"l[x t4 m(N; ~ \,)]

2 1 2

o. 1is an operation on a deasity function which,when properly de-
fined, reduces the dimension of the space of the sufficient statistics.

p- E denotes mathematical expectation.

qg- MVN is an abbreviation for multivariate normal.

(2} Matrices:

a. X is a design matrix of a two-way classification model.

b. X, is a partition of X corresponding to blocks.

c. X, is a partition of X corresponding to treatments.

d. Y is a vector of observable quantities.

D will be used to denote an

e. J°isans x q matrix of all ones. j 1

n x 1 vector of ones.

f. N = XZ’Xlo

g. D is a diagonal matrix.
h. P is an orthogonal matrix. When partitioning a matrix, parti-
tions will be denoted by the addition of a subscript. Further partitions of

a partition will be denoted by the addition of an additional subscript. Thus

P = (P, P, (Pll.,Plz,PZl,PZZ,PZB),

i+, 2 is a covariance matrix.



jo ¢, represents a w x W matrix of all zeroes.

-1
- X, (X, X! X'X_].
L XD TIXIX ]

k. A = [X

2

1. Iw is the identity matrix of dimension w x w.

Additional symbols which okcur less frequently will be defined as the
discussion develops.
We shall now prove a few lemmas which will be needed for the proofs

of the theorems in the ensuing chapters.

LEMMA 1. Let X denote the design matrix of a two-way classification

model Y = XB 4 e where the rank of X is b+t - 1 and where X is of the

X.»X5). Then there exists a set of M -~ b -t + 1lor-

form X = (j

1
thogonal rows P!, such that’ X P =4 X'ZP = ¢ and JMP = ¢.

Proof.

Consider the matrix product

1]
"M
1 , .
XxF= 4 J e Xy X X! | = JM+XX{+XX"
M T T2 1 M 1 272
!
2]

Since XX'tis symmetric; there exists an orthogonal matrix Q stuch that
Q'XX¥Q = D where D is a diagonal matrix. The number of non-zero
elements on the diagonal of D is b%t-l since X is rank b4t-1. Partition Q
into Q = (C, P) where C and P are of dimensions M x (b+t-1) and M x

(M-b-t+l) respectively, and such that



’ c! D, ¢
Q'XX'Q = X C, P} =
| P ¢ ¢
where Dl is (b+t-1) x (b+t-1). Therefore

M .
Pt TX. X'P + P'X
JUOP+ P )S 1 +

P =
M XZ,P ¢

2

. M
The matrices JM s )S)a", and XZ,XYZ are each positive semi-definite’

each being the product of a matrix and its transpose. The matrices

M
P"JM P, P'Xl)%’P a,nd P’XZXZ‘P are also positive definite for the

same reason. Since each diagonal element of each of these matrices is the
sum of squares of real numbers and the sum of these sum of squares is
zero, the diagonal elements of each of the thrée aforementioned matrices
must be equal to zero. If any element off the diagonal is non~zere, there
would be at least one of the principal minors. which WO}ﬂ.d be negdtive,

a contradiction of the positive definiteness. We therefore conclude that
each of the matrices must be equal to the null matrix.

It follows immediately that JI\l/IP = XiP = ¢ and XLP = o,

2

which was to be shown.

LEMMA 2. Let N be a t x b matrix of rank m. Let P be an orthogonal

matrix such that P'NN'P = D where D is diagonal with the character-

istic roots of NN' displayed on the diagonal. If s < m of the character-

‘ 1
istic roots are equal to dO (# 0), then the matrix d{) /ZP‘N = C' (say)
- e) g

is a get of s orthogonal rows such that C'N'NC = d I, where P;) is such

8NN ! -
that PONN % = dols"
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Proof. By hypothesis, there are s characteristic roots of NN' equal to

d,- Therefore if we partition P into (Po" Pl)), we may write

( PO" d I oY
ey NN' (P, R) = D =
e}
51 ® D

where D, is diagonal. Hence

P'NN'P
o] 0

it
[
i

oS

d-1/2

or (o

-1/2
P'N)(N'Bdy /) = I .

Consider now

-1/2

(dg

-1/2, _
B/NJN'N(N'P,d "/ %) = Z (say)

Then we may write

=l/2_ , -1/2
z = (a5 “B/N)NYP_P} + P{PYNN'Pd "/ %),

From (1), PéNN”’Pl = ¢. Therefore )
-1/2 -1/2

Z = d_ ' (PINN'P_)(P/NN'P_}d_

~1/2 -1/2
= d, " (d I ) (dIg)d

= d_Ig

. which was to be shown.

LEMMA 3. Let the matrix F be defined as follows.

Ay A, - o oA
Ay Ay o - - Apy

L“A]‘.‘l 1 An 2 o o ° Ann




' m

where (al - -b)I.m + b
ij m
(c - B +bI

Then the characteristic roots and rmlitiplicities of F are as follo ws:

Roots Multiplicities
_a+(n~1)c+n(m-l)b ,1
a+(n~-1l)c ~nb m - 1

(a - ¢) m(n - 1’)

Proof. To find the characteristic roots of FF we must solve the determi-
nantal equatidn |F - 41} = 0for {. Since a; occurs only on the diagonal
of F, let a; = a- f. We then must find the value of the determinant of

F defined in this manner.

Subtracting the last row from each of the other rows,we have

Ay, - A o A ]
11 nl - ¢ e AL AL
¢ Azz’Anz ° ° ° A.Zn"Ann
Anl Anz a 5 - Ann i

Now by adding each column to the last column, we have:

1811 7 Al ¢ SR
¢ Mg " Bp2 - - - 9
. . . n-1
Ay Ay, - - AL +tTA

Now, (A, - A = (a- ) fori =1,2, ..., n-1 and

ni)

m .
Apn + ZA ;= [a,l -nb+ (n - l)c]I  + an’mu Therefore the determi-
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nant of F is equal to

m -1

+ (n - l)c - nb] [a.l +

(a1 - c)m(n ) 1>[a1 (n-1)c +n(m-1)b ]

and since a; = a - {, by setting the above expression equal to zero and

[ 4]

solving for £, we have the result.

LEMMA 4. If F' is 2 symmetric matrix with characteristic roots Ei £0

2
(i =1,2,...,r), then the characteristic roots of FF are .Zi‘ .

Proof. Since F is symmetric, there exists an orthogonal matrix P such
that P'FP =D where D is dijagonal with the characteristic roots of F on
the main diagonal,

Consider now operating on FF with the matrix P of the foregoing
paragraph. We then have

DD=DZ

P'FFP = P'FIFP = (P'FP}(P'FP) =

Therefore P is the orthogonal matrix which also diagonalizes FF with

the characteristic roots of FF on the diagonal. The diagonal matrix thus
obtained is the square of the diagonal matrix obtained by operating on F

with- P. Hence the result follows.

LEMMA 5. If G is of the form:

where the c; are scalars, then G~

1

Cllmnl ¢ CSIm-l o}
¢5lm-1 ¢ ©3lm-1 ¢
i * Celmm-1; ? S4lmn-1)

is of the form:;
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2
d = c.¢ «c, and dz = C,Cy - Cy

Proof. By matrix multiplication we have GG—I = I. Therefore by defi-

nition, the inverse of G is as given.



CHAPTER II
THE GENERAL TWO-WAY CLASSIFICATION

In this chapter we shall assume an Eisenhart Model II in the general
two-way classification with unequal numbers in the sub-classes and ob-
tain an upper bound on the number of statistics in a minimal set of suf-
ficient statistics. We shall also show that the block totals, t-1 of the treat-

ment totals and the intra-block error are a set of sufficient statistics for

this design.
We sh‘ai,M assume an Eisenhart Model 1I of the form
Y = Xy + e
where the dimensions of the matrices are as follows:
Matrix Dimension

Mx1
Mx 1.
(bFt+l) x 1
Mxl1
Mxb
Mxt
Mx1
bx1

tx 1

@]

*\@@NNHN Mg X

where

X = (X@’ Xl’ XZ)) y' = {w B T'.
The vectors e, 8 and T are each distributed as the multivariate nor-

mal with the following properties:

12



((l) E((e) = 439 E(B) = (1): E(T) = q)v

(2) E(ee) = o2y, E@B" = ofI, E(1T) =Is3,

(3) E(eB") = ¢ E(eT) = ¢, E(BT) = ¢
Since XX'is symmetric of rank b+t - 1, there exists an orthogonal

matrix P such that
woo¢
PIXX'P =
¢ ¢

where W is diagonal of dimension (b+t-1) x (bt+t-1). Partitioning X we have

v

P’XX”PzP’(Xof,Xl,XZ) X} |P = PUXX] + XX + X X!P

Partition P into (P , P)) where Pl and P2 are of dimensions M x (b+t-1)

and M x (M- b -t + 1) respectively.

Applying the result of Lemma 1, we have P'Z,Xo = ¢, PLX; = ¢and

PLYXy = ¢

Consider now the distribution of the vector Y under the distributional
assumptions we have made. Since Y is a linear combination of normally
distributed variables, Y is distributed as the multivariate normal witl:

(1) mean E(Y} = E {say)
{2) covariance matrix E(Y -~ p)(Y - p}! = Z (say)
where M

b= Hjl

2

o= (XXjof + X,Xjog + o2I).

The joint distribution of the elements of Y is g{Y) where
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M 2 -1 _ - =1
glY) = / 1% |1/2 exp-2 (Y - DD s SEFT B
Consider now the operation ¥ on g(Y) to be
g(Y) = (2m) M2 |3/ 2 exp 27Ny - pyPREPRY - W),
where P is the orthogonal matrix described previously.

2
Consider now P'EP = P'(XX'c] + X, Xjof + ¢2I)P

1l

b ' 2 1 B~ & 2.
PXlXIPU‘l + PXZXZP@Z 4+ o1

il

By the argument previously considered we found that by partioning P into

(Pl, PZ) we can find a set of rows Pz' such that Pé Xl = ¢ and Pz"X2 = b

We may therefore write

2 2 ‘
P'X X'Ps’ = Ay @ and P'X_X'Ped = 21172 ¢
X XPoy = 5 5 XF% = 5 o

where | Ay, (k= 1,2)is of dimension (b+t-1) x (b+t~1). Therefore -
\’T ¢
P'EP = )
¢ o1

where T = IAM.W% + ZAllur%, iWeLmay then write

-1 -1 Tt ¢
PEP) = PE P = ;’2
LA VeS|
1g(Y) then becomes .
- ~1/2 ) T ¢
2my ™M/ 2 13| /2 p2” [ PAY - WK )] LIPUY - ux )]
¢ '
LB -ex ) -l 4 ||BYY - pX )

= (2m) UM/lelwl/Z

exp—Z
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- -1/2 - - -
= emM/2 g7V exp-zl[(Pl’Y “PIX u)'T l(Per - P'X ) + Y'BB'Yo ]
Define now the b + t statistics PiiY i=1,2,...,b+t-1)and Y'PZ%W

where Pii is the i-th row of Pl'. By definition these b + t statistics

are a sufficient set of statistics for the parameters p, 0"2, 0*’% and o’g. From
this discussion , we conclude that there are at most b + t sufficient statistics
in a minimal set in the general two-way classification under the assumption
of an Eisenhart Model II.[ 5 ]

We shall now show that the block and treatment totals (less one) and the
intra-block error are a set of sufficient statistics for this'design under
Model II.

Consider now the matrix P and its partition (Pl’ PZ)° Let P, be of

the form (Pll’PlZ) such that

Py I ¢
r (Pll’ PlZ) =
|F2 ¢ 1
Let P! = Dj/2X! where D, = X|X. Obviously B}B; = I.
Consider now the matrix A' = (X! - X! D’lx') Since i1 A' =
onsider no e brix = > 21D 1) Jt = o,

A'is of rank at most t - 1. We shall assume that the rank of A is exactly
t - 1. Since A'A is symmetric, there exists an orthogonal matrix Q such
that Q'A'AQ = D where D is diagonal with the characteristic roots of A'A
on the main diagonal. By assumption, the rank of A'is t - 1 and there-

fore there is one zero characteristic root of A'A. Since"l A' = ¢, let
dt
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Q = (t"’l/zji, Qj). Therefore

0 ¢
Q'A'AQ =

¢ D,

where D2 is diagonal with the non-zero characteristic roots of A'A on the
-1/2
main diagonal. Now let Ph, = D, Qj A'. Then
-1/2 12 -1/ -1/2
7 - = —
P12P12 = D2 Q4 A'AQ,D, = D, DZ,DZ = I, 3

and

- - ~1/2 ] - 2
PP = Dll/ZX’lAQlDzl/Z___ D /_(X_'lxz - Xixz,)QlDzl/ = b

With P;; and PlZ defined in this manner we see that Pi forms a set of
b+t - 1 orthogonal rows.

Let us now examine Pi(Y - pjl\ld). Wé have then:

,
Pi, p;Y/ 2%y (v - ¥y
PYY - wilh = (Y - Y =

-1/2 .
Pl ;2 ayany - M)

1/2 -

1/2

Define now Dlw 'lY to be b statistics and DZ_ Ql’ A'Ytobet -1

statistics. Examining these two vectors, if we let B = X{Y denote the

vector of block totals and V = X'ZY denote the vector of treatment totals,

we then have

and

-1/2 -1/2 . _-1/2 Y
D, /2y = D, / QX4 Y - ND; / X1Y) =Dy

2 -
A QYV - ND

1
In this form is is readily seen that these b+t-1 statistics are based on the
block and treatment totals. It remains to be shown that Y"PZPE Y is the

intra-block error.
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. 1 - H H — t -
Consider now Y'Y = Y'PP'Y = Y(Pllpll 12 12+PP2) Y. Sub

stituting for Py; and P}, we have

-1
Y'Y = Y'XD[ X! + AQD; Q'A' +PPNY

-1
Y'PZPZ'Y is the intra-block error if it can be shown that Y'X]‘D1 X‘lY

-1
and Y‘AQIDZ QiA'Y are the blocks (ignoring treatments) and treatments

(eliminating blocks) sums of squares, respectively.
To begin, consider the model
M L u
Y = SV +Xla+ XZI + e

or
- b “ X T -
Y = Xl(p.Jl + a) +X21 + e

. b M : b
since lel =0y Now define (pj; + a) = B and we have

Y = X, B+ X,T + e,

The normal equations for this model are

; H ) ] - - t
(1) XX + XX, T = X\¥

(2) XUX|B + X’ZXZ’? = XLY
Henceforth when we mention blocks (ignoring treatments), we will mean
blocks and the mean (ignoring treatments).
In equation (1) , if we ignore treatments, the sum of squares of blocks
{ignoring treatments) is given by B 'XhY whererB) is a solution of the sys-

tem —
14 — 1 W
Xl-ﬁ = X lY.

{1 ey ' 3 - -1~ : ' = ! "]Xt
Solving for B..we have B = Dl'XlY“" Thus BXIY. = :Y,XlDl 1Y

which is exactly Y'PllP'llY. Hence Y’P11 llY is the blocks (ignoring
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treatments) sum of squares.
Solving for ’[3\ in equation (1) and substituting in (2) we obtain

(XY - XpX DY 'X)Y

1]

\ - ~
(XX, - X'lepllécfixz)T

A'Y.

H

or ~
(3) AAT

The treatments. (eliminating blocks) sum of squares is given by
~ ~
“TIA'Y where T is a solution to (3} Then from (3) we may write

~

QI'AIAQQIT = Q"A'Y
or ~
' DR'T = QAY
or
0 —1/2 1 ~\t-1/zjt1A,Y
¢ Ql'A'Y
Then
~ -1
(4) I SYarary

Since Q' = I,.Q)Q! = I - t713%. Multiplying each side of (4) on

the left by Ql and making the above substitution for QlQi , we have

0 -5 % - b, laraw
( t - ‘t) - Ql 2 Ql .
Since ( I't - t-lJE ) is not full rank, we add the restriction that jg’f = 0,
W e then have , _
«1+t .t ~ = N
I -t T QD) QjA'Y
5 o=
(5) | 1
Jt 0 z 0
Since | 1 1T .
-1t .t N -1.t
L-tTa b [ -t ;‘;T_t ] | L, e
1 ~-1.1 , =
j 0 t 7] 0 1
] Iy 11 3y 11 $ g
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(5) becomes

~ -1t -1t -1 ' 1-_
T It -t Jt t i1 QlDz, Q lA Y
-1.1
z Jt\ 0 0 |
or ¢ 1
D - _:1 -
I - 1 t
T (t t Jt)(QlDZQlAY)
Z 0

~ -1
It is then easily seen that T A'Y = (Y'AQ D, Q}JA'Y, which is exactly

Y'PIZPiZY, Therefore Y"PLZPiZY is the treatments (eliminating blocks}

sum of squares.

Since Y'PllplllY and Y'P,P' ,Y are the presupposed quantities, we

have that Y“PZP%’Y is the intra-block error.
The results of this chapter may be summarized in the folblowing theorem

and corollary.

THEOREM . If an Eisenhart Model Il is assumed in the general two-way

classification with unequal numbers in the cells, then there are at most

b 4+ t statistics in a minimal set of sufficient statistics.

COROLLARY. If an Eisenhart Model Il is assumed in the general two-

way classification, then the intra-block error, the block totals and £ ~ 1

of the treatment totals form a set of sufficient statistics.




CHAPTER IV
THE BALANCED INCOMPLETE BLOCK

In this chapter we will be concerned with finding a set of minimal suf-
ficient statistics in the balanced incomplete block design when an Eisen-
hart Model II is assumed.

The balanced incomplete block (BIB) design id defined as a design in
which t treatments are applied to b> t blocks of k <t experimental units.
Each treatment appears exactly r times in the design with the treatments

: a,rra,nged such that any two treatments occurbtogether in exactly \ blocks.

The model for the design may be written as a special case of the gen-

eral two-way classification model. Specifically.

wherei=1,2,...,b;j=1,2,...,t;m = O,1.,..,,,nij; where nij is defined

as follows:
0 if treatment j does not appear in block i.
n.,6=
Y 1 if trea.tmentj appears in block i

If ni; = 0, the observation yijm'does.,not,e_xist.

Under Model I, the following assumptions are made:. .
(1) B, Tj and ©ijm 2T® each distributed normally,

(2) Efegjm) = Oforalli,j,m. E(ejjmepqr) = =% if i=p, j=q, m=r.

0 otherwise.

20
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(3) E(B;) = 0foralli. E(B'iﬁp:) = 0'?1; 1f1= p-
0 otherwise.
(4) E(Tj) = 0 for all j. E(Tst) = (¢S ifj= s,
0 otherwise.

- {5) E( = 0 for all i,j,m,_ and s,

eiij s)
(6) E(eijm Tp) = 0 for all i, j, m, and p.
(7) E( ﬁiTj) = 0 for all i and j.
(8) wis a constant.
The following relationships hold in a BIB design:

(1) Fogy = n (@ Bagy =k (3) Eagng = A G4

(4) M = bk = tr, (5) M-\ = rk~-r.[ 6]
The matrix model which fulfills the cpnditions set forth above may he!

writt en as . M
Y = p.j\i 4 Xl-[3 + Xz'r + e

where Y is the vector of M observ\a,tiqns‘ and we shall consider the elements

ordered according to blocks, then g'fea-tments. X, and X_ are M x b and

1 2
M x t matrices respectively. B, ’f , and e are vectors of b, tand M random
variables respectively.

The distributional properties can he written in matrix form as follows:
(1) e is distributed as the MVN ('¢ , ‘c,erM )
(2) B is distributed as the MVN ( ¢, o'i' Iy )
(3) T is distributed as the MVN ( ¢ ‘u'g It )

(4) E(ep') = ¢, E(eT", E(BT') =
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The following relationships hold for the matrix model:
M M M

= - M.
MX1 = ka, (4) JyXy=J

(1) X1X, = kI, (2) X,X, = rL, (3) J 17 ‘M’

M M \ M t
(5) Ty X, = 230 (6) JtMX’Z = Ty (M NN' = (r - NI + AT

1

(8) (X5 - K"NX))X, = A'X, = AT - ), (9) (X - k‘lel')xl = b

We will now develop the operation-t so that when the joint distribution
of the elements of the viector Y has beeﬁ operated on byt , we obtain a set
of sufficient statistics which.is minimal.

The vector Y is distributed asthe multivariate normal with mean u and

covariance matrix 2, where

po= BY) s opg
and 2
+ ¢~ I)

¥ = B(Y -pNY - )" = (xlxici‘ + XZXZ’G’Z‘Z
The jaint density of the elements of Y is then

g0 = (2 M2 g ey ST Ny - ).
Consider now the operation-I- on g(Y) to be of the form
Tg(¥) = (2m M/ 21"V 2 expa-liy - Ty ERE PR (Y - )
where P is an orthogonal M x M matfix to be defined. Let P be partitioned
in the following manner: P = '(Rl, R,Z' Rj" R4) where the dimensions of
Ri(i=1,2,3,4)areMx1l, Mx(b-1), Mx(t~-1)and Mx (M -b -t+ 1)
respectively. Wk shall now define these four partitions of P so as to con-

form with the condition of orthogonality.

Let Ri = M'l/zjll\d ande4_ be constructed in:the same manner as the

matrix P of Lemma 1.. . We then lua.veR’lR‘1 = 1 a,nd"'R"LRét = IM—b-t+1'
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Consider now the matrix NN' = (r - \)I+ AJ. The characteristic

roots of NN' may be found by solving the determinantal equation -

INN' - 4I] = O

for £, The characteristic roots of NN' are then (r - A\) and r + (t - 1)\

rk of multiplicities t - 1 and 1 respectively. Let Q be an orthogonal

t x t matrix which diagonalizes NN', that is

rk ¢
Q'NN'Q =

¢ (1‘ a )") It-l

Partition Q into (P, P3) where P, and fP3 are of dimension t x 1 and

t x (t - 1) respectively. Then

P|1 ) X rk ¢
NN' (P,, Pj) = | = D, (say)
P:’ﬁl ¢ (r —K)It-l

By Lerﬁma 2, the orthogonal set of rows which diagonalizes N'N and

-1/2
gives the non-zero characteristic roots of N'N is D / Q'N. Thus

(oY 2ammmmvan; 3 = b

Since the rank of NN'is t, the rank of N'N is also t. Since N'Nisbxb

there will be b - t zero characteristic roots of N'N. If by P, we denote

the matrix which diagonalizes: N'N, we may write

rk ¢ ¢
PéN 'NP, = ¢ ¢ ¢

‘b CI) (r - )\) It"'l

Partitioning P2 into (on, PZl’ PZZ) we then have
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PZ'O 7 —I"k ¢ ¢ —
PIN'NP, = [P}, |N'N (P, Ply, P} : o b ¢

Plzz CI) CI) (I’ - )\) It-l

- - - "

In subsequent discussions, by L.emma 2, we may make the substitution

P), = (r - k)-'l/ZP'_,,N.

Consider now the matrix A' = (_Xé - k'leXI'), The orthogonal matrix

which diagonalizes NN' will also diagonalize A'A, for

Q'(sI - K INN)Q = oI - k'lDl
where - -

0 ¢

(r1-k"Ip) = |
-1
¢ KNy

e

We now define the matrix P which we spoke of when the operation &

was discussed. We will define P in the following manner:

NV R - -
-1/2 | ~1/2
Ve Vs 1
| -1/2
pr = |kY P',,X] = |[k(r -x)]"l/zP'3.NXi
/2.
(kAnY 2pia; (/2 1/ 2 Pl A’
P’ ‘ P!
4 |74 i
where g -
-1/2
1/ PY X))
R!, = ) and R} = (k)Y 2PiAn.
“1/2., .
kT 2Py Xt

and where we have let P"L = R'4 for consistency of notation. It can be



25
verified that P is an orthogonal matrix.
With this definition of P let us examine the form of P'¥P. In Appendix
A it is shown that P' E P assumes the form as shown in TABLE 1.
. In order to find P'ZI P we note that ( 'ZIP) = P'Z']‘P. We also

note that if we have a matrix of the fprm

ClIS . C3Is ¢l -c3lg
C = then G~ = (C.lcZ *-C3)
c3lg coly |-¢3lg cylg

Using this fact,P'2" Ip is as shown'in TABLE IL

Secondly, let us exarmine the form of PY(Y - E) We then have

PR . “ - ‘ -
~1/2.1 M -1/2
MY 3 v - i MY 2y
-\1/2 5’” 1 "l 2 7
P'ot XYY - W) <t PuXl Y
- -1/2 M .
PUY - W) =|k P! XY - = “1/25, w1
( K 22X (Y - i) e 39> SR
(k/\t) 1/2 PLANY - }le\l/[) (k/)\,t)l/zP?; A'Y
_P4;(Y~}.LJ1) B Py Y il
1.1
where y... = M jMY.

Letting q = (Y - ) PP'Z PP'(Y - u), we have

q = (4 ke] +707) 1M(y. e ke ke )] lyx PP, XIY

& 3 2’ *1’ Z . 1 I} i -2 i O
k(e + k M:o'z)dl Y'X P, P'O0X Y + o Y'BPLY

+ (k/M)[ o2+ kmf + ke - x)azz]dl“IY'AP3P'f3A'Y

o =2 ._:‘/2'.""1 e l:l
.Z[k A(r )\.)]l dl YX1P22P3A Y.
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TABLE I

'FORM OF P % P

e

(% + ke? + rol) ¢ 6 $ $
6 @F 4 kel T, 6 6 ®
& b [#% + k@—f + ke - x,)oé 11, 4 [k™2\t(r =\)] 1/2@2311;”1 é
5 b [k™2At(r - W] l/%i . @F+ kel 1 ¢
¢ ¢ ¢ | | ¢ g pets]
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(o %+ ke?

1

2,-1
+
r(rz)

TABLE II

-1
"FORM OF P} P

¢ ¢ ¢
2 -1
(o +kcrl2) I . ¢ p
-4 2..-1, - 1/2 -1
¢ d; (o7+k )\to‘f) It-l -[k th(r-)\)] / d1 wzzlt=l,
R )\]l/zd‘lzl [0% ko +k™ Y (r-n)o2]d b1

d) w[ (r-= ) l('fz t-1 o 0'1 0’2 1 ta1
¢ $ ¢
dl = 0’4 + k@"z’o’f 242 2,2

+ ro o5 + M:ﬁ‘l @’2

¢

¢

¢

¢
cr'sz «b-t+l

pra—
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_ 4, 2.2 2.2 2.2
where d1 = g + ko o‘l + ro o’z +M:,o'1crz.

Define now the six statistics s:(i=1,2,..., 6) as follows:

S1 = Voo

s = K'YX P, PY, XY ifb>t. Notdefinedifb = t.
-1

s; = k YX|P,,P5,X|Y

s, = k;l(r - x)l/ZY'X P, P'A'Y or k 'Y'X,N'P,PlA'Y

4 172253 1Y 3T 3

sy = (k/xt)Y'AP3P"3A'Y

sy = YYP4P!4: Y, .-

By definition, these Six:statistics form & set of sufficient statistics
since we have factored g(Y) into the form li'[ci h(si).

Lehmann and Scheffe' have given a scheme by which a set of sufficient
statistice may be shown to be minimal sufficient. It consists of defining
a function K(Y, Y ) = .—I'-g(Y)/—I-g(YO) and finding the condition under which
K(Y;Y,) is independent of parameters. The symbol -I- denotes an operation
on g(Y) which reduces the dimensiqn of the space of sufficient statistics.
In the case we are Considering, we will define ¥ to consist of operating
on the exponent in g(Y) with the matrix P as we have defined it. A set of
sufficient statistics is minimal sufficient when K(Y, Yo) being independent
of parameters , implies s; = s;,, where the s; are the proposed set of
minimal sufficient stat.istics and the s;, are obtained from-I—g(Yo) in the
same manner as the s; were obtained from-I-g(Y).

Proceeding with our problem, we have
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K(Y,Y_) = exp2 %(

q-4q,)
6 !

exp-Z‘-’:l le fi W

or

where the fi are defined as follows:

2,-1
f) = (0% + kef + ro)

f, = (o’2 + kO’Z )-1
£ = (¢? + k-laoZ)all
3 271
_ .2 2 -1 21,1
f, = -
4 [e” + ke + k7H(r )\)O'Z]dl
2 . -1
= =2
f5 ,UZ d1
f6 = _0'—2
. 6 _ 2 M L2
and where Wi = 8; - S;4 i = 23...,6), Wy o= M(sl-p) - (sio— ) -

The function K(Y, Y ) will be inde pendent of parameters only if the
quantity (q - q_ ) is equal to a constant. Since none of the {; involve a coh+

stant, we shall show that the only solution to the equation Z fiwi = 0is

that the w. = 0 for alli. In Appendix B it is: shown that this is the case.

Since W= 0 for all i, this implies s; = (i=2;3...,6). For the

Sio

2 M(s, "'M)Z- Since

case when i = 1, we have Wy = 0 or M{ s - 1)
this is an identity in p, let p = 0. This implies s = Sy, We there-

fore have s, = s i=1,2,...,6).. Hence these six statistics form a

i io
minimal set of sufficient statistics.if b >t and a set of five statistics if
b = t.

The expectations and distributions of the statistics are found in Ap-

pendix C. Pairwise independence of the statistics is investigated in
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Appendix D,

We shall now examine each of the statistics in the minimal set to as~-
certain of what each consists in terms of block and treatment totals.

We now examine each statistic in turn.

(1) s,. This statistic is. simply the mean of all observations in the vector

Y and is an unbiased estimate of the parameter p.,

-1
(2) s.3.= [k(r - A\)] "Y'X N'P3P'3NX1 Y. The quantity NX1Yisatx1l

1

vector of elements Tj (say), where Tj is the total of all blocks containing

treatment j.

For P3P', we may substitute (I ~ t—lJ). Making this substituti'on, we

3
have 1 -1
s, = [k(r - )] 7YX N(I-t J)NX,Y
= [k(r - ] [ Y'R;N'NX]Y - t'lY'XlN'JNX’ Y]
- [k(r-N]" = Tj.?‘ -t kY. )
= [k(r - it =g T?. T.)2
j
-l .1
where T. = t "2 T.,and Y... = j_ Y,
J M
(3) s5 = (k/A)Y'AP,P'A'Y. Making the substitution P;P = (I - t™1J),

we obtain s5 = (K/A)Y'A(L - t717)A'Y = (k/A)Y'AA'Y.

1

Consider now A'Y = (X} - k- NX'l)Y. This quantity is a vector of

what is conventionally called the Qj's. We may then write 5y = (k/Xt)ZQ?

where Q) = V, - k"'lTj with V, denoting the j-th treatment total.

(4) 8¢ = Y‘P4P"L Y. From the discussion in Chapter II, this statistic
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is the intra-block error.
(5) sy = k_lY'XlN'P?’PéA'Y, Substituting ( I - t~1g ) for P?’P’3 we have

s, = Ky N(1-tTlnay = klyx Nary.
Since the j-th element of Y’XIN' is Tj and the j-th element of A'Y is
Qj , this statisti‘c may be written k'lz Tij'

(6) In. order to determine what s, is in terms of the block and treatment

totals, consider iR
.20
-1 _ -1 P . -1
Kk Y’XlXiY = k'YX (PLPYXIY = kT Y'X (B, By, Bj | By (X]Y.
‘ -1y _. Sk PR S A |
! — Jt = _
We may now let PZOP 20 = b Iy sylnce ‘b JbN Nj 15T th = rk

which is a characteristic root of N'N of multiplicity 10 We thereore write

JXIY - klyx poopr xty = kTly'x P P, XY

-1y, v -1y
k YXIXY (bk)""Y'X 1F22F22%1 1F21

1 1

or writing this in terms of the block and treatment totals we have
Y P, Py XYY
21

b -
k-1 Z(B; - B. 2 - [k(r - N 1[.%;(1‘. - T.._,)Z] = k 1

J

where Bi is the i-;th element of X'lY and B. = b'lZ Bi'

The statistic s, may be obtained then by.suBtracting S5 from the
corrected sum of squares of hlocks (ignoring treatments).
Summarizing the results of this chapter will be accomplished by means

of the following theorem and corollaries.

THEOREM. 1. If an Eisenhart Model II is assumed in abalanced incomplete

block design, then there are six statistics in a minimal set of sufficient sta-

tistics if b>t and there are five statistics in a minimal setif b =t .
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COROLLARY 1.1. The explicit form of the statistics in a minimal set are

as follows:

- 1. Sy = Y...

2. s, = KMY'X P, P! X!V if b>t. s, is not defined if b = t.

21" 21721
- -1 ] 1 - -1 1 1 PN
3. s, = k'YX PP X]Y or'[k(r ”x)] YXlNP3P3NXlY.>
4. s, = [k~3(r -N]Y 2y X, B, P'A'Y or K Y X N'PLPLAY
©v4 T - 17227 3 1 373 :
-1
5. sg = (k/\t) Y'AP3P'3~A'Y

- 1 '

¥ TN = ! ! = | -
where P, N NP21 = ¢b"t and P5NN P3 (v | )\)It_l.

-

COROLLARY 1.2. The expectations of each of the statistics as defined

in Corollary 1.1 are as follows:

1. E(g) = p

2. E(g,) = (b- t) (o2 + kcrlz) if byt. Not definedif b = t.

3 E(s3) = (t-1)] q‘z +_kcr,2 + k'l(r - )_\)622]
4. E(s,) = (t- Dk % - Wnol

5. E(sg) = (t -1)(w?+ k™ 'ae?)

6. (M - b -t+ 1)e?.

&=
-
0
o
g

H

For the proof of this ¢orollary see Appendix C.

COROLLARY 1.3. The distribution of each of} the statistics :0f the mini-

mal set as defined in Corollary 1.1 is as follows:

1. s,y N[ w MY Z'+k0'21+r0‘22‘) 1.

2. szm(,¢2+kaf)x2(b-t)ifb>t. Not defined if b = t.

>
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3. 53 [o? 4 kel 4 kM - 0ol e - 1)

<1y, 2y 2
4. 8L ~J (g‘z‘-f- k ']’)\t(r%_) X. (t -lv).

5. sgru o2 x4 (M =b-t+1)

6. sy is distributed as a linear combination of independent chi~

square variables; that is
: , 2
8, Z px"(1)

1

where the p, are the non-zero characteristic roots of 2" (A4 + A ’4)2;

-1 ,
where A, = k "X N'P,PiA'. [7]

The proof of this corollary appears in Appendix C.

COROLLARY 1.4. The .sta.tistics,si.(i .= 1,2,...,6) are pairwise inde~

pendent except for the paiis (s 32.54) (s3s85)and (54,__5_.5)_:_

The proof of this corollary appears in Appendix D.

~ GOROLLARY 1,5. The sixstatistics:as:defirned in Coroilary 1.1 may be

computed from the following Analysis of Variance Table (TABLE III).

TABLE IIT

ANALYSIS OF VARIANCE, BALANCED INCOMPLETE BLOCK

Source - Statistic
Mean My... 2 - Mslz
Blocks (ignoring treatments) k‘lEZI(Bi - B. )2'
BloéEaTreatmen,t ~-Error Component [ k(r-A)] -IE(TJ. - T. )2‘ = 84
Block~ Error Component By subtraction (S,Z;)
Treatment<Error Component (k/A\t) = Q? = 8¢
Intra<block Error By subt;:a.ction (sé)
-1



CHAPTER V

GROUP DIVISIBLE, PARTIJALLY BALANCED INCOMPLETE

BLOCK DESIGNS.WITH TWO ASSOCIATE CLASSES

In this chapter we shall consider PBIB designé and shall find sets of
minimal sufficient statistics for each of the three types of group diyisible
designs. We begin the development by stating the definitions which will
be needed as the discussion develbps.

- Definitions.
~An incomplete block design is said to be partially balanced with two
associate classes if
(1) there are b blocks each with k experimental units,
(2) there are't) k treatments, each of which satisfies the following:
(a) each treatment appears exactly r times in all blocks,
(b} each treatment has exactly n, i-th associates,
(c) two treatments which are i~-th associates occur in exactly
A; blocks,
(3) any pair of treatments satisfy the following:
(a) the pair are either first or second associates,
(b): any pair of treatments which are i-th assoéiates, the number-
of treatments common to the j-th assdciate of the first and the k~th associ-
ate of the second is pi. ‘and is independent of the.-.éair’f of treatments.

jk
34
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-From the above definitions, the following relationships hold:

(1) bk

"

tr = M, (2) n, + n, = t-1, (3) nl)\l + ny; A\, = rk -r.

2

A group divisible, partially balanced incomplete block design is de-
fined as a design in which the treatments are arranged such that there
are n groups of m treatments each, such that any two treatments of the
same group occur in exactly )\‘l‘blocks, while any two treatments which
are in different groups occur together in exactly )\2 blocks.

For the group divisible designs, the following relationships hold:

(1) t = mn, (2) n, = m- 1, (3) n, = m(n - 1), (4) r _>/)\1

(8) k=2t 30, (6) (m -1, + m@m-1x, = r(k-1).

The group divisible, partially balanced designs have been classified
into three types by Bose, Clatworthy and Shrikhande [ 8 ]. They are
(1). Singular if r = )\1,
(2) Semi-Regular if rk - Aot = 0,
(3) Regular if r > }\1 and rk - xzt > 0.

General Considerations

‘We shall now examine .ieach of the group divisible designs in order to
determine a get of minimal sufficient statistics for each. We begin by
discussing some of the general properties of all three types of designs.

~ We shall assume the same model as in the BIB design with the same
distributional properties of the faﬁdom variables. Explicitly, we have

Y

ij+ X, B + XZT + e

1
with Y distributed as the multivariate normal, mean F = pj and co~-
1

i . 1, . i - IR
¢ H
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i B 12 f gl g o2
~variance matrix Z = X1X1 I+ XXy 4 oL

The joint distribution of the elements in the vectior Y is

g¥) = (2m ™Moy V2 ey ANy - D)
In order to be' able to define the operation ¥ on g(Y) we shall first con~
sider the matrix NN'. The jj'-th element of NN' is the number of times
that treatment j eccurs with treatment j! in all blocks. If we let nij = 1

if treatment j occurs in block i and equal 0 otherwise, the jj'-th eleiment

of NN' is equal to 2 ST For any GD-PBIB design
1

‘r ifj o= j.
? T ")\1 if j # j'and j and j' are in the same group.
Ny if j # j'and j:va.ndbj’ are in different groups.
Let the elements of the vector Y be ordered such that the matrix NN*

assumes the form of the matrix F of LLemma 3. If weleta = r, b = \
and ¢ = N the characteristic roots of NN' are as displayed in TABLE IV.
TABLE IV

CHARACTERISTIC ROOTS OF NN'IN GD-PBIB DESIGNS

Mpltipliciti es Roots
1 rk
m ~ 1 rk - )\.Zt
m(n- 1) ’ ‘ r - N

Imposing the restrictions on the roots for each of the three types of

designs, we have the result as giveh in TABLE V.
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TABLE V

CHARACTERISTIC ROOTS OF NN'FOR S, SR AND R GD-PBIB DESIGNS

Multiplicities Roots | Roots Roots
1 rk .rk rk
m -~ 1 rk - Ayt 0 ' rk --)\Zt
m(n-~1) 0 r - )\1 ro- N

Since NN'is symmetric there exists an orthogonal matrix Q3 such that

Q4NN'Q; = D; where D, is diagonal with the characteristic roots of NN'

3
displayed on the main diagonal. Partition Q3 into (P30,P31,P32) where
P30 ’ P31, and P32 are of dimensiontx 1, tx(m - 1) and t x m(n - 1)

respectively. We then may write

[ rk ¢ ¢ T
¢ (k- \pt)g ) ¢ |3
_'.¢’ ¢ :  ¢ ) g
Py, ok o A .
Poy NN (B0 B Bp) = | ¢ ¢ ¢ | (sR)
P32 K ¢ SRR ST
i rk ¢ | & =
¢ (rk. - )\-Zt)lm_l b (R)
3 ¢ ¢ (r - )\l)lm(n-l)_‘ ‘

Since the non-zero characteristic roots of N'N are equal to the non-zero

characteristic roots of NN', there exists an orthogonal matrix QZ. such that
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rk ¢ q;/
QNNe, = | o 8
¢ ¢ D;,J

Partitioning QZ into (PZO,PZI,’QZZ) where the dimensions of PZO’ PZl

and QZZ are bx l, bx (b ~-t)and b x (t - 1) respectively, we may write:

P}, rk o ¢ ]
PLUINN (Ppp:Pa1:Qpp) = [ ¢ b @
3
JQ 22 Lq: ¢ Dy
Consider the (t - 1) x b matrix of orthogonal rows Q’ZZ. Q'ZZ is re~-

lated to the matrix (P3l, P3Z) of the previous discﬁssion as given in
Lemma 2. This relationship will be developed now. Partition Q,, into
(P,,,P,3) where PZZ and P,; are of dimension b x (m-1) and b x m(n-1)

respectively. Then for
1) : j ! - '1/2 1
(1) §-GD-PBIB designs, P = (rk - A\,t) P} N,

22
1
/Z'Pi N

(2) SR-GD-PBIB designs P, = (r - \}) -

23

(3) R-GD-PBIB designs, the two relationships above hold.

The relationship.; of the matrices P 1,P22 and P23 to the various

ZO’PZ

characteristic roots of each of the three types of GD-PBIB designs is as

shown in TABLE VI..

In addition to the previous discussion, consider the matrix A'A, The

orthogonal matrix which diagonalizes NN' also diagonalizes A'A, for

INN',)Q3

QuAAQ; = QX! - k'lNXi_)(XZ - k'leN')Q3 = QeI - K

2
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 TABLE VI
RELATIONSHIPS BETWEEN MATRICES AND CHARACTERISTIC

ROOTS IN GD-PBIB DESIGNS

k¢ ¢ o ]
6 o 6 ¢ |
b-t (S)
6 o (rkenpI_ b
6 ¢ 6 T
- _
rk ¢ ¢ ¢
6 b, 0 6
N'N(By: Pyys Pppr Pa3) = (SR)
¢ o ¢ |
¢ ¢ ¢ (r-X ) yn-1)
[tk ¢ ¢ o ]
¢ byt ¢ ¢
| (R)
6 o (rkaHL
¢ ¢ ¢ ( -\ 1>Im(n-1)
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1

= rl -k~ D;. Since rl and k-lD3 are each diagonal, rl - kmlD3 is diagonal

with the characteristic roots of A'A displayed on the main diagonal. The
characteristic roots of A'A are as shown in TABDE VII.

TABLE VII

CHARACTERISTIC ROOTS OF A'A FOR GD-PBIB DESIGNS

Multiplicities Rosts
1 0
m ~ 1 k"lxz t
m(n - 1) k"l[x?_t + n(h - 2,)]

Applying the restrictions for each of the three types of GDQ\;RﬁlB de~
signs, we display the characteristic roots of A'A for each of the tlgl;ee
designs in TABLE VIII.

TABLE VIII

CHARACTERISTIC ROOTS OF A’A FOR S, SR, AND R GD-PBIB DESIGNS

Multiplicities Roots (S) Roots(SR) Roots(R)
1 ' 0 0 0
-1 -1
m - 1 k XZ t T k )”2 t
m(n - 1) r v \4

Consider now an M x M orthogonal matrix P' defined in the following

manner: - -

P'

H
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g - R! = "1/2‘1 = ']/2 1 ' "1/2' 1yt '-1/2 1
where we shall let Rl = M JM" R2 = (K PZIXI"k PZZXI"k P23X'1)

N

and ~

L1/2
(k/A,t) / 314 | _
_1/2 for S-GD~ PBIB designs.
r / PE’;ZA’

o~ -
Fr'l/ng’tlA(
C3Ré = 1/2 { for SR-GD-PBIB designs.
v / PI_A?
a 32 i

[ 1/25, A
(k/2y1) 7Py At

-1/2
v 'P?;ZA'

for R-GD-PBIB designs,

and P:L be defined as the matrix P! of Lemma 1.

Consider the operation ¥g(Y) to be
1) = (20 M 4 Y expaliy -y PRy PR - )
where P is as defined above. |
In Appendix A, it i shown that P'2 P is of the form given in TABLE IX
for each of the three types of group divisible designs.
In the next sections we shall considér each of thethree types of group
divisible designs separatély using the results of this section,

Singular, Group»Divisibl‘e, Partially Balanced Incomplete Block Designs

vFor this type of PBIB, in order to obtain a set of sufficient statistics
we shall first examine the form of P'2P. The general form of P'¥ P is
as shown in TABLE IX.

In the light of the discussion in the previous section, we have the

following relationships:



TABLE IX
GENERAL FORM OF P'¥ P FOR GD-PBIB DESIGNS
u, ¢ ¢ ¢

¢ U, U, o

where U‘ = gl + ko’z 4+ ro’z U = 0’2 I
11 1 2 44 "M-b~-t+1’
—~ '-ﬂ
P21
= 2 k. 2 : ! TN\ !/ : -1 2
Uzz— (o +.,.¢ l)Ib—1+ PZZ_ NN (le’PZZ’P23)k o,
1
23
-
PZl
- 1! = 1-3/2 |p: ' - NN! 2
U23 U32 = k Pz‘2 N'(rkI NN)(P31,P3Z)C30'2
L
PZ3_»
1
Py o SR o2 2
Uy = C3 [k (rkI-NN )],(P31,P32)%a + Cy [k (rkI-NN")] (%1,1332_,103@2.
P32 P32 /
and where C3 is defined as follows:
- 1/2 7]
[/t 2 :
for S designs.
-1/2,
o L ¢ £ “m(n-1) _
-1/2 7
e, ¢ |
3 = -1/2. for SR designs,
—_— _ ¢ v I m(n-1)] .
[ 1/2 ]
[ WA,t] / Im-1 ¢ _
-1/2 for R designs.
| ¢0 \'2 Im(n—l_)_
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(1) o - r —
¥
PZl ¢b-t ¢ $
-1 , -1 N
'
Py3 ¢ ¢ ¢m(n~lﬂ
@ - - o
. r N
P PN
kY2 bt INI-NNY (B, (, Py,)Ca = kT2 [P NY(rkI-NN')(P, ., P2,)C
P23 P3N
L - — -~ -
i ¢ - ¢

- 1 -1/2
x=3/2 P}, N'(rkI - NN')Py; (k/X5t) /2 P,,N'(rkI - NN')P,, r /

i ¢ ¢ i
(3) ,
P! I, 9
P32 ¢ Im(n-1)
(4)
P3| 4 - (Npt/Kpy oy ¢
c, [ (rkI-NN1) ][ K {rkI-NN")] (B}, P3,)C3 =
P3'2 : ¢ rIm(,n---'l

Examining-the two non-null matrices in (2) above, we have
- k-3/2, _NYrkI - NN)P k/ 1/2
(a) k P‘22 (r NN ) 31( Aot)
- -1/2 1/2
= k™3 2k - ay) / (k/A5t) / PJ;NN'(rkI - NN)B;

- )\zt)'l/z()\zt)-l/z[ rk(rk - ')‘Zt-) - (rk - )‘Zt)z]lm-l

H
~
1
—
H
=

k1 - xzt‘)l/z(xzt)"l/z(rk -4 ) I

"

m-1

H

; 1/2
k™l(rk - 2,t) / (xzt_)l/2 -1
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..,3/2, Nt o WNINT! "1/2.
(b} k P} N'(rkl - NN')P,,r

i

s
since P'“31NN'1:32 = ¢ for this design.
Api)lying the results of (1), (2), (3) and (4) above to.the general form
of P'}ﬁ P, we have the result as given in TABLE X .
'I‘ABLE X

FORM OF P'ZP FOR SINGULAR GD-PBIB DESIGNS

TR ZE T T B SR
¢ Uy v & 6 & 9
¢ & Uy ¢ Uzs ¢ 9
& 6 b Uy & & b
¢ ¢ Ugy ¢ Ugy b ¢
6 ¢ 6 o & U, @
T S T

where

| 2.2 2
Uy = (624 kel+ rad), Upy = (0?4 knr%)l_b_t., Uy = (024 k¢f)lm(n_l)

S I SN S | 2 ;- A1y 24
Usz = [0+ ko] + K (rk-hpt)o 5]l 10 Ugg = (0% + konte ),
T, = el 2 : = g2
Yso = (o7 + r o) -1y bkt S VIS N I

oo -2 /2 2

- We must now determine the form of P"j_Zf'-lP. To accomplish this we

1

note that (P*¥P) =~ = P';E‘-IP. The form of P‘?ﬁ ‘-IP is given in TABLE XI.



TABLE XI

FORM OF P'# 'P FOR SINGULAR GD-PBIB DESIGNS

45

-
W, ¢ 6 6 & ¢ ¢
& W,, ¢ ¢ & ¢ o
¢ ¢ jwé3 ¢ 'W35 ¢ ¢
6 b 6 W, o & 9
¢ b Weo & Weo o b
& ¢ b 6 b W o b
6 ¢ 0 6 e 6 W,
L .
where
= el 2 2,1 2, 2,1
W“ = (o +ko’l + rm’z) » Wy = (e + ktrl ) Ib g
-2 2 2 2,-1
=1. 2 2, -1 2 _o 2, 2.-1
W55 = dl [¢“+ ko‘l + k (rk—)\zt)trz ]Im-—-l’wéé = (o +ro'2) Im(n—l)’
1/2 1
Y - - [Kk-2 i 2
Wor = 0 Ty pogerr Was = Whs = -[RTON k20104, T, 0%
4 2. 2 2.2 2 2

\NlthdI = o + ke c».'1+rcr °'2,+)"2t,°'1°'2.'

Evaluating P(Y - 1) we have

-y

M/ 2y )
c1/2m1 wix
k71/2py XY
-1/2

k-1/ Py, XY

2,
k P23X1Y

1/2
(k/X,t) / P3A'Y

"1/2 ' 1
T P32AY

iy
P4Y
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-1
Performing the multiplication (Y - w)'PP/% PPYY - ) = q (say) we

have

q = M(m‘z + kcrlz + rva‘g )'"l(y. e. - p.)z + [k(o’z + kcri‘,)] -]Y’XIPZ'IPZiX’lY

[K(e? + keZ)] "LY X P, P X1 Y + (kd)) Yo ? + k'lfxz-wzz)Yj'xlpzzp!zzxiY
[riz? + mg)]"l Y'AP,,PLA'Y - zal’l[k‘z(rk - };Zt,)]l/ZY‘XlPZZPéiA”Yo‘ZZ

2

+,8/0d)] g2y ko ]

-1 2 i 1 -2
+ k™ (rk - A t)e 2] Y'A%1P31A’Y +Y P4P;1Ya

Let (P, P5) + P23P h3) = Qleé1 and define: the following seven

statistics:

S, T V-
— Eg P i t : : s —_

s, = kY XlQZLQZleY if b) m. Not defined if b= m.
= =l X!

S5 = k™Y XlPZZP Z.ZX 1Y
—_ ] 1. 1

54 = (k/xzt,)Y AP P35 A'Y

- .~ 1s
sg = r TY'AP3,P'3L,AY
S¢ = Y'P4P'4Y

_ “2 0 1/2 , LA
[k™%(rk - A,t)] Y'X,P, Py A'Y.

By definition, these seven statistics are sufficient for the parameters
Ly 0'2, e‘% and D”% and we wish to show that these seven statistics form a
minimal set of sufficient statistics.

First, we define the function K(Y,Y ) = I-g(Y)/-I—g(YO() and find the con-
dition under which K is independent of parameters. The function K in the
case we are considering is of the form exp-Z']‘(q - qg4). If we define
w, = {s;-s ) (i=2,3,...,7)andw, = M(s) - p)%- M(s) - w2, then

K may be written in the form exp"?."1 = fiwi where the fi are functions



47

of the para,metefs.» Since the fi involve no constant terms, K will be in-

dependent of parameters if Z fi w. = 0. In Appendix B it is shown that

the only solution to Z f.w. = 0 isithat w; = 0. This implies that s, = s,
i'i i i~ Tio

. ’ 2
{i=23..., 7). For w, we have M(y... - p,)z' = M(y...g- p) - Since

1
this is an identity in the parameter B, we may choose . = 0, 'Then this
implies y... = y... 0 Thgrefore s; = .sio (i =1,2,...,7). When this

condition holds , the si"snfofm a set of minimal gufficient statistics.
We now summarize the results for the singular GD-PBIB designs by

stating the following theorem. and corollaries,

THEOREM 2. If an Eisenhart Model II is assumed in a singular, group

divisible, partially balanced incomplete block design with two associate

classes, then there are seven statistics in a minimal set of sufficient

‘statistics if b ) m and six statistics if b = m,

VGOROLLARY 2.1. The explicitform of a set of minimal sufficient sta- -

tistics for a»S-'-GD—P‘B_IB:design‘ is - as. follows.:

8y T Yoo
s, = k’lY“X 122193 X{Y if b> m and is not defined if b = m.

k-1 1
s.3‘ = YX1PZZP ZX

54 = k/).thAP31P A'Y

1Y or [k(rk xzt)] Y'X NP31P'1NX1Y

S |
56, = Y'P4P;¥Y
s = [k-z('rk—)\ t)]l/ZY’X P,,PlL.AY or k-lY"X NP A Y
7 2 1722731 ‘ 131 31 e
where ‘ T "
‘ P. ‘ (rk - A5t) .
31 2" m-1
oo | o) -
32 ‘ ¢ ¢m(n-1,) '
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=XX1

COROLLARY 2.2. The distributions of the seven statistics as_given in

Corollary 2.1 are as,foll’ows:

2

S rvz) ]

slr\J N[ py M (0' + ke

r\J(er + ko )xz(b m)1f b>mand1snotdef1ned1fb m.

s3rU [ +k0'12\+ k-lcrk - th)o' ] X (m-' 1)

s, (0"Z+ k” lhztu‘z) X< (m - 1)

55 (o5 + mz) x % [ma - 1)]

S O X‘Z'(M -b-t+1)

S, NJ = a;x 2 (1) where the a; are the non~zero characteristic roots

7

e—

-1 _ -1
of 2 (A7+A)z:whereA = k XlNP31P3lA

For proof of this corpllary, see Appendix C.

COROLLARY 2.3. The statistics as defined in Corolla.ry 2.1 are pair-

wise independent excgpt for the pairs (‘s.3‘, 54),, (s 3 s7) and (54'f 5'7).

For proof of this corollary see Appendix D.

COROLLARY 2.4. The expectations of the seven statistics as defined in

Corollary 2,1 are as follows:

E((Sl) = M

E(sy) = (b-m) (e + w?)

E(sy) = (m -1 Mol + kur kK - ’fz”"’zz]
E(sy) = (m=-1)(c? + k"lxth‘g'"
E(‘ss) = m(n - 1) e 4 rb‘f)

.E(sé)' - (M~b=-t+1)og?

E(sq) = k" ¥m - 1)(zk - At) ug
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Semi-Regular, GD~PBIB Designs

For this design we again examine the form of P'X2P. The general
form of P'¥YP is as given in TABLE IX. In the light of the discussion

previously, we have the following relationships:

(1) - o -
P ¢b-t ¢ ¢
k-1 Py N'N (P,),Pps Py = k| 1 &
(2} L _
=X i &
» - -1
c, 3'1 [k (rkI - NNO] (P31, P3p)Cq = |
P32 Im@m-1)
{3) "
P! rl ¢
31| - g -1
Gs | (K (r kI -NN) L (kI-NNO (P4, P3,0Cq = |
_P32. ol Vlm(n-ll)
14) o L
H 1 1
P | PN

-3/2 - . _oY2 - :
k PZU.Z N'(rkl - NN*)(P3), P3,)C3= k77PN (rkI NNHM;%'I’“W%Z)

T 25"
i ¢ ¢ 7
- 6 6

23/ 200 N oLT - NN -1/2 -3/25, el - NNOP. oL/ 2
k¥ 2Py NI - NNOP, x k™% 2P; N'(rkI - NN")P3,v

-

Examining each of the non-null matrices in the last expression, we

have

i -1/2
(a) k 3/2'Pi3N’(rkI -NN')P,, r /
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3/2 -1/2 -
R (r - Xp) / PYNN'(rkl - NN)Py;r 1/2
= ¢
: : ; 1 NN - ! NN?! 1 =
since for this design P3ZNN P3l P32NN NN P31 ¢.
=3/2

() k¥ 2Py N'(riT - NN')P32v'1/2
2/ - -1/2

-3/2. - -1/2 ,
=3/ 201/ 20 ) / (rkBf,NN'E;, - P4;NN'NN'P;, )

2/ -1/2
k¥ 2120 ) /2 ki - SUENCIER VoL [ SPS

/2I

m(n-1)

(v - a1

Applying the results of (1), (2), (3) and (4) above to the general form

of PTEP of TABLE IX, we have the result as given in TABLE XIL,.
TABLE XII

FORM OF P'{P FOR SEMI-REGULAR GD-PBIB DESIGNS

Uy, ¢ ¢ 6 o b b
¢ U22 ] ¢ $ % $
$ $ U33 b % $ $
¢ ¢ P U44 ¢ U46 ¢
$ % % $ U55 $ %
[5) U
$ $ $ 64 $ 66 $
$ ¢ ¢ ¢ ¢ ¢ U
where - o
U11 = (0—2 + kgrzl 4 r,o'g), UZZ = (tJ'2 + kO'%)Ib - t? U33 = (0’2 + ku‘%)lm__l
U44 = [0'2+k0‘%+ k'l(r _ )‘I)o-zz]lm(n—l)’ U55 = (0‘2 + rO'é?'_)Im~l.:
. - /2
Uge = @2+ VoDl oy Vg =0Ty g1 Uy = [K lv(r""l)]l/ Imn-1)
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Noting that (P 'ZIP)'I = ij'Zl-lP, it is easily verified that the inverse

of the matrix given in TABLE XII is as given in TABLE XIII.

TABLE XIIL

FORM OF P'Z.LIP FOR SEMI-REGULAR GD-PBIB DESIGNS

; 7]
W, & ¢ ¢ & ¢ ¢
& W,, & ¢ ¢ P
¢ 6 Wiy & & o o
¢ 6 v 0 Wy o b
¢ 6 e W 6 W, b
KR I T T o
where
- 2 -
Wip = ('c_rz+k0'%+re'§) 1, WZZ‘ = (o +ko*12,) llb -t
L1 21 _ 2 2y 471
W33 = (0'2' + kﬂ'l ) Im—l ? W44 = (0" + VO'Z ) d]. Im(n-l)
- 1
; W55 = (g-z“—|- rvo"g ) llm-l" W66 ::.[u'z -l-_k(r%fl'k (r')‘l»)o'z%llm(n-l)
) _ -t 1/2,-1 2
W77 = o IM—b-t-l—l, W46 = Wé4 = [k(r - xl)V] / dl 0'2 Im(n—l)
and where d, = .0'4 + ko*zbf.z + ru'zo'g‘ + kvwzfarzz"‘

1 1

- We must now ascertain the form of P(Y - E) We then have this

guantity equal to the following:

MY 2

_1/2
k-1/ b1 X{Y

-1/ 2p
k1/2py %1y
-1/2

KT Py XY

1

)
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'1/2 1 [
T P31AY

-1/2

1
P4Y

—

Performing the multiplication we have for (Y -p)'PP% 1PP'(Y - )

2 21 + ro‘z)’l

q = M(o 2

+ ko (yo..= ‘p)2+ [kdl] -1(0_2 + VU% )Y ' X, B3BiX Y

+ [k(e? + k0'12)] 'lY'Xl(PZIP'Zl + PZZPZ"‘Z)XiY +[r(c?+ ro-zz)]-lY'Agl%'lA'Y
1 4

-1 ; ;
+ (vd) T [e? +lod +k Ye-a)od]Y'AP,,PL,AY + 0 2Y PP, ¥

- 2(kdy) " Yr - xl)l/z.ug Y'X P3P} A'Y .

32
Let (PZlP'ZI + PZZP‘ZZ) = QZl '21, Define now the seven statistics

S; = V...
sy = KTYIX0,,05 XY
s3 = KWK PysPLLX)
sy = TTIYAP, PLAY
s, = VTIYIAP;,P'3,A'Y
s = Y'P,PLY
s, = [k - xl)]l/zY'x1P23P3'2A'Y

By definition, these seven statistics form a set of sufficient statistics
for this design, We wish to now show that these seven statistics form a
set of minimal sufficient statistics. Again we define K(Y, Yo) and find

the conditions under which this function is independent of parameters. K

in the case wé are considering is of the form “exp_wZ'l(:q - qo)' If we

define w, = (s, - 8; ) (i=2,3,...,7) and w, = M(s - 1) &-M(s )2

1 lo ~ ¥
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then we may write K in the form ex];r—z“1

Zﬁfiwi where the fi are the co-
efficients of the w, in K. K will be independent of parameters if‘,Efi'w%- = 0,
In Appendix B it is shown that the only solution to Efiwi = 0 is that Wi = 0
for all i. T]:mié in turn implies that s, =g, (i=2, 3, . . , , 7). Forw
‘ i io 1
. 2 .
we have M((s;1 - p.)z = M(Slg - ) . Since this is an identity in the para-
meter u, we may let p = 0. We then have s, = s, . Therefore, s, = s,
1 1o 1 io
{i=1, 2, . « - 5 7) and since this is true, we have shown that these seven
statistice form a minimal set of sufficient statistics.,

The results of this section and the appendices pertaining thereto are

summarized in the following theorem and corollaries.

THEOREM 3. Ina semi-regular, group divisible, partially balanced in-

complete block design with two associate classes, there are seven sta-

tistics in a minimal set of sufficient statistics if b>t - m + 1 and six sta-

tistice in a minimal setif b=t - m 4 1.

COROLLARY 3.1. The explicit form of the statistics in a minimal set

of sufficient statistics in a SR-GD-PBIB design as follows:

8, = Voo

=]
k Y Q. QIX'Y if b> t-m+l. Not defined if b = t-m+l.

"2 T Marattt o

s5= KWK P, PLXIY or [K(r-n)] Y KNP 5,P L, NX{Y
s, =t Y'APLPLA'Y |

5'5 =vlyap,,PL oAy

- 3 4

- =Ly \T ! 1 1
kY XlN P3ZP32'A'Y

il




‘ _ ¥ ; -
P! T Fsp a2 - ¢ I and Q91N M221 = 4 t4m-1’
32 : ‘ m(n-1)

COROLLARY 3.2. The distribution of each of the statistics as given in

Corollary 3.1 is as follows:

1, .2

s.NJ N[ o M~

. 2 2
1 ,+k6f1+r.q§]

(o

sr\J(n"z‘

2 + ku‘l) X (b ~t4m ~ 1) 1f b > t-m+1 and is not defined

if b :twm+l

oy [72 4 kef + + k7l - a)of] x ¥ mia - 1)]

54 Y (=2 + r,crz) « 2(m n - 1
2

55~ (02 4 vol ) x Y mln - 1)]

s, 2y M-b-t+1)

5, Nz a; X 2(1) where the a; are the non-zero characteristic

roots of 2~ (A 4+ Al )Zl where A7 = [k(r - Xl)] lN'P PL, A"

32" 32

COROLLARY 3.3. The seven statistics ag given 1n Corollary 3.1 are

pair-wise independent except for the pairs (s3,55), (S5, 57)and (sg,8-)-

COROLLARY 3.4. The expectations of the seven statistics as given in

Corollary 3.1 are as follows:

E(sj) = p » E(sq) = ki]’v(r -z mn - 1.)]0'2

E-(é:) = (b~t+m-1)(0' +ko‘ )

E(S_,’v)‘ = [m(n - 1)][0' 4 kU’l # k"l(r - )\1 0"2 ]
Esy) = (m - I)(e? + te%)

E(sg) = [m(n - D](e? + vof)

I
m
o

b
i

"(M-b-t’-l-l)(rz
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Regular Group Divisible, Partially Balanced Inc\'be'mléﬁiete Block Designs

In order to develop a set of sufficient statistics which we will test for
minimality, we look first at P'E£ P for this design. The general form of
this matrix is as given in TABLE IX . The restrictions placed on P are

as follows:

(1) .S

P e ¢ ¢ ]
-1 ‘ S |
kP N'N(P, P00 Pog) = K & (rk - A0 4 ¢
i -
P23 ¢ ¢ (=Ml (1)
(2)
=% 1 &
31 -
o [k~ {rkl - NN')(P,,P3,) Gy = m - 1
Pi, é I
m(n - 1
(3)
P 2/W oy @
C, (rKI-NN{rKI-NN")] (P, , P3,)C, =
P32 ¢ In(n-13
(4) .
P! i 7
51 ¢ ¢
k‘3/2 Pi,| N rkl - NNY)(P,1,P25)C, = |H H
22| N NN (P31, P32)Cq = [Hy, 122
P23 | 31 H3z]
where
— -1"3 2 1/2 1
(2) H,, = K / 2/ \5t) P, NY(rkl - NNP

H

k"3/z(rk~x2t_)'l/z(k/hzt)l/ (rkP'3)NN'B] - P§;NN'NN'E,, )

; 1/2
= [k” (rk—ht ST IR
(b) Hyy = k“’3/zp N'(rkI - NN‘)P3ZV"1/Z
-3 - S1,1/2
= [k v ek, ! / P4 NN'(rkI -NN')P,
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"

¢ 51nceP NN P32 = P3’1NN NN”P 32 = ®.

1

k'“3/ZP,ZJ§Nﬂ(rk1 - NN”)Pal(k/xzt}l/Z

-3/2

= kK -y I/ZP’ NNkl - NNYP , (K/),1) 1/2

(c} Haj

¢ for the same reason as in (b) above.

i

k”3/2P2f3N’(rkl - NNYP,_v-Y/2

(d) Hg, 32

1l

- Ve )Y B Y e - P NN'NN'P)

k3 2 Ay Y 2 Y 2 k(e on) - (- S L

1/2

{r K)]/Zk»r+>\ I

-1)

-l

It

m(n-1)}

Using the results of (1), (2), (3) and (4) above, P'¥ P for this design
becomes of the form as shown in TABLE XIV.

We now find the form of {P ’ZP)“1 = P'ZIM]’P for this design.. The
form of this matrix is as shown in TABLE XV . Applying the result of
Lemma. 5 to the sub~matrix outlined by dotted lines in TABLE XIV will
be useful in obtaini.ng P’ﬁ_lP for this design.

We now find the form of PYY - E‘) for this design. We then have

1/2 ]

-
M™ {yee. - 1)

k'yzpv X'y

2171
L2
kTP XY

PYY - ) _1/z Py XY

1}

(/X t)l/Z‘P' A'Y

ml/Z :
A'Y
b P32,

P'Y
L4 , _l




where

11

22

33

44

55

66

77

35

46

FORM OF P 'SP FOR REGULAR, GD-PBIB DESIGNS

]

8

TABLE XIV

T a—c

U, 6 ¢ o e v b

& Uy, & 6 o b o

B
-
c
v
w
©
a
ot
ot
<
<

-
S
o
c
(=)}
S
&
c
o
{m
E=a

¢« 6 & 0 e o v«

' 2
(o"z +, k@"? + rorz\)

2 2
(0" - % ko ) Ibﬁt"

2

2
[¢7 4+ ke

-1 2
] t k C(rk - xzt)wz] I

-1

2 2 =1 2
[¢ + ke o+ k (r - )\l)trz] Im*,(nnl)

(@"2 + kﬂl)\ t‘a';)l

2 m-1

)
2" "m(n-1)

O b atel

_ _ -2 1/2 2
Uf:,g = [k )\z,t(rk?)\zt)] o‘ZIm_l

= [kQIv(r - )\l)] 12 2 I

Uga 72 ‘'m(n-1)
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where

with

-1_ v .
FORM OF P ¥ P FOR REGULAR, GD - PBIB DESIGNS

= LK

TABLE XV

W, 6 6 6 b & &
6 Wy, 6 6 b6 b b
¢ ¢ Wiy 0 Wiy 6 0
6 6 b W, o W, &
o 6 W b W, & b
O Wy 0 W 0
& 6 4 6 & 6 W
2 2 2 -1
Ao + ko"l + ro"z)
62 s kel
¢t ke )L,
2 Fl 2 r-l_
(07 + k Ayte, MIT T
(‘2 + 2) -1
fo 4 v )% hmm-n
2 2 -1 2. -1
[e + ke, + k ,(rk=k2t)0°2 ]dl L1
[0? & kel + k™7 x)]d
1 “1 (r = Ao 0 L1
@"“‘21
M-b-t+1
-2 12 1 2
= o[k Hrk on ] "2 Lot
1/z -1 2
fvie - e 0, -1
2 2 22 2 2
o + ke u’l + ro ¢2 + }\Ztcrlarz
22 2 2 2 2
¢ + ko oy + re r;Z -+ kvo'l 2
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Performing the matrix multiplication, we now have

- - 2 2 2, -1 2
g = (Y - WPPEPP(Y -#) = (¢ + ko, + rcrz') M(y... - W)
2 2.1 12 .12
CY'X PP X'Y k ' yX B P!
+ [klec + ka’])} Y'X, P, P>, | + (dl) (o +k *zt“z)yxlpz:z%z lY
-1 -1 2 2 -1 2
k ; k . . ' r Al
+ (x?_td1 )y 1o + ko, + (rk xzt)¢2} YAP31P31 Y
-1 2 2 -1 2
+ [ (r - | k - AP P! A'Y
[ (r xI)dZI [¢7 + ko + (r xl)cz]YAp32 -
.=2 -1 1/2 ' 2
1 ! -2 - t ! Pt !
+ g YP4P4Y (kd)) “(rk -x,t) /Y X P, PLAY a,
-1 1/2 2
- . 1 ! 1
2(kd,) (r = x ) YX P, Pl AYG,
We now define the nine statistics as follows:
S1 7 Ve
s, = k"lyﬂx P_P!'X'Y
2 1721 2171
-1
= k 1 le
53 VX PoaF* Y
-1 y
= 1; ' 1
s, =k YX P, PLXIY
= t) Y'AP rOAT
s5 = (kAN YIAP, PLAY
s, = v YAP. Pl A'Y
6 327 32
= P Pl
5. YP,P,Y
: -1 1/2
= k - p Nt 1 A_l
Sg (rk )\Zt) YX1P22P31 Yv
-1 1/2
= k - Y X P 'A'Y.
5 {r-x)) YX, 23 P3AY

By definition these nine

statistics form a set of sufficient statistics

for this design. We will now show. that this is a set of minimal sufficient

statistics.
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Following the procedure in the three previous derivations, we define
K(Y,Yo) = Ig(Y) / ‘Ig(Yo) and find the condition under which K (Y, Yo) is
‘ -1
independent of parameters. We may write K in the form exp-2 (q - qo)

or exp~2=1.2 fw, wherew, = (s, ~-58, ) (i=2,3,...,9) with w, de-
i'i 1 i~ 1o 1

> v
fined to be M{y... - p) - M(y.. ‘o " |.L)2 and with the fi to be the coef-

ficients of the w, in the exponent of K. In Appendix B it is. shown that

the only condition under which Z fiW"ZL = 0 is that the W, = 0. This im-
plies si = sio (i=2,3,...,9). For w, = 0, we have, by letting p.= 0,
s, = s . Therefore, s, = s, (i=1,2,.. »9). When this condition

1 lo i io ‘

holds, the 5, form a set of minimal sufficient statistics. The resultsof
this section and of the appendiceg pertaining thereto are summarized in
the foilowing theorem and corollaries.

THEOREM 4. Under‘the a.s,sumption of an Eisenhart Model Il in a regular,

group divisible, partially balanced incomplete block design with two as-

sociate classes, there are nine statistics in a minimal set of sufficient

statistics if b >t and eight statistics in a minimal set if b = t.

COROLLARY 4. 1. A set of minimal sufficient statistics for a regular,

group divisible, partially balanced incomplete block design is as follows:

sl = Yoo

1 ,
= 1 1
5, kY XIPZIPZIX Y

[0)]
1

-1 -1
k 1 - g X7 .
3 Y XIPZZPZZXIY or [k{rk )\Zt)] Y!XIN ‘_PSIP'%INXYIY

[}
1]

-1
k™ -
4 Y X1P23 23X Y or [k (r - )] Y'X N'P32P§2NX'1Y
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-1
= { ! !

55 k(b)Y AP31P31A Y

s = v lY'AP P! _A'Y

6 32" 32
= 1 !

57 YP4P4Y

s = k”1<rk= ) t)l/z X P__P! A'Y or k lY'x NP, P! A'Y

8 ’ 2 122" 31 31731

s = k“lgr =x)l/ZYX P,P'" _A'York Y'X N'P A'Y.

9 1723 32 zpsz

COROLLARY 4.2. The distributions of the nine statistics as defined in

Corollary 4.1 are as follows.

-1 2 2 2

Slf\JN[p.yM (o +-kg‘1‘+ rcrz)]

2 L2 2 . \ .
8, NV (o~ + ko;l) X (b = t) if b>t. Not defined if b = t.

2 2
s, [67 4 ke, + k (rk AT ]x(m-=l)
3 1 2
I [¢7 + ko) + 1 (r - xl)cz,_]x [mn - 1)}

(0% + kI te)

sg v o + xzwzx (m=l)

S¢ NV (e + VU; ) thm(n - 1)}

2 2
N o x (M-b-t+ 1)

2
58 Nz ai X (1) where the a. are the non-zero characteristic

roots of Zwl‘(A8+Aé)$ where'A_ = k~ X N'P,_ P! A

8 1 31 31

2 .
s, N Z bix {1) where the bi are the non-zero characteristic

9

. -1
g : = ] ) L ;
roots of 2 ‘(A'g + A9 ) % where A9. k- XlN P32P32 (Prov§d 1.§

Appendix C )




62

COROLLARY 4.3. The nine statistics as defined in Corollary 4.1 are

pairwise independent except for” the pairs (53.’—8-8)’, '('-64,"_56),‘ ,(54,_§9), (s3,_s5)

s8_.) and (s (Proved in Appendix D)

{55 3____(;2f9_>:

COROLLARY‘4.‘_4’¢° The expectations of the nine statistics as defined in

Corollary 4.1 are as follows:

Efs,) = &
| ‘ 2 2, . o .
‘ E(sz) = (b - t)e + korl) if b> t. Not defined if b =t.
‘ — —> T

E(s3)) = (m = l)l_or“ + ko"l + k (rki- .)\‘Zt.)o";]
2 2 -1 . 2

Efs,) = [m(n./m Dife + key + k -'(,’r”-= )\'1)0-2,]

- 2 -1 2
E(SS) = (m - e + k xthz)

=
[©]
o
S
i

(e - Dl + voy)

= (M-b-t+l)o”

-2 ‘ 2
k(- Itk - A9

RS )
i

= kmz[m(n =< 1‘)‘]‘(1:’ - xl)(ric -1+ )\l)cri

(Proved in Api)endix C)
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APPENDIX A

EVALUATION OF P'% P

The Balanced Incomplete Block Degign .. o o

With P as defined in ChapteIV, we will .evaluate P'¥P for the balanced
incomplete block design.
Letting PEP = (Aij); i,j = 1,2,...,5, we then have evaluating Aij

for each i and j, the following:

_ “1:1 M -1 L2 2 2 .M
(1) Ag; = M iy 231 = M7y y(XXYe + X, Xbel e I)Jl
= M’l(bkz’cri‘ + trz’crg + Mcrz‘) = (o‘2 + ko‘i’ + ro‘%)
S V2 Nl Vo W , L2 2
(2) Aj, = kKM ;.I\/Izixlp21 —.COJM(XIXIUI + X2X20'2+0‘I)X1P21
- 2 2 2y sl = |
= co(o" + ko‘l + ro‘z);,(KJ bPZl = ¢
_o-l/24-1/2.1 . _ 2 1 -
(3) Ay, = k M JM:ZXIPZZ = c (o +ko‘l +m )kaPZZ = ¢
_ / 1/21 _ 2 2 2., 1 L
(4) Ay, = {k/\t) ZAP = c (o7 + ku‘l + ra‘Z)JMAP3 = ¢
-1/2.1
(5) A, = M it ZP
15 M 4
6) A,, = k1P X1 ¥X P, = KIPL XX, X'ol + X,XLel + o)X, P
22 IR R 217117 1) 24272 1721
. -1 2 2 2 S 2 2
= k ! : ! =
PL K S L+ ket 4 NNUZ)PZI (% + ke VI .
— ‘*l ] 1 —_ ]' t .
() A,y = k PHXlZlePZZ =k~ Pz'le(X X! 0‘1 + X X'20"2+t 21 )X 1P20

= _]1' ' 2 ['Ng-2 ;,
P} (K crl I + ko Ib + N'Nog )P, = ¢

64
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- _.1/2’ RV - 1 1 ) 2 1 2 2
(8} A, = (\t) PZLXIZAP3 = cOPZIXI(X1X1q1+XZX2a2+¢ I)AP3

2

§ ! 1 ! 2 1 —
c le(kXIO"l + NXZO‘ + Xlo‘ AP, = ¢

_-1/2 o -l/2 2 2, 2 _
(9) Ayp = k Pz'lxizip4 = k 'lei(xlx'lcrl + XZX'Z 5 + o I)P4 = ¢
- -1 3 ! ¢ — -1 ] f 2 . ' 2 2
(10) Ay = k Pzle p:A XPyp = k PZZXI(XIXIO-I + szzcr2 + o' X\ P,,

KT'Py (k%% I+ N'NeZ + ke? )P

1°b 2 b’ 22

Substituting (r - )\)_I/ZP3'N for PZ‘Z we have

2 1 -1

— 2 = - i 1 1
= {¢“ + kol}lt_l + k “{r - \) P3NNNN P3

o2, 2 -1 N2
= [¢% 4+ k0'1 + k (r-k)o‘z] L

I

(11} A

34

-1/2 : -2 2 2
oy~ Y Py,X] X AP, = (M) PZ'ZXI'(XIX'IUI+XZX'20~22+U AP,

“1/25, arine 2
(\t) P, N'X}AP; o)

Substituting for P}, as in (10} we have

= [a(r - x)]'l/ng NN'( rI - k'lNN')P3cr§
= [ M(r - k)]—l/z'[r(r - \) - k'l(r - )\)2] o‘2 I
2 Tt-1

= [k ¢ - N)]1/2 cg I 4

(12) Agg = k”l/ZP’ZZXfZP4 =
(13) Ayy = (k/)\t)P'3A' A AP, = (k/)\t)P'3A'(X1Xicrf’ + X, X5 o‘g + o‘ZI)AP3
= (k/MIPRANK,X o5 + o2 1) AP,
= (k/MIP' ( A'X,X5A 0‘5 +~A'AcE) B = (0F 4 k'l)\tc‘rg) I
(14) A, = (k/)\t)'l/ZP'3A'ZP4 = ¢
(15) Ags = PEP, = P‘i(XlXiO'i‘ + XX crg +o2 1P = O'ZIM_b_t_I_l
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The Group Divisible, Partially BalancedIncomplete Block Designs

= - - -1
1721 Mm%
M M M
k-1/2p 'X k"l/ZPéXl'
2
[ %% U:i; + XX} wi + %1 ]
C,PiA’ | CP4A"
P! 1
L * ] ‘ Fa 1

The product given above is the general form of the product P'EP
for the group divisible, partially balanced inconiplete block designs.
The result of performing the above multiplication will result in a matrix
which has as elements , s:ixteen blocks of matrices. Letting,Aij denote

the block in the i-th row and the j-th column and evaluating those blocks

which are above the diagonal and including the diagonal elements we have:

(1) The matrices Ajp, Ay A14, A.24 and A34 are all equal to a null :

matrix.

2 Ay = Mol = Mol kg xe? + XX} o5 + o2 1)) |
= (0"2’ + kg—lz + re‘%)

(3) A,, = k"lpzfx'ilepz = k'lp*le'.'(xlx\'laf‘ +sz'z¢% +'&2 X, P,
= (e? + w1 |+ kTIPLNNP, &2

(4) Ay = k-l/zpzvxvl FAP,C, = k"l/zpz'x*l(xlxl'uiz +’X2xz'g§'¢‘.c21)AP3c

I 7 S I S
= K1/ 2puNt( ol - K NN')B,C, 05

(5) Azy = C3PJAFAP,C; = CyPIA'(X X|of+ X, X505 + o? DARC,

= 2 2.
= C3P'3A'(X2X'20‘2 + o I)A%C3

3
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i

-1 - 2 Lo
C3P4L XXy - KTINND(X,X) - kT INNYe2 + (%%, - kT INNeIRG,

= G3Ph[(rI - KINNY(eT - kW INNYeZ + (eI - k'lNN')o'z]Pé\C3
2. 2 . 2 ¢
(6) Ayy = Py E P, = PUXXjop# X, X0os i+ 0% 1)

= IMopta1-



APPENDIX B

PROOF THAT W, F 0 IN THE BIB AND GD-PBIB DESIGNS

The Balanced Incompleaie ‘Block Design

Now we shall show that the only solution to.Z fiwi is w, = 0. where

the fi are as defined below:

2 2 2,-1 . 2 2,-1 2 -1 2 -1
fl = (¢ + kql + ro—z) , fZ = (o + kafl) ) f3—(0“ +k xtovz)d,l,,
_ 2 2 -1 2.1 . 2.-1 _ -2
f4 T [0= + kopl + k (r - X)O-Z]dl r fS - G-Zdl ’ f6 = H
where dl = 0'4 + k&zai + 1'0"2(:“2 + Xto;ﬁo'g and where the -2 on

.the coefficient of f5 has been omitted since it will have no bearing on
this proofq

In order to show that thisv‘condition holds, we shall find the lowest
common denomix"la,tor of the six functions and subsequently the numer-
ators of each of the fun-ctions. Theﬁ. if we can select a 6 x 6 determi-
nant >of coefficients--of‘ like terms which is non-vanishing, we shall have
,shown that the only' condition --fo"r‘\vv’rli_cl'l"i.'fin.i =-Q is that the-wi be
identically Zero.

In order to simplify the algebra somewhat, we shall let

() =, =

]

g
N
i

q

(2) cl = k, cz,

]

A 1 1
r, ¢, =k }t, c4-—«k (r -\, cs--xt,

68
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The six functions then become.

£ o= (x4 + )_1 f, = (x, +c g = x
] Ty teybex) o,y = xptex) o, £ = X,
.= (x +cx)(x2+ X X_+Cc.X.% +cxx)—‘1

RS R Sk LAl TS b R S Wl it T S ik L
f, = ¥ + ‘) “ + x_. + )"l
g T oX, b o E) e X X+ ocxX, b oegxox) o,
f_ = x_{ 2 + x + c + X X ),1

5 © Fg LX) T ¥ %, 1*1%2 7 %5%2%3

The lowest common denominator is.

2
x, + ¢ x x}(x-&-cx)( C X X_+c x x_ +c x x_).

x (2, +eyx, +e, o)y H G Hy T XX, T e gx X,

with the numerators of the six functions as follows:

(l)flixx+c )( + c.x. %X + c.x x +cxx)

l(l

2%1%3 1*1%2 5%2
= + x3x + 2 x3 + + ) 2'x + 2 sz + c xzx
B T b R ©1*1 (cg ¢1° AR L SIS Lot R WL - ki S

(2) £,: (x, + ¢ x +c x_)(x

‘ +c . x '
1 1%2 2%3 + ¢, Xx. X +tc %.X +cxx)(xl)

2713 ""1'12 52

‘v—-NN

"4+2 x3x + 2 x3x+ + 2 )xx+222+ccx:r2x
| €2*1%3 Cp¥ ¥yt (eghac Colx XX+ cpX X, +.0)05% 1 %0%s
+ 2 2 2 2
C2¥1%3 t CpC5%%%s
{3) f3: xl(xl+c3x )(x1+clx2+czx3)(x +c )
4 3 3 2 2 2
= X, + chxl 2 + (cz-l- c. )xl’x3 +* cl(cz+ 2c3)xlx2x3 + €, % X,
+sz2+ 2cx2x+ c x.X
12 F ©1%3% %% °1°2312x3
(4) f4o xl(xl+clx2+c4x3)(xl+clx_z_+czx N x +c1x)
4 3 222 2
o= ox) 4 3@1 %5 + (c2+c4)x xqy + 3c1 x5t ‘ch(cz‘-i“céu)xlxzx3
+ccxzx2+3x3+2 + ¢ ) 2 cczx
264%1%3 T o X X, toepley P xEax, + g c X XX,
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(5) »fS' xlx (x 4 clx2 + c )(x + clxz)

. 2
2 +c2xx2x + ¢.Cc_ X X X

-3+2x2x+
R ¢ ® Cx 1717273 1°2%17273

13 1123 21

)

+ +
(x1 + c 1%, + c2x3)_(x1 + clx )(s; + clex3 clxlx2 X X,

3 22 22
1 ll 1*3

(6) £:

4 + )xz + 2
g T ldc cytcgx x %, cox

(cc+)xxzx+(c+)x2+3x3+2
€6, + e %3 teylege, +egx) ¥y e XX,

2
3

b 4 +Zcxx + 3¢c.X

43
x+cx2 X1

1 1
3

+2e €5¥2%3
c_.C 2

T c1C%5%;

The results in the previous paragraph may be best represented by

the following table.

Row Term : £ :
4 g 2 3 4 s %
1 x"l 1 1
2 3x c ac ¢ +c c.+c 1 2¢
3
.2 2c ‘
3 X1*2 €1 1 2c) 3¢ 0 3¢,
2 :
+c.c_ c_+2cg¢ ‘ ’
4 Xj® X 57152 "5 Cl(c2+2c3) ch(c2+c4) 2c1 4c1c2+c5
2 2 : 2 5 | 2
5 ox% S A ¢l 3c) 6 3c
2 2 2 2
v c c.c : v
6 x1x2x3 €175 175 ¢;cs3 cl(c2+c4) ¢ ch(c c2+c5)
7 sz 0 c;z 2
s 2 °2°3 2% ‘2 %
2
0 c,¢C .
8 xlxzx3 | 275 1‘czc‘3 ¢1c2c4 v Cch CZ(CIC +c)
0 0 )
9 x‘lxz 0 Cl 0 c1
3 2
‘ 0 0 P
10 x;xq 0- 0 0 e,
- 2 2
11 X 0 0 :
X2 3 0 0 0 CICZCS

~We must now select six rows from the above array and show that

the determinant does not vanish, It can be shown that the determinant
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formed by the rows 2,3,4,6,7 and 8 is equal to (ignoring the sign)

2 32
ccc(

125 c_) which in terms of the constants of the model is equal

€27 %5
poo 2 22 _ . .
tok r At (r - \) which is non~zero for all but degenerate cases,

We therefore conclude that in order for % fiwi’ = 0, each of the

w, must be identically zero, which was to be shown.
1 .

Singular; Group Divisible, Partially Balanc_edrlhcomplege Block Designs

In this section of this appendix we sha.li prove that the only solution
to the equation = fiwi = 0 is that Wi be identically equal to zero for the
S-GD-~-PBIB designs.

The seven fi are as follows.

2 2 2. -1 2 2. P S T N |
fl = (o7 + ko"1 + ro’z) , fz z (¢ + ko‘l) , f3 = (0" 4+ k }\Zto’z)dl ,
2.2, -1 2. -1 2 2.-1 -2
f4 = [o7+ ko‘l +k “(rk - )\zt)c,r.z:_ldl , f5 = (¢ + ro,) fé = 0o ,
2 - 4 2 2 2 2 2 2
= > = d t .
f7 5 l , wherevdl e + ka T, *+ 7o T, + )\2 a’l 2 and where

-we have ignored the coefficient -2 of f7 as it will not affect the result
of this section.
In order that the algebra may he handled more easily in the ensuing

discussion, we shall let

2 2
(D x, = T, X, = o’l, x3 = 0‘2.

- =k} —x! =
=T, cy =k xzt,.c4»—-k (rk -~ xzt), cg = At

{2) ¢, =k, ¢ 5

1 2

The seven functions. in this notation are;

x)"l,,f = (x, +c, )

f.. = (x, +c¢c.x +cx)'1,,f =(xl+<;lZ 1

1 1 12 23 2
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£, 0= (x 4 24 + + )W1 g = x]

3 © KT Ca¥Eg Kx C1¥1¥ T C5¥F¥y T C¥F3) Ry T *p

f, = + + x)(.2+ +c x +cxx)'1f = d_1
g T EpFex v ke x X, ek X, hex X)), = xgdy

The lowest common denominator of these seven functions g

2
3 : ‘ - + .
xl(x1 tex,te X )(x +c xz)(xl t o E %, + csxzxg + clexs)(xl c2x3)
The numerators of the seven functions are then!
(1) f.. x. (x +cx)(x2+cz:x;|rcxx +c.x.x_)x +cx)
1 171 172"71 112 523 21371 723
5 4 4 232 2. Z
= 3 2 '
x; + chxl 2t (c + 3¢ cz)xlx %3 + 2c, 2%1%3 + clxl 2 +c %q
2.2 2 2 2 2
+ ,
+ o:;l(c5 c c;z)x1 2x3 + c. (c + Cl 2)x1x2x3 + clczcsxlx2 3

. : 2
2 , Ve ' , r 4 : !
(2) f2 xl_(xl + clxz + c2x3)<xl + clxlxz,+ q5x2x3 : clex3)(xl + czx3)

5 4 3 4,232, 5232
- 4 +3
Eoxp 20k %, 4+ (eg tdo e )x %, + R T S P A
2.2 2 2 2 2
+
+oeylegtec z)"l ¥y * 20kt c1 2)"1"2"3 te1%2%5% 1%

+c.x +cx)(x +cx)(x +c.x

(3). f3.. xl(x1 + C4% 3)(x1 X2 ¥ €%,

172 2 ¥
= x5+2cx4x 4+(2c +c)x4x +c(3c + 2¢ )x X +c(c + 2¢ )x
1 *1%2 13 1%2%3 ™ ©2 31"3
232 2.2 ' 2 2 2, 2.3
+ cl 1 2+c (c +c3)x1 2x3+ c cz(c + 3¢ )x1x2x3+c2 3% 3
2 22 2
+c ccxx 4+ c.C.C XX X

€1727371 3 1231273
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x +c +oa,x )(x +c¢.x +cx)(x +cx)(x +c.x

(4) £ x(x +ex, 127 ¢ 1 2*3

5 4 4 2 32 3
= . ‘ 2
xl+3clxlx2+(2c2+c4);xlx3+3cl 2+c (5c1+ c )x X3 |

3 2 32 2
+ cz(c2+Zc xTx_ o+ c XX )x 2x3 + CC(ZC +3C)xlx2x

47173 +°(4q*°

3
2 4

' 2 3
X_ 4+ ¢c.C.C X X_ X

+ +
+ ¢c,C.X X X ¢.c (e C)xxz 124123

x 152%1%2%3 1°2'%2

+ c;c XT

3 3 3 2 2 2
4 3

(5) £5: x(x +c.x +cx)(x +cx)(xa+cxx +c x x +cxx)

12 273 1 12 523 21
= xi, + .’:clx‘i"x2 + 2C2x‘11x3 +'3c§xi’x + (4c c2 + c )xlxzx3 +' ci T g
+ ch(clcz + ¢ )x?xzx3 4+ C (clcz+ CS)X?xeg + c?c5xlx;x3
¥ C1"2‘:5"1"5 2 ¥ Cz i i

(6) féi (x + ¢ %, +c x3)(x +c. x )(x + c, X 3)(X§ +ex X, + %%, +c2:lx3)

1
5 4 232 323 2 3 2 4 323
= X + 3clx1x2 + 3cl 1x2 - 1 1x2 + 3¢2x1x3 + 3czx1x3 + clex3
+ (7c.c, + ¢.) xx+ (5 +Zc)x2x2x+ 5c+2c)2‘:~:,x2
€16 T Cgl¥ X%y T ¢ 1966, %%y T G50 F ac)x x, %,
+ 2(c+ )x xb+ 2( +c)xx 3+¢2ccx32+c
Cle Gy T E5lXXF T 6,160, 1%2%3 12523"’"@‘2"3
2 2
+Cl (chcz+3c )xlx23
(7) £7., xlx3(xl+clx2+c2x M x +clx2)(x +c2 3)
“x4 + 2c 3xx+2b 3Z+302 2+222x“+c22x3
I 1¥1%2%3 T 4% 1% €1%2%1%2%3 T 1% 1%%s 2*1%3
+ Zcxx22+ czx
€1%2%1%2%3 c121"2"‘3
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- The results in (1) through (7) above may be best illustrated by
use of the table on the following page.
If we consider the 7 x 7 determinant formed by the 7 rows, 4, 8,
10, 11, 12, 13, and 15, we find the absoVlute value of the determinant
2

7 8
to be 3c,c_c 05(clcz—c ).

1€2%3 5 { This expression in terms of the con-

8 2
stants of the model for thhe singular designs is 3k6r )\Zt'_(rk - )\at)z°

. Since rk - )\zt is greater than zero for singular designs, we conclude

that the only solution to. 2 fiwi- = 0 is that the w, be ideﬁtica.lly equal

to zero, which was to be shown.

Semi-Regular, Group Divisible, PBIB Designs
In this section we shall prove that the only solution to 2 fiwi =0
iS that Wi o= 0 (i = 1y 2, v ey 7) for SR‘PGD"PBIB deSigns°

- The seven functions (fi) for this design are as follows:

2 2 2 .-1 2 2.-1 2 - 2. . -1
f = . _ :
1 {c¢ + kcrl + ro, y o, fZ g (¢ + qul‘) R f3 (¢ + \r(rz)d1 R
2 2.-1 2 2 -1 2 -1 -2
= . = | + " - ‘ R = s
f4 (o + ro‘z) ) f5 [c + ke, +k (r )\1)0’2 ] dl f6 o
= 229" _ 4 22 2 2 22
f7 = u’zdl where dl = o +ka ) + ro oy + 1*;1;1’0"10"z and where we
have ignored the -2 coefficient of £7 as it will not affect the result of
this section.
By letting
2 2 2 _ .
(1) o8 = xl» U'l = ng 0_2"' x3_:'
-1
‘(Z)k=clsr’—'czpv=c3,k (r—xl)zcé,k\r:csn

the seven functions become?



I 2 3 4 5
g“i’ 1 1 1 1 1 1
4 2 2¢c 2¢ 3¢ 3¢ 3¢
x1%2 ¢ 1 1 1 1 1
X X% (05+3clc2)7 (05+4CIC2) c-l‘(3cz+203) Cl(5C1+2_C4)’ (4cl¢2+05) (70102+05)
4 !
X%, 29 3¢, {2eytey) (2eyte,) 2¢, 3¢,
3 2 2 -2 2 2
xlxz CI Cl cl '3Cl 3Cl . 3cl
&2 {c_+c.c ) {c_+c.c)) 2( *c_) 2'4 +c, ) 2¢e.( +c Y e (5 +2c_)
X X% c,{cgteic) c {egke e, c e ¥e, Cl—( c ¥c, 2¢; CICZ csr, S clcz. <
2 2 S . v ‘ .
xlx2x3, CZ(CS + CICZ) ZCZ(C5+CkCZ) clcz(c2+3c3) _ClCZ(ZCZ+3C4) cz(cl¢2+05) CZ(SCICZ+2CS)
32 2 2 : 2 2
X3 9 3¢, ofetae)  gleyte) vl 3¢,
22 c.c c.C 2 c 2 (c,¥c,) (2c.c +3 )
X %%, €,6,¢; €5 €% s SN > < CICZCS ¢, 6, (2¢ e 43¢,
3 2 2 2 2 ]
X ® %, 0 c,C C,6,C5 ClC2C4— 0 CZ'(CICZ-FCS,)
2.3 0 3 2 2 0 3
*1¥3 ) 2% 2% 3
2 3 3 3 3
xlxz 0 0 0 cl Cl cl
3 3 2 2
xlx2x3 0 0 0 ClCZ clc:5 Cl(ClC2+c5)
3 2 2
0 0 0
xzx3 0 0 ClC2C5
23 2
x2x3 0 0 0 0 0 c1C2c5

=N

Ll

S e

(=]
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-1 -1 -1
fl'_ (xl + c::lx2 + c, %, , ._fz = (xl + clxz) ,f3 (x + €4 x )d
£, = + Lo s + + )d f = x°F
4 = (x1 02x3) » £ 07 (x clxz G4 6 J'i;l ,
f, = dwl ithd, = 2 +c.x +c.x +c x x
7 T X3Sy Wihd)F X T o X, TRy T 5%y

In this form, the seven functions are the same as those in the fore-
going section with the < defined differently. The absolute value of a

7 x 7 determinant was found to he 3c7csc c (c c This becomes

)2
2 3 5 2 50
: 6 2
with the above definitions of the Cp 3k’ rﬂ(rk -r+ )\1)(1" - )xl) . This

quantity is also non-zero for semi-~-regular designs, so we conclude that

the only solution to Z flwi = 0 is that wi 5 0, which was to be shown,

Re gul?;r ;o Group: Divisible; PBIB ﬁesign}ﬁ ‘

In this sectjon we.shall show that the only solution to.E fiwi = 0
is thatw, = 0 (i =1,2,...,9) for R-GD-PBIB designs,

The fi are defined as follpw}‘s;

2. 2.1, _ 2. -1 -1

2 2 2,-1
fl = (o +ko~1+ro'2) , f2 7 (o +k0'l) 3 f3 (0 + k xzto'z)d
2 2 -1 22 el 2. -1 2
£, = (o +V0"2)'d2 £ = [o +kcrl+k (rk - )\zt)crz]dl iy, = 0,
_ .2 2, 2. -1 _o2.-1 2.1
'f6 = [eo +k¢l+k (rm)\)c]z,,fsrqzdl,_fc) ---trzd2 , where

)

4 2
d,-= o +k0" o'2+r0'20'2+)\tu'

2.2 2
1 1 2 212 1 2 1

In order to simplify the algebra, we 'ghall let:
2 2 . 2
= 1’ X3 = 0—2’

- - oL c v o =Tt -
(2) ¢, =k, ¢ =T, C, =k "Nt cp= v, cs—k (rk-r+x1), Cp = At

and dz. = 04 + kcrzo*z' + rcrzo-z + kvo .o

2
’ z-
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_o.-1
¢, = kv, cg = k “(r - xl)v

The nine functions in this notation become:

_ ‘ -1 - "'l _ -
£ = mphegxytegxg) w R (xptexy) L £y = (xpFegxg)d,
£, 0= (x +cx)d), £ o= (x + vox)dt, fo= x]

R R S B U th B St B A U
f,o= x tex,tegdrt, £ xdll L £ = xd), wh
o = (& e x, tegx, g = %39, fy = x3d, ., wherewe

have ignored the -2 coefficients of :E8 and £9,
The lowest common denommatar is 'x dldz(x + € 2)(x + )%, + C,% )
with the numerators of the nine functions as follows;

(1, £,. d,d x (x +c )

1271
6 5 5 4 4 2
= xl+202x1x3 + 3¢ x x2+ (4c cz+c6+c )xlx2x3+c 3
+ (c.c.+c, +c) x»l—32 2+2(cc+c+c)x3x2x
€2'€1%2 7 % xlxz 3 T e ¥y e 6 1%2%3
| 2. 2 3,33, 2 23
+ [clcz(cé + c7) + c,c 7]xl + oo XX 2 + cl(c6 + c7)xlxzx3
& C,C_X X3 2
€1%°7*1%2%3
(2) ;f2: dldle(x + c X, + ¢ X, )
6 5 5 : 4 2 4 2
=Xt 3c2xlx3 + 3c1xl 2t (6olc_2 + 6 + c7)xlx2x3 + 3c2x1x3
_ 2 2.4 2 32
+ oe,(3c e, + 2e, + 2c7)x (X% b 3e XX, 4 ¢,(3¢/c, + 2¢, +-2c7)#lrzx3

2.2 2 333 333
[c + Zc, c (c +c )]xlxzx3 + cl (c +c )xlx2x3 +oelx %5 t %) %



+ ¢.¢,Cc X . X X

1767771

(3). f3: xldz(xl

(4)

f: d.x

5
= x6+(2c +c)xx + 3¢ x’

2(2
1(13

Cc_. X

3
31

NN

, 2
cile;Cy

4 11(

=x6+(2c +c)x +3c . x

+ ¢,(c

“2'%2

+ cl(Zc + 2¢

3
1

N

50 *19,

6
= x, +4c.x

1 1

3
2

5
1

3
2

<:-xx3
6712

p.4

1

2
3

c +2c)
3c.c_ + 2¢ +2cc)x

x3-|;' c (c.c_+ )xx
3 7 2% il

+ 2(:,4E)x4;x2 + (4c

b4

2

2 3
+c\2(c +c)x 23

)(x + oo )(X +c

13 1

5
12

X

4 2
13+(4:c;cc + ¢

z ',
2"3+ €y

7

- IN

3
12 7 23

3

12

2
13 17172

2 1273
17273
2 2.3
3

+ clczc4c6x xzx

+ (2c +c )xlx + 6c x

+3c(2cc +c¢.c +c)x

2 15 7

+ c.C,CX X X
3*3
x+(4c1c

2 3
18283 ¥ Cyep + e 0y F o)X x

78
23
2671723

)(x +cx +cx)

23

+ 3¢, c +c)x‘]E x
2 T 2€ G5 T Cqi¥ ¥R,

x2+3c2x4x2
377123 17172

(2c c +20cc + c.c )xTx"x

+

2.2 2
37 23 257" 1%2%3

c, +c

1—-w

33
*1*2

2
123 1237123

c.c +c)xxx + c,c,¢.Cc X X X

X +(4cc +3¢c.¢c +C)x‘;
cc‘+ccz‘+cc + c ‘)x
17274 12

c +3cc )xxzx +c(ZC

xx3+c(Cc +06)xx3x + ¢.x

(x +cx)(x +clx2+cx)(xl+c

2
Iy

x +cx)(x +cx)(x +clx +cx)

2 23

"2 154 *2*3
3. 2. s 2x4 2
1%2%3 * 29¥%

2°6 4%6’ 2

22
4 6+2C102C +c.. 06)x 2 3
333
17273 1*1%2

1%+ 05%s)

4 2 4
lx + (6gl¢2 + 3C‘1C5 + c7):':lxzx3

2 4 2
2x3 + c5 (c + 2¢ )xlx3
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22 + + 3 )x2x3x + {4c c_c_+ 2c c2+ c_+cc xxx
£ T q
toogf2e e, to g ¥ e X XX, 15255 192 7 €257 T S5
( 2 2 ¢ _+ 2c.c_+ 2c_c )xzxzx2 + 2c 3x3 + 4x2x4c
Toele eyt eceCy 287 T A KXy T Cpl X Xy F ¥ F)
+ 2 3 + 3 X + 2 ( + ) x 3x2
C X X C C X
tocyegle e, Feghx o x, F e e X Xox, b ocyc e, Fog) X xox,

fo CCCXX2X3
B R a- e Sl e

(6) f6: del(xl + czlxzﬂ)(x1 + c X, + c2x3)(xl + c %, + C8X3)
2.4 2 4
1% + (()clc2 + 3clc8 + C6)X1x2x3

X X

6 5 5
- . +
x, + 4C1X].X2 + (2c2 +cg )xlx3 + bc

33 3
155 + 3cl(2clc2 + ¢, Cq + c6)xlx X, + CZ( 5 8

NV

3
+ 4c lx

‘ 3.2 2 23
+ > » ., + .
i (4c10208 + 2C1C2 + ¢ + C6C8)Xlx2x3 + CI(ZCICZ + % + 3C6)x1x2X3

[\

2 2 2 2
& 2 2
+ CyCgX X + c.x xX_ + cl(clc2 + 2C1C2C8 + €5 + C6C8)Xlx x3

[\]

33 4 2 4
13 112

+ cxx4x+ c_(c.c +c)2x3+2(c+ )Ix . x
C1%6T 17273 T %8 %2 T ST T 1% ¢

+ cccxx23
T C1%2%678T 17273

X

: d
(7) f7 dl 2(xl+clxz)(xl+clx2+c2x3)

X

—
w N

4
+ (9c.c_ + ¢ +c7)xlxx + 3c.x

+ 3 5 + 4 x5x
= X X
X T 2R 1% 17172 1727 %6 23 2

3 2 242 3
17273 17172 €1

— W
N W

X

+ bc . x X

X X

(3clc +c, +c )x 5

2 6 7

2

22+ e ) 2xx2
152 7 g% F1Fs

3
Ax3+(4ccc+4ccc+3c 5%

17276 1727

3X t 3X
237 %

w

x3
3

—

2
lc2 + C6 + c7)xlx
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+2c(cc tcc,c +ccc)xx3x2+c(c +c)xxx +c4x2x4
6 7 276 172771273 1 1723 112
2 3 ' 2.3
b 3
+ c2(¢1c2+c6+c )x1x2x3 +.c (c6c7+clc2c6+clc2c7) [¥,x 3
: +
(8) f8 x X, d d (x +clx2)(x +clx2 c, 3
5 4 4 2 2 3 2 3 2
= xyxg 3ok xR, 4 2o kX, o+ e X X %, F (4o, b oo hx XX,
2 33 2 2 2 3 3.2 13
+
toe,E K, + 2¢ (ClCZ+°7)x x3 + c (c 162t ¢ )xlx2x3 + oo X K%,
+ ‘Zcxx?’2 cc:xx23
CLETIRT T 1507
: + c. C.
(9) f9 xledl(xl clxz)(x1+clx2+czx3)
5 4 2 2. 3.2
X X, + 3¢lxlx2x3 +- 2c2x1x3 + 3c1 Zx:‘} + (4c <, c6)x xZ 3
2,33 2.2 23
x 4+ 2
toogrpry tEeleete )x ¥p%g + 6ple10, T o)X X%y
+ 3‘ 2 3x + 2 3xz + c xz
1X1%2%3 T C1%%1%2%3 T ©1%2%F 123

By taking coefficients of like terms for each of the terms x?, XXy

T T xx3‘23 2.3 and xox° and forming a
xlxz 3s 1 3’ l z 3’ x3, xlx lxz 3,an XZ 3 an orming

xzx
9 x 9 determinant therefrom, it can be shown that the absolute value of

2
13 rmi t i +. - I
this determinant is equal to 2¢,¢ 6c?,(c -c ) (czc €,C, - €S, c5c6)
or in terms of the constants of the model, this is equal to the following;
2 -3 3. 2.2 . .
2k )\Zt(rk -r+ xl)n (A - )\2) [)‘Zt - rk(r - )\1)] which is clearly not zero

for R-GD- PBIB designs. We ﬁhere,fore conclude that the only solution to

Z fw. = 0isthatw, = 0, which was to be shown.



APPENDIX C

DISTRIBUTIONS AND EXPECTATIONS OF THE s,

IN. THE BIB AND GD-PBIB DESIGNS

In this appendix, ‘wé shall find the distributions and expectations of
each of the statistics in each of the minimal sets of sufficient statistics
that we have found for the BIB and GD~-PBIB designs.

We shall first state a theprem which will prove useful in th‘e develop-
ment of the proofs of this appendix.

Theorem. If Y is distributed as the multivariate normal, mean p
and covariance matrix Zy, then Y'AY is distributed as the nqn-centra.l xz
with degrees of freedom k and‘n_on—cv:en‘t‘ra‘lity parameter \ if A.$ is

1

idempotent and where k is the rank of A and A = 2 p'Ap.[ 9]

The Balanced-Incomplete Block Design

1. Distribution of 51 = Y.
Since y... is a linear combination of normal variables, y... is dis-~

7 - ) ] 2
tributed normally, mean p and variance M l(0' t+ ko + 1'0'2 ) or

- -1 .2 2 2
s, N[p, M (o +-kal+rw2)]-

-1
. 2. Distribution ion o = k ' P! X'Y.
2. Distribution and expectation of s, Y X1P21 21X lY

a. Distribution of Sy

81
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= k P! !
1 . _ e ) q t 1-
Let A.z - X1P21 lel. Then AZAZ = .A.Z In Ol‘del' 0 apply

the theorem we must show that A2$A2$ = A2$ or equivalently that

A2$A2 = A_. Proceeding we hgve

2
A-$A .—;--'kGZX P__P! X'(X,X'(rz +'X,X'UZ+UZI)X P_P!' X!
2772 L N R Al S R R | 2 2 2 1T 21 211
- -2 2 2 1 2 1 1
= k ,Xl_PZlPél[(_cr + kal)Ib+NNch]PZlP21Xl
= i(_lx P, P! X'(0’2+ ka-z) since P! N' = ¢.
' 1721211 1 21 '

i

2 2
(o + ko‘l_‘) A2

Let B2 = (o + ko'l) A, Then Y BZY "N X (kZ, XZ) where
v -1
= = = = 1 1 = ) = (b-t

k, ransz ra.nkA2 tr A2 k tr XlPZlPZIXl tr Py P)y (b-t)

and
2'1 1 l'M

Ay F M J1«!“}(113211321}(‘131 Clo)

Therefore .

2 2. 2 .
s,V (o 4ke ) X (b -t)
b. Expectation of sz;

) .2 2 2 e 2,
-Slnce.s2 N (e + ko’l,.) X (b - 1t), a.nd-E_[x (p)] .= p, we have that

2 2
E(s,) = (b - t){c + ke.)-
2 1
_ ) -1 ‘
3 ° 3 ,v o 5 - : - . '. >‘ .
3. Distribution and expectation of 54 k Y‘XIPZZPZZX 1Y
a. Distribution of s3.
o < l H t -— | v
LetA, = k "X P, P, X|. Then A A, = A,. Evaluating A3$A3

we have.
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-2 . 2 2. 2
L= X16Z + e+ DX P P! X!
A3$A3 kX Py P XX #e X X0, o DX PP
-2 , 2 2 2
= + N! ] P! 1
k"X PP, k(e” + ko)) + N'No, [P, P) X,
-1 2 2 -1 2
= P P! LN + - a
k .Xl ZZPZZXI[U +ku"Z k (r )\‘)0‘2]
2 2 -1 2 .
= [a +-kml +k (r - )\_)0'2] A,
Cr 2 2 -l 2a4-1
Let B3 = [cr +ko'1+k (r - )\'.,‘)9‘2] A.3. Then
¥'B.Y nJ x'z(k s \.)
3 3* "3
where : : 1
= = \ = =k P > 1 'z =t-1,
k3 rankB3 rank‘A3 trA3 ,vk ter ZZPZZXI trltm1 t
and '
2.1 M
T ¢ P! X'j = 0.
MoE R PP X, Cle) = 0

Therefore

2 2 -1 2. 2
s,V LoT t ke + %7 (x - We, T - 1),

b. Expectation of S,¢

Since 54 is distributed as a central chi-square variate we have

2 -1 2 :
Els,) = [G; +ko ]+ K (r - N, 1t - 1)
-1
4, Distribution and expectation of 5. = k(it) "Y'AP_P!A'Y,

5 33

Let A,5 = k{\t) lAP3P'3A'., Then A A_= A

525 5! We then have

2 -2 2 2 2
- k© _ AX. X' 0% K. X 0" +a° A
K (\t) AP3P3v (Xlxlo‘l + XZ zorz o I)AP3P3A

i

i

= L or 2 "1
K xt) ZA.P3Pé[:(‘rIr - K lNN')ZO"Z +(rl - k 'N’N')o’z]P?’PéA'

-1 2 -1 2 2 .1 2
k(M) AP(07 + kMo, JPLA! = (07 +k o

Z)A

it

5‘?



) 1A . Then

2 -1 2
Le*itB5 = (¢ +k Mo 5

2

2
t
Y'B5Y NX (kg )‘5)
where : -1
L= = \ = = P'A'"=(t - 1
k5 rank B5 ra.nkA5 tr A5 k(\t) ‘tr A,P3 3. ( )
and
2.1 M
= i AP P'AYT = -
Therefore
2 -1 2 2
sgf\)(o‘ + k- xwz)x (t = 1),
with
2 -1 2
-E(SS) = (t~ 1) +k )\tc’z ). -

5. Distribution and: expec’té.tioh of ¢ = Y 'P4P4':Y.

= 1, ., = . |
Let Aé P4:P4 Then A6A6 A6 Therefore we have
2 2 2 2
= 1 Xt 1 ' 1 = !
A6$A6 PP (X.Xio) +X X5, +0 DP,P, = o PP}
- ZA
= @ 6
Let Bé = Aéo Then
2
R 1
Y BéY/\l X! (ké, )\6)
where
= = = tr ' = ! = .
ké rank Bé rank A.6 tr P4P4 tr P4P4 tr IM«—b-t-!-l
= M~-b-t+1
and
2.1 M
= i '3 = R
N M JMP4P4J1 C(o) 0
Therefore 2 2
sér\/o* X (M-b-t+1)
- with 2
) E(s6)»=(M=—b-t+l)U‘

-1
6. Distribution and expectation of 54 = k Y'XlN?P3PéA‘Y°

84
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a. Distribution of Sy

Let A4 = k- XlN 'P3P:'3A' . Since A.4 is not symmetric, we may

write Y'A,Y = Z“IY‘(A4 +"A"L)Y- Then since 4~ A +A4)$(A +A)) is

not equal to .Zml(A4 + A')Clr), Sy is not distributed as a chi-square

4

: n 2 . .
variate but as a linear combination of ¥ variates, that is,
nZ 2 1
where the a, are the non-zero characteristic roots of 2”7 (A + Al )

b. Expectation of Sy

-1 -1
1 1AL = Y P PIA!
E(k Y'X [N'P,PIAY) = Etr (k Y'X N'P,P 3A Y)

1]

"’E(s4)

k7t g E(YY'XN'P,PLAY) - o :

it

-1 , 2 , 2
k trace (Xlecrl + XZXZUZ

i

2
1 P' 1
+o” DX N'P_PIA

-1 2 -1 -1 2
' 1 P ' = 1 - ! 1
k trA XZXZX 1N 3P3 2 k trP3(rI k "NN')NN P30.“2

i

o

: -1 -1 2

= k tr P' (rNN' - k N]_.\I'NN')P?’U2
-1 -1 2 -

= k tr [r(r - \) nk (r =N ] It:—"lo-'Z
-2 2

=k (t=-1)r - \)Mo

2

Singular, ‘Group Divisible, PBIB Designs

In this section of this appendix we will find the distributions and
expectations of the statistics in a minimal set of sufficient statistics
for the singular, group divisible, partially balanced incomplete block

design.
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1. Distribution of 5, = Y-

Since 51 is a linear combination of normal variables, s, is normally

distributed with mean E(y...) = p, and variance E(y... - p) which is

- . ‘2 !
equal to M ‘-l(¢2’+ ku‘i o} rci), Symbholically then

J - 2
Sl NN[P” M 1(0’2+k0‘1+ 1'0";)]5

e el —
2. Distribution of 5, © k YXIQZIQZ.IXIY'

-1 )
= T RO OLED. & The: A ‘ =
Let AZ‘ k XIQZLQfol' Then AZAZ AZ and

-2 \ y ' 2 ' 2 2 ;
AFA, =k X)Q),Q, XX X0, + X, X0, YO NX1Q,,95,%)

"2 '
k X-1021021

2 2 2 I
(ko + k TI)QZIQZIXI

H

2 2, -1_ . _ .2 2
(o +kq°l)k 'XIQZIQélXi = (o +ko*1)A2.

Now let BZ = (mz + k@-i')"lAz, We then have

2
! 1 ‘
Y'B,Y NV Xk, A),
where 1
.= ‘ =r k = A =k 1 L - ,
kZ rank BZ ran AZ tr AZ k “tr XIQZIQ'lel b-m
and
- 21 M .
= i X X C = 0,
xz _ By t lQ‘ZlQZIX l‘]l C(o) 0,

Therefore

. 2 2
5,MJ (¢Z + kv‘l)xz (b - m)

2

if b) m and is not defined if b = m.

-1 ’
=k YX P P! X'Y.

3. Distribution of S, 1P22P 5%

- -l i i
Let A3 = k X1P22P22X1' We then have
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Z‘XP P! X' (X X'a-2+x.x'crz+o21)xp P! X!

AFA, = kX P, PLX (X Xe) + X X, 1F22F25%1

H

-1 2 2 -1 2
. 1 ; 1 ! "1
kX PP (e 4 koM, + kN No, [P, P %!

X P . ] -t P! X
kX Zz[fr tko  tk (rk -, )0"2] 5%

_H

i

2 2 -1 2
Ik - M.t .
[c7 + ko Tk (rk -, )0'2] A,

2 2 -1 24-1
= » + - t)o . her
Now let B, [o tho Tk (rk -, )0'2] A,. Then
Y'B.YJ x‘z(k y \,)
3 373
where 1
= = ; = tr =k P ' Xt = (m - 1
k3 rank B3 rank A3 r A3 k Xl 22P22X1 (m )
and
2.1 M
= i ! '3 ; L= .
Therefore ,
‘ ' 2 2 -1 24 2
s, [o +kcrl+k (rk - }\Zt)o’zlx (m -1),
-1
4. . . . ‘ = ; 1 1 1 R
Distribution of Sy k()\zt) Y A.P31P31A Y
-1
= 1 1 =
Let A.4 u k()\zt) A,P3 P 1A . Then A.4A4 A4 and

2 . -2 2 2, 2
A A =k (x.t A P! ! d . 1 : 1 1
FAy ()_;2) AP, P} A(X Xio| +X X 0, + 0 AP, PLA

2 | -2 1 ! ! [
=k (0 "[AP, PL A(X,X)AP

2 2.
: Ales + LA '
31531 lP o AP P'A'AP P' Ac )

31" 31 2 31731 3131

B a -.-z _1 _‘1 2
= At ! P! -k TNN'! - e - P! OA!Y
k (At "[AP, Pl (r1 -k NN)(rI - k NN)P, Py Ao,

-1 2
+. AP_ P! (rl -k 'NN')P Arg ]

P!
31" 31 31P31

2 -1 2
= (o + k Nto

2 2')A

4
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Now let B, = ( 2+,k"1)\ t 2 )"IA Then
ow i€ 4 = (o 2 0-2, , 4
Y'B Yr\Jx'z(k s N\,)
4 4’ "4
where
= =7 f = = 'AY = - ]
k4 = rank.B4- rank A4 tr A4 k()\zt) tr AP31P31 (a - 1)
and 21
= W i ! 1 .
)\4 B JMAPSIPSIA C(o) = O.
Therefore -1
s4f\J(cr +k )\ztcrz)x (m - 1).
T ==l LA Ik
5, Distribution of 8y = r Y'AP 2’P321A Y.
-1
= ! ! . L= ;
Let A.5 r AP32P32A Then A5A5 A5 and
-2 ' 1 1 1 1 1 1 2
. = ‘ Al
AgEA, [aPy,P30 szzA!PsanA g 2 T AP P A AP, Py A ]
” 2 2 2
— t i "1 = ) ) .
= [AP32 32A'ro’ +AP32P3ZA l=t( tra,)A,

Now let B, = (o + rcrz) A . Then

2
1 1
Y'BY VX (kg \)

‘where
kS = rank BS = rank A5 = tr A5 =r 1tr AP32P:'52A' = m(n - 1)
and
)\’5 5 pZJMAPSZPézA'jI:[C(cr) = 0.
Therefore

s N (6"2 + rp'g) xz [m(n - 1)].

6. Distribution of 8¢ = Y'P4P"}Y

First we have

2 2 i
1 ) 1 = 1
P,Pi(X X1¢1+X2X22+0’I)P4P4 oP,P.

Therefore
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8
o s6/\_)x (k6, )\6)

where ‘
= f o= C 2! = : - ! = - -
k6 rank P4P4 = trace P4P4 trace P4P4 M-b-t+1
and
2l , M -
)‘6 = R JMP4P431 C(s) = 0.
Therefore 2 2
s,V o x (M-b-t+1).
7. Distribution of s, = [k 2( rk - X t):[ 1/2 Y X P__P! A'Y
‘ T 7 g 1" 227 31 )
/2
It is easily shown that if we let PZZ = (rk - X\ t) 31N and . define

- ! 1 1 3 3 3 = 1 =
A7 k- XlN P31P31A , Since A7 is not symmetric that s7 Y A7Y

-1
27°Y(A, + ALY, . Also, 4 1(A +ANEA, +AL) 27 A +Al). There-

7
for 57 is not distributed as a chi-square variate but as a linear combi-
nation of chi-square variates, that is,
n Za 2(1
57 X (1)
where the a, are the non-zero characteristic roots of Z?I(A?‘ + A-,'?,)$ .

8, Expectations of the 5,

Since each of the‘si (i=2,3,...,6) is distributed as chi-square

we have
Bs,) = (¢° + ke )(b - m)
.E(s3) = [0"2 + ko‘zl + k"l(rk - )\Zt)o"g](m - 1)
E(s") = (0° + k lxzto“z) 1)
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E(s,) = (o° + rq"i ) m@ - 1]

E(sé) = (crz)(M »b-t+ 1)

-1 - -1
= . v P PLAY = I NI!'P- 1 t
E(s7) Ek Y XlN- P31P31A Y E trYY XlN P31P3lA k

-1 , 2 2 2
= + ! I ! 2! A
k tr (Xleo'l XZXZ‘(TZ + o I)XlN P31P31

"

-1 2
1 4 ' '
k tr A X2X2X1N P31P31¢2

-2 2
- P! 1 - P! N IN N !

k tr (rkP3lNN P31 P31NNNNP31);;2

2

2

]

-2 . : oy 2
= k tr [rk(rk - 58) - (rk - M 4)7]L o

= k" %(m - 1)(rk - MO c":

_Semi-ﬁre_gula.rr, Gi‘aup Divisible, PBIB Designs

In this section of this appendix, we shall find the distributions and

\

expectations of the statistics in the minimal set of sufficient statistics that
were found for the semi-regular, group divisible, partially balanced in-
complete block designs.

1. Distribution of 8; = Yoo o

It is easily verified that

-1 2 L2 2
s, N N[, M™(¢" + ke + r0,) ]

1

-1 .
istribution .= vIX.Q QF X'Y.
2. ]?:strlbutlon of 5, k Y ,XI921Q21X1Y

-1 - e
2 = k vx"l’QJZIQZlXi' Then.AZAZ“ = AZ and

a2 A oy e 2 2 2
A2$A.2 = k77X Q)00 XX X10] + X X000 + 01X, Q, Q)X

Let A



91

48

-1 ' 2 '2 -1 2 1
k X],QZlqé-l[(G ’+k‘71)1b+k 1\T‘N¢Z,]Q21Q21Xi

#

-1 2 2 : 2 2.
K70 + ke )X @, Q) X = (07 + ko)A,

_ - ., 2 2 =1 _
Now Jet B, = (o +ka’1) .A‘2q Then BZZFBzﬂ L= 322%2 and therefore
Y'B YNx'Z(k N
2 K N
where
: -1
- § = 8 = =3 y 1 L - -
kz = -rank BZ rank AZ tr 'AZ k tr X1Q21Q21X1 b-t+m-1,
and
. &l R -
N ® R 9,95,% 3 Cle) = 0
Therefore 2 2 2
SZN (o +kq’1)x‘(b -t+m -1).
3. Distributionofs, = k'YX P_ P! X'Y.

3 17237 2371

, - 'ﬁ"l, ! 1 : . o
Let A3 = k .X1P23P23X1. Then.-A3A3 = A3 and

; - -2 P d) 1 2‘. 1 2 2 1.yt
AFA, = KX PP XX Xie) + X X+ 0 )X Py P X

-1 - 2 2 -1 2 1o
k X1P23P23’[‘(e- +ke ), +k N'No,]P, P, X}

“le 2.2, -1 o X!
= k [cr + ko’l tk (r- -xl)aZJXIPZEJ’ 23771
1 ‘

2. 2 - 2
= [e%+ ke’ + % (r - ol AL

2 2 -1 2,-1
Now let By = [v" +ko| +k (r - \)o;] A, Then B FB =53

~and we have 2
. - 2 |
Y'B3Yr\} X' (kg x3)

where -1
= : = rank. = . = . ' X' = yaln -
1;3 rank ]33 rank A3 tr A3 ‘ »k, tr X1P23P23X1 min - 1},
and

_ 21 WMo
MoT R .jMxl?zSP'zsx'lleC‘(g) =0
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Therefore
2 2 -1 2. 2
s3 nNJ [or +k0’l +k (r - Kl)a'zj b'e [m(n_ - l)].
. s . - -1 ‘ 1 l
4. Distribution of s, = 7 Y'AP31P31A Y.
R LAY -
LetA4 = r AP31P31A,. Then-A‘l:A4 = A_4-and
A XA = r--ZAP P! AX X'o*zv-lw-X X‘wz+o"zI)AP P! A
47" "4 ‘ T31731771T L 2 2 2 T3l 31
.,.2 ’ 'Fl Z Z "’l 2
= 1 - ! - k N ! , tAl
T AP31P31[(rI k" NN")"g, + (r1 - kT NN')e ]P31P31A
_ 2 2 .~1 . . 2 2
= (o +r02)r AP31P311A = (o +r0"2)A4.
Now let B, = (o° + ro2) 'A,. Then B,£B, = B d theref
owlet B, = (¢ +7ro,) A, en BB, = B,, an erefore
Y'B.Y U ' k., \)
4 4’ "4
where »
-1 ' :
= = . = = ) ! ! o= -
k4 rank 134 rankA4 tr A4 r trAP3lP31A :m - 1
and
. .M i oA M e _
)»4 = H JlAP31P3l,_AJl.C(U') = 0.
Therefore
2 2 2
sy (o +rcrz)x. (m - 1)
5. Distribution of s. = v  Y'AP. P! _A'Y,

5 327 327

Let A, = v‘lAP P!.A'. Then A_A

327 32" shg = Agand

-2 ' 1 1 2 . 1 2 2 ' 1
A5$A5 v AP32P32A (X, Xjo) ¢ X2X20=2+0"I)AP3ZP32A

- =2 1 -1 ) {0 -1
= v A,Paa[Psz(rI -k 'NN')(zI - k NN)P,,0,

-1 2
1 - N 1 J
+ P3Z(II k NN )P3ZG' ]szA
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=1 2 2 2 2
= v AP__(o +va" P! A" = (¢ +veo

32 32 2 Mg

5

2 2 -
Now let B. = (¢ +vcrz) 1A

5 A Then BQDB5 = B_ and then

5

2
' nJ ! ’
Y'B 5Y X .(k5 )\5)

where

-1
= = o= b = ! R -1
k5 rank B5 rank A‘5 tr A5 v tr AP32P32A min )

and

z 1 M
A H l - .
hg = B i APPLAY Cle) = 0

Therefore

2 2
sy v (00 + vw;)x [m@n- 1]

i Taans g \
6. Distribution of S¢ Y P4P4Y

Following a proof identical to that of finding the distribution of 5¢

in the previous section of this appendix, we have

2 : v
sémvzx M =-b =t +1)
-1
. Syl : = ' f tA'Y,
»7 . Distribution of 54 kK~ Y'X N P32‘P32 Y,
Let A7 =k XlN'P3ZPéZA’ and since A7 is not symmetric let
s. = YA Y = Z‘IYI(A +ANY.
7 7 7 7

It is easily shown that |2 (A + Al)]j: [27 A + A‘):[ £ [27 (A7 + A,‘?,)].

Therefore ,57 is not distributed as a chi-square variate. If this condition
exists where Y'BY is a quadratic form and B$ is not idempotent, then

2
Y'BY is distributed as a linear combination of independent x wvariates,
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that is, for the case we are considering,

2
s7NZaix(l)

' -1
, are the non-zero characteristic roots of 2 _(A,7 + A%)ﬁ.

where the a.i

8. Expectations of the seven statistics.

2
Since the s, are each distributed as X and E(xz(p)) = p we have

1
E(sl) = P
2 2
E(SZ) = (b-t+m - 1)(o +ko‘1)
2 2 -1 2
E(s3) = [m(n - l)] [o‘ + kcrl +k (r - )\1)0"2]
2 2
E(s,) = (m - l){o + ro,)
2 2
E(sy) = [m(n - D](e" + vo))
_ 2
: 2
E(sé) = M-b-t+1)e
-1 -1
= ! 1 1AY== : 1 1A
E(s7) k "Etr Y XlN P32P32A Y=k trE YY'XIN%Z%ZA‘

- 2 2 :
k ltr_(X X‘U"z + X Xlao_ + o"Z.'I)X P, P'_A

171%1 27272 1" 32" 32
= x ltr P! AX.XIX NP, _o°
‘ 3270 727271 T 3272
=k lp (rI - kulNN")NN‘P -
32 322
Y (rkNN' - NN'NN")P 2
' 32 32”2
-2 2 2
= k i P - - -
tr [rk(r N ENCERS Jl‘m(n TR

]

-1 2
m@n - Dk (r - Ao,
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Regular; Group Divisible PBIB Designs

We shall in this section of this appendix find the distribution and
expectation of each of the nine statistics in a minimal set of sufficient
statistics for the regular, group divisible, partially balanced incomplete
i)lbck.designs.

1. Distribution of 8, % Ve

Parallel to the proof in the first section of this appendix, we have

-1 2 2 2
slf\JN[p., M (e +'korl+ro-2)j,

-1
3 3 3 o= ' 1 1 1
2. Distribution of s, k Y X1P21P21X1Y°

. Pl
= . 3 ! ! i =
Lét AZ k XIPZIPZIXI" Then AZAZ A2 and

-2 2 2 2
KX PP X (X X'o”+X.X'co 4+ o
X1 PP X & X0 XX, o DX P, P X

>
™
4
>
{ o)
I

-2 2 2 2
. an ™ ) . ! '
k XlPa,lPer_k(o‘ .+k¢l)1b+NN¢2]P21P21xl

i

-1 2 2 2 2
k X! = .
(o + ko‘l )XIPZIPZ,],XI (¢ 4+ k,orl )AZ,

2 . 2.-1 ‘ _
Let B, = (¢ +ko;) "A,. Then BZ$B2 = B, and

2
! N 1
where v
-1
k = = = = § | = -
3 rank B2 rank AZ tr AZ k tr'XlPZIPZ,,le b -t
and :
2.1 . M
- ) : : [} 19 =
Moo= R0 R Py Xy Cle) = 0.
Therefore

2 ’ 2
5, N (o +ko’f)x (b - t),
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-1
5 3 1 = 1 v 1
3. Distribution of S, kY X1P22P22X1Y°

‘ 1
; = ‘ ! 't A = :
Let A3 k 'XlPZZPZZXl Then A3 3 A3 and

-2 1 1 t 2 2 2"
= + ! o} ] P! 1
A‘3$‘A3 kX PP XX Xje + X X0 + o DX P, oPo %X

-1 ot 2 2 -1
: +
kX PP 0T + ke )T+ k

2
\ . 1 1
N'No, [P, P %)

-1. 2 2 -1 2 R
k [o +ke| +k (rk_xzt):rz}xlpzzpzle

2 2 -1 L2
[¢7 + ko] +k “(rk - \t)o, JA .

-1 24-1
+k (rk - Mtleo ] A

Let B =-[2+kZ
© T oL v 2192

3 ) Then 13374‘,133 = B, and

3 3

2
1 N y! y
Y B3Y X (k3 )\3)
where

- - . - 4 - -1 ! ! =
k3» = rank B3, = rank A.3 = tr A3 =k ‘tr XlPZZPZZXl =m -1

and

1]

1 ;
2lx p ~'-jl‘l’-lc(cr) = 0.

= 1
Moo= R X PP X

Therefore

2 2 -1 2 2
e nJ [(r' +k0‘l +k (rk - }\zt)qzj[[ X {m = 1).

4. Distribution of 54 = knlY'X1P23P'23X'lY.

-1

= k , P oX, = A
Let A, X|P,,P),X|. ThenA A, = A, and
2 2

- 2 2
K P P! X X! i 1 d
X PoaPX )X X o + X KXo, + 0 DX PygPr X

3

A 4$A4

i

.1 2 2 -1 2
k P__P! . » { 1ox
X P, 23[(0“ +ko )L +k NN¢21P23P23X1

1

+x 2 A
(r - )\1)0’2]5 Ay

.[rrz + k’of
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Let B, = [0“2+ku°?+knl'(r - Xl')wgrlA4., Then B,§B, = B, and
Y'B Yr\Jx'z(k, ) :
4 4’ "4 o
where
k, = rank B, = rank A, :'trA4=k"ltr X P, P} X| smin - 1)
and
N = 2.1 M

i“s o = 0.
4 = B iX PP ¥y Clol

Therefore

2 2 -1 2, 2
s, Vo7t ke + K T - A0S ] X [min - D]

= k(xzt)"lY'AP P! A'Y.

5. Distribution of s 317 31

5

= -1 1 1 -
Lel:A5 = k()\zt) AP31P31A. ThenASA5 = A5 and

2 -2 1 1 1 2 . 1 2 2 i 1
k ()\Zt) AP31P31A (Xlxlw‘l +.X2X20r:+0’ I)AP31P31A

"

AgZAg

2 -2 1 1 1 z 2 , 1 7
k ()\Zt) AP31P31A. (XZXZO"Z + o I)AP31P31A

kz(

"

- - 2 2 -
£y %aP, P! ((rI -k NN o, +(rl -k lNN')o"Z]P P/ A'

N 31531 31531

] A2, -1 2 a2 -1 2
k()xzt) (¢ +k )\zto’z)AP3lP31A = (¢ +k )\Zto"z.)A5o

Bl

2 - 2.-1 :
Let B5 = {¢ +k l)\zwz) A Then B5$B5 B and therefore

5° 5

2
Y'B. Y V' (k

5 Ag)

5" 75

where

~
1]

=1
k = rank = =k t Al = - 1
ran B5 rank A5 tr A5 k()\zt) tr AP3 1P3l m

and
2.1 M

= W“iPAP P! A'j
5 - Pyttt

>
'

Cloc) = 0.

Therefore
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2 1.2 2
,ssf\)(cr + k )\Ztorz)x (m - 1).

-1 - ,
Distribution of s, = v Y'AP__P! A'Y.
6, Distribution of 5¢ v Y AP32 32

-1 . '
= CAl ! ', = Y-
Let A6 v AP32P3ZA Then A6A6 A6 and.

-2 2 2 2
A6$A6 = v ?'AP P! A(X X'o_ +X X'o. + ¢ I)AP__ P! _A!

!
327 32

1711 2722 32 32
-1 2. 2. .. 2. 2
-, v AP32(0" + ve, )P32A = (¢ + vcrz )A.6.
LetB, - = (0’2 + z)-lA . Then B,£B, = B Therefor
et By = A 6° P66 6" reTerere

2
3 1
TB Y N x kg A
where
- - - : - -1 1 -
,k6 = rank B6 = rank A6 = tr A6 =v tr AP32P32A =min - 1)
and
/ 2.1 . M
= im AP P! 1577 C = 0.
N = B IyAP3PA T Gl
Therefore.
2. 2
s, N (0"z + ve, X [m(n - )].
7. Distribution of s = Y'P P'Y.

7 4 4
Pé.rallel to the proof in the first section of this appendix for the
‘distribution of S¢ w'e have |
$7(\) UZXZ(M -b-t+ 1),

: -1
J @ a - y . = 1 1 1 .l .
8. Distribution of Sg kY XlN P31P3.1A Y.

-1 -1
e = b ' 1 1 ) = ! ] ! .
LetAg = k "X NP, Pl A Then sg = Y [2 __(A8+A8)]Y It

')}. Therefore

. _ -1 ; -1
is easily shown that 4 "(Ag + A.ém(AB +AL) } 2 (Ag +A}
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Sg is not distributed as a constant times a chi-square variate but as a

linear combination of chi-square variates, that is,

2
sSNZaix (1)

where the a, are the non-zero characteristic roots of Zml(Ag + Aé) z
i .

-1 ;
. i i i o= k ! ! ' A'Y.
9. Distribution of _59 Y XlN P32P32{ Y

-1
Let A9 = k ‘XlN'P32PéZA”, Then, following a discussion similar

to that in 8 above, we have

2
>
s9r\l bix (1)

where the bi are the non-zero characteristic roots of Z";(Ag + Aé).ﬁ

10. Expectations of the statistics.

E(sl) = W
2 2
E(SZ) = (b - t)(o +k0_’2)
. 2 2 -1 2
E(s3) = (m - l){o‘ +k¢l+k (rk - )\Zt)@‘Z]
. 2 2 -1 2
,E(s4) = [m(n - l)] [_(r- +k(rl +k (r - )\l)urz]
_ 2 -1 .2
E(sg) = (m - (o +k "M\to,)
2 2
E(sg) = [m@n -1](e" +vo)
2
E(s.?).- = M-b-t+1)o
-1 -1
= Etrk ' P! A'Y = : ' AT
E(SS) T Y'XlNP31 31AY E tr k YY’XlNP3lP3lA

-1 2 2 2
= 1 + ! + 1 ¥ !
tr k (XleO’l XZXZG‘Z o I)XlN P31P31A

-1 2 2
= 1 1 e H 1
tr k A,(XZXZO’Z + o I)XlN P3lP3l
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tr k lP‘

k

k

Etrk lY'X NP __P!

tr kK. X162 + XX

Kk

k,

-2

K"

(oI - ' NN‘)NN'P

2
tr [rk(rk - )\Zt) -{rk - At

31

2

(m ~ l)()\zt)(rk -\ t)o'z

272

1 32 32

111

32

tr [rk(zr - SPRERE xl)?"] Im(n o1

2’nrlfn - I¥(r - X

-1
tr P! (rI -k NN')NN'P

1

'2
272 %2

32°

)(rk~r+)\)

2
“2

2 2
)]Immlwz

2
+ o I)

2

t ! !
X N P32P32,A

2
2

-1
AY=Etrk YYX N'P P!

32" 32

Al
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APPENDIX D

PAJRWISE INDEPENDENCE OF THE MINIMAL SUFFICIENT STATISTICS

In this appendix we will determine the pairwise independence of the sta-
tistics in each of the minimal sets which were found for each of the designs
which were considered.

General Considerations

In order to determine pairwise independence, we shall first state a
theorem on which the proofs in subsequent sections will be based.
Theorem.  If the (M x 1) vector Z is distributed as the multivariate normal

with mean p and cevariance matrix $ and if Zl" ,Zz,. . Zq are subvectors

of Z suchthatZ = (Z.,Z

27

1’ s Zq), then a necessary and sufficient con-

dition that the subvectors are jointly independent is that all the sub-matrices

I

i (i :I: j‘ ) be equal to the null matrix.

The Balanced Incomplete Block Design

In the balanced incomplete block design, we defined the vector Y and

then transformed Y to Z by the relation:Z = P'Y. Then

Z NV MVN[ P'u, PEP].

, Z5)n ‘The form of

3

We then formed a partition of Z into (Z 12Z25025:2,

P'EP is as given in TABLE I and is the covariance matrix of Z.
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By applying the theorem stated above, we have that the subvectors

,Zl, ZZ' and. 25 are mutually indeﬁendent and are independent of Z_ and

3

Zys and that Z‘3 and Z are not independent. We now have the foliewing

4
. relationships
Sl = Z’l
= .71
8, T 232,
= 1
83 % Z324
= 1
sg = Z,Z,
= 1
s¢ ¥ Z5Z5
= ! N
sS4 = 2374

Therefore we conclude that the statistics in the minimal set of
sufficient statistics are pair-wise independent except for the pairs

(53: 54): (53’ 55) and (84., 85),

The Singular, Group Divisible, PBIB Design

Following a procedure similar to'that in the previous. sectien and

examining TABLE X, we have the result as stated in Coféllary 2. 3.

The-Semi-regular, Group Divisible PBIB- Design

* Following a procedure similar to that of the first section and examining

TABLE XII, we have the result as stated in Corollary 3. 3.

The Regular, Group Divisible, PBIB Design
Apgain following the procedure of the first section and using TABLE

XIV, we have the result as stated in.Corollary 4. 3.
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