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A COMPARISON OF SCHEFFE'S S-METHOD AND TUKEY'S T-METHOD FOR 

VARIOUS NUMBERS OF ALL POSSIBLE CONTRASTS 

UNDER VIOLATION OF ASSUMPTIONS

INTRODUCTION

The researcher in the behavioral sciences intending to explore 

multiple treatment-effects, where there are two or more levels of 

the treatment variable, has available to him a most versatile 

statistical tool to aid him in evaluating his data. Indeed, the 

analysis of variance (ANOVA) and its various theoretical-mathematical 

models have at last become a primary statistical tool to aid behavioral 

researchers evaluate their data.

A one-way fixed effects ANOVA is one of the models typically 

employed by behavioral scientists. The hypothesis of interest usually 

is that y^= y^= ... = y . That is, the null hypothesis subjected 

to a statistical test is that the population means for the various 

treatment levels are equal; hence the observations within each treatment 

level have been randomly sampled from one population with mean y .

Having rejected the null hypothesis for the one-way fixed effects 

ANOVA, the researcher can conclude in probabilistic terms that the 

means differ statistically. If the experimenter was interested in 

determining whether any treatment effects existed, then the one-way 

ANOVA is indeed a most convenient and versatile statistical tool to
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detect such differences and this hypothetical experimenter could 

consider that his statistical question had been answered. On the 

other hand, the above example is indeed hypothetical in that it is 

a rare occasion when the experimenter is content in just being able 

to state that the treatment levels were different. Of course, the 

experimenter's interest then is for further exploration of these 

different means. The one-way fixed effects ANOVA merely reflects 

whether at least any two of the treatment levels differ. Did treatment 

level one differ from level two or level three or level four or 

perhaps the combination of treatment levels one and two differed 

from the combination of three and four, etc., etc.? These are the 

type of questions that are generally of interest. How many researchers 

are content in merely being able to say that there were differences, 

without being able to specify exactly where the differences lie?

Because behavioral scientists are usually interested in digging 

deeper into their data, probing techniques were developed to be used 

following the rejection of the analysis of variance null hypothesis.

Tukey (1953, unpublished, privately circulated manuscript) is 

credited by Scheffé for devising a method to simultaneously estimate 

all contrasts (Scheffé, 1959). Tukey's technique, the T-method, 

utilizes the Studentized Range distribution to investigate differences 

among means, following the rejection of the ANOVA null hypothesis.

Scheffé (1959) states that for Tukey's T-method the probability is 

1-a that the relationship in (1) holds for all pairwise contrasts.

^ 1 ("k - -k') 1 „ k  ("
1 2 ® 1 2 ®
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In repeated experiments therefore, the probability is 1-a that all

pairwise intervals simultaneously cover their true value of the

population contrast. In its original formulation, according to

Scheffé (1959), Tukey's method was designed to set limits around

pairwise contrasts, e.g., ^ = c X. +  c X. , Scheffé (1959), Winer
I k  2 k •

(1962), and Kirk (1968) present ammended procedures for Tukey's T-method, 

sometimes called the Honestly Significant Difference technique, 

that are appropriate for contrasts other than pairwise contrasts, 

and also when the number of observations per treatment level are not 

equal.

To circumvent the limited applicability of Tukey's T-method,

Scheffé (1953, 1959) formulated his S-method which is a generalized 

version of Tukey's method but uses the sampling distribution of %.

For all possible contrasts the probability is 1-a that all contrasts 

simultaneously satisfy the relationship in (2).

The probability is 1-a that the confidence intervals for all contrasts 

will simultaneously cover their true psi values. For example, for 

four treatment levels there are twenty-five possible contrasts. In 

1000 experiments the probability should be (l-a)% that all contrasts 

simultaneously bracket their true psi values. If the 95% confidence 

limit was chosen, 950 experiments would have all twenty-five intervals 

bracketing their true psi values; 50 experiments will have at least 

one interval (experimentwise error rate) not bracketing its true psi 

value.



Scheffè's S-method is not dependent upon equal variances nor 

consequently equal sample sizes, for its validity. Also, Scheffè's 

technique is applicable to any form of contrast and not merely to 

pairwise contrasts.

In addition to setting limits around a contrast, Tukey's and 

Scheffè's techniques can be used to test the hypothesis that the 

contrast equals zero, e.g., Ÿ = 0. Scheffé (1953, 1959) states 

that the hypothesis is tested according to whether his interval 

inclusively includes or excludes the value of Y = 0. According to 

Scheffé (1953, 1959) and Miller (1966), the null hypothesis for 

the ANOVA is equivalent to the statement that all the contrasts 

are zero.

There have been few comparisons between Tukey's T-method and 

Scheffè's S-method. Scheffé (1953, 1959) compared the relative 

efficiencies of the two methods for a one-way fixed effects analysis 

of variance for four and six treatment levels. Scheffè's comparison 

was restricted to conditions of equal variances for the contrasts and 

equal observations per treatment level (the restriction under which 

Tukey's T-method was derived). When there were four levels of 

the treatment factor, Tukey's method was more efficient than the 

Scheffé method for the pairwise contrasts, e.g., \p = (+l)X.j^ +  (-l)X.^' 

For six treatment levels, the T-method was more efficient for not 

only the pairwise contrasts but also when comparing one mean with 

the average of two other means, e.g., 4> ~ (+1)X.. +  (-%)X..;+ (-%)X., »»
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For the pairwise contrasts Tukey's method is preferable, while for 

the more complicated contrasts Scheffè's method is more efficient 

and gives shorter intervals.

Petrinovich and Hardyck (1969), while not specifically focusing 

their attention on just the Tukey and Scheffé methods, nevertheless 

provide data on the two techniques, enabling us to compare them.

Under the null hypothesis conditions, both techniques control the 

Type I error as they were designed to do, but the empirical probability 

of a Type I error for Scheffè's method was consistently less than 

theoretical alpha, .05; it appears to over protect. Consistent with 

this pattern of overprotection for the first type of error, the 

empirical probability of a Type II error for the S-method was larger 

than the probability found for the T-method and was therefore generally 

less powerful. Since Petrinovich and Hardyck limited their study 

to pairwise contrasts, their findings are consistent with Scheffè's 

analytical results. Specifically then, for pairwise contrasts, Tukey's 

method sets shorter intervals and is more powerful in detecting 

differences for this type of contrast. However for both the Scheffé 

and Tukey methods the empirical probability of a Type I error was 

oftentimes conservative.

Ryan (1959, 1962), concerned with controlling the number of false 

statements, in particular Type I error statements, argues that the 

probability of a Type I error can be adequately controlled by adopting 

the experimentwise error rate. The Tukey and Scheffé methods are 

techniques which control the probability of a Type I error experimentwise. 

Consider the probability statement that is made for the Scheffé
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method; the probability is 1-a that all contrasts simultaneously 

cover their true psi values. The probability statement for the 

Tukey method was originally intended for pairwise contrasts (Scheffé, 

1959, p. 76).

Petrinovich and Hardyck (1969) investigated only pairwise 

contrasts in their research. They found that when a subset of all 

possible contrasts are performed, i.e., pairwise contrasts, the 

empirical probability of a Type I error for the Scheffé method was 

generally less than theoretical alpha. If the probability of a Type I 

error is related to the number of contrasts investigated, then, the 

results reported by Petrinovich and Hardyck are biased.

Generally, it is desirable to control the probability of a Type I 

error and set alpha at a conservative experimentwise level of signifi

cance. It would be beneficial to the researcher, however, if he knew 

whether the probability of a Type I error for his statistical test 

would fluctuate from theoretical alpha because of the number of 

contrasts that would be computed. The first objective for this 

research was, therefore, to determine for the Scheffé and Tukey methods 

whether the empirical probability of a Type I error for all possible 

contrasts, deviates from the probability when only 75 per cent, 50 

per cent, 25 per cent, and the pairwise contrasts are computed.

The second phase of this research will investigate the empirical 

probability of a Type II error for the S and T methods. When a 

researcher uses the techniques correctly, that is after a significant 

ANOVA F test, then his concern should be for detecting the differences 

in the means which the overall ANOVA 2  test indicates are present.
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That is, he does not want to commit a Type II error. Thus, the 

researcher should carefully control the probability of committing a 

Type II error rather than placing his emphasis on controlling too 

stringently the probability of a Type I error. He should be concerned 

about the power of the test as well as the probability of a Type I 

error (Scheffé, 1959, p. 361).

Procedure

Pseudo-random numbers were selected, using a pseudo random number 

generator.^ Depending upon the assumption violation, the numbers 

were selected from either a normal or skewed distribution with y = 0 

and 0= 1. The random numbers were distributed to the four treatment 

levels that comprise a one-way fixed effects analysis of variance.

Mean differences (differences between adjoining means expressed in 

standard deviation units) were set at 2.6 a-unit differences. Therefore,

V = 0, u = 2.6, y = 5.2, and y = 7.8.
1 2  3 4

The observations from the normal distribution were generated by

means of GAUSS (IBM, 1967), which generates pseudo-random normal

deviates with y = 0 and a = 1. The skewed population was derived from

a chi-square distribution with three degrees of freedom, having mean

three, variance six, third moment 24, fourth moment 252, skewness

measure y = ( y /y ] ^ = 1.663 and kurtosis measure y = y / y  - 3 = 4  
1 \  3 '  2 /  2 4 2

(Kendall and Stuart, 1969).

I would like to thank Jesse May for extending RANDU (IBM, 1967), 
so that the contingencies of this particular research problem could be 
handled by an IBM 1130 machine. The recycling of a random number 
generator is determined by the word length, which is a function of the 
machine size. Jes»e May altered RANDU by increasing the word length, 
via an assembler subroutine, thereby substantially increasing the cycling 
pattern to that of an IBM 360/50 machine.



8
Pseudo-random chi-square variables with three degrees of freedom, 

were generated by summing the squares of three N(0, 1) variables.

The numbers were then scaled so that the mean and variance of the 

skewed population would be the same as the mean and variance of the

normal population, first by subtracting three from each score and
2

then multiplying by I/o , where o = 6. The resulting skewed population 

has mean zero, variance one, skewness measure y = 1.663 and kurtosis

measure y = 4, as y and y are invariant under additive and multipli-
2 1 2

cative transformations.

The choice of sample size was guided by two dictates: (1)

conformability to a tabled value of the Studentized Range distribution

and (2) large enough to show differences, if any, in the power of

the multiple comparison tests. Since population mean values were

prespecified, determining was straightforward and conseauentlv
k

the sample size could be calculated such that the power was at least 

.90 for detecting 2.6 a-unit differences with the ANOVA test.

For any one sampling from the random number generator, a one-way- 

fixed effects ANOVA was calculated. If the 2  value equaled or exceeded 

the critical 2  value, the multiple comparison procedures were initiated. 

When the obtained 2  value failed to reach significance the program 

returned to the random number generator and the sampling procedure and 

an ANOVA 2  test was once again performed.

To achieve mean differences of 2.6 a-units, the random numbers 

Y were transformed, X = Y +  MD (mean difference) where MD was 

incremented by 2.6 a-units, into X variâtes, thereby creating the 

differences for the means of the four treatment levels. In the name
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of efficiency, the contrasts were not explored under the null 

hypothesis condition until the transformed data, X, yielded a 

significant 2  value. Once significance was obtained, the flow of 

the program passed to the stage of calculating the linear contrasts.

At that time, contrasts were calculated on the X data (to check for 

Type II errors) and also on the stored Y data (to check for Type I 

errors). By adopting the above procedure, both types of errors 

could be counted with just a single pass through the random number 

generator.

All possible contrasts, 75 per cent, 50 per cent, 25 per cent, 

and all pairwise contrasts were computed. To randomly select 75,

50, and 25 per cent of all possible contrasts, the random number 

generator was again utilized. The random numbers were rescaled to 

inclusively contain the numbers one through twenty-five and were then 

used as subscripts to randomly select the contrasts. After selecting 

18 (75%) unique random numbers, these distinct numbers were associated 

via the subscripts with a particular contrast. The same procedure 

was used for randomly selecting 12 (50%) and six (25%) of the 

contrasts. Since the pairwise contrasts were stored as the first 

six contrasts, locating and recalling these contrasts was straight

forward. For each set of contrasts, all possible, 75 per cent, 50 

per cent, 25 per cent, and all pairwise contrasts, Scheffè's S-method 

and Tukey's T-method were calculated to determine the number of 

contrasts which did or did not bracket zero. The procedure of 

generating random samples (K=4) with n^ observations per cell, 

and thereafter, if the test was significant, calculating Scheffè's
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and Tukey's multiple comparison procedures constituted one single 

experiment; the procedure was repeated for 1000 experiments.

Unequal variances and unequal sample sizes were combined when 

sampling from a normal distribution to explore the two types of 

error of Scheffè's and Tukey's procedures under conditions of assump

tion violations. Therefore, the five combinations examined when 

sampling from a normal distribution were: (1) equal observations per

treatment level - equal variances, (2) equal observations per treat

ment level - unequal variances, (3) unequal observations per treatment 

level - equal variances, (4) unequal observations per treatment 

level - unequal variances (proportionately paired) and (5) unequal 

observations per treatment level - unequal variances (inversely 

proportionately paired). These five conditions were also investigated 

for the non-normal skewed population.

The first criterion for selecting the unequal sample sizes was to 

get Ip (non centrality parameter for the noncentral 2  distribution) 

as close to the value of <fi for the equal sample case. The second 

criterion was to have the sample size divergent enough to be inter

esting as an assumption violation. Both criteria, it is believed, 

were adequately satisfied.

The Tukey method was derived under the restriction that the vari

ances of the contrasts are equal. In order to satisfy this restriction 

there must be an equal number of observations per cell. The harmonic 

mean, one of many suggested procedures that can be employed with the 

Tukey method when there are an unequal number of observations per cell, 

was used in the present investigation (Kirk, 1968; Smith, 1971).
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For comparisons involving unequal variances, the variances 

were specified to be in the ratio of 1:2:3:4. A  further qualifier 

placed upon the choice of values for the variances was that the 

average of the variances should equal one, thereby not differentially 

affecting the original calculations of sample size for a desired 

power which was calculated for the ANOVA ]F test.

Results
2

Normal Distribution, Equal n's (7), Equal a 's (1):

The empirical probability of a Type I error for .67 a-unit 

differences varies with the different number of contrasts that are 

computed. For all possible contrasts, the probability of a Type I 

error when setting the error rate experimentwise, coincides with 

theoretical alpha, within the bounds of sampling variability. The 

probability of a Type I error generally decreases when the subsets 

of all possible contrasts are sampled. That is, the empirical 

probability of a Type I error when 75 per cent of the contrasts (18 

contrasts) are sampled is smaller than the probability when all 

possible contrasts (25 contrasts) are computed. Similarly, the 

probability of a Type I error decreases for each succeeding subset.

The probability is larger when 50 per cent (12 contrasts) of the 

contrasts are sampled than when 25 per cent (six contrasts) of the 

contrasts are computed. The probability of a Type I error for the 

six pairwise contrasts is generally larger than the probability for 

25 per cent of the contrasts, even though both subsets sample six 

contrasts. Evidently, the likelihood of committing a Type I error when 

six pairwise contrasts are computed is greater than if just six 

contrasts are chosen randomly from among all the possible contrasts.
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Table 1 contains the empirical probabilities of a Type I error for 

the Scheffé and Tukey methods for the experimentwise, per comparison 

and per experiment error rates (Ryan, 1959).

For all possible contrasts, when the error rate is set experi

mentwise, the empirical probability of a Type I error for Scheffè's 

method should be close to theoretical alpha since the S-method was 

designed to control the experimentwise error rate at a. The empirical 

value of .052 is indeed consistent with theoretical alpha. For 

pairwise contrasts, Tukey's method is designed to control the Type I 

error experimentwise, and we would expect an empirical value close 

to a= .05. The value of .059 for pairwise contrasts for the T-method 

indicates agreement within sampling variability. However, the 

probability of a Type I error for the S-method, designed for all 

possible contrasts (Scheffé, 1958, p. 76), is less than theoretical 

alpha for the pairwise contrasts, as was found by Petrinovich and 

Hardyck (1969). In general, the Scheffé and Tukey methods do control 

the probability of a Type I error for the experimentwise error rate, 

but, the latitude of protection that each method provides varies with 

the number of contrasts computed.

The empirical probability of a Type I error when counting with 

a per comparison rule, is extremely conservative regardless of the 

number of contrasts that are computed. The tabled probabilities are 

indicative of the probability of an error for any one _t test if the 

error rate is set at .05 experimentwise for the set of all possible 

multiple _t tests (Aitkin, 1969, p. 195). The empirical values in 

Table 1 are within sampling variability of the theoretical value of



Table 1. Type I Error Rates for Scheffè's S-Method and Tukey's T-Method:

0 =  .05, .67 MD, Normal Distribution, Equal n's (7), Equal o^'s (1).

Error Rates Contrasts
Empirical Estimates 

Scheffé Tukey

Experimentwise

Comparison

Experiment

Ail Possible .052 .059
75 per cent .048 .048
50 per cent .042 .044
25 per cent .034 .031
Pairwise .039 .059

All Possible .007 .006
75 per cent .007 .006
50 per cent .007 .006
25 per cent .008 .007
Pairwise .008 .012

All Possible .179 .152
75 per cent .119 .100
50 per cent .088 .074
25 per cent .047 .040
Pairwise .046 .074

.05°P - 007
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.0065.

The number of Type I errors for the per experiment error rate 

is similar to the pattern found with the experimentwise rate.

That is, the long run average of a Type I error fluctuates with the 

number of contrasts sampled. One can anticipate committing more 

errors if all of the possible contrasts are computed and fewer 

errors when working with subsets of all the possible contrasts.

Table 2 contains the empirical probabilities of a Type II error 

for the three error rates with .67 mean differences. The probabilities 

are excessive regardless of how many contrasts are sampled. For the 

experimentwise error rate the probabilities indicate a one hundred 

per cent likelihood of committing a Type I error; therefore, in all 

1000 experiments at least one Type II error was committed. Even for 

the per comparison rule of counting errors, the probabilities are 

unreasonably in excess of acceptable standards.

For .67 a-unit differences with seven observations per cell the 

ANOVA 2  test would detect these differences approximately ninety per 

cent of the time. The probabilities of a Type II error from Table 2, 

would indicate that the power that was "built into" the ANOVA 2  

test does not carry over to the Scheffé and Tukey methods. This 

important finding should be reiterated: the Scheffé and Tukey methods

do not retain the same degree of power for detecting mean differences 

that had been "built into" the ANOVA 2  test.

From the data enumerated in Table 2, it would appear that .67 

a-unit differences and seven observations per cell are not of 

sufficient magnitude to bring to light any possible differences in



Table 2. Type II Error Rates for Scheffè's S-Method and Tukey's T-Method:

Q =  .05, .67 MD, Normal Distribution, Equal n's (7), Equal o^'s (1).

Empirical Estimates
Error Rates Contrasts Scheffé Tukey

Experimentwise All Possible 1.000 1.000
75 per cent 1.000 1.000
50 per cent 1.000 1.000
25 per cent .998 .999
Pairwise 1.000 1.000

Comparison All Possible .677 .718
75 per cent .678 .718
50 per cent .679 .718
25 per cent .682 .721
Pairwise .691 .639

Experiment All Possible 16.933 17.950
75 per cent 12.197 12.929
50 per cent 8.145 8.620
25 per cent 4.091 4.328
Pairwise 4.148 3.835

en

.05°P .007
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the empirical probabilities of a Type II error for the different 

number of contrasts computed, when counting the errors with the 

experimentwise error rate. Therefore, if the empirical probability 

of a Type II error does fluctuate with the number of contrasts 

sampled, the a-unit differences between the means and/or the 

sample size per cell had to be increased so that, such differences 

if present, would be most obvious.

Tables 3 and 4 contain the empirical probability of a Type I 

and Type II error, respectively, when there were seven observations 

per cell but the mean differences had been increased to 2.6 a-units. 

The probability of a Type I error is not affected by mean differences; 

what can be gleaned from Table 3 is that the relationship between 

the probability of a Type I error and the number of contrasts 

computed is again evident. The probability of a Type II error should 

be and is affected by the increase in the mean differences. The 

empirical probabilities begin to show some additional divergence 

due to the number of contrasts sampled as can be seen from Table 4. 

Since the empirical probabilities for the experimentwise error rate 

were still excessive, except for the pairwise contrasts, and 

therefore could not show meaningful differences as a function of 

the number of contrasts sampled, the next change was an increase 

in sample size to 11 observations per cell.

Sampling from a normal distribution with variance one, for 

2.6 a-unit differences between the means, and with 11 observations 

per cell. Table 5 contains the probabilities of a Type I and Type II 

error. The probability of a Type II error for the experimentwise



Table 3. Type I Error Rates for Scheffè's S-Method and Tukey's T-Method;
2a =  .05, 2.6 MD, Normal Distribution, Equal n's (7) Equal a 's (1).

Error Rates Contrasts
Empirical

Scheffé
Estimates

Tukey

Experimentwise All Possible .037 .047
75 per cent .034 .043
50 per cent .031 .029
25 per cent .020 .019
Pairwise .022 .047

Comparison All Possible .005 .004
75 per cent .006 .005
50 per cent .006 .004
25 per cent .005 .004
Pairwise .004 .010

Experiment All Possible .136 .111
75 per cent .103 .088
50 per cent .073 .055
25 per cent .029 .027
Pairwise .027 .057

,0 5 °P  ■



Table 4. Type II Error Rates for Scheffè's S-Kethod and Tukey's T-Method:

0 = .05, 2.6 MD, Normal Distribution, Equal n's (7) Equal a^'s (1).

Error Rates Contrasts
Empirical

Scheffé
Estimates

Tukey

Experimentwise All Possible 1.000 1.000
75 per cent .994 .995
50 per cent .956 .965
25 per cent .713 .729
Pairwise .103 .065

Comparison All Possible .181 .193
75 per cent .181 .193
50 per cent .182 .194
25 per cent .177 .185
Pairwise .018 .012

Experiment All Possible 4.530 4.828
75 per cent 3.251 3.477
50 per cent 2.179 2.331
25 per cent 1.060 1.108
Pairwise .109 .069

00

.05°P = "007



Table 5. Type I and Type II Error Rates for Scheffè's S-Method and Tukey's T-Methodi
2

a  - .05, 2.6 MD, Normal Distribution, Equal n*s (11), Equal a *s (1).

Error Rates Contrasts
Type I 

Scheffé

Empirical
errors

Tukey

Estimates
Type

Scheffé
II errors

Tukey

Experimentwise All Possible .038 .049 1.000 1.000
75 per cent .036 .044 .990 .994
50 per cent .031 .032 .905 .919
25 per cent .018 .015 .644 .656
Pairwise .028 .049 .004 .003

Comparison All Possible .006 .005 .144 .152
75 per cent .006 .005 .145 .155
50 per cent .006 .005 .146 .155
25 per cent .004 .004 .140 .148
Pairwise .006 .011 .001 .001

Experiment All Possible .141 .118 3.598 3.811
75 per cent .102 .086 2.606 2.763
50 per cent .069 .057 1.754 1.864
25 per cent .026 .021 .840 .890
Pairwise .033 .064 .004 .003

vo

.05°P = '007
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error rate is still excessive except for the pairwise contrasts.

The mean differences and sample size were evidently still not 

large enough to show meaingful differences between the probability 

for all possible contrasts and the probabilities when 75 and 50 

per cent of the contrasts were computed. Nonetheless, it would 

have been unrealistic to again increase the mean differences and 

also costly, in terms of computer time, to increase the sample size. 

Though Petrinovich and Hardyck (1969) showed that increasing the 

mean differences is one procedure that will reduce the probability 

of a Type II error, the procedure cannot be used by the behavioral 

scientist, for he can only work with the mean differences that have 

been brought about by his manipulation of the independent variable(s). 

Therefore, the remaining conditions dealing with assumption violations 

were examined for 2.6 o-unit differences and 11 observations per 

cell. The effect of the assumption violation in each condition may 

be readily assessed by remembering that Scheffé's method, for all 

possible contrasts, and Tukey's method, for pairwise contrasts, 

should yield empirical alpha values close to an alpha of .05.

Normal Distribution, Equal n's (11),
2

Unequal a 's (.4, .8, 1.2, 1.6):

The empirical probability of a Type I and Type II error 

for Scheffé's S-method and Tukey's T-method are contained within Table 

6. When sampling from populations with unequal variances, the probabil

ity of a Type I error for the S-method is greater than theoretical 

alpha for the experimentwise error rate with all possible contrasts 

computed. The probability decreases until 25 per cent of the contrasts



Table 6. Type I and Type II Error Rates for Scheffé's S-Method and Tukey's T-Method:
2Q =  .05, 2,6 MD, Normal Distribution, Equal n's (11), Unequal a 's (.4, .8, 1.2, 1.6).

Error Rates Contrasts
Type 

Scheffé

Empirical 
I errors

Tukey

Estimates
Type 

Schef fé
II errors

Tukey

Experimentwise All Possible .063 .075 1.000 1.000
75 per cent .061 .064 .990 .993
50 per cent .053 .051 .925 .934
25 per cent .038 .033 .665 .685
Pairwise .045 .075 .028 .015

Comparison All Possible .010 .008 .156 .164
75 per cent .010 .008 .155 .163
50 per cent .009 .006 .155 .163
25 per cent .010 .008 .159 .167
Pairwise .009 .016 .005 .002

Experiment All Possible .247 .192 3.902 4.112
75 per cent .176 .137 2.788 2.932
50 per cent .105 .078 1.856 1.959
25 per cent .060 .046 .956 1.002
Pairwise .056 .093 .028 .015

,05°P = '007
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are sampled and increases for the pairwise contrasts. Thus, the 

empirical probabilities do differ from theoretical alpha when 

computing the different number of contrasts. Also, for the pairwise 

contrasts, the empirical probability for the Tukey method is larger 

than alpha, but by a larger amount than that for the S-method 

for all possible contrasts. Compared to what has been found when 

investigating assumption violations for the ANOVA 2  test (Box, 1954a, 

b; Box and Anderson, 1955; Horsnell, 1953), variance heterogeneity, 

for the S and T multiple comparison procedures, may or may not cause 

the empirical probability of a Type I error to substantially differ 

from theoretical alpha; the correspondence between the empirical 

probabilities and theoretical alpha is conditional upon both the 

number of contrasts computed and the variance heterogeneity.

The empirical probability of a Type I error for the per comparison 

error rate and the long run average found for the per experiment 

error rate also reflect the effect of variance heterogeneity and 

the effect of the number of contrasts computed.

The probability of a Type II error for all possible and pairwise 

contrasts, is generally greater than the probabilities when sampling 

is from populations with equal variances.

Normal Distribution, Unequal n's (8, 9, 11, 16),
2

Equal 0 's(l):

Table 7 contains the probability of a Type I and Type II error 

for the three error rates when the number of observations per treat

ment level are unequal. Again the empirical probabilities do vary 

with the number of contrasts sampled. For the experimentwise Type I



Table 7. Type I and Type II Error Rates for Scheffé's S-Method and Tukey's T-Method;

a =  .05, 2.6 MD, Normal Distribution, Unequal n's (8, 9, 11, 16), Equal a^'s (1).

Error Rates Contrasts
Type I 

Scheffé

Empirical
errors

Tukey

Estimates
Type II

Scheffé
errors

Tukey

Experimentwise All Possible .039 .050 1.000 1.000
75 per cent .036 .041 .992 .993
50 per cent .034 .041 .914 .920
25 per cent .023 .019 .621 .642
Pairwise .027 .050 .015 .003

Comparison All Possible .005 .004 .149 .157
75 per cent .005 .004 .146 .154
50 per cent .006 .005 .152 .160
25 per cent .005 .004 .139 .149
Pairwise .005 .010 .002 .000

Experiment All Possible .132 ,109 3.727 3.936
75 per cent .097 .082 2.626 2.769
50 per cent .071 .061 1.823 1.925
25 per cent .029 .025 .836 .895
Pairwise .032 .063 .015 .003

to
CO

.05°P ■
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error rate the Tukey empirical probabilities for all possible 

and pairwise contrasts are equal to theoretical alpha. The 

probability of a Type I error for the Scheffé method is slightly 

conservative for all possible contrasts, and conservative for 

the remaining sets of contrasts.

The empirical probabilities of. a Type II error for the 

three error rates generally, do not substantially differ from the 

data for the equal n's case.

Normal Distribution, Unequal n's (8, 9, 11, 16),
2

Unequal o 's (.4, .8, 1.2, 1.6):

Sampling for this assumption violation was from populations 

with different variances. The unequal sample sizes were proportional 

to the variances. That is, the smaller sample was taken from the 

population with the smaller variance, while the largest sample size 

was paired with the population with the largest variance. Consistent 

with previous findings (Box, 1954a, b; Box and Anderson, 1955; Horsnell, 

1953) the empirical probability of a Type I error is less than 

theoretical alpha, when proportionately pairing unequal variances 

and unequal sample sizes. Table 8 contains the two types of errors 

for the three error rates. For the experimentwise rate for all 

possible contrasts, the empirical probability of a Type I error is 

conservative for the Scheffé method. For the pairwise contrasts, 

the probability of a Type I error for Tukey's method is very 

conservative, in fact, it is 5 less than a = .05.

Since decreasing alpha will, when all other factors are held 

constant, increase beta, the probability of a Type II error is somewhat



Table 8. Type I and Type II Error Rates for Scheffé's S-Method and Tukey's T-Method:
2

a = .05, 2.6 MD, Normal Distribution, Unequal n's (8, 9, II, 16), Unequal a 's (.4, .8, 1.2, 1.6).

Error Rates Contrasts
Type I 

Scheffé

Empirical
errors

Tukey

Estimates
Type

Scheffé
II errors

Tukey

Experimentwise All Possible .023 .015 1.000 1.000
75 per cent .021 .012 .991 -993 w50 per cent .016 .007 .937 .950 ui
25 per cent .015 .008 .722 .744
Pairwise .013 .015 .046 .027

Comparison All Possible .003 .001 .177 .190
75 per cent .003 .002 .175 .187
50 per cent .002 .001 .176 .189
25 per cent .004 .002 .177 .189
Pairwise .003 .003 .008 .004

Experiment All Possible .071 .035 4.427 4.739
75 per cent .058 .030 3.145 3.370
50 per cent .030 .014 2.106 2.264
25 per cent .021 .011 1.063 1.136
Pairwise .017 .019 .048 .027

.05“P ° -007
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higher than when there are no assumption violations. Consequently, 

when there are unequal variances and unequal sample sizes and 

the sample sizes and variances are proportional, there is an increase 

in the probability of a Type II error and accordingly, the statistical 

tests lose some of their power for detecting mean differences.

Normal Distribution, Unequal n's (8, 9, 11, 16),
2

Unequal a 's (1.6, 1.2, .8, .4):

For the inversely proportional pairings of unequal variances 

and unequal sample sizes, the empirical probabilities for the exper

imentwise Type I error far exceeds theoretical alpha, as expected 

from what had been found with the ANOVA F test (Box, 1954a, b ) . Table 

9 contains the two types of errors for the S and T methods. Even 

for the pairwise contrasts, the probability of a Type I experiment- 

wise error is larger than can be attributed to sampling variability. 

However, the Scheffé method appears to be more robust to this type 

of violation than does Tukey's method, even for pairwise contrasts.

The empirical probabilities of a Type II error do not substantially 

differ from the data reported when there are no assumption violations, 

although the probabilities are slightly larger.

Skewed Distribution;

The empirical probabilities of a Type I and Type II error when 

sampling from the skewed distribution are enumerated in Tables 10-14 

for the same five conditions that were investigated when sampling from 

a normal distribution.

The probabilities are generally consistent with the probabilities 

found when sampling from a normal distribution. However, for some



Table 9. Type I and Type II Error Rates for Scheffé's S-Method and Tukey's T-Method:

a =  .05; 2.6 MD, Normal Distribution, Unequal n's (8, 9, 11, 16), Unequal o ^ ’s (1.6, 1.2, .8, .4)

Error Rates Contrasts
Type I 

Scheffé

Empirical
errors

Tukey

Estimates
Type II 

Scheffé
errors

Tukey

Experimentwise All Possible .147 .186 1.000 1.000
75 per cent .144 .168 .994 .993
50 per cent .129 .149 .915 .921
25 per cent .104 .111 .650 .673
Pairwise .113 .186 .064 .028

Comparison All Possible .029 .029 .149 .155
75 per cent .030 .029 .152 .160
50 per cent .029 .028 .150 .156
25 per cent .029 .030 .149 .155
Pairwise .029 .048 .011 .005

Experiment All Possible .733 .731 3.725 3.869
75 per cent .533 .525 2.728 2.825
50 per cent .350 .338 1.796 1.869
25 per cent .176 .180 .892 .931
Pairwise .172 .290 .064 .028

hO

.05°P = '007
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of the conditions investigated, the empirical probabilities are 

quite different from those found in the same conditions with a 

normal distribution, and will be the only conditions discussed for 

the skewed distribution.

When the variances are unequal and the observations are 

sampled from a skewed distribution (Table 11), the empirical exper

imentwise Type I probabilities for all possible and pairwise 

contrasts differ from the probabilities when sampling is from a 

normal distribution. For the skewed distribution, the value for the 

Scheffé method for all possible contrasts is less than alpha, where 

for the normal distribution, it is considerably larger than theoretical 

alpha (Table 6). The value for the Tukey method for the pairwise 

contrasts is also closer to theoretical alpha.

The Type II probabilities differ when sampling is from populations 

with different variances and the sample sizes are unequal and 

proportional to the variances (Table 13). The empirical probabilities 

are generally smaller, for the three error rates, when the observations 

are sampled from the skewed distribution. Consequently, the power 

for the Scheffé and Tukey tests is increased when the variances 

and sample sizes are unequal and proportionately paired and the 

observations are sampled from a skewed distribution.

The most notable change in the empirical probabilities for a Type 

I error occur when sampling is from the skewed distribution and the 

variances and sample sizes are unequal and inversely proportional 

to one another (Table 14). The empirical probability of a Type I 

error is considerably closer to theoretical alpha when sampling is



Table 10. Type I and Type II Error Rates for Scheffé's S-Method and Tukey's T-Method:

Q =  .05, 2.6 MD, Skewed Distribution, Equal n's (11), Equal a ̂ 's (1).

Error Rates Contrasts
Type I 

Scheffé

Empirical
errors

Tukey

Estimates
Type II 

Scheffé
errors

Tukey

Experimentwise All Possible .036 .037 1.000 1.000
75 per cent .032 .032 .988 .988
50 per cent .029 .025 .914 .920
25 per cent .011 .013 .656 . 668
Pairwise .020 .037 .015 .010

Comparison All Possible .004 .003 .141 .147
75 per cent .004 .003 .140 .145
50 per cent .004 .003 .145 .151
25 per cent .002 .002 .148 .155
Pairwise .004 .008 .002 .002

Experiment All Possible .105 .084 3.535 3.674
75 per cent .075 .061 2.513 2.603
50 per cent .051 .040 1.740 1.813
25 per cent .014 .015 .890 .929
Pairwise .025 .046 .015 .010

.05°? ■



Table 11. Type I and Type II Error Rates for Scheffé's S-Method and Tukey's T-Method;
2o = .05, 2.6 MD, Skewed Distribution, Equal n's (11), Unequal j 's (.4, .8, 1.2, 1.6).

Empirical Estimates

Errer Rates Contrasts
Type

Scheffé
I errors

Tukey
Type

Scheffé
II errors

Tukey

Experimentwise All Possible .046 .056 1.000 1.000
75 per cent .041 .047 .995 .996
50 per cent .036 .039 .911 .919
25 per cent .030 .028 . 660 .678
Pairwise .031 .056 .010 .005

Comparison All Possible .007 .006 .142 .149
75 per cent .007 .006 .142 .149
50 per cent .007 .006 .144 .150
25 per cent .008 .006 .147 .153
Pairwise .006 .012 .002 .001

Experiment All Possible .168 .147 3.557 3.721
75 per cent .120 . Ill 2.555 2.680
50 per cent .084 .077 1.724 1.797
25 per cent .047 .036 .881 .918
Pairwise .038 .073 .010 .005

.05°P ■



Table 12. Type I and Type II Error Rates for Scheffé's S-Method and Tukey's T-Method:

o = .05, 2.6 MD, Skewed Distribution, Unequal n's (8, 9, 11, 16), Equal o^'s (1).

Error Rates Contrasts
Type

Scheffé

Empirical 
I errors

Tukey

Estimates
Type II

Scheffé
errors

Tukey

Experimentwise All Possible .035 .046 1.000 1.000
75 per cent .034 .039 .992 .994
50 per cent .031 .031 .913 .918
25 per cent .023 .022 .642 .661
Pairwise .026 .046 .021 .006

Comparison All Possible .006 .005 .145 .150
75 per cent .006 .005 .145 .151
50 per cent .006 .006 .147 .152
25 per cent .006 .006 ' .141 .147
Pairwise .006 .011 .004 .001

Experiment All Possible .142 .130 3.616 3.757
75 per cent .106 .093 2.615 2.718
50 per cent .073 .069 1.767 1.825
25 per cent .034 .033 .847 .881
Pairwise .037 .065 .022 .007

u>

.05°P ’



Table 13. Type I and Type II Error Rates for Scheffé’s S-Method and Tukey’s T-Method:
2= .05, 2.6 MD, Skewed Distribution, Unequal n ’s (8, 9, 11, 16), Unequal a ’s (.4, .8, 1,2, 1.6)

Error Rates Contrasts
Type

Scheffé

Empirical 
I errors

Tukey

Estimates
Type

Scheffé
II errors

Tukey

Experimentwise All Possible .020 .022 1.000 1.000
75 per cent .018 .022 .994 .996
50 per cent .016 .016 .919 .925
25 per cent .010 .009 .694 .709
Pairwise .013 .022 .018 .012

Comparison All Possible .003 .002 .150 .158
75 per cent .003 .002 .152 .159
50 per cent .003 .002 .148 .154
25 per cent .003 .002 .157 .164
Pairwise .003 .005 .003 .002

Experiment All Possible .068 .055 3.755 3.938
75 per cent .050 .042 2.727 2.862
50 per cent .029 .027 1.777 1.855
25 per cent .017 .014 .944 .981
Pairwise .019 .032 .020 .012

U)N)

,05°P ■



Table 14. Type I and Type II Error Rates for Scheffé's S-Method and Tukey's T-Method: 

a = .05, 2.6 MD, Skewed Distribution, Unequal n's (8, 9, 11, 16), Unequal a^'s (1.6, 1.2, .8, .4)

Error Rates Contrasts
Type I 

Scheffé

Empirical
errors

Tukey

Estimates
Type II

Scheffé
errors

Tukey

Eexperlmentwise All Possible .074 .112 1.000 1.000
75 per cent .067 .101 .990 .991
50 per cent .063 .082 .895 .903
25 per cent .042 .051 .610 .631
Pairwise .051 .112 .036 .016

Comparison All Possible .012 .013 .142 .147
75 per cent .012 .013 .143 .149
50 per cent .013 .013 .141 .147
25 per cent .011 .013 .138 .145
Pairwise .012 .026 .006 .003

Experiment All Possible .308 .327 3.548 3.683
75 per cent .226 .239 2.579 2.685
50 per cent .158 .161 1.692 1.760
25 per cent .067 .077 .829 .872
Pairwise .071 .158 .036 .016

ww

,05°P ■ -007
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from the skewed distribution, and Scheffé's method remains relatively 

more robust than Tukey's method. Only the Type I estimates are 

affected by the shape of the population; the Type II probabilities 

are similar for both the normal and skewed data.

Discussion

Petrinovich and Hardyck (1969) found the Scheffé S-method 

generally, and the Tukey T-method occasionally, to be conservative 

for the probability of a Type I error. For reasonable differences 

between the means, these authors also found that the empirical 

probability of a Type II error for the Scheffé and Tukey methods 

were excessively large and consequently the S and T methods lacked 

any substantial power for detecting reasonable mean differences.

The probability statement associated with the Scheffé multiple 

comparison procedure is couched in terms of all possible contrasts, 

while the probability statement for the Tukey method was originally 

intended for only pairwise contrasts (Scheffé, 1959, p. 76). The 

comparisons between the S and T methods and the conclusions drawn 

by Petrinovich and Hardyck (1969) were therefore biased due to the 

fact that these authors worked with only a subset of all possible 

contrasts, e.g., pairwise contrasts. The probability of a Type I 

and Type II error for the Scheffé and Tukey methods might vary with 

the number of contrasts computed.

The present empirical investigation therefore examined the empir

ical probability of a Type I and Type II error for the Scheffé and 

Tukey methods for all possible contrasts, 75, 50, and 25 per cent of
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the contrasts and for the pairwise contrasts.

The empirical probabilities of a Type I error when setting the 

error rate experimentwise, varies with the number of contrasts 

computed. The probability of a Type I error for all possible 

contrasts for the Scheffé method and pairwise contrasts for the 

Tukey method was closer to theoretical alpha than when sampling 

75, 50, and 25 per cent of all the possible contrasts. The probability 

of a Type I error generally decreased when sampling fewer than all 

of the possible contrasts but, the pattern changed when just the 

pairwise contrasts were sampled. For example, though Scheffé's 

method was generally conservative for the pairwise contrasts, the 

probability was nonetheless larger than the probability when only 

25 per cent of the contrasts were sampled. It appears that when six 

pairwise contrasts are computed the likelihood of committing a Type I 

error is greater than when six of the all possible contrasts are 

randomly selected, however, both are conservative. Not only were the 

probabilities for the pairwise contrasts larger than the probabilities 

when 25 per cent of the contrasts were sampled, but the empirical 

probabilities found for the Tukey method were generally larger and 

closer to theoretical alpha than the probabilities for the S-method. 

Since Tukey's method was originally designed for pairwise contrasts 

the empirical probabilities of a Type I error that have been found 

in this investigation were consistent with the derivation of the 

T-method and with the findings of previous investigators (Petrinovich 

and Hardyck, 1969; Scheffé, 1953, 1959).

The Scheffé and Tukey methods share the robustness or lack of
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robustness of the ANOVA JF test except that the degree of departure 

of the empirical probabilities from the theoretical probability was 

most certainly also a function of the number of contrasts computed.

The nonproportional normal distribution case exemplifies this point. 

The empirical probability of a Type I error for the S-method for 

all possible contrasts was found to be .147 while for the pairwise 

contrasts it was .113. In each case the empirical probability 

differed from theoretical alpha of .05 but, the magnitude of the 

difference was a function of the number of contrasts computed.

Of much greater Importance than the noted relationship between 

the probability of a Type I error and the number of contrasts 

sampled was the large probabilities found for the Type II error.

Only by increasing the mean differences and sample size was the 

probability of a Type II error reduced. The mean differences were 

increased so that if there were any differences in the probability 

of the experimentwise Type II error, as a function of the number of 

contrasts computed, such differences would be more visible. Increas

ing the mean differences to reduce the probability of a Type II 

error for just the pairwise contrasts (Petrinovich and Hardyck, 1969) 

does not offer the researcher a practical means for overcoming this 

problem. The researcher is not in the same privileged position as the 

investigator of statistical techniques. That is, how can the 

behavioral scientist manipulate the differences between his means?

The behavioral scientist can only work with the mean differences 

that have been brought about by the manipulation of the independent 

variable(s).
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For reasonable mean differences of .67 a-units, a difference 

of 2.01 a-units between the largest and smallest means, seven 

observations per cell does assure the researcher that he will reject 

the ANOVA null hypothesis 90 per cent of the time. Empirically, 

the power for the ANOVA test in this investigation was indeed 

found to be approximately .90. Following a significant F̂  value, 

Scheffé's and Tukey's multiple comparison procedures were calculated 

on the data. Referring back to Table 2, the reader can once again

note the large probabilities of a Type II error for all three of

the error rates. The crucial finding is that the Scheffé and 

Tukey methods do not retain the power for detecting reasonable mean

differences as was "built into" the ANOVA 2  test.

Scheffé (1959, p. 71) intimates while Aitkin (1969, p. 193), 

states that Scheffé's and Tukey's multiple comparison procedures 

lack sensitivity for detecting differences because of the dependence 

that researchers have for the conventional five and one per 

cent significance levels. Also, the vagaries of psychological 

experimentation can cause the Scheffé and Tukey techniques to be 

even less sensitive in detecting mean differences. That is, psycho

logical research is most often characterized by small to moderate 

mean differences, small to moderate sample sizes, large within- 

subjects variability, and inexact measurements of the dependent 

variable. Given all of the above, the psychological investigator 

should not be surprised to find no significant mean differences 

when using the Scheffé and Tukey methods even though his ANOVA 

2  test was significant. With small mean differences, at the
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traditional .05 significance level, the Scheffé and Tukey 

methods will commit many more Type II errors than the ANOVA 2  

test and therefore will not be as powerful a statistic for de

tecting mean differences. Therefore, Scheffé's S-method and Tukey's 

T-method should be investigated under conditions of varied levels 

of significance (a ranging from .05 to .25) and/or varied conditions 

of sample size to determine the optimum alpha level and sample 

size that would be sufficient to increase the power of these 

methods to the power that had been originally "built into" the 

ANOVA 2  test for detecting reasonable differences in the means.
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Appendix I

T
SUGGESTIONS FOR INCREASING THE POWER OF THE SCHEFFE STATISTIC

INTRODUCTION

Petrinovich and Hardyck (1969) investigated many multiple 

comparison procedures, one of which was Scheffé's multiple com

parison method (S-method). Under their null hypothesis conditions, 

Petrinovich and Hardyck found that the Scheffé method does generally 

control the probability of a Type I error as it is designed to do, 

but the S-method seems to overprotect. That is, the empirical 

probabilities were less than theoretical alpha. Keselman and 

Toothaker (1971) have found that the conservative probabilities of a 

Type I error found for the Scheffé method can be attributed to the 

fact that Petrinovich and Hardyck limited their investigation to 

just pairwise contrasts, e . g . , ^ =  (+1) X.^ + (-1) X.^'. According to 

the empirical estimates found by Keselman and Toothaker (1971), the empir

ical probability of a Type I error appears to be related to the 

number of contrasts computed. The latter authors found that the 

empirical probability of a Type I error was closest to theoretical 

alpha when all of the possible contrasts were computed. The empirical 

probabilities decreased when only 75, 50, and 25 per cent of the 

all possible contrasts were computed. Though the Type I estimates 

for the pairwise contrasts were generally conservative, the values 

were always larger than the probabilities when 25 per cent of the

42
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contrasts were computed, even though both subsets contained six 

contrasts.

Of greater concern to Keselman and Toothaker (1971) was that 

the empirical probability of a Type II error for the Scheffé method 

was extremely large. These authors point out that the S-method lacks 

substantial power for detecting reasonable mean differences. For 

reasonable .67 o-unit differences, a difference of 2.01 o-units 

between the largest and smallest means in their investigation, 

Keselman and Toothaker (1971) discovered that the Scheffé method 

was not nearly as powerful as was the ANOVA F test which preceded 

the Scheffé multiple comparison method.

That is, with seven observations per cell, for a one-way fixed 

effects analysis of variance (ANOVA) with four treatment levels, 

the ANOVA null hypothesis should be rejected ninety per cent of 

the time with the above mean differences. Following a significant 

2  value, the Scheffé method was then computed for all possible of 

the contrasts, 75, 50, and 25 per cent of the contrasts and for the 

pairwise contrasts. Keselman and Toothaker (1971) found that, for 

the Scheffé method, the empirical probabilities of a Type II error 

were excessively large for the three error rates they investigated; 

therefore, the S-method lacked any substantial power for detecting 

mean differences regardless of whether the errors were counted with 

an experimentwise, per comparison, or per experiment error rate 

(Ryan, 1959, 1962). For example, Keselman and Toothaker calculated 

that for seven observations per cell the ANOVA 2  test should detect 

.67 o-unit differences approximately 90 per cent of the time
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the ANOVA ^  statistic is computed; consequently, the probability of 

a Type II error would be approximately .10. Following a significant 

ANOVA, the power of Scheffé's method for detecting the mean differences 

was approximately zero for the experimentwise error rate and approxi

mately .33 with the per comparison rate. Therefore, the empirical 

probability of a Type II experimentwise error was one and approximately 

.67 when the errors were counted with a per comparison rule.

Miller (1966, p. 32), emphasizes this point by stating that multiple

comparison procedures were designed to control the probability of a 

Type I error and not the probability of a Type II error.

Two reasonable approaches to increase the power of the Scheffé 

method would be, to increase the level of significance for the

Scheffé test and/or increase the sample size per cell. Many readers

may feel that increasing alpha and increasing the number of obser

vations per cell are not reasonable approaches. We are cognizant 

that for increases in sample size the power for the ANOVA 2  test 

could be inflated to the point that perhaps meaningless differences 

would be detected. On the other hand, sample sizes larger than 

those that would assure a power of =.90 for the ANOVA F test would 

be essential in order to detect true differences in the means with 

multiple comparison procedures (Keselman and Toothaker, 1971; 

Petrinovich and Hardyck, 1969). Since the ANOVA 2  test is only a 

barometer of overall treatment effects, while multiple comparison 

procedures are designed to fetter out the exact mean differences, 

perhaps the choice of the number of observations per cell should be 

geared to finding multiple comparison differences, not overall ANOVA
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differences. The ANOVA %  test should, therefore, be considered as 

a preliminary first step to the more important step of computing 

multiple comparisons (Gabriel, 1964, p. 472; Scheffé, 1959, p. 71).

The second approach for increasing the power of the S-method 

would be to increase the alpha level. For the alpha purists who 

are stuck at the .01 and .05 significance levels, the idea of increas

ing the level of significance is also shared by others (Aitkin,

1969, p. 193; Scheffé, 1959, p. 71).

Increasing the mean differences, as Petrinovich and Hardyck 

(1969) had done, is an unrealistic procedure for increasing the 

power of the Scheffé method. The behavioral scientist is not in 

the same privileged position as the researcher of statistical 

methods in that the behavioral scientist must work with the mean 

differences that have been brought about by his independent variable(s) 

and cannot build differences a priori into his data. Also as Games (1971) 

points out, for large a-unit differences the means would obviously 

be different, so different that it would not be necessary for a 

researcher to perform a statistical multiple comparison test under 

conditions in which the means were indeed so divergent.

Therefore, the first major phase of this investigation manipu

lated the level of significance (.05, .10, ..., .25) for the Scheffé 

test and incremented the number of observations per cell to determine 

the optimum alpha level and sample size that would be sufficient 

to substantially increase the power of Scheffé's S-method, from the 

low level reported when alpha was set at the traditional .05 level 

and when there were seven observations per cell (Keselman and
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Toothaker, 1971).

After determining the optimum alpha level and sample size, 

all possible of the contrasts, 75, 50, and 25 per cent of the 

contrasts, and all pairwise contrasts were computed to determine 

the empirical probabilities of a Type I and Type II error. The 

empirical probabilities were examined when the assumptions of the 

Scheffé test were met and under conditions of assumption violations 

to determine whether the pattern of relationship between the 

empirical probabilities and the number of contrasts computed, found 

by Keselman and Toothaker (1971), would also be found for large 

alpha and for larger sample sizes.

Procedure

Pseudo-random numbers were selected, using a pseudo random 

number generator. Depending upon the assumption violation, the 

numbers were selected from either a normal or skewed distribution 

with u= 0 and a= 1. The random numbers were distributed to the four 

treatment levels that comprise a one-way fixed effects analysis of 

variance. Mean differences (differences between adjoining means ex

pressed in standard deviation units) were set at .75 a-unit differences.

Therefore, y = 0, y = .75, y = 1.50, and y =2.25.
1 2  3 4

The observations from the normal distribution were generated 

by means of GAUSS (IBM, 1967), which generates pseudo-random 

deviates with y= 0 and o= 1. The skewed population was derived from 

a chi-square distribution with three degrees of freedom, having 

mean three, variance six, third moment 24, fourth moment 252,
(  ̂ ^\hskewness measure v = ly /y = 1.663 and kurtosis measure 

1 \ 3 21
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2

Y = y / u  - 3 . = 4  (Kendall and Stuart, 1969).
2 4 2

Pseudo random chi-square variables with three degrees of 

freedom were generated by summing the squares of three N(0, 1) 

variables. These numbers were then scaled so that the mean and 

variance of the skewed population would be the same as the mean

and variance of the normal population, first by subtracting three
2

from each score and then multiplying by I/o where o = 6. The 

resulting skewed population has mean zero, variance one, skewness

measure y = 1.663 and kurtosis measure y = 4, as y and y are
1 2 1 2

invariant under additive and multiplicative transformations.
K 2Since population mean values were prespecified, determining

k
was straightforward and consequently, the sample size could be

calculated such that the power was at least .90 for detecting .75

a-unit differences with the ANOVA _F test.

For any one sampling from the random number generator, a one-way

fixed effects ANOVA was calculated. If the value equalled or

exceeded the critical .05 2  value, the Scheffé S-method was initiated.

When the obtained 2  value failed to reach significance, the program

returned to the sampling procedure and an ANOVA test was once again

performed. For any given set of data in which the null hypothesis

of equal mean values was rejected, Scheffè’s multiple comparison

statistic was computed on the significant data.

Once the program passed from the ANOVA to the stage of computing

the S-method, the levels of significance for the Scheffé test, not

the 2  test, were manipulated. That is, the Scheffé test statistic

uses a value from the sampling distribution of 2» e.g.,
1 %

(J-1) I . This critical F value is determined by threea v^Vgj -
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values: (1) the numerator degrees of freedom (v^) from the

ANOVA test, (2) the denominator degrees of freedom (v^) from the 

ANOVA test and, (3) the probability of a Type I error that the 

experimenter sets a priori. In addition to setting the Scheffé 

test statistic at the traditional .05 level, i.e., 

the Scheffé statistic was also set at nontraditional levels of 

significance (.10, .15, ..., .25). That is, the overall ANOVA 

_F test was calculated with a= .05 but, the a chosen for the Scheffé 

procedure ranged from .05 to .25.

Also manipulated was the sample size per cell. The original 

sample size of seven observations per cell was increased 75 per 

cent (12 observations per cell), 150 per cent (17 observations 

per cell), and 200 per cent (21 observations per cell).

For each set of contrasts, all possible, 75 per cent, 50 per 

cent, 25 per cent, and all pairwise contrasts, Scheffé's S-method 

was calculated to determine the number of contrasts which did or 

did not exceed the S critical value for the statistic, e.g..

9

"v V 
1 » 2

^ ^  ^ • The procedure of

generating random samples (K=4) with n^ observations per cell and 

thereafter, if the 2  test was significant, calculating the S-method 

constituted one single experiment; the procedure was repeated for 

1000 experiments.

Unequal variances and unequal sample sizes were combined when 

sampling from a normal distribution to explore the two types of 

error of Scheffé's method under conditions of assumption violations. 

The five conditions examined when sampling from a normal distribution
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were: (1) equal observations per treatment level - equal variances,

(2) equal observations per treatment level - unequal variances,

(3) unequal observations per treatment level - equal variances,

(4) unequal observations per treatment level - unequal variances 

(proportionately paired), and (5) unequal observations per treatment 

level - unequal variances (inversely proportionately paired).

These five conditions were also investigated for the non-normal 

skewed distribution.

The first criterion for selecting the unequal sample sizes was to get 

(*) (non centrality parameter for the non-central 2  distribution as 

close to the value of <p for the equal sample case. The second 

criterion was to have the sample sizes divergent enough to be 

interesting as a possible assumption violation.

For comparisons involving unequal variances, the variances 

were specified to be in the ratio of 1:2:3;4. A further qualifier 

placed upon the choice of values for the variances was that the 

average of the variances should equal one, thereby not differentially 

affecting the original calculations of sample size for a desired 

power, which was calculated for the ANOVA %  test.

Results
2

Normal Distribution, Equal n's (7), Equal g ’s (1):

The empirical probabilities of a Type II error for Scheffé's 

multiple comparison method are contained within Table 1. The 

probabilities are tabled for the experimentwise, per comparison, 

and per experiment error rates with varied alpha levels (.05, .10,

... , .25). At the traditional .05 significance level, the empirical



Table 1. Type II Error Rates for Scheffé's S-Method: .75 MD,
2Normal Distribution, Equal n's (7), Equal a 's (1).

Alpha Levels of Significance

Error Rates Contrasts

.05 .10 .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 .25

Experimentwise All Poss. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
75% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
25% 1.00 .99 .99 .98 .99 .99 .99 .99 .98 .99 .97 .98 .97
Pairwise 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Comparison All Poss. .64 .56 .55 .54 .53 .52 .51 .50 .49 .49 .48 .47 .44
75% .64 .56 .55 .54 .53 .52 .51 .50 .50 .48 .48 .47 .44
50% .64 .56 .55 .53 .53 .53 .50 .50 .50 .49 .48 .47 .44
25% .62 .56 .55 .53 .53 .52 .52 .51 .50 .49 .48 .47 .44
Pairwise .65 .57 .56 .54 .53 .53 .51 .50 .49 .48 .48 .47 .43

Experiment All Poss. 15.90 13.95 13.65 13.37 13.18 13.02 12.71 12.50 12.36 12.16 12.04 11.79 11.02
75% 11.45 10.04 9.84 9.67 9.54 9.38 9.14 8.93 8.90 8.68 8.70 8.47 7.90
50% 7.64 6.71 6. 60 6.41 6.34 6.31 6.04 6.00 5.94 5.83 5.77 5.68 5.32
25% 3.74 3.35 3.30 3.17 3.21 3.15 3.09 3.06 3.00 2.96 2.86 2.84 2.66
Pairwise 3.90 3.42 3.33 3.24 3.21 3.18 3.09 3.02 2.96 2.88 2.87 2.84 2.57

LnO
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probabilities of a Type II error are excessive for the three 

error rates.

When the error rate is set experimentwise, the likelihood 

that the Scheffé method would commit a Type II error for all 

possible comparisons is 100 per cent with .75 a-unit differences 

in the means. For the per comparison error rate, as with the 

experimentwise error rate, the probabilities are very large. For 

all possible contrasts with a = .05, the empirical probability of 

a Type II error is .64, while for the pairwise contrasts the probability 

is .65. The long run average for committing a Type II error, the 

per experiment error rate, is also large.

Table 1 indicates that the empirical probabilities of a Type II 

error for the S-method can be decreased by increasing the alpha level. 

For the largest alpha investigated, .25, the probabilities decrease, 

but the probability of a Type II error is still in excess of the 

probability of a Type II error for the ANOVA 2  test, - .10. Increas

ing the alpha level is not sufficient to reduce the probability of 

a Type II error to a level where the power of the Scheffé test 

would compare favorably to the power that the ANOVA 2  test would have 

for detecting the same .75 a-unit differences.

For seven observations per cell, the probability of a Type II 

experimentwise error is still about one with alpha set at .25. The 

probability of a Type II error is reduced for the per comparison error 

rate but the probabilities are still excessive; there is approximately 

a 44 per cent chance of committing a Type II error. The power
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therefore, of detecting .75 o-unlt mean differences, when counting 

with a per comparison rule, is approximately .56, even though the 

significance level had been set at a = .25 for the Scheffé test. 

Consequently, it would appear that not only must the alpha level 

be increased but sample size must as well be increased to reduce 

the probability of a Type II error for the Scheffé multiple compari

son statistic.

Tables 2-4 contain the empirical probabilities of a Type II 

error for the Scheffé method when the original sample size of 

seven observations per cell is incremented 75, 150, and 200 per 

cent. Counting errors with an experimentwise rule results in very 

large Type II probabilities for the Scheffé S-method even with large 

n^and large alpha. Glancing from Table 1 to Table 4, the reader 

should note that the probability of a Type II error is not sub

stantially affected for the experimentwise error rate. When there 

are seven observations per cell and alpha is set at .05 the probabili

ties for all possible of the contrasts, 75, 50, 25 per cent and for 

the pairwise contrasts are 1.00, 1.00, 1.00, 1.00, and 1.00, 

respectively. Incrementing the sample size to 21 observations per 

cell and the alpha level to .25, the probabilities are 1.00, 1.00, .99, 

.86, and .81; certainly not much of a change. As Miller (1966, p. 32) 

states, multiple comparison techniques that count errors with an exper

imentwise rate are appropriate for controlling only Type I errors and 

would therefore be most apropos for those researchers who want to 

increase the protection of their null hypothesis. Correspondingly, 

the experimentwise error rate appears to be very inappropriate when



Table 2, Type II Error Rates for Scheffé's S-Method: .75 MD,
2Normal Distribution, Equal n's (12), Equal a 's (1).

Alpha Levels of Significance

Error Rates Contrasts
.05 .10 .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 .25

Experimentwise Ail Poss. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
75L 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .99 1.00 .99
25% .99 .97 .97 .96 .96 .97 .96 .95 .94 .94 .94 .95 .93
Pairwise 1.00 1.00 1.00 1.00 1.00 1.00 .99 .99 1.00 .99 .99 .99 .98

Comparison All Poss. .49 .44 .42 .42 .41 .41 .40 .39 .38 . 38 .38 . 37 .34
75% .49 .44 .42 .42 .41 .41 .40 .38 .38 .39 .38 .37 .34
50% .49 .44 .43 .42 .41 .40 .40 .39 .38 .38 .38 .36 .34
25% .48 .44 .43 .42 .39 .41 .40 .38 .38 .38 .38 .37 .34
Pairwise .50 .43 .42 .41 .39 .40 .38 .36 .36 .36 .35 .34 .31

Experiment All Poss. 12.20 10.90 10.60 10.45 10.15 10.17 10.00 9.68 9.46 9.53 9.45 9.20 8.61
75% 8.78 7.87 7.66 7.54 7.34 7.31 7.22 6.94 6.89 6.94 6.75 6.60 6.21
50% 5.84 5.22 5.12 5.02 4.90 4.85 4.82 4.64 4.55 4.60 4.59 4.35 4.11
25% 2.91 2.62 2.56 2.54 2.33 2.45 2.37 2.30 2.25 2.28 2.26 2.20 2.06
Pairwise 2.99 2.55 2.49 2.45 2.37 2.38 2.27 2.16 2.14 2.16 2.11 2.04 1.86

LnW



Table 3. Type II Error Rates for Scheffé's S-Method: .75 MD,
2Normal Distribution, Equal n's (17), E q u a l o 's (1).

Alpha Levels of Significance

Error Rates Contrasts
.05 .10 .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 .25

Experimentwise All Poss. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
75% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .99 .99
25% .97 .95 .94 .94 .94 .93 .92 .91 .92 .92 .91 .91 .90
Pairwise 1.00 .99 .99 .98 .98 .97 .97 .97 .96 .95 .95 .95 .91

Comparison All Poss. .40 .36 .36 .35 .35 .34 .34 .33 .33 .32 .31 .31 .30
75% .40 .36 .36 .35 .34 .34 .33 .33 .32 .32 .31 .31 .29
50% .40 .36 .36 .34 .35 .34 .34 .32 .32 .32 .32 .31 .29
25% .41 .37 .36 .35 .35 .34 .33 .33 .32 .32 .31 .31 .30
Pairwise .39 .33 .32 .31 .30 .29 .29 .28 .28 .26 .26 .26 .22

Experiment All Poss. 10.01 9.08 8.88 8.64 8.64 8.50 8.39 8.19 8.14 7.88 7.82 7.86 7.37
75% 7.15 6.53 6.43 6.24 6.22 6.08 5.96 5.90 5.82 5.71 5.59 5.64 5.29
50% 4.83 4.38 4.28 4.14 4.15 4.12 4.02 3.87 3.87 3.82 3.80 3.76 3.51
25% 2.46 2.24 2.14 2.08 2.09 2.04 2.00 1.98 1.93 1.89 1.86 1.88 1.80
Pairwise 2.35 2.00 1.92 1.83 1.82 1.76 1.71 1.69 1.67 1.57 1.54 1.54 1.35

Ln•p-



Table 4 . Type II Error Rates for Scheffé's S-Method: .75 MD,
2Normal Distribution, Equal n's (21), Equal a 's (1).

Alpha Levels of Significance

Error Rates Contrasts
.05 .10 .11 .12 .13 .14 .15 .16 .17 .18 .19 .20 .25

Experimentwise All Poss. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
75% 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
50% 1.00 1.00 .99 .99 .99 .99 1.00 .99 .99 .99 1.00 1.00 .98
25% .94 .91 .92 .91 .92 .89 .90 .89 .90 .88 .88 .88 . 86
Pairwise .99 .97 .95 .95 .95 .94 .91 .92 .91 .89 .88 .88 .81

Comparison All Poss. .37 .32 .32 .32 .31 .30 .30 .30 .29 .29 .28 .28 .26
75% .37 .32 .32 .32 .31 .30 .30 .30 .29 .29 .29 .28 .26
50% .37 .32 .32 .32 .31 .30 .30 .30 .28 .29 .28 .28 .26
25% .37 .32 .32 .32 .31 .30 .30 .29 .29 .29 .28 .28 .25
Pairwise .35 .28 .26 .26 .25 .24 .24 .23 .22 .21 .21 .21 .17

Experiment All Poss. 9.23 8.13 7.95 7.92 7.73 7.53 7.52 7.44 7.23 7.18 7.12 7.07 6.48
75% 6.61 5.84 5.66 5.68 5.57 5.44 5.37 5.36 5.23 5.17 5.14 5.06 4.68
50% 4.40 3.88 3.80 3.80 3.69 3.56 3.56 3.54 3.38 3.48 3.39 3.40 3.08
25% 2.21 1.92 1.89 1.89 1.87 1.77 1.77 1.77 1.75 1.73 1.70 1.70 1.50
Pairwise 2.08 1.65 1.55 1.55 1.48 1.44 1.42 1.39 1.32 1.28 1.24 1.24 1.04
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the alternative hypothesis is true. That is, when the alternative 

hypothesis is true, the probability of a Type II error is very 

high with an experimentwise error rate.

The empirical probabilities of a Type II error for the per com

parison error rate are reduced from .64 for all possible contrasts 

and .65 for the pairwise contrasts, when there are seven observations 

per cell and alpha is set at .05, to, .26 for all possible contrasts 

and .17 for pairwise contrasts, with 21 observations per cell and 

alpha set at .25. The empirical probabilities of a Type II error 

indicate that for the per comparison error rate, the power of Scheffé's 

S-method can be increased substantially by increasing the level of 

significance and the sample size per cell. The power of Scheffé’s 

method, when the Type II empirical estimates are counted with a per 

comparison rule, is graphed in Figures 1-4. The four graphs vividly 

illustrate the effects of sample size and varied alpha levels on the 

power of the S-method. Also, for the small sample condition,

(seven observations per cell), the S-method has greater power when all

of the possible contrasts are computed than when only the pairwise 

contrasts are computed. Increasing the number of observations per 

cell caused a reversal of the above stated finding. That is, for the 

larger sample conditions, 12, 17, and 21 observations per cell, the 

S-statistic is more powerful for the pairwise contrasts. Consequently, 

when the Type II errors are counted with a per comparison rule, the 

power of the Scheffé method for detecting pairwise contrasts can be 

increased by increasing the number of observations per cell.

The per experiment error rate is likewise amenable to changes
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In the significance level and the sample size. The long run average 

of committing a Type II error decreases when the sample size and 

alpha level are incremented.

Increasing the sample size per cell and increasing the level of 

significance, do appreciably reduce the probability of a Type II 

per comparison error and the long run average of the per experiment 

Type II error. These two approaches for increasing the power of 

the Scheffé test are therefore effective for a per comparison and 

per experiment rate, but not for the experimentwise error rate.

Since the effects of sample size and varied alpha levels on the 

power of the S-method have been determined, the pattern of relation

ship between the empirical probabilities of a Type I and Type II error 

for different number of contrasts computed (Keselman and Toothaker, 

1971) can be evaluated with alpha set at .20 and with 21 observations 

per cell.
2

Normal Distribution, Equal n's (21), Equal o 's(l):

The empirical probabilities of a Type I and Type II error and 

the number of contrasts computed are generally related as can be 

seen from Table 5. When the error rate is set experimentwise, the 

probability of a Type I error is very close to theoretical alpha for 

all possible of the contrasts. The empirical probabilities decrease 

for each succeeding subset of contrasts sampled except for the pairwise 

contrasts. That is, the probability of a Type I error when 75 per 

cent (18) of the contrasts are randomly sampled is larger than the 

probability when 50 per cent (12) of the contrasts are sampled. The 

empirical probability of a Type I error is also larger when 50 per cent



Table 5. Type I and Type II Error Rates for Scheffé's S-Method: 

a =  .20, .75 MD, Normal Distribution, Equal n's (21), Equal a^'s (1).

Empirical Estimates

Error Rates Contrasts Type I Errors Type II

Experimentwise All Possible .201 1.000
75 per cent .183 1.000
50 per cent .168 .996
25 per cent .128 .884
Pairwise .143 .878

Comparison All Possible .035 .283
75 per cent .034 .281
50 per cent .033 .284
25 per cent .035 .283
Pairwise .035 .206

Experiment All Possible .868 7.071
75 per cent .610 5.058
50 per cent .395 3.403
25 per cent .210 1.697
Pairwise .208 1.237

a\
to

.20°?
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of the contrasts are sampled than when 25 per cent (six) of the 

contrasts are sampled. The Type I estimate for the six pairwise 

contrasts is consistently higher than the probability when 25 per 

cent of the contrasts are computed. Apparently, the likelihood 

of committing a Type I error is greater when the six pairwise 

contrasts are computed than when six contrasts are randomly sampled 

from the all possible contrasts.

The empirical probability of a Type I error shows very little 

variability with the per comparison error rate. Scheffé’s method 

is not designed to control the probability of a Type I error on a 

per comparison basis. The empirical probabilities reflect the proba

bility of a Type I error for any one ^  test, if, for a set of multiple 

_t tests one wanted to control the probability experimentwise at 

.20 (Aitkin, 1969, p. 195). That is, instead of using the S-method, 

one could compute multiple _t tests and control the error rate exper

imentwise for the set of multiple _t tests, by setting a conservative 

level of significance for each of the individual tests. The researcher 

though, would not know exactly what his experimentwise error rate is, 

unless calculated by the Aitkin procedure. Scheffé's method gives 

the advantage of controlling the error rate experimentwise. Therefore, 

the behavioral scientist would not have to second guess what the 

probability of an error would be for the experiment; that is, 

for the set of multiple comparison tests. The probability is set a 

priori by the experimenter when using the Scheffé method. Referring 

back to Table 5 the Type I empirical per comparison probabilities are 

fairly close to the theoretical value of .026.
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The long run average of committing a Type I error, the per 

experiment error rate, also fluctuates with the number of contrasts 

computed.

For an experimentwise error rate, the empirical probability of 

a Type II error is excessive, regardless of the number of contrasts 

computed. Indeed, the probability of a Type II error in any one 

experiment is one hundred per cent, or close to it. The probabilities 

of a Type II error for the per comparison error rate, reflect 

the effects of increasing the level of significance and the effects 

of incrementing the sample size. That is, the probability of an error is 

reduced considerably from what had been found when there were seven 

observations per cell and when alpha was set at the traditional 

.05 level. For a per comparison rule of counting the errors, the 

power of the Scheffé method for detecting mean differences approaches 

a respectable level, = .72. For the per experiment error rate, the 

number of Type II errors also varies with the number of contrasts 

computed.

The relationship between the probability of committing an error 

varying with the number of contrasts computed for large alpha and 

large sample size per cell, is consistent with the data reported 

when alpha was set at . 05 and when the number of observations per 

cell was considerably less than the number used in this investigation 

(Keselman and Toothaker, 1971). Therefore, unless the relationship 

should change, this finding will not again be discussed for the 

following violation of assumption conditions.

The effect of the assumption violation in each condition may
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be readily assessed by remembering that the empirical probability 

of a Type I error for Scheffé's method, for all possible contrasts, 

should coincide with theoretical alpha (a = .20).

Normal Distribution, Equal n's (21),
2

Unequal a 's (.4, .8, 1.2, 1.6);

The empirical probabilities of a Type I and Type II error when 

sampling from populations with unequal variances are different 

from the data reported when the populations have equal variances.

Table 6 contains the probability estimates. Variance heterogeneity 

does not cause the probability of a Type I error to substantially 

deviate from theoretical alpha for all possible of the contrasts 

with the experimentwise error rate, if there are an equal number of 

observations per cell. The correspondence between the empirical 

probability and the theoretical probability Is restricted to all 

possible contrasts. For any number less than all possible of the 

contrasts, the empirical probability of a Type I error is less than 

theoretical alpha, i.e., Scheffé's method is a conservative test.

The empirical probabilities of a Type II error for the per 

comparison error rate are somewhat higher than the values when there 

are no assumption violations; the Scheffé test therefore, loses some 

of its power for detecting mean differences when the variances are not 

equal.

Normal Distribution, Unequal n's (17, 19, 22, 26),
2

Equal g 's (1):

Table 7 contains the Type I and Type II empirical probabilities for 

the unequal n's case. The data from Table 7 does differ from the



Table 6. Type I and Type II lirror Rates for Scheffé's S-Method: a = .20, .75 MD,
2Normal Distribution, Equal n*s (21), Unequal o *s (.4, .8, 1,2, 1.6).

Error Rates Contrasts

Empirical 

Type I Errors

Estimates

Type II Errors

Experimentwise All Possible .191 1.000
75 per cent .175 1.000
50 per cent .173 .997
25 per cent .137 .902
Pairwise .151 .933

Comparison All Possible .038 .310
75 per cent .038 .308
50 per cent .040 .309
25 per cent .040 .314
Pairwise .040 .249

Experiment All Possible .954 7.741
75 per cent .691 5.546
50 per cent .481 3.706
25 per cent .243 1.885
Pairwise .237 1.496

ONON

,20“P ■



Table 7. Type I and Type II Error Rates for Scheffé's S-Method: et = .20, .75 MD,
Normal Distribution, Unequal n's (17, 19, 22, 26), Equal o^'s (1).

Empirical Estimates

Error Rates Contrasts Type 1 Errors Type II 1

Experimentwise All Possible .177 1.000
75 per cent .169 1.000
50 per cent .154 .990
25 per cent .116 .877
Pairwise .133 ,868

Comparison All Possible .031 .280
75 per cent .030 .277
50 per cent .032 .280
25 per cent .033 .280
Pairwise .031 .200

Experiment All Possible .771 7.013
75 per cent .548 4.980
50 per cent .380 3.359
25 per cent .196 1.681
Pairwise .184 1.201

ON

.20“P " -013
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data that was found for the equal n's case; the Type I estimates 

are slightly more conservative. Consequently, the Scheffé method 

is to an extent affected by an unequal number of observations 

per cell and the probability of a Type I error changes according 

to the number of contrasts computed.

Normal Distribution, Unequal n's (17, 19, 22, 26),
2

Unequal a 's (.4, .8, 1.2, 1.6):

For this assumption violation, unequal sample sizes and unequal 

variances have been combined proportionately. That is, the smallest 

sample was paired with the population with the largest variance. As 

has been found with the ANOVA 2  test (Box, 1954a, b ; Box and Anderson, 

1955; Horsnell, 1953) for this form of assumption violation, the 

empirical probability of a Type I error is considerably less than 

theoretical alpha. The Scheffé method is conservative with the 

probability of a Type I error but, the magnitude of the disparity 

between the empirical probabilities and the theoretical value is 

again a function of the number of contrasts computed. The empirical 

probabilities of a Type I and Type II error, for the three error 

rates, are contained within Table 8. The empirical probabilities 

of a Type II error are larger than the probabilities when there 

are no assumption violations. The Scheffé method therefore, loses 

some of its power for detecting mean differences when proportionately 

pairing unequal variances and unequal sample sizes.

Normal Distribution, Unequal n's (17, 19, 22, 26),
2

Unequal g 's (1.6, 1.2, .8, .4):

The empirical probabilities of a Type I and Type II error when



Table 8. Type I and Type II Error Rates for Scheffé's S-Method: a = .20, .75 MD,
2Normal Distribution, Unequal n's (17, 19, 22, 26), Unequal a 's (.4, .8, 1.2, 1.6).

Empirical Estimates

Error Rates Contrasts Type I Errors Type II

Experimentwise All Possible .130 1.000
75 per cent .119 1.000
50 per cent .100 .995
25 per cent .072 .931
Pairwise .090 .974

Comparison All Possible .020 .328
75 per cent .020 .325
50 per cent .020 .328
25 per cent .016 .330
Pairwise .020 .290

Experiment All Possible .500 8.197
75 per cent .354 5.858
50 per cent .242 3.930
25 per cent .099 1.977
Pairwise .119 1.739

o\vo

2gOp = .013 = .013
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inversely pairing unequal variances and unequal sample sizes are 

enumerated in Table 9. The Type I estimates are considerably larger 

than when there were no assumption violations. The magnitude 

of discrepancy between the empirical estimates and the theoretical 

value, again, varies with the number of contrasts computed. The Type 

II estimates, on the other hand, do not substantially differ from 

the data found when there are no assumption violations.

Skewed Distribution;

The empirical probabilities for the five conditions examined 

when sampling from the skewed distribution are contained within Tables 

10-14. The probabilities found when sampling from the skewed 

distribution differ quite often from the data when the distribution 

is normal in shape.

When the population variances are equal and the number of 

observations per treatment level are also equal, the empirical 

probability of a Type I experimentwise error is less, and also more 

deviant from theoretical alpha when sampling from the skewed 

distribution (Table 10). The Type II estimates are basically the 

same regardless of population shape.

Another instance in which the empirical probabilities differ 

due to the shape of the distribution, is when the population variances 

are unequal (Table 11). The probability of a Type I experimentwise 

error is less than the probability when sampling is from a normal 

distribution. Again, the probabilities are farther from theoretical 

alpha. The Type I estimates for the per comparison and per experi

ment error rates, on the other hand, do not differ substantially



Table 9. Type I and Type II Error Rates for Scheffé's S-Method: a = .20, .75 MD,

Normal Distribution, Unequal n's (17, 19, 22, 26), Unequal j ^'s (1.6, 1.2, .8, .4).

Empirical Estimates

Error Rates Contrasts Type I Errors Type II

Experimentwise All Possible .286 1.000
75 per cent .269 1.000
50 per cent .250 .991
25 per cent .215 .875
Pairwise .229 .877

Comparison All Possible .068 .290
75 per cent .069 .287
50 per cent .068 .290
25 per cent .072 .297
Pairwise .068 .211

Experiment All Possible 1.713 7.252
75 per cent 1.238 5.159
50 per cent .814 3.474
25 per cent .430 1.783
Pairwise .411 1.266

,20°P “ '013



Table 10. Type I and Type II Error Rates for Scheffé's S-Method:

o = .20, .75 MD, Skewed Distribution, Equal n's (21), Equal a^'s (1).

Error Rates Contrasts

Empirical 

Type I Errors

Estimates

Type II Errors

Experimentwise All Possible .177 1.000
75 per cent .169 .999
50 per cent .155 .988
25 per cent .118 .861
Pairwise .143 .817

Comparison All Possible .034 .275
75 per cent .034 .270
50 per cent .033 .271
25 per cent .034 .275
Pairwise .034 .186

Experiment All Possible .847 6.871
75 per cent .610 4.868
50 per cent .396 3.250
25 per cent .207 1.652
Pairwise .207 1.118

ro
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Table 11. Type I and Type II Error Rates for Scheffé's S-Method: a - .20, .75 MD,
2Skewed Distribution, Equal n's (21), Unequal a 's (.4, .8, 1.2, 1.6).

Empirical Estimates

Error Rates Contrasts Type 1 Errors Type 11 1

Experimentwise All Possible .185 1.000
75 per cent .170 1.000
50 per cent .155 .989
25 per cent .126 .875
Pairwise .137 .854

Comparison All Possible .035 .272
75 per cent .034 .272
50 per cent .036 .269
25 per cent .035 .275
Pairwise .033 .186

Experiment All Possible .875 6.790
75 per cent .613 4.901
50 per cent .429 3.233
25 per cent .211 1.650
Pairwise .197 1.117

•20“P ■ 013



Table 12. Type I and Type II Error Rates for Scheffé's S-Method: a = .20, .75 MD,
2Skewed Distribution, Unequal n's (17, 19, 22, 26), Equal a 's (1).

Empirical Estimates

Error Rates Contrasts Type I Errors Type II ;

Experimentwise All Possible .201 1.000
75 per cent .188 1.000
50 per cent .168 .988
25 per cent .124 .875
Pairwise .154 .824

Comparison All Possible .036 .276
75 per cent .036 .276
50 per cent .036 .274
25 per cent .033 .270
Pairwise .038 .191

Experiment All Possible .905 6.906
75 per cent .642 4.976
50 per cent .433 3.295
25 per cent .200 1.623
Pairwise .227 1.145

.20°P "013



Table 13. Type I and Type II Error Rates for Scheffé's S-Method: a = .20, .75 MD,

Skewed Distribution, Unequal n's (17, 19, 22, 26), Unequal a^'s (.4, .8, 1.2, 1.6).

Error Rates Contrasts

Empirical Estimates 

Type I Errors Type II Errors

Experimentwise

Comparison

Experiment

All Possible .168 1.000
75 per cent .161 1.000
50 per cent .140 .993
25 per cent .106 .882
Pairwise .133 .887

All Possible .030 .286
75 per cent .030 .288
50 per cent .030 .288
25 per cent .030 .284
Pairwise .031 .208

All Possible .747 7.141
75 per cent .548 5.176
50 per cent .354 3.458
25 per cent .179 1.702
Pairwise .186 1.246

Ln

.20*? = '013



Table 14. Type I and Type II Error Rates for Scheffé's S-Method: a = .20, .75 MD,

Skewed Distribution, Unequal n's (17, 19, 22, 26), Unequal o^'s (1.6, 1.2, .8, ,4).

Empirical Estimates

Error Rates Contrasts Type I Errors Type II

Experimentwise All Possible .207 1.000
75 per cent .193 .999
50 per cent .189 .982
25 per cent .145 .875
Pairwise .166 .743

Comparison All Possible .043 .262
75 per cent .043 .260
50 per cent .042 .257
25 per cent .044 .268
Pairwise .044 .169

Experiment All Possible 1.082 6.542
75 per cent .775 4.673
50 per cent .509 3.087
25 per cent .262 1.607
Pairwise .266 1.012

•Njo\

.20°P "
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as a result of the form of the distribution when the variances are 

unequal.

When the number of observations per treatment level is unequal 

(Table 12), the experimentwise Type I empirical probabilities are 

larger and closer to theoretical alpha than the probabilities when 

sampling is from the normal distribution. The discrepancy between 

the empirical probabilities and theoretical alpha is conditional 

upon the number of contrasts computed. The per comparison and 

per experiment Type I estimates are likewise somewhat larger.

For the case in which both the variances and sample sizes are 

unequal and proportionately paired (Table 13), the experimentwise 

Type I probabilities are larger and closer to theoretical alpha.

When inversely pairing unequal variances and unequal sample 

sizes (Table 14) , the empirical probabilities of a Type I experi

mentwise error are reduced considerably when sampling from the 

skewed distribution. The probabilities are also closer to theoretical 

alpha. The Type I estimates for the per comparison and per experiment 

rates are also reduced.

Sampling from this skewed chi-square distribution, caused 

at times, the empirical probabilities of a Type I error to sub

stantially differ from the probabilities found when the observations 

were obtained from the normal distribution.

Discussion

Keselman and Toothaker (1971) have pointed out that Scheffé's 

S-method is not a powerful statistic for detecting reasonable mean 

differences when the alpha level is set at the traditional five per
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cent level. Though the analysis of variance 2  test had a power 

of approximately .90 for detecting .75 a-unlt differences when 

there were seven observations per treatment cell, the power of the 

Scheffè method for detecting these .75 a-unlt differences, was 

considerably less than the power that Keselman and Toothaker had 

"built into" the ANOVA 2  test.

Two reasonable approaches that can be employed to increase the 

power of the Scheffè method would be to increase the significance 

level for the Scheffè test and to increase the sample size per cell. 

Increasing the mean differences as Petrinovich and Hardyck (1969) 

had done is an unrealistic procedure for increasing the power.

The behavioral scientist must work with the differences in the means 

that he has found via the manipulation of his independent variable(s).

After rejecting the ANOVA null hypothesis at the .05 level, 

Scheffé's multiple comparison statistic was computed for all possible 

of the contrasts, 75, 50, and 25 per cent of the contrasts, and also 

for the pairwise contrasts. Type I and Type II estimates were 

were tabulated for different values of significance levels (.05,

.10, ... , .25) and for different sample sizes per cell (7, 12, 17, 

21).
Under conditions of assumption violations, the probability of 

a Type I error for the S-method did depart from theoretical alpha, 

though the degree of departure was most definitely related to the 

number of contrasts computed.

Regardless of the sample size or the level of significance, the 

empirical probabilities of a Type II error for the Scheffè method
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was extremely large when counting with the experimentwise error rate. 

Regardless of the number of contrasts computed, the probability of 

a Type II error was extremely excessive.

The empirical probability of a Type II error, on the other hand, 

was amenable to changes in alpha and sample size for the per 

comparison and per experiment error rates.

The power that had been "built into" the ANOVA ^  test is not

the same power that the Scheffè statistic had for detecting mean

differences. The experimenter who anticipates using the S-method 

should consider increasing his sample size per cell, to a number 

considerably larger than what would be required to detect prespecified 

mean differences with an ANOVA 2  test. He should also use an 

alpha level, for the Scheffè test, larger than the traditionally 

accepted .05 level. For those who are alpha purists and have only 

considered guarding against false rejections, the empirical

probabilities should be consoling in that the probabilities of a

Type I error were generally less than theoretical alpha and for the 

pairwise contrasts, considerably less.

If a multiple comparison procedure is to follow a significant 

ANOVA 2  test (Scheffè, 1959, p. 66) it seems that greater concern 

should be given to protecting against an excessive number of false 

acceptances, not false rejections. Rejecting the ANOVA null hypothesis 

indicates that there were treatment effects; the Scheffè multiple 

comparison procedure should be adjusted to detect those differences. 

Increasing the sample size and increasing the alpha level are two 

reasonable approaches for increasing the power of Scheffé's S-method
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for detecting reasonable mean differences.
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Appendix II

DISSERTATION PROSPECTUS

The researcher in the behavioral sciences intending to 

explore multiple treatment-effects, where there are two or more 

levels of the treatment variable, has available to him a most 

versatile statistical tool to aid him in evaluating his data.

Indeed, the analysis of variance (ANOVA) and its various 

theoretical-mathematical models have at last become a primary 

statistical tool to aid behavioral researchers evaluate their data.

A one-way fixed effects ANOVA is one of the models typically 

employed by behavioral scientists. This model is most applicable to 

those experimental settings in which the researcher expects to 

examine sample mean (X.) differences associated with different 

treatment conditions or levels. In the fixed effects model the 

researchers' experimental interests are for those, and only those, 

fixed treatment levels manipulated in the actual experiment; this 

means, that in any replication of the experiment these same treatment 

levels will once again be manipulated. The one-way fixed effects 

ANOVA model only permits the researcher to statistically generalize 

to those treatment levels manipulated within the experiment (Hays, 1963)

The hypothesis of interest usually is that y = u = ... = p.
1 2

That is, the null hypothesis subjected to a statistical test is that 

the population means for the various treatment levels are equal; hence 

the observations within each treatment level have been randomly

83
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sampled from one population with mean y. Consequently, when this 

hypothesis cannot be rejected the researcher concludes that 

statistically there appears to be no treatment effects. Naturally, 

such a statement is made in probabilistic terms.

For the null hypothesis to be rejected at some predetermined 

probability level (specified by a, the probability of a Type I 

error), at least two of the treatment means must be statistically

different. A treatment effect is defined as a = y - y. The
1 1

1expected value (long run average) of a is equal to y - y.

Therefore, the unbiased estimate of the population treatment effect 

y^ - y is X. - X . . ,  the difference of the grand mean (X..) and the 

mean of the treatment level (X.^). If the number of treatment

levels, K, equals four, a = y - y, a = y - y, a = y - y, and et = y - y.
1 1 2 2 3 3 4 4

The null hypothesis of no treatment effects can be stated as

a = a = a = a = 0 or (y - y) = (y - y) = (y - y) = (y - y) = 0, or
1 2 3 4 1 2 3 4

in general, a = a = ... = a = 0. Previously the null hypothesis
1 2

(H ) was specified as y = y = ... = y. It can be shown that the 
0 1 2

two ways so far presented as expressing the null hypothesis are 
2equivalent. Therefore, for the null hypothesis to be rejected at 

least any two a^'s must be statistically different.

Having rejected the null hypothesis for the one-way fixed effects 

ANOVA, the researcher can conclude in probabilistic terms that the 

means differ statistically. If the experimenter was interested in 

determining whether any treatment effects existed, then the one-way 

ANOVA is indeed a most convenient and versatile statistical tool to
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detect such differences and this hypothetical experimenter could 

consider that his statistical question had been answered. On the 

other hand, the above example is indeed hypothetical in that it is 

a rare occasion when the experimenter is content in just being able 

to state that the treatment levels were different. Of course, 

the experimenter's interest then is for further exploration of these 

different means. The one-way fixed effects ANOVA merely reflects 

whether at least any two of the treatment levels differ. Did 

treatment level one differ from level two or level three or level 

four or perhaps the combination of treatment levels one and two differed 

from the combination of three and four, etc., etc.? These are the 

type of questions that are generally of interest. How many researchers 

are content in merely being able to say that there were differences 

without being able to specify exactly where the differences lie?

Because behavioral scientists are usually interested in digging 

deeper into their data, probing techniques were developed to be used 

following the rejection of the analysis of variance null hypothesis. 

Prior to a discussion of post-hoc probing procedures [post-hoc 

indicating probing without any pre-existing statistical questions in 

mind but rather exploring any or all aspects of the data after 

examining the data (Hays, 1963)] it would be beneficial to consider 

the statistical technique of individual comparisons, of which post-hoc 

is a subcategory.

A population contrast among means is defined c^u^+ c^u^4- ...+ c^u^^

where the ^c = 0 and not all the c, 's equal zero. To estimate aZ k k
population contrast, the population means are replaced by their sample
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counterparts, X.^. That is, a sample contrast is defined as

ijj = c X. +  c X. + ...+ c^X.», again with the restriction that1 1 1 2  2 K K
the Y. = 0, where not all the c^/s are zero. This sample contrast

3
unbiasedly estimates the population contrast. Returning to the 

previous example of four treatment levels, if an experimenter had 

specific questions to ask of the data before running the experiment 

and seeing the actual data then his comparisons would be "planned 

contrasts" or in Haysian dialect "planned comparisons." When the 

behavioral scientist has specific questions in mind prior to the 

actual running of the experiment the technique of planned comparisons 

is used instead of the ANOVA_F-test. Before exploring the question 

of planned comparisons versus the general over-all ANOVA test, 

further consideration must be given to the planned comparison technique.

Given four levels of a treatment variable there are twenty-five
4ways in which the means can be compared. The data from any one of 

the twenty-five comparisons is dependent or related to the data from 

some of the other comparisons. The sample means from a given set of 

data are used in more than one of the comparisons, hence, the compar

isons cannot be considered statistically independent but, to the 

contrary, the comparisons are obviously statistically related.

The planned comparison technique can be used to circumvent the 

problem of statistical dependency. Whether the researcher wants to 

limit his comparisons to only independent comparisons or perform the 

more voluminous nonindependent comparisons, basically, boils down 

to a value judgement as to the merits of the two approaches. Strong
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arguments can be offered in defense and against each approach.

To assure himself that each of his comparisons are independent of 

one another and independent of the grand mean^ the researcher must 

restrict the number of comparisons to K-1 (the degrees of freedom 

for the between-groups sums of squares). In our example there would 

therefore be three independent comparisons for the set of four 

means. By restricting the number of comparisons to K-1 the researcher 

guarantees himself that he is working with non-redundant independent 

combinations of the data. Here is one apparent advantage of the 

independent comparison technique.

Before performing a statistical test on any given comparison,

e.g., Ÿ = c X .  +  c X .  +  . . . +  c»X.» ,as in most statistical tests,1 1 1 2  2 K K
the researcher must have an estimate of the sampling or error var

iance of whatever it is that he is interested in testing. Therefore, 

it is necessary to check the linear comparison of a given set of 

means with the sampling fluctuation expected merely by chance. What 

is needed then is the standard-error of the sampling distribution 

of a sample comparison. It can be shown (Hays, 1963), that the

variance of a sample contrast^ is estimated by the product of the 
K ^MS error and j c^/n^. At this point we have the necessary components 

to perform a statistical test. For planned comparisons the 

statistical hypothesis that is put to the test is H^: Ÿ = 0; that 

is, in the population the contrast is equal to zero.

Post-hoc techniques are also considered as a subcategory of
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the individual comparison procedures. As the name implies, 

and as this author stated previously, this technique follows 

the analysis of variance, specifically after a significant 

ANOVA F test. This author believes that the primary question 

of whether the data should be analyzed with a planned comparison 

technique or a post-hoc comparison technique is determined by 

whether the researcher has specific questions in mind prior to 

the actual running of the experiment and data collection. Opposed 

to the planned technique, post-hoc techniques are to be used when 

the experimenter does not have specific ^  priori questions in 

mind prior to the collection of his data but, decides on avenues 

of exploration after running the experiment and looking at the data 

(Hays, 1963; Miller, 1966; Scheffè, 1959; Stanley, 1957). Because 

this author prefers to distinguish the two techniques, in terms 

of the appropriateness of their use, primarily on the above quali

fication this author finds the usual arguments in favor of each 

of these techniques not substantially pertinent to the question 

of when each should be used. Nonetheless, for those who do not 

choose to accept this writer's evaluation, the usually cited 

advantages for each technique will be enumerated so the reader can 

decide and choose for himself one of the two techniques for any of 

the reasons that he believes to be most pertinent.

Since there can be only K-1 independent planned comparisons 

there are therefore a restricted number of questions that can be 

asked of the data. On the other hand, the number of questions, for



89

most post-hoc techniques are in many and most instances unrestricted. 

The advantage of the post-hoc techniques consequently is that they 

are not limited to just K-1 comparisons; this advantage can be 

considered at the same time as a disadvantage. That is, the 

comparisons are not independent, and nonindependence can be 

considered a disadvantage. Also, for any contrast of the means 

the planned technique is generally more powerful than the post-hoc 

technique for detecting mean differences. Along with greater power 

there is necessarily the increased likelihood of a Type I error; 

these techniques are considered, therefore, generally less conservative 

than the post-hoc comparison procedure. When the experimenter's 

concern is for interval estimation and the accompanying confidence 

coefficient, rather than with tests of significance (Scheffé's method 

was originally developed for interval estimation), the length 

of the confidence interval is generally shorter for the planned 

technique.

The question of choosing between the two techniques is not 

just one of deciding between the more powerful, limited number of 

planned independent comparisons or the less powerful, generally 

unlimited number of post-hoc comparisons; the experimenter can also, 

if he so chooses, calculate nonindependent planned comparisons. 

Nonindependent planned comparisons, as the name implies, permits the 

researcher to carry out comparisons which exceed, in number, the 

restrictions of independence. In effect, the experimenter is 

unrestricted in the number of contrasts that he may choose to
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explore; he no longer is restricted to just K-1 comparisons.

A problem inherent to nonindependent planned comparisons is the 

lack of control for the Type I error. Each contrast is typically 

tested at a predetermined level of significance. Yet, for the set 

of nonindependent contrasts, the probability of a Type I error 

is greater than the level for any one of the contrasts and would 

even be greater than 1- (1-a)^ (the probability of independent 

multiple t-tests), where c is the number of comparisons. For 

small a, 1- (1-a)^, is approximately equal to ca. To control the 

number of Type I errors, Dunn’s (1961) procedure is often used. 

Dunn’s procedure is quite simple in logic in that the technique 

merely divides alpha by the number of comparisons in the set and 

consequently sets the alpha level for each test at the new 

partitioned level of significance. For example, if one wanted to 

test four linear contrasts and at the same time guard against the 

number of Type I errors exceeding the 5 per cent value for the 

complete set of four contrasts, one could use Dunn’s technique 

to divide alpha among the four contrasts. An alpha of .05 

can most easily be split among the four contrasts simply by 

dividing .05 by the number of contrasts. Therefore, each contrast 

to be significant would now have to equal or exceed the critical 

value for the new alpha now set at .0125 (.05/4 = .0125). Dunn’s 

procedure, also called Bonferroni t statistics (Miller, 1965), can 

also set the alpha level for each contrast, not only by equally 

dividing up the level of significance, but rather as a function of
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the experimenter's concern for the control of a Type I error 

he wishes to assign to a particular contrast. That is, each 

contrast can be tested at any preconceived level of significance, 

so long as the total alpha for the set of nonindependent contrasts 

does not exceed a specified level of significance,

(e.g., a = .005, a = .015, a = .02, a = .01; Za =.05).
1 2  3 4

The restrictive rationale of limiting one's planned comparisons 

to K-1 and thereby maintaining independence among the contrasts 

has recently been challenged by Davis (1969). Davis questions 

and challenges the necessity of independence for the planned 

technique since independence is left by the wayside in the post-hoc 

procedures. Davis feels if the experimenter does not become overly 

concerned about the lack of independence for post-hoc comparisons 

why then the concern over independence when the comparisons happen 

to be planned? Based on this argument then, Davis offers a procedure 

and index whereby the experimenter can measure the power of his 

planned nonindependent comparisons relative to Scheffé's post-hoc 

procedure allowing the researcher. . . "to trade off between 

number of comparisons and power while holding the Type I error 

rate constant" (Davis, 1969).

Dunn's technique and Davis' recommendations have been offered 

so that the reader can get a feel for the divergence of technique 

and opinion in regard to the topic of individual comparisons. Like 

most statistical procedures, there are varied opinions concerning 

the best means of exploring a particular statistical question.
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Therefore, there is not usually just one statistical technique 

available to explore one's data with, as a new student in 

statistics might erroneously suspect, but oftentimes many 

procedures to choose from.

The reader can take his pick as to the advantages and dis

advantages in deciding which technique to use, but, this writer 

again suggests that choosing one of the individual comparison 

techniques for reasons related to (1) the number of comparisons 

that can be examined or, (2) because of the question of the 

number of Type I and Type II errors or, perhaps (3) because of the 

length of the confidence interval, should not be the primary deter

minant of the decision, but, at the crux of the decision should 

be the consideration of whether the questions to be asked of the 

data have been formulated prior to data collection or, after 

running the experiment and examining the data.

Another statistical issue that is pertinent to the research 

to be presented and to individual comparison procedures is the 

issue of error rates. The various techniques of planned and 

post-hoc comparisons control different types of error rates. Ryan 

(1953) and Kirk (1968) offer the following definitions to the various 

error rates:

Error rate per comparison =

number of comparisons falsely declared significant 

total number of comparisons
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Error rate per hypothesis =

number of hypothesis falsely declared significant 

total number of hypotheses 

Error rate per experiment =

number of comparisons falsely declared significant 

total number of experiments 

Error rate experimentwise =

number of experiments with at least one statement falsely declared 
significant________________________________________________________________

total number of experiments 

Error rate per family =

number of comparisons falsely declared significant 

total number of families 

Error rate familywise =

number of families with at least one statement falsely declared 
significant_____________________________________________________________

total number of families

The following example will illustrate how three of the above 

error-rates differentially count Type I errors. Suppose there were 

1000 experiments and for each experiment six linear contrasts were 

each subjected to a test of significance. For the total 6,000 

statements of significance 480 are truly false and these false 

statements are contained within just 100 experiments. The 

error-rates per comparison, per experiment, and experimentwise are:
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1. Error rate per comparison: 480/6,000 = .08

2. Error rate per experiment: 480/1,000 = .48

3. Error rate experimentwise: 100/1,000 = .10

Among psychologists, there is presently a controversy as 

to which error rate should be used in psychological research.

Ryan (.1533, 1963) and Wilson (1960) perhaps are most representative 

of the two positions currently competing for the forefront. Ryan 

is for setting the error rate for the experiment while Wilson believes 

the error rate should be the traditionally accepted error rate 

per comparison or per hypothesis. After bantering over equally 

logical arguments in favor of their respective error rates, both 

gentlemen are in the final analysis concerned that the number of 

Type I errors, no matter how they are counted, should be adequately 

controlled. Ryan and Wilson are rightfully concerned about the 

number of false statements but they implicitly address their arguments 

to the need of controlling Type I errors. It is certainly 

commendable to guard against an excessive number of Type I errors 

but like the sacred 5 and 1 per cent criteria levels, one should 

not prima facie always assume that one's duty is to protect 

Type I errors. That is, for certain circumstances greater concern 

should be paid to the number of Type II errors and perhaps the extreme 

attitude could be taken: damn the number of Type I errors I

Individual comparison techniques are intricately tied to the 

concept of error rates, or at least they should be. In deciding 

upon an appropriate individual comparison procedure the behavioral
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scientist should consider (1) whether he is familiar enough with 

the area of research to ask sensitive a priori questions, (2) 

the potential advantages and disadvantages of planned versus 

post-hoc comparisons, and (3) how the individual comparison 

technique, whether planned or post, controls for the number of 

false statements. Both techniques that will be explored in this 

research, Scheffè's S-Method and Tukey’s T-Method, control the 

error rate experimentwise under the null hypothesis.

There is another equally important question, or better 

described as a controversy, that is very pertinent to the research 

explored in this dissertation. This question is whether post-hoc 

procedures, Scheffè's S-Method and Tukey's T-Method in particular 

and post-hoc techniques in general, are to follow the analysis 

of variance only when the ANOVA hypothesis has been rejected or 

whether the post-hoc techniques may be applied even if the null 

hypothesis has not been rejected. This author cannot offer a 

definitive answer to this question; there are those on both sides 

of the issue and others who ignore the question entirely. Hays (1963) 

states that post-hoc techniques are to follow a significant ^  as 

does McNemar (1962; whereas Edwards (1960), Ryan (1959a), and 

Kirk (1968), state that a significant F is not necessary to use 

the post-hoc technique. Federer (1955) and Winer (1962) make 

no mention as to whether a significant F̂  is first required or not.

Recent empirical investigators explored Type I and Type II 

errors for various multiple comparison techniques under conditions
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of no differences, without performing an ANOVA and checking

to see whether the null hypothesis of y = y = ... y was tenable
1 2

or not, and under conditions of real differences, the alternative 

case, (Petrinovich and Hardyck, 1969). Under their zero difference 

conditions (the true null case), Petrinovich and Hardyck empirically 

investigated Tukey's T-Method and Scheffè's S-Method along with 

other multiple comparison procedures to compare the frequency 

of the Type I error. As Miller (1966) points out "the basic 

premise of simultaneous statistical inference and multiple comparisons 

is to given increased protection to the null hypothesis and bears 

no head to the number of errors that may occur under the alternative." 

(Miller, 1966, p. 32). Petrinovich and Hardyck are checking the 

number of Type I errors to theoretical alpha for the null case.

Under varied conditions of population shape and variance and 

for different number of treatment levels and sample sizes and for 

the different error rates, Tukey's and Scheffè's methods were 

generally found to be conservative. When the error rate was set 

per comparison Scheffè's and Tukey's techniques were found to be 

approximately .02 or less (reading from Petrinovich and Hardyck's 

Figure 1) for the varied conditions of different numbers of treatment 

levels and different numbers of sample sizes. For an experimentwise 

error rate, empirical alpha for Scheffè's technique was .05 and 

less, while Tukey's technique fluctuated slightly above and below 

the 5 per cent level (reading from Petrinovich and Hardyck's 

Figure 2 and Figure 4). The only exception of the number of Type I
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errors being less than or equal to theoretical alpha, occurred 

when unequal variances were combined with unequal sample sizes.

As has been found for the robustness studies of the ANOVA F 

test, the combination of unequal variances and unequal sample 

sizes affects the probability of a Type I error: Boneau (1960),

Box (1954c;, 1), Box and Anderson (1955 ), Cochran (1947 ), Godard 

and Lindquist (1940 ), Horsnell (1 9 5 3 ), Hsu (1938 ), Lindquist (1953), 

Scheffè (1959) , and Welch (1937).

General conclusions that can be drawn from the research 

investigating variance heterogeneity are that for equal number of 

observations per treatment cell, heterogeneous variances do not 

substantially affect the probability of the Type I error, but, 

when the number of observations per cell is not equal, variance 

heterogeneity will substantially affect the probability of a Type 

I error. When the sample sizes and variances are unequal and 

the smaller samples have been selected from the populations with 

the small variances than the probability of a Type I error is 

less than alpha. For the conditions of variance heterogeneity 

investigated by Petrinovich and Hardyck, the number of Type I errors 

for Scheffè's method when the error rate was set experimentwise, 

per experiment, and per conparison were .016, .018, and .006, 

respectively, for the proportional case (e.g., n = 5, 10, 15,

V = 1, 2, 4). For this same proportional case the number of Type I 

errors for Tukey's technique for the three error rates was found 

to be .012, .013, and .004 (reading from Table 1). Just as has



Error Rates for Multiple Comparisons 

Petrinovich's and Hardyck's Table 1 

Type I Error Rate (.05) for Multiple Comparison Methods

Population Error 
Rate ^

t1 t2 Scheffé Tukey A Tukey B Newman
Keuls

Duncan

NP, k = 3, n = 5, 10, 15 IREW .119 .038 .016 .012 .012 .012 .030
V = 1, 2. 4 IREX .114 .046 .018 .013 .016 .018 .038

IRC .048 .015 .006 .004 .005 .006 .013

NP, k = 3, n = 5, 10, 15 IREW .157 .233 .100 .141 .141 .141 .212
V = 4, 2, 1 IREX .216 .341 .141 .192 .213 .235 .319

IRC .072 .114 .047 .064 .071 .078 .106

Note.— The percentage of F values significant at £  < .05 is 2.5% for the first population 
and 11.7% for the second.

®1REW = Type 1 error rate experimentwise; IREX = Type I error rate per experiment;
IRC = Type I error rate per comparison.
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been found with the robust studies for the ANOVA F_test the 

combination of the smaller samples with the smaller variances 

will cause the number of Type I errors to be less than 

theoretical alpha (i.e., conservative test). When the smaller 

samples are selected from the populations with the larger variances 

(e.g., n = 5, 10, 15, V  = 4, 2, 1) the number of Type I errors 

for Scheffè's technique was .100 experimentwise, .141 per experiment 

and .047 per comparison. The frequency of Type I errors found 

for Tukey's method were .141 experimentwise, .192 per experiment, 

and .063 per comparison. The general conclusion to be derived is, 

like the ANOVA ^  test, when the larger of the variances is paired 

with the smaller of the samples the number of Type I errors will 

generally be greater than theoretical alpha. The multiple 

comparison procedures, like the ANOVA ^  test, suffer the same lack 

of robustness for certain combinations of unequal n's and unequal 

variances.

The frequency of Type I errors for the Tukey and Scheffè procedures 

are generally less than theoretical alpha; that is, these techniques 

were found to be conservative under the null case. One could 

say that not only do these techniques, Tukey's somewhat, Scheffè’s 

generally, afford ample protection to falsely rejecting the null 

hypothesis but perhaps it should be said that at times they over

protect.

The two types of errors in hypothesis testing are related in 

that an increase or decrease in one of them will cause a decrease
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or increase in the other. This relationship is h o m e  out in 

the research of Petrinovich and Hardyck (1969). Table 2 presented 

by these authors contains the Type II error rates.

Type II errors were investigated for varied conditions of 

population shape, population variance, and for differing numbers 

of cells and sample sizes. Another factor manipulated by the 

authors was the mean differences between adjoining means ranging 

from .6 a-unit differences to 2.6 o-unit differences. For 

example, in order to build in .6 a— unit differences between the

three means (when k = 3) y is set equal to zero, y is set equal
1 2

to .6 and y is set at 1.2. By adding these values to the 

observations for each respective treatment level, differences are 

"built-in" between the population means. Inspection of Table 2 

should upset the researcher. Ifhat is so upsetting is the inordinate 

number of Type II errors. With the number of beta errors as large 

as they were generally found to be, the power of the multiple 

comparison techniques is generally disappointingly lowI Only under 

conditions of large sample size and large mean differences does 

the number of Type II errors become respectable and the power of 

these post-hoc techniques also attains a respectable level. At 

this point Miller must be requoted . . . "the basic premise of 

simultaneous statistical inference and multiple comparisons is 

to give increased protection to the null hypothesis and bears no 

head to the number of errors that may occur under the alternative." 

(Miller, 1966, p. 32). The research reported by Petrinovich



Error Rates for Multiple Comparisons 
Petrinovich's and Hardyck's Table 2 

Type II Error Rates ( « = .05) for Increasing Mean Differences

Population Error Rate® MD^ *̂ 2 Scheffé Tukey A Tukey B
Newman
Keuls Duncan

NP, k = 3, n = 30 2REW .6 .545 .543 .781 .740 .652 .548 .547
1.0 .065 .067 .174 .148 .100 .067 .067
1.3 .003 .003 .008 .007 .003 .003 .003
1.6 .000 .000 .000 .000 .000 .000 .000

2RC .6 .190 .189 .305 .279 .235 .191 .190
1.0 .022 .022 .058 .049 .033 .022 .022
1.3 .001 .001 .003 .002 .001 .001 .001
1.6 .000 .000 .000 .000 .000 .000 .000

NP, k = 3, n = 15 2REW .6 .875 .874 .974 .973 .930 .875 .874
1.0 .482 .474 .740 .685 .578 .477 .476
1.6 .018 .017 .060 .049 .026 .017 .017
2.0 .000 .000 .004 .003 .001 .000 .000

2RC .6 .356 .356 .488 .460 .412 .363 .356
1.0 .170 .167 .285 .259 .210 .168 .167
1.6 .006 .006 .020 .016 .009 .006 .006
2.0 .000 .000 .001 .001 .000 .000 .000

NP, k = 3, n = 5 2REW . 6 .979 .976 .995 .993 .992 .976 .976
1.0 .931 .912 .970 .963 .943 .912 .912
1.6 .615 .557 .799 .764 .675 .557 .557
2.0 .389 .337 .605 .558 .446 .337 .337
2.6 .086 .058 .171 .147 .094 .058 .058

2RC .6 .457 .432 .594 .588 .494 .483 .462
1.0 .419 .392 .541 .509 .456 .401 .392
1.6 .233 .207 .353 .325 .268 .207 .207
2.0 .138 .118 .237 .214 .163 .118 .118
2.6 .029 .019 .061 .051 .031 .019 .019

o■p-

® 2REW = Type II error rate experimentwise; 2RC = Type II error rate per comparison. 
^ Mean difference.
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and Hardyck offers startling evidence as to what happens to 

error rates under the alternative distribution. Scheffè's 

and Tukey's techniques, multiple comparison techniques designed 

for simultaneous inference, are indeed prone to an excessive 

number of Type II errors, more so than were the other multiple- 

comparison techniques investigated by Petrinovich and Hardyck.

When the samples were from populations with different variances, 

the multiple comparison procedures became even less sensitive, 

i.e., the frequency of Type II errors increased. The number of Type 

II errors was found to be generally invariant for the different 

combinations of unequal variances and unequal sample size.

Petrinovich and Hardyck in summary felt that unless mean 

differences are very large it is fruitless to pursue multiple 

comparisons when sample sizes are less than ten, for the power of 

these comparison procedures was in most cases practically nill 

or generally quite low by most accepted standards.

As Reese (1970) points out, Petrinovich and Hardyck did not, 

unfortunately, place enough emphasis in the right direction. Reese 

feels that in evaluating the merits of the multiple comparison 

methods, Petrinovich and Hardyck appeared to show a greater concern 

for Type I errors rather than Type II errors and consequently, 

advocated the use of Scheffè's and Tukey's techniques. Yet,

Reese feels that Scheffè's and Tukey's techniques perhaps should not 

be considered so favorable if a researcher has a greater concern 

for protecting the number of Type II errors rather than Type I errors.
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Reese further points out that if post-hoc multiple comparison 

techniques are to follow a significant ANOVA %  test than it seems 

logical that Type II errors are indeed the errors to guard against.

This author agrees with Reese that post-hoc techniques should 

follow the analysis of variance when the null hypothesis has been 

rejected. Post-hoc comparisons are probing, postmortem techniques 

(Stanley, 1957). The name itself implies that the technique 

is to follow something; in this case follow an analysis of 

variance. But why would one follow up a non-significant ANOVA 

JF value? If the null hypothesis was not rejected, statistically, 

the researcher should conclude that there are no differences in the 

means for the treatment levels ; why then would one pursue something 

that was just shown not to be present— treatment effects? Then 

again, by name, a probing procedure would search for something that 

one believed to be present. When one fails to reject the null 

hypothesis one must therefore conclude that nothing is happening; 

consequently, this writer feels that there is no logic in probing 

for something that one has in the last breath said did not exist, 

at least by the test performed. Therefore, from at least this line 

of reasoning (additional support will follow) this author takes 

the position that post-hoc techniques are to follow the analysis 

of variance when the null hypothesis has been rejected. The tech

nique permits the researcher to explore all possible contrasts in 

an attempt to detect those contrasts that lead to the rejection 

of the null hypothesis of the analysis of variance.
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Consequently, like Reese, this author feels Petrinovich and 

Hardyck too hastily jumped on the Scheffè band-wagon. If post-hoc 

techniques are to follow significant 2  values from the analysis 

of variance, then guarding against Type II errors could be 

considered the more serious error that needs to be controlled.

In light of these considerations, judgement should be reserved 

regarding the general efficacy attributed to Scheffè’s technique 

by Petrinovich and Hardyck until further research is available 

for the post-hoc procedures.

Tukey (1953, unpublished, privately circulated manuscript) 

is credited by Scheffè for devising a method to simultaneously 

estimate all contrasts (Scheffè, 1959). Tukey's technique, the 

T-Method, utilizes the Studentized Range to investigate differences 

among means following the rejection of the ANOVA null hypothesis.

Scheffè (1959) states that for Tukey's T-Method the probability 

is 1-a that the relationship (1) holds for all pairwise contrasts 

given that the restrictions on the method are satisfied. The restric

tions are that the contrasts have equal variances, and that the 

number of observations per treatment level are equal.

i '“I. - V  + 1̂)
In repeated experiments therefore, the probability is 1-a that 

all pairwise intervals simultaneously cover their true value of the 

population contrast. In its original formulation, according to Scheffè 

(1959), Tukey's method was designed to set limits around pairwise contrasts,
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e.g., = c X. + c X. Scheffè (1959), Winer (1962), and
 ̂ k  2 k'"

Kirk (1968) present ammended procedures for Tukey's T-Method, 

sometimes called the Honestly Significant Difference technique, 

that are appropriate for contrasts other than pairwise contrasts 

and also when the number of observations per treatment level are 

not equal.

Smith (1971) empirically checked the robustness of Tukey's 

post-hoc procedure to Type I errors when the groups are of unequal 

sample size. The different procedures that have been suggested 

for this type of problem and therefore checked by Smith when 

sample sizes are unequal are: (1) the harmonic mean of the group

sizes, (2) the harmonic mean of the two extreme range group sizes, 

and (3) the average value of the group sizes. Smith had found 

that the two harmonic mean approximations yielded Type I errors 

that were more consistently congruent with theoretical alpha than 

did the average group size approximation.

To circumvent the limited applicability of Tukey's T-Method, 

Scheffè (1953, 1959) formulated his S-Method which is a generalized 

version of Tukey's method but uses the sampling distribution of F. 

For all possible contrasts the probability is 1-a that all contrasts 

simultaneously satisfy the relationship in (2).

i -x/(k-l) F^ c^ / n A <  Y < i V(k-1) F^ yMS^(z cj / n ^ \ (2)
1 2  1 2

Here again the probability is 1-a that the confidence intervals for
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all contrasts will simultaneously cover their true psi values.

For example, for four treatment levels there are twenty-five 

possible contrasts. In 1000 experiments the probability should 

be (l-a)% that all contrasts simultaneously bracket their true 

psi values. If the 95% confidence limit was chosen, 950 experiments 

would have all twenty-five intervals bracketing their true 

psi values; 50 experiments will have at least one interval 

(experimentwise) not bracketing its true psi value.

Scheffè's S-Method is not dependent upon equal variances nor 

equal sample sizes for its validity. Also, Scheffè's technique is 

applicable to any form of contrast and not merely to pairwise 

contrasts. For these reasons and others. Glass & Stanley (1970) 

report that Scheffè's S-Method is generally preferred by mathematical 

statisticians.

In addition to setting limits around a contrast, Tukey's and 

Scheffè's techniques can be used to test the hypothesis that the 

contrast equals zero, e.g., ^ = 0. Scheffè (1953, 1959) states 

that the hypothesis is tested according to whether his interval 

inclusively includes or excludes the value of ^ = 0. That Scheffè's 

technique can be used to test the hypothesis that ¥ = 0 points 

out the relationship of the S-Method and the analysis of variance. 

According to Scheffè (1953, 1959) and Miller (1966), the null 

hypothesis for the ANOVA is equivalent to the statement that all 

the contrasts are zero.
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Scheffè states • . .if we say that an estimated contrast ij; 
is significantly different from zero or not according as 
the interval . . . (2) . . .excludes or includes the 
value Y = 0, we shall find . . .that the F-test rejects 
H if and only if some are significantly different from 
zero. In other words, if (and only if) at the a level 
of significance, the F-test concludes that the true 
contrasts are not all zero, then the above method will find 
estimated contrasts which are significantly different 
from zero (Scheffè, 1959, pg. 67).

Both Scheffè (1953, 1959) and Miller (1966, p. 50 and 51) offer

proofs that tests of significance can be made from inspection

of the confidence interval.

There have been few comparisons between Tukey's T-Method and

Scheffè’s S-Method. Scheffè's (1953, 1959) Tables 3a and 3b

compare the relative efficiencies of the two methods when the

number of treatment levels is four and six. Scheffè's comparison

was restricted to conditions of equal variances for the contrasts

and equal observations per treatment conditions (these restrictions

are those under which Tukey's T-Method was derived). The column

headed 1/R gives the relative efficiency of Scheffè's S-Method

as compared to Tukey's T-Method. On the other hand, the column

headed R gives the relative efficiency of Tukey's T-Method as

compared to Scheffè's S-Method. The column labeled Type of

Contrast specifies the form of the contrast. That is, (1, 1) is

a comparison of a single mean and another single mean, (1, 2) is

a comparison of a single mean and the average of two other means

while, (1, 3) is a contrast comparing a single mean and the average

of three means. When k = 4 (reading from Scheffè's Table 3a)
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Scheffè's Table 3a. Relative efficiency of

two methods when k == 4 (a = 0.05, V = “ ).

Type of 1Contrast 1/R R

(1. 1) 0-84
(1, 2) 0-89
(1, 3) 0-79

(2, 2), quadratic 0-59
Linear, cubic 0-74

Scheffè's Table 3b. Relative efficiency
when k = 6(a == 0.05, V = “).

Type of Contrast 1/R R

(1, 1) 0-73
(1, 2) 0*98
(1. 3) 0*91

(1, 4) 0*85
(1, 5) 0-82
(2, 2) 0*68

(2, 3) 0-57
(2, 4) 0-51
(3, 3) 0*45

Linear 0*59
Quadratic 0-57
Cubic 0*48

Quartic 0*53
Quintic 0-67
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Tukey's method is superior for contrasts only of the form (1, 1) 

and for those of the form (1, 1) and form (1, 2) when k = 6 

(reading from Scheffè's Table 3b). What can be gleaned from 

Scheffè's tables is that for pairwise contrasts Tukey's method is 

preferable while for the more complicated contrasts Scheffè's method 

is more efficient, and gives shorter intervals. Petrinovich and 

Hardyck (1969) while not specifically focusing on just Tukey's 

and Scheffè's methods, nevertheless provide data on the two 

techniques, enabling us to compare the two. Under the null hypothesis 

conditions, both techniques control the Type I error as they were 

designed to do, but the number of Type I errors for Scheffè's technique 

is consistently less than theoretical alpha (.05); it appears to 

overprotect. Consistent with this pattern of overprotection for 

the first kind of error Scheffè's method (Table 2) is found to 

commit a greater number of Type II errors than does Tukey's 

method and is as expected from the Type I estimate, generally less 

powerful. Since Petrinovich and Hardyck limited their study 

to pairwise contrasts (1, 1), their findings are consistent with 

Scheffè's analytical results. Specifically then, for contrasts 

of the form (1, 1), Tukey's technique sets shorter intervals and 

is more powerful in detecting differences for this type of contrast.

Scheffè (1953) points out that very little is known about 

how Tukey's T-Method works. Scheffè (1953) has contrasted his 

method to Tukey's but only under a few specific conditions.

Petrinovich and Hardyck (1969) published a long awaited empirical
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investigation and evaluation of various multiple comparison

procedures. A question should be raised regarding computing

post-hoc linear contrasts of the means without first checking

to see whether the ANOVA null hypothesis can be rejected or not.

When Petrinovich and Hardyck stated that there is disagreement

and uncertainty as to the efficacy of using post-hoc techniques

without first computing an ANOVA jF value they failed to take

into consideration the words of H. Scheffè. If Scheffè states

that his technique and Tukey's T-Method are to be used following

a significant 2  value then,to this author at least, the question

is not so equivocal.

If the hypothesis is rejected in actual applications
of the F-test for equality of means in the one-way
layout, the resulting conclusions that the means 
6 1 ,6 2 , are not all equal would by itself 
usually be insufficient to satisfy the experimenter.
Methods of making further inferences about the means 
are then desirable. A  similar problem may arise 
after "the" F-test has been made for any H,. . . Simple 
answers to the question of what further inferences can 
be made about the means are offered by the methods 
of multiple comparisons which we shall call the 
S-Method and the T-Method (Scheffè, 1959, pg. 66).

The criticism that this auther would put forth concerning Petrinovich

and Hardyck's study and conclusions coincides with the comments

offered by Reese (1970). This author would add to Reese in stating

more emphatically that multiple comparison procedures are to follow

a significant ANOVA %  value, and therefore perhaps Petrinovich

and Hardyck did inadvertently place too much emphasis on the

number of Type I errors rather than Type II errors. Consequently,
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Scheffè's method need not be considered the most efficacous as 

Petrinovich and Hardyck insinuated it to be.

In the Petrinovich and Hardyck article the Scheffè and Tukey 

methods were found to be conservative for Type I errors. As Ryan 

(1959) and Wilson (1962) point out, and with which this author 

agrees, it is better to be conservative and stringent with Type I 

errors than to let alpha get out of hand in terms of an inordinate 

number of false rejections. In regard to error rates, the experi

mentwise error rate adequately checks and controls the number of 

Type I errors in a suitable manner in regards to psychological 

experimentation (Ryan, 1959, 1963). Tukey's and Scheffè's methods 

are two techniques which control the number of Type I errors. For 

a moment consider the probability statement that is made with regard 

to Scheffè’s method: the probability is 1-a that all contrasts

simultaneously cover their true psi values. This statement is 

theoretically true for the null case. Petrinovich and Hardyck 

in the research they reported just investigated pairwise contrasts. 

What then may happen to the number of Type I errors when some 

number less than all possible contrasts are performed? Petrinovich 

and Hardyck give us clues as to what may possibly happen. They 

found that under the null, when just a subset of all possible 

contrasts are performed, i.e., pairwise contrasts, the number of 

Type I errors was generally less than alpha. Petrinovich and 

Hardyck, though, did not perform all possible contrasts but rather
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limited their investigation to pairwise comparisons.

Generally, it is a fine state of affairs to guard against 

an excessive number of Type I errors and set alpha at a conserva

tive value. But if the number of Type I errors is set at some 

conservative experimentwise level of significance, it would be 

imperative that the researcher know whether the actual number of 

Type I errors is now even more conservative due to the fact 

that some number less than all possible of the contrasts were 

investigated. Here then is one of the objectives for the following 

research: does the number of Type I errors fluctuate for Scheffè's

and Tukey's post-hoc methods when certain percentages of all 

possible contrasts are being explored? That is, for the true 

zero-difference null hypothesis, for a one-way fixed effects 

ANOVA, with four levels of the treatment variable, Scheffè's and 

Tukey's methods will be investigated for the empirical number of 

Type 1 errors when all possible, 75 per cent, 50 per cent, 25 

per cent, and pairwise contrasts are considered. The frequency 

of Type I errors for all possible, 75, 50, 25 per cent and pairwise 

contrasts will also be empirically checked under conditions of 

assumption violations, e.g., nonnormal populations, unequal variances, 

and for unequal observations per cell.

Recently, Aitkin (1969) has pointed out that the error rate 

per comparison and the error rate experimentwise can be calculated 

exactly rather than estimated via monte carlo sampling procedures.
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By using Pearson's (1968) tables of the incomplete beta-function, 

Aitkin maintains that given an alpha level per comparison the 

corresponding alpha level experimentwise can be calculated directly, 

and, vice-versa, given an alpha level experimentwise, the alpha 

level per comparison is also directly obtainable from the tables. 

Aitkin cites a case from Petrinovich and Hardyck to demonstrate 

the use of the incomplete beta function. Petrinovich and Hardyck 

had found that when the error rate is set experimentwise, for three 

treatment levels with five observations per level, the comparable 

error rate per comparison was .013. That is, setting the error 

rate experimentwise for Scheffè's technique the error rate when 

counted by a per comparison rule was found to be .013 for Scheffè's 

test (reading from Petrinovich and Hardyck's Figure 1). Aitkin 

by using (3) and (4) calculated the exact probability to be .0164.

(3)

(4)

Here is how Aitkin determined the exact probability. For three

groups each containing five observations per cell, the critical

value from the _F distribution would be 3.89. Adjusting alpha via

Scheffè's technique, s/(K-l)F the adjusted critical value
1 2

becomes 2.789. That is, if one were to compute multiple t-tests 

and set the error-rate experimentwise the critical value would be
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2.789. Substituting this information into (3) and (4) and re

ferring to the incomplete beta function for q = ^ and I = 6.01
S

the exact probability per comparison would be .0164. The correspon

dence between the exact probability and the sampling probability 

found by Petrinovich and Hardyck is good.

Since exact probabilities per comparison can be calculated 

directly when an error rate is set experimentwise the sampling 

estimates will be checked for their goodness of correspondence 

via the incomplete beta function tables. The first minor phase 

of this research then is concerned with the number of Type I 

errors.

The second phase of this research will look at the sampling 

estimates of the relative frequency of Type II errors. This 

second phase is of the utmost concern and importance for it is my 

contention that for post-hoc multiple comparison procedures, the 

relative number of Type II errors is of paramount importance. If 

post-hoc multiple comparison procedures are to follow a significant 

ANOVA 2  test, it seems that the researcher should protect the 

possible number of false acceptances he is willing to commit rather 

than controlling too carefully the number of false rejections.

A  significant ANOVA F_ test is indicative of general mean differences 

and consequently treatment effects. Since the treatment effacts 

are there, it seems logical that the post-hoc comparison procedures 

should be adjusted to find those differences which in the last 

breath were stated to be existent. The post-hoc multiple comparison
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procedures should be adjusted, because as Petrinovich and Hardyck 

(1969), Aitkin (1969) and Scheffè (1959) imply, these techniques, 

Scheffè's and Tukey's in particular, are subject to an excessive 

number of Type II errors and consequently lack any substantial 

power. Scheffè states . . . "Robustness for Type I errors is not 

a sufficient recommendation for a test; the power must also be 

considered against some alternatives of interest (Scheffè, 1959, 

pg. 361). Again, the previous authors insinuate that the excessive 

number of Type II errors is not unalterably a function of the 

post-hoc comparison procedures but rather appears to be also a 

function of the stringent experimentwise error rate. Petrinovich 

and Hardyck's Table 2 really drives home the relative frequency 

of Type II errors and their dependence on the error rates. For 

their small sample condition (n = 5) the number of beta errors does 

not reach a respectable level (approximately .05) and is as large 

as .995 and even for 2.6 o-unit differences between adjoining 

means the number of Type II errors is .171. When the sample size 

per treatment level is increased to fifteen, 1.6 o-unit differences 

are required to bring the probability of a Type II error down to 

approximately .05. Even when the error rate is set per comparison 

the number of Type II errors is still somewhat excessive.

Consider this: if you, the experimenter, were interested in 

detecting 1.2 o-unit differences between any two of your population 

means when k = 3 (this corresponds to Petrinovich and Hardyck's 

case of .6 o-unit differences between adjoining means) referring
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to the phi tables you would calculate that 1. 2 a-unit differences

should be detected =97 per cent of the time with five observations

per treatment level. Therefore, for a one-way ANOVA with three

treatment levels, five observations per cell, you, the experimenter

should reject the ANOVA hypothesis, H : p = p = p = 0 ,  approximately
°  1 2 3

97 per cent of the time. Having rejected the null hypothesis 

for the ANOVA _F test you are now interested in probing your data 

to determine which contrasts of the means had lead to the rejection 

of the ANOVA null hypothesis. You decide to do three pairwise 

contrasts among your three means, e.g.,

Il> = (+1)X. +  (-l)X. , ip = (+1)X. + (-l)X. and ip = (+1)X. + (-l)X. .
1 1 2 2  1 3 3  2 3

Keeping in mind that initially you had "built-in" a power of 

approximately -.97, when there are five observations per treatment 

cell, Petrinovich and Hardyck's results show that for your post-hoc 

comparisons on the three pairwise means, the power (1-g) of detecting 

differences among the mean is =.005 for Scheffè's method, and 

=.007 for Tukey's method. Contrary to what might be expected, 

the power that was so called "built-into" the ANOVA F test does 

not carry over to your post-hoc comparisons, according to the 

results of Petrinovich and Hardyck. Accordingly, these authors 

state . . . "if sample size is less than 10, it scarcely seems 

worthwhile to carry out the computations for multiple comparisons 

since the power of any method to detect differences between small 

groups is extremely low" (p. 53). Aitkin (1969) and Scheffè (1959) 

suggest that the insensitivity of post-hoc techniques which control
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the error rate experimentwise is a function of the dependence 

that researchers have for the .05 and .01 levels of significance.

That is, the insensitivity (lack of power) of post-hoc techniques 

which control the Type I error experimentwise may be adjusted 

if alpha is set at some other level than the conventional 5 and 1 

per cent levels. The third major phase of this study therefore 

will examine the Type II errors and consequently, the power of 

Scheffè's and Tukey's technique for different levels of alpha.

Also, the data will be examined for the different error rates, 

for, perhaps when investigating linear contrasts in the post-hoc 

sense, setting the error rate experimentwise will prove to be 

untenable in regards to the number of Type II errors and consequently 

the error rate per comparison may prove to be more suitable to

the purpose and rationale of post-hoc comparisons finding the

significant differences.
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Footnotes

^ E(a ) = E(X. - X..) = E(X. ) - E(X..) = y - y = a 
1 1  1 1 1

2 E(a ) = y - y, similarly a = y - y, a = y - y ,  and
1 1 2 2 3 3

a = y - y. The null hypothesis can therefore be written as
4 4

( y  - y) = (y - y) = (y - y) = (y - y) = 0. Adding the constant
1 2  3 4

y .. to each term gives y = y = y = y = y.
1 2  3 4

.  K _  K _  K
E( Y) = E(Z X ) = Z C„ E (X.„) = Z C_ y = Y 

k=l k=l k=l

^ Six contrasts of the form (1, 1), twelve contrasts of the form 

(1, 2), three contrasts of the form (2, 2), and four contrasts of 

the form (1, 3).

 ̂ Any two comparisons are independent if :

/ " K  =  0

Independence of a comparison and the grand mean:

—  ^ ^ Z Z  Z —  —  —X.. = ZZ X., = X  + . X .  +...+ . X . ,  = n X.  + n X.  +...+ n X. ________ 3^ i il i iz 1 ik 1 1 ? ?  K K
N  n +  n +...+ n„ n + n +...+ n

1 2  K 1 2 X

= n X., +  n X. +...+ n„X.„
1 1 p 2 K
Znj,

Now for any contrast: Y = C X.  +  C X. +...+ CLX. _
1 1  2 2 X K

Remembering the requirement for independence, that is,
K K
Z C^C^'/n^ = 0 we have Z [(nyVZn^)](CyJ]/n^ 

k=l
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Multiplying numerator and denominator by 1/n^ we have;

K K K
Z C^/ n^ = ZCy/N = 1/N Z = 0, thereby satisfying the

requirement of independence.

6 —X. is a linear combination of the X. observations.K 1

X.„ = l/n X +  1/n X +  ... +  1/rv X ^K 1 1 2 2 K K
_  2 _  2 _

The variance of X.„ = C var. (X. ) + C var. (X. ) +  . . . +K 1 2
2 _

var. (X.^)
2

The variance of the sampling distribution of means is a/N, therefore
2 2 2 2

var. (Y) = C ( a / n )  +  C ( o / n )  +
1 1 2  2

2 2 2 2
... + (a /n^) = ^  /n^). Assuming equal variances we

22 2 2 
have a Z C^/n^^ Noif est. a = MS error therefore est. var.

2
(Y) = MS error Z C /n .

K K K
' p = 0 ,  y = 2 . 6 , y  = 5.2, and p = 7 . 8.  Since a = p - p„ = 

1 2  3 k 1 1 K
Z 2

-3.9, a = 1 . 3 ,  a = 1 . 3 ,  and a = 3.9. a„ = 33.802 3 1+ K K

Therefore IZ = $ = I (8.45)
K K 

2~
J a

e

When I is chosen to be 11, (j> = 9.64, for v^= 3, 40 the

power is approximately .9999.


