MINIMAL SUFFICIENT STATISTICS

FOR EISENHART'S MODEL III

By

ROBERT ALLAN HULTQUIST
 i!

Bachelor of Arts Alfred University Alfred, New York 1951

Master of Science Purdue University Lafayette, Indiana 1953

[^0]
MINIMAL SUFFICIENT STATISTICS

 FOR EISENHART'S MODEL III
Thesis Approved:

438646

PREFACE

In 1950 there appeared in the Statistical journal Sankhya a num ber of results concerning minimal sufficient statistics. These results were in the form of very general mathematical theorems. Since 1950 these theorems have been applied to several statistical models, but very little has been said about the variance component models with some parameters fixed and others random. In this thesis minimal sufficient statistics for this class of models have been investigated.

Indebtedness is acknowledged to Dr. Franklin A. Graybill for suggesting the problem, for guiding my research, for assisting in the preparation of this thesis, and for obtaining a research grant under which I studied for two years; to the National Science Foundation for sponsoring the research for this thesis under grant number N.S.F. G-3970; to Dr. L. Wayne Johnson for the Research Assistantship I have held; and to the following members of my committee: Drs. Carl E. Marshall, Roy B. Deal, and Olin H. Hamilton.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Statement of the Problem 2
Notation and Definitions 2
Previous Work in this Field 3
II. GENERAL PROCEDURE 4
Criterion for Sufficiency 4
Criterion for Completeness 4
Criterion for Minimality 5
Procedure for Condensing the Information 5
III. THE ONE-WAY CLASSIFICATION VARIANCE
COMPONENT MODEL 7
A Sufficient Statistic for the One-Way Classification Model 8
Computation of the Sufficient Statistic 10
Minimal Sufficient Statistics for One-Way Models 11
An Example 12
Distribution of the Minimal Sufficient Statistic 14
IV. THE TWO-WAY CLASSIFICATION MODEL III 17
The Partition of P 18
Sufficient Statistics for the Two-Way Model 20
Minimal Sufficient Statistics 25
Example for the Two-Way Classification 31
Distribution of the Minimal Sufficient Statistic 35
Balanced and Partially Balanced Designs 37
Chapter Page
V. A CLASS OF N-WAY CLASSIFICATION MODELS 40
Partitioning. P 41
Sufficient Statistics for the N-Way Model 43
Distribution of the Sufficient Statistic 43
Minimal Sufficient Statistics 44
A Complete Sufficient Statistic 45
VI. SUMMARY. 49
Suggestions for Future Study 50
BIBLIOGRAPHY 51
APPENDIX 52

LIST OF TABLES

Table Page
I. Minimal Sufficient Statistics For Two-Way Classification Designs 38
II. The Rank of Z'X For Partially Balanced Group Divisible Incomplete Block Designs With

Two Associate Classes 39

CHAPTER I

INTRODUCTION

Statistics is a science which deals with data. An important phase of this science is the condensation of the data without loss of information. Suppose the objective of an experiment is to estimate the mean of a certain population. In order to estimate the mean, a random sample of size n is drawn. The n dimensional sample then provides information concerning the value of the population mean, but the average of the sample measurements provides an equivalent amount of information concerning the population mean. The average sample value is called a statistic and in this case we have a condensation of information from an n dimensional vector to a scalar, Statistics which condense without loss of information are termed sufficient statistics.

The original observations trivially always represent a sufficient statistic. One would prefer to work with a condensation and generally a condensation of small dimension. A sufficient statistic is called minimal if its dimension is less than or equal to the dimension of any other sufficient statistic.

A minimal sufficient statistic for a specific statistical design is not unique. We shall later define a property called completeness which the probability density function of some statistics possess. Sufficient statistics with complete density functions are called sufficient complete statistics. When a sufficient complete statistic exists, then every estimable function of the parameters possesses an unbiased estimate with uniformly smallest variance and this estimate is the unique unbiased estimate based on the sufficient complete statistic.

Statement of the Problem

The objective of this thesis is to exhibit minimal sufficient statis tics for a class of statistical designs which fall in the category of Eisenhart's Model III (1). The exact definition of Eisenhart's Model III will be given later. The entire solution for the one-way classification of data and the two-way classification of data appears in this thesis. In addition, solutions for special sets of assumptions are given for the n-way classification situation.

Notation and Definitions

The entire thesis has been written in terms of matrix and vector notation. Eisenhart's Model III is a special case of the general linear hypothesis model which in matrix notation takes the form $Y=X \beta+e$.

Here Y is an ($n \times 1$) vector of observations, X is an ($n \times b$) matrix of known constants, β is a ($\mathrm{b} \times 1$) vector of unknown parameters and e is an ($\mathrm{n} \times 1$) vector of random errors, Eisenhart's restrictions for Model III are that certain of the parameters are fixed unknown constants, while the remaining parameters are distributed normally, e is also assumed to be distributed normally.

Previous Work in this Field

The basic theorems used in the solution of the problems encountered in this thesis are found in Lehmann and Scheffe's (2) 1950 paper. These theorems are in very general mathematical terms. Papers by F. Graybill and the author (3) and F. Graybill and D. Weeks (4) discuss mini mal sufficient statistics for Eisenhart's Model II and Eisenhart's Model III.

CHAPTER II

GENERAL PROCEDURE

In Chapter III the one-way classification will be examined; in Chapter IV the two-way classification will be discussed; and in Chapter V certain aspects of the n-way classification are developed. Rather than discuss in each chapter those aspects of the theory which are similar, we instead treat them in this chapter.

Criterion for Sufficiency

Let $f(Y ; \theta)$ be the joint probability density function of the vector of observations. Neyman's Criterion for S to be a sufficient statistic is that $f(Y ; \theta)$ can be written $f(Y ; \theta)=G(Y) \cdot H(S ; \theta)$ where $G(Y)$ is independent of θ. Throughout this paper $f(Y ; \theta)$ will be the multivariate normal density function; hence, an equivalent criterion is to write the quadratic form for $f(Y ; \theta)$ as

$$
\begin{aligned}
& Q(Y ; \theta)=Q_{1}(Y)+Q_{2}(S ; \theta) \\
& \text { Criterion for Completeness }
\end{aligned}
$$

A family of density functions such as $f(Y ; \theta)$ is said to be complete
if $\int h(Y) f(Y ; \theta) d Y \equiv 0$ implies $h(Y) \equiv 0$ almost everywhere. We shall use this definition as the criterion for determining whether a sufficient statistic is complete.

Criterion for Minimality

To show that a sufficient statistic S is minimal, we shall use a result stated and proved by Lehmann and Scheffe (2). The ratio

$$
K\left(Y, Y_{0}\right)=\frac{f(Y ; \theta)}{f\left(Y_{0} ; \theta\right)}=\frac{f_{1}(S ; \theta)}{f_{1}(S ; \theta)}
$$

is examined where Y_{0} is some point other than Y in the n dimensionall sample space. The condition for S to be minimal is that $K\left(Y, Y_{0}\right)$ be independent of θ if and only if $S=S_{0}$. For multivariate normal density functions this procedure is equivalent to investigating whether or not the difference of the quadratic forms $Q(S)-Q\left(S_{0}\right)$ is independent of θ if and only if $S=S_{0}$.

Procedure for Condensing the Information

Consider now the quadratic form Q of the joint probability density function of the normal variables in the vector Y.

$$
Q=(Y-E Y)^{\prime} V^{-1}(Y-E Y)
$$

where E is the operator denoting the expected value of Y and the cow variance matrix V is by definition

$$
V=E(Y-E Y)(Y-E Y)^{\prime}
$$

The procedure used in the following chapters for rewriting Q is as follows. There exists for Model III in the oneway classification, the two-way classification and in certain n-way situations an orthogonal matrix P of known constants such that $P V P^{\prime}$ is diagonal. We refer to the matrix P as an orthogonal matrix which will diagonalize V. The quadratic form can be written

$$
\begin{gathered}
Q=(Y-E Y)^{\prime} P^{\prime} P V^{-1} P^{\prime} P(Y-E Y) \\
Q=(P Y-E P Y)^{\prime}\left(P V P^{\prime}\right\rangle^{-1}(P Y-E P Y) .
\end{gathered}
$$

The theory from this point digresses depending upon the model involved. The objective in each case is to choose P so that Q can be written in a form which will exhibit a minimal sufficient statistic.

CHAPTER III

THE ONE WAY CLASSIFICATION VARLANCE COMPONENT MODEL

Consider the model $Y=\mu j+X \tau+e$ where j is a vector of ones, X is a matrix of zeros and ones, μ is a scalar parameter, and τ is a vector of t treatment parameters ordered according to the number of observations for the treatment. τ is assumed to be independent of e and distributed normally with mean ϕ and covariance matrix σ_{τ}^{2} I. e is assumed to be distributed normally with mean ϕ and covariance matrix $\sigma^{2} I_{\text {. Let }} m_{i}$ be the number of treatments having n_{i} observations and let a equal the number of distinct n_{i} 's.

In a variance component model as described above we have the following relationships.
X which is an ($n \times t$) matrix is of rank $t<n$.

$$
\begin{gathered}
j_{n}^{\prime} X=\left(n_{1} j_{m_{1}}^{\prime}, \cdots, n_{i}^{j}{\underset{m}{i}}_{\prime}^{m} \cdot \cdots, n_{a}^{j} m_{a}^{\prime}\right) \\
j_{t}^{\prime} X^{\prime}=j_{n}^{\prime} \\
X^{\prime} X
\end{gathered}
$$

where D_{t} is a diagonal matrix of the form

$$
\left[\begin{array}{ccccc}
n_{1} I_{m_{1}} & \cdots & \phi & \cdots & \phi \\
\cdot & & \cdot & & \cdots \\
\cdot & & \cdot & & \cdot \\
\bullet & & \cdot & & \cdot \\
\phi & \cdots & n_{i} I_{m_{i}} & \cdots & \phi \\
\vdots & & \vdots & & \vdots \\
\cdot & & & & \\
\phi & \cdots & \phi & \cdots & n_{a} I m_{a}
\end{array}\right]
$$

A Sufficient Statistic for the One-Way Classification Model

We use these relationships to define a partitioning of an orthogonal matrix P defined in Chapter II. Since $X^{\prime} X X^{\prime} X=D_{t}^{2}$ it follows that $D_{t}^{-1 / 2} X^{\prime} X^{\prime} X^{-1 / 2}=D_{t}$, and $D_{t}^{-1 / 2} X^{\prime} X_{t}^{-1 / 2}=I . \quad P_{1}=D_{t}^{-1 / 2} X^{\prime}$ thus consists of t orthogonal rows which diagonalize $X X$.

Consider next the matrix $W=(j, X)$ and choose P_{2} to be any set of n-t orthogonal rows such that $P_{2} W W^{\prime} P_{2}^{\prime}=\phi$. There exists such a matrix because W is ($n x t+1$) and has rankt. $P_{2}\left(j j^{\prime}+X X^{\prime}\right) P_{2}^{\prime}=P_{2}{ }_{2}^{j j j^{\prime} P_{2}^{\prime}}$ $+P_{2} X X X^{\prime} P_{2}^{\prime}=\phi$. Since $j j^{\prime}$ and $X X^{\prime}$ are both positive semi-definite, $P_{2}{ }^{j j}{ }^{\prime} P_{2}^{\prime}=\phi$ and $P_{2} X X^{\prime} P_{2}^{\prime}=\phi$. It then follows that $P_{2} j=\phi$ and $P_{2} X=\phi$. $P_{2} P_{1}^{\prime}=P_{2} X D_{t}^{-1 / 2}=\phi$, hence $P^{\prime}=\left(P_{1}^{\prime}, P_{2}^{\prime}\right)$ is an orthogonal ($n \times n$) matrix.

Consider now the quadratic form for this model.

$$
\begin{gathered}
Q=(P Y-E P Y)^{\prime}\left(P V P^{\prime}\right)^{-1}(P Y-E P Y) \\
E P Y=P_{\mu j_{n}}=\left[\begin{array}{c}
\mu P_{1} j_{n} \\
\mu P_{2} j_{n}
\end{array}\right]=\left[\begin{array}{c}
\mu D^{-1 / 2} X^{\prime} j_{n} \\
\phi
\end{array}\right]=\left[\begin{array}{c}
\mu D_{t}^{-1 / 2} D_{t} j_{t} \\
\phi
\end{array}\right]=\left[\begin{array}{c}
\mu D_{t}^{1 / 2} j_{t} \\
\phi
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& V=E(Y-\mu j)(Y-\mu j)^{\prime}=E(X \tau+e)(X \tau+e)^{\prime} \\
& \mathrm{V}=\mathrm{E}\left(\mathrm{X} \tau \tau^{\prime} \mathrm{X}^{\prime}\right)+2 \mathrm{E}\left(\mathrm{e} \tau^{\prime} \mathrm{X}^{\prime}\right)+\mathrm{E}\left(\mathrm{e} \mathrm{e}^{\mathrm{V}}\right)=\sigma_{\tau}^{2} \mathrm{XX} \mathrm{X}^{\prime}+\sigma^{2} \mathrm{I} \\
& P X X^{\prime} P^{\prime}=\left[\begin{array}{ll}
P_{1} X X^{\prime} P_{1}^{\prime} & P_{1} X X^{\prime} P_{2}^{\prime} \\
P_{2} X X^{\prime} P_{1}^{\prime} & P_{2} X X^{\prime} P_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
D_{t} & \phi \\
\phi & \phi
\end{array}\right] \\
& P^{\prime} P^{\prime}=\sigma_{\tau}^{2} P X X P^{\prime}+\sigma^{2} I \\
& P V P^{\prime}=\left(\begin{array}{cc}
\sigma_{\tau}^{2} D_{t}+\sigma^{2} \mathrm{I} & \phi \\
\vdots \phi & \sigma^{2} \mathrm{I}
\end{array}\right) \\
& Q=\left[\begin{array}{l}
D_{t}^{-1 / 2} X^{\prime} Y-\mu D_{t}^{1 / 2} j_{t} \\
P_{2} Y
\end{array}\right] \quad\left[\begin{array}{cc}
\left(\sigma_{\tau}^{2} D_{t}+\sigma_{I}^{2}\right)^{-1} & \phi \\
\phi & \sigma^{-2} I
\end{array}\right]\left[\begin{array}{l}
D^{-1 / 2} X^{\prime} Y-\mu D_{t}^{1 / 2} j_{t} \\
P_{2} Y
\end{array}\right]
\end{aligned}
$$

If we now substitute for D_{t} the quadratic form Q can be written
where T_{i} is the vector of the treatment totals for those treatments having $n_{i}(i=1$, . . , a) observations.
$Q=\sum_{i=1}^{a}\left(n_{i} \sigma_{T}^{2}+\sigma^{2}\right)^{-1} n_{i}^{-1}\left(T_{i}^{\prime} T_{i}-2 n_{i} \mu j_{m_{i}}^{\prime} T_{i}+m_{i} n_{i}^{2} \mu^{2}\right)+\sigma^{-2} Y^{\prime} P_{2}^{\prime} P_{2} Y$

This form of Q exhibits a sufficient statistic of dimension $2 a+1-s$ where s is the number of m_{i} equal to one. In the case where all $m_{i} \geqslant 2$ for all i, the $2 a+1$ components are

$$
\begin{gathered}
\mathrm{T}_{\mathrm{i}}^{\prime} \mathrm{T}_{\mathrm{i}}(\mathrm{i}=1, \ldots, a) \\
\mathrm{j}_{\mathrm{m}_{i}^{\prime}}^{\prime} \mathrm{T}_{i}(\mathrm{i}=1, \ldots . a) \\
Y^{\prime} P_{2}^{i} P_{2} Y
\end{gathered}
$$

Computation of the Sufficient Statistic

The above statistic is readily computed, including the component $Y^{\prime} P_{2}^{\prime} P_{2} Y$ which we shall now show to be a function of the treatment totals and the total sum of squares.

$$
\begin{gathered}
Y^{\prime} Y=Y^{\prime} P^{\prime} P Y=Y^{\prime} P_{1}^{\prime} P_{1} Y+Y^{\prime} P_{2}^{i} P_{2} Y \\
Y^{\prime} P_{2}^{i} P_{2} Y=Y^{\prime} Y-Y^{\prime} X D_{t}^{-1} X^{\prime} Y \\
Y^{\prime} P_{2}^{\prime} P_{2} Y=Y^{\prime} Y-\sum_{i=1}^{a} n_{i}^{-1} T_{i}^{\prime} T_{i}
\end{gathered}
$$

The above results are now summerized in the following:

Theorem 3.1. The sum of the treatment totals for those treatments
having $n_{i}(i=1, \ldots$. a) observations, the sum of squares of the
$\underline{\text { treatment totals for those treatments having } n_{i}}(\underline{i=1, \ldots, a)}$
observations, and the total sum of squares form a sufficient sta-
tistic of $2 \mathrm{a}+1$ components.

Minimal Sufficient Statistics for One-Way Models

Theorem 3.2. Let m_{i}, n_{i}, and a be defined as above for the one-way classification variance component model, then a minimal sufficient statistic has dimension $2 a+1-s$ where s is the number of $m_{i}=1$. One minimal sufficient statistic has as its components

$$
\begin{aligned}
& T_{i} \quad \text { when } m_{i} \geq 1 \\
& j_{m_{i}}^{\prime} T_{i} \xrightarrow{\text { when } m_{i} \geq 2} \\
& T_{i}^{\prime} T_{i} \xrightarrow{\text { when } m_{i} \geq 2} \\
& \underline{Y^{\prime} Y}
\end{aligned}
$$

Consider first the case where $s=0$. We shall show that when the number of treatments having n_{i} observations is greater than two for all $i_{\text {, }}$ then a minimal sufficient statistic is a statistic having as its components the sum and the sum of squares of the treatment totals, for those totals having $n_{i}(i=1, \ldots, a)$ observations, and the total sum of squares.

Proof: Following the procedure of Chapter II we form the difference
$Q-Q_{0}=g_{0}\left[Y^{\prime} P_{2}^{\prime} P_{2} Y-Y_{0}^{\prime} P_{2}^{\prime} P_{2} Y_{a}\right]+\sum_{i=1}^{a} g_{i}\left[T_{i}^{1 / T_{i}}-T_{i 0}^{\prime} T_{i 0}-2 n_{i} \mu\left(j_{m_{i}}^{\ell} T_{i}-j_{m_{i}}^{\prime 8} T_{i 0}\right)\right]$ where $g_{0}=\sigma^{-2}$ and $g_{i}=\left(n_{i} \sigma_{\tau}^{2}+\sigma^{2}\right)^{-1} n_{i}^{-1}(i=1, \ldots$ a). When

$$
S=\left(T_{1}^{\prime} T_{1}, j^{\prime} T_{1^{3}} T_{2}^{\prime} T_{2^{\prime}} j^{\prime \prime} T_{2}, \ldots T_{a}^{\prime} T_{a}, j^{\prime \prime} T_{a}, Y^{\prime} P_{2}^{\prime} P_{2} Y\right)
$$

is equal to S_{0} with corresponding components $\mathrm{T}_{\mathrm{i}}{ }^{1} \mathrm{~T}_{\mathrm{i}}$ etc. we have $Q-Q_{0}=0$. Next we set $Q-Q_{0}$ identically equal to zero in the parameters μ, σ_{τ}^{2}, and σ^{2}. The form of $Q \propto Q_{0}$ and the linear independence of the g_{1}^{\prime} s, (see appendix for proof) implies $Y{ }^{9} P_{2}^{!} P_{2} Y=Y_{0}^{!} P_{2}^{\prime} P_{2} X_{0}$, $T_{i}^{\prime} T_{i}=T_{i 0}^{\prime} T_{i 0}\left(i=1, \ldots\right.$ a) and $j_{m_{i}}^{\prime} T_{i}=j_{m_{i}}^{\prime} T_{i 0}(i=1, \ldots$ a). These are the conditions for the above set to be a minimal sufficient statistic. This concludes the proof of Theorem 3.2 for the case where $m_{i} \geq 2$ for all i. Observe that when $m_{i}=1_{\text {, we }}$ wave $T_{i}^{\prime} T_{i}=T_{i}^{2}$ which is a function of the statistic $j_{1} T_{i}=T_{i}$. Hence when $m_{i}=1$ the component $T_{i} T_{i}$ is deleted and the dimension of the sufficient statistic is reduced by one each time an $m_{i}=1$.

It is interesting to note that when $a=1, X X^{\prime}$ commutes with jj^{\prime} and our model becomes a special case of the n-way problem discussed in Chapter V. In the case where $a=1, n_{1}=1$, we have no estimate of σ_{τ}^{2}.

An Example

Consider the following data:

Treatment	T_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}
Observations	2.3	3.8	3.5	2.9	2.9	4.1
	2.7	3.6	4.1	2.7	3.8	4.5
	3.2	3.8	3.1			3.8
Totals	2.5	3.1	3.3			

For this example the parameters and total vectors are $n_{1}=4, m_{1}=3$, $n_{2}=2, m_{2}=2, n_{3}=3, m_{3}=1, a=3, T_{1}^{\prime}=(10.7,14.3,14.0), T_{2}^{p}=$ (5.6, 6.7), $T_{3}^{\prime}=12.4$. According to Theorem 3. 2 the following are the values of the components of a minimal sufficient statistic for this example:

$$
\begin{aligned}
& T_{1}^{\prime} T_{1}=514.98 \\
& j^{\prime} T_{1}=39.0 \\
& T_{2}^{\prime} T_{2}=76.25 \\
& j^{\prime} T_{2}=12.3 \\
& T_{3}=12.4 \\
& Y^{\prime} Y=220.13
\end{aligned}
$$

In this section we shall discuss the distribution of Y ' $P_{2}^{1} P_{2} Y$ and the distribution of the components of the minimal sufficient statistic exhibited in Theorem 3. 2.

Consider the partition of X into

$$
X=\left(X_{1}, \ldots X_{i o} \cdot \ldots X_{a}\right)
$$

where the column dimension of X_{i} is the number m_{i}. In terms of X_{i} and Y the vector of treatment totals T_{i} can be written $T_{i}=X_{i} Y$. Now since Y is distributed $N\left(\mu j, \sigma_{\tau}^{2} X X^{\prime}+\sigma^{2} I\right)$ it then follows that T_{i} is distributed $N\left[\mu X_{i}^{\eta} j, X_{i}^{1}\left(\sigma_{\tau}^{2} X X^{\prime}+\sigma^{2} I\right) X_{i}\right]$. Upon simplifying this result we conclude that T_{i} is distributed $N\left[n_{i} \mu j_{9} n_{i}\left(n_{i} \sigma_{\tau}^{2}+\sigma^{2}\right.\right.$ 价 $]$ 。 $j^{\mu} T_{i}$ is then distributed $\mathbb{N}\left[n_{i} m_{i} \mu_{9} n_{i} m_{i}\left(n_{i} \sigma_{T}^{2}+\sigma^{2}\right)\right]$.

In order to determine the distribution of $\mathbb{T}_{i} T_{i}$, we write $T_{i} T_{i}$ as $Y^{\prime} X_{i} X_{i}^{\prime} Y$ and apply the following theorem:

If Y is distributed as a normal vector with mean $\mu \mathrm{j}$ and covariance V,
then a necessary and sufficient condition that $Y^{4} A Y$ be distributed
as $X^{\prime 2}(p, \lambda)$ is that VA be idempotent. Here p is the rank of A and $\lambda=2^{-1} \mu^{1} A \mu$. (5)
(a) Let

$$
\left(\sigma_{\tau}^{2} X X^{1}+\sigma^{2} I\right) \cdot \frac{X_{i} X_{i}^{1}}{n_{i}\left(n_{i} \sigma_{\tau}^{2}+\sigma^{2}\right)}
$$

play the role of VA in the above theorem. This quantity reduces to $n_{i}{ }^{-1} X_{i} X_{i}^{\prime}$ which is idempotent.
(b) the rank of $X_{i} X_{i}$ is m_{i}.
(c)

$$
\lambda=\frac{2^{-1} \mu^{2} j t X_{i} X_{i}^{9 j}}{n_{i}\left(n_{i} \sigma_{\tau}^{2}+\sigma^{2}\right)}=2^{-1} n_{i} m_{i}\left(n_{i} \sigma_{T}^{2}+\sigma^{2}\right)^{-1} \mu^{2}
$$

The above statements imply that

$$
\frac{Y X_{i} X_{i} Y}{n_{i}\left(n_{i} \sigma_{T}^{2}+\sigma^{2}\right)}
$$

is distributed as $X{ }^{i}\left[m_{i}, 2^{-1} n_{i} m_{i}\left(n_{i} \sigma_{T}^{2}+\sigma^{2}\right)^{-1} \mu^{2}\right]$ 。 $T_{i} T_{i}$ is then dis tributed as $n_{i}\left(n_{i} \sigma_{T}^{2}+\sigma^{2}\right)$ times a noncentral chi square variate with m_{i} degrees of freedom and non centrality parameter

$$
\left.\lambda=2^{-1}{n_{i} m_{i}}^{\left(n_{i} \sigma_{\tau}^{2}\right.}+\sigma^{2}\right)^{-1} \mu^{2} .
$$

$\mathrm{T}_{\mathrm{i}} \mathrm{T}_{\mathrm{i}}$ and $\mathrm{T}_{\mathrm{j}} \mathrm{T}_{\mathrm{j}} \mathrm{i}(\mathrm{i} \neq \mathrm{j})$ are independent because T_{i} and T_{j} have a covariance matrix equal to ϕ. The same conclusion holds concerning the independence of $j^{i} T_{k}$ and $j^{0} T_{u}{ }^{j}(k \neq u)$. If we delete $Y^{i} Y$ from the components of the minimal sufficient statistic the remaining components are a mutually independent set.

We now wish to investigate the distribution of $Y^{\prime} P_{2}^{1} P_{2} Y$.
(a)

$$
\begin{aligned}
& {\left[\sigma^{-2} P_{2}^{\prime} P_{2}\left(\sigma_{\tau}^{2} X X^{\prime}+\sigma^{2} I\right)\right]\left[\sigma^{-2} P_{2}^{\prime} P_{2}\left(\sigma_{\tau}^{2} X X^{\prime}+\sigma^{2} I\right)\right] } \\
&=\sigma^{-4}\left\{\sigma_{\tau}^{2} P_{2}^{\prime} P_{2} X X^{\prime} P_{2}^{\prime} P_{2}+\sigma^{2} P_{2}^{\prime} P_{2} P_{2}^{\prime} P_{2}\right\}\left\{\sigma_{\tau}^{2} X X^{\prime}+\sigma^{2} I\right\} \\
&=\sigma^{-2} P_{2}^{\prime} P_{2}\left(\sigma_{\tau}^{2} X X^{\prime}+\sigma^{2} I\right)
\end{aligned}
$$

Thus $\sigma^{-2} P_{2}^{i} P_{2}\left(\sigma_{\tau}^{2} X X^{8}+\sigma^{2} I\right)$ is idempotent.
(b) The rank of $\mathrm{P}_{2}^{\prime} \mathrm{P}_{2}$ is $\mathrm{n}-\mathrm{t}$.
(c) $\quad \lambda=2^{-1} \mu^{2} j^{i} P_{2}^{1} P_{2^{j \sigma}}-2=0$,

The above statements imply that $Y^{\prime} P_{2}^{\prime} P_{2} Y$ is distributed as $X{ }^{2}(n-t)$.
In order to verify that $\mathrm{Y}^{\prime} \mathrm{P}_{2}^{\prime} \mathrm{P}_{2} \mathrm{Y}$ is independent of $\mathrm{T}_{\mathrm{i}} \mathrm{T}_{\mathrm{i}}$ we again write $T_{i}^{\prime} T_{i}$ as $Y^{\prime} X_{i} X_{i}^{\prime} Y . \quad P_{2}^{\prime} P_{2}\left(\sigma_{\tau}^{2} X X^{\prime}+\sigma^{2} I\right) X_{i} X_{i}^{\prime}=\phi$ is the condition for the inde pendence of these quadratic forms. This is indeed satisfied for $P_{2} X=\phi$ and $P_{2} X_{i}=\phi$.

We have previously seen that $\mathrm{Y}^{\prime} \mathrm{Y}$ can be written

$$
Y^{\prime} Y=\sum_{i=1}^{a} n_{i}^{-1} T_{i}^{\prime} T_{i}+Y^{\prime} P_{2}^{\prime} P_{2} Y
$$

Y'Y is therefore distributed as a linear combination of independent chi square variables, one of which is a central chi square variable.

CHAPTER IV

THE TWO-WAY CLASSIFIGATION MODEL III

Consider the model $Y=X T+Z \beta+e$ where $\hat{\boldsymbol{\tau}}$ is ($\mathbf{x} \mathbf{x} 1)$ and is a vector of fixed estimable treatment parameters independent of β and e; and β is a vector of b normally distributed block components independent of e and ordered according to the number of plots k_{i} for the block. β is assumed to have mean ϕ and covariance matrix σ_{β}^{2} I. Suppose that X and Z which are ($n x t$) and ($n x$ b) matrices are each of full rank. e is assumed to be distributed normally with mean ϕ and covariance $\sigma{ }^{2}$ I. Let m_{i} be the number of blocks having k_{i} plots and let a equal the num ber of distinct $k_{i}{ }^{\prime} s$.

In the model described above we have the following relationship. $Z^{\prime} Z=D_{b}$ where D_{b} is a diagonal matrix of the form

The Partition of P

We now define a partitioning of P into $P^{\prime}=\left[P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}\right]$. Since $Z^{\prime} Z=D_{b}$, then $Z^{\prime} Z Z^{\prime} Z=D_{b^{\prime}}^{2} \cdot D_{b}^{-1 / 2} Z^{\prime}$ will then diagonalize Z^{\prime} and since $D_{b}^{-1 / 2} Z^{\prime} Z D^{-1 / 2}=I, D_{b}^{-1 / 2} Z^{\prime}$ is a set of b orthogonal rows. Let $P_{1}=D_{b}^{-1 / 2} Z^{\prime}$.

Consider now the symmetric matrix X'HX where H denotes the idempotent matrix $I=Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime}$. The matrix $X^{\prime} H X$ appears in con nection with the normal equations of the model $Y=X T+Z \beta+e$.

$$
\begin{aligned}
& X^{\prime} X \hat{\tau}+X^{\prime} Z \hat{\beta}=X^{\prime} Y \\
& Z^{\prime} X \hat{\tau}+Z^{\prime} Z \hat{\beta}=Z^{\prime} Y
\end{aligned}
$$

Solving for $\hat{\beta}$ in the second set of equations we have

$$
\hat{\beta}=\left(Z^{\prime} Z\right)^{-1} Z^{\prime} Y-\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X \hat{T}
$$

Substituting in the first set of equations we have

$$
X^{\prime} X_{\mathcal{T}}^{A}+X^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} Y-X^{\prime} Z\left(Z^{\upharpoonright} Z\right)^{-1} Z^{\prime} X \hat{T}=X^{\prime} Y
$$

or

$$
\left[X^{\prime} X-X!Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} X\right] \hat{\tau}=\left[X^{\prime}-X^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime}\right] Y
$$

In terms of the matrix H this is

$$
X^{\prime} H X \hat{T}=X^{\prime} H Y
$$

$X^{\prime} H X$ has rank at most equal to ($t-1$) since $j^{\prime} X^{\prime} H X=\phi$. That is, the sum of the rows and the sum of the columns of X 'HX each add to zero. Since the treatment differences are estimable, X'HX has rank exactly equal to $(t-1)$,

There exists a ($\mathrm{t} x \mathrm{t}$) orthogonal matrix $\overline{\mathrm{U}}^{*}$ which will diagonalize the matrix X'HX. Furthermore, we can choose the first row of \bar{U}^{*} to be j^{2}. whereupon we can write

$$
\overline{\mathrm{U}}^{*} \mathrm{X}^{\prime} \mathrm{HX} \overline{\mathrm{U}}^{* \prime}=\left[\begin{array}{ll}
0 & \phi \\
\phi & \mathrm{D}
\end{array}\right]
$$

Let \bar{U} be the matrix $\overrightarrow{\mathrm{U}}^{*}$ with the row j^{\prime} deleted. Then $U X^{\prime} H X U^{\prime}=I$ where $U=D^{-1 / 2} \bar{U}$. Let $P_{2}=U X^{\prime} H$. Since $Z^{\prime} H=Z^{\prime}-Z^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime}=\phi$, we then have $P_{1} P_{2}^{\prime}=\phi$. Thus

$$
\left[\begin{array}{c}
P_{1} \\
P_{2} \\
2
\end{array}\right]
$$

is a set of $b+t=1$ orthogonal rows.
Let $W=(X, Z)$ and let P_{3} be any set of $n-t-b+1$ orthogonal rows which are such that $P_{3} W W^{\prime} P_{3}^{\prime}=\phi$. There exist such orthogonal rows because W has rank $(t+b-1)$, wherein it follows that $W W$ 'has (n-t-b+1) characteristic roots equal to zero.

$$
P_{3} W W^{\prime} P_{3}^{\prime}=P_{3}\left(X X^{\prime}+Z Z^{\prime}\right) P_{3}^{\prime}=P_{3} X X^{t} P_{3}^{\prime}+P_{3} Z Z^{\prime} P_{3}^{\prime}=\phi
$$

Since XX' and ZZ' are positive semi-definite, we have

$$
\mathrm{P}_{3} \mathrm{XX}^{\prime} \mathrm{P}_{3}^{\prime}=\phi
$$

and

$$
P_{3} Z Z^{\prime} P_{3}^{\prime}=\phi .
$$

Then $P_{3} X=\phi$ and $P_{3} Z=\phi . \quad$ Consequently $P_{3} P_{1}^{\prime}=P_{3} Z D_{b}^{-1 / 2}=\phi$, and

$$
P_{3} P_{2}^{\prime}=P_{3} H X U^{\prime}=P_{3} X U^{\prime}-P_{3} Z(Z!Z)^{-1} Z X U^{\prime}=\phi
$$

Thus $P^{\prime}=\left(P_{1}^{\prime}, P_{2}^{\prime}, P_{3}^{\prime}\right)$ with P_{1}, P_{2}, and P_{3} defined as above, is an orthogonal ($\mathrm{n} \times \mathrm{n}$) matrix.

Sufficient Statistics for the Two-Way Model

Consider now the quadratic form for this model.

$$
\begin{gathered}
Q=(P Y-E P Y)^{\prime}\left(P V P^{\prime}\right)^{-1}(P Y-E P Y) \\
E P Y=P X T=\left(\begin{array}{c}
P_{1} X_{T} \\
P_{2} X_{\tau} \\
P_{3} X_{T}
\end{array}\right)=\left(\begin{array}{c}
D_{b}^{-1 / 2} Z^{\prime} X_{T} \\
U X^{\prime} H X_{\tau} \\
\phi
\end{array}\right) \\
V=E(Y-X \tau)\left(Y-X_{T}\right)^{\prime}=E(Z \beta+e)(Z \beta+e)^{\prime}
\end{gathered}
$$

$$
\begin{gathered}
V=E\left(Z \beta \beta^{\prime} Z^{\prime}\right)+2 E\left(e \beta^{\prime} Z^{\prime}\right)+E(\text { ee })=\sigma_{\beta}^{2} Z Z^{\prime}+\sigma^{2} \\
P V^{\prime}=\sigma_{\beta}^{2} P Z^{\prime} P^{\prime}+\sigma^{2} I \\
P Z Z^{\prime} P^{\prime}=\left[\begin{array}{lll}
P_{1} Z Z^{\prime} P_{1}^{\prime} & P_{1} Z Z^{\prime} P_{2}^{\prime} & P_{1} Z Z^{\prime} P_{3}^{\prime} \\
P_{2} Z Z^{\prime} P_{1}^{\prime} & P_{2} Z^{\prime} P_{2}^{\prime} & P_{2} Z^{\prime} P_{3}^{\prime} \\
P_{3} Z Z^{\prime} P_{1}^{\prime} & P_{3} Z Z^{\prime} P_{2}^{\prime} & P_{3} Z Z^{\prime} P_{3}^{\prime}
\end{array}\right] \\
P_{1} Z^{\prime} P_{1}^{\prime}=D_{b} \\
P_{2} Z Z^{\prime} P_{2}^{\prime}=U X X^{\prime} H Z Z^{\prime} H X U^{\prime}=\phi \\
P_{3} Z Z^{\prime} P_{3}=\phi \\
P_{1} Z Z^{\prime} P_{2}^{\prime}=P_{1} Z Z^{\prime} H X U^{\prime}=\phi \\
P_{1} Z Z^{\prime} P_{3}^{\prime}=\phi \\
P_{2} Z Z^{\prime} P_{3}^{\prime}=\phi
\end{gathered}
$$

The quadratic form can now be written
$Q=\left[\begin{array}{c}D_{b}^{-1 / 2} Z^{\prime} Y-D_{b}^{-1 / 2} Z^{\prime} X \tau \\ P_{2} Y-U X^{\prime} H X_{\tau} \\ P_{3} Y\end{array}\right]^{\prime}\left[\begin{array}{l}\left(\sigma_{\beta}^{2} D_{b}+\sigma^{2} I\right)^{-1} \\ \\ \\ \sigma^{-2} I\end{array}\right]$
Let the vector of block totals $Z^{r} Y$ be denoted by B; let the vector of
treatment totals $X^{\prime} Y$ be denoted by T; and let B_{i} be the vector of block totals for those blocks having $k_{i}\left(i=1\right.$, . . . a) plots. Let $N=Z^{\prime} X$ and let $\left(N_{1}^{\prime}, ~ . . . N_{i}^{\prime}\right.$, . . $\left.N_{a}^{\prime}\right)$ be the partition of N^{\prime} corresponding to the partition of B^{\prime} into (B_{1}^{\prime}, . . $B_{i}^{\prime}, \cdots . B_{a}^{\prime}$). Q can then be written

$$
\begin{aligned}
Q= & \sum_{i=1}^{a} k_{i}^{-1}\left(k_{i} \sigma_{\beta}^{2}+\sigma^{2}\right)^{-1}\left(B_{i}-N_{i} \tau\right)^{\prime}\left(B_{i}-N_{i} \tau\right)+ \\
& \sigma^{-2}\left(P_{2} Y_{i}-P_{2} X_{\tau}\right)^{\prime}\left(P_{2} Y-P_{2} X \tau\right)+\sigma^{-2} Y^{\prime} P_{3}^{\prime} P_{3} Y
\end{aligned}
$$

The total sum of squares $Y^{\prime} Y$ can be written

$$
Y^{\prime} Y=Y^{\prime} P^{\prime} P Y=Y^{\prime}\left(P_{1}^{\prime} P_{1}+P_{2}^{\prime} P_{2}+P_{3}^{\prime} P_{3}\right) Y
$$

Then

$$
\begin{gathered}
Y^{\prime} P_{3}^{\prime} P_{3} Y=Y^{\prime} Y-Y^{\prime} P_{1}^{\prime} P_{1} Y-Y^{\prime} P_{2}^{\prime} P_{2} Y \\
Y^{\prime} P_{3}^{\prime} P_{3} Y=Y^{\prime Y}-Y^{\prime} Z D_{b}^{-1} Z^{\prime} Y-Y^{\prime} H X U U^{\prime} U X^{\prime} H Y
\end{gathered}
$$

$Y^{\prime} P_{3}^{\prime} P_{3} Y$ is the intrablock error if Y 'HXU'UX'HY can be shown to be the reduction due to treatments adjusted for blocks. In our notation the reduction due to treatments adjusted $R(\tau / \beta)=\widehat{T} X^{\prime} H Y$ where $\hat{\tau}$ is a solution to the system of equations $X^{\prime} H X \hat{T}=X^{\prime} H Y$. Augment this system in the following manner:

$$
\left[\begin{array}{cc}
X^{\prime} H X & j \\
j^{\prime} & 0
\end{array}\right]\left[\begin{array}{l}
\hat{\tau} \\
g
\end{array}\right]=\left[\begin{array}{c}
X^{\prime} H Y \\
0
\end{array}\right]
$$

The matrix

$$
\left[\begin{array}{cc}
X^{\prime} H X & j \\
j^{\prime} & 0
\end{array}\right]
$$

has an inverse which we shall now show to be

$$
\left[\begin{array}{lr}
\left.\begin{array}{lr}
U^{\prime} U & t^{-1} j \\
t^{-1} j^{\prime} & 0
\end{array}\right] \\
t^{-1} j^{\prime} j=1 \\
j^{\prime} U^{\prime} U=\phi \\
t^{-1} j^{\prime} X ' H X=\phi
\end{array}\right.
$$

There remains to show that U 'UX'HX $+t^{-1} J=I$. We shall show this in the following manner. Since UX'HXU' $=I$, then $U^{\prime} U X ' H X U^{\prime}=U^{\prime}$. Multiplying by $D U$ we have $U^{\prime} U X^{\prime} H X U^{\prime} D U=U^{\prime} D U$, Now $\bar{U}^{*} \bar{U}^{*}=I$, hence

$$
\begin{gathered}
\left(t^{-1 / 2}{ }_{j}, \vec{U}^{\prime}\right)\left[\begin{array}{c}
t^{-1 / 2} j^{\prime} \\
\bar{U}
\end{array}\right]=t^{-1} j^{\prime}+\bar{U}^{\prime} \bar{U}=I \\
t^{-1} J+U^{\prime} D^{1 / 2} D^{1 / 2} U=I
\end{gathered}
$$

$$
U^{\prime} D U=I-t^{-1} \mathrm{~J}
$$

Substituting in the above equation we have

$$
U^{\prime} U X^{\prime} H X-U ' U X ' H X t^{-1} J=I-t^{-1} J .
$$

$H X j=\phi$, hence we have U'UX'HX $+t^{-1} J=I$. We may now write

$$
\binom{\hat{T}}{g}=\left[\begin{array}{cc}
U^{\prime} U & t^{-1} j \\
t^{-1} j^{\prime} & 0
\end{array}\right]\left[\begin{array}{c}
X^{\prime} H Y \\
0
\end{array}\right]=\left[\begin{array}{c}
U^{\prime} U X^{\prime} H Y \\
0
\end{array}\right]
$$

$\hat{\tau}=U^{\prime} U X^{\prime} H Y$ is then a solution of the system $X^{4} H X^{\hat{T}}=X^{\prime} H Y$ and $R(\tau / \beta)=$ Y'HXU'UX'HY. $Y^{\prime} P_{3}^{\ell} P_{3} Y$ is consequently the intra-block error and $Y^{\prime} P_{3}^{\prime} P_{3} Y=Y^{\prime} Y-R(\beta)-R(\tau / \beta)$.

The following theorem is a summary of the results of the preceding discussion.

Theorem 4.1. The vector of block totals B, the vector of treatment
totals T and the total sum of squares $Y^{\prime} Y$ form a sufficient statistic
of $(b+t+1)$ components.
Proof; If we let

$$
g_{i}=k_{i}^{-1}\left(k_{i} \sigma_{\beta}^{2}+\sigma^{2}\right)^{-1}
$$

then the quadratic form Q can be written

$$
\begin{aligned}
Q=\sum_{i=1}^{a} g_{i}\left(B_{i}-N_{i} \tau\right)^{\prime}\left(B_{i}-N_{i} \tau\right) & +\sigma^{-2}\left(P_{2} Y-P_{2} X \tau\right)^{\prime}\left(P_{2} Y-P_{2} X_{\tau}\right) \\
& +\sigma^{-2} Y^{\prime} P_{3}^{\prime} P_{3} Y
\end{aligned}
$$

$$
\begin{gathered}
P_{2} Y=U X^{\prime} H Y=U X^{\prime} Y-U X^{\prime} Z\left(Z^{\prime} Z\right)^{-1} Z^{\prime} Y \\
P_{2} Y=U T-U X^{\prime} Z D_{b}^{-1} B
\end{gathered}
$$

Substituting for $P_{2} Y$ and $Y^{i} P_{3}^{1} P_{3} Y, Q$ can be written

$$
\begin{aligned}
Q= & \sum_{i=1}^{a} g_{i}\left(B_{i}-N_{i} \tau\right)^{\prime \prime}\left(B_{i}-N_{i} \tau\right)+\sigma^{-2}\left[\left(U T-U X^{\prime} Z D_{b}^{-1} B\right)-\left(U X^{\prime} X_{T}+\right.\right. \\
& \left.\left.U X^{\prime} Z D_{b}^{-1} Z^{\prime} X \tau\right)\right]^{\prime}\left[\left(U T-U X^{\prime} Z D_{b}^{-1} B\right)-\left(U X^{\prime} X \tau+U X^{\prime} Z D_{b}^{-1} Z^{\prime} X^{\prime} \tau\right)\right] \\
& +\sigma^{-2}\left[\left(Y^{\prime} Y-R(\beta)-R(\tau / \beta)\right] .\right.
\end{aligned}
$$

This form of Q exhibits the vectors B and T and the sum of squares $Y^{\prime} Y$ as a sufficient statistic of ($b+t+1$) components.

Minimal Sufficient Statistics

We now direct our attention to finding minimal sufficient statistics.
Theorem 4. 2. Let n_{i} be the rank of \mathbb{N}_{i}. When $n_{i} \equiv m_{i}$ for all $i(i=1, \ldots$ a)
the dimension of a minimal statistic is $\mathrm{b}+\mathrm{t}$. The block totals B,
($t-1$) of the treatment totals and Y ' Y form a minimal sufficient sta-
tistic when $n_{i}=m_{i}$ for all $i(i=1, \ldots$. \quad).
Proof:

$$
\begin{aligned}
Q= & \sum_{i=1}^{a} g_{i}\left(B_{i}-N_{i} \tau\right)^{t}\left(B_{i}-N_{i} \tau\right)+ \\
& \sigma^{-2}\left[\left(P_{2} Y-P_{2} X_{\tau}\right)^{x}\left(P_{2} Y-P_{2} X_{\tau}\right)+Y^{\prime} P_{3}^{*} P_{3} Y\right]
\end{aligned}
$$

This form of Q exhibits a sufficient statistic of $b+t$ components. These components are the b block totals, the $(t-1)$ components of the vector $P_{2} Y$ and the scalar $Y^{\prime} P_{3}^{\prime} P_{3} Y$. To show that this statistic is minimal we apply the procedure of Chapter II.

$$
\begin{aligned}
Q-Q_{0}= & \sum_{i=1}^{a} g_{i}\left[\left(B_{i}^{\prime} B_{i}-B_{i 0}^{\prime} B_{i 0}\right)-2\left(B_{i}-B_{i 0}\right)^{\prime} N_{i} \tau\right]+\sigma^{-2}\left[\left(Y^{\prime} P_{2}^{\prime} \cdot P_{2} Y-\right.\right. \\
& \left.Y_{0}^{\ddagger} P_{2}^{\prime} \cdot P_{2} Y_{0}\right)-2\left(P_{2} Y-P_{2} Y_{0}\right)^{\prime} P_{2} X \tau+\left(Y^{\prime} P_{3}^{\ddagger} P_{3} Y-\right. \\
& \left.\left.Y_{0}^{\prime} P_{3}^{\prime} P_{3} Y_{0}\right)\right] \equiv 0 .
\end{aligned}
$$

According to Lemma 1, found in the appendix, the set $\left\{g_{i}\right\}$ is a set of linearly independent functions of the parameters involved. The linear independence of the g_{i} 's implies that

$$
\left(B_{i}^{\prime \prime} B_{i}-B_{i 0}^{\prime} B_{i 0}\right)-2\left(B_{i}-B_{i 0}\right)^{\prime} N_{i} \tau \equiv 0
$$

and

$$
\begin{gathered}
\left(Y^{\prime} P_{2}^{\prime} \cdot P_{2} Y-Y_{0}^{\prime} P_{2}^{\prime} \cdot P_{2} Y_{0}\right)-2\left(P_{2} Y-P_{2} Y_{0}\right)^{!} P_{2} X_{\tau} \\
+Y^{\prime} P_{3}^{\prime} P_{3} Y-Y_{0}^{\prime} P_{3}^{\prime} P_{3} Y_{0} \equiv 0
\end{gathered}
$$

The independence of the m_{i} rows of N_{i} implies $N_{i} \tau$ is a vector of m_{i} linearly independent functions of the parameters $\tau_{1} \cdot \tau_{t}$. This in turn implies $B_{i}-B_{i 0}=\phi$ or $B=B_{i 0^{\circ}}$ In like manner we have $P_{2} Y=P_{2} Y_{0}$ which implies $Y^{t} P_{2}^{\prime} \cdot P_{2} Y-Y_{0}^{\prime} P_{2}^{\prime} \cdot P_{2} Y_{0}=0$. Finally then $Y{ }_{3}^{\prime} P_{3}^{\prime} P_{3} Y$
must equal $Y_{0}^{\prime} P_{3}^{\prime} P_{3} Y_{0^{0}}$. Together these relationships are Lehmann and Scheffe's condition that the $t+b$ components exhibited are a minimal sufficient statistic.

Since $j_{b}^{\prime} B=j_{t}^{\prime} T$, the block totals B, (t -1) of the treatment totals and Y'Y form a sufficient statistic. Since this statistic has dimension $t+b$, it is a minimal sufficient statistic.

We now extend this theorem to the case where $n_{i}<m_{i}$. (Notice that this is the only alternative case. The rank of m_{i} rows can never be greater than m_{i}).

Theorem 4.3. Let S be the set $\left\{i \mid n_{i} \leq m_{i}\right\}$ and let \bar{S} be the complement
of S . In this case the dimension of a minimal sufficient statistic is

$$
\sum_{i \in S}\left(n_{i}+1\right)+\sum_{i \in \bar{S}} n_{i}+t
$$

The total sum of squares $Y^{\prime} Y_{0}(t-1)$ treatment totals, the block
totals for those blocks where $n_{i}=m_{i}, n_{i}$ linearly independent func-
tions of the block totals for each set of blocks where: $n_{i} \leq m_{i}$ and
the sum of squares $B_{i}^{\prime} B_{i}$ for each set of blocks where $n_{i} \leq m_{i}$ form
a minimal sufficient statistic for this case.
Proof: We have from the proof of Theorem 4.2

$$
\begin{gathered}
P_{2} Y=P_{2} Y_{0} \\
Y^{\prime} P_{3}^{\prime} P_{3} Y=Y_{0}^{\prime} P_{3}^{\prime} P_{3} Y_{0}
\end{gathered}
$$

and

$$
\left(B_{i}^{\prime} B_{i}-B_{i 0}^{\prime} B_{i 0}\right)-2\left(B_{i}-B_{i 0}\right)^{r} N_{i} \tau \equiv 0
$$

Consider first n_{i} where $i \in S$. Since the rank of N_{i}, equal to n_{i}, is less than the dimension of N_{i}, this identity does not imply that all of the block totals are present in a given minimal statistic.

Let N_{i} be partitioned into $N_{i}^{\prime}=\left(N_{i 1}^{\prime}, N_{i 2}^{\prime}\right)$ where $N_{i 1}$ has rank n_{i} and dimension ($\left.n_{i} \times t\right)$ and $N_{i 2}$ has dimension $\left[\left(m_{i}-n_{i}\right) \times t\right]$. (For sake of notation consider $N_{i 1}$ to be the first n_{i} rows of N_{i}.) If we now partition B_{i} into $B_{i}^{\prime}=\left(B_{i 1}^{\prime}, B_{i 2}^{\prime}\right)$ with dimensions corresponding to those of $N_{i 1}$ and $N_{i 2}$ then we can write $\mathrm{B}_{1} \mathrm{~N}_{\mathrm{i}} \boldsymbol{T}=\mathrm{B}_{\mathrm{i} 1}^{1} \mathrm{~N}_{\mathrm{i} 1} \tau+\mathrm{B}_{\mathrm{i} 2} \mathrm{~N}_{\mathrm{i} 2} \boldsymbol{\tau}$. Since the rows of $\mathrm{N}_{\mathrm{i} 2}$ are linear combinations of the rows of $N_{i l}$, there exists a matrix G_{i} such that $N_{i 2}=G_{i} N_{i 1}$. Thus $B_{i}^{\prime} N_{i} T=B_{i 1}^{\prime} N_{i 1} \tau+B_{i 2}^{\prime} G_{i} N_{i 1} T=\left(B_{i 1}+G_{i}^{\prime} B_{i 2}\right)^{\prime} N_{i 1} T$ where $N_{i l}$ is of full rank. The linear independence of the g_{i} by Lemmal 1 implies that

$$
\left(B_{i}^{\prime} B_{i}-B_{i 0}^{*} B_{i 0}\right)-2\left[\left(B_{i 1}+G_{i}^{\prime} B_{i 2}\right)^{*}-\left(B_{i 10}+G_{i}^{\prime} B_{i 20}\right)^{\dagger}\right] N_{i 1} T \equiv 0
$$

which in turn implies that $B_{i}^{\prime} B_{i}=B_{i 0}^{\prime} B_{i 0}$ and $B_{i 1}+G_{i}^{\prime} B_{i 2}=B_{i 10}+G_{i}^{\prime} B_{i 20}$. This is a set of $n_{i}+1$ components for a given $i \in S$. Summing over i $\in S$ we obtain

$$
\sum_{i \in S}\left(n_{i}+i\right)
$$

components of this type. For n_{i} where $i \in \bar{S}$ we proved in Theorem 4.2 that $B_{i}=B_{i 0}$. There are $\sum_{i \in S} \bar{S}_{i}$ statistics of this type. Lehmann and Scheffe's condition is thus satisfied for the

$$
\sum_{i \in S}\left(n_{i}+1\right)+\sum_{i \in \bar{S}_{i}} n_{i}+t
$$

above components.
We have proved the first statement of Theorem 4. 3. There remains to show that the following

$$
\sum_{i \in S}\left(n_{i}+1\right)+\sum_{i \in S} n_{i}+t
$$

components are sufficient and thus minimal sufficient:

$$
\begin{aligned}
& Y^{\prime} Y \\
& (t-1) \text { treatment totals } \\
& B_{i} \text { where } i \in \vec{S} \\
& B_{i}^{\prime} B_{i} \text { and } B_{i 1}+G_{i}^{r} B_{i 2} \text { where } i \in S
\end{aligned}
$$

The quadratic form Q written as

$$
\begin{aligned}
Q= & \left.\sum_{i \in S} g_{i}\left[B_{i}-N_{i} \tau\right]\right]_{i}^{\prime}\left[B_{i}-N_{i} \tau\right]+\sigma^{-2}\left[P_{2} Y-P_{2} X_{T}\right]\left[P_{2} Y-P_{2} X \tau\right] \\
& +\sigma^{-2} Y^{\prime} P_{3}^{\prime} P_{3} Y+\underset{i \in S}{\Sigma} g_{i}\left[B_{i}^{\prime} B_{i}-2\left(B_{i 1}+G_{i}^{\prime} B_{i 2}\right)^{\prime} N_{i 1} \tau+\tau \cdot N_{i}^{\prime} N_{i} \tau\right]
\end{aligned}
$$

exhibits $P_{2} Y$ and $Y^{\prime} P_{3}^{\prime} P_{3} Y$ as components of a minimal statistic. Consider $P_{2} Y, P_{2} Y=U T-U N^{y} D_{b}^{-1} B$. The vector $N^{\prime} D_{b}^{-1} B$ can be partitioned into subvectors of dimension m_{i} corresponding to the partitioning of B into $B^{\prime}=\left(B_{1}^{\prime}, \ldots . B_{a}^{\prime}\right)$. The general term of this partitioning is $k_{i}^{\mu l} N_{i}^{\prime} B_{i}$ for $i \in \bar{S}$. From the above discussion we see that $P_{2} Y$ can be written in terms of the block totals B_{i} for $i \in \bar{S}_{,}\left(B_{i 1}+G_{i}^{\prime} B_{i 2}\right)$ for $i \in S$, and the treatment totals. T. We shall now show that one of the treatment totals is unnecessary. Since $N_{i 2}=G_{i} N_{i l}$, we have $N_{i 2}{ }^{j}=G_{i} N_{i 1}{ }^{j}$. Then

$$
\begin{aligned}
k_{i} j_{m_{i}-n_{i}} & =k_{i} G_{1} j_{n_{i}}, \\
j_{m_{i}-n_{i}} & =G_{1} j_{n_{i}},
\end{aligned}
$$

or

$$
j_{n_{i}}^{\prime} G_{i}^{\prime}=j_{m_{i}-n_{i}}^{\prime} .
$$

Now

$$
\begin{aligned}
\sum_{i \in S} j_{n_{i}}^{\prime}\left(B_{i 1}+G_{i}^{\prime} B_{i 2}\right)+\sum_{i \in S} j_{m}^{\prime} B_{i} & =\sum_{i \in S}^{\sum}\left(j_{n}^{\prime} B_{i 1}+j_{m_{i}}^{\prime}-n_{i} B_{i 2}\right)+\sum_{i \in S} j_{m}^{\prime} m_{i} B_{i} \\
& =\sum_{i=1}^{a} j_{m}^{\prime} B_{i}=j^{\prime} B=j^{\prime} T
\end{aligned}
$$

We can thus conclude that $P_{2} Y$ is a function of $t-1$ treatment totals and the above functions of block totals.

$$
Y^{\prime} P_{3}^{\prime} P_{3} Y=Y Y^{\prime} Y-Y^{\prime} Z D_{b}^{-1} Z^{\prime} Y-Y^{\prime} H X U^{\prime} U X ' H Y
$$

$$
\begin{gathered}
Y^{\prime} Z D_{b}^{-1} Z^{\prime} Y=\sum_{i=1}^{a} k_{i}^{-1} B_{i}^{!} B_{i} \\
Y^{\prime} H X=Y^{\prime} X-Y^{\prime} Z D_{b}^{-1} N=T^{\prime}-B^{\prime} D_{b}^{-1} N
\end{gathered}
$$

We have already seen that $B^{\prime} D_{b}^{-1} N$ is a function of $B_{i 1}+G_{i}^{\prime} B_{i 2}$ when íS and B_{i} when $i \in \bar{S}$. We can here conclude that $Y P_{3}^{\prime} P_{3} Y$ is a function of $Y^{\prime} Y$ and the above mentioned components. This completes the proof of Theorem 4.3 for we have shown that the stated statistic is a function of a minimal sufficient statistic each statistic having the same dimension,

Example for the Two-Way Classification
Data

We observe first that blocks numbered 1, 2, 4, 5, 6, all have 4 plots per block and block numbered 3 has 6 plots. This calls for a renumbering of the blocks. But before we renumber observe that in the matrix $N *$ several rows are linear combinations of other rows.

$$
N^{*}=\left(\begin{array}{lll}
2 & 2 & 0 \\
1 & 1 & 2 \\
3 & 2 & 1 \\
1 & 1 & 2 \\
2 & 0 & 2 \\
2 & 1 & 1
\end{array}\right)
$$

Rows 1, 2, 5, are linearly independent, hence in the remumbering we place the blocks corresponding to these numbers first.

Data Reordered According to Plots per Block
and Independence of Rows

	τ_{1}	τ_{2}	τ_{3}
	2.1	4.2	
β_{1}	3.5	3.9	--
	1.8	5.3	3.8
β_{2}	---	- . -	3.0
	2.8	--	3.8
β_{3}	3.2	\cdots	4.2
	2.0	4.8	4.1
β_{4}	-..-	- - -	3.2
	1.8	4. 0	3.5
β_{5}	2.0	- $-\infty$	- .-.
	1.5	5.5	3.2
β_{6}	2.6	4.8	- -
	2.2	---	---

According to Theorem 4.1 the block totals $B^{\prime}=(13.7,13.9,14.0,14.1$, 11. 3, 19.8), the treatment totals $T^{\prime}=(25.5,32.5,28.8)$, and the total sum of squares $Y^{\prime} Y=321.4$ are the values of the components of a suf. ficient statistic for this example.

$$
N=\left(\begin{array}{lll}
2 & 2 & 0 \\
1 & 1 & 2 \\
2 & 0 & 2 \\
1 & 1 & 2 \\
2 & 1 & 1 \\
3 & 2 & 1
\end{array}\right)
$$

We have $m_{1}=5$ and $m_{2}=1$. The partition of N is as follows.

$$
N_{1}=\left(\begin{array}{lll}
2 & 2 & 0 \\
1 & 1 & 2 \\
2 & 0 & 2 \\
1 & 1 & 2 \\
2 & 1 & 1
\end{array}\right)
$$

$$
\mathrm{N}_{2}=\left[\begin{array}{lll}
3 & \cdot 2 & 1]
\end{array}\right.
$$

The rank of N_{1} is $n_{1}=3$. We partition N_{1} into

$$
N_{11}=\left(\begin{array}{lll}
2 & 2 & 0 \\
1 & 1 & 2 \\
2 & 0 & 2
\end{array}\right) \quad N_{12}=\left(\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1
\end{array}\right)
$$

N_{12} can be written in terms of N_{11} through the matrix equation

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
2 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right]\left[\begin{array}{lll}
2 & 2 & 0 \\
1 & 1 & 2 \\
2 & 0 & 2
\end{array}\right)
$$

Let

$$
G=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right)
$$

Now Theorem 4. 2 tells us that the dimension of a minimal statistic for this data is $n_{1}+1+n_{2}+t=8$. The values of the components of a minimal statistic for this example are

$$
\begin{gathered}
T^{\prime}=(25.5,32.5), \\
B_{2}=19.8, \\
\left(B_{11}+G^{\prime} B_{12}\right)^{\prime}=(19.35,28.0,19.65),
\end{gathered}
$$

$$
B_{1}^{\top} B_{1}=903.4
$$

and

$$
Y^{\prime} \mathrm{Y}=321.4
$$

Distribution of the Minimal Sufficient Statistic

In this section we shall discuss the distribution of $X P_{i} P_{i} Y,(i=1$, 2 2, 3) and the distribution of the components of the mimimal sufficiext statistic exhibited in Theorem 4. 3.

Since Y is distributed $N\left[\mu j_{0}, \sigma_{\beta}^{2} Z Z^{1}+\sigma^{2} I\right]$, we can immediatelly write the distribution of the vector of treatment totals $T=X^{\circ} Y$ as $N\left[\mu X^{\prime} j, X^{\prime}\left(\sigma_{\beta}^{2} Z Z^{\prime}+\sigma^{2} I\right) X\right]$, or equivalently $N\left[\mu X^{\prime \prime}{ }^{\prime},\left(\sigma_{\beta}^{2} N^{\prime} N+\sigma^{2} D_{f}\right)\right]$.

The vector of block totals $B=Z^{\prime} Y$ is distributed $\mathbb{N}\left[\mu Z^{i}\right)_{,} Z^{\eta}\left(w_{\beta}^{2} Z Z^{i}+\right.$ $\left.\left.\sigma^{2} I\right) Z\right]$, or equivalently $N\left[\mu Z j_{p}\left(\sigma_{\beta}^{2} D_{b}^{2}+\sigma^{2} D_{b}\right)\right]$. We now partition Z into $Z=\left(Z_{1}, \ldots, Z_{i}, \ldots Z_{a}\right)$ such that $B_{i}=Z_{i} Y$ is the vectar of black totals for those blocks having k_{i} plots per block. B_{i} is distributed $N\left[\mu Z_{i}^{1} j, Z_{i}^{\prime}\left(\sigma_{\beta}^{2} Z Z^{\prime}+\sigma^{2} I\right) Z_{i}\right]$, or equivalently $N\left[k_{i} \mu j_{m_{i}},\left(k_{i}^{2} \sigma_{\beta}^{2}+k_{i} \sigma^{2}\right) \mathbb{L}_{m_{i}}\right]$ 。 The distribution of the components $B_{i 1}$ and $\left(B_{i 11}+G^{\prime} B_{i 2}\right)$ are immediate consequences of the above statement.
$B_{i 1}$ is distributed $N\left[k_{i} \mu j_{n_{i}},\left(k_{i}^{2} \sigma_{\beta}^{2}+k_{i} \sigma^{2}\right) I_{n_{i}}\right], G_{i} B_{i, 2}$ is distributed $N\left[k_{i} \mu G_{i}^{\prime j},\left(k_{i}^{2} \sigma_{\beta}^{2}+k_{i} \sigma^{2}\right) G_{i}^{\prime} G_{i}\right]$, and $B_{i I}+G_{i}^{\prime} B_{i 2}$ is distributed $N\left[k_{i j} \mu\left(I+G_{i}\right)\right)_{i,}$ $\left.\left(k_{i}^{2} \sigma_{\beta}^{2}+k_{i} \sigma^{2}\right)\left(I+G_{i}^{\prime} G_{i}\right)\right]$.

Let us now investigate the distribution of $B_{i} B_{i}$. Observe first that $\left(k_{i}^{2} \sigma_{\beta}^{2}+k_{i} \sigma^{2}\right)^{-1} I$ multiplied by the variance of B_{i} is the identity matrix of dimension m_{i}. This is the necessary and sufficient condition for $\left\langle k_{i j}^{2} \sigma_{\beta}^{2}+\right.$ $\left.k_{i} \sigma^{2}\right)^{-1} B_{i}^{\prime} B_{i}$ to be distributed as $X^{\prime 2}\left(m_{i} ; \lambda\right)$ where

$$
\lambda=\frac{2^{-1} \mu^{2} k_{i}^{2}{ }_{i}{ }^{\prime} j}{k_{i}^{2} \sigma_{\beta}^{2}+k_{i} \sigma^{2}}=\frac{2^{-1} k_{i} m_{i} \mu^{2}}{k_{i} \sigma_{\beta}^{2}+\sigma^{2}} .
$$

$B_{i}^{\prime} B_{i}$ is then distributed $a s k_{i}\left(k_{i} \sigma_{\beta}^{2}+\sigma^{2}\right) X^{2}\left[m_{i}, 2^{-1} k_{i} m_{i} \mu^{2}\left(k_{i} \sigma_{\beta}^{2}+\sigma\right)^{2}\right]$ $Z_{i} Z_{i}^{\prime}\left(\sigma_{\beta}^{2} Z Z^{\prime}+\sigma^{2} I\right) Z_{j} Z_{j}^{\prime}=\phi$ for $i \neq j$ 。 This is sufficient to imply the inm dependence of $B_{i}^{\prime} B_{i}$ and $B_{j}^{\prime} B_{j}(i \neq j)$ ．

We shall now turn our attention to a discussion of the distribution of $Y^{\prime} P_{i}^{\prime} P_{i} Y ;\left(i=1,2\right.$ ，3）．Since $P_{1}=D_{b}^{-1 / 2} Z^{\prime}$ the quadratic form $Y^{s} P_{\mathbb{1}}^{\prime} P_{1} Y$ can be written $Y^{0} Z D_{b}^{-1} Z^{\prime} Y$ ．If we now partition Z as above $Y P_{1}^{\prime} P_{Q} Y$ can be written

$$
Y^{\prime} P_{1}^{\prime} P_{1} Y=\sum_{i=1}^{a} k_{i}^{-1} Y^{\prime} Z_{i} Z_{i}^{\prime} Y=\sum_{i=1}^{a} k_{i}^{-1} B_{i}^{\prime} B_{i}
$$

$Y^{\prime} P_{1} P_{1} Y$ is then distributed as a linear combination of independent non central chi square variables．

Consider the quantities $\sigma^{-2} Y^{\prime} P_{i} P_{i} Y(i=2,3)$ ；and the following re－ 1ationships．
（a）$\sigma^{-2} P_{i}^{0} P_{i}\left(\sigma_{\beta}^{2} Z Z^{1}+\sigma^{2} I\right)$ reduces to $P_{i}^{\prime} P_{i} ;$
（b）$P_{2}^{\prime} P_{2}$ is idempotent of rank $t-\mathbb{I}_{8}$

$$
P_{3}^{1} P_{3} \text { is idempotent of rank } n-t-b+1 ;
$$

（c）$\lambda_{i}=2^{-1} \mu^{2}{ }_{j} P_{i} P_{i} \mathrm{j}^{-2}=0$ 。 $(\mathrm{i}=2,3)$ 。
The above relationships imply that $Y^{\prime} P_{2}^{\prime} P_{2} Y$ is distributed as $\sigma^{2} X^{2}(t-1)$ and $Y^{\prime} P_{3}^{\prime} P_{3} Y$ is distributed as $\sigma^{2} X^{2}(n-t-b+1)$ ．Since $P_{i}^{\prime} P_{i}\left(\sigma_{\beta}^{2} Z Z^{\prime}+\right.$ $\left.\sigma^{2} I\right) P_{j}^{\prime} P_{j}=\phi ;(i \neq j ; i, j=I, 2,3)$ ，the quadratic forms $Y P_{i}^{\prime} P_{i}^{\prime} P_{i} Y$ are an
independent set.
We have previously seen that Y ' Y can be written

$$
Y^{q} Y=\sum_{i=1}^{3} Y^{\prime} P_{i}^{\prime} P_{i} Y=\sum_{i=1}^{a} k_{i}^{-11} B_{i}^{i} B_{i}+Y^{8} P_{2}^{q} P_{2} Y+Y^{q} P_{3}^{q} P_{3} Y
$$

Y'Y is thexefore distributed as a linear combination of independent chis square variables two of which are central chi square variables.

Balanced and Partially Balanced Desigmas

Balanced and partially balanced incomplete block designs are of course special cases of the two way classification problem just considered. In this section we shall exhibit, in a more familiar notation, a minimal sufficient statistic for these designs. As before let equal the rank of the matrix $Z^{9} X$ in the model $Y=X_{T}+Z \beta+e$. Componentwise the model for the balanced and partially balanced designs is

$$
\begin{gathered}
y_{i j k}=\tau_{i}+\beta_{j}+e_{i, j k} \\
\left(i=1_{s} \ldots . \operatorname{t}\right) \tau_{i} \text { a fixed constant } \\
\left(j=1_{g} \ldots \text { b) } \beta_{j} \text { distributed } N\left(0_{0} \sigma_{\beta}^{2}\right)\right. \text { and independertly } \\
k=n_{i j}=0 \text { if treatment } i \text { does not appear in block } j \\
k=n_{i j}=1 \text { if treatment } i \text { appears in block } j .
\end{gathered}
$$

In Table I which follows the block totals the treatment totals are defined as

$$
\begin{aligned}
& y \cdot j^{*}=\sum_{i k} y_{i j k} \\
& y_{i} \ldots=\sum_{j k} y_{i j k}
\end{aligned}
$$

Table I

Minimal Sufficient Statistics for Two-Way Classification Designs

Design	Dimension	A Minimal Sufficient Statistic
Balanced Complete Block	$t+2$	$\sum_{i j k}^{y_{i j k}^{2}}, \underset{j}{\Sigma y}{ }_{j}^{2}, y_{i},(i=1, \ldots, t)$
Balanced Incomplete Block with b>t	$2 \mathrm{t}+1$	$\underset{i j k}{\Sigma y_{i j k}^{2}}, \underset{j}{\Sigma y} \cdot{ }_{j}^{2} \cdot, y_{i},(i=1, \ldots, t-1)$
		$\operatorname{\Sigma n}_{j}{ }_{i j} y \cdot j^{\circ} \cdot(i=1, \ldots, t)$
Balanced Incomplete Block with $\mathrm{b}=\mathrm{t}$	2 t	$\sum_{i j k}^{y_{i j k}^{2}}, y \cdot{ }_{j} \cdot(j=1, \ldots, b), y_{i}, \cdot(i=1, \ldots, t-1)$
Partially Balanced Incomplete Block with $\mathrm{n}<\mathrm{b}$	$n+t+1$	$\sum_{i j k} y_{i j k}^{2}, y_{i} \ldots(i=1, \ldots, t-1), \sum_{j} y_{j}^{2}$, and 2 linearly independent functions of block totals.
Partially Balanced Incomplete Block with $\mathrm{n}=\mathrm{b}$	$b+t$	$\sum_{i j k}^{y_{i j k}^{2}}, y_{j} \cdot(j=1, \ldots, b), y_{i}, \cdot(i=1, \ldots, t-1)$

We have seen that the dimension of a minimal sufficient statistic in a partially balanced incomplete block design is a function of the rank n of the matrix $Z^{\prime} X$ where Z and X are matrices in the model $Y=X \tau+Z \beta+e$. Of special interest are the partially balanced group divisible designs with two associate classes (6). In these designs the abservations can be divided into c groups of each such that any two treatments of the same group are first associates while two treatments from different groups are second associates. Table II, which follows, gives the value of the rank of $Z^{\prime} X$ in terms of the number of treatments t and the parameter d (7).

Table II

The Rank of Z'X For Partially Balanced Group Divisible Incomplete Block Designs with Two Associate Classes

Design	Rank
Singular	d
Semi-regular	$\mathrm{t}-\mathrm{d}+\mathrm{l}$
Regular	t

CHAPTER V

A CLASS OF N -WAY CLASSIFICATION MODELS

Consider the model

$$
Y=\sum_{j=1}^{v} X_{j} \cdot{ }_{j}+\sum_{k=1}^{h} Z_{k} \beta_{k}
$$

where X_{j} and Z_{k} are matrices of known constants; τ_{j} is a vector of t_{j} pa. rameters; and β_{k} is a vector of b_{k} parameters. Throughout this chapter the following assumptions are made.
(a) $\tau_{j}(i=1, \ldots, v)$ are vectors of fixed functionally independent unknown parameters.
(b) $\quad \beta_{k}(k=1, \ldots, h)$ are vectors distributed normally with mean ϕ and covariance σ_{k}^{2} I. All the components of the vectors β_{k} ($k=1$, h) are stochastically independent,
(c) $\sigma_{k}^{2}(k=1, \ldots, h)$ are functionally independent and each σ_{k}^{2} is independent of $\tau_{j}(j=1, \ldots, v)$.
(d) All pairs of matrices from the set $\left\{X_{1} X_{1}^{\prime} \ldots X_{v} X_{v}^{p}, Z_{1} Z_{1}^{\prime} \ldots Z_{h} Z_{h}^{\prime}\right\}$ commute.
(e) For some k, say k_{0}, we have $Z_{k_{0}}=I$.
(f) The matrices $X_{j} X_{j}^{\prime}(j=1, \ldots, v), Z_{k} Z_{k}^{\prime}(k=1, \ldots, h)$ are linearly independent.

Definition: The matrices $A(i=1, \ldots, k)$ are said to be linearly independent if for any set of real constants $a_{i}\left(i=1_{9}, \ldots, k\right)$

$$
\sum_{i=1}^{k} a_{i} A_{i}=\phi
$$

${\underline{\text { implies }}{ }_{i}=0 .}$

Partitioning P

There exists an orthogonal matrix P which has the property that $P X_{j} X_{j}^{!} P^{\prime}=D_{j}\left(j=I_{2}, \ldots, v\right)$ and $P Z_{k} Z_{k}^{y} P^{\prime}=E_{k}(k=1, \ldots, h)$ where D_{j} and E_{k} are diagonal (5). Let the rank of X be denoted by q where $X=\left(X_{1}, X_{2}, \cdots, X_{v}\right)$, then

$$
\begin{aligned}
& X X^{\prime}=\sum_{j=1}^{v} X_{j} X_{j}^{\prime} \\
& P X X^{\prime} P^{\prime}=\sum_{j=1}^{v} D_{j} .
\end{aligned}
$$

Since the rank of $P X X X^{\prime}$ is also q, exactly q of the diagonal elements of PXX'P' are nonzero. Let the rows of P be arranged such that the q nonzero characteristic roots of XX' are the first q characteristic roots on the diagonal of PXX'P'. Thus $P_{u} X^{\prime} X_{u}^{\prime} \neq 0$ for $u=1, \ldots, q$ and $P_{u} X X_{u}^{\prime} P_{u}^{\prime}=0$ for $u=q+1, \ldots, n$. This, however, implies $P_{u} X \neq 0$
 where R is the ($q \times n$) matrix of the first q rows of P and S is the $[(n-q) \times n$] matrix of the last $n-q$ rows of P.

Let $\tau^{\prime}=\left(\tau_{1}^{\prime} \ldots \ldots, \tau_{V}^{1}\right) . R X \tau$ is then a $(q \times 1)$ vector of linearly independent estimable functions of the parameters of τ. Furthermore, the yector RX τ is composed of linear combinations of the parameters which span the space of all linearly independent estimable functions of the parameters of $\tau . S X \tau$ on the other hand is ϕ.

Let V denote the covariance matrix of Y. It readily follows by applying the definition of covariance to the model considered that

$$
V=\sum_{k=1}^{h} \sigma_{k}^{2} Z_{k} Z_{k}^{\prime}
$$

Now

$$
P V P^{\prime}=\sum_{k=1}^{h} \sigma_{k}^{2} E_{k}
$$

which is a diagonal matrix with the characteristic roots of V on the diagonal.

$$
P V^{-1} P^{\prime}=\binom{R}{S} V^{-1}\left[R^{\prime}, S^{\prime}\right]=\left(\begin{array}{ll}
R V^{-1} R^{\prime} & R V^{-1} S^{\prime} \\
S V^{-1} R^{\prime \prime} & S V^{-1} S^{\prime}
\end{array}\right)
$$

$R V^{-1} S^{\prime}$ and $S V^{-1} R^{\prime}$ equal $\phi . R V^{-1} R^{\prime}$ and $S V^{-1} S^{\prime}$ are diagonal matrices with diagonal elements equal to reciprocals of the characteristic roots of V.

$$
\begin{gathered}
Q=(Y-X \tau)^{\prime} V^{-1}(Y-X \tau) \\
Q=(P Y-P X \tau)^{\prime} P V^{-1} P^{\prime}(P Y-P X \tau)
\end{gathered}
$$

$$
Q=\binom{R Y-R X_{\tau}}{S Y}^{\prime}\left(\begin{array}{cc}
R V^{-1} R^{\prime} & \phi \\
\phi & S V^{-1} S^{\prime}
\end{array}\right]\left[\begin{array}{c}
R Y-R X_{\tau} \\
S Y
\end{array}\right]
$$

Let s be the number of distinct diagonal elements of $S^{-1} S^{\prime}$. Denote them by $d_{i}^{-1}(i=1, \ldots, s)$ where the d_{i} are s of the distinct character istic roots of V. Arrange the rows of S so that the like characteristic roots are grouped together on the diagonal of SVS'. Then partition S' into $\left(S_{1}^{\prime}, S_{2}^{\prime}, \ldots, S_{s}^{\prime}\right)$ such that $S_{i} V^{-1} S_{i}^{\prime}=d_{i}^{-1} I$ where the dimension of I is the multiplicity of d_{i} in the set of diagonal elements of SVS'.

Sufficient Statistics for the N-Way Mode1

If we now denote $R_{u} X \tau$ by θ_{u}, the quadratic form Q can be written

$$
Q=\sum_{u=1}^{q} g_{u}^{-1}\left(R_{u} Y-\theta_{u}\right)^{2}+\sum_{i=1}^{s} d_{i}^{-1} Y S_{i} S_{i} Y
$$

where $g_{u}(u=1$, . . . q) are the q diagonal elements of RVR'. This form exhibits a sufficient statistic of $q+s$ components namely $R_{u} Y$ $(u=1, \ldots, q)$ and Y ' $S_{i}^{\prime} S_{i} Y(i=1, \ldots, s)$.

Distribution of the Sufficient Statistic
$R_{u} Y$ is distributed as a univariate normal variable with mean θ_{u} and variance $g_{u}=R_{u} V R_{u}^{\prime}$, and

$$
\frac{Y^{\prime} S_{i}^{\prime} S_{i} Y}{d_{i}}
$$

is distributed as a central chi square variable with degrees of freedom n_{i} equal to the multiplicity of d_{i}. in the set of diagonal elements of SVS'. The $q+s$ components of the sufficient statistic are independent.

Minimal Sufficient Statistics

Theorem 5.1. The sufficient statistic with $q+s$ components $R Y$
$(u=1, \ldots, q)$ and $Y_{i} S_{i} Y(i=1, \ldots, s)$ is a minimal sufficient
statistic.
Proof: We form the difference of quadratic forms

$$
\begin{aligned}
Q-Q_{0}= & \sum_{u=1}^{q} g_{u}^{-1}\left[\left(R_{u} Y-\theta_{u}\right)^{2}-\left(R_{u} Y_{0}-\theta_{u}\right)^{2}\right]+ \\
& \sum_{i=1}^{s} d_{i}^{-1}\left[Y^{\prime} S_{i}^{\prime} S_{i} Y-Y_{0}^{1} S_{i}^{s} S_{i} Y_{0}\right]
\end{aligned}
$$

$Q-Q_{0}$ equals zero when $R_{u} Y=R_{u} Y_{0}(u=1$, ..., $q)$ and $Y{ }^{\prime} S_{i} S_{i} Y=$ $Y_{0}^{\prime} S_{i}^{\prime} S_{i} Y_{0}(i=1, \ldots, s)$. Now set $Q-Q_{0}$ identically equal to zero in the g_{u}^{-1}, the θ_{u}, and the d_{i}^{-1}. The θ_{u}, the d_{i}^{-1} and the distinct g_{u}^{-1} form a linearly independent set of parameters. If d_{i} is not equal to some g_{u}, we immediately have $Y{ }^{\prime} S_{i}^{\prime} S_{i} Y=Y_{0}^{\prime} S_{i}^{\prime} S_{i} Y_{0}$. If g_{u} equals some d_{i}, say d_{k}, then the above identity implies

$$
\sum_{u}^{*}\left[\left(R_{u} Y-\theta_{u}\right)^{2}-\left(R_{u} Y_{0}-\theta_{u}\right)^{2}\right]+Y S_{k}^{!} S_{k} Y-Y_{0}^{1} S_{k}^{1} S_{k} Y_{0} \equiv 0
$$

Here $\underset{u}{\Sigma^{*}}$ indicates the sum over all u where $g_{u}=d_{k}$. Expanding we have

$$
\underset{u}{\Sigma_{u}^{*}}\left[\left(R_{u} Y\right)^{2}-\left(R_{u} Y_{0}\right)^{2}-2 \theta_{u}\left(R_{u} Y-R_{u} Y_{0}\right)\right]+Y^{\prime} S_{k}^{\prime} S_{k} Y-Y_{0}^{\prime} S_{k}^{\prime} S_{k} Y_{0} \equiv 0
$$

In this form it can be seen that $R_{u} Y=R_{u} Y_{0}$ from which it follows that $Y^{\prime} S_{k}^{\prime} S_{k} Y=Y_{0}^{\prime} S_{k}^{\prime} S_{k} Y_{0}$, (for all k where d_{k} equals some g_{u}). The fact that $R_{u} Y=R_{u} Y_{0}$ when g_{u} is not equal to some d_{i} follows as a special case of the above situation. We thus have $R_{u} Y=R_{u} Y_{0}(u=1, \ldots, q)$ and $Y^{\prime} S_{i}^{\prime} S_{i} Y=Y_{0}^{\prime} S_{i}^{\prime} S_{i} Y_{0}(i=1, \ldots, s)$ for all cases. This is Lehmann and Scheffe's condition for a sufficient statistic to be a minimal sufficient statistic.

A Complete Sufficient Statistic

Theorem 5.2. When the covariance matrix V has h distinct character istic roots, then the sufficient statistic $R_{u} Y\left(u=l_{2}, \ldots, q\right)$ and $Y^{\prime} S_{i}^{\prime} S_{i} Y\left(i=1, \ldots,{ }^{Y}\right.$. is a complete sufficient statistic of dimension $q+s$.
Proof: Write the quadratic form Q as follows,

Let $Z_{u}=R_{u} Y(u=1, \ldots, q) Z_{u}=Y^{\prime} S_{u-q^{\prime}}^{\prime} S_{u-q} Y(u=q, 1$, ..., s)。
Let $P_{\theta, \sigma^{2}}\left(Z_{1}, \cdots, Z_{q+s}\right)$ be the joint probability density function of $Z_{u}(u=1, \ldots, q+s)$. Since these statistics are stochastically independent, we have
$P_{\theta, \sigma} 2^{\left(Z_{1} \ldots Z_{q+s}\right)=C} \prod_{u=q+1}^{q+s} Z_{u} \frac{n_{u}-2}{2} e^{-\frac{Z_{u}}{2 d_{u-q}}} e^{-\frac{1}{2} \sum_{u=1}^{q} g_{u}^{-1}\left(Z_{u}-\theta_{u}\right)^{2}}$
Suppose there exists a function $f\left(Z_{1} \ldots Z_{q+s}\right)$ such that

$$
\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{0}^{\infty} \cdots \int_{0}^{\infty} f\left(z_{1} \cdots z_{q+s}\right) \prod_{u=q+1}^{q+s} Z_{u} e^{\frac{n_{u}-2}{2}}-\frac{z_{u}}{2 d_{u-q}} e^{-\frac{1}{2} \sum_{u=1}^{q} g_{u}^{-1}\left(z_{u}-\theta_{u}\right)^{2}} \equiv 0
$$

According to Fubini s Theorem this can be written

$$
\int_{0}^{\infty} \ldots \int_{0}^{\infty} e^{-\frac{1}{2} \sum_{u=1}^{q} g_{u}^{-1}\left(z_{u}^{2}-2 \theta_{u} z_{u}\right)} \phi\left(z_{1} \ldots z_{q}\right) d z_{1} \ldots d z_{q} \equiv 0
$$

where

$$
\begin{aligned}
& \int_{0}^{\infty} \ldots \int_{0}^{\infty} e^{\sum_{u=1}^{q} \frac{\theta_{u} z_{u}}{g_{u}}}\left[e^{-\frac{1}{2} \sum_{u=1}^{q} \frac{z_{u}^{2}}{g_{u}}} \phi\left(z_{1} \ldots z_{q}\right)\right] d z_{1} \ldots d z_{q} \equiv 0 .
\end{aligned}
$$

Since the parameters in the set $\left\{\theta_{u}\right\}(u=1, \ldots, q)$ were obtained by or thogonal transforming a set of functionally independent parameters the θ_{u} are themselves functionally independent. Each θ_{u} is functionally
independent of the characteristic roots of V hence we can apply the uniqueness theorem of the unilateral laplace transform to assert that the above identity implies

$$
-\frac{1}{2} \sum_{u=1}^{q} \frac{z_{u}^{2}}{g_{u}}
$$

e

$$
\phi\left(Z_{1} \ldots Z_{q}\right) \equiv 0
$$

$$
-\frac{1}{2} \sum_{u=1}^{q} \frac{z_{u}^{2}}{g_{u}}
$$

e
is not equal to zero hence $\phi\left(Z_{1} \ldots Z_{q}\right) \equiv 0$ 。
The elements of the $\operatorname{set}\left\{d_{u-q}\right\}(u=q+1, \ldots, q+s)$ are functionally independent according to Lemma 2 found in the appendix. The uniqueness theorem of the bilateral laplace transform is now used to assert that $\phi\left(Z_{1}, \ldots Z_{q}\right) \equiv 0$ implies

$$
f\left(z_{1} \ldots z_{q+s}\right) \prod_{u=q+1}^{q+s} z_{u}^{\frac{n_{u}-2}{2}} \equiv 0
$$

Except on a set with probability measure zero

$$
\prod_{u=q+1}^{q+s} Z_{u} \frac{n_{u}-2}{2} \neq 0
$$

hence $f\left(Z_{1} \ldots Z_{q+s}\right) \equiv 0$ except on a set with probability measure zero.

Thus the statistic with components $R_{u} Y(u=1, \ldots, q)$ and $Y^{i} S_{i}^{\top} S_{i} Y$ ($i=1$, . . . , s) is a complete sufficient statistic when the number of distinct characteristic roots of V is equal to h,

CHAPTER VI

SUMMARY

Through an orthogonal transformation of the vector of observations the data was so transformed that estimates of the same function of parameters could be combined. The combined transformed data was then examined for the following properties: sufficiency, completeness, and minimal dimension. The objective was to exhibit minimal sufficient statistics for a class of statistical designs which fall in the category of Eisenhart's Model III.

In the variance component model for the one-way classification of data we have the following theorem:

The sum and the sum of squares of the treatment totals for those treat-
ments having $n_{i}(i=1, \ldots$, a) observations, augmented by the
total sum of squares form a sufficient statistic.
Conditions are given for determining which of these components form a minimal sufficient statistic. In Eisenhart's Model III for two-way clas sification of data we have the following theorem:

The block totals, the treatment totals, and the total sum of squares form
a sufficient statistic.

Conditions are given for condensing these components into a minimal sufficient statistic. Minimal sufficient statistics and complete sufficient statistics are given for special sets of assumptions in the n-way classification situation.

Suggestions for Future Study

In many cases the quantities used in the conventional analysis of variance method of computing estimates of parameters: are not the quantities which appear as components of the minimal sufficient statistics exhibited in this thesis. For maximum use to be made of the results of this thesis, a new computing technique must be devised or the existing analysis of variance method must be written in terms of the components of a minimal sufficient statistic.

In many models there remains the problem of how best to combine estimates of the same function of parameters.

The n-way classification problem is only partially solved in this thesis, Questions related to interaction still remain unsolved in the nway classification problem.

BIBLIOGRAPHY

(1) Eisenhart, C, "The Assumptions Underlying the Analysis of Variance." Biometrics, 3, 1-21, 1947.
(2) Lehmann, E. L. and Scheffe, H. "Completeness, Similar Regions, and Unbiased Estimation, Part I. Sankkya, 10, 305-340, 1950.
(3) Graybill, F. A. and Hultquist, R, A. "Some Theorems Concerning Eisenhart's Model II. "Submitted to the Annals of Mathematical Statistics; 1959.
(4) Graybill, F. A. and Weeks, D. L. "Combining inter-block and intra-block information in balanced incomplete blocks. "To be published, Annals of Mathematical Statistics.
(5) Graybill, F. A. and Marsaglia, G. "Idempotent matrices and Quadratic Forms in the General Linear Hypothesis. " Annals of Mathematical Statistics, 28, 678-686, 1957.
(6) Bose, R. C., Clatworthy, W. H., and Shrikhande, S. S. "Tables of Partially Balanced Designs with two Associate Classes." Technical Bulletin No. 107, North Carolina Agricultural Experiment Station, August 1954.
(7) Weeks, D. L. "Some Theorems in Variance Components in the TwoWay Classification. Unpublished Ph.D. Thesis.

APPENDIX

Lemma 1. If the distinct positive quantities $\left.d_{u}(u=1, \ldots . .)^{\prime}\right)$ are
of the form $d u=b u+a$ where $a \neq 0$ and a is functionally indepen-
dent of each b_{u}, then the quantities $d^{-1}(u=1, \ldots, k)$ are linearly
independent.
Proof: Consider the set of constants $c_{u}(u=1, \ldots, k)$, such that

$$
\sum_{u=1}^{k} \frac{c_{u}}{d_{u}}=0
$$

It follows then that

$$
\sum_{u=1}^{k}\left(c_{u} \prod_{v \neq u} d_{v}\right)=0 \text { or equivalently } \sum_{u=1}^{k}\left[c_{u} \prod_{v \neq u}\left(b_{v}+a\right)\right]=0 .
$$

Expanding and collecting coefficients of powers of a we have

$$
\begin{gathered}
a^{k-1}\left(\Sigma c_{u}\right)=0 \\
a^{k-2}\left[\sum_{u} c_{u}\left(\underset{v \neq u}{\Sigma b_{v}}\right)\right]=0 \\
\cdots \cdot \cdots \cdot \cdots \\
c_{u} \prod_{v \neq u} b_{v}=0
\end{gathered}
$$

The above system of k equations can be written as $A C=\phi$ where $C^{\prime}=\left(c_{1}, \ldots, c_{k}\right)$ and

We will now prove by induction that $|A| \neq 0$. If $k=2$

$$
|A|=\left|\begin{array}{ll}
1 & 1 \\
b_{2} & b_{1}
\end{array}\right|=\left(b_{1}-b_{2}\right)
$$

If $k=3$

$$
|A|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
b_{2}+b_{3} & b_{1}+b_{3} & b_{1}+b_{2} \\
b_{2} b_{3} & b_{1} b_{3} & b_{1} b_{2}
\end{array}\right|=\left(b_{1}-b_{2}\right)\left(b_{1}-b_{3}\right)\left(b_{2}-b_{3}\right)
$$

Assuming for $k=m$ that

$$
|A|=\prod_{u<j}^{m}\left(b_{u}-b_{j}\right)
$$

we consider

Subtracting column $m+1$ from the remaining columns and expanding by the first row of the resulting matrix we obtain

$$
|A|=\prod_{u=1}^{m}\left(b_{u}-b_{m+1}\right) \prod_{u<j}^{m}\left(b_{u}-b_{j}\right)=\prod_{u<j}^{m+1}\left(b_{u}-b_{j}\right)
$$

Since the d_{u} are distinct, the b_{u} are also distinct and $|A| \neq 0$. This implies $C=\phi$ which asserts that the quantities $d_{u}^{-1}(u=1, \ldots, k)$, are linearly independent.

Lemma 2. Let the covariance matrix for a vector Y of observations be

of the form

$$
V=\sum_{k=1}^{h} \sigma_{k}^{2} Z_{k} Z_{k}^{\prime}
$$

where σ_{k}^{2} are functionally independent and the matrices $Z_{k} Z_{k}^{\prime}$ are linearly independent. Let P be a matrix of orthogonal rows such
that $P Z_{k} Z_{k}^{\prime} P^{\prime} \quad\left(k=1_{3} \ldots ., h\right)$ and $P V P^{\prime}$ are diagonal matrices.
Let s equal the number of distinct diagonal elements of PVP'. If
$s=h$, then the distinct characteristic roots $d k(k=1, \ldots, h)$
are functionally independent.
Proof: From the form of V we have

$$
P V P^{i}=\sum_{k=1}^{h} \sigma_{k}^{2} P Z_{k} Z_{k}^{\prime} P^{\prime}
$$

Let D^{*} and D_{k}^{*} be the vectors of the diagonal elements of the matrices $P V P^{\prime}$ and $P Z_{k} Z_{k}^{\prime} P^{\prime}$, respectively. D^{*} can then be written

$$
D^{*}=\sum_{k=1}^{h} \sigma_{k}^{2} D_{k}^{*}=\left(D_{1}^{*}, \ldots, D_{h}^{*}\right) \nLeftarrow
$$

where $\not \mathbb{夕}^{\prime}=\left(\sigma_{1^{2}}^{2} \cdots, \sigma_{h}^{2}\right)$. Since the $Z_{k} Z_{k}^{\prime}$ are linearly independent matrices, the $\mathrm{D}_{\mathrm{k}}^{*}$ are linearly independent vectors which implies the matrix $\left(D_{1}^{*}, \cdots, D_{h}^{*}\right)$ has rank h. This together with the fact that \nLeftarrow has h functionally independent elements implies D^{*} : has h functionally independent elements. These clearly are the h distinct characteristic roots d_{1}, ..., d_{h}.

VITA

Robert Allan Hultquist
Candidate for the Degree of
Doctor of Philosophy

Thesis: MINIMAL SUFFICIENT STATISTICS FOR EISENHART'S MODEL III

Major Field: Mathematical Statistics

Biographical:

Personal. Data: Born in Jamestown, New York, November 6, 1929, the s on of Julius E. and Alice Louise Hultquist.

Education: Graduated from Jamestown High School in 1947; received the Associate Bachelor of Arts degree from Jamestown Community College in 1949; received the Bachelor of Arts degree from Alfred University with a major in Physics and Mathematics, in 1951; received the Master of Science degree from Purdue University, with a major in Mathematics, in 1953; studied Mathematics at University of Rochester, 1955-1957; completed requirements for the Doctor of Philosophy degree in June, 1959.

Professional experience: Served as an Assistant Mathematician, for Combat Development, in the United States Army from 1953 to 1955; employed as a Statistical engineer by Westinghouse Electric Gorporation in 1955.

[^0]: Submitted to the Faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August, 1959

