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PREFACE

In 1950 there appeared in the Statistical journal ‘Sankhya a num-
ber of results concerning minimal sufficient statistics. These results
- were in the form of very general mathematical theorems. Since 1950
these theorems have been applied to several statistical models,but very
little has been said about the variance component models with some para-
meters fixed and others random. In this thesis minimal sufficient sta-
tistics. for this class of models have been investigated.

Indebtedness is acknowledged to Dr., Franklin A. Graybill for sug-
gesting the problem, for guiding my research, for assisting in the pre-
paration of this thesis, and for obtaining a research grant under which
I studied for two years; to the National Science Foundation for sponsoring
the research for this thesis under grant number N.S.F. G-3970; to
Dr. L. Wayne Johnson for the Research Assistantship I have held; and
to the f;)].lowing members of my committee: Drs. Carl E. Marshall,

Roy B. Deal, and Olin H. Hamilton.
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CHAPTER1
INTRODUCTION

Statistics is a science which deals with data. An important phase
of this science is the condensation of the data without loss of informa-
tion. Suppose the objective of an experiment is to estimate the mean
of a certain population. In order to estimate the mean, a random
sample of size n is drawn. Then diménsional sample then provides
information concerning the value of the population mean, but the
average of the sample measurements provides an equivalent amount
of information concerning the population mean. The average sample
value is called a statistic and in this case we have a condensation of
information from an n dimensional vector to a scalar. Statistics

. which condensé without loss of information are termed sufficient sta-
tistics.

The original observations trivially always represent a sufficient
statistic. One would prefer to work with a.condensation and generally
a condensation of small dimension. A sufficient statistic is called
minimal if its dimension is less than or equal to the dimension of any

other sufficient statistic,



A minimal sufficient statistic for a specific statistical design is
not unique. We shall later define a property called completeness
which the probability density function of some statistics possess,.
Sufficient statistics with complete density functions are called suffi-
cient complete statistics. When a sufficient complete statistic exists,
then every estimable function of the parameters possesses an unbiased
estimate with uniformly smallest variance and this estimate is the

unique unbiased estimate based on the sufficient complete statistic.

Statement of the Problem

The objective of this thesis is to exhibit minimal sufficient statis -
tics for a class of statistical designs which fall in the category of
Eisenhart's Model III (1). The exact definition of Eisenhart's Model III
will be given later. The entire solution for the one-way classification
of data and the two-way classification of data appears in this thesis.

In addition, solutions for special sets of assumptions are given for

the n-way classification situation.

Notation and Definitions

The entire thesis has been written in terms of matrix and vector
notation. Eisenhart's Model III is a special case of the general linear

hypothesis model which in matrix notation takes the form Y = X + e.



Here Y is an (n x 1} vector of observations, X is an {n x b) matrix of
known constants, B is a (b x 1) vector of unknown parameters and e is
an (n x 1) vector of random errors, Eisenhart's restrictions for Model
III are that certain of the parameters are fixed unknown constants,
while the remaining parameters are distributed normally. e is also

assumed to be distributed normally,

Previous Work in this Field

The basic theorems used in the solution of the problems encountered
in this thesis are found in Lehmann and Scheffe's (2) 1950 paper. These
theorems are in very general mathematical terms. Papers by F. Gray-
bill and the author (3) and F‘., Graybill and D. Weeks (4) discuss mini-~
mal sufficient statistics for Eisenhart's Model II and Eisenhart's Model

III.



CHAPTER II
GENERAL PROCEDURE

In Chapter III the one-way classification will be examined; in Chap-
ter IV the two-way classification will be discussed; and in Chapter V
certain aspects of the n-way classification are developed. Rather than
discuss in each chapter. those aspects of the theory which are similar,

- we instead treat them in this chapter.

Criterion for Sufficiency

Let £f(Y; 6) be the joint probability density function of the vector of
observations, Neyman's Criterion for S to be a sufficient statistic is
that £f(Y; 0) can be written £f(Y; 6) = G(Y) * H(S; 0) where G(Y) is inde-
pendent of 6. Throughout thils,‘ paper f(Y; 6) will be the multivariate
normal density function; hence, an equivalent criterion is to write the

quadratic form for £(Y; 0) as
Q(Y; 6) = Ql('_Y) +’Q2(S; 8)

Criterion for Completeness

- A family of density functions such as f(Y; 0) is said to be complete



if [h(Y)(Y; 6)dY = 0 implies h(Y) = 0 almost everywhere. We shall
use this definition as the criterion for determining whether a suffi-

cient statistic is complete.,

Criterion for Minimality

. To show that a sufficient statistic S is minimal, we shall use a
result stated and proved by Lehmann and Scheffe (2). The ratio

) £ (S; 9)
K(Y, Y ) = £(Y; ©) = 1 ;
o)

(Y ; (s ;
( 5 8) 1(30 8)

is examined where Yo is some point other than Y in the n dimensional
sample space. The condition for S to be minimal is that K(Y, YO) be
independent of 6 if and only if S = So' For multivariate normal density
functions this procedure is equivalent to investigating whether or not
the difference of the quadratic forms Q(S) - Q’(So) is independent of 6

if and only if S = So'

Procedure for Condensing the Information

Consider now the quadratic form Q of the joint probability density

function of the normal variables in the vector Y.
Q = (Y-EY)'V {(Y-EY)

where E is the operator denoting the expected value of Y and the co-

variance matrix V is by definition



V = E(Y-EY)(Y-EY)!

The procedure used in the following chaptefs for rewriting Q is as
follows. There exists for Model III in the one-way classification,
the two-way classification and in certain n~way situations an ortho-
gonal matrix P of known constants such that PVP' is diagonal. We
refer to the matrix.P as an orthogonal matrix which will diagon’alizé

V. The quadratic form can be written

Q = (Y-EY)'P'PV P 'P(Y-EY)

-1

Q = (PY-EPY)(PVP'") (PY-EPY) .

The theory from this point digresses depending upon the model in-
volved. The objective in each case is to choose P so that Q can be writ-

ten in a form which will exhibit a minimal sufficient statistic.



CHAPTER III

THE ONE WAY CLASSIFICATION VARIANCE
COMPONENT MODEL

Consider the model Y = pj + X7 + e where j is a.vector of ones,
X is a matrix of zeros and ones, p is a scalar parameter, and 7 is
a vector of t treatment parameters ordered according to the number
of observations for the treatment. 7T is assumed to be independent of
e and distributed normally with mean ¢ and covariance matrix 0'72' 1.
e is assumed to be distributed normally with mean ¢ and covariance
matrix o-ZI., Let mi be the number of treatm‘ents having n, observations
and let a equal the number of distinct ni's.

In a variance component model as described above we have the
following relationships.

X which is an (n x t) matrix is of rank t < n.

4 = 11 it it
X = (nlJml, * > Bylmo , naJma)
! Xl — 3t
3 I
f -
X'X =D,

where D, is a diagonal matrix of the form



N
fnllm : é b
1
¢ ! niIm. ¢
° 1
X ¢ . . o) naIm
a -’

A Sufficient Statistic for the One-Way Classification Model

- We use these relationships to define a partitioning of an orthogonal

2
matrix P defined in Chapter II. . Since X'XX'X =D it follows that

t
- -1/2 -1/2 -1/2 -1/2
t/ZX'XX‘XD t/ =D, and D t/ X'XD y =I. P; =D, X'thus

- consists of t orthogonal rows which diagonalize XX,
Consider next the matrix W = (j, X) and.choose PZ, to be any set

of n-t orthogonal rows such that P-ZWW'P'Z‘ = ¢. There exists such a

matrix because Wis {n x t + 1) and has rank t. P_{jj' + XX’)P'Z = szj P!

2! 2

+ PZXX 'P! = ¢. Since jj' and XX' are both positive semi-definite,

2
- P,i 'P’Z = ¢ and PZXX'P’2 = ¢. It then follows that sz = ¢ and P,X = ¢.
-1/ 2
PZP£ = PZXD t/ = ¢, hence P! = (P]',- P'Z) is an orthogonal (n x n) matrix.

Consider now the quadratic form for this model.

Q = (PY-EPY)YPVP') {(PY-EPY)

- /2. /2. . /2
pP pD t/ Xnl (eD D, pD
. EPY = PP’Jn = ' = = =

pPoJ ¢ ¢ ¢



V= E(Y-pjl(Y-uj)' = E(XT +e)(XT +e)’

V= E(X7T'X") + 2E{eT 'X") % E(ee’) = o‘:XX' + d"zI
P.XX'P! P_XX'P! D ¢
PXX'Pt=| L 1 L ’2 - t
wvip! } ) 1
P XX'P] P XX'P) o b
2 2
PVP'=¢ PXX'P'4+¢I
T
O‘ZD +0“ZI ¢
PVP' = t )
9P o1
- 2. =1 -
b 1/2X,Y __HDl/Zj ' (%D +wz) 5 /2
Q- t ¢t Tt t
‘ _~2
P,Y _¢ ¢ |P,Y

If we now substitute for Dt' the quadratic form Q can be written

N, s

-1/2 ' 2 .2~
- : I
n - (T - nyu 1) (o v ) )
-1/2 . ) |
n, - (T; -n i) (fliv
-1/2 .
1" (T - Ry, )
a.
P,Y
Fa AN

where T 1is the vector of the treatment totals for those treatments

1

having n; (i=1, . . .

s &) observations.

1/2
X'Y -p.Di'/j

N\

t
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-2
Y'P‘ZP Y

: 2. -1 -1 2 2 :
. = . + 'T, - j! : .
Q=2 (n u"T o ) ni (Ti i Z.nip._] -Ti + mlni p)+e 2

i=1 1
This form of Q exhibits a sufficient statistic of dimension 2a +1 - s
- where s is the number of m, equal to one. In the case where all mi 22

for all i, the 2a + 1 components are

j5PT. (i=1, ... a)
1 ¥
Y'PIP,Y

Computatign of the Sufficient Statistic

The above statistic is readily computed, including the component
Y'P'ZPZY which we shall now show to be a function of the treatment

totals and the total sum of squares,

YY=YPPY=YPPY+ Y'PEPZY

11t
YP'P Y =Y'Y - Y'XDIX'Y
2 2 t
2 1
YP'PY=Y'Y- % n TIT
2 2 i=1 1 11

The above results are now summerized in the following:

Theorem 3.1, The sum of the treatment totals for those treatments

having n, (i=1, . . . a) observations, the sum of squares of the




treatment totals for those treatments ha.ving_z}i (i=h .., 8&)

observations, and the total sum of squares form a sufficient sta-

tistic of 2a + 1 components.

Minimal Sufficient Statistics for One-Way Models

Theorem 3.2. Let mi,_ni, and a be defined as above for the one-way

classification variance component model, then a minimal sufficient

statistic has dimension 2a + 1 - s where s is the number of mi = 1.

One minimal sufficient statistic has as ite components

Ei when m, =1

j' T. whenm, 22
m, " i i

TYE. when m, > 2
]k 1

b i 4

—

Consider first the case where s = 0, We shall show that when the num-
ber of treatments having n, observations is greater than two for all i,
then a minimal sufficient statistic is a statistic having as its compo-
nents the sum and the sum of squares of the treatment totals, for those
totals having ni (i=1] ..., a) observations, and the total sum of
squares.

Proof: Following the procedure of Chapter II we form the difference
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, a .
Y ’P +Z g [T/T ~T! T -2np(j' T, -5
Y PIP Yol E g I TIT T T, - 2owlin, Ty-ip T
i=] i i
2 =1 =1

- 2
~where gy =" 2 and gi = (nich + 0 ) n, (i_z;l, . . . a).,. When

- = !
Q-Q, gO[YP P

3Py )]

L H 21 ] !i: ¥
S = ( J'Tps TUT,, Ty oo o TUT , §'T,, Y'PLPY)

Tll r 2

is equal to S, with corresponding components T/

10Ti0 etc. we have

0
Q - QO = 0, Next we set Q - Qq identically equal to zero in the para-
meters p, c"f:, and @'2, The forrm of Q - Qo and the linear independence

of the g{s, (see appendix for proof) implies Y 'P! PZ,Y Y'P!P.Y

2 02 270°

TIT, = T{gT;o (i=1, . . . a)andj} T, =j! T, (i=1 ...al. These
1 1

are the conditions for the above set to be a minimal sufficient statistic.
This concludes the proof of Theorem 3. 2 for the case where m, 2 2 for
all i. Observe that when m, = 1, we have 'I‘i"']?i = T‘? which is a function
of the statistic Jl Ti" Hence when m, = 1 the component 'J.Z"i"l'."’i is
deleted and the dimension of the sufficient stéti.stic is reduced by one
each time an m, = 1.

It is interesting to note that when a =1, XX' commutes with jj'
and our model becomes a special case of the n-way problem discussed
in Chapter V. In the case where a =1, n, = 1, we have no estimate of
2

O _ .
T

An Example

Consider the following data:



Treatment 'rl T, T 3 T 4 T g5 Te
2.3 3.8 3.5 2.9 . 2.9 4,1
2.7 3.6 4.1 2.7 3.8 4.5

Observations
3.2 3.8 3.1 3.8
2.5 3.1 3.3

Totals 10.7 o 14.3 14.0 5.6 6.7 12. 4

For this example the parameters: and total vectors aren, = 4, m_ = 3,

1
=2, m,=2mny=3 my=1 a=3, T/= (0.7, 14.3, 14.0}, T

1
I =
2
(5.6, 6.7), Tg = 12,4. According to Theorem 3. 2 the following are
the values of the components of a minimal sufficient statistic for this

example:

! = A
TJLTl 514.98

T, = 39.0
I 9

T!T_ = 76.25

~N =
[9¥]

YT, =12, 3

T, =12.4

Y'Y = 220.13
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Distribution of the Minimal Sufficient Statistic

In this section we shall discuss the distribution of Y'PéPZY and
the distribution of the components of the minimal sufficient statistic

exhibited in Theorem 3. 2.

Consider the partition of X into

X = (X X, oo o X0

(A | a

where the column dimension of X is the number m,. In terms of Xi
i

and Y the vector of treatment totals Ti can be written T
: i

= Xi"Yu Now
. . . . . 2 2. ,
since Y is distributed N(uj, @“T XX'"+4 g I) it then follows that Ti is

2
distributed N[ pX'j, X! (O"ZXX’ 4+ o I)X ]. Upon simplifying this result
i i i

- we conclude that Ti is distributed Nf n, Mis ni(niorf + @“Z')I] . ‘j“Ti is

then distributed N[n,m_p, n.m_(n,gz’ & 0’3)] .
i iTiviT
In order to determine the distribution of Ti”Ti, we write Ti“Ti as
Y’XiXi”Y and apply the following theorem:

If Y is distributed as a normal vector with mean pj and covariance V,

then a necessary and sufficient condition that Y'AY be distributed

as X '?(p, A} is that VA be idempotent. Here p is the rank of A
p pots

=1

and A\ = 2 "p'Ap. (5)
{a) Liet
5 Xin“
(@2 XX' + 62T} . - -
T 2 2
n.{n,e” + o)
iYiTT



play the role of VA in the above theorem. This quantity reduces to
1

n, X X! which is idempotent.

{b) the rank of .XiX:g is m,.

(c)

c‘]. Zn.u 7 g2
2 P X -1 2 . 2,-12
A = =2 nm/noc_ +o ) Rk

3 2 iV
ningc” +67)
iy
The above statements imply that
YIX XY
iTi
m({mowz # @"2’)
L N 4

2 -1 2. -
is distributed as X ' [mi, 2 nimi(n.i@"f + o‘z)) ]lp,z] . ’I‘i“T, is then dis-
) i

tributed as ni(no'@rz + o‘z) times a noncentral chi square variate with

1T
m, degrees of freedom and non centrality parameter
1 2 2.-1 2

A=2 n,m, (n.i(rT + 7)) po.

T./T, and 'I‘fj‘Tj; (i #j) are independent because T, and T, have a co-
1 J

variance matrix equal to¢. The same conclusion holds concerning the

independence of j'T, and jVTu; {(k #u). If we delete Y'Y from the com-

k
ponents of the minimal sufficient statistic the remaining components

are a mutually independent set,

We now wish to investigate the distribution of Y!PEPZY°
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r-2 P 2 Ly 2 ] 2 1 2
(a) [o P2 2'(na"TXX +o5 I)][eo PZPZ(O'YT'XX +o I}]

-41 2 2 2 2
= v P!P_XX'P'P ! ! '
o {U‘T 2 ZX PZ 2 + 0 PZPZPZPZ} {Q‘T XX' 4 ¢ I}

~2_, 2, , 2
¢ "PLP (0 XX+ 1)

i

-2 2 2
Thus o P’ZPZ(orT XX'"+ ¢ I) is idempotent.
(b) The rank of P'ZPZ isn - t.
2

() a=2"WW%PiP jem% = 0.

The above statements imply that Y'P’ZPZY is distributed as x Z(:r:p-t)..

In order to verify that Y 'P"ZPZY is independent of T].YT, we again write
1

T!T as Y'X.X'Y. P!P (O”ZXX' + tr'Z'I)X,X,’ = ¢.is the condition for the inde=~
i7i it 2 2''T it
pendence of these quadratic forms. This is indeed satisfied for PZX = ¢
and PZXi = ¢.
We have previously seen that Y'Y can be written
a

Y'vy= =olmT o+ YyPIPLY
T T 2" 2

Y'Y is therefore distributed as a linear combination of independent chi

square variables, one of which is a central chi square variable.



CHAPTER IV

THE TWO-WAY CLASSIFIGATION MODJ‘EL III

Consider the model Y = X7 + Zp + e where 7 is (t x 1) and is a

-vector of fixed estimable_treatment‘par‘é.meters ‘independent of B ‘and e;
and Bisa vector of b normally distributed block components independent
‘of e and ordered according to the number of plots ki.for the block. B
is assumed to have mean ¢ and covariance matrix U;'I. Suppose that

X and Z which are (n x t) and (n x b) matrices are each of full rank. e
is assumed to be distributed normally. with mean ¢ and covariance u"zl.
Let m, be the number of blocks having ki plots and let a eqﬁa.l the num-
ber of distinct ki 's. :

. In the model described above we have the following relationship.

Z'Z = Dy where Db is a diagonal matrix of the form

ke, ¢ ¢
¢ kI i ¢
o] o] kaIm
> a

17
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The Partition of P

We now define a partitioning of P into P' = [P{, Pé, P%] . - Since

Z'Z =D, , then Z'ZZ'Z = Dsa : DLl/ZZ' will then diagonalize ZZ' and

sinc:,e,D'I'j"/z‘Z’ZD—I’/2 =1, D;l/ZZ' is a set of b orthogonal rows. Let

_ “'1/21 1
P].—Db Z'.

Consider nasw the symmetric matrix X'HX where H denotes the

1

idempetent matrix I - Z(Z'Z) "Z'. The matrix X'HX appears in con-

nection with the normal equations of the model Y = X7 4 ZB # e. .
A A
X'X? + X'Zp =X'Y

z'X% 4+ 2'28 =

f
r
Lo

Solving for 6 in the second set of equations we have
8=(z'z)1 zy ~-_(z'z)'1 A>
- Substituting in the first set of equations we have
xxt +x'zz'z)t 2y - xz(2'2) 7 2'%F = XY
or
[X'X: ~ X!ZT‘(Z'Z)dZ'X]? = [X' - X'Z(Z'Z)'IZ!]Y

In terms. of the matrix H this is
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X'HX? = X'HY

X'HX has rank at most equal to (t - 1) since j'X'HX = ¢. That is,
the sum of the rows and the sum of the columns of X'HX each add to
zero. Since the treatment differences are e\stimable,‘ X'HX has rank
exactly equal to (t - 1},

There exists a (t x t) orthogonal matrix U™ which will diagonalize
. ‘ , A

the matrix: X'HX. Furthermore, we can chpoose the first row of T* to

be j%. whereupon we can write

T I = ¢
UTX'HXU '=|
R D}

, _ . ‘
Let Ube the matrix Ufwivth the row j' deleted. Then UX'HXU' =1 where

U=DVY2G. Letp

, = UX'H. Since ZH=2'- z*z;z!z,)"l‘Z' = ¢, we

then have PP} =¢. Thus

.P1

P
is a set of b 4+ t = 1 orthogonal rows.

Let W = (X, Z) and let P3 be any set of n.-t - b 4 1 orthogonal rows

. which are such that P

3WW 'P'3 = ¢. There exist: such orthogonal rows

because W has rank (t + b - 1), wherein it follows that WW ' has (n-t~-b+l)

characteristic roots equal to zero.



Pl = Ly 770 P! = =X P oo
P3WW P3 P3(XX & ZZ»)P3. P3XX P3+P3ZZ P3 ¢

Since XX'and ZZ' are positive semi-definite, we have

P! =
P3XX P3 ¢
and
Pz .
P3ZZ P3 )
: , -1/2
Then P;X = ¢ and P3Z = ¢. Consequently P3P1 = P3ZD b ¢, and

- =1
I = z J! = J! - ! XUt =
P3P27 P3HX__U P3XU P3Z(Z Z) ZXu ¢

Thus P' = (P}, P}, P}) with P, P

5 3 , and P3 defined as.above, is an

2

orthogonal (n x n) matrix.

Sufficient Statistics for the Two-Way Model.
_Consider now the quadratic form for this model.

Q = (PY - EPY)(PVPY) YPY - EPY)

‘ i'].-/?“ 1
P1X'r Db Z'XT
EPY = PXT = PZXT = UX'HXT

V=E(Y - Xr)(Y - X7)' = E(Zf + e)(ZB + e)'

20



V =E(ZBB'Z') + 2E(eB'2Z") + E(ee") = o"sZZ' + G’ZI
PVP' = a‘éPZZ'P’ + G‘ZI

4
P.Z72'P/ P ZZ'P!

\
P

1 1 1 2 PIZZ P3

Pl Pt =3 P
PZZ2'P PZZZ Pl‘ PZZZ P2 PZZZ P3
pi P P!

\P3ZZ P1 P3ZZ PZ P3ZZ P3

7/

P o=
PIZZ P]. = Db

Pt = IIXH ! J' =
PZZZ PZ UX'HZZ'HXU' = ¢
i —_

P,ZZ'P, = ¢

P,ZZ'P, =P ZZ'HXU' = ¢

1
P =
Pj2z2Pg3= ¢
P =
P,ZZP} = ¢
The quadratic form can now be written
/ / 1 (. 2 2_ -1 1
/2, a2, V(2 2 -
Db Z'Y Db Z'Xr (-o'BDb +og 1)
A -2
Q= P,Y - UX'HXr ¢ 41
P,Y P
~ ' 4 L J N

Let the vector of block totals Z'Y be denoted by B; let the vector of

21
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treatment totals X'Y be denoted by T; and let B. be the vector of block
: i

totals for those blocks having ki (i=1, ... a)plots. LetN=2'X

and let (Nl', R Ni" s & e Né") be the partition of N' corresponding to

the partition of B' into (Bl', o ome DYy @ 5 o Ba"). Q can then be written
i

& . B o
Q= Zk (k¢r5+®‘) (B .“NiT)'(Bi~NiT)+

i=l

“23 - o 1 7 s ‘Z 1 1
v (P‘ZY; PZX'T) (PZY PZX'T) +e Y P3P3Y

The total sum of squares Y'Y can be written

Y'Y = Y'P'PY = Y'(Pl'P1+ P"ZPZ-%- P P )Y

Then

pt ¥ Pt p!
YP P3Y Y'Y - YP1P1Y YPZPZY

Y'PLP.Y = YT - Y‘ZD]‘Z‘Y Y 'HXU 'UX'HY

Y'P§P3Y is the intrablock error if Y'HXU'UX'HY can be shown to be
the reduction due to treatments adjusted for blocks. In our notation the
reduction due to treatments adjusted R(1/B) = 7T 'X'HY where 7T is a

solution to the system of equations X'HX? = X'HY. Augment this sys-

tem in the following manner:

2D

XHX ] X'HY

it 0 g 0



The matrix

U'y £l
t‘lj' 0
t =1
j'u'y "_‘,14’

£ HX = b

There remains to show that U'UX'HX + t'lJ =I.

the following manner.

plying by DU we have U'UX'HXU'DU = U'DU. Now _‘I:T*'I—J*

—1/2..
N L
(t—]_/zj’ U')

N\

=t TT R
U .

1/2 1/2

t J+UD

UDU=1I-t""J

Since UX'HXU' = I, then U'UX'HXU' = U'.

23

We shall show this in

Multi -

= ], hence
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Substituting in the above equation we have

»

1 -1

U'UX'HX -~ U'UX'HXt J=1- t™*]J.

HXj = ¢, hence we have U'UX'HX + tly = 1. we may now write

£k X'HY U'UX'HY

D
S
G

"
fl

Ja
o+
[

~Li 0 0 0

£ = U'UX'HY is then a solution of the system X'HX% = X'HY and R(r/B) =

Y'HXU'UX'HY. Y ”P;P?’Y is- consequently the intra-block error and

Y'PIP.Y =Y'Y - R(B) - R(7/B).

The following theorem is a.summary of the results of the preceding

discussion.

Theorem 4.1. The vector of block totals B, the vector of treatment

totals T and the total sum of squares Y'Y form a sufficient statistic

of (b.+t + 1) components.

Proof: If we let

g =kt koeleed Tt
1 i i

then the quadratic form Q can be written

a
_ - ] e N . “2! 7 : ! -
Q= Elgi(Bi N,7)'(B, - N;7) + ¢ %(P,Y-P,X7)(P,Y PXr)
+o ypp Y
3 3%
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PZY = UX'HY = UX'Y - UX‘Z‘(ZIZ)—lzlY
P.Y =UT - UX'zZD"IB .
2 b

» Substituting for PZY and YVP§P3Y, Q) can be written

a =2 o

Q= I g(B, - N;7)"B, - N;7) +a [(UT - UX‘ZD;B)- (UX'XT +
1i=] .
UX'ZD;I'Z""X'T J'M(uT - UX"Z_D;,lB) -(UX'XT 4+ UX‘ZD;IZ'X'T)]

-2
+o- [(Y'Y - R(B) -R(*r/ﬁ)] .

This, form of Q exhibits.the vectors B and T and the sum of squares Y'Y

as a sufficient statistic of (b + t # 1) components.

Minimal Sufficient Statistics

~We now direct our attention to finding minimal sufficient statistics.

—

Theorem 4.2, Let n, be the rank of Ni° - Whenn, =m_foralli{(i=1,...3)
- - o . g . oy - 1 — - -

the dimension of a m_inima,l statistic is b.+ t. The blpck totals B,

(t - 1) of the treatment totals and Y'Y form a minimal sufficient sta-

tigtic when ni Em, foralli(i=1, . . . a).

Proof:
a
- - N - HR - N i
Q= iz-lgi(Bi N;7)YB, - N,T) +

-2 . Y} C_P.Xr) % TIPIP S
o [(PZY P, Xt )Y(P,Y PZXT,)+YP3P3Y]
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must equal Y(I)PZ"]PBYO' Together these relationships are Lehmann and
Scheffe's condition that the t + b components exhibited are a minimal
sufficient statistic.

Since jI;B = j';T, the block totals B, (t - 1) of the treatment totals and
Y'Y form a sufficient statistic. Since this statistic has dimension t + b,
it is a2 minimal sufficient statistic.

We now extend this theorem to the case where ni< mi. (Notice that
this is the only alternative case. The rank of m, TOWS can never be

greater than mi) .

Theorem 4. 3. Let S be the set {i[ni i—mi} and let S be the complement

of S. In this case the dimension of a minimal sufficient statistic is

Z (m+1)+ Z n+t.
jesg * i€ s

The total sum of squares Y'Y, (t - 1) treatment totals, the block

totals for those blocks where n, = m,, n, linearly independent func-

] —

tions of the block totals for each set of blocks where: ni < m, and

— ] —

the sum of squares ZB:{Bi for each set of blocks where R, < m, form

a minimal sufficient statistic for this case.

Proof: We have from the proof of Theorem 4. 2

PZY = PZYO

P = | ]
X P3P3Y = YOPBPSYO



28

and

1 - 1 - R VI =
(BiBi B{oBig) - 2(B; - By)'N;7 =0

-Gonsider first ni where i€'S;, Since the rank of Ni’ equal to ni,. is-less
-than the dimension of Ni’ this identity does not imply that all of the block
totals are present in a given minimal statistic.

Let Ni be partitioned into N (Nil’ Niz) where I\T‘.1 has rank n, and

1

dimension (n, x t) and Ni?. has dimension [(m.,1 - ;n,i) X t] . ( For sake of
notation consider Nil to be the first n, rows of Ni") If we now partition Bi

and N.
1

1

: 1 - 1 + ith di ions.-co ; i tk
into Bi = (‘Bi,l', BiZ') with dimensions corresponding to those of Ni 2

then we can write Bi‘N.l'r = Bi' Ni T 4+ Bf N, _t. Since the rows of Niz are

1 il i2 i2

linear cpmbinations of the rows of Ni » there exists a matrix Gi such

1

B - ! I\ = = s § e
N, 7 + B/, GN, T = (B+ GIB,)N, 7

. J.. = G.N . N = B!
that Niz GiNil' Thus BiNiT Bi 1

11l

where Nﬂ is of full rank. The linear independence of the g; by L.emma 1l

implies that
1 - B - 4 G L 4 C! TN =
(B/B; - B{(Byg) ~ 2[(Byy + G{B,,)" - (Byy5 + G/B,, )/ N7 = 0

which in turn implies.that B'B, = B! B, and B,. + G'B., =B
iTi i il iTiz

- %!
07io 0 + GiBi

i1 20°

This is a set of n, %+ 1 components for a given i€ 3. Summing over i € §
. we obtain

Z (n, + 1)
ies 1
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components of this type. For n. wherei € 'S we proved in Theorem 4.2
: 1
that B; = Byp- There are E_ni statistics of this type. ILehmann and
' ie S
‘Scheffe's condition. is thus satisfied for the

= (ni A1)+ 2. n +t
ies ieg !
above components.
- We have proved the first statement of Theorem 4.3, There remains
to show that the following
T (414 I n o+t
ies ' ie§ °

components are sufficient and thus minimal sufficient:
Y'Y
(t - 1) treatment totals
Bi where i€ §

B'B. and B, + G'B, , whereie S
i1 i i i2

1

The quadratic form Q written as

- -z . »
— . |3 - I\ - / = . i § i
Q= iZeisg,[B,i Niv'] [Bi Niv'] +o [PZY PZXT] [PZY P,X —r‘]

. ""2 bs =Y : R - ek YN e TN PN
+a Y P3P Y 4+ i?sgi[B'ili 2(13],L + GiBiz) NﬂT + T NiNiT]

3 1
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exhibits PZY and Y'PéP Y as components of a minimal statistic., Con-
sider P,Y. P,Y = UT - UN'D};]"B, The vector N*D};1

3

B can be partitioned
into subvectors of dimension m, corresponding to the partitioning of B
into B' = (B{»,- N B;). The general term of this partitioning is k;l Ni'Bi
forie S . From the above discussion we see that PZY can be written in
terms of the block totals Bi forie S N (Bﬂ + Gi'BiZ) for i € 5, and the
treatment totals. T. We shall now show that one of the treatment totals

is unnecessary. Since NiZ = GiNi].’ we have NiZ,‘] = C{Nﬂqg Then

. = k.G
1Jm.—-n, 1%']11_ ?
1 1 1
Im, -n, n, ?
ii
or
f et — st
it Gl=]
1 m. =n
i i
- Now

4 +G'B. )+ =i B = = ( it + 2
E 4 By ¥ GBI 2L By Up Bip ¥ dm on Bip) * 2 3m By

ies ieS i ieS i ™ ieS i
a
— 34 - 3t [ S
~—.2Jm'Bi—JB~,JT
1=

T i

We can thus conclude that PZY is a function.of t - 1 treatment totals and

the above functions of block totals.

Y'PLP.Y = Y'Y - Y'ZD};IZ'Y - Y'HXU'UX'HY
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. a
Y'zDgl.Z'Y = TklpiB.
i:l 1 1 1

Y'HX = Y'X - Y'ZD:lN =T - B'DglN

-1

We have already seen that B'Db

N is a function of B,, + G/B., when ie §
il i~i2 ;
and B, when i € S. We can here conclude that Y»’PEPBY is a function
i ~ "
of Y'Y and the above mentioned components. This compll‘etesl the proof
of Theorem 4, 3.for we have shown that the stated statistic is a function

of a minimal sufficient statistic each statistic having the same dimension,

‘Example for the Two-Way Classification

Data
. Treatments 'r1 'Tz 7’3
% 2.5 4,2 =
B1 3.5 3.9 e
* 1.8 5.3 3.8
ﬁz - o= 3.0
" 1.5 5.5 3.2
Block ﬁ3: 2.6 4.8 -
'Oc Z.Z =e-e o=
% 2.0 4.8 4.1
ﬁ4 - - 3.2
% 2.8 - 3.8
By 3,2 - 4.2
* 1.8 4.0 3.5
ﬁé 2.0 - -
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. We observe first that blocks numbered 1, 2, 4, 5, 6, all have 4 plots per
block and block numbered 3 has 6 plots. This calls for a renumbering
of the blocks. But before we renumber observe that in the matrix N*

several rows are linear combinations of other rows.

(2 w

0NN = W N
= Q= N o= N

= NN =N O

Rows 1, 2, 5, are linearly independent, hence in the renumbering we place

the blocks corresponding to these numbers first.

Data Reordered According to Plots per Block
- and Independence of Rows

™ T2 T3
2.1 4.2 .-
By 3.5 3.9 -
1.8 5.3 3.8
B2 - .- 3.0
2.8 .- 3.8
B3 3.2 ——- 4.2
2.0 4.8 4.1
By - o 3.2
1.8 4.0 3.5
By 2.0 - -
.5 5.5 3.2
Be 2.6 4.8 -
2.2 —_—- -



According to Theorem 4.1 the block totals B' = (13.7, 13.9, 14.0, 14.1,
11. 3, 19. 8), the treatment totals T = (25.5, 32.5, 28.8), and the total
sum of squares Y'Y = 32L.4 are the values of the components of a suf-

ficient statistic for this example.

(2 2 0)
1 1 2
2 0 2
N = 1 1 2
2 1 1
3 2 1
N\ £
We have m, = 5 and m, = 1. The partition of N is as follows.
4 2 2 O\
1 1 2
N1 =] 2 ,O 2 NZ = [3 2 1]
1 1 2
2 1 1

The rank of N. is nl = 3. We partition N1 into

1
2 2 0
1 1 2
N. 1 1 2 N =
11
12 2 1 1
2 0 2
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N,, can be written in terms of N,, through the matrix equation

il
2 2 o)
1 1 2y [o 1 o
= 112
2 1 1] (Y2 o 1i/2
2 0 2

Liet

o 1 O
G =|
(/2 0 1/2

Now Theorem 4. 2 tells us that the dimension vof a minimal statistic for

this data is n; + l4n,+t=8. The values of the components of a minimal

statistic for this example are

T' = (25.5, 32.5),

(Byy + G'B,,)' = (19, 35, 28.0, 19.65),

12)

- B'B

03.4
11 7

and

Y'Y = 321. 4

A}



Distribution of the Minimal Sufficient Statistic

In this section we shall discuss the distribution of Y“PJ{PiY, {i=1,
2, 3) and the distribution of the components. of the minimal sufficient

statisfic exhibited in Theorem 4. 3.

Since Y is distributed N[ uj,. @"g ZZ'+ a‘z’l], we can immediately

write the distribution of the vector »f treatment totals T = X'Y as
: ' o2 . 2, U of s 2 cing g L2
N[ pX'j, X (vﬁ ZZ'+ 0 1)X], or equivalently N[ uX'j, (mpN N+ o D,[,)] .

The vector of block totals B = Z'Y is distributed N[ uZ'j, Z{e2 22"+

B
2 i et s 2.2, 2 ot
o 1)Z],or equivalently N[pZ'j, (crﬁDb + o Db)] . We now partition Z into

Z = (Zl' . . Zi’ . e e Za) such that Bi = 'Z{Y is the vector of block
-totals for those blocks having ki plots per bleck. ZESi is distributed
2

. 2 . . 2 2 2.,
N[ pz{j, Z],f(o*‘Fa ZZ' % o-'.I)Zi],m- equivalently N[ kiwmnp (ki@-p + ko }.Lmn] .
1 1

The distribution of the compenents B;; and (Bﬂ + G"Biz_) are immediate
consequences of the above statement.
s \ . 2 2
is distributed N[ k,puj_ » (ko
1 .ni 1 ﬁ

2 . . . ) .
+ k.im* : )G’ri'Gi]., and By + G{B, , is distributed N[ ke p{l 4+ Gl

Bi1

2 2
o~ ]
N[k G, (kinrﬁ
2,4 2 ~ 10
5 + ko) (1 + G/G,)].
Let us now investigate the distribution of Bi'Bi. Observe first that

2 2 2 -1 .
(ki .U'B -‘I~ kitar' ) I multiplied by the variance of Bi is the identity matrix of
2 2
dimension m,, This is the necessary and sufficient condition for (k.j U’B +

2 -1
ko) "B!B; to be distributed as X 12

* k,@rz)l ], G'B, ., is distributed
i n, iié

2
(k.i.w

{m_, \) where
i
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-1 2 2, -1 2
2 p.zk _]J 2 kimip
K = = L4
k2 o? 4 k o’ ko2 4+ o’
18 i-B

B'B. is then distributed as ku(k.ucrzf
11 iti B

2 2
ZiZ,' (UB ZZ'+ e 1)Z, Jl = ¢ for i £j. This is sufficient to imply the in-
i iy

2 2 =1 2 2 -
+o)x' [mi, 2 ki.mip (k:i@"B + @'Zf_:']

depeﬁdence of BiuBi and B,‘Bj (i A 3.
J
We shall now turn sur attention te a discussion of the distribution of

Y'P/R.Y; (i=1, 2, 3). SinceP, = D“’l/zz! the quadratic form Y'P/P,Y
1

1 b 1
can be written Y“ZD];]' Z'Y. If we now partition Z as above Y”P_H’PIY can
be written

a 4 a L
YPPY = zk Y22 = Z k.'B'B, .
11 -1 i 521 i i i

Y'PiPlY is then distributed as a linear combination of independent non

central chi square variables.
Consider the quantities a_sz "P{PiY (i =2, 3); and the following re-
lationships.

- 2 dor
(a) o ZP,"P‘,(a:v" ZZ' 4 a";l) reduces to P'P,;
ititp i1

(b) P2 2 is idempotent of rank t ~ 1;
P3P3 is idempotent of rank n -t -« b + 1;
-1 2., .2 i
() A =2 WEPIP T = 0, (i = 2, 3).

The above relationships imply that Y'P!P_Y is distributed as @-*Z’x, Z(t - 1)

2 2

and Y'PéPaY is distributed as ¢ x?“(n -t -b+1l)., Since Pi'Pi(@r‘;ZZ' +

Z .
o ];)Pj'Pj = ¢; (i ,é jvi, 3 =1, 2, 3), the quadratic forms Y 'Pi"PiY are an

2
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independent set.

We have previously seen that Y'Y can be written

3 a
Y'Y= ZYPPY= ZEk'B/B +YPPY+YPP.Y
=1 i 1 i=1 1 I 1 2 2 33

=t

Y'Y is therefore distributed as a linear combination of independent chi

square variables two of which are central chi square variables.

Balanced and Partially Balanced Designs

Balanced and partially balanced incomplete block designs are of
course special cases of the two way classification problem just considered.
In this section we shall exhibit, in a more familiar notation, a minimal
sufficient statistic for these designs. As before 1th n equal the rank of
Componentwise the model

the matrix Z'X in the model Y = X7 + ZB + e.

for the balanced and partially balanced designs is

{i=1, .. .¢ 7 12 fixed constant

=1 .. .Db) ﬁj distributed N{O, @rg) and independently

0 if treatment i does not appear in block j

k=mn, =
1
k= nij = 1 if treatment i appears in block j.

In Table I which follows the block totals the treatment totals are de-

fined as
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Vei:s = ZY
i K

<
1l

DA
k
ik

‘Table I

Minimal Sufficient Statistics for Two~-Way Classification Designs

—p—

Design Dimension A Minimal Sufficient Statistic
‘ . 2 2 )
Balanced Complete t+2 = Yi'k’ ZYe.rs Voo (i5h,...,1)
Block g W55 4
2 2 .
Balanced Incomplete 2t+1 = Vi Zy. .., AR (i=ly 400 5t=1)y
Block with b > ¢ ijk W 5 d -

Zn, Ve, (izl,,..5%)
130

J
Balanced Incomplete Zt z Y..zk’ 'Y' a? (j:l’ 0o a3 b)’ Yi* - (izlp w9 . t”'l)
Block with b = t ijk * J
: . 2 . , 2
Partially Balanced nti+l = Vi Vir- (i=l,....,t-1), Zy..,. andn
Incomplete Block ik 9 1 j o)
with n <b linearly independent functions of black
totals.
2 \ .
Partially Balanced b+t b Yi'k" Ve .o (J=1,.0.,b), Yi' e (1=l 000 5t=1)
Ingomplete Block ijk ) J

withn = b
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- We have seen that the dimension of a minimal sufficient statistic in
a partially balanced incomplete block design is a functien of the rank n of
the matrix Z'X where Z and X are matrices in the model Y = X7 + Zf + e.
Of special interest are the partially balanced group divisible designs with
two associate classes (6). In these designs the observations can be di-
vided into ¢ groups of d each such that any two treatments of the same
group are first associates while two treatments from different groups
are second associates. Table II, which follows, gives the value of the rank

of Z'X in terms of the number of treatments t and the parameter d (7).

Table II

The Rank of Z'X For Partially Balanced Group Divisible Incomplete
Block Designs with Two Associate Classes

Design -Rank
Singular d
Semi-regular t=d+1

Regular t



"CHAPTER V

A CLASS OF N-WAY CLASSIFICATION MODELS

. Consider the model

v h
Y= ZX7,4+ 2 Z B
: k
j=1 I k-

where ‘Xj and Zk are matrices of known constants; Tj is a vector of t pa~-

rameters; and Bk is a vector of bk parameters. Throughout thig chapter

the following assumptions are made.

(d)

(f)

r.{i=1 ..., v) are vectors of fixed functionally independent
unknown parameters.

Bk" (k =1, . . ., h) are vectors distributed normally with mean
¢ and cpvariance G'EL All the components of the vectors Bk
(k=1, . . ., h) are stochastically independent,

2

a2 (k=1, . . . , h) are functionally independent and each o is

independent of Tj (i=1 - . .5 V).

i : 5 i T § ¢
All pairs of matrices from the set {Xlxl o e XVXV, lel .o thh}
commute.

For some k, say ko, we have zk =1,
0

The matrices XJXJ‘ G=1 ..., Vs Zka{ (k=1, , . . , h) are

linearly independent,

40
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Definition: The matrices Ai (i=1, ..., k) are said to be linearly

independent if for any set of real constants a, (i=1..., k)

k

= =

o A=
i=l

implies a, = 0,
Pt ey

Partitioning P

There exists an orthogonal matrix P which has the property that

PXijP‘ = Dj (=1, ..., v)and PZ Z'P'= Ek (k=1, . .., h) where
J - ,

K
Dj and Ek are diagonal (5). Il.et the rank of X be denoted by q where

X = (Xl’ ‘XZ' . e g XV), then

v
XX'= Z XX!
j:I JJ

Vv
PXX"P!= =T D.
j=1"

Since the rank of PXX'P'is also q, exactly q of the diagpnal elements

of PXX'P' are nonzero. Let the rows of P be arranged such that the q
nonzero characteristic roots of XX' are the first q characteristic roots

on the diagonal of PXX'P'. Thus P XX'P! £O0forus1l, . ..., qand
PuXX'P{; =0foru=g+l, . . . , n. This, however, implies P X £0
foru=1, .., ,qand EX=0foru=qtl, . . . , n. LetP'= (R', 8
where R is the (q x n) matrix of the first q rows of P and S is the [(n-q) xn']

matrix of the last n - q rows of P,
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Letr!'=(r {, e e e s T"f). RX 7 is then a (g x 1) vector of linearly
independent estimable functions of the parameters of 7. Furthermore,
the vector RX 7 is composed of linear combinations of the parameters
which span the space of all linearly independent estimable functions of
the parameters of 7. SX 7 on the other hand is ¢,

Let V denote the covariance matrix of Y. It readily follows by ap-

plying the definition of covariance to.the model considered that

h 2
V= Z g 2 Z!.
. k=1kkk

Now
by

PVPi= Z g E
k k

k=1

which is a diagonal matrix with the characteristic roots of V on the dia-

gonal,
4 R) rRVIR:  mv7ls:

pv R = | |v gy s1] = 4 4

s svR' svTs

1

RVFls' and. SVGIR? equal ¢. RV 'R'and sv-lst are diagonal matrices

with diagonal elements equal to reciprocals of the characteristic roots

of V,
Q= (Y - Xr)VHY - Xr)

Q = (PY - PXr)'PV P (PY - PX7)
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RY - Rx7)' (RVIR' o RY - RXr

SY ¢ svig: sY

Let s be the number of distinct diagonal elements of SV"IS', Denote
them by d;l i=1 . . ., 8) where the di are s of the distinct character~
istic roots of V. Arrange the rows of S so that the like characteristic
roots are grouped together on the diagonal of SVS'. Then partition §' into
(Sf’ s'2 .+ + 5 8!) such that siv.'lsi' = di‘ll where the dimension of I is

the multiplicity of d in the set of diagonal elements of SVS'.
i

Sufficient Statistics for the N-Way Model

If we now denote RuX'r by eu, the quadratic form Q can be written

9
Q= g (RY-86
u u
u=l

)2
u

s
+ = dle’s‘»'S.Y
i i1

i=1
where g (u=1, . .., q)aretheq diagonal elements of RVR'. This
form exhibits a sufficient statistic of q + s components namely R Y

(u=1, ... ,q)andY'Si'SiY(izl, « « . 5 S)

Distribution of the Sufficient Statistic

R{lY is distributed as a univariate normal variable with mean Gu
and variance gy = RuVRI'I’ and
et o,
Y S;’L SiY

o

1
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is distributed as a central chi square variable with degrees of freedom
n, equal to the multiplieity of d, .in the set of diagonal elements. of SVS!'.

The q + s components of the sufficient statistic are independent.

Minimal Sufficient Statistics

Theorem 5.1. The sufficient statistic with g + s components R,Y_

(u=1l, ..., q) and Y*ﬁ;siY i=1 ..., s)is a minimal sufficient

statistic.

Proof: We form the difference of quadratic forms

2 e R Y-6)2- R Y -0)2] +
Q"’Qo“ gu(u Wu)'b(uoqu)]:4
u=l
s

1 [Y’SI’SY Y(')S'SY ]
11

- = I U = , 15t =
Q QO equals zero when R, Y =R Y, (u L, .. .,q)jand Y SiSiY
Y(‘JS'S Y0 (i = 1, . . ., 8). NowsetQ -~ QO identically equal to zero
11
. -1 -1 -1 . s -1
in the gu, the Gu.,. and the ,di . The Gu, the di » gnd the distinct gu form
a linearly independent set of parameters. If diris not equal to some g ,

we immediately have Y’S’S Y = Y'S'S Y If g, equals some di" say

d,» then the above identity implies

¥ ~ - . 2 -3 gt
3 [RY -6)° -(R Y, -6)7]+Y'S[SY - ¥iSIS ¥V,

Here _Z-;I'* indicates the sum over all u where - dk' Expanding we have
u
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°* 2 2 Qe t 1 ; -
= [(RY) - R Y)" - 26 (R Y -R Y )] +Y'SIS Y - YIS/, ¥ =0

ua -

o)

In this form it can be seen that RuY = RuYO from which it follows that

-3 = vig! : : T
Y SkSkY OSkSkYO’ (for all k where dk equals some gu_) The fact

that R Y = R Y, when g, is not equal to some di follows as a special
case of the above situation. We thus have RuY = RuYO (u=1, .. ., q)
and Y’Si‘SiY = Y(')Si’SiYO (i=1 . . . 5 s)for all cdses. This is Lehmann

and Scheffe’s condition for a sufficient statistic to be a minimal suffi-

cient statistic,

A Complete Sufficient Statistic

Theorem 5. 2. When the covariance matrix V has h distinct character-

istic roots, then the Sufficient statistic RuY (w=1, ..., q})and

Y'Si'SiY (i=1, ..., s)is a complete sufficient statistic of dimen- .
sion q + 8.
Proof: Write the quadratic form Q as follows,

i 4 2 s
Q= Z g (RuY - Gu) + b2 du- Y'Sl'l_ Su- Y
u=l u u:q-+1 4 1 4

! = = 1. = gt ‘ = s
Let Z, RuY (u=1 ... 5 q) Zu Ysu—qsu—qY (u=qg,1, . . ., 8).
Let PG,.ch“ (Zl’ . e e Zq‘-l-—s) be the joint probability density function of
Z (u=1, ..., gts). Since these statistics are stochastically inde-

u

pendent, we have
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q
n -~ Z Z -=1 . 2
u - L 2g 2z, -0)
q+s 2 Zdqu 2 y=1 % u
P (Z, ... Z )=C IT %2 e ' e
T2
8,04 1 q+s =gl u
Suppose there exists a function f(Z1 oo Zq+s) such that
NG S %ggl(z -6.)°
§...§ S Suzz 01T 2 e 1e =0
1 g+s’ ' u
=00 -0 0 0 * 0 u=gtl
According to Fubini’s Theorem this can be written
q
1 -1,.2
-— - 20 Z
§0 S 2 -1 gu (Zu eu u)
e\ e Z Z )dz dz =0
0 0 ¢ @ 1
where
n -2 Z
u _ “u
o 0
oz...z )= §... Sz, z )f,ijrsz P My, dz
1 q Mo ~ 1 g+s a=qtl u g+l q+s
2
LR -
© F o u=l 8y 2 u=1 &,
... §e e $(z, ... 2)|dz, ...dz_= 0.
0 0 1 q 1 q

Since the parameters inthe set{ Gu} (u=1, ..., , q) were obtained by or-
thogonal transforming a set of functionally independent parameters the

Gu are themselves functionally independent. Each Gu_is functionally
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independent.of the characteristic roots of V hence we can apply the uni-
queness theorem of the unilateral laplace transform to assert that the

above identity implies

ZZ
q
1oy =
Zuzl gu
e 2y o0 2) 20
2
1 32
-l o= u
21.1:1 gu
e

is not equal to zeto hence q:(Z1 ... Z JEO, |

The elements of the set{du_qz (u=qtl, . . ., gts) are functionally
independent according to Lemma 2 found in the appendix. The uniqueness
theorem of the bilateral laplace transform is now used to assert that

q>(Z1 .o Zq) Z 0 implies

n -2
u

q+s 2

4 ) TT Z
+s
1 d u=q+l v

£(Z

1|
o

Except on a set with probability measure zero

nu-Z

q+s 2
T Z, #£0
u=qg+l
hence f(Z

. Z )= 0 except on a set with probability measure zero.

q+s



Thus the statistic with components R Y (u=1, . . . , q) and Y’S;'_SiY
ii
i=1, ..., , 8)is a complete sufficient statistic when the number of

distinct characteristic roots of V is equal to h,

48



CHAPTER VI
SUMMARY

Through an orthogonal transformation of the vector of observations
the data was so transformed that estimates. of the same function of pai-a,e-
meters could be combined, The combined transformed data was then
examined for the following properties: sufficiency, completeness, and
minimal dimension. The objective was to exhibit minimal sufficient sta-
tistics for a class of statistical designs which fall in the category of
Eisenhart's Model IiI.

In the variance component model for the one-way classification of
data we have the following theorem: <

The sum and the sum of squares of the treatment totals for those treat-

ments having n, (i=1, ..., a) observations, augmented by the

total sum of squares form a sufficient statistic.

Conditions are given for determining which of these ¢components form a
~minimal sufficient statistic. In Eisenhart's Model Il for two-way clas~

sification of data we have the following theorem:

The Bl:o‘c'k totals, the treatment totals, and the total sum of squares form

a sufficient statistic.

49



- 50

Conditions are given for condensing these components into a minimal
sufficient statistic.. Minimal sufficient statistics and complete suffigient
statistics are given for special sets of assumptions in the n-way classi~

fication situation.

Suggestions for Future ‘Study

In many cases the quantities used in the conventipnal analysis of
variance method of computing estimates of parameters. are not the quantié
ties which appear as components of the minimal sufficient statistics ex-
hibited in this thesis, For maximum use to be made of the resuvlt’s of
this thesis, a new computing technique must be devised or the existing
analysis of variance method must be written in terms of the components
. of a minimal sufficient statistic,

In many meodels there 'rerﬁains» the problem of how best to combine
estimates of the same function of parameters,

The n-way clas sificationvproblem is only partially solved in this
thesis, Questiens. related to interaction still remain unsolved in the n-

way classification pr.ebl.em.
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APPENDIX

L.e,rnmaf.‘l. If j;he distinct ‘positive‘qua,ntitie‘s‘ ds (u =1, ..., k) are

of the form du f_lau 4+ a where a # 0 and a is functionally indepen-

'(u=1, . . ., K are linearly

dent nf each bu’ then the quantities d~

independent.

Proof: Consider the set of constants <4 (u=1, .. ., k), such that

k <,
Z d = O.
u=l 4
It follows then that
-k 'k
Z(c TT d,) =0 or equivalently Z [c_TT (b_+a)] = 0.
’ u v ) u v
u=1 V}éu u=1 V}gu

- Expanding and collecting coefficients of powers of a we have

k-1
a - (Z}cu) =0

© © e © e o o s e o s 8 o

The above system of k equations can be written ass AC = ¢ where

C'= (cl;,. e v oy Ck) and
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we consider

z b z b, z b
vl viu ‘ VvEk
A = Z b.b = Z b
v, Vv ViV :
vl 172 vEu 172 vk V1 V2
< <
v1 VZ V]. V,2 v1< V2
b, . . b . . b .
bobs Py LIRS 1P Py
v Eu
i #
We will now prove by induction that JA| #0, Ifk = 2
1 1
lAl = b . b = (bl - bz)'
2 1
Ifk=23
1 1 1
A} = b, +bs b b, b, + b, |= (b1 - bz)(bl - b3,)(b2 - b3_)
bob3 LS ULPY
Assuming for k = m that
m
|Al= TT (bu - b.)
u<j J
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1 1 1
Z b Zb Z b
B4 v
v £l : viEu v Fm+tl
lA| = Z b,b Z b, b, = b, b
vElL 172 via 172 vAmil L2
< < ¥ <
1" V2 17 V2 Vi< Va
b . . o o
b 2 mtl b1 bV bm+l blb > bm
vV Eu

- Subfracting column m + 1 from the remaining columns and expanding by

the first row of the resulting matrix we obtain

m m mi+tl
|Al= T (b -b ) T (by-b)= T (b, -by .
u.=1 ou<j oo u<j

Since the d, are distinct, the bu are also distinct and | Al £ 0. This implies

- C = ¢ which asserts that the quantities d-1 (u=1 ..., , k), are linearly
u .

independent,

Lemma 2. Let the ¢covariance matrix for a vector Y of observations be

of thé form

b2
V= Z o Z zZ!
k=1 k "kTk
where ¢E are functionally independent and the matrices Zkzl'< are

linearly independent, Let P be a matrix of orthogonal rows such




that PZkZI'(P' (k=1, . . . , h) and- PVP' are diagonal matrices.

Let s equal the number of distinct diagonal elements of PVP'. If

s = h, then the distinct characteristic roots dk (k=1, . . ., h)

are functionally independent,

Proof: From the form of V we have

5

PVP' = T olpz Z'P.
k! k%K
k=1
%

Let D* and D,

be the vectors of the diagonal elements of the matrices

PVP'and PZ Z'P', respectively. D can then be written

k

h Z E % *
D = b2 O'ka =(D1’ o e e 3 Dh)z
2
[

matrices, the Dk are linearly independent vectors which implies the

e o s o-h). - Since the Z Zf( are linearly independent

where Z' = (¢ i

matrix (Dl*, ey DIT) has rank h. This together with the fact that

55

3 has h functionally independent elements implies D hash functionally

independent elements. These clearly are the h distinct characteristic

roots dl’ e ey dh.
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