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PREFACE 

In 1950 there appeared in the Statistical journ.al Sankhya a num

ber of results concerning minimal sufficient statistics. These results 

were in. the form of very general mathematical theorems. Since 1950 

these theorems have been. applied to several statistical models, but very 

little has been said about the variance component models with some para

rneters fixed and others random. In this thesis minimal sufficient sta

tistics for this class of models have been investigated. 

Indebtedness is acknowledged to Dr, Fra:nklin A, Graybill for sug

gesting the problem, for guiding my research., for assisting in the pre

paration of this thesis, and for obtaining a research grant under· which 

I studied for two years; to the National Science Foundation for sponsoring 

the research for this thesis under grant number N. S. F. G-3970; to 

Dr. L. Wayne Johnson for the Research Assistantship I have held; and 

to the following members of my com:qiittee: Drs. Carl E. Marshall, 

Roy B. Deal, and Olin H. Hamilton. 
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CHAPTER I 

INTRODUCTION 

Statistics is a science wh.ich deals with data. An important phase 

of this science is the condensation of the data without loss of informa

tion. Suppose the objective of an, experiment is to estimate the mean 

of a certain population. In order to estimate the mean, a random 

sample of size n is drawn. The n dimensional sample then provides 

information concerning the value of the population mean, but the 

average of the sample :measurements provid(;)s an equivalent amount 

of information concerning the population mean. The average sample 

value is called a statistic and in this case we have a condensation of 

information from an n dimensional vector to a scalar, Statistic$ 

which condense without loss of i:nformation are termed sufficient sta

tistics. 

The original observations trivially alw<il,ys represent a sufficient 

statistic. One wot1.ld prefer to work witri, a condensation an.d generally 

a condensation of small dimension, A sufficient statistic is called 

minimal if Hs dimension is less than ol," eqt1.al to the dimension of any 

other sufficient statistic. 

1 
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A minimal sufficient statistic for a specific statistical design is 

not unique . . We shall later define a property called completeness 

which the probability density function of some statistics possess. 

Sufficient statistics with complete density functions are called suffi 

cient complete statistics. When a sufficient complete statistic exists, 

then every estimable function of the parameters possesses an unbiased 

estimate with uniformly smallest variance and this estimate is the 

unique unbiased estimate based on the sufficient complete statistic. 

Statement of the Problem 

The objective of this thesis is to exhibit minimal sufficient statis -

tics fo.r a class of statistical designs which fall in the category of 

Eisenhart 1s Model III (1). The exact definition of Eisenhart 1s Model III 

will be given later. The entire solution for the one-way classification 

of data anq. the two-way classification of data appears i n this thesis. 

In addition, solutions for special sets of assumptions are given for 

the n-way classification situation. 

Notation and Definitions 

. The entire thesis has been written in terms of matrix and vector 

notation. Eisenhart 1s Model III is a special case of the general linear 

hypothesis model which in matrix notation takes the form Y = X[3 + e. 
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Here Y is an (n x l) vector of observations, X is an (n x b) matrix of 

known con.stants, 13 is a (bx 1) vector of unknown parameters and e is 

an (n x 1) vector of random errors. Eisenhart's restrictions for Model 

HI <;ire that certain of the parameters are fixed unknown constants, 

while the remaining parameters are distributed normally. e is also 

assumed to be distributed normally, 

Previous Work in this Field 

The basic theorems used in the solution of the problems encountered 

in this thesis are found in Lehmann and Scheffe 1s (2) 1950 paper. These 

theorems are in very general mathematical terms, Papers by F. Gray

bill and the author (3) and F. Graybill and D. Weeks (4) discuss mini

mal sufficient statistics for Eil;ienhart's Model II and Eisenhart 1s Model 

III. 



CHAPTER II 

GENERAL PROCEDURE 

In Chapter III the one-way claseification w:i.11 be e~amined; in Chap

ter IV the two-way classification will be discussed; and in Cb.apter V 

certain aspects of the n-way clasE1ification are developed. Rather than 

discuss in each chapter. those aspects of the theory which are similc;1.,r, 

we instead treat them in tp.is, chapter. 

Criterion for Sufficiency 

Let f(Y; 9) be the joint probability density function of the vector of 

observMions, Neyman 1s Criterion for S to be a sufficient statistic is 

that f(Y; 9) can be written f(Y; 9) = G(Y) • H(S; 9) where G(Y) is inde

pendent of 9. Tp.roughout thi!ll pap(;Jr f(Y; 9) will be the multivariate 

normal density function; hence, an equivalent criterion is to write the 

quadratic form for f(Y; 9) as 

Q(Y; 9) = O/Y) + 0 2(S; 9) 

Criterion for Completeness 

A family of density functions such as. f(Y; 9) is said to be complete 

4 



if Jh(Y)f(Y; e)dY-= 0 implies<~1(Y) :i; 0 almost everywhere .. We shall 

use this definition as the c:riterio:n. for determining whether a suffi-

cient statistic is complete. 

Criterion for Minimality 

, To show that a sufficient statist:i.c S. is minimal, we shall use a 

. result stated and proved by Lehmann and Scheffe (2). The ratio 

f(Y; 0) 

f(Y ; ·a) 
0 

f1(S; 9) 

;::·----

5 

is examined where Y is so:r:p.e point other than Y.in then dimensional 
0 

sa;mple space. The condition for S to be mini:rnal is that K(Y, Y ) be 
0 

independent of 9 if and only if S = 5 0 • For multivariate no;rmal density 

functions this procedure is equivalent to investigating whether or not 

the difference of the quadratic forms Q(S) - Q(S0 ) is independent of 0 

if and only if S = S0 • 

Procedure £or Condensing the Information 

Consider n,ow the quadratic form Q of the joint probability density 

function of the p.ormal variaples in the vector Y. 

where E is. the operator denoting the expected value of Y and th,e co-

variance matrix V is by definition 



V == E(Y -EY)(Y-EY}' 

The procedure used in the following chapters for rewriting Q is as 

follows. There exists.for Model III in the one-way clasi:,ification, 

the two-way classification and in certain :µ-way situations an ortho

gonal matrix P of known constants such that :PVP 1 is diagonal. We 

refer to the matrix P as an orthogonal matrix which will diagonalize 

V. The quadratic form can be written 

Q == (Y-EY) 1P 1Pv-lp 'P(Y-EY) 

Q = (PY-EPY) r(PVP ') -\PY-EPY) • 

6 

The theory from this point digresses depending upon the model in

volved. The objective in each case is to choose P so that Q can be writ

ten in a form which will exhibit a minimal sufficient statistic. 



CHAPTER III 

THE ONE WAY CLASSIFICATION VARIANCE 
COMPONENT MODEL 

Consider the model Y = µj + XT + e where j is a vector of ones 1 

Xis a matrix of zeros and ones, µ is a. scalar para.meter, and 7' is 

a vector of t treatment parameters ordered according to the number 

of observations for the treatment. T is assumed to be independent of 

e and distributed normally with mean cj> and cova,riance matrix cr 2 I. 
T 

e is assumed to be distributed normally with mean cj> and covariance 

. 21 matrix er , • Let m be the number of treatments having n. observations 
i . 1 

and let a equal the number of distinct ni 's. 

In a variance component model as described above we have the 

following relationships. 

X which is an (n x t) matrix is of rank t < n. 

j, X = (n j, , 
n l m 1 

. . . ' 

X'X = D . . t 

where Dt is a. diagonal matrix of the form 

7 
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:Q.. I 
1 m. 

1 

. . . n I 
am 

a 

A Sufficient Statistic £or the One-Way Classification Model 

8 

We use these relationships to define a partitioning of an orthogonal 

2 
matrix P defined in Chapter II .. Since X 'XX 'X = D it follows that 

t 
-1/2 . -1/2 -1/2 . -1/2 

D t X'XXrXD t = Dt' <;Lnd D t X'XD t =I. 
.,.lfz 

P 1 = D t X' thus 

. consiats oft orthogonal rows which diagonalize XX 1• 

Consider next the matrix W = (j, X) and choose P 2 to be any set 

of n-t orthogonal rows such that P 2 WW 'P 2 = cj>. There exists such a 

matrix because W is (n x t + 1) and has. ra:q.k t. p (jj 1 + XX ')P, = p jj rp, 
2 · 2 2 2 

+ P 2XX'Pz = <j>. Since jj 1 and XX' are both positive se?lli-definite 1 

P 2Jj 1P 2. = <j> and P 2XX 'P 2. = <j>. It then follows that P 2J = <j> and P 2x = cj>. 

-1/ 2 
P 2P 1 = P 2XD t = <j>, hence P' = (P11, P 1) is an orthog:onal (n x n) matrix.. 

Consider now the quadratic form for this model. 

Q = (PY -EPY) '(PVP ') -\PY-EPY). 

EPY = Pµj = 
n 



. V = E(Y -µj) (Y ·-µj) 1 = E(XT +e)(X'T +e)' 

· V = E(X'T'T' 'X') + ZE(e'T 'X') + E(ee 1) = 0" 2 XX' + u2~ 
'T 

[
P xxip, 

PXX'P' = l. l 
P XX'P 1 

2 1 

P . . ··XX. 
1

P 
I J [ .. D 

1 2 t 
= 

P XX'P' ,1,. 2 2 't' :] 
PVP' = 0" 2 PXX 'P' + a- 21 

T 

PVP' = [ 
2 2 

o- D ·.+ er I T t 

. tj> 

Q= 

If we now substitute for nt the quad,ratic form Q can be written 

/ 
' Z . 2 -1 

(n rr t r, ) I 
.1 T m 1 

-1/2 . . 
n. (T. - n.,H,J ) 

1 1 1 · m. 
' 2 2 ~1 

(n.lT + er ) I 
1 T m. 

l l 

o -D e • ' o- • o ~ 0 

. -1/2 
n (T . "' n µj . ) a a a m 

a 

' Z 2 -1 
(n er + a- ) I a,. m 

a 

where T is. the vector of the treatment totals. for those treatments 
i 

hav~ng n1 (i = l, •.. , a) observations. 

9 
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a 2 2 -1 -1 . 2 2 · -2 
Q::; ~ (n.O" + <T ) n. ('l'.1 T .... 211,µJ' T. + m.n. µ ) + er Y'P 11? Y 

. 1 1 T l 1 1 1 m. 1, 1 1 2 2 
1= 1 

This. form of Q exhibits. a sufficient 1:1tatistic of dimension 2.a + 1 - s 

- whel"e s is the number of mi equal to one. In the case wh.e:re all rn. ~: 2 
. 1 

for all i, the Za + 1 components are 

T'T 
i i 

(i = 1, . ~ . • a) 

j:n T. (i = l, . . • a) 
i 1 

Y'P'P Y 2 2 

Computation .of the :su£fi6ient Statistic 

Th,e above statistic is. readily computed, including the component 

Y 'P 1P 2 Y which we shall now show to be a function of the treatment 

totals and. the total sum of squares. 

Y'Y = Y'P'PY = Y'P'P Y + Y'P'P Y 
1 1 ' 2 2 

Y 1P 1 P Y:;:: Y'Y - Y:'XD-lX'Y 
2 a t 

y 1P I p y :: y 'Y -
2 2 

a -1 
~ n. 'l'.' T. 
i:;::l 1 1 1 

The above results are now sum:merized in the following: 

Theprem 3.1, The sum of the treatment tota,ls. for thoae treatments 

having n. (i = 1, • . .• a) observations, the sum of squares of the 
. ~ 1.....,,.~ ........ -----..---...--~--~~..-.-..~~~--~~.::.-........ __.~~~ 



treatment totals for those treatments having ni (i = 1, . . . , a) 

observations, and the total sum of squares. form a sufficient sta-

tis tic of 2a + 1 components. 

Minimal Sufficient Statistics .for One - Way Models 

Theorem 3. 2. Let m . , n . , and a be defined as above for the one-w?,y 
-~1 - 1 ~-------------------~~------~--~---------------

classification variance component model, then a minimal sufficient 

statistic has dimension 2a + 1 - s where s is the number of m . = 1. 

One minimal sufficient statistic has as its components 

T. when m, = 1 
-1 1-

· ' T when m. ~ 2 Jm. i 1--
1 

T.'T. when m. ~ 2 
-1 1 1-

Y'Y 

1-

Consider first the case where s = O. We shall show that when the num-

ber of treatments having n. observations is greater than two for a ll i, 
1 

then a minimal sufficient statistic is a statistic having as its compo -

nents the sum and the sum of squares of the treatment total s, for those 

tota.ls having n . (i = 1, .•. , a) observat ions, and the total sum of 
1 

squares. 

Proof: Following the procedure of Chapter II we form the differen ce 

11 



12 

a 
Q-Q = g [Y'P'P .Y-Y'P'P Y ]·+:£ g_[T'T.-T.' T. -Zrt.µ(j' T.-j:' T. )] 

0 0 2 a O 2 2 0 b=l 1 i 1 10 10 i mi l. mi 10 

-2 2 2 -1 -1 
· where g01 = r::r and g. = (n,O" + r::r ) n. (i = 1, 

l 1 7' 1 
a) .. When 

S = (T1'T1, j'T1, T'Tz, :j'Tz, , •. T'T, ,j'T, Y'P'P Y) 2 aa a 22. 

is equal to S 0 with corresponding components TJ. 0 TiO ~tc. we have 

Q - Q 0 = O. Next we set Q ... Q0 identically equal to zero in the para-

2 2 
nieters µ, r::rT, and tr • The form of Q ~ Q 0 and the linear independence 

of the gl_s, (see appendix for proof) implies. Y 'PP:> 2 Y =- Y op 2.p 2 YO' 

T.'T. = T;'oT·o· (i = 1, ..• a.) and j' T. = j• T. 0 (i = 1, ..• a). These 
1 1 1 1 · m. 1 m. 1 

l 1 

are the conditions. for the above set to be a minimal s1tificient statistic. 

This concludes the proof of Theorem 3. 2 for the case where m. 2:. 2 for 
1 

all i. Observe that when m. = 1,· we have T.°T. = T7 which is a function 
1 1 1 1 . 

of the statistic j 11T. = T.. Hence when m. = 1 the component T.'T. is 
. 1 1 l l 1 

deleted and the dimension of the suffici.:ent statistic is. reduced by one 

each time an m. = l. 
1 

It is interesting to note that when a = 1. XX' commutes with jj' 

and our model becomes a special case of the n-way problem discussed 

in Chapter V. In the case where a= 1, n1= L,we have no estimate of 

.2 
G" • 

T 

An· Example 

Consider the following; data: 



Treatment 7' 1 'T 2 7'3 7' 4 7'5 'T 6 

2.3 3. 8 3. 5 2.9 2. 9 4.1 

2. 7 3.6 4.1 2.7 3.8 4.5 
Observations 

3. 2 3.8 3.1 3.8 

2.5 3.1 3. 3 

Totals 10. 7 14. 3 14. 0 5.6 6.7 12.4 

For this example th.e parameters and total vectors are n1 = 4, m 1 = 39 

n. 2 = 29 m 2 = 29 n 3 = 3, m 3 = 19 a= 3, T1 = (10.7, 14. 3, 14.0l9 T 2 = 

(5. 6, 6. 7)v T; = 12 0 4. According to Theorem 3. 2 the following a,re 

the values of the components of a minimal sufficient statistic for this 

example: 

T1T1 = 514. 98 

T 1 T = 76, 25 
2 2 

J''T = 12. 3 . 2 

T 3 = 12. 4 

Y'Y = 220.13 
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Distribution of the Minimal Sufficient Statistic 

In this section we shall discuss the distribution of Y 'P 2P 2 Y and 

the distribution of the components of the minimal sufficient statistic 

exhibited in Theorem 3. 2, 

Consider the partition of X in.to 

· X = (X11 • • • X. 9 • • • X ) 
1 a 

where the column dimension of X is the number m,. In terms of X. 
i 1 1 

and Y the vector of treatment totals T. can be written T. = X.'Y. Now 
1 • i 1 

since Y is distributed N(µj, ,/xx 1 + cr 2I} it then follows that T. is 
T 1 

2 2 
distributed N[ µX,1j 1 X.1 (u XX'+ er I)XJ. Upon simplifying this result 

1 1 'T 1 

we conclude that T. is distributed N[n. µj, n.(n.cr 2 + i!r 2)I]. jUT. is 
l 1 1 :I, 'T 1 

then distributed N[n.m.µ., n.m.(n.«r 2 + 11' 2)]. 
11 lll'T 

In order to determine the distribution of T}T.:i we write T.'T. as 
1 l 1 1 

Y'X.X.'Y and apply the following theorem: 
l 1 · 

If Y is distributed as a norm.al vector with mean µj and covariance V, 

then a nee es sary and sufficient condition that· Y 1A Y be distributed 

as X •2(p 9 A.} is that VA be idempotent. Here p is the rank of A 

=1 and X. = 2 µ 1Ap.. (5) 

(a) Let 

. . 2 .. 2 
n. (n.lT + er } 

1 1 'T 



play the role of VA in the above theorem. This quantity reduces to 

n~1X.Xl which is idempotent. 
1 1 l 

(b) the rank ,of .X.X.1 is m .• 
l l 1 

(c) 

z=l z. 'Xx·'' µ ,J . .J 
A.= ~~~~-1~1~ 

2 2 n. (n,O"" + .r.r ) 
l l T 

-1 . 2 . 2 =1 2 = 2 n.m. (n.g + .6' } µ 
1 l. l. 7' 

The above statements imply th.at 

Y 12(X.1Y 
l l 

2 2 n, (n.u + IT .) 
1 1 'T 

-15 

2 -1 2 . 2 -1 2 
is distributed as X 1 [ m., 2. n.m, (n.G"" + r:r ) µ ] T.'T. is then dis-

1 1117' 11 

tributed as ni (:n.icr; + o- 2) times a noncentral chi square vc;triate with 

m. degrees of freedom and non centrality parameter 
1 

T:'T. and T!T.; (i /:. j) are independent because T and T have a co-
l. 1 J J i j 

variance matrix equal to <j>. The same conclusion holds concerning the 

independence of,jt'I'k and j 1Tu; (k /:. u}. If we delete Y 1Y fr0m the com-

ponents of the minimal sufficient statistic the remaining: components 
; 

a.re a mutually independent set. 

We now wish to investigate the distribution of Y 'P 2P z Y. 
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{a) t .,..-zp' P .,(o-z xx, + o-21) ][ a- -zP ~Pz(<Tz xx, + (T 2r>] 
2 ~ T · ~ 7'. · 

= (T -4 f c:r 2 p I p XX'P I p + (J" 2P I p p I p ] {o- 2 xx I + er 211 
7' 2 2 2 2 2 z· 2 2 T J 

' ' 

-2 2 2 = (j p I p (CT xx I + liT I) 
2' 2 T; 

-2 2 2 
Thus CT P ;p 2(a-T XX' + CT I) is idempotent. 

(b) The rank of P 2P 2 is n - t. 

(c) >.. = Z""1µ 2j'P2P 2ju-Z = O, 

The above statements imply that Y'PzP 2Y is distributed as x 2(n-t). 

l;n. order to verify ,that Y 'P 2:p 2 Y is independent of T ;_Ti we again write 

T.'T. as y 'X.X.'Y. P 21 P (a- 2 XX'+ i:r2I)X.X.':;: ·cp is the condition for the inde-
11 11 27' 11 

p.endence of the1;1~ quadratic f9rms. This is indeed satisfied for P 2x = cp 

We have previously seen that Y'Y can be. written 

a . 
Y'Y = 4 n~1 T.'T, + Y'P'PzY 

. l 1. 1 1 2 ' 
1= 

Y 'Y is therefore distributed as a linear combination of ~ndepe:adent chi 

square.variables, one of which is a centval chi square variable. 



CHAPTER 1:IV 

THE TWO-WAY CJ;..ASS~FICATIQN MOD.fl.. III 

Consider the model.Y = XT ,t Z~ + e where ,r is·. (t x 1) and is a 

vector of fixed. estimable. treatment .parameters indepe:m:dent of 13 and e; 

and l3Hs a vector of b normally distributed block co~pone:n.ts independent 

' ' 

of e and ordered according to the number of plot1s k1 for the block. ~ 

1is assumed to have mean cp ~d covariance matl"ix u;1. Sup:po.se that 

X and Z wl\ich are (n x t) and (n x b) rnat:,:-ices. are each. of full rank. e 

is assumed to be distributed normaHy with m~an 4> and cQvadance crzl. 

!,.,et m 1 be the number of .blocks having ki plots and let a equal the nuz:n ... 

ber of distinct k. Js. ' 1 

In the model descdbed above we have the. following: relationship. 

Z rz = Db where Db is a diagonal matrix of the form 

k.l 
1 mi. 

17 

. <I> 

' ,I. 
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The Partition of P 

We now define a partitioning of P into P' = [ P 1, P1, ~3] .. Since 

Z'Z = Db' then Z'ZZ'Z = n! .. D~l/ 2 Z 1 will then diagonalize ZZ' and 

. ...1/z r -1/ 2 ... 1/ 2 t • f 1 .. since Db Z ZD = I, Db Z 1s a eiet o b orthogona rows. Let 

pl = D ~l/ 2 Z '. 

Consider N.ow the symmet:riG matrix X 'HX where H denotes. the 

ide~potent matrixl - Z(Z'Z)"'1zr. The matrixX'HX appears in con~ 

nection with.the normal equations. of the model Y = XT 4- Z 13 + e. 

A x·x~ + X'Zl3 = X'Y 

Z'X9 + Z 1Z~ = Z'Y 

A 
Solving for 13 in the second set of equatic;>ns we have 

~ = (Z'Z)'''1 Z'Y - (Z'Z)-l Z'X~. 

Substituting in the first set of eq,uations we have 

x·x~ + X!Z(Z·'Z)""l Z'Y - X'Z(Z 1Z)-l Z'X~ = X'Y 

or 

In terms of the matrix H this is 

18 



X'HX9 = X'HY 

X 'HX has. ra~k at most equal tc:> (t - 1) since j 1X 'HX = cj>. That is, 

the sum of the rows and the sum of the columns of X 1HX each add to 

zero. Since the treatment differences are estimable, X 'HX has rank 

exactly equal to (t - 1}, 

Th.ere exists a (t x t) orthogonal matrix u* which will diagonalize 

' -* the matrix X 'HX. Furthermore., we can, chpose th.e first row of U to 

be j 1, whereupon we can write 

19 

- -* Let Ube the matrix U with the row j 1 deleted. Then UX 1HXU 1 :c l where 

U = D ... lfzu. Let P 2 = UX 1H. Sin.ce Z 1H = z• - Z'Z(Z'.Z)~lz, = <p, we 

th.en have P 1P 2 = <j>. Thus 

[::] 
is a set of b + t .m l ortho.gonal rows. 

Let W = (X, Z) and let P 3 be any set of n. - t - b + 1 0:11."thogcmal rows 

. which are such that P 3 WW 1P 3 = <j>. Th.er~ exist,· such. orthogona,1 rows 

because W has rank (t + b - 1}, wherein it follows that WW' h;as (n .. t-b+l) 

characteristic roots equal to zero. 



P WW'P'=P (XX'+ZZ')P' =P XX1P' +P ZZ'P 1 :;,I,. 3 3 3 · 3 3 · 3 ·. 3 3 'I' 

Si:nce XX I and ZZ I are positive semi-definite, we have 

P xx1p1 = <I> 
3 3 

and 

.. 1/2 
Then P 3X = cj> and P 3z = cj>. Consequently P 3P1 = P 3ZD b = cj>, and 

Thus P' = (Pl' P 2, P 3) with Pt P 2 , and, P 3 defined. as. above, is l;tn 

orthog~nal (n x n) matrix. 

Sufficient Statistics. for the Two.,. Way Model. 

Consiq.er now the quadratic form for this model. 

Q = (PY - EPY') '(PVP 1)'"1(PY - EPY) 

PX D-l/Zz 1XT 1 7 b 

EPY = PXT = P£Xrr = UX 1HXT 

V =.E.(Y - X'T )(Y "' XT)' = E(Zt, + e){Zt, + e) 1 
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V = E(Z!3 !3 'Z 1) + 2E(ej3 1Z ') + E(ee ') = ir2 ZZ I+ 1:r2r 
. . 15 

P ZZ 1P 1 

1 1 

PZZ'P' = P ZZ'P' 2 I 

P1 ZZ 'P 2. 

P 4ZZ 1P 2 
P ZZ'P' 3 2 

P ZZ'P' 1 3 

PZZ 1P' 2· 3 

P ZZ'P' 3 3 

P 2ZZ'Pi = UX'HZZ'HXlJ' = cp 

P. ZZ 'P' ::: P. ZZ 'HXU' = cp 
. 1 2 1 

P ZZ'P' = cf> 1 3 . 

P ZZ'P' :: "' 2 . 3 "" 

The quadratic form can now be written 

Q= P 2Y - UX!HX'T .. 

PY 3 

-2 
a: I. 

j 
Let the vector of block totals Z ry be d,enoted by l:h let the vector of 

21 



treatment totals X 'Y be denoted by 'I', and, let B . be the vector of b l ock 
l 

totals for those blocks having k. (i = 1, ••. a) plots. Let N = Z 'X 
l 

and let (N
1
1, ••• N .' , . .• N') be the partition. of )>ll' 1 correspon ding to 
. 1 a . 

the partition of B I into {B
1
1

, ••• l3.i, ••. B 1 
) . Q can then be written 

l a 

Q = 
a 
:E k :

1 
(k.o-

2 + ,0"'
2

) -\B. - N. 'T) ' (;B. - N. 'T) + 
i=l l l 13 l l l l 

The total sum of squares Y 'Y can be written 

yiy = Y 1P'PY:,;: Y'{P'P + P'P + P'P 1 )Y 1 · 1 22 · 33 " 

Then 

Y 1P'P .Y = Y'Y - Y'P'P Y - Y'P'P. Y 
3 3 1 1 2 2 

Y 'P'P Y = y ty ... Y 1zn"1z 1Y - Y. 'HXU'U. X'HY 3 3 . . b ,,. 

Y 'P ;p 
3 

Y is the intra~lock error if Y '}!XU 'UX: 1HY can be shown to be 

22 

the reducti on due to treatmeD;tS adjusted for blocks. In our notation the 

reduction due to treatments adjusted R('T / 13) = ~ 'X 'HY where T is a 

solution to the system of equations X 'HX~ = X 'HY. Augment this sys -

tern in the following manner: 

[

X'HX 

j I 



Th,e matri:x; 

[
X'H:X . j] 

j I 0_ 

has an inverse which.we shall now sbow to be 

[
u•u 

t °' lj I 

t -1.,. 1 
J J = 

j .'U 'U = ,1 cf> 

0 

23 

There remains to show that U't,JX'HX + t-1J:;: I. We shall sh-ow ~his in 

the following m~:nner. Since UX'HXU' = I, then U'UX'HXV':.: U 1 • MuJt;. .. 

...,..* .... * plying. by :OU we have u•ux 'HXU 'DU = U 'PU. Now U 'tr ::;z l, :ti.ence 

U'DU =· ~ .. t .. lj 
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Substituting in the above equation we have 

HXj = cj>, hence we have U'UX'HX + t-1J = L. We may now write 

~ = U'UX'HY is then a solution of the system X 1Hxfr· = X 1HY and R(T/ f3) = 

Y'HXU'UX'HY. Y'P;P 3Y is consequently the intra-block error and 

y 'PI p y = y 'Y - R(f3) - R(T I f3). 
3 3 

The following theorem is a i;;ummary of the resµlts of the preceding 

discussion. 

Theorem 4.1. The vector of qlock totals B, the vector of treatment 

totals .T and the to.tal sum of s9:µares Y 'Y form a sµfficient statistic 

of (h + t + 1) components. 

Proof; I£ we let 

then the quadratic form Q can be written 

+ CT -zY 'P ' P Y 
3 3 ' 



Z5 

PzY:; UX'HY:; UX'Y '"UX'Z(Z'Z)-lz,y 

P Y - UT · UX'ZD'"ln . - . - ·, •·. D • 
2 b' 

, Substitutj,ng for P 2 Y and. Y tp 3P 3 Yi Q can be written 

Qz 
a .... z !l 
~ g.(B. - N'.'T.}'r(». - N.T) ta:·'[ (UT - UX'ZDC B)- .(UX'XT + 
. 1 1 1 1 1 1 " 

_ l::i! 

. l1X·'ZD~1z·'X'T >J '[ (UT - UX'ZD~1B)-(UX 1X'T + ux•zn;1z 'X'T)] 

-z ' 
*q-· [(Y'Y • R(!3) - R(T/13.)]. 

This, forrn of Q exhibits. the vectors JS and T and the sum of squares Y 'Y 

as a sµfficient statistic of (b + t + 1) components. 

Minimal S.uffi·cient Statistics 

_ We now direct ol,lr attentiqn to fi~ding minimal suffici~nt statistics •. 

Theorem -4:. 2. Let ni be the rank of Ni. When ni .:.._ mi for aU i -~i .: ~' •• •, a) 

the dimension of a minima\ statistic is b,+ t. The blQck -totals B, 
' . ' .. 

(t - 1) of the treatment total$- and y·•y form a mini:qial ijl,l{ficient sta-
. ' ' 

tistic when n. = m. for all i (i :; 1, • • ~ a). 
. · · · l ,..._ 1 ------------..,.__..._.... __ _ 

Proof: 

a 
Q = 2:: g. (B. - N. T )'-(;5. - -N. T ) + 

'11 1 1 1 1 1::: . 
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This form of Q exhibits a sufficient statistic of b + t components. These 

components are the b block totals, the (t .. 1) components of the vector 

P 2 Y and the scalar Y 'P :/:> 
3 
Y. To sh.ow that this stati~tic is minimal we 

apply the procedure of Chapter U. 

Q - q 0 = 

Y ' P ' • p2·.Yo) "'Z(P Y - PY )'P X7 4 (Y'P,l p Y -oa z · ··· 20 z · 33 · 

Y ip· Ip· y )] : Q 
O' 3 3 ' 0 - • 

According tct Lemma 1., found in the appendix, the ~et (giJ is a set of 

linec1-rly independent functions of the pc1.rameter$ involved. The linear in-

dependence of the g. •s implies that 
1 ' 

and 

+ y 'P, p y _ yr p, p y = o 
· 3 3 0 3 3 0 

The independence of the m. rows of N. implies N.'T is a vector of m. l 1 1 .. . .. 1 

linearly independent functions of th.e parameters · 7-1• • • 't t" Th.is in turn 

impHes Bi - BiO = cp or B = B
10

. In like manner we have P 
2 

Y = P 2 Y 
0 

which implies y ·1p 1 · P 
2 

Y - YbP~ ·, P 2 Y O 
= O. Finally then Y 'P;P 

3 
Y 
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mui;;t equal Y bp 3P 3 Y 0 . Togeth.er these relationships are Lehmann and 

Scheffe ' s condition that the t + b components exhibited are a minimal 

sufficient statistic . 

Since j' B = f 'T, the block totals B, (t - 1) of the treatment total$. ,and 
b t 

Y 'Y form a sufficient statistic. Since this statistic has dimension t + b , 

it i s a minimal sufficient statistic. 

We now extend thii; theorem to the case where n . < m .. (Notice that 
1 1 

this is the only alternative case. The rank of m. rows can never be 
1 

greater than mi) . 

Theorem 4. 3. Let S be the set [ i / ni ~mi) and let S be the complement 

of S. In this case the dimension of a minimal sufficient statistic is 

~ (n. + 1) + 
i es 1 

~ n . + t . 
- 1 

iE ,S 

The total sum of squares Y 'Y, (t - 1) treatment totals, the block 

totals for those blocks where n. = m., n. linearly independent func -
· , 1-. - 1-1 

tions of the biock totals, for each set of blocks where: n. < m . and 
J,-1-

the sum of squares B .'B. for ea.ch set of blocks where n. < m . form 
· 1 1 , · · 1-.-1--

a minimal sufficient statistic for .this case. 

Proof: We have from the proof of Theorem 4. 2 
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q.nd 

(B!:S._ - ;B;'nBin) - Z(B. - B. 0,> 'N.,- :: 0 
1 1 :i.111 ,:;, 1 1 1 

Conside:r first n, wh.ere i e S;. Since the rank of N., enual to n., is ~1est:1 
·3, . 1 ';L . .1 

than the dimensit;,n of Ni' th.is identity does not imply that all of the .block 

totals are pre$e:g.t in a given minimal staUstic. 

Let Ni be partitloned int@ N{ :;: (N.\• N,'.z.) where Kit has. rank ni and 
,1. 1 . 

dimension (ni x t) and Jl·\z h.as dimension [ (mi .. ;i\) x t]. ( For sake of 

notati9n consiq.~i- N.1. ta be the fir$i n. rews of N1,) If we now partition B. 
. 1 1 l 

intQ Bl_ = (liltt• »;1,> with dimen~ions-· c,rresponding to thoa1Je of Nil and Ni 2, 

then we can write BfN(" = B11Mil.,. + :a;:2Ni2.T. Since tlae raws oi ?\i are 

linear c?mbin.ado:m:~ of th,e r.ows. oi Nil, there e:x;ists a matdx Gi such 

. that Niz:. G/iu· Tau, B{Ni., :. BI1Nil.,. t :a12o/'u,. :::; (l\1+<:JJBi2)lNil.,. 

where N.1 is of full rank. 'l'he linear indepe.:q.de:Q,ce of the g. by Le:m:µia .1 
· l · 1 

hnplies that 

which in turn impUe.s. that B.'ll. ;: B!0B, 0 and :e.1 .. + G_!_B. 2 -=. -.10·· + G,!Bi2.0' 
11 11 l 11 l· i 

ThiEI is a. set ritf n1 + 1 compon.en.ts for a given ie S,. Summi1'g .over i E. S 

we o.btai,:n, 

E (n. ,+ 1) 
i E S 1 
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componen1;s of this type. For n, where i e S we proved in Theorem 4. 2 
1 

tha.t Bi = f3io· There al:'e ~ ...... ni statistics of thiE;J type. Lehrnann and 
iE S 

· Sche££e 1s condition is th"Q.s satisfied for the 

~ (n, + 1) + ~. n. + t 
ieS l ieS l 

above GOmponents . 

. We have proved the first staternent of Theorem 4. 3. There remains 

t9 show th~t the following 

~ (n. + 1) + ~ n, + t 
' l O - l ieS 1ES· 

~ompone:nts are sufficient and thus minimal sufficient: 

Y'Y 

(t ~. 1) treatment totals 

B.whereieS 
l 

u 113 and B +·· G'B wh.e. re i e S ;lipi i il . i. i2 

· The quadratic form Q written as 

+ u'"'.Zyrprp y + :£ g.[:S}B. - 2(B. 1 + G:'l3. 2) 1N. 1T + 'T 'N.'N.'T] 
33 -iE.S1 .11 1 11. 1 11 
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exhibits P 2 Y and Y 'P 3P 3 Y as components of a minimal statistic. Con-

-1 . -1 
sider P 2 Y. P 2 Y ::::; UT ,... UN'Db B, The vector N 'Db B can be partitioned 

in.to l;iUbvectors of dimension m. corresponding to the partitioning of B 
1 

into B 1 = (B11, .••• Ba'). The general term of this partitioning is k : 1 N.'B. 
1 1 1 

for i ES • From the above discussion we see that P 2 Y can be written in 

~erms of the block totals B. for i e S 9 (B. 1 + G.'B. 2) for i E. S, and the 
1 1 1 1 

treatment totals T. We shall now show that one of the treatment totals 

is un,neceesary. Since N. 2 = G .. N. 1. ~ we have N. 2j = QN.1j. 1 1 1 l l 1. 
Then 

k.j = k.Qj ' 
1 m. -n. 1 1 n. 

l. 1 1 

j = G;j ' m. -n.. 1 n. 
1 :I, 1 

or 

J' G~=Ji . n. 1 m.-n. 
1 1 l 

Now 

~ jl (B. 1 + Q.'B. 2) + ~ j~ Bi= 
• s· n. 1 1 1 . S , lE . 1 lE ·. 1 

= 

~ (j I B · 1 + j I - .. B. 2) + ~ j ~ B. . 5 n. 1 m. n. 1 . -5 . 1 
11: .· 1 l 1 1E ·. 1 

a 
~ j:n Bi = j 'B = J'T 

i::::; 1 i 

We can thus conclude that P Z Y is a function oft - 1 treatment totals and 

the above functions of block totals. 

Y 1P 1 P Y = Y'Y "'Y'ZD-lZ'Y - Y 1HXU'UX'HY · 3 3 b 



a 
Y1 ZDb1z 'Y : E k:1 B.'B. 

, l l 1 l 
1= 

Y'HX = Y'X., Y'ZD~1N = T' - B'D~1N 

. We have already seen that B 'D~1N is a. function. of Bil+ GiBiZ. when i c ~ 

and B1 when i E S. . We can h.ere conclude th.a~ Y 'P;P 3 Y is a f,:µiction 

of Y 'Y and the above mentioned components. This. completes the proof 

of .Theorem 4, 3,for we have shown that the stated statistic is a function 
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of a min.i:ma.l sl.µ'fieient statistic each statistic having the same dimension! 

Block 

Exam;ele for the Two-Way Classification 

Data 

. Treatments T 1 

* z.ol. 
~l 3.5 

* 
1. 8 

~2 

*' 
1. ~ 

~· . Z.6 
3 z.. z 

* 
~4 

a. o 

* z.. 8 
~5 3, z. . 

* 1. 8 
~6 2.0 

T2, 

4. 2. 
3.9 

5. 3 

5,5 
4. 8 . 

4.8 

........ 
""!' CD I!""' 

4.0 

T3 

3. 8 
3.0 

3.Z 

4.1 
3. 2 

3. 8 
4.Z 

3. 5 
~ ... --· 



3Z 

., We observe first that blocks nur.n}ilered 1, Z, 4, 5, 6, all have 4 plots per 

block and block numbered 3 has 6 plots. This- calls for a_ renumbering 

of the l;>\ocks. But before we renumber observe that in the matrix N* 

several rows are linear combinations of other rows. 

z 2, 0 
1 1 z 

* 3 z 1 N -- 1 1 2 
2 0 2 
2 1 1 

Rows l, Z, 5, are linearly independent, hence in th.e renumbering we place 

Uie blocks corresponding to these numbers first. 

Data Reordered Accordine, to Plots per Block. 
· and Independence of Rows 

Tl Tz 7"3 

f31 
2.1 4. 2, 

3. 5 3.9 

1. 8 5.3 3.8 
f3 z 3. 0 

z. 8 3. 8 
f3 3 3.2, 4. 2, 

f3 4 
z. 0 4.8 4.1 

3. 2, 

1. 8 4.0 3.5 
f3 5 2.0 

1. 5 5.5 3. Z 

f3 6 2.. 6 4.8 
2. 2 
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According to Theorem 4.1 the block totals B 1 = (13. 7, 13. 9, 14. 0, 14.1, 

U. 3, 19. 8}, the treatment totals T' = (25. 5~ 32. 5, 28. 8), and the total 

sum of squares Y 'Y = 321. 4 are the values of the components of a suf"' 

ficient statistic for this example. 

2 2 0 

l l 2 

2 0 2 

N = 1 1 2 

2 1 1 

3 2 l ,. 

We have m 1 = 5 and m 2 = 1. The partition of N is as fallows. 

2 2 0 

1 l 2 

Nl = 2 0 2 N = 
2 

[ 3 l] 

l 1 2 

2 l l 

The rank of N1 is n1 = 3. We partition N1 into 

2 2 0 

NlZ ~ L 1 

:] Nll = 1 l 2 
l 

,2 0 z 



N12 can be written in terms of N11 th.rough the matrix equatfon 

2 
1 

1 
1 

2 

Let 

2 

l 

0 

', 
Q I 

2 

2 

Now Theorem 4. 2 tells us that the dimension of a mirtimal statistic for 
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this data is n1 + 1 + n 2 + t = 8. The values of the components of a minimal 

statistic for this example are 

and 

T' = (25. 5, 32.5), 

B 2 = 19. 8, 

(B11 + G 1B12)' = (19. 35, zs. o, 19. 65), 

B'B = 903. 4 
l 1 

Y 1Y = 321. 4 



Distribution 0£ the Minimal Sufficient Statistic: 

In this section we shall discuss the dhtrib'l,l.tion of Y 'P.1P. Y., (i ::::: l, 
· 1 1 

2, 3) and the distribution of the components. of the minimal s,;uficient 

t;1tatistic exh.ibited in Theorem 4:. 3. 

Sin,ce Y is distributed N[ µ.j, 11·~ ZZ' + 0" 21], we can immediately 

write the distribution of the vector of treatment totals T = X'Y as 

N[ µX 'J, X 1(o-~ Z Z 1 + .0" 2l)X], or equiva.lently M[ µX 1j, (Qr: N 'N + or2Dt)] .• 
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The vector of block totals B = Z 'Y is distributed N[ µ.Z 'J, Z 1(1''~ ZZ 1 + 

v 2I)Z],or equivalently N[µz 15.-~ (tf';n; + u 2Db)]. We now pa.rtition Z bato 

Z = (Z1, .•• , Zi, , •• Za) suh tha.t :E\ ::Ill Z{Y is. the vectl{)r of' b!Gck 

.. totale, for those .blocks having, ki plmts p.er bli,ck.. Bi is distributed 

N[ µZij, Z!(.o-; ZZ' + cr 2I)Z.],or equivalently N[k.µjm ., (kftr; + kig-· 2)1 ] . 
1 I" 1 1 • . I" m, 

1 l 

The distribution of the components. Bn and (ail + 0 'Biz,) are .immediate 

consequences of the above statement. 

B.1 is distri'buted N[ kiµJ. . , (k1
20'.'2.f3 + k .. lf 2)I. ],. G.'Bi., is. distributed 

1 . . n. . 1 ,n. 1 " 
· 1 . 1 

N[kiµGiJ# (k:IT: + \tr2.)G1Gi],and Bu+ GiBi2. is distributed N[k1µ(.I+G1H# 

(ki2,1r! + k.<r 2)(I t G!G:)].. 
I" .1 1 l 

Let .us now investigate the distribution. of B!B.. Observe first th.at 
1 1 

(k:.cr,: + kiO"z)-~I multiplied by the variance of Bi ie the identity matrix of 

dimension mi. This is the necessary and sufficient condition for (k:O": + 

k.o- 2)""1B.''l3. t:0 be distributed as x 12(m ., ~) where 1 . 1 l . i, 
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2 2 2 k . . er + kllT 
1 13 1 

B.1B·.. . h · d 0 0 b t d k fk· 2 z, n2'[ z=lk z(k · 2 Z-1] lS t en 1str1.u e. as o\··ocr · + 1/i' IX mop .:m,µ ,!J" + I\T) 
i1 11(3 . 1 l.lL 113 

2 . 2 L 
Zo Z.' (er AZ Z' + er I) Z. Z ! = cj> for i r j. This is sµfficient to imply the in ... 

1 1 t-' J J 

dependence of B.uB, amd B!B. (i l 
1 1 J J 

We shall now turn our attention to a discussion of the d:istr:lbutign ©f 

be written. 

Y 1P ip 1 Y is then distributed as a Hnear combinatif!JJn of :independent non 

central chi square variables. 

Consider the quantities 1w=Zyupipiy (i = 29 3); and the foUow:i.ng re-

lationships. 

(a) 

(b) 

(c) 

-2 . 2 2 
11r P.0P 0 (uAzz 1 + rs I) reduces to P'P0 ; 

1 l. t-' i 1 

P 2.p 2 is idempotent of rank t - l; 

P 3P 3 is idempotent of rank n = t = b + l; 

'\ - 2-l 2 · 1p· 1·P · - 2 - 0 (' - 2 3' l\,i - µ J i . i J{T - . 0 i. - ' J 0 

The above relationships imply that Y 'P 1P 2 Y is distributed as !W 2x 2(t - l} 

and Y 1P 3P 3Y is distributed as IW'" 2 x2(n = t = b + l}. Since PlPi{l/i':ZZ' + 
2 ' 

.r:r l)P!P. = cj>i (i j:. j; i 1 j = l, 2,. 3}, the quadratic forms Y'P.°PoY are an 
J J l l 



independent set. 

We have previously seen that x" 'Y can be written 

3 
Y'Y = I: Y 1P 1P Y 

i=l i i 

a 
_ ~ k:lB.uB. + y1pvp y + yipop y 

i=l 1 1 1 2 2 3 3 

Y 'Y is therefore distributed as a linear co;mbination iof independent chi 

square variables two of which are central chi square variables. 

Balanced and Partially Balanced Designs 

Balanced and partially balanced incomplete block designs are of 
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course special cases of the two way, classification problem just considered. 

In this section we sh.all exh.ib:i.t 9 in a more familiar n.otatfon9 a minimal 

sufficient statistic for these designs. As before let n equal tb.e rank of 

the matrix Z 'X in the model Y = Xr + Zf:3 + e. Componentwise the model 

for the balanced and partially balanced designs is 

(j = 1, 

y .. k = T. + j3 • + e .. k 
lJ 1 J lJ 

t) 'T • a fixed constant 
1 

b) f3 j distributed N(0 9 q:) and independently 

k = n .. = 0 if treatment i does n.ot appear in block. j 
lJ 

k = n,. = 1 if treatment i appears in bleck j4 
lJ 

In Table I which follows the block totals the treatment tGtals are de-

fined as 



y,.. ii' 

1 

~Y .. k 
'k 1-J l . 

;, 2:: Yi-3· k 
jk . 

-Table I 

Mhrlmal Sufficient Statbtics f~r Twc;> .. Way Qlassificatii,n Designs 

:Oesign -Dimension 

Balanced Ce>mplete -t+ :Z 
:Sloe~ 

Sala:n.ced Incomplete 2.t+l 
Block with b > t 

' 

A Mln.i;ma.1 $1µficie:J1t Statistic 

z 2, 
l';:y,jk' :z_y.J .• , y .•• {i:;;l,.,~.,t) 
ijk 1 . J l 

. z z 
!l y 'k, ~y •.. , y.. • (i==l, , , , , t..-1}, 
''k iJ. . J. . l 
lJ J 

I:n. .. Y • j • ( i ;;l, r • , :,;. t) 
j lJ 
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B.alal'lc ed Incomplete 
:Sl¢1ck with. b = t 

2t ~- Yi~k• .Y• .• (j;:l-, • • • _, b), Yi, • (h=l,., • t-1) 
ijk . J J_ 

Partially 13<;1.lan.ced 
Incomplete ~tock 
with n < b 

Partially Balanc::ed 
I::n.cie:mplete Blc¢ k 
with n == b 

.b+t 

Z i 
~ Yiik"' Yi• • (i=l, , •• , t .. lh !ly.,., and n 
ijk ., j J 

l~e~rty inde:rpendent £µ1\l.cth.>"1.S .of blsck 
t¢ltals. 
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We h<we seen th.at the dimensiOI). of a :minimal sufficient statistic in. 

a partially balanced incomplete block design is a functien c;,£ the rank n 9f 

the matrix Z'X where Z and X are matrice11; in the model Y c: X 'T + Z~ + e. 

Of special interest are the partially balanc;ed group divisible designs with 

two a1;1sociate clas13es (6). In tb.ese designs the observatio:p.s. can be di-

vided into c groups of d each such that any two treatments of the same 

group are first as $Odates while two treatmeJ;lts, from different g:roups 

are sec.ond associates. Table II,wb.i~h fc;,llows, gives the value of the rank 

of Z 'X in terms of the number of treatments t and the parameter d (7). 

Table I~ 

The Rank of Z 'X For Partially ;aalanced Group Divisible Incomplete 
Bleck Desi.gns with Two Aasoc;iate Classes 

Design -Rank 

Singular d 

Sezni ... regular t .;. d + 1 

Regular t 



CHAPTER V 

A CLASS OF w ... wAY CLASSIFICATION MODELS 

Consider the model 

V h 

Y= ~X.·T.et ~·Zkj3k 
j=l J J k=l . 

where X. and Z. are matrices of known constants; T. is a vector oft pa= 
J k J j 

rameters; and !3k is a vector of bk parametei;-$ .. Through0ut this chapter 

the following, assumptions are made. 

(a) T. (i = l, .•• , v) are vectors of fixed functionally independent 
J 

unknown. parameters. 

(b) j3k (k = L, ... , h) are vectars distribute~ normally with mean 

cf> and cpvariance cr!I. All the components r;>f the vectors j3 k 

(k = 1, •.• , h) are stoc;:hastically independent, 

(c) 1r; (k = 1, •.• J h) are functionally independent and each er; is 

independent of T . (j = l, . . . , v). 
J 

(d) A11 pairs of matrices. from the .set [ XiX{ •.• XvX~, z1 Z{ •.. Zh zh.1 

(e) 

(f) 

commute. 

For some k, say k 0, we have Zk = I. 
0 

The matrices X.X! (j = l, ••• , vh zkzkr (k = 1, r •• , h) are 
J J 

linearly independent. 
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D~finitiom Th.e matrioes A. (i = 1,. • • • , k) are said t.o be linearly 1 . . . 

independent i£ for any set .of real constauts a. (i = 1, ••. , k) :i-· . . . . . . . . . 

implies e.. = O, 
1-

k 
Z a. A. = cp 
i=l l l 

Partiti.QnJng P 

There exists an orthogonal 1natrix P which. has the property that 

41 

PXjXjP' = Dj (j = l, .•. , , v) a:nd PZkZ~P 1 ;:;: Ek (k, = l, .... , h) where 

Dj cind Ek are diagonal (5). Let the rank of X be denoted by q where 

X = (Xp x 2, ••• , Xvh then 

V 

XX'= Z XX' 
j=l j j 

PXX'P1= 
V 

~D 
j=l-' f 

Since the rank 0£ PXX 1P I is ali:io q, exactly q of the diagonal elements 

t')f PXX 1P I are nonz.ero. Let the rows 9£ P be arranged such that the q 

nonzero characteristic roots o,f XX' are th.e first q characteristic roots 

on the diagonal ef PXX 1P i, Thus P uXX 'P ~ f:. 0 for u = 1, • • . • , q and 

P . XX 1P'' = 0 for u = q+lt • • • , n. Thi.s; however, implies P X f:. 0 u u u 

for u ::; l,, • • , ., q and PJ{ = 0 fe>r u = q+l, , n. Let P 1 = (R1~ S l) 

wh.ere R is the {q x n) matrix of the first q tows of P and ,S is the [ (n•q) x n ] 

matrix of the last n - q rows of P. 
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Let T ' =. (T 1, . . . ,, 'I" ~). .RX: 7' is then a ( q x 1) vector of linearly 

independent estimable functions of the parameters of T. Furthermore,, 

the vector .RX T is composed of linear co:mbinati.Qns of the parameters 

which span the space of all Unearly in.dependent estimable functions of 

the parameters of T. SX 7' on the other hand i1;1 cp; 

Let V denote tli\.e c.Qvariance matri;ic of Y. It readily't:ollows by ap"' 

plyin,g, the definition of covadance to the model considered th.at 

Now 

h 
V ""' 2. I = =(T.zz .. 

k=l k k k 

h z 
PVP' = I: IT Ek 

k=l k 

which is a diagonal matrix with the ch~racteristic roots 0£ V on the dia-

gonal, 

PV-lP' = [ RJ· v-l[R',., S'] ::,; [ R.· v_·:lR' R_._y7lg,) 
s sv 1R 1 sv~1sr 

... 1 -1 -1 -1 . . .. 
RV S' and SV R' equal i;j>. RV R' anq. SV S' are diagonal :matr;1ces 

with dh1.gonal elements equal to rec~procals of the characteristic roots 

. of V. 
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<p ] (RY -RXT] 
sv ... 1s• . SY 

Lets be the number t!>f distinct diagonal elements of sv·1s•. Denote 

them by d~l (i::: 1, ..•. , s_) where the di <tre s. of the distinct character.

istiG roots of Y. Arrange the rows .of S so that the like characteristic 

roots are ~rouped together on the diagonal Q{ SVS '. Then partition S' into 

. (S11, $', ... , S') such that S. v-1s! = d:-1r where the dimension of I is 
' .· 2 ' s :i, 1 1 

the :multiplicity of d. in the set of diagonal elements of SVS ', 
1 

Sufficient Statistics. for the N-Way Model 

If we now denote R X7' by (J . , the quadratic form Q can be written u u 

where gu (u = l, •.• , q) are the q dia~onal elements of RVR'. Thi$ 

form e:xhibits a sufficient statistic of q + s components namely, l;.lu Y 

Distribution of the Sµ;fficient Statistic 

Rh Y is distributed a~ a univariate normal variable- with mean (Ju 

y•s.rs·.y· 
,,,, 1 1, ' 

~-1 
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is distributed as a central c'hi ,square variable with degrees of f11eedom 

ni equal to the. multiplicity tlf di.in the set of diagonal eleme.n..ts. pf SVS'. 

'I'h,e q + s co~panents of the sufficient sta~istic are independent. 

Min,imal Sufficient Statistics 

Theorem 5.1. The sufficient statistic with q + s com:ponep.ts Ru!... 

(u = 1, ••• , q) and Y'S$. Y (i = 1,, .••• , s.) is a n;i.inimal sufficient 
' ' ' '' l l ·. ' ' ' 

statistic. 

P:roof: We form the differen.ce of q_uadratic forms 

q .. 1 2 
a. - a0 . .:: ~ g [ (R Y .. e ) . - (R Y 0 .. e )2] + 

u:::l 
u u u u u 

s ' 
.~ d~1[yrs.'S.Y ... Y'S'S y ] 

i:::1 1 1 1 · 0 i i 0 

Q .. a0 equals zero when RuY::: ll-u.YO (u = 1, , •• ,· q) an.d Y'SiSiY = 

Y 0S{ Si Y O (i = l, , •. , .s) •. Now set Q ... a 0 identically ~qual to ze:i:-o 

-1 . - -1 . · -1 1 in the g , the 8 :•· a:nd the d. . The e ,. the d .·, and the distinct g-· form 
U U 1 U 1, U 

a linearly independ.ent set of parameters. If di is not e~ucl.1 to. some gu, 

we immediately have y•s;siy::; Y~s;siYO. I£ gu equals some di" say 

dk' then the a.have identity implies 

Here 1;* indicates the sum over all u. wli\ere gu ::: dk. Expanding, we bave 
u 
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~'~[(RuY/ - (Ru YO/ ... 2<\(RuY - RuY0)] + Y 1Sk.SkY - YQSk.SkYO:: 0 
u. 

In thi!'i form it can be seen that R Y = R Y 0· from which it follows that u u 

that R Y = R Y 0 when g is not equal to some d. follows as a special 
U U U 1 

case of the above .situation. We thus h.ave R Y = R Y0 (u = 1, ••• , q) u u 

and Scheffe 's condition for a sufficient statistic to be a minimal suffi-

cient statistic. 

A Compiete Sufficient Statistic 

Theorem 5. 2. When the covariance matrix V has h distinct character ... 

istic roots, then the sufficient statistic R Y (u = 1, ••• , q) and . . . . . . . . u . 

Y 'S.'S. Y (i = 1, •.• , s) is a complete sufficient statistic of dimen- . 
--, 1 l ·-·-'--·-·-a-..~------'---~-__;=.---....--..---.----------.,......... 
sionq + s. 

Proof: Write the quadratic form Q as follows, 

q . -1 2 
Q = E g (R Y - (:} ) + 

u=l u u u 

q+s l 
E d- Y'S' S Y 

u-q u-q u-q 
u=qtl 

Let zu. = RUY {u = 1, • . . , q) Z = Y'S I S Y (u = q, 1, . • . , s). 
u u-q u-q 

Let P. 2 (Zl' .•• , Zq+s> be the joint probability density function of 
(:}, CT 

Zu (u = 1, •.• , q+s). Since these statistics are 1;,tochastically inde-

pendent, we have 



n - 2 u 
q+s 2 

P . z(Z1 • ;, • Z ) = C n· Z e e, er q+s u=q+l u 

z 
u 

2d u-q 
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q -1 . 2 
_ !. I: g ( zu - e > 
. 2 u=l u u 

e 

Suppose there exists a function f(Z1 .. , Zq+s) $Uch th.at 

oo oo oo oo q+s 

S · · · S S · · · S £( zl .. • Z +s) TT 2 u 
-OO -OO O O q u=q+l 

n -2 u 
2 

e 

l q -l 2 
--- ~ g (z - e ) 

2 u=l u u u 
:o 

According to Fubini's Theorem this1 can be written 

·ol/). 00 

s S e 
0 0 

where 

tj>(Z1 ... Z ) = 
q 

q 
I: 

oo co u==l 
S •.. i e 
0 0 

1 q -1 2 
- - I: g (Z - 28 Z ) 

2 u=l u u u u 

[· 

2 
q z 

1 ~~ 
2· u=l gu 

n. -2. Z 
u u 

e 
2du-q 

dZ 1 ... dZ + q+ q;, s 

Since the parameters inthe set{ au] (u = 1, •• f , q) were obtained by or

thogonal transforming a set of functionally independent parameters. the 

6 a.re themselves functionally independent. Each 8 is functionally 
u ' u 
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independent.of the characteristic roots of V hence we can apply the 1,1.Ui-

queness theorem of the unilateral laplace transform to assert that the 

above identity implies 

e <l>(Zl •• ' z ) q - o. 

q 2 
1 z 

~ u ..,.__,,..._ 

2 u=l g~ 
e 

is not equal to zero hence <j>(Z1 ... Zq} :i:F 0. 

The elements of the set {d 1 (u = q+l, ••. , q+s) are functionaily u-q 

in,depend,ent according to Lemma 2 found in the appendi~. The uniqueness 

theorem of the bilateral laplace transform is now used to a1;,sert that 

;n -2 
u 
2 q+s 

f(Zl ... Zq+s) TT 
u::;:q+l 

z == o. 

Except on a set with probability measure zero 

9,+s 

TT 
u=q+l 

z 
u 

n - 2 u. 

u 

hence f(Z1 •.. Zq+s) = 0 except on a set with probability meas"Q.re zero, 



Thus the stati~tic with components RuY (u = 1, . . . , q) and Y 'SJ S. Y 
l l 

(i = 1, ..• , s) is a complete s.ufficient sta,ti~tic when the number of 

distinct characteristic roots. of V is equal to h. 
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CHAPTER VI 

'l'hro1;1.gh an orthogonal tran~f.ormath>n of the vectt>r of e>bi;ervati~ns 

the data was so transformed that estimates 0£ the same f~ction. a£ pa.i:-a .. 

;meters.: could be combined, . The cp:mbined tran§f.ormed data was then 

e::,camined.£.or the. following properties.: sufficiency, completenees, and 

IPinimal dimensio~. The objective was to e~ibit minimal sufficient sta-

tistics fr;;>t a. class of statistical desig;n.1:1 which fall in the category of 

Ebenhart•·s Model III. 

ln tbe variance component model for the one•way class~fic;atio:n -of 

data we have the following theo.rem; 

.The su~ and tb.e sum of squa:rea of the treatment totals for th.ose treat

ments havil;lr; :ni (i = 1, • • • .• a) Qb.,se,rvasio:ns,. au1mented by the 

. t.otal sum of squares: form a s'1-#icie:tl.t statistic. 

Conditions are given fo.r determimng_ which of thei;;e components•. form a 

. minbnal sufficien.t statistic. In; Ei.senhart 1s Model Ill for two-way clas--

sification of data .we have the f(:)llawing theorem: 
_,. ...... 

'l'he blt>ck totals,,, the. tre~tment tataia, and the total sum of square.1;1; t.orm 

a s~ficient statistic. 

49 



50 

Conditians are given for conde;n.sing the.Se- c:Qmponents int.o a minimal 

s1lf!icient statlstic. )viinbµal s'l,lf;ficient stad:st:i,cs and cGmplete suffi~ient 

statistics are given for special $et.s of assu:nnptiQns. i:p. the n .. way classi

fication situati$)n. 

Suggestions, for Future Study 

In many cases the quantities used in the conventional analysis of 

variance method 0f computing estimates of para.meters, ave n~t the quan.ti,.. 

ties w:h,ich appear as components :a£ tl'l.e ;minimal 1;11ufficie:p.t statistics ex.,. 

hibited in this thesis. For ma~mum us.e to be made Gf the results 0£ 

this thesbt a ae·w computing tec:ihnique 11:1-ust be devised or the e;xi.sting 

an~lysis. of varian,ce method must 'be writtein ~n terms 0£ the components 

. of a mini:qial s.'U,i'ficient statistic. 

In many m.edels th.e:re remain,.$, the problem of how best to. cC>mb.ine 

estimates of @.e .:same function ,of para.mete rs, 

The n"'way clasf:iification problem iia .only partially s.olved in this 

. thesis, Questi$Jl.S, related t-11>.interactio-:n stiU remain una.olved in. the Jil"' 

way classification problem. 
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APPENDIX 

Lemma:J. If the distinct po.sitive. q~~ntities du, (u = 1, •.• , k) are 

&f th.e form du. =-Eu +. a wh?re a 1-; O and a, is: functionally indepen,. 

dent ot each b , then the q\lantities d .. l (u = 1, . • • • k) ai-e linearly . .. . . . . . u .. u ____ ......, ________ _ 

independent. 

Proof: Consider the set of constanta cu (u :; I, .. ,, k), such that 

k C 

l: 
u o. er- = 

u::il u 

It follows then that 

k . k 
.~ (cu Tr .dv) = 0 or equiv~ler,,tly . I: [ c TT (b + a)] = O. 

L · U ~ V u=l v,-u u=l v,-u 

Expanding aJJ;d collecting coef!icie;n.ts of powers of a. we have 

ak .. z[ ~Gu( 2:: bv.)] i:; o 
u v./u .. , .. ,., ..... 

C .,.,.. b =O 
U .L ·V 

VrU 

The abovl;:} system of k eq,uationE/ can be written a.~ AC= <I> where 

52 



A = 

1 

4 b 
V 

v;fl 

1 1 

4 b 
.L V 

Vt-U 

o '11 f 0 1111111:'l"'I eo•f'i'Ollil'f••o•o!foeoo 

\bz. 

We will now prove by induction that I Alf 0, If k = 2 

IAI = 

If k = 3 

1 1 

I A I = b 2 + b 3 b1 ;+ b 3 

As s1,1:r;ning for k = m that 

1 1 

1 

b1 + b 2 = (\ ,.. b 2)(o1 - b 3}(b2 - b:,) 

plb2. 

m 
IAI= TT (b .,. b.) 

< . u J 
u J 

we consider 
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IAI = 

1 

z b 
v/:,1 

v1< V 
2. 

V 

"! • ' • • • • 

. • b 
m+l 

z b 
V 

V /:, U 

bl bv · bm+l 

vju 

1 

z· b 
V 

v;fm+l 

b b . 
1 2. 

b 
m 

.. Subtractin$ column m + l from the remaining columns and expanding by 

the first row of the resulting matr:i.x we obtain 

m m m+l 
IAI = TI (b ~ bmtl) IT (bu ... b.) = 1T (b . ~ b.) 

u = 1 
u 

u<j 
. J u < j u J 
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Since the du are distinct, the b are also distinct and I Al 'f 0. This implies 
u. 

... 1 
· C = <I> w;h,ic;;h asserts th.at the quantities d (u = 1, •. , , k), a.re linec;1,rly 

u 

indepe!l.dent. 

Lemma 2. Let the covariance matrix for a vector Y ef observations be 

of the fol'."m 

V= 

where q,! are functionally independent and the matrices zkzk ~ 

linearly independentf Let P be a matrix of orthogonal rows such 



tp.at P Z Z 'P 1 (k = 1, ... , . h) and PVP' are dia.gonal matrices~ _...., __ k k 

Let s equal the number of distinct diagonal elements of PVP ' .. U 

s = h, then the distinct characteri1;1tic; root.$dk (k;:: 1, ...• , h) 

are functionally independeµ.t, 

Proof: Froni the form of V we have 

h 
PVP'::: 

2 
Z cr PZ Z' P'. 

k=l k k k 

* * Let D and Dk be the vectors of the diagonal elements of the matrices 

P. VP' and PZ Z' P I respectiv. ely, 
k k ' * D can then be written 

h 
* D = 

2 ,:c 
Z uk Dk = 

k=l 

2 
•• , o-h). Since the zkzk are linearly independent 

matrice!:!, the n; are linearly independent vectors which implies the 

matrix (Dt, ... , n:) has rank h. l'his together with the fact that 
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* ?Z has h functionally independent elements implies D · has h functionally 

independent elements. These clearly are the h distinct characteristic 
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