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PREFACE 

The analysis of the general second order problem defined by 

the Laplace or the Poisson equation,;- by means of summing infinite geo­

metric series;, is presented in this dissertation. The corresponding 

finite"'-difference equations are formulated in Jour different: coordinate 

systems: rectangular, skew,. polar, and triangular. For each network, 

it is proved that these equations can be solved in algebraic form by a 

carry-over procedure which yields a finite value for the unknown func­

tion at each point of the net. Each algebraic value is the sum of one or 

more infinite series each term of which is an infinite series. 

This research has grown out of lectures given by Professor 

Jan Tuma in December,. 1956., on the method of numerical carry-over 

in plate structures, and from initial investigations into an algebraic 

approach made by him during the summer and fall of 1956. The idea 

of solving finite-difference networks by summing infinite series was 

originated by Professor Tuma as a result of his four years' prior re­

search in solving the analogical problem of continuous frames. In a 

letter to Dr. Clark A. Dunn., Director of the Division of Engineering 

Research., in January, 19571 he formally acknowledged the possibility 

and desirability of extending the general philosophy of geometric series 

to problems in continuous elastic systems. The following areas were 

indicated: 
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1. Calculation of critical loads for columns of con­

stant and variable cross-sections. 

2. Calculation of critical loads for beam-columns 

of constant and variable crosS'""Sections 

3. Analysis of beams on elastic foundations 

4. Analysis of torsion of simple and continuous 

beams of variable cross-sections 

5. Analysis of plates and grids 

6. Analysis of shells and space lattices. 

It was immediately evident that an even more widespread use 

of the'infinite series approach was possible due to the extensive class 

of engineering problems having similar mathematical representations. 

The decision to formulate the general problems of the Poisson 

and Laplace equations in algebraic difference form and to extend the 

original investigations of Professor Tuma in 1956 to various coordi­

nate .systems was made by the writer in the summer of 1958. The 

solutions to the skew~ polar, and triangular systems investigated were 

obtained during the fall of 1958 and the early months of 1959. 

A special application of the basic research in carry-over that 

Professor Tuma has conducted for the past three years and in which 

the writer has assisted since 19.57 was a project with the McDonnell 

Aircraft Corporation in the analysis of simply supported rectangular 

plates.. This project was begun in September, 1957, and the final re­

port" by Profes.sors Tuma and French and the writer, was completed 

i:ri November, 1958. Volume I of this. report illustrates certain of the 

basic concepts of algebraic carry ... over, and demonstrates the algebraic 

solution of the basic plate equation in finite-difference form (25). 
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CHAPTER I 

INTRODUCTION 

1-1 Historical Study. The method of finite differences has been in use 

for more than fifty years in the solution of the differential equations of 

engineering physics. Equations of finite differences were originally 

introduced by Brook Taylor (1) in the eighteenth century. The first ap­

plication of these equations to elasticity was made by Runge (2) in solv­

ing torsional problems in beams (1908). An approximate solution of the 

finite difference equations was obtained by Richardson (3) in 1910: using 

a numerical iteration process. A more rapidly convergent iteration 

procedure was given in 1918 by Liebmann.(4). 

Marcus (5) made an extensive application of finite-differences 

to the analysis of thin plates, and introduced the membrane analogy for 

the plate by replacing the fourth order partial differential (biharmonic) 

equation by two second order (harmonic) equations. The work of Marcus 

was publicized in the United States in two papers by Wise. (6, 7) . Hencky 

(8) applied the method of finite-differences to the large deflection theory 

of plates. 

The convergency and rate of convergency of the Liebmann 

iteration process were discussed by Wolf (9) and Courant (10). Shortley 

and Weller (11) developed a highly mathematical improved rate of con­

verge~cy involving the error function. Frankel (12) developed an 

"extrapolated Liebmann method" and discussed the improved rate of 
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convergency over the Liebmann and Richardson procedures. Young(13) 

generalized Frankel•s method to a "successive over relaxation method" 

applicable to the general linear, elliptic partial differential equation. 

Frocht (14) used block iteration of certain "~ey values" on the finite 

difference net. French (15) improved the convergency by solving a 

simple geometric series at each cycle of the iteration. 

The relaxation procedure for the solution of finite difference 

equations was developed by Sir Richard Southwell (16) during the period 

1935'""40. This procedure was applied to torsion problems by Southwell 

and Christopherson ( 1 7) and to the analysis of extension and flexure of 

thin plates by Southwell and Fox (18),, and Southwell (19, 20). Temple (21) 

gave an analytical proof of the convergence of the relaxation method,, 

using the principle of minimum energy, and extended the general ap­

proach to include all linear systems by his "method of steepest de,sc.ents'~ 

The use of higher order difference equations and a coarser net was pro­

posed by Fox (22) and discussed by Southwell (23) and Christopher.son (24). 

The method of solving finite difference equations by summing 

infinite, geometric series was developed by Tuma, Havner, and French 

(25). This philoso:phy had its beginning in 1932 with the solution of beam 

and frame problems by Cross (26, 27)i who conceived the basic series" 

and is founded upon the concepts of carry-over and circulatory .series 

dev~loped by Tuma (28) in 1950. The algebraic series were applied to 

the analysis of continuous beams by Tuma and Anderson (29), to con­

tinuous frames by Tuma (30) and Tuma, Havner, and Hedges (31), and 

to grid systems by Cellis. (32 ). A simpler procedure of algebraic carry­

over for beams was developed by Tuma (33). Methods of using combined 

algebraic and numerical relaxation procedures were investigated by 

Yoshimura (34), Yoshimura and Marakami (35), and Pauw (36~ 37) • 
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1-2. The Equations of Poisson and Laplace. A number of important 

problems of engineering physics have their mathematical formulation 

in either Poisson's or Laplace-rs equation. Considering a domain D 

bounded by a closed curve S (Fig. 1 ),, the Poisson equation has the form 

(1) 

where F. is a given function in the domain and Q is zero on the boundary. 

Examples of this equation include the bending of simply supported plates 

under lateral loads,, the deflection of a uniformly stretched membrane, 

and the torsion of non-circular sections. 

Boundary S 

Solution domain D 

Fig. 1 

Domain of Definition for 
Laplace's or Poisson 1s Equation 

The Laplace equation over the domain Dis 

= 0 (2) 

with Q equal to a given function G on the boundary. Temperature distri­

bution in the steady state, the bending of simply supported plates under 

moments distributed along the edge.s1 and the plane .stress problem are 

exa~ples of Laplace'.s equation. 
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1-3 Finite Differences and Algebraic Carry-Over. The solution of 

either the Poisson or the Laplace equation by the method of finite dif­

ferences has the advantage of mathematical simplicity in that the 

partial differential equation considered is replaced by a system of lin­

ear algebraic equations. The method has the fundamental disadvantage 

of becoming rather cumbersome when a large number of unknowns are 

involved. In addition., two approximations are introduced in applying 

the method of finite differences. The first approximation is that of the 

net itself; the second occurs in solving the linear difference equations 

by the numerical method chosen: either an iteration or a relaxation 

technique. 

To eliminate this second approximation and achieve a feasible solu­

tion for the finite difference equations in general algebraic form, an 

entirely different approach is necessary. Visualizing the problem of 

solving the : network as one of determining the flow of function values 

from .a specified starting point as that. point begins to affect tho.se sur­

rounding it, the idea of the algebraic carry-over of these values may 

immediately be conceived. 

Performing this carry-over procedure simultaneously over the 

entire network, power series are formed whose sums cannot be de­

termined" and no insight into the functional mechanics of the process 

is possible. If, however,. the network is properly divided into com­

ponent parts, it is found that the solution of each isolated point set is 

achieved by :summing simple geometric series. Interrelating these 

isolated parts by a gradual relaxing back and forth between them, the 

higher order geometric series of carry-over are formed, and the 

final solution of the network is accomplished. 
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The principles of algebraic carry-over, and their application 

to the solution of Poissonls equation, were demonstrated for rectang­

ular coordinate systems in reference 25, and are restated here 

(Chapter II) in order to form a basis for later comparisons. The ex­

tension of these principles to the algebraic solution of the Poisson and 

Laplace equations in skew, polar" and triangular coordinate systems 

is the purpose of this dissertation. Only simple geometric shapes are 

considered, and the solutions are accomplished by means of infinite, 

convergent, geometric series. A starting value for the function Q in 

the domain leads to the solution of Poisson's equation, a starting value 

for Q on the boundary to the solution of Laplace's equation. 



CHAPTER II 

RECTANGULAR SYSTEMS 

2-1 Linear Finite - Difference Equations. In rectangular coordinates 

the Poisson equation has the form ( 38) 

::i - F(x, y) . (3) 

The corresponding finite difference equation written for point ij of the 

finite difference net is (Fig. 2) (38) 

Q. 1 . - 2Q.. + Q.+ 1 . 1- ,. J lJ 1 , J + 
Qi, j-1 - 2Qij + Qi, j+l 

Ay 
= - F ... 

Ax lJ 

-1------i- Li+l r i. i+l i + 1, j+ 1 

Ay 

i-1. i ii i+l,j x.., 

Ay 

i ... 1.i-1 L i-1 i+l,j-1 

~ 
Fig. 2 

Finite Difference Net in Rectangular Coordinates 

6 



Introducing the notation 

1 a = 
2(1+t2) 

A t = 
2(1 + t 2) 

this equation may be written 

where 

Q .. ,: 
lJ . 

a(Q._1 · + Q.+1 .) 
1 ,J 1 ,J 

b(Q. ·-1 + Q. ·+1) 
1, J l.,_ J 

* Q.. = AF .. Ax.Ay 
. lJ lJ 

b ,::; 

t = 

* + Q .. lJ 

t2 

2(1 + t 2) 

Ax 
Ay 

is the starting value for Q .. ,. assuming the Q's at the four adjacent 
lJ 

points to be zero. 

7 

(4) 

(5) 

(6) 

It is evident from ~q. (5) that a and b are carry-over factors on 

the finite difference net in the X- and Y- directions,, respectively. These 

carry-over factors represent the influences of the Q values at the 

adjacent points i-1,j, i+l,,j,. i,j-1, and i,j+l on the value at point ij. 

2-2 The Basic Series. The analysis of a two dimensional, linear, 

nine point set (Fig. 3) by algebraic carry-over yields final results for 

function values which are equal to the algebraic sums of infinite geo-

metric series .• 

Considering a starting value A at point 13, it is apparent from 

the figure that a value carried from that point to any one of the adjacent 
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points (8,, 12, 14, 18) will return to 13 multiplied by the square of the 

corresponding carry-over factor. A simple geometric series is thus 

developed which is called the basic series. The results of algebraic 

carry-over on this point set are: 

3 

o j t·o 
8 

11 -..Q_ 12 ___:__ i rl~ 14 -..Q_ 15 ---- ------ ---0 0 

Fig. 3 

Nine Point Set - Basic Series 

Q 13(B) = 13 X r Ll + (2a2 + 2b2 ) + (2a2 + 2b2)2 + ... ] 
X 

1 = 
X22 

Q 13(B) X 
b Q 13(B) = = 

8 X22 18 

Q 13(B) X 
a Q 13(B) :: = 12 X22 14 

where 

= 1 - 2a2 - 2b2 
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A diagrammatic representation of the final values is shown in 

Fig. 4. From these results it is evident that: 

(.a) 1 
The constant -x is the over-relaxation factor for 

22 
the basic series 

(b) The final function value at the cent_er is equal to the 

starting value multiplied by the over-relaxation factor 

(c) The final function value at any other point is equal to 

the final central value multiplied by the corresponding 

carry-over factor. 

~a 
~4 

Fig. 4 

Final Results - Basic Series 

For a starting value X at any other point the function coef-

ficients may be obtained by the method of involution: 

(a) The starting value i:s carried-over to the central point 

13; multiplied by the corresponding carry'"'over factor 



12 

8 

13 

18 

Fig. 5a 

1 

Involuted Starting Value at Point 13 

Fig. 5b 

Final Results - Starting Value at 8 

10 



(b) The carried-over value becomes a new starting value, 

forming the basid series 

(c) The final results are obtained by superimposing the 

initial starting value upon the results of the basic 

series, using the over-relaxation factor and direct 

carry,...over. 

Thus for a starting value at point 8 the involution and the final results 

are as shown in Fig. rs 5a,. 5b. 

11 

2 .... 3 The Circulatory Series. Considering an eight point closed ring 

(Fig. 6) and applying the algebraic carry-over method to the compu-

tation of function coefficients., each final value may be represented as 

the sum of four infinite geometric series. 

7 a 8 a 9 
a - a -

b lb b b 

12 14 

bl lb b b 

17 - a 18- a 19 
a a 

Fig. 6 

Eight Point Ring - Circulatory Series 
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For a starting value A at point 7, the algebraic analysis of the 

system can be simplified by the methods of resolution and superposition: 

(a) The initial system is resolved into four basic cases as shown 

in Fig. 7, taking advantage of symmetry and antisymmetry 

(b) The algebraic results from the individual cases are superim-

posed to give the final values for function coefficients on the 

· clos:ed ring. 

Case I From the symmetry of this system,, the algebraic pro-

cedure can be further reduced by using modified carry-over factors as 

shown in Fig. 8. This reduced point set is obtained from the fact that 

function values at opposite points (ie. 7 and 9) must be equal after each 

cycle of carry-over. 

i\ 
T 

i\ 
T 

i\ i\ 

T -------=4+. 

+ 
i\ i\ 

4 -4 ------------ --------fl 
Initial System Case I Case II 

i\ i\ i\ . i\ 
T T -----------'~ T _____ ---'Tc..+i> 

+ + 
i\ i\ i\ i\ 

4 -4 ,...4 4 
{'"!-------) ·--------

Case III Case IV 

li'ig. 7 

Re.solution of Circuiatory System with Starting 
Value at Point 7 into Four Basic Cases 



Performing algebraic carry-over on the modified three point 

set the results are: 

13 

Q 7(S)I = 
·7 

Q 7(S)I = 
8 

2a :X 
X22 4 

Q 7(S)I = 2b :X 
12 x22 4 · 

:X 
4 

2b 

12 

7 ... a 8 

2a -
b 

Removed 

------, 
I 
I 

Removed 

Removed 

I 
I 
I 
I 
I 
J 
I 
I 
I 
I 
I 

I I L _____________ _J 

Fig. 8 

Modified Circulatory System 
Case r· 

Case II. This .system, .symmetrical with respect to the central 

X...,axis and antisymmetric al with respect to the Y, can be reduced to 

two independent systems (Fig. 9) and algebraic carry-over performed. 



The results are 

where 

Q 7 7(S)II A 1 Qg 7(S)II A = T Xo2 
= 4 

Q 7(S)II A 2b Q 7(S)II A 
12 

::::, 

T x:02 14 = T 

Xo2 = 1 - 2b 2 . 

>t A T 7 ___ o ___ a_ __ ~_=:_- 9 

0 0 

2b b 2b b 

12 

Removed Removed 

I 
I 
I 
I 
I 

I I 
L ______________ j 

Fig. 9 

Modified Circulatory System 
Case II 

14 

14 

1 

X02 

2b 

Xo2 



Case III. The reduction of this system is·shown in Fig. 10. 

The values of function coefficients after carry-over are 

Q7 7(S)III A 
:: 

4 

Q 7(S)III A 
:: 

4 8 

where 

A T7 4 
I 
I 

0 I 0 
I 
I 
I 

12 l 
I 
I 
I 

0 I 0 

I 
I 

11 I 
(9 .... 

A 
4 

1 Q 7(S)III 
X20 17 = 

2a Q 7(S)III 
X20 18 = 

X20 = 1 - 2a2 

a 8 
2a - •-------, 

I 
I 
I 

Removed I 
I 
I 
I 
t 
I 
I 
I 

Removed I 
I 
I 

a ______ _j 
• 

2a .. 18 

Fig. 10 

Modified Circulatory System 
Case III 

A 1 
4 X20 

A 2a 
4 X20 

15 
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Case IV. No algebraic carry-over procedure is possible, and 

the starting values represent final results (Fig. 11 ). 

From the .superposition of Cases I through IV, it is evident that 

the single cell series which forms in a geometrically symmetrical 

closed ring may be resolved into simple geometric series. The results 

in more complex multicell rings may also be interpreted as basic 

series in certain cases. (25). In general, however, these are higher 

order, or carry-over, series. 

A 
T 

0 

0 

7 _ 0 0' -~ 
e--.c---------. ------0 
I O ....- 0 T 
I I 
I I 
I o o I o 
I I 
I I 
I I 
t t 
I I 
I I 
I o o I o 
I I 
I I 
I o . o I 
~-~------~----~2 
17 0 0 .,.. 19 4' 

Figw 11 

Modified Circulatory System 
Case IV 

9 
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2-4 The Carry-Over Series. If now the algebraic carry-over method 

is applied to the analysis of a two dimensional twenty-five point set 

(Fig. 12 ), each final result is found to be the finite algebraic sum of 

an infinite geometric .series each term of which is an infinite .series. 

1 4 0 

0 ... 

to 
6 - 0 

oJ 

o-

to bj 

11- 0 

o-

to bJ 
16 .... O 

o-

~o 
214 0 

oj 

o-

2 - 0 3 ..., 0 

-0 0 

oJ to oJ to 
7- a 8-a - -a a 

tb bJ tb bJ 
12-a 13- a 

a - a -
lb bJ tb bJ 
17 .... a 18 ,...a 

- -a a 

to 0 J (o oJ 
22- O 23 .... O 

o- o-

Fig. 12 

Twenty-Five Point Set 

4 - 0 5 -0 

to oJ 
9 - 0 10 

o-

tb oJ 
14...,, O 15 

o-

tb oj 

19- O 

to 
20 

o-

to oJ 
24- O 25 

o-

It is evident from Fig. 12 that a starting value X carried-over 

from point 13 to the adjacent points (8, 12, 14, 18) will return to 13 as 

well as begin to circulate through the closed ring 7, 8, 9, 14, 19, 18, 17 

and 12.. If the procedure is carried-out algebraically, complex power 
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.series are generated ,whose sums it is practically impossible to deter-

mine. 

In order to eliminate this difficulty a new concept must be 

introduced, the principle of the suppressed or zero point: 

A portion of the network can he isolated and analyzed 

independently by surroundin~ it with points for which 

the function values are temporarily assumed to be zero .. 

This procedure is known as suppressing the point or introducing a zero 

at the point. The inverse procedure is called releasing the point or 

removing the zero at the point. After the isolated point s.et is solved, 

values are carried to the released points and the algebraic carry-over 

procedure continues throughout the network. 

Thus in Fig. 12, a basic series forming on the five point set 
i 

8~ 12, 13, 14.,. and 18 can be isolated (Fig. 13a) by introducing zeros at 

the corner points 7 ... 9., 17, and 19. The function values corresponding 

to the basic series are (Art. 2-2): 

Q 13(B) A 
b Q 13(B) Q 13(B) A 

1 = 
X22 

= ::: 

X22 8 , 18 13 

Q 13{B) A 
a Q 13(B) 

12 = 
X22 

= 14 

Removing the zeros at the corners and .simultaneously suppressing the 

central point 13 ... an eight point closed ring is isolated (Fig. 13b) with 

the carried over value 

ao ::: A 2ab 
X22 



19 

8 

b b 

14 

a a 

b b 

18 

Fig. 13a 

Isolated Five Point Set - Basic Series 

7 4 
a a 

8 ------Q! 9 
,,... 

a a 

b b b b 

12 14 

b b b b 

a 1 7-4--=a'--- 18 ___ .__---=:a=---- a 19 

a a 

Fig. 13b 

Isolated Eight Point Ring - Circulatory Serie.$ 
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at points 7, 9:,- 17,. and 19. This isolated system is identical with Gase I 

of the circulatory series (Art. 2-3 ). The function values are 

Q 7 13(S) 1 Qg 13(S) Q 13(S) Q 13(S) = ao 
X22 

= = == 17 19 

\ 

QB 13($) 2a Q 13(S) Q 13(S) 2b Q 13(S) ::: ao 
X22 

::: z: ao 
X22 

= 18 12 14 

The analysis: of the twenty-five point set shown in Fig. 12 becomes, 

therefore.,, a matter of determining the carry-over series which form 

between these two isolated systems. This is accomplished by releas-

ing point 13 and finding the value carried-back to the center, thus com­

pleting one full cycle of carry-over on the network: 

Q 1313(CO) = Bab a = 
X22 0 

= /31 

The ratio of the returned value {31 to the starting value {30 ::: i\ is the 

common ratio of the carry-over series developed by repeating this 

procedure infinite times. 

These carry-over series a and f3 are infinite geometric series 

all term.s of which are infinite .series. Their sums are 

where 

00 

I Q'n. = Q'o + al. + • • · 
0 

= 2ab i\ 
X22 Y22 

00 

L f3n = f3o + /31 + · ·.. = 
0 

= 1 -

1 
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Superimposing the a and /3 series, the final values for function coef-

ficients on the twenty-five point set become 

Q 13 
8 

Q 13 
13 

= 

::: 

= 

1 

X22 

2a 
X22 

2b 
X22 

1 

X22 

0 

C22 A = Q 13 = 
Z22 9 

1 A 
2 22 

00 

I 
0 

00 

I 
0 

The new equivalents used in these equations are: 

= 
4b 2 

a(l + X22 ) 

Q 13 
17 

= 

= Q 13 
19 

A.= Q 13 
18 

A = Q 13 
14 

(7) 

= 
2 

b(l + ~) 
X22 

= 
2 2 

X22 (1-16; b ). 
X 22 

These constants may be interpreted from the diagrammatic representa-

tion of the final values (Fig. 14) and conclusions drawn similar to 

those made for the basic series in Art. 2-2. Thus 

(a) The constant 1 is the over-relaxation factor for the 
2 22 

system 

(b) The final function value at the center is equal to the start-

ing value multiplied by the over-relaxation factor 

(c) The final function value at any other point is equal to the 

final central value multiplied by the corresponding direct 

final carry-over factor A 22 , B 22" or c 22 
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® 2 @ 2 @ 2 

·~ 

B22 
C22 

@ A22 @ A22 @ -- ... 
2 2 

I 

~ 
/, 

B22 c22 

@ . @ ~ 2 

Fig. 14 

Final Results - Carry-Over Series 

2-5 Resolution, Superposition, and Involution. The methods of 

involution, resolution, and superposition, demonstrated in Art's. 2-2 

and 2-3, may be stated as three basic principles applicable to the 

analysis of finite-difference networks by algebraic carry-over. 

The prineiple of resolution states 'that-: 

The analysis of any geometrically symmetrical two 

dimensional system with unsymmetrical starting 

values can be simplified by resolving the system 



into four or more basic cases each of which contains 

axes of symmetry and or antisymmetry. 
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The principle of superposition, the inverse of resolution7 states that: 

The final results for function values on the network 

due to the initial system of starting values are equal 

to the algebraic sums of the results corresponding to 

each of the resolved systems. 

The principle of involution, illustrated in Art. 2-2, states that: 

The function values on the finite-difference net due 

to a starting value ;\ at some point kl are equal to 

the algebraic sums of the funci:ion values due to start­

ing values ;\ at points adjacent to kl multiplied by the 

corresponding carry-over factors. 

The use of these methods in completing the analysis of the 

twenty-five point set (Fig. 12) for a starting value at any point is now 

demonstrated. 

For a starting value A at point 7, the system is resolved into 

four basic cases as shown in Fig. 15. - The results for these cases are 

obtained by superimposing the values from the circulatory and the 

central carry-over series. 

Case I. Temporarily suppressing the central point 13, an 

eight point closed. ring is isolated (Fig. 16). This isolated system is 

identical with Case I of the circulatory series (Art. 2-3),,. and the 

results are: 



A • ---..-----, 

Initial System 

t\. 
T 

+ 

A 
T 

t\. 
T 

t\. 
T 

t\. 
-T 

Case III 

Case I 

t\. 
T 

+ 

''I 

Fig. 15 

A 
4 

A 
4 

+ 

A 
T 

t\. 
T 

t\. 
T 

Case IV 

24 

'~ 

t\. 
-T. 

Case II 

' 

Resolution of Twenty-Five Point Set with Starting Value at Point 7 
into Symmetrical and Antisymmetrical Cases 

t\. a 
T 7--------

a ... 
I 
I 
I 
I 

a 

a 

12 -----+----- 14 

bj t:_ a !is- a bJ rb 
A 

4 
a ,,.. 

Fig. 16 

a 
_.. t\. 

T 

Isolated Eight Point Ring - Case I 



Q 7 13(S)I = 1 A 
X22 4 

Q 13(S)I 
17 

= Q 13(S)I 
19 

25 

Q 13(S)I = 2a A _ Q 13(S)I 
8 x22 4 - 18 

Q 13(S)I _ 2b A = Q 13(S)I 
12 - x 22 T 14 . 

Releasing point 13, the carried-over value 

8ab A 
= 

X22 4 

becomes a new starting value which forms the central carry-over 

series. From Eq 1s. (7), Art. 2-4, the results due to this starting value 

Q7 7(C)I = 

Q 7(C)I = 
8 

Q 7(C)I 
12 = 

Q 7(C)I 
13 = 

A = Q 7 ( C )I _ Q 7 ( C )I = Q 7 ( C )I 
9 - 17 19 

B22 C22 

z22 

A22 C22 

Z22 

c22 
A 

z22 

A = Q 7(C)I 
18 

A = Q 7(C)I 
14 

The final values are obtained by superimposing these results with 

those of the circulatory series. 

Case IL This system is antisymmetrical with respect to the 

central Y-axis (Fig. 17). Thus there is no carry-over to the central 

po_int 13 · and this case is identical with ,Case II of the circulatory series 

(Fig. 9). From Art. 2-3 the vaiues for function coefficients are 



Q7 7(II) 

Q 7(II) 
9 

A 1 
: 

4 Xo2 

A 1 =-4-
Xo2 

:\ 
T 

bJ 

bJ 

A 
4 

Q 7(II) A 2b Q 7(II) 
12 = 4 Xo2 17 

Q 7(II) A 2b Q 7(II} =--:r-14 Xo2 19 

0 0 .A 
7 8 ..... -4 9 -0 I 

0 

lb b J lb 
I 
I 
I 

12 113 -----t---- 14 

f b 

17- 0 

0 

I 
I 
I 
I 
11s--

Fig. 17 

Case II 

bJ lb 
0 19 

26 

A 1 = 4 Xo2 

A 1 =--:r-
Xo2 

. 

Case III. This system (Fig. 18) is identical with Case III of 

the circulatory series (Fig. 10), described in Art. 2-3. The results 

are: 

Q 7 7(III) = :\ 1 
T X20 

Q 177(III) = _ ~ 1 
':I: X20 

QB 7(III) = A 2a 
4 X20 

Q 7(III) = .-. ~~ 
18 ':I: x20 

Q 9 7(II!) = A 1 
4 X20 

Q 7(III) = _ ~ _1_ 
19 ':I: x20 • 
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I 0 

17 -
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I 
I 
11s--

Fig. 18 

Cas'~ III 

a 

oj 

27 

9 

I 0 

14 

ro 
19 

Case IV. No algebraic carry.;..over is possible, the system be­

ing identical with Case IV of the circulatory series (Fig. 11 )., and the 

starting values represent final results (Fig. 19). 

A 
4 

- A 
T 

7 -
a 

a 
----X 

. Fig. 19 

Case IV 

a T 
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The final values for the function coefficients, starting value at 

point 7,. are obtained by superimposing results from Cases I, II; III, 

and IV: 

7 
Q .. lJ = Q. ! + Q.~I + Q.·!II + Q. _IV 

lJ lJ lJ lJ 

where ij is any pivotal point of the network. 

The function coefficients corresponding to a starting value i\. at 

point 9, 17, or 19 (Fig. 12) may be obtained by a similar procedure,f or 

they may be obtained directly from the results for starting value at 7 by 

cyclosymmetry. In terms of Cases I, II, III.t and IV ,f the equations for 

the coefficients are: 

9 Q .. lJ 

= 

= 

Q .. I _ Q .. II + Q .. III _ Q .. IV 
lJ lJ lJ lJ 

Q .. I + Q. _II _ Q .. III _ Q .. rv 
lJ lJ lJ lJ 

Q .. I _ Q .. n _ Q .. III + Q .. rv 
lJ lJ lJ lJ 

For a .starting value at one of the other points the final results 

may be obtained by involution. Considering a st~rting value i\. at point 8, 

this value iS carried - over to 7 t 9,, and 13, thus introducing involuted 

starting value.sat these points (Fig. 20). Each of these involuted values 

develops series which have already been defined and determined. Super­

imposing the.Se series the final results are: 

and for any other point 

8 
Q.. -lJ 

7 9 13 ai\. Q.. + ai\. Q.. + bi\. Q .. lJ lJ lJ 
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Similar equations may be written for a starting value at 12, 14, or 18. 

a 
7 ------ A 8 

12 

17 

a 

bJ 
bA 13 

18 

Fi~. 20 

Involuted Starting Values 

9 

14 

19 

2-6 The Laplace Equation. In rectangular coordinates the Laplace 

equation has. the form 

= 0 

with Q equal to a given function G(x, y) on the boundary (38) • 

The corresponding finite-difference equation written for an 

interior point ij of the net is (Fig. 2) 

Q .. l:: lJ 

a ( Q._ 1 · + Q.+1 · ) 
1 ,J 1 .,.J 

b(Q. ·-1 + Q. ·+1) 
1, J 1, J 

(8) 

(9) 



At a boundary point kl, the function Q takes on the value of the known 

function G : 

30 

= ( 10) 

Comparing Eq 1s (9) and ( 10) with Eq. ( 5), Art. 2-1, it is 

evident that there is a basic difference in the concept of algebraic carry­

over as applied to the Laplace and the Poisson equations. In the latter 

case, carry-over begins from a network point with a Specified starting 

value and proceeds to the surrounding points, the algebraic carry-over 

method being concerned with the determination of the resulting geomet­

ric series. Thus the solution of Poisson 1s equation gives final values 

for function coefficients which vary from a maximum at or near the 

point of starting value A to zero at the boundary. 

In the case of Laplace 1S equation,, however,, there are no start­

ing values at interior points of the finite-difference net (Eq. 9), and 

the flow of function values takes place in an inverse manner. The bound­

ary values are the starting values, and the algebraic carry-over pro­

ceeds from the boundary into the interior domain. Thus the nature of 

the carry-over solution of the two problems is fundamentally different, 

the investigation of the Poisson equation corresponding to an outward 

flow of values, and the investigation of the Laplace equation correspond­

ing to an inward flow. 

Although there is a difference in concept, it is possible to relate 

solutions of these equations because of the similarity in the carry-over • 

procedure, This can be accomplished as follows. Writing the finite­

difference equation for a point ij adjacent to the boundary (Fig. 21 ), 

and noting that Q takes on the value of the given function G at the bound­

ary point i-1, j, the equation becomes 



a(Q.+1 .) 
1 ,J 

Q = .. 
lJ 

b(Q. ·-1 + Q. ·+1> 
1,tJ 1$ J 

i-1. i+l i. i+l 

Boundary 

i-1. i ii 

i-L j-1 i,j-1 

Fig. 21 

+ a G. l . 
1.., .t J 

i+l ,j+l 

i+l , J ____ x---1.-.-· 

I 
i+l .tj-1 

Finite Difference Net Adjacent to Boundary 

31 

Comparing this equation with the Poisson equation in finite--difference 

form (Eq. 5).;. it is readily .seen that the carried .. over value aGi-l,j 

. * above corre.sp· onds with the value Q. . • Thus aG. 1 . may be considered 
lJ 1- , J 

a new starting value at point ij and the algebraic carry-over procedure 

performed as before. 

· In this way the solution of the Laplace equation is replaced by 

the .solution of the Poisson equation.;. and the following conclusion is made: 

Final results for function coefficients due to a starting value 

;.\ at .some boundary point of the network are equal to the final 

results due to a starting value :.\ at the adjacent interior point, 

multiplied by the corre.sponding carry-over factor. 



CHAPTER III 

SKEW SYSTEMS 

3-1 Linear Finite - Difference Equations. In skew coordinates the 

Poisson equation has the form (38) 

1 2Cosa 
S. 2 

1n a 
+ 

S. 2 
1n a 

1 a2Q ----- 2- - F(x, y). ( 11) 
ay S. 2 

1n a 

The corresponding finite difference equation written for point ij of the 

finite difference net is (Fig. 22) (38) 

Q. 1 . - 2Q .. + Q. + 1 . 1- , J lJ 1 , J 

Ax 2 
Qi+l, j+l - Qi-1, j+l - Qi+l, j-1 + Qi-1, j-1 Cos a 

2AxAy 

Q · · 1 - 2Q .. + Q. ·+ 1 + 1,J- lJ 1,J 

Ay 

Introducing the notation 

1 
a = 

2(1 + t 2) 

C 
tCos a = 

4(1+t2 ) 

t Ax = Ay 

32. 

= - F .. Sin2 a 
lJ 

b 
t2 -

2(1 + t 2) 

A t Sin a = 
2(1 + t 2) 

(12) 



Fig. 22 

Finite Difference Net in Skew Coordinates 

this equation may be written 

a(Q._1 · + Q.+1 .) + b(Q. ·-1 + Q. ·+1) 
1 , J 1 , J 1, J 1, J 

Q = .. 
lJ 

c(Q·-1 ·+.·1 + Q.+1 ·-1) - c(Q .... 1 ·-1 + Q.+1 ·+1) 1 d 1 ,J 1 ,J 1 ,J 

where 

Q.:I' = AF .. Axb.y Sin a 
lJ lJ 

X 
~ 

+Q.:I< lJ 

is the starting value for Q .. , as.suming the Qts at the eight adjacent 
lJ 

points to be zero. For a.of: -; . ~ Eq's. (12), (13), and (14) redq.ce to 

Eq's. (4), (5 ), and (6 ), respectively. 

33 

(13) 

(14) 
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It is evident from Eq. (13) that a,b,c, and-care carry-over 

factors on the finite difference net# These carry-over factors represent 

the influences of the function values at the adjacent points i-1, j-1, 

i,j-1, i+l,.j-1, i-1,j, i+l,j, i-1,j+l, i,j+l, andi+l,j+l onthe 

value at point ij. 

3-2 The Basic Series. Considering a two dimensional nine point skew 

set with starting value A at point 13 (Fig. 23a) and using algebraic carry-

over to determine the function values, each final result is the algebraic 

sum of an infinite geometric series. 

3 

8 

23 

Fig. 23a 

Nine Point .Set - Basic Series 
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From the figure it may be seen that any value carried from the 

central point 13 to points 8, 12, 14 and 18 first flows through these 

points before returning to 13. From the nature of the carry-over fac-

tors, however, carried over values on the skew ring (Fig. 23b) sum to 

zero at every point. Thus no series develops on this isolated skew 

point set (8, 12, 18, 14), and the value which returns to point 13 is simply 

the starting value multiplied by 2a2 + 2b 2 . 

Fig. 23b 

Isolated Skew Point Set 

Continuing this procedure, an infinite geometric series is 

formed which corresponds with the basic series of the rectangularpoint 

set (Art. 2-2 ). The final function values are 

Q 13(B) 
13 [ 2 2 2 22 J = A 1 + (2a + 2b ) + (2a + 2b ) + .... = A 1 

X22 

Q 13(B) = 
8 . 

where 

A b 
X22 

= Q 13(B) 
18 

Q 13(B) = 
12 

A a 
X22 

= Q 13(B) 
14 
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... Thes:e, results are identical mith the solufiori of' the' basie series 

in:ArL 2.-2.· A diagrammatic representation can again be made (Fig. 24) 

· and similar conclusions stated: 

(a) The constant ~ is the over-relaxation factor for the 
22 

basic series .of the skew network · . 

(b) The final function value at the center is equal to the start-

ing value multiplied by the over-relaxation factor 

(c) The final function value at any other point is equal to the 

final central value multiplied by the corresponding 

carry-over factor. 

@ 
b/ 

@ - a @ a @ 
b/ 

@ 

Fig. 24 

Final Results - Basic Series 
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3-3 The Skew Series. For a starting value :>tat point 8 of the nine 

point set (Fig. 23a), values are carried-over to points 12 and 14 as 

well as to the central point 13 (Fig. 25a~. Thus the final values of func-

tion coefficients can not be found from the basic series by simple in-

volution, as explained in Art. 2-2 for rectangular point sets, and the 

series due to the unsymmetrical starting values at points 12 and 14 

must be determined. 

Fig. 25a 

Involuted Starting Values 

Fig. 25b 

14 

Isolated Four Point Set - Skew Series 
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From the antisymmetry of the starting values at these points 

(12,,. 14) with respect to point 13, the carry-over to 13 is equal to zero 

and the series forms on the skew point .set shown i:p. Fig. 25b. Consider­

ing the first cycle of carry-over on this skew set .. it is seen that c 2)t 

· is carried to point 8 from both points 12 and 14,, and -c2A is carried to 

18 from both these points. Thus the value returned to either point 12 

or point 14 is equal to the corresponding starting value multiplied by 

4c2. Continuing this procedure a simple infinite geometric series is 

developed which is called the skew series. The results for function 

values due to this series are: 

Q 8(Sk) = _ CA 1 
12 s22 

where 
2 

= 1 - 4c . 

Q 8(Sk) 
8 

CA l 
822 

= CA~ = -Ql88(Sk) 
822 

The final values for function coefficients, starting value A at 

point 8, are obtained by superimposing these results with those from 

the basic series due to the involuted starting value bA at point 13. Thus 

Q 8 
8 = A + bQ 13 

8 
+ Q (Sk) 

8 

and 

8 bQ .. 13 Q .. (Sk) Q .. ::, + lJ lJ lJ 

for any other point ij. 
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Similar results may be obtained for a starting value at 12, 14, 

or 18. For the particular angle a (90°) at which the skew point set 

becomes orthogonal, the skew series vanishes and the results reduce 

to those of the rectangular point set. 

3-4 The Circulatory Series. Applying the algebraic carry-over pro­

cedure to the analysis of an eight point closed ring (Fig. 26 ), each final 

function value is found to be the sum of four infinite geometric series. 

7 a 8 a 9 

a a 

~f 
12 14 

b'' ~, 
17 a 18 - a 19 

a a 

Fig. 26 

Eight Point Ring - Circulatory Series 

For a starting value A at point 7, the algebraic analysis of the 

system can be simplified in a manner similar to that of the rectangular 

network (Art. 2-3) by using the methods of resolution and superposition: 



(a) The initial system is resolved into four basic cases as 

shown in Fig. 2 7, taking advantage of skew symmetry 

and antisymmetry 

(b) The algebraic results from the individual cases are . 

superimposed to give the final values for function coef-

. ,fmients on the. skew ring. 

= + 

:\ 
T 

Initial System Case I Case II 

+ 

Case III Case IV 

Fig. 27 

:\ 
T 

Resolution of Circulatory System with Starting 
Value at Point 7 into Four Basic Cases 

:\ 
T 

40 
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Case I. The algebraic carry-over procedure for this .system 

can be simplified by using modified carry-over factors as was done in 

Art. 2-3 for the rectangular set. 

From the skew symmetry of the starting values (Fig. 27) and 

the anti.symmetrical nature of the carry-over factors between points 

8, 12, 18, and 14 (Fig. 26 ), it is evident that no series develops on this 

skew point set. Thus only the simple circulatory series is formed, 

and the reduced point set of Fig. 28 may be .used to determine the 

function values. Performing algebraic carry-over the results are: 

Q'7 7(S)I = 1 :\ 
X22 4 

Q 7(S)I = 
8 

2b :\ . 
X22 4· 

Thus the final values for Case I of the circulatory series are identical 

in rectangular and skew systems. 

:\ 7 _a 8 
T ,,...--::::;;;::::::;;;::--- - - - - -

2a- I 

2b I/ Removed / 

12 
I ' I I 

I Removed Removed I 
I 
I 

I 
I 

... ---·-..------4 

Fig. 28 

Modified Circulatory System 
Case I 
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Case II and Case III. For these systems algebraic carry-over 

becomes more complex~ and a higher order series is formed on·the 

"' closed ring. This series is called the external series and is discussed 

in the next article (3-5). 

Case IV. For this antisymmetrical set of starting values,, the 

first cycle of carried-over values sums to zero at points 6, 1,2,!14 and 18. 

Thus no algebraic carry-over procedure is possible (Fig. 29), and the 

starting values represent final results. 

Fig. 29 

Modified Circulatory System 
Case IV 

3-5 The External Series. For the skew- symmetrical set of starting 

values (Case I, Art. 3-4) it was shown that the skew series on points 

8, 12, 18 and 14 vanishes (Fig. 28) and only the circulatory series of the 

corresponding rectangular point set remains. In the instance of starting 
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value patterns as given in Cases II and III of Fig. 2 7, however, the 

skew series does not vanish and a higher order series forms on the 

circumferential ring which interrelates the skew series with the circu-

latory series. The development of this series by algebraic carry-over 

follows. 

Case II. If the analysis. of the system shown in Fig. 30 is begun 

by carrying-over the starting values at the corners to points 8, 12, 14, 

and 18, solving the resulting skew series on this set, and carrying back 

to the corners, it is found that the returned values are not equal multi ... :_ 

ples of the corresponding starting values. Continuing this procedure, 

complex power series are generated whose sums cannot be determined. 

i\ 
T 7 

12 

a -

a 
8 

a -

Fig. 30 

External Series 
Case II 

14 
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To avoid this problem, linear point sets 7, 12, 17; 9, 14, 19 and 

7, 8, 9; 17, 18.,, 19 are alternately isolated and solved by again using the 

concept of the suppressed or zero point. Interrelating the resulting 

linear series through.the skew carry-over factors~ c, each final result 

may be represented as the sum of an infinite, geometric series each 

term of which is an infinite series. 

A A 
T _'l _______ ---;r, 9 

A 
T 

12 14 

17 

Fig. 31 

One Dimensional Series-Starting 
Values at 7,. 9, 17, 19 

Introducing zero points at 8 and 18,. two independent one 

dimensional point sets are obtained (Fig. 31 ). Performing algebraic 

carry-over the results are: 

Q 7(S1)II A 1 Q 7(Sl)II A 2b Q 7(Sl)II = ~ _1_ = 4 Xo2 
= T X02 7 12 17 4 x02 

Qg 7(Sl)II A 1 Q 7(S1)II A 2b Q 7(S1)II = _ ~-1-
= - T Xo2 =-4--14 Xo2 19 4 x02 



where 

= 2 1 - 2b 

At this stage the function values correspond with those from Case II 

in rectangular coordinates.. The new external series which is now 

demonstrated is due to the skew carry-over factors. 

7 -.a '"'Yos a 
• 
I a a I 
I I 
I I I I 

I I 
I I 

jl 7.- a 'Y. 18...;... a j 19 • a- a 

Fig. 32a 

One Dimensional Series 
in X-Direction 

7 --------

r 

bib bl 

9 

9 

6 12 -6 14 

b' lb 
17 19 --------

Fig. 32b 

One Dimensional Series 
in Y-Direction 
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Removing the zeros at points 8 and 18 and simultaneously sup-

pressing points 12 and 14, the carried-over values from the corners 

sum to zero at 8 and 18 due to the antisymmetry of these values (Fig. 30). 

The antisymmetrical skew carry-over factors, however, introduce val-

ues at these points (Fig. 32a) which are carried from 12 and 14. These 

carried-over values 

Q 7(CO)II 4bc A = 
Xo2 4 = - 'Y 0 8 

Q 7(CO)II 4bc A 
18 = 

Xo2 T = 'Y 0 

develop one dimensional series on the point sets 7, 8, 9 and 17 .. 18, 19, 

respectively. The res.ults of algebraic carry-over are (Fig. 32a): 

Q1 7(S2)II a =-')'--
0 X20 

Q 7(S2)II = 
17 

where 

Q 7(S2)II = _ 'Y _1_ 
8 0 x 20 

Q 7(S2)II _ 
18 -

1 
'Y --

0 X20 

= 
2 

1 - 2a • 

Q 7(S2)II = _ 'Y ~ 
9 O x 20 

Q 7(S2)II _ 
19 -

a 
'Y -0 X20 

The values returned t9 points 12 and 14, found by releasing these points 

and reintroducing .zeros at points 8 and 18, are 

Q 7(CO)II 2c 2 
(2b) -} 

4c 
6 1 = 'Y 0 = = 12 X20 X20Xo2 

Q 7(CO)II 2c 
6 1 = - X20 'Y 0 = -14 
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These values develop series on the linear point sets 7. 12, 17 and 9, 

14,. 19 (Fig. 32b) whose sums are : 

Q 7(S3)II ·-
6 1 

b Q 7(S3)II 
61 

1 Q 7(S3)II 
61 

b 
7 -

X02 12 = 
Xo2 17 = 

Xo2 

7(S3)II b Q 7(S3 )II = -61 
1 Q 7(S3)II b 

Q9 = -51 
Xo2 14 Xo2 19 = -l\ ~ 

One full cycle of carry-over between the two sets of isolated system,s 

is completed by determining the values carried back to points: 8 and 18 

when these points are again released. Thus 

Q 7(CO)II 2c 
6 1 

4c2 
= 

Xo2 
= 

8 X20Xo2 

Q 7(CO)II 2c 
6 1 

4c 2 
= 

X02 
= 18 X20Xo2 

Repeating this procedure infinite times, new carry-over series 'Y and 

6 are formed having the common ratio 

These series are called the external carry-over series, and their sums 

are: 
00 

I + 'Y 1 + ..... 4bc >t 
'Yn = 'Y 0 = 

Xa2K22 4 
0 

00 

I 6.1 60 + 5 1 + ... 2b >t = = 4 n K22 
0 

. 



where 

= 

Superimposing these series the final values, Case II, are: 

Q 7(E)II 
q = A + b 

T Xo2 

00 

I 
0 

x20 - 4c(ab + c) 
= 

X20 Xo2 K22 

00 

6 
n 

a 
X20 

00 

I 
0 

4A = _ Q 7 (E )II 
19 
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Q 7(E)II 1 I 4bc ~ = _ Q 7(E)II = 
X20 1'n = 8 X20Xo2K22 4 18 . 

0 

00 00 

Qg 7(E)II A b I O n 
a I = - T Xo2 X20 'Y n 

0 0 

X20 + 4c(ab - c) A Q 7(E)II = = -
X20Xo2K22 

T 17 

00 

Q 7(E)Il 1 I 0 
2b A _ Q 7(E)II = 

X02 
= = 12 n Xa2K22 T 14 

0 

Case III. Applying the algebraic carry-over method to the 

analysis of the system shown in Fig. 33, the external carry-over 

series is again developed, each final value being the finite sum of an 

infinite number of infinite series. 



a a 

Fig. 33 

Extern~l Series 
Case III 
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The same procedure is followed as in Case II, with the excep-

tion that the point sets of Fig's. 32 are somewhat simplified by using 

modified carry-over factors. These reduced systems, with the mod-

ified skew carry-over factors between point sets indicated, are shown 

in Fig's. 34. Thus, introducing a zero at point 12, the two point set 

of Fig. 34a is isolated. Performing algebraic carry-over, with a start-

A . . . 
ing value 4 at point 7, the results are: 

A 1 
4 X20 

Q 7(S1)III = 
8 

A 2a 
T X20 



7 __ .___,a..,___ 

/ 2a 

//.' 
]_ __ . --. -, 

Removed / 

f 12 

I 
/ . Removed Removed / 

I . I 
L - . - - - . - -. J 

Fig. 34a 

One Dimensional Series in X-Direction 
Modified Point Set 

I 
I 

I 
I 

I 

7 . 8 -----------, 

, Ill · / Removed / 

2b//{ /-2c / 
12 I 

I I 
I I 
I I 

/ Removed Removed / 

I I '------- ' __ _} 

Fig. 34b 

One Dimensional Series in Y-Direction 
Modified Point Set 

I 
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Releasing point 12 and simultaneously suppressing point 8, the carried 

over value 

4ac A Q 7(CO)III = 
12 X20 4 = -6 

0 

forms·series on the two point set 7, 12 (Fig. 34b) whose sums are 

Q 7(S2)III = _ 0 b 
·7 O x02 

Q 7(S2)III = 
12 

1 - c() 
0 Xo2 

Replacing the zero point at 12 and removing that at 8, the returned 

value is 

Q8 7(CQ)III = 2c 6 0 = 
Xo2 

(2a)} = 'Yi 

and the results of algebraic carry-over on the reduced point set 

(Fig. 34a) are 

Q 77(S3)III 
= 'Y 1 

a 
X20 

Q 7(S3)III = 
8 

Finally, releasing point 12 the carried over value becomes 

Q 7(CQ)III = _ ~ 'Y 
12 x20 1 

The common ratio of the carry-over series relating these two isolated 

point sets is again .seen to be 
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Continuing this pro~edure th~ external carry-over series 'Y 

and o are formed having the sums 

00 

I + + 2a A 
'Yn = 'Y 0 'Y l ... = 

K22 T 
0 

00 

I on 6 + 6 + 4ac A = = 0 l ..... 
X20K22 4 

0 

Superimposing these carry--over series the results of Case III become 

Q? 7(E)III = A 
4 

+ _a_ 
X20 

00 

I 
0 

b 
'Y -

n Xo2 

= 
x 02 - 4c(ab + c) 

X20Xo2K22 

A 
T 

Q 7(E)III 
8 

l 
= X20 

00 

I 
0 

Q 7(E)!II = A + _a_ 
9 4 x20 

00 

I 
0 

2a 

b 
'Yn + Xo2 

x02 + 4c(ab - c) A 
T = 

Q 7(E}III = ... 
12 

X20Xo2K22 

1 

Xo2 

00 

I 
0 

00 

I 
0 

A 
4 = 

00 

I 
0 

6 

B 

n 

.... Q 7(III) 
l8 

n 

_ Q 7(III) 
17 

The final function value.s Oh the eight point closed ring (Fig. 26 ), 

starting value A at point 7, are obtained by superimposing the results 

from Cases I, II, III,. and IV : 



Q .. 7(8) = 
lJ 

Q. _I(S) 
lJ 

+ Q .. IlfE J + 
lJ 

Q .. III(E) + 
lJ 

Q. _IV(S) 
lJ 

From the analysts of these cases it may be concluded that: 

(a) The single cell series which forms in a skew closed ring 

can be resolved into four goemetric series 
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(b) Two of these series are simple geometric .series and yield 

results for function values identical to those from the corres-

ponding orthogonal ring (Cases I and IV) 

(c) The remaining series are infinite geometric series all 

terms of which are infinite series (external carry-over 

series). These higher order series vanish when the skew 

ring becomes orthogonal,. leaving simple geometric series 

identical with those of the corresponding rectangular sets 

(Cases II and III). 

3-6 The Carry-Over Series. Considering now a two dimensional 

twenty-five point skew set (Fig. 35), and applying the algebraic carry-

over method to the determination of function coefficients, each final 

value is the sum of an infinite geometric series each term of which is 

an infinite series. 

As in the case of the twenty-five point rectangular set (Art. 2-4), 

a starting value \ carried-over from point 13 (Fig. 35) to the adjacent 

points (7, 8, 9, 12, 14" 17, 18, 19) will return to 13 as well as circulate 

through the closed ring 7, 8, 9, 14, 19, 18,, 17, and 12. In order to separate 

the various series. formed by this infinite carry-over process,. the method 

of suppressed points is again used. 
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_1_-_o~·~----2~~0-,-------,_3~_0~~----4~_0~~-5 

0 0, 0 --- 0 

Fig. 35 . 

Twenty - Five Point Skew Set 

Thus the basic series on the five point set 8, 12, 13;,. 14.t 18 can 

be isolated (Fig. 3oa) by introducing z.ero points at 7, .9,. 17 and 19. The 

function coefficients corresponding to the basic series are (Art. 3-2) 

Q 13(B) ... A _b_ = Q 13(B) 
8 - x 22 18 

13(B) a 
Q12 ° A~= 

.22 

Q 13(B) 
14 

Q 13(B) _ 
13 -



12 -· 
bl 

a 
A 

a 

18 

Fig. 36a 

13 

8 

a 14 

a -

Isolated Five Point Set - Basic Serie.s 

a+ a' 7 - a 8 - a 9 

a a 

b$b 
12 14 

bl f 
17- a 18 - a 19 

·a-at a+ at 
a a 

Fig. 36b 

Isolated Eight Point Ring .,.. Circulatory Series 
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a - al 



56 

Releasing the corners and simultaneously suppressing point 13, an 

eight point skew ring is isolated (Fig. 36b) with the carried-over values 

where 

Q 13(CO) _ 2ab + c ._ _ Q 13(CO) _ + , 
7 - x 22 11. - 19 - ao a o 

Q 13(CO) = 
9 

a = 0 
2ab A 
X22 

2ab - C 

X22 
A = Q 13 (CO) = a _ a, 

17 0 0 

a' 0 
= C A 

X22 

This isolated system may be resolved into two basic cases as shown in 

Fig. 37, the first corresponding to Case I of the circulatory series and 

the second to Case IV (Art. 3-4). The function values from Case I are 

Q 713(S)I _1_ = Q 13(S)I = Q 13(S)I = Q 1913(S)I 
= ao x22 9 17 

Q 13(S)I _ 2a _ Q 13(S)I 
8 - aO x 22 - 18 

Q 13(S)I = ~ = Q 13(S)I 
12 aO X 14 . . 

22 

a+ ci -a' 

= 

a+ t:l!r a' 

Ini tia.1 System Case I Case IV 

Fig. 37 

Resolution of Isolated Circulatory System 
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From Case IV, no algebraic carry-over is necessary and the starting 

values represent final results. 

The first cycle of carry-over is completed by releasing point 

13 and finding the returned value: 

Q 13(CQ) = 8ab a + 4ca' 
13 x 22 O 0 

4 2 

+ x:2 ) A - /31 

Thus the common ratio of the carry-over series between the basic and 

the circulatory systems is 

= • 

Repeating this procedure infinite times, the carried-over values' 

a, a', and J3 form infinite geometric .series whose sums are 

00 

I + + 2ab 
an = ao al ... = 

X22 y22 
0 

00 

I al at + a' + C 
= ... = n 0 1 X22 Y22 

0 

00 

I J3n J3o + /31 + 
1 = = ... 

Y22 
0 

where 
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Superimposing these carry-over series, the final values for function 

coefficients are 

00 00 
C22 + C 

Q7 
13 .1 I + I a,t A Q 13 = an = = 

x22 z22 
. 

19 n 
0 0 

00 00 

B22 
Q8 

13 2a I + b I [3n A Q 13 = 
X22 

Q! 

X22 
= = n Z22 18 

0 0 

00 00 

A22 Q 13 2b I + a I [3n A Q 13 (15) = 
X22 

a 
X22 

= = 12 n Z22 14 
0 0 

00 00 
C22 - C 

Q9 
13 1 I I a' A Q 13 = 

X22 
a = = n n z22 17 

0 0 

00 

Q 13 1 I {3n 
1 

A 13 = 
X22 

= 
Z22 

0 

The new equivalents used in these equations are: 

2 
2ab 

A22 a(l +~) C22 = = 
X22 X22 

2 2 2 

B22 = b(l + ;t ) z22 = X22 (1 - 16a b ) _ 4c2 
2 22 X 22 

These constants may be interpreted from the diagrammatic presenta~ 

tion of final results in Fig. 38. Thus 

(a) The constant 1 is the over-relaxation factor for the 
z22 

skew system 

(b) The final function value at the center is equal to the start­

value multiplied by the over-relaxation factor ·, 
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(c) The final function value at any other point is equal to the 

final central value multiplied by the corresponding direct 

final carry-over factor A22 ;t B 22 • c 22 + e, or c 22 - c 

~ 
~ 

·(S;'j.22. 

~ 

~ 
~ 

B22 

~ 
~ 

A 
22~ 

62\ 
~ 

Fig. 38 

Final Results - Carry-Over Series 

~ 
~ 

These function values are similar to those of the twenty-five point 

rectangular set given in Fig. 14, and become identical for a= 90° 

(C C 0) • 
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3-7 Resolution, Superpos.ition_.. and Involution. The principles of 

resolution, superposition, and involution, first discussed in Chapter II 

.§1.nd demonstrated for skew point sets in Articles 3-3 and 3-4, may ·b,e 

used to complete the analysis of the twenty-five point skew set (Fig. 

3.5) as follows. 

Initial Sy.stem 

A 
T 

+ 

= 

A 
T 

Case III 

Case I 

A 
T 

A 
T 

+ 
A 

T 

Case IV 

Fig. 39 

-----'----+'} 

Case IT 

Resolution of Twenty- Five Point Skew Set with 
Starting Value at Point 7 into Basic Cases 

· Considering first a starting value A at point 7, the system is 

resolved into four basic cases as shown in Fig. 39. The results for 

these cases are obtained by superimposing the values from the cir-

culatory and the central carry-over series. 



C!ase I. Temporarily suppressing the central point 13., an 

eight point skew ring is isolated (Fig. 40) which is identical with 

Case I of the circulatory series (Art. 3-4 ). The .results are 

Q7 13(S)I = _1 _ A = Q 13(S)I = Q 13(S)I = Q 13(S)I 
x22 T 9 17 19 
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Q 13(S)I = 2a A = Q 13(8).I 
8 x22 T 18 

Q 13(S)I = 2b A = Q 13(S)I 
12 x22 T 14 · 

A 
T 

A 
T 7 - a 8 

a A ----:r 

Fig .. 40 

Isolated Eight Point Ring 
Case I 

- 9 

Removing the zero point at 13, the carried-over value 

= Bab A 
X-T 22 

becomes a new starting value which forms the central carry..-over 

series discus.sed in Art. 3-6. 
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Superimposing the results of the central series (Eqrs. 15) with 

those of the circulatory series above, the final values for function coef-

ficients, Case I, are : 

Q7 
7(I) Q 7(I) 1 i\ + 

C22 + c: 
C22 i\ = = 19 X22 4 Z22 

Q9 
7(I) Q 7(I) 1 i\ + 

c22 - c: 
C22 i\ = = 

X22 T 17 Z22 

-QB 
7(I) Q 7(I) 2a i\ + 

B22 
C22 i\ = ::: 

X22 T 18 Z22 

Q 7(I) Q 7(I) 2b i\ + 
A22 

C22 i\ = ::: 
12 14 x22 4 Z22 

Q 7(1) 1 
c22 i\ 13 = 

Z22 

Case U. The starting values of this s.ys.tem are antisymmet-

rical with respect to the central point 13 (Fig. 41). Thus the carry-

over to that point is equal to zero and this case becomes identical with 

Case II of the circulatory systepi, the external series (Art. 3-5, 

Fig. 30). The values for function coefficients are therefore 

Q7 
7(II) Q 7(II) 

x 20 ... 4c(ab + c) 
i\ = 19 = T 

X20X02K22 

Qg 
7(II) Q 7(II) 

x 20 + 4c(ab - c) 
i\ = = 4 17 

X20Xo2K22 

Q8 
7(II) Q 7(II) 4bc i\ = ... = 4 18 

X20Xo2K22 

Q 7(II) Q 7(II) 2b i\ . 
= - = T 12 14 

X02K22 



:>t T 7 ____ a_ 
8 

a - a -
Fig. 41 

Case lI 

a :>t 
4, 9 

:>t :>t 
T7-a 8 a TH 

bl// ~b, 
I 

12 ----f13 ____ 14 

A,~ /~I 
- T 17 - a 18,..., a - T, 19 

a - a 
Fig. 42 

Case III 
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Case III. . This system is also antisymmetrical with respect 

to the central point 13 (Fig. 42). The carry-over to that point is 

again zero, and this case is seen to be identical with the external serie.s 

formed by Case III of the circulatory system (Art. 3-5~ Fig. 33). The 

results are 

Q 7(III) 
7 

Qg 7(III) 

Q 7(III) 
8 

Q 7(III) 
12 

= 

= 

= 

Q 7(III) - 19 

Q 7(III) ... 
17 

·- Q 7 (III) 
18 

_ Q 7(III) 
14 

= 

= 

:x:02 - 4c(ab + c) 
J\ 

:X:20:X:02K22 
4 

:x:02 + 4c(ab - c) 
J\ 

:X:20:X:02K22 
4 

2a: J\ 

:X:20K22 
4 

4ac J\ 

:X:20:X:02K22 
4 

Case IV. Temporarily .suppressing the central point 13"" an 

eight point closed ring is isolated (Fig. 43) which is identical to Case IV 

of the circulatory series (Art. 3-4). Thus no algebraic carry-over 

procedure is possible and the starting values become final results for 

this isolated system. 

Releasing point 13" the carried over value is 

J\ 4c 4 

The final function values~ Case IV" are obtained by superimposing the 

initial values at the corners and the results of the central series 

(Eq's. 15) due to this new starting value at 13. Thus 



Q7 7(JV) 

Q/(IV) 

QB 7(IV) 

Q 7(IV) 
12 

Q 7(JV) 
13 

= 

= 

= 

= 

= 

A 
T 

Q 7(JV) A + = 19 T 

Q 7(IV) A = -4+ 17 

Q 7(IV) B22 
= 18 Z22 

Q 7(JV) A22 
= 14 Z22 

1 CA 
Z22 

7 .., a 

a -

C22 + c 
CA 

Z22 

C22 - c 
CA 

z22 

CA 

CA 

a -

A -T 17 ___ a __ 
18 - a T 19 

a a 

Fig. 43 

Isolated Eight Point Ring 
Case JV 
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Superposition of Cases I, II, III, and IV yields the final results, 

starting value A at point 7: 

7 
Q .. 

lJ 
Q .. r + Q .. II + Q .. ur + Q. _IV 

lJ lJ lJ lJ 

From cyclosymmetry, the equations of function coefficients corre, '-

sponding to a starting value at point.' 9, 1 7 ~ or 19 are : 

Q .. 9 Q .. I Q .. = -lJ lJ lJ 

Q.~7 Q .. I + Q .. = lJ lJ lJ 

Q.~9 Q .. I Q .. = -lJ lJ lJ 

= 

Initial Sy.stem 

II + Q .. III 
lJ 

II Q .. III - lJ 

II Q .. III - lJ 

Case IA 

Fig. 44 

Q .. - lJ 

Q .. - lJ 

+- Q .. . 
lJ 

IV 

IV 

IV 

+ 

A 
2 

Case!:lIA 

Resolution of Twenty-Five Point Set with Starting 
Value at Po1nt 8':into Basic. :Cases ' 
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For a starting value :\ at point 8, the twenty-five point skew , 

set is resolved into two basic cases as. ·shown ·in Fig. 44 and the results 

superimposed. 

Case IA. This system is a modification of Case I, and the 

final results may be obtained by involution. The values at 8 and 18 

are carried-over to 7, 9, 17, 19, and 13,. thus introducing involuted 

starting values at these points (Fig. 45) which develop serie.s previous-

ly defined and determined. Superimposing these series the function 

values are: 

Q8 8(IA) = i + 2a Q8 I + b Q8 13 

and for any other point ij 

Q. _8(IA) ::: 
lJ . 

I 2a Q .. lJ + b Q .. 13 
lJ 

a :\ a 
2 7 -'---

-a 

Fig., 45 

Involuted Starting Values 
Case IA 

Q 8(IA) 
18 
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Case IIIA. This system of starting values, a modification of 

Case III, develops the external carry-over series on the modified 

point sets of Fig's. 46a, b. Proceeding as in Article 3-5~ the final 

results are 

a A 
2 

2bc A 
2 

_ a - 2b ( ab + c) 

X20Xo2K22 

Q 8(IIIA) = 
8 

1 

a 

A 
2 

= a - 2b (ab - c) 
X20Xo2K22 

A 
2 

A 
2 

= _ Q 8(IIIA) 
19 

A 
2 

= _ Q 8(IIIA) 
17 

Superimposing these values and those from Case IA~ the final results, 

starting value at 8, are 

8 Q .. 
lJ 

= Q. _IA + Q. _IIIA 
lJ lJ 

By cyclosymmetry, the final results for starting value at point 18 are 

Q .. 18 = 
lJ 

Q. _IA _ Q. _IIIA 
lJ lJ 



a :\ 
/ ... , 7_·-_---_2_a ______ r_.m__;;;.8 ___ -, 

/ Removed / 

I I 
I I 
r 1, I 
I I 

/ Removed Removed / 

I I 
L ________ _! 

Fig. 46a 

One Dimensional Series in X-Direction 
Modified Point Set - Case IIIA 

7 8 ---------, 

6 I 12 

I 
/ Removed 

Removed 

Removed / 

I I 
I ________ J 

Fig. 46b 

I 
I 

One Dimensional Series in Y-Direction 
Modified :point Set - Case IIIA 

I 

I 
I 

l 
I 
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The function coefficients due to a starting value at point 12 or 

14 may be determined by involution. Thus considering a starting 

value A at 12 (Fig. 47) the results are: 

and 

Q 12 A b Q 7 Q 13 
12 = 2 + 12 + a 12 

Q .. 12 
lJ 

7 13 8 18 = b Q.. + a Q.. - C Q.. + C Q .. 
lJ lJ lJ lJ 

for any other point of the net. 

Similar equations can be written for a starting value at 14. 

7 

bJ\. 17 

8 

Fig. 47 

Involuted Starting Values 

9 
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3-8 The Laplace Equation. In skew coordinates the Laplace equa-

tion has the form 

with Q equal to a given function G(x, y) on the boundary (38 ). 

The corresponding difference equation for an interior point ij 

of the finite difference net is (Fig. 22) 

Q .. = lJ 

+ Q. ·+1 
1, J 

At a boundary point kl, the function Q takes on the value of the given 

function G: 

(16) 

(17) 

= (18) 

x .... 

Fig. 48 

Finite Difference Net Adjacent to the Bounda~y. 
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The carry-over solution of the Laplace equation in finite-dif-

ference form is again achieved by relating it to the solution of the 

Poisson equation, as explained in Art. 2-6. Writing the finite-differ-

ence equation for point ij adjacent to the boundary (Fig. 48) 

Q = .. 
lJ 

+ Q. ·+1) 
1, J 

+ 

a G. 1 . 
1- 'J 

c:(Q,i+l, j-1) :- c.(~Hl ,:j+ 1) C G. 1 ·+ 1 - C G. 1 . 1 1- ,J 1- ,J-

and comparing this equation with the Poisson equation in finite differ-

ence form (Eq. 13), it is evident that the sum of the carried over values 

above (terms in the second brackett) corresponds with the value Q .. *. lJ 
Thus the sum may be considered as a starting value at point ij and the 

algebraic carry-over procedure performed as before. 

The Laplace equation in s.kew coordinates is therefore solved by 

algebraic carry-over in the same way as is the equation in rectangular 

coordinates. Final results for function coefficients due to a starting 

value ;\ at a boundary point of the network are equal to the sum of final 

results due to starting values ;\ at the adjacent interior points, mul-

tiplied by the corresponding carry-over factors. 



CHAPTER IV 

POLAR SYSTEMS 

4-1 Linear Finite - Difference Equations . In polar coordinates the 

Poisson equation has the form (38) 

1 
= - F(r, 8) ( 19) -r 

The corresponding finite difference equation written for point ij of the 

finite difference net is (Fig. 49) (38) 

Q · + 1 . - 2Q . . + Q. 1 . 
1 , J lJ 1- , J 

Ar2 

Q1·+1 J0 
- Q1·-1 J0 Q. ·+1 - 2Q .. + Q. ~-1 + , , + 1, J lJ 1, J == _ F .. . 

2r. Ar r. 2 A82 lJ 
1 1 

i+l, j 

Fig. 49 

Finite Difference Net in Polar Coordinates 
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Introducing the notation 

= i(2i + 1) Ae2 
a.+1 · 2 2 

1 ' 1 4i h.e + 2 

= i(2i - 1) A82 
a. 1 · 2 2 
i- ' 1 4i AfJ + 2 

'b. 
1 

1 = 
4i2 1:::..e2 + 2 

i = 
r. 

1 

Ar 

it. 
1 

this equation may be written 

Q = .. 
lJ 

where 

a. 1 · Q. 1 · + 1+ ,1 1+ ,J . ai-1,i~-1,j 1+ 

Q .. 
lJ 

b. (Q. ·+1 + Q .. 1) 
1 1,J 1,J-

* = i\..F .. ~ r 1. Ar AB 1 lJ '± 

J 

* Q .. 
lJ 

is the starting value for Q .. , assuming the Q's at the four adjacent lJ 
points to be zero. 
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(20) 

(21) 

(22) 

It is evident from Eq. (21) that a.+ 1 . , a. 1 . , and b. are carry-
1 ~l 1- ,1 1 V 

over factors on the finite difference net. The carry-over factors 

a.+l . and a. 1 . represent the respeetive influences of the adjacent va.l-
1 ,.1 1-,,1 

ues in the i+ 1 st and i-1 st circumferential rings on the value Q .. in th.e lJ . 
ith ring. The carry-over factor b. represents the influences of the 

1 

adjacent values in the ith ring upon this value. 

To determine the carry-over factor a 10 from the fir.st ring into 

the origin it is necessary to apply P Hospital's rule (39)1 the second 
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and third terms of Eq. (19) being indeterminate when r = O. Thus 

which become-S.- upon differentiating the last two terms: 

2 a2Q 1 a4Q 
(V Q) 2 ( . ) + ( ) r ·=O = ---.,- r-0 -2 2 2 r·=O i)r~ - ar ae 

The corresponding finite difference equation written for the origin in 

the direction j is (Fig. 50) 

Ar 

-F 0 

1,. j+l ,,, 
/ 

I 
I 
I 
I 
\ 
\ 
\ 

' ' 

:ij 
1, j-1 

'·t ,. 
' \ 

\ 
\ 
I 

I 
I 

/ 
1,. jl 

Fig. 50 

Origin of the Polar Coordinate Network 

j:=1 
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where 
• T 
J = 

1 
j + yn 

and n 
27T 

= AfJ is the total number of radial lines j • 

Rearranging terms this equation may be written 

= 2AfJ 2 - 1 
4Af)2 (Q 1 J0 + Ql J.,) 

' ' 

+ 

Taking directional derivatives along all radial lines and summing, the 

resulting expression is 

Thus the value of Q at the origin is given by the equation 

Ql . + 
. ;I' J 

(23) 

and the carry-over factor into the origin by the equation 

= 
1 (24) -n 

Equation (23) compares with Marcusr expression (40) derived by statics 

using the physical analogy of a laterally loaded network of uniformly 

tensioned strings. 

For the special case of an axially symmetrical function F(r), 

the Poisson equation (Eq. 19) reduces to the ordinary differential 

equation (38) 

1 dQ 
r dr - F(r) . (25) 
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The corresponding finite difference equation (Eq. 21) may be written 

2 
Ar 

Q. = a.+1 · Q-+1 + a. 1 · Q. 1 + F. ----n-1 1 _,1 1 1- .;,1 1- 1 ~ 

in which the carry-over fact9rs are given by the expressions 

At the origin Eq. (23) becomes 

from which a 10 = 1 . 

1 
a. 1 · = -2 1- _, 1 

1 
41 

(26) 

(27) 

(28) 

Eq. (26) is identical in form to the three moment equation for a 

continuous beam on rigid supports (33). Thus final values of function 

coefficients due to unit axially symmetrical s~arting values may be 

obtained from the algebraic carry ... -0ver solution of this analogous prob-

lem_, which has been accomplished in other papers and is not considered 

here (33_, 41 ). 

4-2 The Axial Symmetric Basic Se.ries. Applying the algebraic carry-

over method to the analysis of an axially symmetric point set composed 

of one ring and n radial lines (Fig.· 51), each final value is. found to be 

an infinite" geometric series. The determination of this series is 

facilitated by modifying the system to a two point linear set as shown 

in Fig. 52. The modification is accomplished as follows. 
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From the equality of function values on the circumferential 

ring,. the finite difference equation written for point 1 becomes (Fig. 51) 

from which 

Fig,51 

Axially Symmetric Point Set - Basic Series 
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The constant 1 
·1 - 2b 

.1 
may be interpreted as the over-relaxation 

factor for the axial symmetric circulatory series forming on the n · 

point ring. .Thus the function value at a circumferential point is equal 

to the value a.01 Q0 carried-over from the origin multiplied by the over­

relaxation factor. 

-----/ ' 
/ ' 

/ " / Removed \ 

I 
{ 
\ 
\ 

nalO 
0------

\ Removed / 

' / ' / ' ---- _..,.,,, 

Fig. 52 

Reduced Point Set - Axial Symmetric 
Basic Series 

1 

The modified carry-over factor n a 10 from point 1 into the 

origin may be obtained by writing the finite - difference equation for 

that point, or may be deduced from a:xial symmetry. 

Using these modified consta~ts., it is evident from Fig. 52 that 

a value carried from point O to the circumferential point will return 

to O multiplied by the product of the carry-over factors and the over-

relaxation fa.ctor. The infinite geometric series formed by continuing 

this process is called the axial symmetric basic series. The final 

results for function values are 



Q O(B) 
0 

Q O(B) 
1 

where 

= 

= /L [1 
/L 

1 = 
x1 

= 

1 

in terms of Eq. (24 ). 

+ 
( nalOaOl 

1 -2b 
1 

= 

= 1 

/ ( nalOaOl ) 2 
+ 1 - 2b + 

' 1 

Q 0 
2 = 

aOl 
1 - 2b 

1 

= 

80 

.. .J 

The final values are given in Fig. 53. Similar conclusions 

can be made as before (Art. 2-2): 

(a) The constant Xl is the over-relaxation factor for 
1 

the axial symmetric basic series 

(b) The final function value at the origin is equal to the 

starting value multiplied by the over-relaxation factor 
a 

( c) The constant value 1 _o 1b , incorporating the over-
1 

relaxation factor of the axially symmetric circulatory 

series, may be interpreted as a direct final carry-

over factor at01 

(d) The final function value at each circumferential point 

is equal to the final central value multiplied by the 

direct carry-over factor 

(e) The algebraic results are independent of the number 

of radial lines chosen (from the identity n a 10 = 1). 
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a' 01 

• 

• 

• 
• • 

• • • 

Fig. 53 

Final Results '- Axial Symmetric Basic Series 

4-3 The Single Ring Circulatory Series. For non-axially sym-

metrical patterns. of starting values, it is. necessary to investigate 

the flow of function values in single or multiple rings. The circula-

tory series which form in single rings may frequently be interpreted 

as basic Series.; in multiple rings they are usually higher order series. 

Considering an eight point single ring (Fig. 54), the algebraic 

carry-over method yields final results which may be represented as 

the sums of three simple geometric series. For a starting value A at 

point 1, the .system is resolved into basic cases (Fig. 55 ), as discuss­

ed . for the rectangular set in Art. 2-3., and the results superimposed. 



5 1 

~'~ 7 1 

Fig. 54 ,,. 
Eight Point Ring ... C,irculatory Series 

A 
T 

+ ::: ... A A 
4 T 

A 
T 

Initial System Case I Case Ir 

A 
-T 

A A 
T T + 

.. A ... 
T 

Case III 

Fig. 55 

Resolution of Circulatory System with Starting Value 
at Point 1 into Three Basic Cases 

A 
2 
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Case I. Observing the symmetry of this system with respect 

to all diameters of the ring, modified carry ... over factors can be intro .. 

duced and the point set reduced to that shown in Fig. 56. Performing 

algebraic carry-over the results are: 

where 

Q l(S)I _ 1 X 
1 - x04 4 

I 
I 
\ 

\ 

X "' 1 - 4b 2 
04 1 

--- --
/ 

/ 
/ Removed 

Q 2 l(S)I 

\ Removed Removed 

"" "" ------ -- =--

Fig. 56 

/ 

X 
4 

I 
/ 

/ 

Modified Circulatory System 
Case I 

1 

I 

Case II. This system, symmetrical with respect to the hori-

zontal diameter and antisymmetrical with respect to the vertical, may 

be resolved into two independent systems (Fig. 57). The results of 

algebraic carry-over are 



Q1 l(S)II 

Q l(S)II 
2 

where 

5 
I 

\ 

1 A Q5 l(S)II 1 
= 

Xo2 2 = 
X02 

bl A Q4 l(S)II bl 
= 

Xo2 2 = 
X02 

X02 = 1 - 2b 2 
1 

4 

A A 
-2 2 

I 
I 

\ Removed Removed 

I 
~ / 

'----- ~ 

Fig. 57 

Modified Circulatory System 
Case II J 
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A 
2 

A 
2 

1 
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Case III. For this system no algebraic carry-over procedure 

is possible,. and the starting values repre.sent final results (Fig. 58 ). 

Fig. 58 

Modified Circulatory System 
Case III 

The final values for function coeffici~nts~:af.:e· obtainec:l py super~ 

imposing Cases I,, II, and III. It is evident from this superposition that 

the series forming in an axially summetrical ring; starting value at any 

point, can be resolved into simple goemetric series. 
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4-4 The Axial Symmetric Carry-Over Series. If algebraic carry-

over is used to determine the function coefficients on a two ring axially 

s.ymmetric point setj starting value A at the origin (Fig. 59)$ each final 

value is the finite sum of an infinite geometric series of geometric 

series. 

n+5 

. 

~ 

n+6 
bl 

~3 £ ~ ~ "2~ 

a_.a~1Jo 
1
~ 2 / / a12 

y~h'\~:, //ao1 
/ alO 

n+7 
---~----7 

• 

• • 

• 

• • 

• 

Fig. 59 

Axially Symmetric Point Set - Carry-Over Series 
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As was explained for the single ring set in Art. 4 ... 2, this sys­

tem may be reduced to the linear p~int set of Fig. 60. The constants 

1 _12b 1 and 1 _1262 are the over-relaxation factors for the axially 

symmetric circulatory .series forming on the first and second n point 

rings. 

- ------ --... / 

"" / 
~ / 

I 
I 
I 
I 
\ 
\ 
\ 
~ 

Removed 

0 nalO 
i\. 

aOl-

Removed 

/ 
/ 

~ /" --- --- . --
Fig. 60 

Reduced Point Set '"' Axial Symmetric 
Carry-Over Series 

'\ 
\ 

\ 
\ 

n+l 

I 
I 

I 
/ 
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Because only three points are involved in the carry-over pro.., 

cedure., it is possible to represent the final results by basic series. 

Considering, however, that series which form in the circumferential 

rings are hidden by the over-relaxation factors at 1 and n+l, the one 

dimensional s.eries on the three point set is more logically interpreted 

as a carry-over series. Again the concept of the zero point is used. 

Thus, carrying-over from Oto 1, then temporarily .suppressing 

p9;i.nt o;:the resulting series on the two point set yields the values 

= A 

Q O(Bl) = A 
n+l 

where 

t a '01 ::: 

and 

X' 2 

aOl 
1 - 2b 1 

1 -

a'21 = 
a21 

1 - 2b 1 

= 

= A 
r a' aOl 12 
Xl 

2 

= I - 2b 
2 

The quantities abl' a2p ai 2,which incorporate the over-relaxation factors 

1 ... 1 ~b and 1 ... 1b , may be considered modified carry-over factors. 
1 2 

Removing the zero point at the origin the returned value is 

QO O(CO) 
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The quantity 

is therefore the common ratio of the axial symmetric carry-over series 

developed by continuing this procedure infinite times. The final results 

are 

0 
[1 

· aJ 1 at 2 
... ] 1 

Qo = A + ( X 101 ) + ( x~1 ) + = A 
Y2 2 2 

Ql 
0 

A 
a' 01 

Q2 0 Qn 
0 

(29) = = = = 
X'2Y2 

0 
A 

a'o1a'12 0 0 
Qn+l = = Qn+2 = = Q2n X'2Y2 

where 

y2 1 
nalOaOl 

1 
aOl 

= ( 1 - 2b l) X' 2 
= - (1 - 2b 1) x 2 

Introducing the equivalents 

the final values can be represented diagrammatically (Fig. 61 ), and 

similar conclusions made as for the single ring basic series (Art. 4-2). 

Thus 

(a) The constant ; 2 is the over-relaxation factor for the 

axial symmetric carry-over series 

(b) The final function value at the origin is equal to the 

starting value multiplied by the over-relaxation 

factor 



~· 

'0 

• 

• 

(c) The final function value at any circumferential point 

is equal to the final central value multiplied by the cor­

resp.6ttdihg direct.final carry-over factor A01 or A02 

(d) The algebraic results are independent of the number 

of radial lines chosen. 

• 

• 
• 

• • • 

• 

• 

• 

Fig. 61 

• 

• 

·• 

• 

~ 
'0 

Final Results - Axial Symmetric Carry--Over Series 
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4...,5 The Double Ring Circulatory Series. Considering now the 

analysis of a sixteen point double ring (Fig. 62) by algebraic carry,.. 

91 

over, it is again convenient to resolve an unsymmetrical set of start-

ing values into basic cases as was done in Art. 4 .... 3 for single rings. 

This resolution for a starting value :\ at point 1 is given in Fig. 63. 

Fig. 62 

Sixteen Point Double Ring - Circulatory Series 



. ::: + 

Ini tia,l Syste;m Case IA Case IB 

+ + 

· Case II Case III 
Fig. 63 

Resolution of Double Ring Circulatory Syst.em with 
Starting Value at Point 1 into Basic Cases 
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Case IA. From the axial symmetry of this system "(Fig. 63), 

it is evident that a reduction to the modified point set of Fig. 64 is 

possible. Performing algebraic carry-over on this reduced set the 

results are: 

Ql l{S)IA 1 
"' (1 - 26 1) xt2 

Q 9 l(S)IA 

A 
8 
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Fig. 64 

Modified Double Ring Circulatory System 
Case IA 

\ 
\ 

I 
I 

I 

Case IB. This system of starting values is symmetrical with 

respect to all diameters of the double ring; but it is not axially sym--

9 

metrical (Fig. 63). The over-relaxation factors at points 1 and 9 of 

the reduced system are obtained by writing the finite-difference equa--

tions at these points. 



Thus (Fig. 63) 

from which 

Ql 

Qg 

I 
I 
I 
\ 
\ 

I 

\ 

= 

= 

/ 

a21 Qg Q* 
+ 
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1 + 2bl 1 + 2bl 

al2Ql 
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Modified Double Ring Circulatory System 
Case IB 
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. I 
I 
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The over-relaxation factors corresponding to the series forming on the 

first and second-rings. are therefore 1 + 12b and 1 + \b . Using these 
1 2 

factors the- s,y.stem is: reduced:to ::the }~:t1ear- s:et 6:£::Fig~ _:65: :P.e:ti:fot.:rning 

algebraic::carry-over. tliec __ results:-a_r·e~ 

Q 1 l(S)IB = 

where 

A 
8 

Case II. This system" symmetrical with respect to the. hori-

zorital diameter and antisymmetrical with respect to the vertical, is 

res.olved into two independent systems as shown in Fig. 66. The solu­

tion of each of these S;Y"Stems is the solution of a geometrically µnsym­

metrical four point ring. 

From the nature of the carry-pver procedure, the flow of func­

tion values in these rings g~nerates carry-<;>ver series. In order to 

determine these series.,_ the method of altern;:itely suppressed points is 

again adopted. Introducing a zero point at 10 and applying algebraic 

carry-over to the isolated three point set 1" 2, 9, the function values are 

Q. l(Bl)II 1 A_ ·1 l(Bl)II _ bl A 
l = x21 T- Q2 - x21 T 

Q 1 (B l )II = a 12 _ A 
· 9 x21 T 

where 
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\ 
\ 

.. a12 

2btl 
A 1_ a21 ., 
2/ a.21 

5 a12 

\ I 
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Fig~ 66 

Modified Double Ring Circulatory System 
Case II 

/ 

9 

I 
I 

I 

Releasing poip.t 10 and suppressing point 1, the carried-over 

value 

forms series on the isolated set 21 10"' 9. The results of algebraic 

carry'*over are 
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Q l(B2)II = 
10 

where 
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Q., l(B2 )II 
L, 

The common ratio of the infinite geometric carry-over series forming 

between these two isolated point sets is determined by releasing point 1 

and finding the returned value 

A 
2 = 13i 

which becomes a new starting value at 1. Dividing /3 1 by the initial 

starting value 130 = { ~ the common ratio is 

The carry-over series a and (3 are infinite geometric series of 

.series whose sums are 

where 

00 

L an = ao + al + · · · -
0 

00 

I /3n = f3o + /31 + · · · 
0 

= 

= 

a12 (bl + b2) 

X21Y 22 

1 

y22 
A 

-2-

A 
2 
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Superimposing these series the final values for function coefficients,. 

Gase II, become 

00 

Q/(II) 1 I {3n 
1 A l(II) = 

X21 
= 

Z212 
= - Q5 

0 

bl 
00 00 

B21 Q l(Il) I /3n + 
a21 I :>t 

- Q4 
l(II) 

C 

· X21 X22 
a = 

2 21 2 ·-2 n 
0 0 

a12 
00 

2b2 
00 

A21 Q l(II) I /3n + I A _ Q l(II) = 
X21 X22 

an = 
2 21 2 = 9 13 

0 0 

00 
G21 Q l(II) 1 I A _ Q l(II) = 

X22 
a = = 10 n 2 21 2 12 

0 

The new constants introduced above are 

Interpreting these constants .as direct final carry-over factors A2 p 

B 21 , c 21 and over-relaxation factor ~ for the unsymmetrical four 
21 

point ring (Fig. 67 )" and comparing these results with those correspond-

ing·to the carry-over .series in rectangular coordinates (Art. 2-4), it 

is evident that the final values are similar in form. When the circular 

panel (1, 2.,. 9, 10) is transformed into the corresponding rectangular 

panel, the final values are found to be the solution of a twenty point 

set symm~trical with respect to the X'""axis. Thus a circular panel 



can be considered a more general form of a rectangular panel. 

~ 
~ 

~ 
~ 

Fig. 67 

~ 
~ 

Final Results - Circular Panel Carry-Over Series 
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Case III. From the antisymmetry of this system with respect 

to alternate diameters, all modified carry-over factors in the circum-

ferential direction are equal to zero (Fig. 68 ). The system thus reduces 

to four isolated two point sets. Performing algebraic carry- over the 

results are 

Q1 l(S)III = Q5 1 (S)III = _ Q7 l(S)III 



Q l{S)III a12 A Q l(S)ID .... Q l(S)III .... Q l(S)III 
9 c X2 T = 13 = 11 = 15 

where 

Fig. 68 

Modified Double Ring Circulatory System 
Case III 
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9 

. The final values for function coefficients on the sixteen point 

double ring, starting value A at point 1., are obtained by superimposing 

Cases IA;IB., II and III. Thus the solution of multiple ring circulatory 

Sy.stems involves both ;Simple geometric and carry..,over series. 
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4-6 Resoluti<:>n and Superposition. If now the algebraic carry-over 

method is applied to the analysis of a geometrically axial symmetric 

twenty-five point set (Fig. 69) .. the final results due to a .starting value 

1'. at any point can be found by again using the principles of resolution 

and superposition defined in Art. 2-5. 

19 

0 0 

20 18 

22 24 

0 0 

23 

Fig. 69 

Twenty-Five Point Set 
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Case II 

Fig. 70 
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Case ID 

Resolution of Twenty-Five Point Set with Starting 
Value at Point 1 into Basic Cases 
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Considering first a startin~ value at the origin., the problem is 

simply that of the axially .symmetrical carry-over series. discussed in 

Art. 4 .. 4. The final function values are given iri that article and need 

not be restated here. 

For a starting value at point 1, the final results are obtained by 

.superimposing the double ring circulatory series ,and the axial sym-

metric carry;..over series. Resolving the system as shown in Fig. 70., 

it is evident that Cases IB., II, and III have no carry-over into the 

origin. These .systems, therefore reduce to the corresponding Cases IB., 

Il_. and III of the double ring circulatory system (Art. 4-5 ). Case IA .. 

however, develops the axial symmetric carry-over series. Modifying 
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9 

this system to the linear point set of Fig. 71 and temporarily intro-

ducing a zero point at the origin 0,. the series forming on the two point 

set 1, 9 is identically Case IA of the double ring circulatory serieS;i, 

Art. 4-5: 

Q 1 l(S)IA = 1 A 
8 

Q l(S)IA a12 A 
9 = (1 - 2bl)(l - 2b2)X'2 8 • 
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Releasing point 0,1 the carried over value 

becomes a new starting value which forms the axial symmetric carry-

over series. From Eitls 29~ Art. 4 .... 4~ the function coefficients due to 

this. starting value are 

Qo l(C)IA Ao1 A = 8 aOl Y2 

2 
Q/(C)IA Aol A = 

aOl Y2 8 

Q9 l(C)IA Ao1 Ao2 A = 8 aOl y2 

= Q2 
l(C)IA 

= Q l(C)IA 
,10 

= = 

= = 

Q l(C)IA 
8 

Q l(C)IA 
16 • 

The final results .are equal to the superj;>05.itio11 of these values with ·: . 

the results from the double ring circulatory :system. 

Finally, cons.idering a starting value A at point 9~ the system 

is resolved into four basic cases a_s shown in Fig. 72 and the results 

superimposed. 

Case IAl. This system is a modification of Case IA. Sup'"' 

pressing point" 0.,, the results: of algebraic carry-over on the reduced 

point .set 1:,,E are (Fig. 73) 

Qg 9(S)IA1 



= 

Initial System Case IAl Case IBl 

- ----:r 

Case IIl Case IIIl 

Fig. 72 

Resolution of Twenty-Five Point Set with $.tarting 
Value at Point -9 into Basic Cases 

R.eleasing point O the carried-over value 

9(CO) · 8 alO a21 A 
QO = (1 - 2h )(l ·- 2b )X 1 8 . . 1 . 2 2 . 

forms the central carry-over series. The corresponding function values 

become (Eq's 29) : 
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9 . 

The final results;, Ca8-e IAl'I a.re obtained by superimposing these vatue'S 

.and those of the axially symmetric circulatory series above. 
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Case !Bl. As in Case IBs there is no carry-over into the ori-

gin, and the system can be simplified to that of Fig. 74. Performing 

algebraic carry-over on this linear set the final values are 
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I 
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Case Ill. This system~a modification of Case II, again forms 

the circular panel carry-over series with zero value at the origin. Con-

sidering the reduced point set of Fig. 75 and temporarily suppressing 

point 2., the results of algebraic carry-over on points 1, 9, 10 are: 

13 

\ 
\ 
\ 

12 

"' 
-----
-- ----

l;i'ig. 75 

Modified Point Set 
Case· Ill 

r 

~ 
J 

I 
/ 

9 
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Q 9(Bl)II1 = 1 A 
9 x22 2 

Q 9 (B 1 )II 1 = b 2 A • 
10 x22 2 

Releasing point 2 and simultaneously suppressing point 9, the carried-

over value is 

Q 2 9(CO) = A 
2 = 

This value forms series on the three point set 2, 1,, 10,, the results of 

which are 

~:(B2)II1 .. = Q 9(B2 )Ill a12 
10 = :x21 ao 

Removing the zero point at 9 the returned value is 

2 a12a21(b1 + b2f A 
-2 = /31 X21 X22 

and the common ratio is again (Case n,, Art. 4.,...5) 

Repeating this procedure infinite times, the carried-over val~es 

a and [3 form infinite geometric carry-over series whose sums are: 

00 
a21 (bl + b2) I ' A ' + + i = a = ao al 2 n X22 Y22 

0 

00 

I [3n f3o + !31 + 
1 A = = 

Y22 2 
0 
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Superimposing the a and f3 series, the final values, Case Ill, become 

00 
c22 Q2 9(111) 1 I an 

i\. _ Q4 9(II1) = 
X21 

= 
Z22 2 = 

0 

2bl 
00 

a21 
00 

A22 Q 9(II1) 
Lan+ I {3n 

A Q 5 9(II1) = ·X21 X22 
= 

Z22 2 = -l 
0 0 

a12 
00 

b2 
00 

B22 Q 9(!11) ·I an + I {3n 
i\. _ Q 9(II1) 

10 = X21 X22 
= 

Z22 2 = 12 
0 0 

00 

Q 9(II1) 1 I {3n 
1 i\. _ Q 9(Hl) = 

X22 
= 

Z22 2 
,: 

9 13 
0 

The new equivalents used in these equations ·.are 

A22 .= a21 [1 + 
2bl (bl + b2) J 

c22 
a21 (bl+ b2) 

C 

X21 .. · X21 

[1 
b 

B22 = b2 
+ a12a21(1+1>~] 

Z22 = X22 y22 
X21 

These constants ca.n 1:;>e interpreted as over-relaxation and direct carry ... 

over factorsj and conc,lusions drawn s.imilar to those in Case II, Art. 

4-5. 

Case III!. This system is a modification of Case m (Fig. 68) .. 

Performing algebraic carry-over on the isolated two point sets (Fig. 

76),_ the results: are 

Q 9(lII1) 1 i\. Q 9(IU1) Q 9(IIU) Q 9(IIll) = = = ·- = ... 
9 x;- 4 13 11 15 

Ql 9(III1) a21 i\. Q59(III1) - Q3 9(III1) .. Q7 9(III1) = 
X2 4 = ,: = . 
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Fig .• 76 

Modified :Point Set 
Case tt!l 
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The final function coefficients,. starting value A at point 9, are 

obtained by superimposing the results from Cases IAl1c IBl~ Ill, and 

IIIl. For a starting value at any other point on the network, the final 

values are identical with these results (or those corresponding to start­

ing value :\ at point 1) after a simple rotation of the pivotal point 

numbers. 
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4--7 The Laplace Equati9n-..- In polar coordinates the Laplace equation 

has the form 

(30) 

With Q eq_ual to a given function G(r., 8) on the boundary (38). 

The corresponding finite - difference equation written for an 

interior point ij of the network is (Fig. 49) 

a.+1 · Q.+1 · + a.1 · Q._1 · · 1 #1 1 .. J 1- .,1 1 · ,J 

(31) 

b.1-(Q. ·+1 + Q .. 1) 
J. l~J l,.J-

and at a boundary point kl 

(32) 

Boundary i+l, j . 

ij 

Fig. 77 

Finite Difference Net Adjacent to Boundary 
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The boundary values are the starting values for the carry-over 

process,. as explained in Art. 2 ... 6. The finite-difference solution·is 

again obtained from a corresponding solution of the Poisson equation 

by considering the difference .equation written for a point ij adjacent to 

the boundary. Thus (Fig. 77) 

Q .. C 

lJ 

a. 1 · r,Q. 1 .) 1'- , 1 \ 1-- _, J 

b. (Q. ·+1 + Q. . 1) 
1 1.,, J le,;, J-

+ a.+1 . G.+1 . 1 ,1 1 ,J 

The carried .. over value a.+l . G.+l . , which corresponds with the val-
1 ,1 1 ,J 

* ue Qij of the Poisson equation (Eq. 21 )i is a new starting value at 

point ij, and the algebraic carry-over is performed as before. 

The final function poefficients corresponding to a starting value 

A at a boundary point of the finite-difference net are therefore equal to 

the final results due to a .starting value A at the adjacent interior point, 

multiplied by the carry-over factor. from the outer ring. 



CHAPTER V 

TRIANGULAR SYSTEMS 

5-1 Linear Finite - Difference Equations. In triangular coordinates 

the Poisson equation has the form (38) 

a2Q a2Q a2Q 
-,-2- Sin 2(/3 - a) - ~ Sin 2(3 + --::.-2 Sin 2a 
au av aw 

= - 2 Sin a Sin {3 Sin (/3 - a) F ( u, v, w ) . (33) 

For the symmetrical case (/3 = 1r - a), the corresponding finite-dif­

ference equ"ation written for point ij bf the network is (Fig. · 78) 

i-1. j u 

u .Au. 

Fig. 78 

Finite Di~ference Net in Triangular Coordinates 

114 



115 

Q.+1 -- 2Q .. +Q.1. . 2 Q .. 1- 2Q .. +Q. · 1 
1 iJ lJ 1- ,J 2Sin 2a (2Sin a-1) + l,J+ lJ l.,J- Sin 2a 

Au Av 

+ 
Qi-1, j+l - 2Qij + Qi+l, j-1 

Aw 
::, - 2 Sin2 a Sin 2a F .. 

lJ 

Introducing the notation 

a ::: 2 Sin2 a-1 
b 

t2 
-

4(t2 + 2 Sin 
2 a- 1) 2(t2 + 2 Sin2 a-1) 

t = Au = Au 
Av Aw 

A = t Sin2 a 

2(t2 + 2 Sin2 a-1) 

this equation becomes 

a (Q·+1 · + Q._1 .) 
1 ., J 1 .,. J 

(~ 4) 

* Q .. 
lJ ' +Qij (~5) 

b(Q. ·+1 + Q. ·-1 + Q.+1 ·-1 + Q. 1 . 1) 
1, J 1, J 1 ., J 1- , J+ 

where 

* Q .. = AF .. AuAv 
lJ lJ 

(36) 

is the starting value for Q. ·$' assuming the Q 1s at the six adjacent points 
lJ 

to be zero. 

The quantities a and b are carry.;.over factors on the finite--dif-

ference net in the horizontal and diagonal direction.,, respectively. They 

represent the influences of the Q values at the points i+ 1, j , i-1,. j , 

i,j+l, i,j-1, i+l,j--1 $' andi-1,j+l onthevalueatpointij. 
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5-2 The Three Point Basic Serie.s. Isolating a three point set with 

starting value A at point 5 (Fig. 79a) and applying algebraic carry.-.over 

to the computation of function coefficients,, each final re.sult is the .sum 

of an infinite geometric series. 

a 
_s=-------------=---=---=----- 9 

a -
Fig .. 79a 

Three Point Set - Basic Series 

A 5 

\ 
\ 

\ 
\ 

Removed 
\ 

8 \ 

Fig. 79b 

Reduced Point Set .... Basic Series 



From the figure it is evident that the flow of values takes place 

symmetrically with respect to point 5. The point set may therefore be 

reduced to that of Fig. 79b by introducing the modified carry-over 

factor 2b ind the over-relaxation factor ~ . The over-relaxation 

factor corresponds with the series forming between the symmetric 

points 8 and 9. 

Performing carry-over the results are 

2b2 )1 + (. 2b2 
( 1-a 1-a 

QB 5(B) b 
A Q 5(B) = = = 

( 1 - a)Xl02 9 

where 

x102 1 
2b2 

1 2bb' ::: - 1 - a = -

i2 + .. .J = 

bf 
A 

X'o2 

1 
XI" A 

02 

The quantity 

bl = 

may be considered a modified carry-over factor. 

From the diagrammatic representation of final values (Fig. 

80) it is evident that: 

(a) 

(b) 

The constant 1 is the over-relaxation factor for 
X'o2 

the basic series on the symmetrical three point set 

The final function value at the apex is equal to the 

starting value multiplied by the over-relaxation 

factor. 



(c) The final function value at each of the other points is 

equal to the final value at the apex multiplied by the 

modified carry-over factor b' . 

~ 
~ 

Fig. 80 

~ 
~ 

Final Results - Three Point Basic Series 
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5-3 The Hexagonal Circulatory Series. A six point closed ring of. 

hexagonal shape is considered (Fig. 81 ), and the function values are 

determined by algebraic carry-over • For a starting value A at point 

8., the carry-over procedure is Simplified by resolving the initial 

system into four basic cases (Fig. 82) and superimposing the results .• 

In this way each final value is found to be the algebraic sum of four 

simple geometric series. 

Case I: This system is symmetrical with respect to both the 

X-- and Y- axes., and can be reduced to the point set of Fig. 83 by us-

1 
ing modified carry-over factors. and the over-relaxation factor -r=-a· 

Performing algebraic carry ... over the results are. 

Q 8(S)I = 1 A 
8 (1- a)xt 02 4 

Q 8(S)I 2b A 
12 = (1 - a) X' 4 · 02 



8 a £) 

a 

~ ~ 
12 14 

b'\ :I 
18 .. a 19 

a 

Fig. 81 

Six Point Ring - Circulatory Series 

= + 

Initial System Case I 

Case III Case IV 

Fig. 82 

Case II 

A 
4 

Resolution of Circulatory System with Starting 
Value at Point 8 into Four Basic Cases 
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Modified Circulatory System 
Case I 
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Modified Circulatory System 
Case II 
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Case II. From the symmetry and antisymmetry of this. sys-

tern with respect to the X- and Y-axes, respectively (Fig. 82), a 

reduction to the modified point set of Fig. 84 is possible. The con­

stant ~a is the over-relaxation factor for the series forming be ... 

tween the antisymmetric points 8 and 9. 

The results of algebraic carry ... over are 

Q 8(S)II = 1 :\ 
8 (1 + a) xto2 4 

Q 8(S)TI _ 2b :\ 
12 - (l+a)X"02 T 

where 

xth2 = 1 -
2b2 
1 + a = 1 - 2bb'' 

Cas.e III~ This sys.tern can be reduced to the modified point 

set of Fig. 85. '.fhe final values are equal to the starting values mul­

l 
tiplied by the over-relaxation factor 1 ... a 

Q 88(S)III :: 1 :\ 
-r=-a 4 

Q 1~(S)III = 0 

+ Et--~\ 
;/fl Removed\\ 

/ 12 \ 
\ I 

\\ Removed Removed// 

\ I 
\ __ . ___ / 

):i'ig. 8 5 

Modified Circulatory System 
Case III 
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Case N. The reduction of this system is shown in Fig. 86. 

The final results are equal to the starting values multiplied by the over-

1 relaxation factor l+a 

Q 8.(S)N = 1 J\. 
8 1 + a T 

Q 8(S)N 
12 = 0 

Superimposing Cases I through N, it is seen that the circulatory 

series forming on the six point closed ring can be resolved into simple 

geometric series by the proper use of modified constants and over-

relaxation factors. 

~/~8 
4 ";):__Y----\ 
O /;J Removed\\ 
l;/o \ 

I 12 . '> 
\ I 

\ I 
\ Removed Removed/ 
\ I 

\ \..... ______ / 

Fig. 86 

Modified Circulatory System 
Case N 

5-4 The Internal Series. Using the algebraic carry-over method to 

determine the flow of function values on an eight point set symmetrical 

with respect to the Y-axis (Fig. 87), the final results are sums of 

infinite geometric s.eries all terms of which are infinite geometric series. 
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5 

a- a -

\t,\f, 
18 _a -a 

Fig. 87 

Eight Point Set """ Internal Series 

A starting value A at point 13, carried ... over to, the adjacent 

point:S 8., 9,, 12"' 14, 18 .. and 19, will return to 13 as well as begin to cir-

culate through the closed rings 8,. 9., 14,, 19., 18., 12 and 8.,, 9., 5. In order 

to properly separate the resulting series and obtain finite algebric .sums 

for the function coefficients .. it is again convenient to introduce the con-

cept of over-relaxation factors. The reduced point .set is shown in 

Fig. 88;, and the modification is accomplished as follows. 

The over-relaxation factor. for a symmetric series forming on 

the isolated three point set 8, 9,. 5 is X~ , from Art. 5-2. The over-
02 . 

relaxation factor for the symmetric series forming between points 8 

and 9 is 1 : a. Thus the over-relaxation factor for a value carried 
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1 
into point 8 from either point 12 or point 13 is (l _ a)X' , as 

02 
given in Fig. 88. 

Fig. 88 

Modified Point Set ... Internal Series 

1 The over-relaxation factor at point 18 is ~ corresponding 

to the two point- symmetric series forming between points 18 and 19. 

The modified carry ... over values into the central point 13 are 2a and 2b~ 

from th.e .symmetry with respect to the Y"-axis. 

Having these modified constants,. the algebraic carry-over is 

performed by alternately suppressing and releasing point 13. Carry-

ing,..over from that point to:the adjacent points 81c 12,. and 18,. then tern?'< 

porarily introducin~ a zero point at 13"' the results of the circulatory 

series can be determined. These, values are 



Q8 
13(S) 

!: 

Q 13(S) 
18 = 

where 

Y'o2 

a 
yt 

02 

1. 
A+ (yr-- ... 1) A 

02 

b 
(1- a:.)X' . · 02 

b 
A + 1 .... a 

= 1 -

A + (f.., a~X~ 02 

b 
1 ... a 

Q 13($) 
12 

(. 1 + 1 ) xr-02. 

125. 

Q 1~3(S) -: ; . {l + alb 
- (1- )X 1 Yf a 02 02 

(1 + a} b A ::i 
(1 ... a)Yl · 02 

Rele.asing point 13" the returned value is 

13(CO) 
Q13 

This quantity,, divided by the .starting value A:;, is the common ratio of 

the geometric carry ... over series formed by repeating the procedure 

A 

infinite times. Summing this series, which is called the internal series, 
\ 

the 'final function values are 

Q 13 1 
A 13 = "Za2 

Q 13 Bo2 
A = 

Zo2 18 

The new e~uivalents used above are 

A l+a - 1 
02. = y1 02 

Q 13 
12 

Q8 
13 

2b c 02 

Zo2 

Bo2. 

Ao2 
A = 

Zo2 

CO2 
A (37) = 

Zo2 

= (l+a)b 
(1 ... a) yt 02 



"' (1 + a )b 
(1- a)Xb2 Y'o2 

= 1 - c· 2(J + a)2 
Y'o2 
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• 2(1 + 2a)] . 

The.se constants are interpreted from the diagrammatic presentation 

of final results in Fig. 8 9. Thus 

~ 
~ 

@ 
c~ 

~02 

Fig. 89 

Final Results - Internal Series 
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(a) The constant 1 i:S: the over-relaxation factor for the 
Zo2 

internaJ, carry-over .series 

(b) The final function value at the central point 13 is equal 

to the starting value multiplied by the over-relaxation 

factor. 

(c) The final function value at any other point is equal to the 

final central value multiplied by the corre.sponding direct 

final carry--over factor A 02*B02, c 02, or D 02 .. 

5.,.5 The External Series. Considering a nine point triangu~ar set 

with starting value A at point 17 (Fig. 90).,. and applying algebraic 

carry-over to the computation of' function coefficients, each final value . . 

5 

a -

18 a 19- a 20 
a- a a -:-

Fig .. 90 

Nine Point Set - External Series 



is found to be the sum of two infinite geom·etric carry-over series, call­

ed the external serie.s. To. determine these series, the system is re'"' 

.solved into two basic cases, as shown in Fig. 91, and the results super-

imposed. 

= + 

A i\ 
2-----~--2 

Initial System Case I Ca.Se II 

Fig • .91 

Resolution of Triangular Circulatory System with Starting 
Value at Point 17 into Basic Cases 

Case I. This system~ symmetrical with respect to the Y-axis, 

can be reduced to the point set of Fig. 92a by introducing over-relaxa­

tion factors at points 8 and 18jc as explained in Art. 5-4. Carrying-

over from point 17 t then suppressing that point,. the results of series 

forming on the modified three point set 8 1 12, 18 can be determined: 

Q 17(S)I _ b A 
12 - (1-a)Y'02 2 

Q 17(S)l 
18 

a A b 2 ;\ 
= 1--a 2 + --. 2 2; 

(1 - a) Y•02 

Removing the zero point at 1 7, the returned value is 

A 
2 = 'Y1 • 

A 
2 



A 
2 

12 

a 17~---a 

/\ 
I \ 

I \ 
I \ 

!Removed\\ 
\ 

8 \ 
----\ 

. \ 
\ 

\ 
\ 

\ 
Removed ) 

I \ 
I ~,, 

I \ 
I \\ 

I \ 
18 I \ _____ L ______ 1 

Fig. 92a 

Modified Point Set ..: External Series 
Case I 

:L2~ 

The ratio of the returned value y 1 to the starting value ~ is the com­

mon ratio of the carry--over series developed by continuing this pro;.. 

cedure. This series is called the external circulatory series and has 

the sum 

where 

00 I 'Yn = ,, a + ,, 1 + ... 
0 

2 
a 

= 1 ... 1-a 2 (1..., a) y1 02 
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The final function values, Case I, are 

Q 17(E)I a 1 A 
ltl z11 2 

Q 17(E)I "" a 
18 (1 - a) z 11 

Q517(E)I 2b 3 A 
= (1- )2x1 yt z 2 

a 02 02 11 

Q 17(E)I b2 A 
8 = (1 . )2Xt Y' z 2 

- a 02 02 11 

Case rt. The modification of this system, antisymmetrical with 

respect to the Y•··axis, is shown in Fig. 92b.. The constant 1 ~ a is the 

over,..relaxation factor for the antisymmetric series which form.s between 

both points 8 and 9 and 18 and 19. 

A 
2 a-

5 

01;,1.~\ 

la\ 
\ 

8 \ 
----\ 

\ 
\ 

\ 
\ 

\ 
\ 

Removed I\ 
I \ 

I \ 
I '\ 

I \ 
18 I · \ -----'- - - - _\ 

Fig.:- 92b 

Modified Point Set - External Series 
Case II 
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Carryirig ... over from point 1 7 to,points 12 and 18~ then introduc-

ing a zero at point 17~ the three point set 8,, 12,, 18 is isolated. Per ... 

forming algebraic c,arry-over on this reduced circulatory system,, which 

is a modification of Case II of the hexagonal circulatory series,, the 

results are 

Q l 7(S)II 
12 = 

Q 1'7(S)II 1tt 

18 

(1 + 2a)b t\. 
(1 + a)X'b2 2 

.· Q 8 17(S)II 

a 
l+a "- + 2 

2 (1 + 2a)b t\. 
2 T 

(1 + a) xo02 

Releasing point 1 7"' the returned value is 

17(CO) 
Q17 = 

a2 
1+ a 

2 _ (1 + 2a)b 

(1 + a)2xn · 02 

Repeating this operation infinite times,, the carry-over series 6 is 

formed having the geometric ratio 

·:The algeb!'.'.ai;c .s.um of this carry-over series is . 

where 

00 

I 6~ = 6 o + 61 + 
0 

1 t\. = Z12 2 

The final values for function coefficients~. Case IL are thus 

Q 17(E)II ,,. p + 2a)b "-
12 - - - T 

(1 + a)Xtb2 z 12 

Q 1 7 (E )II = { 1 + 2a) b 2 

8 (1 + a)2xn Z 02 12 

"-
2 

"-
2 



Q 17(E )II 
18 

= a A + (1 + 2a) b 2 J:_ 
(1 + a) Z12 2 (1 + a)2 xno2Z12 .2 

Q 17(E)II 
17 ::: 

1 A 
2 
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The final function values on the nine point triangular set (Fig* 90), 

due to a starting value A at point 17 ~ are obtained by superimposing the 

results from Cases I and II. 

5-6 The Second Order Carry-Over Series. If now the carry-over pro'"' 

cedure is: applied to the analysis of a two dimensional twenty..,eight point 

1 

Fig. 93 

TwentY'.:" Eight Point Triangular Set 
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triangular set (Fig. 93 h each final result is found to be the finite alge-

braic sum of an infinite geometric series of carry-over series. This 

new series"' which interrelates the internal and the external series 

(ArHs. 5--4,, 5 ).,. is c.alled the second order carry;..over series. 

It is evident from Fig. 93 that a starting value A carried'""over 

from point 13 to the adjacent points 8"' 9"' 12, 14, 18,:and -19:willreturn t613 

as well as circulate in complex hexagonal and triangular patterns 

around point 13. The method of solution is again one of introducing· 

suppressed points and utilizing the analyses of isolated systems which 

have already been achieved. 

Thust the internal series forming on the eight point set 5, 8"' 9" 

12, 13:t' 14~ 18~ and 19 can be isolated (Fig .. 94a) by introducing zeros 

at the corner points 17 and 20. The function coefficients corresponding 

to the internal series are (Art. 5 ... 4,. Eqrs. 37) : 

Q 13(!) 1 
A Q 13(I) A02 

A Q 13(!) :::: 

Zo2 
= 

Zo2 
:::: 

13 12 14 

Q 13(!) B02. 
A Q 13(I) 

Q8 
13(1) CO2 

A Q9 
13(!) 

::t 

Zo2 
,::; ::t 

Zo2 
:::: 

18 19 

Q5 13(l} D02 
A =I" 

Zo2 

Removing the zeros at the corners and simultaneously suppressing the 

central point 13,, a nine point triangular ring is isolated (Fig. 94 b) 

with the carried-over value 

at points 17 and 20. This isolated system is identical with Case I of the 

external series (Art. 5-5 ). The function values are 



Q' 

5 

12 - a 14 

a 

Fig. 94a 

Isolated Eight Point Set - Internal Series 
\ 

5 

' b' ~~ 
17 - a 18 - a 19 a 2 

a a -a 

Fig. 94b 

Isolated Nine Point Ring - External Serie.s 

134 

Q' 



Q 13(E) 
17 · 

. 13(E) 
Q20 

Q 13(E) = 
12 

Q 13(E) = 1 . b 2 a = Q 13(E) 
8 (1 - a)2x:r Y' Z o 9 . 

· 02 02 11 

Q5 13(E) = 2b3 
-{l~.~)-2~1~y-,~-z~- ao 
. - a X 02 02 11 

Q 13(E) "" 
18 

a 
(1 ·""' a) z 11 

l35 

b a = Q 13(E) 
(1 - a}'Y02z 11 0 14 

,.,, , "" Q 13(E) 
'""O 19 

The first cycle of carry-over is completed by releasing point 

13 and finding the returned value: 

Q 13(CO) "" 2b I} +a ~ 
13 ..,..(1,.....--a~) =z~1-1 L Y'o2-:- (1 ... a~ ao 

{31 

The common ratio of the second order carry-over series interrelating 

the internal and the external :series is therefore 

Repeating this procedure infinite times,, the carried..,over values 

a and /3. form the infinite series of carry-over whose sums are 

+ + b [}:: (1 ~ a)] A !·a .,c ab al ,,.., ·~ . = (l"" a) z 02 u 1 
-n 

0 

z~n f3o + /31 + 
1 

A = .... "" ~ 
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where 

Sup-erimposing the a and [3 :s.erie~" the final values for function o<;>ef;... 

ficients on the twenty-eight point triangular set become 

Q 13 
17 t:l 

Q 13 
12 

00 

;ll I 
0 

13 1 
Q13 ::;: 

Zo2 

E 
1 A :::, Q 13 vi- 20 

Dl 
A 

~ 

C 
V~ A t:i Q~3 

(38) 

- Al A =Q· 1143 
[3n ~ 

The new e;quivalents. used in these equations are: 

" B 02 + 1: a [a + ( 1 ~ ~ ;Yb2] E 1 

•. 2b3 

(.1 ... a)2Xif y1 02 02 



b 
El= (l"'"a)Z . 11 

I} 1a - (1 .. a0 Ly 02 J 
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A diagrammatic representation of the final results is given in 

Fig. 95. The constant + is the over-relaxation factor for the sec-
v 1 . 

ond order carry-over series. The constants ApB 1~ CPDF and E 1 

are the direct final carry-over factors. 

~ 
~ 

Fig. 95 

Final Results .. Second Order Carry-Over Series 

5-7 Resolution.,, Superposition,,. and Involution.. The analysis of the 

twenty-eight point set (Fig. 93) for a starting value :>t at any other point 

can be accomplished by using the principles of resolution,, superposition, 

and involution previously discussed (A;ct. 2--5). 
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For a starting value at point 1 7 the resolution is made as 

shown in Fig. 96. Case I is. solved by superimposing the external .serie.s 

(Art. 5-5) and the second order carry-over series (Art. 5-6).Case II, 

from antisymmetry:J, reduces to the corresponding case of the external 

serie.s (Fig. 91.,, Case II) .. as there is no carry-over into the central 

point 13. 

= 

Initial System 

A 
2 

Case I Case II 

Fig. 96 

Resolution of Twenty-Eight Point Triangular Set with 
Starting Value A at Point 17 into Basic Case.s · 

Case I. Temporarily .suppre.ssing the central point 13.,, a 

nine point triangular ring is isolated (Fig. 97) which is identical with 

Ca.se I of the external series (Art. 5-5 ). The re.sults are 

A 
2 

Q 1 7 (E )I = _1 _ A = Q 1 7 (E )I 
17 z11 2 20 

Q 1 7 (E )I b A _ Q 1 7 (E )I 
12 "" (1- a)Yb2z 11 2 - 14 

0 b 2 A = Q 1 7 (E )I 

(1-a)2xt; yt' z.T 9 
, · 02 02-:-.u 

Q 1 7 (E )I _ 1 · '8_ + . b 2 J A = 
18 - ( 1 ... a) Z 11 L ( 1 - a )YT O 2 2 

Q 17(E.)I 
19 
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5 

8 - a 

a -
\ I 

1 \ I 

\ \ I 

\ I 
\ I 

12 \ I 14 ---. ---1.--------
I \ 

1 \ I \ 

1 \ I \ 

I 
\ 

\ 
I \ 

I \ 
A 17 _a 18 _a 19 __ a_ 20 A 

2 a a a- 2 

I 

\, 
Fig. 97 

Isolated Triangular Ring - Case I 

Releasing point 13,., the carried .... over value 

becomes a new starting value which forms the central second order 

carry .... over .series (Art. 5""6). From Eqfs. (38),, the results due to 

this starting value are 



Q 17(C)I 
17 

Q5 
17(C)I 

Q8 
17(C)I 

Q 17(C)I 
18 

Q 17(C)I 
12 

= 

= 

= 

"" 

DlEl 

v1 

ClEl 

Vl 

B1E1 

v1 

A1E1 

v1 

Q 1 7 (C )I 1::: E 1 i\. 
13 ~ 

= 

i\_ 

i\_ = 

i\_ = 

i\_ = 

Q 17(G)I 
20 

Q9 
17(C)I 

Q 17(C)I 
19 

Q 17(C)I 
14 
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The final results,, starting value i\. at point 7,. are obtained by super'"" 

imposing these values with those of the external series . 

. Considering now a starting value i\. at point 12,. the system is 

resolved into two basic cases as shown in Fig. 98 and the results 

superimposed. 

= 

Initial System Case IA Case !IA 

Fig. 98 

Resolution of Twenty'-Eight Point Triangular Set with 
Starting Value A at :Point 12 into Basic Cases 

i\_ 

2 
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. Case lA. This system is a modified form of Case I. Intro--

ducing over-relaxation factors and suppresEJing points 1.3, 17"" and 20, 

the three point s.et (8., 12~ 18) of Fig. 99 is isolated. The results of :. 

algebraic carry-over a.re 

Q 12.(S)l 1 i\. 
Q8 

12(S)I b 
,::: vr-- = (l - a)XT02 yJ02 12 y 02 2 

12(S)I b i\. 
Q5 

12(S)l 2b2 
Ql8 = (1 - a)Y' 02 2 = (1 - a)Xt02 yr02 

I\ 
I \ 

I \ 
I \ 

/ Removed\ 
\ 

1 \ _8_ ____ \ 

(l-a)Xb2 / \ 

b~ // \\ 

lfb \ II \\ 
\ I \ 

i\. 12 _____ *13 Removed ~ 

2/ /\ I\ 

I \ I \ I \ 
\ I \ l b' I\ I\ 

I II \ I \ 

fi7__ ___ 0_l_8 ___ ~~/~-----\i 

Fig. 99 

, Isolated Three Point Set 
Ca:se IA 

i\. 
2 

i\. 
2 



Releasing points 13, 17, and 20, the carried-over values are 

Q 12(CO) 
13 

Q 12(CO) 
17 = 

2 ( 1 + a 
Y 102 

- 1 ) 

b A 
(1 - a)Y'02 2 

A 
2 

= Q 12(CO) 
20 
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The value at point 13 forms the second order carry-over series (Art. 

5-6 ). The values at points 1 7 and 2 0 form series corresponding to 

Case 1 (starting value A at point 1 7 ). Thus the function value at any 

point ij due to these involuted starting values is 

Q .. 
lJ 

= _ l ) Q .. 13 + b Q. _ 1 7 (I) 
lJ (1 ... a)Y02 lJ 

The superposition of values obtained from this equation with results of 

the isolated circulatory series above (Fig. 99) yields final values of 

function coefficients~ Case IA. 

Case IIA. From the antisymmetry of this. system (Fig. 98 ), a 

modification of Case II; there is no carry ... over into the central point 13. 

Introducing zero points at 1 7 and 2 0 and over-relaxation factors at 8 and 

181 the three point set of Fig. 100 is isolated. Performing carry-over the 

results are 

Q 12(S)II _ 1 A 
12 - xn 2 

02 
Q/2(S)Il = (l + ~)X'o2 ~ = Q 1~2(S)II 

Removing the zeros at points 1 7 and 2 O,, the carried-over values 

Q 12(CO) = (1 + 2a~ b 
17 (l+a)x, 02 

A 
2 

Q 12(CO) 
20 
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become involuted starting values. and form .series corresponding to 

Gase I! of the external series. The function coefficient at any point ij 

due to these starting values is 

Q ,: . (1 + 2a~b Q 17(II) 
ij (1 + a)X 102 ij 

I 

A 
2 

I 
I 

I 

12 

LD __ _ 

5 

" I \ t \ il0 \\ 

8 \ ------\ 
\ 

\ 
\ 
\ 

\ 
\ 

Removed /\ 

I \ 
I \ 

I \ 
I \ 

1s ___ L ____ \~ 

Fig. 100 

Isolated Three Point Set - Gase ITA 

The final resu).ts, Gase IIA, are thus 

Q 12(IIA) == 
12 

1 A 
xn 2 + 

02 

(1 + 2a)b Q 17(II) = _ Q 12(IIA) 
(1 + a)Xt 02 12 14 

Q 12(IIA) "' b A + (1 + 2a)b Q 17 (II) "' _ Qg 12(IIA) 
s (1 + .a)x0r2 2 (1 + a)x·g2 s . 
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Q 12(IIA) b A + (1 + 2a)b Q 17(Il) 
18 ::r (1 + a)xr02 2 (1 + a)xr02 18 

= - Q 12(Il.A..) 
19 

Q 12(IIA) il + 2a}b 
17 "' ( + a)X'b2 

Q 12(TIA) 
13 = 

Q 17(U) 
17 

0 

... Q 12(IIA) 
20 

Final function values on the twenty-eight point set* starting 

value A at 12" are obtained by superimposing the results of Cases IA 

and !IA. 

= + 

Initial System Case IB Case IIB 

Fig. 101 

Resolution of Twenty- Eight Point Triangular Set with 
Starting Value A at Point 8 into Basic Cases' 

A 
2 

If now a starting value at point 8 is considered" a solution can 

be achieved by resolution (Fig. 101) followed by direct involution .. 

Case IB. This system is a modification of Cas.e I. Introducing 

over-relaxation factors and modified carry-over factors as shown in 

Fig. 102::;c it is necessary to consider only those involuted starting val­

ues induced by the value ~ at point 8. The over-relaxation factor .~. 
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eliminates carry .... over into points 5 and 9.,, and the values carried into 

points. 12 and 13 develop series previously defined and determined .. 

b 

A 
2 

Fig. 1.02 

. lnvo!uted Starting Values ... Case IB 

Superimposing these .series and the: ove.r""'relaxed starting val­

ues, the re:sults are: 

Q58(IB) = 2b A + b Q513 + b Q512(IA) 
(1 - a)x02 2 (1 - a)Xb2 (1 - a)Xb2 

A + b Q 13 + . b Q 12(IA) 
2 (1 ... afXb2 8 (1 - a)Xb2 8 
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and for any other point ij 

Q .. 8(IB) b Q. ~3 + b Q. ~2(IA) 
lJ = (1 ... a)Xl02 lJ (1 - a)X•02 lJ 

Case I(B. The modification of this: system is shown in Fig. 103. 

The value at 8 carries-over to point 12:;- introducing an involuted start-

ing value at that point which develops: the s.eries of Case nA. From 

superposition the final values are 

Q . 8{IIB) = -2:_ A + _E_ Q 12(nA) = -Q· 8(IIB) 
8 .·. l+a 2 · l+a 8 · 9 

and for any other point 

8(IIB) b Q. _12(IIA) 
Qij . 0 1 +. a lJ 

b A 
l+a 2 

17 

A 
2 

5 

" la~ \ 
\ 
\ 
\ 

1 8 \ 
l+a 7\ 

I \ 
b /; \\ I \ 
I/ O \\ I· \ 
12 \ {3 \ 

- - - - ~ - Removed-\ 
I \ I \ 

I \ I \ 
I \ I \ 

\ I \ 
_l!L _ _ \L __ - - ~ 

Fig .. 103 

Involuted Starting Values .., Case IIB 



Final results., starting value "A. at point, 8, are obtained by superimpos-

ing Cases IB and IIB. 

For a starting value at some otherpoint of the finite-difference 

net .. the function values can be determined by resolution and involution 

in a similar manner. 

5--8 The Laplace Equation. In triangular coordinates the Laplace 

equation has the form 

(39) 

with Q equal to a given function G(u,.v; w) on the boundary (38). 

For a symmetrical · network (/3 = 1r - a)., the corresponding 

finite-difference equation written for an interior point ij is (Fig. 78) 

Q .. 
lJ 

a(Q·+1 · + Q .... 1 .) 
1 , J 1 J] 

b( Q. ·+1 + Q. ·-1 + Q.+1 ·-1 + Q._1 ·+1 
lj. J l;; J 1 , J 1 .., J 

(40) 

At a boundary point kl., the function Q takes on the value of the given 

function G: 

(41) 

The boundary values are the starting values,. and carry-over 

proceeds from the boundary into the interior of the net..,. as previously 

discussed in Art. 2-6. The finite-difference solution is again obtained 

from related solutions. of the Poisson equation. 

The interrelationship is. established by considering the finite-

difference equation written for a point ij adjacent to the boundary. 



From Fig. 104 this equation is 

Q .. :: 
lJ 

a(Q·+1 . ) 
1 .d 

Boundary 

+ 

a G. 1 . 
1- ~ J 

b G. 1 ·+1 
l"" "'J 

u 
19-''--'-........ ~~~----=.,..~~~~---=-i+l~.J~·~~---1 ...... 

Fig. 104 

Finite Difference Net Adjacent to the Boundary 

Comparing this equation with the Poisson equation in finite-difference 

form (Eq. 35);, it iS: evident ti;Lat the sum of the carried-over values 

above ( a G. 1i ·J. + b G. 1 '+l) corresponds with the value Q.:I'. This· 
1- ", . 1,- ,,,J . lJ 

sum may thus be considered a new starting value at point ij and alge ... 

braic carl"y-over performed as before. 

Firial res:ult.s: for :function coeiflcients: due to a starting value A 

at a boundary point of the triangular network .are therefore equal to the 

sum of final re.suits. due to starting value.s A at the adjacent interior 

points~ multiplied by the corresponding c:ar:ty-ov.:er.:iaators. · '' I·, 
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ANALYSIS OF ALGEBRAIC CARRY-OVER 

6-1 Philosophy. The solution of simultaneous linear difference equa­

tions by the algebraic carry-over method is presented in this disser­

tation. From the literature survey it is concluded that algebraic 

carry-over is the only known approach to the problem which yields 

exact final values obtained by summing infinite geometric series. 

The basic philosophy behind algebraic carry-over is the con­

cept that certain types of matrices lend themselves to a solution by 

the series approach .. These matrices need not be limited to finite­

difference approximations of continuous systems, as considered here, 

but may represent the true sets of equations defining finite systems 

(eg. continuous beam.s or frames). 

The method of procedure derives from a visualization of the 

problem on the finite network which serves a.s a model for the phy­

sical ,si,tuation, as demonstrated in Chapters II through V, and the 

actual matrix is not directly investigated. It is nevertheless true 

that, as the carry-over proceeds, the matrix is divided into sub­

matrices (corresponding to isolated point sets), and the submatrices 

are then interrelated (corresponding to carry-over series). 

The steps of this procedure are: 

(a) Selection of the point sets which can be isolated and 

solved by geometric series. 

149 
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(b) Determination of the method of interrelating these 

isolated systems so as to again form geometric series.,, 

thus achieving the final solution of the problem. 

6-2 Principles. The two fundamental principles of the algebraic 

carry-over method are the principle of the isolated system and the 

principle of interrelated systems. 

L The Principle of the Isolated System: 

A portion of the network can be isolated and analyzed 

independently by surrounding it with suppressed points 

(points for which the function values are t~mporarily 

taken to be zero). 

IL The Principle of Interrelated Systems: 

Two or more isolated systems can be interrelated and 

analyzed by determining the carry-over values flowing 

between them. 

These principles correspond with steps (a) and (b) above (Art. 6-1 ). 

The second principle,. concerned with a final interrelation of portions 

of the network; may be conside.red·.tne .. inv.-ers·e of the fi:est principle" 

which pertains to the initial isolation of these systems. Taken to­

gether, Principles I and II formulate the basic procedure of the al­

gebraic carry-over method as presented in this dis.sertation. 

There are in addition a number of other principles which fa­

cilitate the application of carry-over to the solution of finite-difference 

problems. The first of these are two broad and well known principles 

applicable to all linear systems: resolution and superposition. As 

used here these principles may be stated as follows. 



(a) Resolution: The analysis of a geometrically arranged 

finite network with unsymmetrical starting values can 
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be simplified by resolving the system into basic cases 

which take advantage of various combinations of symmetry 

and antisymmetry. 

(b) Superposition: Final results for function values on the 

network due to the initial system of starting values are 

equal to .the algebraic sums of the results corresponding 

to each of the resolved systems. 

The second set of principles, corollaries of Principles I and II, 

are concerned with elimination of certain portions of the network from 

consideration in the carry-over procedure. The fir.st of these, the 

concept of reduction, pertains to elimination by geometry, the second, 

that of over-relaxation, to elimination by removal. 

(c) Reduction: Any finite network containing two symmetrical 

systems A, A 1, or two antisymmetrical systems A, A", 

can be reduced to a mo.dification of the single system A 

by incorporating properly modified carry-over factors. 

(d) Over-relaxation: A portion of the network can be removed 

from the carry-over procedure by introducing the corre­

sponding over-relaxation factor at the point connecting 

the removed system with the remainder of the network. 

The final principle is that of involution, which enables the so­

lution of one problem to be obtained from the solution of others. 

(e) Involution: The function values on a finite network due to 

a starting value ;.\ at some point kl are equal to the alge­

braic sums of the function values due to starting values 
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A at points adjacent to kl multiplied by the corresponding 

carry-over factor$. 

6-3 Conclusions. The system of finite-difference equations :correspond­

ing to either the Poisson or the Laplace equation in rectangular,,, skew,. 

polar, or triangular coordinates can be solved by summing infinite geo­

metric .series. Each final result is the algebraic sum of one or more 

infinite series whose terms are in themselves infinite series. The so­

lution of Poisson's equation for a starting value at any point is achieved 

by resolving the corresponding network into simpler systems and super­

imposing the final results. Resolution is performed in such a way as to 

reduce each system to one solvable by interrelating its isolated parts. 

The solution of Laplace's equation for a prescribed boundary valµe is 

achieved by involving solutions of Poissonls equation through the method 

of carrying-over from the boundary. 

Three classes of series are defined and used in the solutions: 

the basic series, the circulatory series# and the carry-over series. 

The basic and the circulatory series correspond with solutions of iso~ 

lated point .sets;, step one of the carry-over procedure (Art. 6-1 ). The 

basic series is a .simple geometric series forming on an internal set of 

points; the circulatory series is the sum of several series. forming on 

one or more external closed rings. The carry-over series interrelates 

these two,. and thereby corresponds with step two of the carry-over 

procedure (Art. 6-1). The internal and the external series,. special 

higher order forms of the basic and circulatory series;, are obtained 

in certain cases. All final values are expressed in terms of these 

various .series. 
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. 6-4 Extensions and Applications. Having established the fact that 

solutions of finite-difference equations are obtainable and feasible by 

the algebraic carry-over method,. the possible uses of these solutions 

can now be considered. Three important applications are immediately 

evident: 

(a) The numerical error inherent in an approximate numeri-

cal solution of a finite-difference net is not present in an 

algebraic carry--over solution. Thus whenever an "exact" 

classical solution of the original differential equation is 
'i.·, .. , 

available for some special conditions,. the true error in-

valved in using networks of varying degrees of fineness 

can be determined. In this way, conclusions may be 

reached pertaining to the minimum number of points 

which should be considered in a given problem in order 

not to exceed the allowable range of error. 

(b) In many cases, networks solvable by algebraic carry-

over will yield solutions sufficiently accurate (in terms 

of the "exact" solution) that they can be evaluated for 

various values of the parameters involved ( eg. length­

width ratio and load position for rectangular plates) and 

useful tables prepared. 

(c) Whenever function values on finer networks are required 

but complete solutions by algebraic carry-over are not 

available or feasible" the existing algebraic results can 

be used as an excellent set of initial approximations at 

the network points,. and a rapidly convergent numerical 

iteration or relaxation procedure can be carried out. 
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These important applications are direct extensions of this dissertation 

and should be more ftilly investigated by research workers in the near 

future. The ideas presented in points (a) and (b) have already been 

adapted to the special problem of simply-supported rectangular :plates.(42) 

A modification of point (c) was used by French (15) in applying a numeri":' :. 

cal carry-over procedure and incorporating over-relaxation factors and 

direct carry-over factor.s for basic point sets within the finite-difference 

network. 

Finally, the results obtained in this dissertation suggest an even 

more important extension of the. work that has been done: the concept 

that summing infinite geometric series may actually be the most natural 

approach to the .solution of many classes of matrix equations. Selecting 

the network to fit a given system of equations and then visualizing the 

series which form on that network could well be the true physical-mathe­

matical interpretation of this problem. 

As only those types of matrices formed by five, seven, and nine 

term difference equations are considered her~ .i it can not be concluded 
I 

that the extension of algebraic carry-over to a general matrix would 

prove feasible. However, the relative simplicity with which solutions 

have been obtained and presented for the systems of equation investi­

gated indicates the desirability of pursuing re.search along these lines. 

It might ultimately prove possible to classify matrices into basic types 

and demonstrate directly on each matrix the methods of isolation and 

interrelation which have been presented on the network. 
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