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PREFACE

The analysis of the general second order problem defined by
the Liaplace or the Poisson equation, by means of summing infinite geo~
metric series, is presented in this dissertation. The corresponding
finite~difference equations are.formuldted in four different coordinate
systems: rectangular, skew,, polar, and triangular. For each network,
it is proved that these equations can be solved in algebraic form by a
carry-over procedure which yields a finite value for the unknown func-
tion at each point of the net. Each algebraic value is the sum of one or
more infinite series each term of which is an infinite series.

This research has grown out of lectures given by Professor
Jan Tuma in December, 1956, on the method of numerical carry-over
in plate structures, and from initial investigations into an algebraic
approach made by him during the summer and fall of 1956, The idea
of solving finite-difference networks by summing infinite series was
originated by Professor Tuma as a result of his four years'prior re-
search in solving the analogical problem of continuous frames. In a
letter to Dr. Clark A. Dunn, Director of the Division of Engineering
Research, in January, 1957, he formally acknowledged the possibility
and desirability of extending the general philosophy of geometric series
to problems in continuous elastic systems. The following areas were

indicated:
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1. Calculation of critical loads for columns of con-

stant and variable cross-sections.

2. Calculation of critical loads for beam-columns

of constant and variable cross-sections

3. Analysis of beams on elastic foundations

4. Analysis of torvsi‘on of simple and continuous

beams of variable cross-sections

5. Analysis of plates and grids

6. Analysis of shells and space lattices.

It was immediately evident that an even more widespread use
of the infinite series approach was possible due to the extensive class
of engineering problems having similar mathematical representations.

The decision to formulate the general problems of the Poisson
and Laplace equations in algebraic difference form and to extend the
original investigations of Professor Tuma in 1956 to various coordi-
nate systems was made by the writer in the summer of 1958. The
solutions to the skew, polar, and triangular systems investigated were
obtained during the fall of 1958 and the early months of 1959,

| - A special application of the basic research in carry-over that
Professor Tuma has conducted for the past three years and in which
the writer has assisted since 1957 was a project with the McDonnell
Aircraft Corporation in the analysis of simply supported rectangular
plates. This project was begun in September, 1957, and the final re-
port, by Professors Tuma and French and the writer, was completed
i November, 1958. Volume I of this report illustrates certain of the
basic concepts of algebraic carry-over, and demonstrates the algebraic

solution of the basic plate equation in finite-difference form (25).
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CHAPTER I

INTRODUCTION

1-1 Historical Study. The method of finite differences has been in use

for more than fifty years in the solution of the differential equations of
engineering physics. KEquations of finite differences were originally
introduced by Brook Taylor (1) in the eighteenth century. The first ap-
plication of these equations to elasticity was made by Runge (2) in solv-
ing torsional problems in beams (1908). An approximate solution of the
finite difference equations was obtained by Richardson (3) {n 1910 using
a numerical iteration process. A more rapidly convergent iteration
procedure was given in 1918 by Liebmann.(4).

Marcus (5) made an extensive application of finite-differences
to the analysis of thin plates, and introduced the membrane analogy for
the platé by replacing the fourth order partial differential (biharmonic)
equation by two second order (harmonic) equations. The work of Mafcus
was publicized in the United States in two papers by Wise. (6, 7) . Hencky
(8) applied the method of finite-differences to the large deflection theory
of plates.

The convergency and rate of convergency of the Liebmann
iteration process were discussed by Wolf (9) and Courant (10). Shortley
and Weller (11) developed a highly mathematical improved rate of con-
Vergéhcy involving the error function. Frankel (12) déveloped an

"extrapolated Liebmann method" and discussed the improved rate of



convergency over the Liebmann and Richardson procedures. Young(13)
generalized Frankel's method to a ""succegsive over relaxation method'
applicable to the general linear, elliptic partial differential equation.
Frocht (14) used block iteration of certain ''key values' on the finite
difference net. French (15) improved the convergency by solving a
simple geometric series at each cycle of the iteration.

The relaxation procedure for the solution of finite difference
equations was developed by Sir Richard Southwell (16) during the period
1935-40. This procedure was applied to torsion problems by Southwell
and Christopherson (17) and to the analysis of extension and flexure of
thin plates by Southwell and Fox (18), and Southwell (19, 20). Temple (21)
gave an analytical proof of the convergence of the relaxation method,
using the principle of minimum energy, and extended the general ap-
proach to include all linear systems by his "method of steepest descents'.
The use of hiéher order difference equations and a coarser net was pro-
posed by Fox (22) and discussed by Southwell (23) and Christopherson (24).

The method of solving finite difference equations by summing
infinite, geometric series was developed by Tuma, Havner, and French
(25). This philosophy had its beginning in 1932 with the solution of beam
and frame problems by Cross (26, 27), who conceived the basic series,
and is founded upon the concepts of carry-over and circulatory series
developed by Tuma (28) in 1950. The algebraic series were applied to
the analysis of continuous beams by Tuma and Anderson (29), to con-
tinuous frames by Tuma (30) and Tuma, Havner, and Hedges (31), and
to grid systems by Cellis (32). A simpler procedure of algebraic carry-
over for beams was developed by Tuma (33). Methods of using combined
algebraic and numerical relaxation procedures were investigated by

Yoshimura (34), Yoshimura and Marakami (35), and Pauw (36, 37) .



1-2 The Equations of Poisson and Laplace. A number of important

problems of engineering physics have their mathematical formulation
in either Poisson's or Laplace's equation. Considering a domain D

bounded by a closed curve S (Fig. 1), the Poisson equation hag the form

v'Q = -F » (1)

where F is a given function in the domain and Q is zero on the boundary.
Examples of this equation include the bending of simply supported plates
under lateral loads, the deflection of a uniformly stretched membrane,

and the torsion of non-circular sections.

Boundary S

Solution domain D

Fig. 1

Domain of Definition for
Laplace'’s or Poisson's Equation

The Laplace equation over the domain D is

v?Q = 0 (2)
with Q equal to a given function G on the boundary. Temperature distri-
bution in the steady state, the bending of simply supported plates under
moments distributed aiohg the edges, and the plane stress problem are

examples of Laplace's equation.



1-3 Finite Differences and Algebraic Carry-Over. The solution of

either the Poisson or the Laplace equation by the méthod- of finite dif-
ferences has the advantage of mathematical simplicity in that the
partial differential equation considered ig replaced by a system of lin-
ear algebraic equations. The method has the fundamental disadvantage
of becoming rather cumbersome when a large number of unknowns are
involved. In addition, two approximations are introduced in applying
the method of finite differences. The first approximation is that of the
net itself; the second occurs in solving the 1ineaf difference equations
by the numerical method chosen: either an iteration or a relaxation
technique.

To eliminate this second approximation and achieve a feasible solu-
tion for the finite difference equations in general algebraic form, an
entirely different approach is necessary. Visualizing the problem of
solving the "nétwork as one of determining the flow of function values
from a specified starting point as that point begins to affect those sur-
rounding it, the idea of the algebraic carry-over of these values may
immediately be conceived.

Performing this carry-over procedure simultaneously over the
entire network, poWer series are formed whose sums cannot be de-
termined, and no insight into the functional mechanics of the process
is possible. 1If, however, the network is properly divided into com-
ponent parts, it is found that the solution of each isolated point set is
achieved by summing simple geometric series. Interrelating these
isolated parts by a gradual relaxing back and forth between them, the
higher order geometric series of carry-over are formed, and the

final solution of the network is accomplished.



The principles of é.l'gebraic carry-over, and their application
to the solution of Poisson's equation, were demonstrated for rectang-
ular coordinate systems in reference 25, and are restated here
(Chapter II) in order to form a basis for later comparisons. The ex-
tension of these principles to the algebraic solution of the Poisson and
Laplace equations in skew, polar, and triangular coordinate systems
is the purpose of this dissertation. Only simple geometric shapes are
considered, and the solutions are accomplished by means of infinite,
convergent, geometric series. A starting value for the function Q in
the domain leads to the solution of Poisson's equation, a starting value

for Q on the boundary to the solution of Laplace's equation.



CHAPTER II

RECTANGULAR SYSTEMS

2-1 Linear Finite - Difference Equations. In rectangular coordinates

the Poisson equation has the form (38)

2 2
g LE - -EEy) (3)
ox oy

The corresponding finite difference equation written for point ij of the

finite difference net is (Fig. 2) (38)

Uory U T Ruary o Qg1 TRy e .
Ax* Ay> i
%Y
i-J,+1 i,j+1 i+1,j+1
Ay
i-1,] 1j it+l, ] X,
Ay
i=1,4-1 i,i-1 i+1,3-1
- OX . Ax .
Fig. 2

Finite Difference Net in Rectangular Coordinates



Introducing the notation

2
1 t
a = b =
2(1 + t2) ' 2(1 + t2)
(4)
S S g o= X
21+t Ay

this equation may be written

( \
aQ1, 5 T Qsr, )
| %k
PQ 5.1 T Q441)
\. J
where
*
Q; = AF; AxAy (6)

is the starting value for Qij" assuming the Q's at the four adjacent
points to be zero,

It is evident from Eq. (5) that a and b are carry-over factors on
the finite difference net in the X- and Y- directions, respectively. These
carry-over factors representthe influences of the Q values at the

adjacent points i-1,j, i+1,j, i,j-1, and i, j+1 on the value at point ij.

2-2 The Basic Series. The analysis of a two dimensional, linear,

nine point set (Fig. 3) by algebraic carry-over yields final results for
function valueg which are equal to the algébraic sums of infinite geo-
metric series.

Congidering a starting value X at point 13, it is apparent from

the figure that a value carried from that point to any one of the adjacent



points (8, 12, 14, 18) will return to 13 multiplied by the square of the

corresponding carry-over factor.

A simple geometric series is thus

developed which is called the basic series. The results of algebraic

carry-over on this point set are:

where

13

22

(B)

(B)

3
o“'o
8
bJ b
11 40 12 «a ''13.8 14 =0 15
0 a a 0
b |||b
18
o”o
J23
Fig. 3

Nine Point Set -

Basic Series

X [1:1 b @a%+ 20%) + (222 + %)% 4 ]

1
= 2
| Xa9

b 13(B)
= A = Q

a 13(B)

= )L = Q

X5 14
= 1 - 222 - gp2



A diagrammatic representation of the final values is shown in
Fig. 4. From these results it is evident that:

(a) The constant is the over-relaxation factor for

1
X22
the basic series
(b) The final function value at the center is equal to the
starting value multiplied by the over-relaxation factor
(c) The final function value at any other point is equal to

the final central value multiplied by the corresponding

carry-over factor.

Fig. 4
Final Results - Bagic Series

For a starting value A at any other point the function coef-
ficients may be obtained by the method of involution:
(a) The starting value is carried-over to the central point

13, multiplied by the corresponding cérry—over factor



12 13 14

®-

bx

18
Fig. 5a
Involuted Starting Value at Point 13

A+
Tb
a a

Fig. 5b
Final Results - Starting Value at 8

10



11

(b) The caT.rried—over"value becomes a new starting value,
forming the basic series |
(c) The final results are obtained by superimposing the
initial starting value upon the results of the basic
series, using the over-relaxation factor and direct
carry~over.
Thus for a starting value at point 8 the involution and the final results

are as shown in Fig.'s 5a, 5b.

2-3 The Circulatory Series. Considering an eight point closed ring

(Fig. 6) and applying the algebraic carry-over method to the compu-
tation of function coefficients, each final value may be represented as

the sum of four infinite geometric series.

I s S N e s— 9
—_‘—‘—a—_” T T A e
b b b b
12 ¢ y 14
b b b b
17 & _184 a 19
a = a -
Fig. 6

Eight Point Ring - Circulatory Series
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For a starting value A at point 7, the algebraic analysis of the
system can be simplified by the methods of resolution and superposition:

(2) The initial system is resolved into four basic cases as shown

in Fig. 7, taking advantage of symmetry and antisymmetry

(b) The algebraic results from the individual cases are superim-

posed to give the final values for function coefficients on the

. . closed ring.

Casel From the symmetry of this system, the algebraic pro-
cedure can be further reduced by using modified carry-over factors as
shown in Fig. 8. This reduced point set is obtained from the fact that
function values at opposite points (ie. 7 and 9) must be equal after each

cycle of carry-over.

2 S N
Y . 4 4 4Q
= +
A AlA _—
_ 4 . 4 4 4 &
Initial System CaseI Case II
A A A i
4 X 4 4 4
+ +
o Al X
4 4, Ky 4
Case IIT Case IV
Fig. 7

Resolution of Circulatory System with Starting
Value at Point 7 into Four Basic Cases
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Performing algebraic carry-over on the modified three point

set the results are:

7(S)1 1 T(SH)I 2a A 7(S)I 2b X
Q = e— Q = A Q = -
7 Xgy 4 8 Xgg 4 12 X9y 4
Ry T - a 8

i 9 Za T _']f

I

2b b Removed }

‘ l

|

|

12 ¢ 1

| :

| I

| l

i Removed Removed l

| |

| |

l I

L _ e -

Fig. 8
Modified Circulatory System
Case I

Case II. This system, symmetrical with respect to-the central
X-axis and antisymmetrical with respect to the Y, can be reduced to

two independent systems (Fig. 9) and algebraic carry-over performed.



The results are

TSI _ a1 TSI _ _
Q T X, QW =TT
TSI _ 1 2D 7(S)II
Q2 T X, Qg
where
2
Xgy = 1 - 2b
A by
T gl 3 =0 75
0
2b ||| b 2b ||| b
12 | 114
| |
l |
: Removed Removed }
l l
| I
- - 4
Fig. 9

Modified Circulatory System
Case II

] >

l -

|

i
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Case III. The reduction of this system is'shown in Fig. 10.

The values of function coefficients after carry-over are

Q'77(S)III - %_ 1 Q 7(S)III _ i 1
X20 17 4 X20
Q 7(S)ILL A 2a Q T(SHII . _ X 2a
8 4 X20 18 4 X20
where
X20 = 1 - 2a2
A et 2 8
4 T 2a 1
| |
| 1
l
0 } 0 Removed |
| l
| I
12 |
' t
| |
, |
ol|| o |
l Removed ]
| I
| |
17 @ _‘___—a_ _______ _l
A 2a 18
T
Fig. 10

Modified Circulatory System
Case III
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Case IV. ©No algebraic carry-over procedure is possible, and
the starting values represent final results (Fig. 11).

From the superposition of Cases I through IV, it is evident that
the single cell series which forms in a geometrically symmetrical
closed ring may be resolved into simple geometric series. The results
in more complex multicell rings may also be interpreted as basic
series in certain cases. (25). In general, however, these are higher

order, or carry-over, series.

A
A ,‘..__...O— 40 -
| T Tt/ ~4 9
T e T g
: \
0 0 0 0

Fig. 11

Modified Circulatory System
Case IV
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2-4 The Carry-Over Series. If now the algebraic carry-over method

is applied to the analysis of a two dimensional twenty-five point set
(Fig. 12), each final result is found to be the finite algebraic sum of

an infinite geometric series each term of which is an infinite series.

] 0 9 e 0 3 20 4 20 5
0 0 0 0
A
Ol ro OJ 0 Ol 0 0 0 0 0
A \
= | e | o | o
Ol ro bJ rb bJ rb b rb 0 }O
A \
119 12.=2 132 |1a=0 15
0" a T a 0
A
OJ ro bJ rb bJ rb bl b OJ ro
16“0— 172 182 194_0____ 20
— — I AT
0 a a 0
A
OJ ro Ol ro OJ ro OJ 0 OJ fo
o0 -0 -0 -0
Fig. 12

Twenty-Five Point Set

It is evident from Fig. 12 that a starting value X carried-over
from point 13 to the adjacent points (8, 12, 14, 18) will return to 13 as
well as begin to circulate through the closed ring 7,8,9, 14,19, 18,17

and 12. If the procedure is carried-out algebraically, complex power
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series are generated .whose sums it is practically impossible to deter-
mine.
In order to eliminate this difficulty a new concept must be

introduced, the principle of the suppressed or zero point;

A portion of the network can be isolated and analyzed
independently by surrounding it with points for which

the function values are temporarily assumed to be zero.

This procedure is known as suppressing the point or introducing a zero
at the point. The inverse procedure is called releasing the point or
removing the zero at the point. After the isolated point set is solved,
values are carried to the released points and the algebraic carry-over
procedure continues throughout the network.

Thus in Fig. 12, a basic series forming on the five point set
8,12,13, 14, and 18 can be isolated (Flg 13a) by introducing zeros at
the corner points 7,9, 17, and 19. The function values corresponding

to the basic series are (Art. 2-2):

13(B) _ . b _ _ 13(B) | . 13(B) _ 1
Qg " A x, T Qs Qs ™" = * %
13(B a 13(B
le()=>\X22 = Q)

Removing the zeros at the corners and simultaneously suppressing the
central point 13, an eight point closed ring is isolated (Fig. 13b) with

the carried over value

2ab
22




8
»
b|||b
\
12, ——*8 —) {13=—o>~=2——
—_—— Y _ad
a a
bl|{b
\
418
Fig. 13a

Isolated Five Point Set - Basic Series

— ]
o '7 8 Qo
a
b b b
12 4
b b b
o ‘174__3_-____ 3184—8'————*01‘
a a -
Fig. 13b

14

| 14

19

Isolated Eight Point Ring - Circulatory Series

19
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at pointg 7,9, 17, and 19. This isolated system is identical with Case I

- of the circulatory series (Art. 2-3). The function values are

13(8) _ 1 13(s 13(s 13(s

Q7( ‘O‘OXZZ"Qg()"QN()“ng()
13(S) _ 2a 13(S 13(S 2b 13(8
Qs()"o‘oxzz‘le() 'le()“o‘ox22 Q14()

The analysis of the twenty-five point set shown in Fig. 12 becomes,
therefore, a matter of determining the carry-over series which form
between these two igsolated systems. This is acecomplished by releas-
ing point 13 and finding the value carried-back to the center, thus com-

pleting one full cycle of carry-over on the network:

Q. 15(CO) _ 8ab 16 a®? | 5
13 T X% T T3 - P .
22 X%,

The ratio of the returned value Bl to the starting value BO = ) is the
common ratio of the carry-over series developed by repeating this
procedure infinite times.

These carry-over series e and 3 are infinite geometric series

all terms of which are infinite series. Their sums are

2ab
(o4 = o + @, T ... = o< K
Zo n "0 1 X99 Y99
[v0]
1
Bn - BO + Bl + . - Y K
Zo 22
2 2
_ _ 16a’b
Where Yzz = 1 -———2————-—-—
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Superimposing the @ and f series, the final values for function coef-

ficients on the twenty-five point set become

[e.0] -
c
13 _ 1 o C92 13 13 13
W T =T Z"‘n‘—z A= Qe = Qp T Qp
22 4 22
0 18 - 2a i R i - Baa | Q.13
8 X22 - n YX.22 o n Z22 18

(1)

o0 o0 A
13 _ 2b v a Ay 13
Qg = x Z 4 trx Z Ao = Z, A= Ry
0 -0 2 |

o0
13 1 |
Qi3 = x Z By = Zyy A
0

The new equivalents used in these equations are:

2
4b 2ab
A = a(l + ) C =
22 X5s 22 X5y
2 2. 2
_ 4a _ _16a™b
Bgg = b(l + 5—) Zgg = Xgo(l )

Thesé constants may be interpreted from the diagrammatic representa-
tion of the final values (Fig. 14) and conclusions drawn similar to

those made for the bagic series in Art. 2-2. Thus

(a) The constant is the over-relaxation factor for the

1
Za2
system
(b) The final function value at the center is equal to the start-
ing value multiplied by the over-relaxation factor
(¢) The final function value at any other point is.equal to the

final central value multiplied by the corresponding direct

final carry-over factor A22, B22, or C22
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Cag 5 Coo
392
A A
— 22 22 o
Cas Bag Coo
Fig. 14

Final Results - Carry-Over Series

2-5 Resolution, Superposition, and Involution. The methods of

involution, resolution, and superposition, demonstrated in Art's. 2-2
and 2-3, may be stated as three basic principles applicable to the
analysis of finite-difference networks by algebraic carry-over.

‘The principle of resolution states that-

The analysis of any geometrically symmetrical two
dimensional system with unsymmetrical starting

values can be simplified by resolving the system
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into four or more basic cases each of which contains

axes of symmetry and or antisymmetry.
The principle of superposition, the inverse of resolution, states that:

The final results for function values on the network
due to the initial system of starting values are equal
to the algebraic sums of the results corresponding to

each of the resolved systems.
The principle of involution, illustrated in Art.2-2, states that:

The function values on the finite-difference net due

to a starting value X at some point kl are equal to

the algebraic sums of the funcfion values due to start-
ing values A at points adjacent to k1l multiplied by the

corresponding carry-over factors.

The use of these methods in completing the analysis of the
twenty-five point set (Fig. 12) for a starting value at any point is now
demonstrated.

For a starting value X at point 7, the system is resolved into
four basic cases as shown in Fig. 15. The results for these cases are
obtained by superimposing the values from the circulatory and the

central carry-over series.

Case I. Temporarily suppressing the central point 13, an
eight point closed ring is isolated (Fig. 16). This isolated system is
identical with Case I of the circulatory series {(Art. 2-3), and the

results are:



N _2_ A A A
= + )
A A A A
4 4 4 TO
Initial System Case I Case II
A A A A
4 . _4_# 4 . —4_0
+ +
. A s A
1A 4 4 4 1 e
Case III Case IV
Fig. 15
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Resolution of Twenty-Five Point Set with Starting Value at Point 7
into Symmetrical and Antisymmetrical Cases

A . a - A
T o1 8 T g 9
el T a >
A I A
bl Db I b
w | Y
12¢—————— t+————— —t14
A { Jh
bl||Db | b |||
Y l \
N |1g=—2 12‘
T a = a T
Fig. 16

Isolated Eight Point Ring - Case I
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1381 . 1 a . 13(S) 13(S)1 13(S)I
Qy T - X,; & Qg = Qqy = Qg
13(SY . 2a  a _  13(S) 13(ST . 2b A _ .~ 13(S)
Qg "X, & Qg Qi "X, F T Qiq

Releasing point 13, the carried-over value

N = 8ab _)L__
22 X22 4

becomes a new starting value which forms the central carry-over

series. From Eq's. (7), Art. 2-4, the results due to this starting value

are:
- 2
C

7(C)L 22 U TCT . o TC (O
Qy T Zy, M T = Qpq = Qg
g7 . Pe2®e o en

8 Zoyg 18
Q. 7 _ Agg Cas N (1)

12 Zog = Qqq
Q. 1O _ Coz N

The final values are obtained by superimposing these results with

those of the circulatory series.

Case II. This system is antisymmetrical with respect to the
central Y-axis (Fig. 17). Thus there is no carry-over to the central
point 13 and this case is identical with Case II of the circulatory series

(Fig. 9). From Art. 2-3 the values for function coefficients are
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7(11) A1 7(11) A 2b 7(11) A1
Q - Q = <~ Q = =5
7 7 X, 12 Ky X2 17 T X,
Ty __ox 1 T(ITL) __ 2 2b 7(I1) A1
Q == —— Q = - — Q —
9 I X2 14 =z X2 19 =z X2
X 0 0o _A
‘4’%74—— g—=-—7 _ 9
| —F—
0 I 0
b b } b b
\ : \
',__1_2_____*1____#14
I
b b | b b
\ } Y
A 0 o -
T "

Fig. 17
Case II

Case III. This system (Fig. 18) is identical with Case III of

the circulatory series (Fig. 10), described in Art. 2-3. The results

are:
7(TI1) A1 7(111) A 2a 7(II1) A1
Q ~— | Q = T%— | Q .
7 T X20 8 X20 9 4 X20
7y _ a1 (NI __ X 2a TAI) . a1
Q7 T Ky, | s TTX,y | Q9 T Xy,



T g1 a 8 2 Iy 9
a . I a
0 0 ! 0 0
|
12 {18 |14

a
_ A a py
.4 'y
Fig. 18

Case III
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Case IV. No algebraic carry-over is possible, the system be-

ing identical with Case IV of the circulatory series (Fig. 11), and the

starting values represent final results (Fig. 19).

A
. a -
T o7 I8 I, 9
a a =
\ | \
bl|l||b | bll| b
‘ I
A : A
b b | b b
\ l
- %— a a ’%—
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The final values for the function coefficients, starting value at
point 7, are obtained by superimposing results from Cases I,II, III,
and IV:
7 I II

Qi = Xy T

; +Q,III+Q1'V

J i 1]
where ij is any pivotal point of the network.

The function coefficients corr'esponding to a starting value ) at
point .5‘), 17, or 19 (Fig. 12) may be obtained by a similar procedure, or
they may be obtained directly from the r’eéul’cS for starting value at 7 by
cyclosymmetry. In terms of Cases I,II, III, and IV, the équations for

the coefficients are:

9 _ I I o IV
QlJ - QlJ Qij + QlJ Qij

17 I oI IV
Q; = o vyt - q Q

19 I I I v
QU; = QT Ry T XUy Ty

For a starting value at one of the other points the final results
may be obtained by involution. Considering a starting value ) at point8,
this value is carried -over to 7,9, and 13, thus introducing involuted
starting values at these points (Fig. 20). Each of these involuted values
develops series which have already been definéd and determined. Super-

imposing these series the final results are:

8 7 9 13
Qz° = 1+ axQ@y + arQy + brQg

and for any other point

8 _ 7 9
Qij = an Qij + ax Qij + b Q.
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Similar equations may be written for a starting value at 12, 14, or 18.

a
9
ar gl —t—— A‘S ax
= ]
b
12 bA 413 14
17 18 19
Fig. 20

Involuted Starting Values

2-6 The Laplace Equation. In rectangular coordinates the Laplace

equation has the form

0
v il ®)
ox 9y

with Q equal to a given function G(x,y) on the boundary (38) .
The corresponding finite-difference equation written for an

interior point ij of the net is (Fig. 2)

f Yo
28 (Q_ 1 5 % Qup,j)

P(Q; 51 + Q j41)
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At a boundary point k1, the function Q takes on the value of the known
function G :

Ui = G (10)

Comparing Eq's (9) and (10) with Eq. (5), Art. 2-1, it is
evident that there is a basic difference in the concept of algebraic carry-
over as applied to the Laplace and the Poisson equations. In the latter
case, carry-over begins from a network point with a specified starting
value and proceeds to the surrounding points, the algebraic carry-over
method being concerned with the determination of the resulting geomet-
ric series. Thus the solution of Poisson's equation gives final values
for function coefficients which vary from a maximum at or near the
point of starting value X to zero at the boundary.

In the case of Laplace's equation, however, there are no start-
ing values at interior points of the finite-difference net (Eq. 9), and
the flow of function values takes place in an inverse manner. The bound-
ary values are the starting values, and the algebraic carry-over pro-
ceeds from the boundary into the interior domain. Thus the nature of
the carry-over solution of the two problems is fundamentally different,
the investigation of the Poisson equation corresponding to an outward
flow of values, and the investigation of the Laplace equation correspond-
ing to an inward flow.

Although there is a difference in concept, it is possible to relate
sovlutions. of these equations because of the similarity in the carry-over -
procedure. This can be accomplished as follows. Writing the finite-
difference equation for a point ij adjacent to the boundary (Fig. 21),
and noting that Q takes on the value of the given function G at the bound-

ary point i-1,j, the equation becomes
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4 )
a(Q;,q 5)
Qij = < >t aGi—l,j .
[ PQ@i5-1 F Q500
Y T
i-1, +1 i,j+1 i+1,j+1
Boundary
i-1,j ij i+1,j X
/
i-1,4-1 i,i-1 i+1,3-1

Fig. 21
Finite Difference Net Adjacent to Boundary

Comparing this equation with the Poisson equation in finite-difference
form (Eq. 5), it is readily seen that the carried-over value :aLGi_l,j
above corregponds with the value Qi;.k .. Thus aLGi_l’j may be considered
a new starting value at point ij and the algebraic carry-over procedure
performed as before.

In this way the solution of the Liaplace equation is replaced by

the solution of the Poisson equation, and the following conclusion ismade:

Final results for function coefficients due to a starting value
A at some boundary point of the network are equal to the final
results due to a starting value X at the adjacent interior point,

multiplied by the corresponding carry-over factor.



CHAPTER III

SKEW SYSTEMS

3-1 Linear Finite - Difference Equations. In skew coordinates the

Poisson equation has the form (38)

| 5%Q 2Cosa _0°Q , _ 1 52Q
_ o5

= - F(x,y). (11)
Sin2 o 8X2 Sin2 a  OxXoy Sin2 a 9y

The corresponding finite difference equation written for point ij of the

finite difference net is (Fig. 22) (38)

Qo172 " ey Uer 1 T U1 1 T Qe 51 TR -1 Cos
Ax? 2AxXAY
Q. . .- 2Q.+Q. .
+ L,j-1 213 L j+l - Fi' Sin2 o'
Ay J
Introducing the notation
a = ._..._1____ ‘ b = tz
2(1 +t2) 2(1 + t2)
(12)
e = tCos « » \ = t Sin «
4(1 + t%) 2(1 + 12)

Ay

32



Fig. 22

Finite Difference Net in Skew Coordinates

this equation may be written

Q1,7 Qurr, ) T PQ o1 TRy y41)
ij ") ij

Q1,541 ¥ Q1,410 7 ¢Q@poq -1 1 Qa1 541)
j j j j

where

* = i
Qij A F, ] AxAy Sin o

is the starting value for Q.., assuming the Q's at the eight adjacent
g ij g g

T

points to be zero. For o=+, Eq's. (12), (13), and (14) reduce to

2
Eq's. (4), (5), and (6), respectively.

33
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It is evident from Eq. (13) that a,b,c, and -c are carry-over
factors on the finite difference net. These carry-over factors represent
the influences of the function values at the adjaéent points i-1, j-1,

i, j-1, i+1,j-1, i-1,j, i+1,j, i-1,j+1, 1i,j+1, andi+l,j+1 on the

value at point ij.

3-2 The Basic Series. Considering a two dimensional nine point skew

set with starting value X at point 13 (Fig. 23a) and using algebraic carry-
over to determine the function values, each final result is the algebraic

sum of an infinite geometric series.

Fig. 23a
Nine Point .Set - Basic Series
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From the figure it may be seen that any value carried from the
central point 13 to points 8, 12, 14 and 18 first flows through these
points before returning to 13. From the nature of the carry-over fac-
tors, however, carried over values on the skew ring (Fig. 23b) sum to
zero at every point. Thus no series develops.on this isolated skew
point set (8, 12, 18, 14), and the value which returns to point 13 is simply

the starting value multiplied by Za2 + 2b2.

Fig. 23b
Isolated Skew Point Set

Continuing this procedure, an infinite geometric series is
formed which corresponds with the basic series of the rectangularpoint

set (Art. 2-2). The final function values are

>

Q3 ®) = I:1+(2a2+2b2) +o2a? + 22?4 ] = A e

22
13(B) _ . b _ . 13(B) 13(B) _ a _ _ 13(B)
Qg 7 T A x— = Qg Qg = A x— T Qq
29 22
where X = 1 - 2a2 - 2b2
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. Thege results. are identical with the solufion of the basie series
in-Art. 2-2. A diagrammatic representation can again be made (Fig. 24)
and similar conclusions stated:

1

X939
basic serie§ of the skew network .

(a) The constant is the over-relaxation factor for the

(b) The final function value at the center is equal to the start-
ing value multiplied by the over-relaxation factor

(‘c.) The final function value at any other point is equal to the
final central value multiplied by the corresponding

carry-over factor.
b/
b/

Fig. 24
Final Results - Basic Series



37

3-3 The Skew Series. For a starting value X at point 8 of the nine

point set (Fig. 23a), values are carried-over to points 12 and 14 as
well as to the central point 13 (Fig. 25a). Thus the final values of func-
tion coefficients can not be found from the basic series by simple in-
volution, as explained in Art. 2-2 for rectangular point sets, andthe
series due to the unsymmetrical starting values at points 12 and 14

must be determined.

Le 8
. b/ \
13 13 14
—ea © B cx ®
18
Fig. 25a

Involuted Starting Values

Fig. 25b
Isolated Four Point Set - Skew Series
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From the antisymmetry of the starting values at these points
(12, 14) with respect to point 13, the carry-over to 13 is equal to zero
and the series forms on the skew point set shown in Fig. 25b. Consider-
ing the first cycle of carry-over on this skew set, it is seen that czk
is carried to point 8 from both points 12 and 14, and -czk is carried to
18 from both these points. Thus the value returned to either point 12
or point 14 is equal to the correSponding starting value multiplied by
402, Continuing this procedure a simple infinite geometric series is

developed which is called the skew series. The results for function

values due 1o this series are:

Ql?l(Sk) = c) Ll+(402)+(402)2+...:] S

Sa2
8(Sk) _ _ 1 8(Sk) _ 2¢  _ __ 8(Sk)
le = cA ———22 Q8 = ck————szz = ng
h So, = 1 - 4c2
wnere 29 = C B

The final values for function coefficients, starting value X at
point 8, are obtained by superimposing these results with those from

the basic series due to the involuted starting value bX at point 13. Thus

Q88 - a4 bQ813 . Q8(Sk)
and

8 13 Sk

Q = bt v @)

for any other point ij.
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Similar results may be obtained for a starting value at 12, 14,
or 18. For the particular angle o (900) at which the skew point set
becomes orthogonal, the skew series vanishes and the results reduce

to'those of the rectangular point set.

3-4 The Circulatory Series. Applying the algebraic carry-over pro-

cedure to the analysis of an eight point closed ring (Fig. 26), .each final

function value is found to be the sum of four infinite geometric series.

Fig. 26
Eight Point Ring - Circulatory Series

For a starting value A at point 7, the algebraic analysis of the
system can be simplified in a manner similar to that of the rectangular

network (Art. 2-3) by using the methods of resolution and superposition;
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(a) The initial system is resolved into four basic cases as
shown in Fig. 27, taking advantage of skew symmetry
and antisymmetry

(b) The algebraic results from the individual cases are .-
superimposed to give the final values for function coef-

" fipients on the skew ring.

x X x
_ b 4 4 4
= +
x \ x ’
4 4 4 .

Initial System Case I Case II
Case III Case v
Fig. 27

Resolution of Circulatory System with Starting
Value at Point 7 into Four Basic Cases
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Case I. The algebraic carry-over procedure for this system
can be simplified by using modified carry-over factors as was done in
Art. 2-3 for the rectangular set.

From the skew symmetry of the starting values (Fig. 27) and
the antisymmetrical nature of the carry-over factors between points
8,12,18, and 14 (Fig. 26), it is evident that no series develops on this
skew point set. Thus only the simple circulatory series is formed,
and the reduced point set of Fig. 28 may be used to determine the
function values. Performing algebraic carry-over the results are:

S 1 2 7SI _ 2a X

X99

(S)I _ 2b 2

_ 1 _ .
z Qg T X.o T4 Qg " = 71

Q,
g 22

Thus the final values for Case I of the circulatory series are identical

in rectangular and skew systems.

_7}_7.‘@:___ 8

¢ 2a /
% 0 Removed /
/
/
12 ' f
// /
/ Removed Removed /

/ /
/ /

- e — — — — 4

Fig. 28

Modified Circulatory System
Case I
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Case II and Case III. For these systems algebraic carry-over

becomes more complex, and a higher order series is formed onthe
“closed ring. This series is called the external series and is discussed

in the next article (3-5).

Case IV. For this antisymmetrical set of starting values, the
first cycle of carried-over values sums to zero at points §, 12,14 and 18.
Thus no algebraic carry-over procedure is possible (Fig. 29), and the

starting values represent final results.

__ //s A

__________ — T g 19

Fig. 29

Modified Circulatory System
Case IV

3-5 The External Series. For the skew- symmetrical set of starting

values (Case I, Art. 3-4) it was shown that the skew series on points
8,12, 18 and 14 vanishes (Fig. 28) and only the circulatory series of the

corresponding rectangular point set remains. In the instance of'starting
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value patterns as given in Cases II and III of Fig. 27, however, the
skew series does not vanish and a higher order series forms on the
circumferential ring which interrelates the skew series with the circu-
latory series. The development of this series by algebraic carry-over

follows.

Case II. If the analysis of the system shown in Fig. 30 is begun
by carrying-over the starting values at the corners to points 8, 12, 14,
and 18, solving the resulting skew series on this set, and carrying back
to the corners, it is found that the returned Vallies are not equal multi~ -
ples of the corresponding starting values. Continuing this procedure,

complex power series are generated whose sums cannot be determined.

Fig. 30

External Series
Casge II
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To avoid this problem, linear point sets 7,12,17; 9,14, 19 and
7,8,9; 17,18, 19 are alternately isolated and solved by again using the
concept of the suppressed or zero point. Interrelating the resulting
linear series through'the skew carry-over factors + ¢, each final result
may be represented as the sum of an infinite, geometric series each

term of which is an infinite series.

Fig. 31

One Dimensional Series-Starting
Values at 7,9,17,19

Introducing zero points at 8 and 18, two independent one

dimensional point sets are obtained (Fig. 31). Performing algebraic

carry-over the results are:

Q TSI _ A 1 Q. ML _ A 2b QST _ x 1
7 4 X,y 12 ERP 17 4 Xyq
T(SHIT _ _ x 1 TSI _ _ A 2b TSHII_ _ a1
Q TTTxR, | Qe TTTxR, | ®9 T TTaxy,
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where

X02= 1 - 2b

At this stage the function values correspond with those from Case II
in rectangular coordinates. The new external series which is now

demonstrated is due to the skew carry-over factors.

—E—’— —-a———
Fig. 32a

One Dimensional Series
in X-Direction

Fig. 32b

One Dimensional Series
in Y-Direction
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Removing the zeros at points 8 and 18‘ and simultaneously sup~-
pressing points 12 and 14, the carried-over values from the corners
sum to zero at 8 and 18 due to the antisymmetry of these values (Fig. 30).
The antisymmetrical skew carry-over factors, however, introduce val-
ues dat these points (Fig. 32a) which are carried from 12 and 14. These

carried-over values

7(CO)II dbc
Q = - - = -7
8 X,, 4 0
T(COI _  4bc X _
Qig S X, &7 Yo

develop one dimensional series on the point sets 7,8, 9 and 17, 18, 19,

respectively. The results of algebraic carry-over are (Fig. 32a):

7(S2)II a 7(S2)II 1 7(S2)II a
Q; = - Q = - Y = Q = -y

7 0 X20 8 0 X20 9 0 X20

7(S2)II Y., a 7(S2)II 1 7(S2)II a
Q = 0 Q = Yo | Q = ¥

17 X20 18 0 X20 19 0 X20
where

X20 = 1 =~ 2a2 .

The values returned to points 12 and 14, found by releasing these points

and reintroducing zeros at points 8 and 18, are

2
7(CO)II 2¢ 4c 2
Q = Yo = —<—— (2b) = 6
12 X, 10 X5 0% 00 Ty 1
T(CONI _ _ 2c _
Qg Yo 54
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These values develop series on the linear point sets 7, 12, 17 and 9,

14,19 (Fig. 32b) whose sums are :

7(S3)IT b 7(S3)IT 1 7(S3)II b

Q = § e Q = 85 e Q = 6 ————
7 1 X, 12 1 Xy 17 1 X,
(ST _ b TSI _ 1 USHI _ _, b

Qg =8y Xy Qg =5 bove Qg =6 "

One full cycle of carry-over between the two sets of isolated systems
is completed by determining the values carried back to pointg 8 and 18

when these poinis are again released. Thus

2
7(CO)I 2¢c 4c

Q = - S, % - e vy = -
8 Xoy 1 :en- el 1

g rcon _ 2o 4c? v e
18 Xy 1 : 0 1

‘Repeating this procedure infinite times, new carry-over series v and

& are formed having the common ratio

Y 1 402
Yo X90%02

These series are called the external carry-over series, and their sums

are:

0 .

4bc A
E'y = YAt Y, Feee. =
5 n 0 1 X02K22 4

Q0

_ _ 2b A
Z&/n = 60+61+...- - vy
0
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where
402

22 X20X02

Superimposing these series the final values, Case II, are:

0 . 0

TENT _ A b Z _a Z
Q’7 =z 7 X9 Sn Xs0 n

0 0

Xon ~ 4c(ab + c)

- 20 (o
X x. . K z - 19
20 02 22
0
7(E)II 1 4be X T(E)II
QM - gl S 2g
8 X350 o X, 0sK52 & 18
0 0
TENI _ _ x _ b z _a Z
Q T T X, ® X350 Tn
0 0
) Xyo + 4c(@-c) , 7(E)I
X, X K T 0T S
2070222
0
7(E)II 1 2b X 7(E)II
Q = Z 6 R — = - Q
12 X g oo XKoo & 14

Case III. Applying the algebraic carry-over method to the
analysis of the system shown in Fig. 33, the external carry-over
series is again developed, each final value being the finite sum of an

infinite number of infinite series.
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Fig. 33

External Series
Case III

The same procedure is followed as in Case II, with the excep-
tion that the point sets of Fig's. 32 are somewhat simplified by using
modified carry-over factors. These reduced systems, with the mod-
ified skew carry—ovei- factors between point sets indicated, are shown
in Fig's. 34. Thus, introducing a zero at point 12, the tWo point set
of Fig. 34a is isolated. Performing algebraic éarry—over, with a start-

ing value %—- at point 7, the results are:

2a
X590

CT(SL)IIII 1 T(S1)III
Q. Y Qg

Y
T4



/ Removed

/ -2c /
/12 //
/ /
/ Removed - Removed /
/
N

Fig. 34a

One Dimensional Series in X-Direction
Modified Point Set

7 8
S : S —
/-
2b Removed /
9 - /
/
12 /
/ -
/ o
/ /
/ Removed Removed /
/ : /
e ]
Fig. 34b |

One Dimensional Series in Y-Direction
Modified Point Set

50
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Releasing point 12 and simultaneously suppressing point 8, the carried

over value

T(COII _ 4ac A -5
2

Q - — =
1 XZO 4 0

forms series on the two point set 7, 12 (Fig. 34b) whose sums are

7(S2)III _ _ b T(S2)IIT _ _ 1
Qn = -0y %o Qg = =% X9

Replacing the zero point at 12 and removing that at 8, the returned
value is

UCONL _ _2c , _ _ 4c° X

Xos 0~ EyoRog (2a)z- = 7y

Q
8 20502

and the results of algebraic carry-over on the reduced point set

(Fig. 34a) are

7(S3)III 1
Q = v —_—
3 1 XZO

T(S3)II _ a
Qy =y 50

Finally, releasing point 12 the carried over value becomes

T(COMII _ _ 2c _ 4c? 5

Q v, = - g
12 XZQ 1 X20X02 0 1

The common ratio of the carry-over series relating these two isolated

point sets is again seen to be
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Continuing this proéedure the external carry-over series vy

and &6 are formed having the sums

o .
_ _ 2a A
Z”n’%*”’l+ = K Z
22
: 0
- 00
4ac )y
S em e sy e 6, . = gl
> 0 1 X20K22—4_

‘Superimposing these carry-over series the results of Case III become

YOO 00

TENIT _ ) a Z b Z
Qy =T T Tn > ®

0 0

20 02
) Xgo ~ 4c(ab + c) oL Q 7(111)
X, XK 4 19
20%502K22
o0
7(E)IL 1 Z 2a A 7(111)
Q EML . L Ny =2 2 - -q
8 > . T X0 Kgy & 18
o0 o0
TENIL _ ) a Z b Z
Qq =7 tx Th v x 1
20 02
0 0
:; on + 4c(ab - c) a Q 7(II1)
= 17
X90%X02K 92
00 . ’
7(E)III 1 Z 4ac A T(LIT)
Q . o e a— & s = - Q R L
12 X02 = " Xy0X02K22 § 14

The final function values on the eight point closed ring (Fig. '26),
starting value X at point 7, are obtained by superimposing the results

from Caseg I, II, III, and IV :
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7(S) _ . IS T(E) III(E V(S
Q7 = 1) .« g I(E) | o M) . o IV(S)

From the analysis of these cases it may be concluded that:

(2) The single cell series which forms in a skew closed ring
can be resolved into four goemetric series

(o) Two of these series are simple geometric gseries and yield
results for function values identical to those from the corres-
ponding orthogonal ring (Cases I and IV)

(c) The remaining series are infinite gedmetric series all
terms of which are infinite series (external carry-over
series). These higher order series vanish when the skew
ring becomes orthogonal, leaving simple geometric series
identical with those of the corresponding rectangular sets

(Cases II and III).

3-6 The Carry-Over Series. Considering now a two dimensional

- twenty-five point skew set (Fig. 35), and applying the algebraic carry-
over method to the determination of function coefficients, each final
value is the sum of an infinite geometric series each term of which is
an infinite series.

As in the case of the twenty-five point rectangular set (Art. 2-4),
a starting value A carried-over from point 13 (Fig. 35) to the adjacent
points (7,8, 9, 12, 14, 17A, 18, 19) will return to 13 ag well as circulate
through the closed ring 7,8,9, 14, 19,18,17, and 12. In order to separate
the various series formed by this infinite carry-over process, the method

of suppressed points is again used.
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Sorepade s
PRGN N AN

D A D A
PR

PRI /f

I A A
///‘__..__\/1-—\/ //

e~ T

0

Fig., 35
Twenty - Five Point Skew Set

Thus the basic series on the five point set 8, 12, 13, 14, 18 can
be isolated (Fig. 36a) by introducing zero points at 7,9, 17 and 19. The

function coefficients corresponding to the bagic series are (Art. 3-2)

13(B) _ b~ 13(B) 13(B) _ 1
Qg "rxE, T Qs Q3 =M x,
13(B a _ . 13(B
Q™" MR, T Qs ()




Fig. 36a
Isolated Five Point Set = Basic Series

17 a__ 18

a—nar -& g a-‘-af

a a
Fig. 36b

Isolated Eight Point Ring -~ Circulatory Series
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Releasing the corners and simultaneously suppressing point 13, an

eight point skew ring is isolated (Fig. 36b) with the carried-over values

13(CO) _ 2ab + ¢ 13(CO)

Q = T %, M T Qo = ey t oy
22
13(CO) _ Z2ab-c B 13(CO) _
Qg = = A= Qg ay - @'y
22
where
2ab c
o, = A o' = X
0 X22 0 X22

This isolated system may be resolved into two basic cases as shown in
Fig. 37, the first corresponding to Case I of the circulatory series and

the second to Case IV (Art. 3-4). The function values from Case I are

13(S)I _ 1 13(SYI _ . 13(S)I _ . 13(S)
Qq T % X, T Qg = Qqq = Qg
13(S)I _ 2a  _ . 13(S) 13(S)I _ 2b . 13(S)I
Qg T ey x.o T Qg Qg =) % 7 Qg :
22 22
a//-*‘a/Y -
a-ao a+ c/ / / / o'
Initial System Case I Case IV
Fig. 37

Resolution of Isolated Circulatory System
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From Case IV, no algebraic carry-over is necessary and the starting
values represent final results.
The first cycle of carry-over is completed by releasing point
13 and finding the returned value:
13(CO) _ 8ab 16a%p% | 4c?

Q = ay, + 4ca'y = ( + ) A = B
13 X22 0 0 X222 X22 1

Thus the common ratio of the carry-over series between the bagic and
the circulatory systems is
Bl 16a%? | 4c

By
= — = + .
By A X222 X929

Repeating this procedure infinite times, the carried-over values:

a, o', and B form infinite geometric series whose sums are

o0
2ab
ZQ/ = @ t @ *t ... B oeg——m— A
= n 0 1 X22Y22
o0
Za‘=a‘+af'+... = T
5 n 0 1 X22Y22
[o o]
1
D B =Byt Bt = g 2
22
0
where
_ 16&12b2 4c2
Yoo = 1 X
X 22
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Superimposing these carry-over series, the final values for function

coefficients are

13 _ 1
Q7 QXZZZ

13 2a
Q.12 - >
8 X99
. [o0]
13 2 N
Qo = x Z
22 4

o0

13 1
Ry = x Z
0

o0
13 1
Q13 T X Z’Bn
0

The new equivalents used in these equations are:

2
4b
A = a(l+
22 X22
2
4a
B = b(l+
22 X22

)

)

22 13
o' = A Qir
n Z22 17
.
2ab
C =
22 T X,
2.2
_ _ 16a"b -
Zigg = Xgg (1 = ——5— )~ 4c
X 99

(15)

2

These constants may be interpreted from the diagrammatic presenta>

tion of final results in Fig. 38,

(2) The constant

skew system

Thus

is the over-relaxation factor for the

(b) The final function value at the center is equal to the start-

value multiplied by the over-relaxation factor



09

(c) The final function value at any other point is equal to the
final central value multiplied by the corresponding direct

final carry-over factor A22’B22’ sz + ¢, or sz - c

Cogte Bag Cog-c
A A
o ‘ 22
227 ¢ /Bzz Ca2t e
Fig. 38

‘Final Results - Carry-Over Series

These function values are similar to those of the twenty-five point
rectangular set given in Fig. 14, and become identical for o = 90°

(c =0)
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3-7 Resolution, Superposition, and Involution. The principles of

resolution, superposition, and involution, first discussed in Chapter II
and demonstrated for skew point sets in Articles 3-3 and 3-4, may be
used to complete the analysis of the twenty-five point skew set (Fig.

35) as follows.

A
T

77 T
[l vl sl 3

Initial System Case I Case II

NENhEE
sy

Case III Case IV

Fig. 39

Resolution of Twenty-Five Point Skew Set with
Starting Value at Point 7 into Basic Cases

Considering first a starting value X at point 7, the system is
resolved into four basic cases as shown in Fig. 39. The results for
these cases are obtained by superimposing the values from the cir-

culatory and the central carry-over series.



Case I. Temporarily suppressing the central point 13, an
eight point skew ring is isolated (Fig. 40) which is identical with

Case I of the circulatory series (Art. 3-4). The results are

1381 _ 1 a _ _ 13(SY _ .~ 13(S) 13(S)1
Qy (BI - Xyy & Qg = Qqq7 Qg
138 _ 2a a _ . 13(S)T 135 _ 2b  x _ . 13(
Qg "X, 1 ° Qg Qiy "X, 1 ° Qiy
Y
—————— ! ———
a / a

Fig. 40

Isolated Eight Point Ring
Case I

Removing the zero point at 13, the carried-over value

8ab X

Coyo A =
X22T

22

becomes a new starting value which forms the central carry-over

series discussed in Art. 3-6.

61

(S)I
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Superimposing the results of the central series (Eq's. 15) with
those of the circulatory series above, the final values for function coef-

ficients, Case I, are :

7(1) 7(1) 1 X 227 % '
Q = Q = — g t —5—— Co9 2
7 19 Xy & Zgo 22

. » C,5-cC

7(1) 7(1) I 22
Q = Q = + Coo X

9 17 Xog % Zgo 22
Q1M . g TM o 22 A, P22 o

8 18 Xo9 & Zgg 22
Q1M L QT o 2 _ fa2 o

12 14 X,, 4 Zgg 22

o 1
Case II. The starting values of this system are antisymmet~

rical with respect to the central point 13 (Fig. 41). Thus the carry-
over to that point is equal to zero and this case becomes identical with
Case II of the eirculatory system, the external series (Art. 3-5,

Fig. 30). The values for function coefficients are therefore

() _ 7ary _ Xgo T fc@b )y
Qp ©7 = = Q" = T
Xo0X02K22
7(11) 7ary . Xgo T Ac@b-c)
Q.g = = Q17 ) = 7 ) =
X90%X 02K 22
7(I1 7(I1 4be A
Qg M - - le( )= - . re
X90X02K22
my . . T 2b 2
Qipg" " = = Q' = S X

02722



Fig. 41
Case 1I

Fig. 42
Case III

63



64

Case III.. This system is also antisymmetrical with respect
to the central point 13 (Fig. 42). The carry-over to that point is
again zero, and this case is seen to be identical with the external series
formed by Case III of the circulatory system (Art. 3-5, Fig. 33). The

results are

() _ ramy . Xop T fe@bFe)
Q = - Q - =
7 19 S Z
20%02K22
ramy oty Koz TAe@b )
Q - - Q - us
9 17 S——— Z
20502522
7(111 7(1m 2a. X
QM _ ) 2 2
8 18 N Z
20522
7y 7@y . 4ac X
Qo = 7 Qyy R e
20%02K 22

Case IV. Temporarily suppressing the central point 13, an
eight point closed ring is isolated (Fig. 43) which is identical to Case IV
of the circulatory series (Art. 3-4). Thus no algebraic carry-over
procedure is possible and the starting values become final results for
this isolated system.

Releasging point 13, the carried over value is

cA = 4c ——Z—— ,
The final function values, Case IV, are obtained by superimposing the

initial values at the corners and the results of the central series

(Eq’s. 15) due to this new starting value at 13. Thus
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Coo + G
(1 7 22
Q; W) = V) = 3+ 2% o
Cyy - C
7 IV 22
Qg V) = @) = -+ TZy,
vy _ . 1av) . Bao
Qg = Qg S Tz,
Q. 10V) _ o 7aV) _ Ba2
12 14 T Tz,
vy . 1
Qs 7 oz,
.8
Z— / —g

Fig. 43

Isolated Eight Point Ring
Case IV
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Superposition of Cases I,II, III, and IV yields the final results,

starting value X at point 7:

7T I II . III
Qi T Oy QT Qy

From cyclosymmetry, the equations of function coefficients corre. -

sponding to a starting value at point.- 9, 17,0r 19 are :

9 I I m IV
QUi Ty T YUy Yy Qi
17 1 n . O IV
Qy = Qy * Ry Qi Q;
19 1T IV
l? = @l -t - M4 q.

1] 1] 1] 1] 1]

Initial System Case TA Case IIIA

Fig. 44

Resolution of Twenty-Five Point Set with Starting
Valueg at Paint 8 into Bagic Cases ' '
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For a starting value A at point 8, the twenty-five point skew .
set is resolved into two basic cases as ‘shown in Fig. 44 and the results

superimposed.

Case IA. This system is a modification of Case I, and the
final results may be obtained by involution. The values at 8 and 18
are carried-over to 7,9,17,19, and 13, thus introducing involuted
starting values at these point:s (Fig. 45) which develop series previous-
ly defined and determined. Superimposing these series the functioﬁ

values are:

8(IA)

Y I 13 _ . 8(IA)
Qg =5 t 2aQg + bQg Qig

and for any other point ij

Q. 84) | 13

I
i 2a Qij + b Q..

1]

Fig. 45

Involuted Starting Values
Case IA '
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Case IITA. This system of starting values, a modification of
Case III, develops the external carry-over series on the modified
point sets of Fig's. 46a,b. Proceeding as in Article 3-5, the final

results are

Q8(mA) _ _a  x _ _ 2be A
7 XooKga 2 XooXpoKoy 2
. a-2b(ab+c) A Q8(IIIA)
Xo0%X 02K 22 2 19
Q8INA) _ 1 x _ o 8(IIA)
8 XooKggy 2 18
QB8(MA) _ __a 2bc ks
9 Kooy 2 XooXooKoa 2
_az@b-c) ) . _ o 8(IA)
X90X02K22 2 17
Q SUIIA) _ 2¢ 2o BIIA)
12 X50X0sKay 2 14

Superimposing these values and those from Case IA, the final results,

starting value at 8, are

8 _ IA IITA
U TRy Y

By cyclosymmetry, the final results for starting value at point 18 are

18 _ IA IIIA
Qij - Ql] Ql]



| A
T -2 5

4-§——————-—-/

Removed /

Fig. 46a

- One Dimensional Series in X-Direction
Modified Point Set - Case IIIA

7 8

—_— e e —— ——

2b -9 Removed /

6/12 //
/

/ Removed Removed /

Fig. 46b

One Dimensional Series in Y-Direction
Modified Point Set - Case IIIA
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The function coefficients due to a starting value at point 12 or
14 may be determined by involution. Thus considering a starting

value x at 12 (Fig. 47) the results are:

12 a 7 13 8 18
Qg = 3 * PQy + aQy CQiy * cQyy

and

12 7 13 8 18
Qj i3 i3 i i]

il
lon
O
+
)
O
(
e)
O
+
e)
O

for any other point of the net.

Similar equations can be written for a starting value at 14.

bx 7 -CA . 8
b /
X 12 arxg 13 14
a
b N |
ba 17 CA 18 d 19

Fig., 47
Involuted Starting Values

9
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3-8 The Laplace Equation. In skew coordinates the Laplace equa-
tion has the form
2

2 2
22 - 2cose 22+ 22 - o (16)
0x o0xX 0y oy

with Q equal to a given function G(x,y) on the boundary (38).
The corresponding difference equation for an interior point ij

of the finite difference net is (Fig. 22)

N

r
2(Q_q 5 TQury )T PQ o1 TR )

Q41,541 T Qa1 4-1) 7 Qg -1 1 Qg ju1)

~ /

At a boundary point k1, the function Q takes on the value of the given

function G:

Ui = G - (18)
[i-1,5+1 /1, 3+1 [it1,+1
Boundary
i1, i 14 X
i=1,4-1 i4-1 i+1,j-1

Fig. 48
Finite Difference Net Adjacent to the Boundary
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The carry-over solution of the Laplace equation in finite-dif-
ference form is again achieved by relating it to the solution of the
Poisson equation, as explained in Art. 2-6. Writing the finite-differ-
ence equation for point ij adjacenttothe boundary (Fig. 48)

( . )
Q1,5 IFPQ 51 TRy 4iq) 3Gy ;
Qi = 9 >+ >

) ¢ Gi1 4417 ©Gio1,4-1

\ / 7/

Qi1 4-1) 7 ¢y, jo1)

and comparing this equation with the Poisson equation in finite differ-
ence form (Eq. 13), it is evident that the sum of the carried over values
above (terms in the second brackett) corresponds with the value Qij* .
Thus the sum may be considered as a starting value at point ij and the
algebraic carry-over procedure performed as before.

The Laplace equation in skew coordinates is therefore solved by
algebraic carry-over in the same way as is the equation in rectangular
coordinates. Final results for funciion coefficients due to a starting
value X at a boundary point of the network are equal to the sum of final
results due to starting values X at the adjacent interior points, mul-

tiplied by the corresponding carry-over factors.



CHAPTER IV

POLAR SYSTEMS

4-1 Linear Finite - Difference Equations. In polar coordinates the

Poisson equation has the form (38)

2 2
9Q , L3 , 1 3R . _ pu, 6 (19)
or2 r or o Ge° '

The corresponding finite difference equation written for point ij of the

finite difference net is (Fig. 49) (38)

e 2 V0 MtV i 0 U S V5 U5 Bl G V5 TR 915 Wilcie. Rl V8 I SRRENS
Ar® 2r; Ar riz A6° 2
i+1,j

i+1, j+1

i,j+1

Fig. 49
Finite Difference Net in Polar Coordinates
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Introducing the notation

. i(2i + 1) A62 . _ i(2i - 1) A6
i+1,1 412 AGZ 19 i-1,1 412 AGZ + 9
(20)
b=y A - By
4i” AG” + 2 61 A6 + 3
r,
i = 1
Ar
this equation may be written
( ~
8i11,1 Qe ToBi-1,1 Qo1
1 *
QIJ = < }+ QIJ (21)
by Q541 * Q4 5-1)
where
¥ s 3 6 22)

is the starting value for Qij’ assuming the Q's at the four adjacent
points to be zero.

It is evident from Eq. (21) that a; and bi are carry-~

+1,i° #-1,1° |

over factors on the finite difference net. The carry-over factors

a. . and a, . represent the respective influences of the adjacent val-
i+1,1 i-1,1

ues in the i+1 st and i-1 st cirecumferential rings on the value Qij in the

ith ring. The carry-over factor bi represents the influences of the

adjacent values in the ith ring upon this value.

To determine the carry-over factor a,, from the first ring into

the origin it is necessary to apply 1’ Hospital's rule (39),the second
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and third terms of Eq. (19) being indeterminate when r = 0. Thus

2 2

2 . "Q 1
(VQ)._q = lim ( + — = +
r=0 0 arZ r or r2 .8:92

which becomes, upon differentiating the last two terms:

2 4
2 _ 3"Q 1 9 Q
(V Q)r:O = 2( 2 )r=0 + 2 ( 2 2 )I'=0
ar or”~ 96

The corresponding finite difference equation written for the origin in

the direction j is (Fig. 50)

291,57 %R0 79,30 | Q31 729, 5% R, 51 T Qe 29, R g
Arz » 2Ar2 Aez

Fig. 50
Origin of the Polar Coordinate Network
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where
JY = ] + —21- n
and n = %% ig the total number of radial lines j .

Rearranging terms this equation may be written

2
_9a6% -1
QO = W (Ql,J + Ql,j')
T + + + L) A F Ar2
Snd’ Q1,541 T Q1,j-1 T Q41 T Qq, 81 T 7 Fo &r

Taking directional derivatives along all radial lines and summing, the

resulting expression is

Arz

n
nQp = Z Qy,; T nFg —1—
j=1

Thus the value of @ at the origin is given by the equation

o]
N

1 Ar
Q=+ Qi t Fy T - (23)
j‘::

—

and the carry-over factor into the origin by the equation

1
40 T w (24)

Equation (23) compares with Marcus' expression (40) derived by statics
using the physical analogy of a laterally loaded network of uniformly
tensioned strings.

For the special case of an axially symmetrical function F(r),
the Poisson equation (Eg. 19) reduces to the ordinary differential
equation (38)
49 +%—d—9— = - F(r) . (25)
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The corresponding finite difference equation (Eq.21) may be writien

2

Q_, + F, & (26)

' Q i 2

.= a, . . + . .
i a1+l,_1 Q1+1 8. 1,1

in which the carry-over factors are given by the expressions

1 1 ‘ 1 1
%41,1 - 2 Y oEm : 81,1 T2 T H - (27)
~ At the origin Eq. (23) becomes
ar?
Qy = Q) * Fyg —— (28)

from which a 1

10 ~
Eq. (26) is identical in form to the three moment equation for a
continuous beam on rigid supports (33). Thus final values of function
coefficients due to unit axially symmetrical starting values may be
obtained from the algebraic carry-over solution of this analogous prob-

lem, which has been accomplished in other papers and is not congidered

here (33, 41).

4-2 The Axial Symmetric Basic Series. Applying the algebraic carry-

over method to the analysis of an axially symmetric point set composed
of one ring and n radial lines (Fig. 51), each final value is found to be
an infinite, geometric series. The determination of this series is
facilitated by modifying the system to a two point linear set as shown

in Fig. 52. The modification is accomplished as follows.
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From the equality of function values on the circumferential

ring, the finite difference equation written for point 1 becomes (Fig. 51)

Q; = ag; Qy*+ bR +b;Q

from which

291 Qo

Fig. 51
Axially Symmetric Point Set - Basic Series
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The constant —————T—— may be interpreted as the over-relaxation

factor for the axial symmetrlc circulatory series forming on the n-
point ring. Thus the function value at a circumferential point is equal
to the value a01Q0 carried-over from the origin multiplied by the over-

relaxation factor.

na
[ 34__1_0___ 1
A ——— T
\ 201 »

Fig. 52

Reduced Point Set - Axial Symmetric
Basic Series

The modified carry-over factor naj, from point 1 into the
origin may be :obtained by writing the finite -~ difference equation for
that point, or may be deduced from axial symmetry.

Using these modified constapts, it is evident from Fig. 52 that
a value carried from point 0 to the circumferential point will return
to 0 multiplied by the product of the carry-over factors and the over-
relaxation factor. The infinite geometric series formed by continuing
this process is called the axial symmetric basic series. The final

results for function values are



80

n
~
,_.l
+
TN

=]
| o
—
o
N ©
olo
=
~—

—
+

=]
[l I )
M
]
nof
o o
—_
~——

[\]
+

1
= A =
X9
a
) 01 . 0 ) 0
=2 (T-26)X; ~ Qo = ..o = @
_ "10%01 ., . o
T-2b T-2b,

in terms of Eq. (24).

The final values are given in Fig. 53. Similar conclusions

can be made as before (Art. 2-2):

(a) The constant X—l—— is the over-relaxation factor for

(b)

(d)

(e)

1
the axial symmetric basic series

The final function value at the origin is equal to the
starting value multiplied by the over-relaxation factor

a

The constant value I—:le—b- , incorporating the over-
1

relaxation factor of the axially symmetric circulatory
series, may be interpreted as a direct final carry-
over factor a'01

The final function value at each circumferential point
is equal to the final central value multiplied by the
direct carry-over factor

The algebraic results are independent of the number

of radial lines chosen (from the identity n ajg = 1).
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Fig. 53
Final Results - Axial Symmetric Basic Series

4-3 The Single Ring Circulatory Series. For non-axially sym-

metrical patterns of starting values, it is necessary to investigate
the flow of function values in single or multiple rings. The circula-
tory series which form in single rings may frequently be interpreted
as basic series; in multiple rings they are usually higher order series.
Considering an eight point single ring (Fig. 54), the algebraic
carry-over method yields final results which may be represented as
the sums of three simple geometric series. For a starting value x at
point 1, the system is resolved into basic cases (Fig. 55), as discuss-

ed  for the rectangular set in Art. 2-3, and the results s.uperimposed.
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. | Fig. 54
Eight Point Ring - Circulatory Series

Initial System Case IT

Case II1

Fig. 55

Resolution of Circulatory System with Starting Value
at Point 1 into Three Basic Cases

<
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Cage I. Observing the symmetry of this system with respect
to all diameters of the ring, modified carry-over factors can be intro-
duced and the point set reduced to that shown in Fig. 56. Performing
algebraic carry-over the results are:

QLS . 1 2 Q11 o 1
1 X, 1 2 X, 7

where

/ Removed

/
/

|
\

\ Removed Removed

AN /

~— —
Fig. 56
Modified Circulatory System
Case I

Case II. This system, symmetrical with respect to the hori-
zontal diameter and antisymmetrical with respect to the vertical, may
be resolved into two independent systems (Fig. 57). The results of

algebraic carry-over are



()t _ 1 1(S)II _ P
Q - s Q . m el
1 X2 o X092
% b
e o " a WEL o Pl X
Q = Q sl o
2 Xpy 2 4 Xpg 2
where
S el 3T gt 2

\ Removed Removed //

i F

. g

—_—

Fig. 987

Modified Circulatory System
Case II.
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Case III. For this system no algebraic carry-over procedure

is possible, and the starting values represent final results (Fig. 58).

4

O/AL\O
Z 20 I

0"
7
Fig. 58
Modified Circulatory System
Case III ‘

The final values for function coefficiénf's':fé:f%ej obtained by super-
imposing Cases I, II, and III. It is evident from this superposition that
the series forming in an axially summetrical ring, starting value at any -

point, can be resolved into simple goemetric series.
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4-4 The Axial Symmetric Carry-Over Series. If algebraic carry-

over is used to determine the function coefficients on a two ring axially
symmetric point set, starting value ) at the origin (Fig. 59), each final
value is the finite sum of an infinite geometric series of geometric

series.

n+4

%
K

n+6 n+2

n+7

2n

Fig. 59
Axially Symmetric Point Set ~ Carry-Over Series
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As was explained for the single ring set in Art. 4-2, this sys-
tem may be reduced to the linear point set of Fig. 60. The constants
—1——_%5—1 and T_:l'?b'é are the over-relaxation factors for the axially
symmetric circulatory series forming on the first and second n point

rings.

/ Removed

\ Removed ' /

Fig. 60

Reduced Point Set ~ Axial Symmetric
Carry-Over Series
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Because only three points are involved in the carry-over pro-
cedure, it is possible to represent the final results by basic series.
Considering, however, that series which form in the circumferential
rings are hidden by the over-relaxation factors at 1 and n+1, the one
dimensional series on‘ the three point set is more logically interpreted
as a carry-over seriegs. Agadin the concept of the zero point is used.
Thus,‘ carrying-over from 0 to 1, then terrilporarily suppressing

point O, the resulting series on the two point set yields the values

oB1l) _ . 201 213 821 bof 212221 2
Q,°BL - = |1 <(1_ 2b1)(1-2b2)) +<(1—2bl)(1-2b2)) oo

1
_ oy L Zo1 .y o0t
(T-25,) X} XJ
; 1 g
Q 0B - 201 212 _ oy o112
n+1 (T=2b,)(1 - 2b,) X} XL
where
ot o 01 gt - 21 S
01 T T=725, 21 T=25, 12 T=725,
and
a a
| _ _ 12 221 _ o o
Xlg = - m=my-2) - 17 *itar o

The quantities a which incorporate the over-relaxation factors

i 1. .at
01 #21° #12°
1 1 . o
; and —— , may be considered modified carry-over factors.
1~2b, 1-2b, .

Removing the zero point at the origin the returned value is

o(co) _ , 210201

Q M TE%) XY
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The quantity

Dajglgy 301
=X, ~ X

is therefore the common ratio of the axial symmetric carry-over series

developed by continuing this procedure infinite times. The final resulis

are
ar. 1 al. 2
0 %01 01 1
Q =x[1+(,)+(_—__)+...]=x————
0 XT, X, Y,
1
0 01 0 0
Q =*r gy, — = @ = = & (29)
2%2
1 1
0 _ 2701% 12 0o _ 0
Qr1+1 A X'2Y2 Qn+2 - Q2n
where
na a a
Yo =1 - (1~12%(;1x* = 1 - 1o TX3
1) X'y ( 1) Xg
Introducing the equivalents
A = 01 A = %01 %12
01 (T-125) X7, 02 ~ (T-2b,)(1 - 2b,) X'y

the final values can be represented diagrammatically (Fig. 61), and
similar conclusions made as for the single ring basic series (Art. 4-2).
Thus
(2) The constant S—{l—z—— is the over-relaxation factor for the
axial symmetric carry-over series
(b) The final function value at the origin is equal to the

starting value multiplied by the over-relaxation

factor



(c)
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The final function value at any circumferential point

is equal to the final central value multiplied by the cor-

.+ régponding direct final carry-over factor Agior Ay,

(d)

The algebraic results are independent of the number

of radial lines chosen..

Agy .
Ago\ /

Lo

Aga
Apy

>

e () @ e
Ty
NG

Fig. 61
Final Results - Axial Symmetric Carry-Over Series
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4-5 The Double Ring Circulatory Series. Considering now the

analysis of a sixteen point double ring (Fig. 62) by algebraic carry-
over, it is again convenient to resolve an unsymmetrical set of start-
ing values into basic cases as was done in Art. 4-3 for single rings.

This resolution for a starting value A at point 1 is given in Fig. 63.

Fig. 62
Sixteen Point Double Ring - Circulatory Series
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Case II | ’ Case III

Fig. 63

Resolution of Double Ring Circulatory System with
Starting Value at Point 1 into Bagic Cases

Case JA. From the axial symmetry of this system (Fig. 63),
it is evident that a reduction to the modified point set of Fig. 64 is
possible. Performing algebraic carry-over on this reduced set the

results are:

Q 1SNA 1 X

S X

1 (T= 27X, 8
1(S)IA _ 213 X
Qg S T=95 (T - 25, %7, 8



93

/ Removed

Fig. 64

Modified Double Ring Circulatory System
Case IA

Case IB. This system of starting values is symmetrical with
respect to all diameters of the' double ring, but it is not axially sym=-
metrical (Fig. 63). The over-relaxation factors at points 1 and 9 of
the reduced system are obtained by writing the finite-difference equa-

tions at these points.
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Thus (Fig. 63)
Qy = by(-Qq) * by(-Qq) + 29,Qq¢ + Q*
Qg = Py(mQg) + by(-Qg) + a;,Q

from which

291 Qg QY
Q = T2, * T2,

o 219Q
Q = T¥IE,

— - \\
P ~_
/ ~ Removed ™~
AN
/ \

. v
( | o X 1 \=2L/ 1 9
: & \1+2b '_"'al 1+2b,

| \ _ 2

Fig. 65

Modified Double Ring Circulatory System
Case IB
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The over-relaxation factors corresponding to the series forming on the
. S 1 1
first and second rings are therefore and . Using these
TTTb"i —1—4:7?)3
factors the gystem is reduced'tothe linear.set of:Fig. :65. Perfofming

algebraicicarry-over the.résultsare = = .

Q. 1B _ 1 X g USIB %12 p
1 (I+26)X", 8 9 (T+26,)(T + 2b,)X5 B
where
a a
12%21
X',‘ = 1 -
2 (T+2b,)(1+2b,)

Case II. This system, symmetrical with respect to the hori-
zontal diameter and anti,symmétrical with respect to the vertical, is
resolved into two independent systems as shown in Fig. 66. The solu-
tion of each of these systems is the solution of a geometrically unsym-
metrical four point ring.

From the nature of the carry-over procedure, the flow of func-
tion values in these rings generates carry-over series. In order to
determine these series, the method of alterng.tely suppressed points is
again adopted. Introducing a zero point at 10 and applying algebraic

carry-over to the isolated three point set 1,2, 9, the function valuesare

QIBLI _ L A | o1Bum _ LY Q1B | 212
1 X, 2z | % X, T | % X,, 2
where
Xo, = 1 - - o
21 ~ g12%21 7 4P .
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———

Fig. 66

Modified Double Ring Circulatory System
Case II

Releasing point 10 and suppressing point 1, the carried-over

value

coy _ 212y thy)

1( =
Qo T RG] Z 7 %

forms series on the isolated set 2, 10,9, The results of algebraic

carry-over are

96
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1(B2)IX 1 B2)I _ %21 ~ 1(B2)II 2
Q = o Qﬁ’ = o Q = o
where

- _ _ 2
X.z2 = 1 219291 2b2 .

The common ratio of the infinite geometric carry-over series forming
between these two isolated point sets is determined by releasing point 1

and finding the returned value

o, 2
1(co) _ Z21(Py * D) 2219851(P1¥Py)

Q o= a, = -
1 X929 0 X91X92

which becomes a new starting value at 1. Dividing Bl by the initial

starting value BO = —%—- . the common ratio is

2

2a 9)

12897 (b +D
X, X

22

The carry-over series « and 8 are infinite geometric series of

series whose sums are

0
Sal = ap b ey b 20T
n 0 1 X515 2
0
e 0]
= _ 1 A
D By = Bo t Byt S v, T
22
0
where 9
. o 2a12a21(b1+b2)
22 X, X
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Superimposing these series the final values for function coefficients,

Case II, become

: 00 .
iy 1 ' T D W 1(I1
o ® = 5— ) By =z 7 - - Q5 ¢
0

21
b o0 o0
Qlm . 1 ZB L 221 Z"‘ _ Bai 2L g,
2 X571 n X5 n T Zy, 2 4
0 0
o0 o0
g lm | 212 Z g+ 2bg Z _ Ao _ . L
9 o n ‘X22 % Zg: 2 13
0 0
e C
22 4 " Zg1
The new constants introduced above are
A . - 2by(by + by) o . alz(bl+b2)
21 12 X0 21 Xoo
by’
12221t T 5 )
Bap = By (L ¥ B Xy Yoo ‘
| 22 |

Interpreting these constants as direct final carry-over factors A, .,

! for the unsymmetrical four
231
point ring (Fig. 67), and comparing these results with those correspond-

B21, 021 and over-relaxation factor

ing'to the carry-over series in rectangular coordinates (Art. 2-4), it
is evident that the final values are similar in form. When the circular
panel (1, 2,9, 10) is transformed into the corresponding rectangular
panel, the final values are found to be the solution of a twenty point

set symmetrical with respect to the X~axis. Thus a circular panel
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can be considered a more general form of a rectangular panel.

\.

Fig. 67
Final Results - Circular Panel Carry-Over Series

to
N
/

us)
)
\

Case III. From the antisymmetry of thig ,Systerﬁ with respect
to alternate diameters, all modified carry-over factors in the circum-
ferential direction are equal to zero (Fig. 68). The system thus reduces
to four isolated two point sets. Performing algebraic carry-over the
results are

Q sym o1 A 1(S)III
1 - X

sym 1(S)it
LS BN . _ g 1(S)

‘—QS
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sy _ f12o0a . 1(S)III I(S)IL _ . L(S)II
Qg "X;T‘,le = " Q = ‘le(
where )
Xg = 1 - a8y

Fig. 68

Modified Double Ring Circulatory System
Case III ,

The final values for function coefficients on the sixteen point
double ring, starting value A at point 1, are obtained by superimposing
Cases IA,IB, Il and III. Thus the solution of multiple ring circulatory

systems involves both simple geometric and carry-over series.
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4-6 Resolution and Superposition. If now the algebraic carry-over

method is applied to the analysis of a geometrically axial symmetric
twenty-five point set (Fig. 69), the final results due to a starting value
A at any point can be found by again using the principles of resolution

and superposition defined in Art. 2-5.

Fig. 69
Twenty-Five Point Set
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|

T

Initial System Case IA Case IB

-

Case II Case III

Fig. 70

Resolution of Twenty-Five Point Set with Starting
Value at Point 1 into Basic Cases

Considering first a starting value at the origin, the problem is
simply that of the axially symmetrical carry-ovef series discus-éed in
Art. 4-4. The final function values are given in that article and need
not be restated here.

For a starting value at point 1, the final results are obtained by
superimposing the double ring circulatory series and the axial sym-
metric carry-over series. Resolving the system as shown in Fig. 70,
it is evident that Cases IB, II, and III have no carry-over into the
origin. These systems therefore reduce to the corresponding Cases IB,
II, and III of the double ring circulatory system (Art. 4-5). Case IA,

however, develops the axial symmetric carry-over series. Modifying
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Fig. 71

Modified Point Set
Case IA

this system to the linear point set of Fig. 71 and temporarily intro-
ducing a zero point at the origin 0, the series forming on the two point

set 1,9 is identically Case IA of the double ring circulator;); series,

Art. 4-5:

Q. leMA _ 1 3 1(s)IA 12 A
. =

(T=26,K7, 8 ‘-Q9 S (TTEB (T - 2,)K7, § -
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Releasing point 0, the carried over value

g oy . %210 AL 1 . _ Ao
Q (T=2)X, 8 ~ (T-%H) )X, § ~ &

becomes a new starting value which forms the axial symmetric ecarry- |
over series. From Egls 29, Art. 4-4, the function coefficients due to

thig starting value are

1epa _ for

0 891 Yy 8
A2
Q. lCIA | _Tol o o H(C)A . g lCiA
1 a5,.%5 8 2 8
Heua A01 Aoz X Q L(CYA _ 1(C)IA
Q T e Y, 8 S0 = e T Qg -

The final results are equal to the superposition of these values with .
the results from the double ring circulatory system.

Finally, congidering a starting value X at point 9, the system
is resolved into four basic cases as shown in Fig. 72 and the results

superimposed.

Case IAl. This system is a modification of Case IA. Sup-
pressing point' 0, the results of algebraic carry-over on the reduced

point set 1,9 are (Fig. 73)

Q S(SNAL 221 2 9(SYIALl _ 1 2

T EIC2,E; 8 | S (T 25,%5 §
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o>

-~

A

8

Initial System Case IAl Case IB1
A
o
el ’
+ -3 S 3o+ :

- ) N T

Case 111 Case III1

Fig. 72

Resolution of Twenty-Five Point Set with $tarting
Value at Point 9 into Basic Cases -

Releasing point 0 the carried-over value

9co) _ _ %210% _x__ 821801
Q = (T=25)(T - 95,)X7], 8 (T- 25,08, &

]

forms the central carry-over series. The corresponding function values

become (Eq's 29) :
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Fig. 73
Modified Point Set - Case IAl

g lenal | Fa1for x
0

(T=2b,)a,; ¥, 8

1(C)IAL

e A2
repal . 221801
Q

AL
(T=2b,)a,,Y, 8 ~ %

01-2

1exat _ %21f01f02 1(C)IAL

Q = F = Q
9 (T=2by)a, Y, 8 10

= . 5 = =Q8

= :Ql

1{C)IAL

1(C)IA1
p .

The final results, Case IAl, are obtained by superimposing these values

and those of the axially symmetric circulatory series above.
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Case IBl. As in Case IB, there is no carry-over into the ori-
gin, and the system can be simplified to that of Fig. 74. Performing

algebraic carry-over on this linear set the final values are

. ,
9(S)IBL _ 21 2 la 5(8)1*&8:1; 1 2

Q T TF (I T 25,)KY (T¥725,)XY 8

/ v
a
O 1 =2/ 1 Yo
T+2b;/——= \1+ 2bg
a

Fig. 74

Modified Point Set
. Case IB1
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Case IIl. This system,a modification of Case II, again forms
the circular panel carry-over series with zero value at the origin. Con-
sidering the reduced point set of Fig. 75 and temporarily suppressing |

point 2, the results of algebraic carry-over on points 1, 9,10 are:

Fig. 75
Modified Point Set
Case II1
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b

21 X 9BL)IL _ V2
22

oBIIIL _ 1 |
27 | Qo X

A
Q = g
9 X22 2

9(B1)II1 A
Q> 2

Releasing point 2 and simultaneously suppressing point 9, the carried-

over value is
o(co) _ 221 (1 T Py) _

A
Q = =
2 X22 2 0

l

This value forms series on the three point set 2,1, 10, the results of
which are

QfmaNIl | 1 oB2)Il _ 2Py o(B2)Il _ 212

= o Q = [0 Q - 3
X2.1 0 1 X21 0 10 X21

%

Removing the zero point at 9 the returned value is

occo) _ 221217 Pe) 2‘"‘12""21(]01*“‘]f’z)z 2l
X5, 0 X5, X35 7 = P

Qg

and the common ratio is again (Case II, Art. 4-3)
2
12221 (P1 ¥ by)

X91X99

2a

Repeating this procedure infinite times, the carried-over values
« and B form infinite geometric carry-over series whose sums are:

agy by +bg) 5

w H
Z a = ay + a, + .. =
5 n 0 1 X22Y22 2
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Superimposing the ¢ and 8 series, the final values, Case II1, become

: o0
| c
oIty _ 1 Z _ S22 2 _ e
Qy T X, G T2, T T "%
0
‘ 00 [>¢]
0. 0(m1) 2by Z"‘ , P21 ZB _ fag Q. °)
0 0
[>¢] 00
. omy) _ 212 S e, + by ZB _Daz a9
10 o h R, n = Zy, 2 12
» 0 0
o0
o1y _ 1 Z _1x oo
Qg x5, bp =z 7 7 " Qs :
0

The new equivalents used in these equations are

N F'l . 2b, (by + by) o . gy (by +by)
22 21| Xpr | 22 X5,
— b, _
A58 (lts=) |
_ 122210 75,
Baz = P2 |1 T T x ] Zgg = Xgg Ygg
L _

These constants can be in,terpreted. as over-relaxation and direct carry=
over factors, and conclusions driawn similar to those in Case II, Arf.
45,

Case IIT1. This system is a modification of Case III (Fig. 68).
Performing algebraic carry-over on the isolated two point sets (Fig.

76), the results are

Q 9(III1 1 A Q 9(IIIl) _ ~ 91111y _ Q 9(III1
9 ) - X2 i - 13( W - Qll( )= - 15( )
9(III1 821 (1111 9(III1 9(III1

2
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Fig. 76

Mogdified Point Set
Case III1

The final function coefficients, starting value A at point 9, are
obtained by superimposing the results from Cases IAl, IB1, IIl, and
II1l. For a starting value at any other point on the network, the final
values are identical with these results (or those corresponding to start-
ing value X at point 1) after a simple rotation of the pivotal point

numbers.
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4-7 The L.aplace Equation. In polar coordinates the Laplace equation.

has the form

2
9°Q -1 9Q 1 9°Q .

+ + = 0 (30)
arz r or rz 862

with @ equal to a given function G(r, 8) on the boundary (38).
The corresponding finite - ciifference eguation Wfitten for an
interior point ij of the network is (Fig. 49)
o \
8311,1 a1,y T BFi-1,i Qu-1,j

:Qiij': < > (31)

b(Q; 541 T Q-1

\ 4

and at a boundary point k1

Boundary

R

i-1,j

j-1

Fig. 77
Finite Difference Net Adjacent to Boundary
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The boundary values are the starting values for the carry-over
process, as explained in Art. 2-6. The finite-difference solution is
again obtained from a corresponding solution of the Poisson equation
by congidering the difference -equation written for a point ij adjacent to
the boundary. Thus (Fig. 77)

( 3
31,1 @41, )
Q.. = < S+

i 2i+1,1 Firl, g

b (Q) 541 F Qi,j-l)J

AN

The carried=over value a. G

i+1,1 which corresponds with the val-

i+1,3°
ue Qij* ‘of the Poisson edquation (Eq. 21), is a new starting value at
point ij, and the algebraic carry-over is performed as before.

The final function coefficients corresponding to a starting value
X at a boundary point of the finite-difference net are therefore equal to

the final results due to a starting value X at the adjacent interior point,

multiplied by the carry-over factor from the outer ring.



CHAPTER V

TRIANGULAR SYSTEMS

5-1 Linear Finite - Difference Equations. In triangular coordinates

the Poisson equation has the form (38)

2 2 2

99 sin2p-a - 22 sinzpg + L2 sin2e
ou ov ow
= -28negSinBSin(B-a)F (-u,v,w ) . (33)

For the symmetrical case (B =7 - @), the corresponding finite-dif-

ference equation written for point ij of the network is (Fig. 78)

Fig. 78

Finite Difference Net in Triangular Coordinates

114
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Q. - 2Q. . TQ. L . Q. ., 172Q..vQ. .
i+1,] AL 2gin 20 2sin? @-1) 4L T LI gy 9,
Au Av
Qi 1 s, 1™ 2Q.. + Q. .
+ ! 1,’ J+.1 53 i+, -1 - 2 Sim2 a Sin 2a F..
Aw 1]
Introducing the notation
. . _28in°a-1 | . £2
T 9 2 .2 - 2 .2
(t" + 2 Sin” a-1) 4(t7 + 2 Sin” a-1)
5 (34
N = t Sin” o t = Au _ Au
2(t% + 2 Sin® a-1) - AV AW
this equation becomes
' ' 3
Q1,5 T oy, )
*
Qi = ¢ Qyy (39)
PQ 417 Qg1 T e, go1 T Qi-—l,j+1)J
where
*
Q;y = ) Fyy Auav (36)

is the starting value for Qij’ assuming the Q's at the six adjacent points
to be zero.

The quantities a and b are carry-~over factors on the finite-dif-
ference net in the horizontal and diagonal direction, respectively. They
represent the influences of the @ values at the points i+1,j , i~1,j ,

i, j+1 , i,j-1 , i+l,j=1 , and i-1,j+1 on the value at point ij.
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5-2 The Three Point Bagic Series. Isolating a three point set with

starting value A at point 5 (Fig. 79a) and applying algebraic carry-over
to the computation of function coefficients, each final result is the sum

of an infinite geometric series.

- Fig. 79a
Three Point Set -~ Basic Series

Fig. 79b
Reduced Point Set -~ Bagic Series



117

From the figure it is evident that the flow of values takes place
symmetrically with respect to point 5. The point set may therefore be
reduced to that of Fig. 79b by introducing the modified carry-over
factor 2b and the over-relaxation factor —i—}—a . The over-relaxation
factor corresponds with the series forming between the symmetric
points 8 and 9.

Performing carry-over the results are

2 | 2
5(B) _ 2b° 1 2b“ |2 1
Qg "7‘[1+(1-a)+(1-'a)+""T7‘
: 02
5(B) b 5(B) bt
Q = - A = Q = )y
8 T -a)X7,, 9 X5
where -
512
2b
X‘O2 = 1 - = - ! - 2bb! .
The quantity
_ b
bt = 1-a

may be considered a modified carry-over factor.
From the diagrammatic representation of final values (Fig.

80) it is evident that:

ig the over-relaxation factor for

1
1
02

the basic series on the symmetrical three point set

(a) The constant <

(b) The final function value at the apex is equal to the
starting value multiplied by the over-relaxation

factor.
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(c) The final function value at each of the other points is

equal to the final value at the apéx multiplied by the

modified carry-over factor b? .

7 X
b?
02

Fig. 80
Final Results - Three Point Basic Series

5-3 The Hexagonal Circulatory Series. A six point closed ring of .

hexagonal shape is considered (Fig. 81), and the function values are
determined by algebraic carry-over . For a starting value X at point
8, the carry-over procedure is simplified by resolving the initial
system into four basic cases (Fig. 82) and superimposing the results.
' In this way each final value is found to be the algebraic sum of four

simple geometric series.

Ca’sé I This system is symmetrical with respect to both the
X~ and Y- axes, and can be reduced to the point set of Fig. 83 by us-
.  or . 1
ing modified carry-over factors and the over-relaxation factor ——.
Performing algebraic carry~over the results are.

8(S) _ 1 | geen . 2 B
Qg T TraX,, 4 12 T-a)Xg, &
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Fig. 81

Six Point Ring - Circulatory Series

A A A R

py 7z . 24 4 4
: . +

A B A / 2

4 1 1 4

Initial System Case I Case II
A A A A
4 4 4 4
+ +

A LA LA A

4 4 K3 4
Case III Case IV
Fig. 82

Resgolution of Circulatory System with Starting
Value at Point 8 iato Four Basic Cases



by 8

3 T TN
\ .
2b Removed \\
b : \
\\
12
//
\\ y
\ Removed Removed //
\\ /
N /
Fig. 83
Modified Circulatory System
Case 1
8
A\
\
\
Removed \
\
\
)
, /
\ - )
Removed Removed [/
\ /
\ /
N /
Iig. 84

Modified Circuiatory System
Case II
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Case II. From the symmeiry and antisymmetry of this sys-
tem with respect to the X~ and Y-axes, respectively (Fig. 82), a
reduction to the modified point set of Fig. 84 is possible. The con-
stant ;I_:LTF—a is the over~relaxation factor for the series forming be=
tween the antisymmetric points 8 and 9.

The results of algebraic carry-over are

8(S)II _ 1 A 8(S)I _ 2b Y
Qg TFay Xy, 4| Q2 TFa)X5, 4
where
K= 1= 2B g
02 - T+a >

Case ITI. This system can be reduced to the modified point
set of Fig. 85. The final values are equal to the starting values mul-

tiplied by the over-relaxation factor —1-—{_—-—

a
8(S)IIiI 1 8(S)II _
QS() :T_:aT le() = 0 .
X 8
Z A\
\

V/Ol Removed\\

(4 \

{12 \

\ /

\ Removed _Removed/

\ /
e/

Fig. 85

Modified Circulatory System
Case III
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Case IV. The reduction of this system is shown in Fig. 86.
The final results are equal to the starting values multiplied by the over-
, . 1
relaxation factor T3

8(SIV _ 1 X Q18(S)IV

Qg = 17§ 4 9 = 0 .

Superimposing Cases I through IV, it is seen that the circulatory
series forming on the six point closed ring can be resolved into simple
geometric series by the proper use of modified constants and over-

relaxation factors.

8
— ==
\

0/ | Removed\

)/ 0 N

/\12 )
\ /

\ Removed Removed/

Fig. 86

Modified Circulatory System
Case IV

5-4 The Internal Series. Using the algebraic carry-over method to

determine the flow of function values on an eight point set symmetrical
with respect to the Y-axis (Fig. 87), the final results are sums of

infinite geometric series all terms of which are infinite geometric series.
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Fig. 87
Eight Point Set - Internal Series

A starting value A at point 13, carried~over to the adjacent
points 8,9, 12, 14, 18, and 19, will return to 13 as well as begin to cir-
culate through the closed rings 8,9, 14,19, 18, 12 and 8, 9,5. In order
to properly separate the resulting series and obtain finite algebric sums
for the function coefficients, it is again convenient to introduce the con-
cept of over-relaxation factors. The reduced point set is shown in
Fig. 88, and the modification is accomplished as follows.

The over-relaxation factor for a symmetric series forming on

the isolated three point set 8, 9,5 is , from Art. 5-2. The over-

1
1
X029
relaxation factor for the symmetric series forming between points 8

and 9 is T'I:'“a' Thus the over-relaxation factor for a value carried
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1

T=-a)X7,, °

into point 8 from either point 12 or point 13 is

as

given in Fig. 88.

/

Fig. 88
Modified Point Set = Internal Series

The over-relaxation factor at point 18 is —1——1—&, corresponding
to the two poinf symmetric series forming between points 18 and 19.
The modified carry~over values into the central point 13 are 2a and 2b,
from thg symmetry with respect to the Y-axis.

Having these modified constants, the algebraic carry-over is
performed by alternately suppressing and releasing point 13. Carry-
ing~over from that point to:the adjacent points 8, 12, and 18, then tem-
porarily introducing a zero point at 13, the results of the circﬁlatory

series can be determined. These values are



125

13(8) a 1
Q = om— A+ (— = 1) X
12 Y102 YYOZ
138) o b b o 18(8) L (L+ap
Qg (o)X, " Tmax g, QU2 T ITeXYg
13(8) _ b b 138) . (L+a)b
Qig T8 MY 1T Q2 ey, *
where
B2 |
Y!OZ = 1—‘1—3. (Xr + 1) .

02

Releasing point 13, the returned value is

2 ]
13(CO 2(1 +a
Q13( ) - —Jﬁﬁo_zl - 2(1+2a)| a

This quantity, divided by the starting value A, is the common ratio of
the geometric carry-over series formed by repeating the procedure
infinite times. Summing this gseries, which is called the internal series,

the final function values af_e

A

13 1 . 13 02
Sz % Zp M | e Zoz
B ' Cc
13 02 13 02
Q 5 e A Q = X (37)
"18 Zyg 8 Zog
13 Doy 2b Cyq
Qg = - *= 3 A
02 02
The new equivalents used above are
l+a (L+a)b
A. = - 1 B = ‘
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2b B,
X!

c . __(1+ap _Boa | L _2psap’
02 T TR, Y, Kby | D02 T (T a)X},Y;

02

Zg

| 2
= 1 - [ﬁl%(_fiL - 2(1+2a)i|
02

These constants are interpreted from the diagrammatic presentation

of final results in Fig. 89. Thus

Dya
C& /Coz
A A A
02 oz 02
Zgg
Boz,/ \]ioz
Boa Boa
Zgg Z g
Fig. 89

Final Results - Internal Series
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(a) The congtant ig the over-relaxation factor for the

1

202
internal carry-over geries

(b) The final function value at the central point 13 is equal
to the starting value multiplied by the over-relaxation
factor.

(c) The final function value at any other point is equal to the

final central value multiplied by the corresponding direct

final carry-over factor AOZ’BOZ" C02’ or D02 .

5-5 The External Series. Congidering a nine point triangular set

with starting value X at point 17 (Fig. 90), and applying algebraic

carry-over to the computation of function coefficients, each final value

Fig. 90
Nine Point Set - External Series
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is found to be the sum:of two infiniie geometric carry-over series, call-
ed the external series. To determine these series, the system is re-

solved into two basic cases, as shown in Fig. 91, and the regults super-

imposed.
= +
A 2 AL )
2 2 2 2

Initial System Case 1 ’ Case II

Fig. 91

Resolution of Triangular Circulatory System with Starting
Value at Point 17 into Basic Cases

Case I. This system, symmetrical with respect to the Y-axis,
can be reducedlto the point set of Fig.92a by introducing over-relaxa~
tion factors at i)oirit's 8 and 18, as explained in Art. 5-4. Carrying-
over from point 17, then supi:aressing that point, the results of series
forming on the modified three point set 8, 12, 18 can be determined:

2

QTSI o b x| o 17 . b 2
12 (Ta) ¥y, 2 8 (T=8)2R 550, 2
1S _ & b x

Qg = T-a 7 +'(1_a)2Y,02 T

Removing the zero point at 17, the returned value is

2
17(Co) _ a® 2 b .
Q7 “T??TerT Y1t
02
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/ \
/
/ \
/Removed \
\
8 \
N\
\
\
\
\
\
Removed >\
_ o /s
. / " \
i / \
/ \
/ \

A 18 - _/_ ______ \ N
2

Fig. 92a

Modified Point Set = External Series
Case I

The ratio of the returned value Y1 to the starting value % is the com-
mon ratio of the carry-over series developed by continuing this pro-

cedure. This series is called the external circulatory series and has

the sum
Z”’n’"'“/o“L“/l+ T TZ T
0
where
Z., = 1 - a’ — b
11 - i v '
( a) 02
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The final function values, Case I, are

3

QLIEN _ 1 QITEN | 2b A
17 Zyp 2 5 (-, vhoz. 2
| (1-2) Xpa¥peZ11
Q LTEN _ b A QBN _ b2 A
12 SO AN, Z, ¢ 8 Sy e N
02211 (1-2)X},Yh,Z
Q UTEN _ a L b2 b
18 T=8yZ I
11 (1= a)y ¥,z

Case II. The modification of this system, antisymmetrical with
respect to the Y~axis, is shown in Fig. 92b. The constant T35 18 the
over-relaxation factor for the antisymmetric series which forms between

both points 8 and 9 and 18 and 19.

Fige 92b

Modified Point Set ~ External Series
Case II
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Carrying~over frdm point 17topoints 12 and 18, then introduc-
ing a zero at point 17, the three point set 8,12, 18 is isolated. Per=-
forming algebraic carry-over on this reduced circulatory system, which
is amodification of Case II of the hexagonal circulatory series, the

results are

2
OLINNEES SIMNY 178 _ (1 +2a)b% 2
Q3 (IF 2], L Qg . L) va
(1+a)*x1,
2
TSI _ a2 G+2ap® 2
Q - R .
18 1+ a (1+a) X102

Releasing point 17, the returned value is

Q. 17(CO) _ e o, (t+za®
17 *TTs 7 7 7 = %y -
(1+a)*x1,

Repeating this operation infinite times, the carry-over series 6 is

formed having the geometric ratio

°1 _ &% (1+2a)%p?
o TR (1+ayxu,
i
-The algebraic sum of this carry-over series is.
‘ © : o T
5 = ) + § 4+ e e =
n 0 1 Ziy 2
where
g w1 . A _(1+2a)’p’
12 I+a 2 -
(lL+a) X 02

The final values for function coefficients, Case II, are thus

QEM L (lrzap 2| o 17N (1+§a)b2 2
(1+a)X',Zy, (1+a)yX'eZ,
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o, L@ a v (1L+2a)p? \
18 B 2 2 2
(1+2)2, (1+2a) XVgaZyg
QUIEN o 1
17 Z,, 2

The final function values on the nine point triangular set (Fig. 90),

due to a starting value X at point 17, are obtained by superimposing the

results from Cases I and II.

The Second Order Carry-Over Series. If now the carry-over pro~

cedure is applied to the analysis of a two dimensional twenty-eight point

| Fig. 93
Twenty-Eight Point Triangular Set
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triangular set (Fig. 93), each final result is found to be the finite alge-
braic sum of an infinite geometric series of carry-over series. This
new series, which interrelates the internal and the external series
(Art¥s. 5-4,5), is called the second order carry-over series.

It is evident from Fig. 93 that a starting value X carried-over
from point 13 to the adjacent points 8,9, 12, 14,18, and 19 willreturnto 13
as well as cifcula‘te in complex hexagonal and triangular patterns
around point 13. The method of solution is again one of introducing
suppressed points and utilizing the analyses of isolated systems which
have already been achieved.

Thus, the internal series forming on the eight point set 5,8, 9,
12,13,14, 18, and 19 can be isolated (Fig. 94a) by introducing zeros
at the corner points 17 and 20. The function coefficients corresponding

to the internal series are (Art. 5-4, Eqg's. 37):

A
131y _ 1 130y _ foz . _ . 13(1)
Q = 5 2 Q7 = 202 5 = g7
13 Z oy 12 Zog 14
B | C
13y _ Poz . _ 131 13(1) 02 . _ _ 13(T)
Qig Zog Qig Qg Zoyg © T Qo
Q. 130 Poz
5 Zog )

Removing the zeros at the corners and simultaneously suppressing the
central point 13, a nine point triangular ring is isolated (Fig. 94 b)

with the carried-over value

bA aB
_ PAg 02 . _ b 1+a _ .
W =Tz, N Tz, M T T a Zg, I:sz (1 a)] A

02 02
at points 17 and 20. This isolated system is identical with Case I of the

external series (Art. 5-5). The function values are
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Fig. 94a
Isolated Eight Point Set - Internal Series

Fig. 94b
Isolated Nine Point Ring - External Series
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13(E) 1 13(E) 13(E) b 13(E)
Q = 5, = Q Q = 2 = Q
17 Z] %o 20 12 (T-ayyp,z;; %0~ %14

13(E) b2 13(E)
W a0 %

(1-2) XboY 9%y
13(E) 2p°
A ) (1~ a)QX" Y' o Z %0
02% 02411

13(E) a b2 13(E)
Q = ~ o~ + oy = Q

18 T=ayz;; (1”-a)2Y'sz11 0 19

The first cycle of carry-over is completed by releasing point

13 and finding the returned value:

- 13(co) . 2 l+a _ .,
Q13 = (1= a) le {jY'OZ' (1 - a):] ),

2 , 2
2b 1+a
= g “‘“"{I Ao oBp
(1~ 2)°ZgyZ ., I 02

The common ratio of the second order carry-over series interrelating

the internal and the external series is therefore

Bh B b2 l+a 2
B T 2 — = (1-2a)

Repeating this procedure infinite times, the carried-over values

i
i

« and B form the infinite series of carry-over whose sums are

_ _ ‘ b l+a _ .
ian =, QO + al + ... = (l_a)ZOZUl [Y102 (1 a)] A

BO+Bl+-.. =——U—-x

IV
w
o]
o
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where

2 : 2
Uy s e Eﬁa-(l-aﬂ
(1= 2)ZgyZy, 02

Superimpoging the @ and B8 series, the final values for function coef-

ficients on the twenty-eight point triangular set become

13 _ 1 i Bt MNP b
Qp = Z; % T Y 20
0

3 2 D

o0
13 b 02 1
Qs = 1..--'250’ 1 zan * Zy, ZBn :'Vl A
(1=a)yXho¥heZ11 5 0
00 » 0 -
13 B2 Cos G a3
W T oz T Zg, S R
(1-2a)Xy¥p9%11 0 0
% " (38)
Q.18 b ZaJerz»’ 6 - oL, _gls
12 (I = a)Y’OZZ11 = n Zo Z n 2 | 14
o0 o0
o 13 1 L. b Z"‘ , Boz z g
18 (1= ajZ11 (1= aj‘Sﬂo2 n Zs n
5 0
s DR
v = Qqg
o0
13 1 |
Q= 5= D B = o 2
13 Zoy £ 'n 7,
The new equivalents used in these equations are:
A=A so b mo g oem el lae B E
1 02 ¥ [TTENT,, 1 1 = Bo2 * 17 Ty, |1
2 & 3 °
p2 2b
C = O + . E D = D + E
1 o2 VT Fi1|Ps 02 A 1
(1-a) XhoYhe (1=2a) XYy
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_ b l+a o _
By 7 meayzgy [YVOZ (1 a)] Vi 7 Zp2 Uy

A diagrammatic representation of the final results is given in

Fig. 95. The constant Vl ig the over-relaxation factor for the sec-

1
ond order carry-over series. The constants Al,Bl, Cl’Dl" and E1

are the direct final carry-over factors.

A A
.l‘l‘

4’/]31 Bl\\\

Fig. 95
Final Regults - Second Order Carry-Over Series

5-7 Resolution, Superposition, and Involution. The analysis of the
twenty-eight point set (Fig. 93) for a starting value X at any other point
can be accomplished by using the principles of resolution, superposition,

and involution previously discussed (Art. 2-5).
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For a starting value at point 17 the resolution is made as
shown in Fig. 96. Case I is solved by superimposing the external series
(Art. 5-3) and the second order carry-over series (Art. 5-6).Case II,

from antisymmetry, reddces to the corresponding case of the external

series (Fig. 91, Case II), as there is no carry-over into the central

point 13.
= + .
2 A )
b 2 2 2 2
Initial System Case I Case II
Fig. 96
Resolution of Twenty~Eight Point Triangular Set with
Starting Value A at Point 17 into Basic Cases
Case I. Temporarily suppressing the central point 13, a
nine point triangular ring is isolated (Fig. 97) which is identical with
Cage I of the external series (Art. 5-5). The results are
17(E ) 1 2 17(E)L 17(E) _ b X 17(E)
Q = >— 5 = Q Q = 1= 5= Q
17 Z., 2 20 12 (-8 ,Z,; 2 14
17(E)L 9p° x| 1TE) b2 v ATEN
Qs S gty Y UEDRIR STy St |
(1-a)Xpa¥b2%11 (+=2a) Xga¥0241
Q. LTEI | A % 2L LUE)
18 (l-a)zy (1 -a)YTy, 2 19
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\ . .

Fig. 97
Isolated Triangular Ring - Case I

Releasing point 13, the carried-over value

_ ~ 2b l+a _ _ A
By = ez I:Y'¥02 (1 a)]T

becomes a new starting value which forms the central second order

carry-over gerieg (Art. 5-6). From Eq's. (38), the results due to

this starting value are
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52
Q1;7(C)I - T/'_%— N = Q2(1)7(c\)1
LG glEl N
q,"CN - C’\fl L= gl
lel;7(C)I - :311131 S\ = Q1é7(c)1
QN = éiEl s
I

The final results, starting value X at point 7, are obtained by super-
imposing these values with those of the external series.

- Congidering now a starting value ) at point 12, the system is
resolved into two basic cases as shown in Fig. 98 and the results

superimposed.

Initial System Case JA Case ITA

Fig. 98

Resolution of Twenty-Eight Point Triangular Set with
Starting Value X at Point 12 into Basic Cases
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This system is a modified form of Case I. Intro-

ducing over-relaxation factors and suppressing points 13, 17, and 20,

the three point set (8, 12, 18) of Fig. 99 is isolated. The results of

algebraic carry-over are

Q. 12SY o 1
12 Y’O2 2

Q 12(8)1 _ b A
18 (L=~a)YTy, 2

Q. 120 | b by

8 (T=aK 5% g 2
2

Q 1200 | 2b L

5 T-a)X' 5V 0y 2

Fig. 99

. Isolated Three Point Set

Case IA
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Releasing points 13, 17, and 20, the carried-over values are

12(CO) _ l1+a _ 2
Qs B el
q.12(co) | b AL g 12(CO)
17 T =a) YT, 2 20 .

The value at point 13 forms the gecond order carry-over series (Art.
5-6). The values at points 17 and 20 form series corresponding to
Case I (starting value X at point 17). Thus the function value at any

point ij due to these involuted starting values is

l+a 13 b 17(1)
o= -1 Lt e QL .
Ql] ( Yy ) QlJ (1 - a)Y‘02 QlJ

The superposition of values obtained from this equation with results of
the isolated circulatory series above (Fig. 99) yields final values of

function coefficients, Case IA.

Case IiA. From the antisymmetry of this system (Fig. 98), a
modification of Case II, there ig no carry=-over into the central point 13.
Introducing zero points at 17 and 20 and over-relaxation factors at 8 and
18, the three point get of Fig. 100 is isolated. Performing carry-over the

results are

12(8)IL _ 1 a 12(S)IT _ b A (S)II
: - X

12
Q e = Q .
X~ 2 8 TFa)xT, 2 - s

Q
Removing the zeros at points 17 and 20, the carried-over values

12(CO) _  (1+2a)b  x _ 12(CO)
Q17( ) - (1(+ a)Xi)v.Oz Z on(
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become involuted starting values and form series corresponding to
' Case II of the external series. The function coefficient at any point ij

due to these starting values is

(1+ 2a2b 7(II)

13 (1 +a)X'y,

- Fig. 100
Isolated Three Point Set ~ Case TTA

The final results, Case IIA, are thus

12(ITA) _ 1 Lt 2a)b o L7(0) _ 12(TTA)
Q. S vl SR s Bt

i

12(IA) _ b A 1+ 2a) 171 _ _ ~ 12(TIA)
Q T+ Xy, 2 j1+—a)zfﬁ— DT T
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12(IT1A) _ b X (1 + 2a)b 171y _ o 12(IIA
Qg T+Fa)X7, 2 * (T+a)XT, Qg = " Qg :

12(I1A) _ (1 + 2a)b 1701) . 12(TA)
Q7 = é‘( Ta)X :’oiz Q7 = " Qg

12(IIA) A)

Q Q5" =0

Final function values on the twenty-eight point set, starting

value X at 12, are obtained by superimposing the results of Cases IA

and ITA.
0y A A X -2
2 2 2 2
= +
Initial System Case IB  Case IIB
Fig. 101

Resolution of Tweniy-Eight Point Triangular Set with
Starting Value X at Point 8 into Bagsic Cases

If now a starting value at point 8§ is considered, a solution can

be achieved by resolution (Fig. 101) followed by direct involution.

Case IB. This system is a modification of Case I. Introducing
over-relaxation factors and modified carry-over factors as shown in
Fig. 102, it is necessary to congider only those involuted starting val-

ues induced by the value —;— at point 8. The over-relaxation factor
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eliminates carry=-over into points 5 and 9, and the values carried into

points 12 and 13 develop series previously defined and determined.

A

/ \
/ \
/ \
/Removed
\
8\
7\\
7N
/
/ \
b by / \
(1-a)X7 2 /——Removed %
13 \
\ /
\ / \
\ / \
N \
s NS N
Fig. 102

Involuted Starting Values - Case IB

Superimposing these series and the over-relaxed starting val-

ues, the results are:

Q. 8(B) . 2 r, b Q.13 4 b Q12(14)
5 T=a)Xp, 2~ [IT-a)Xp, 5 (T=8)Xp, 5

QB80B) . 1 _ - b Q.13 4 b Q 12(A)
8 T-a)Xp, 2~ (T-a)Xp, ~8 =X}, 8

—
=

ngg(IB)
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and for any other point ij

8(IB) 13 b 12(1A)

b
Qy; =o)Xy, % Y uEaxyg, 9
Case IIB. The modification of this system is shown in Fig. 103.
The value at 8 carries-over to point 12, introducing an involuted start-
ing value at that point which develops the series of Case IIA. From

superposition the final values are

8QIB) . 1 b 12(I1A) _ . 8(IIB)
Qsm)‘1+a“‘2“+"“"1+a'Q8 ( =-Qq

and for any other point

8(IB) _ b 12(I1A)
i ( T Qj

]

Q

5
A
4\
AN
4 \
8
/ \\

\ /
\
0\\ / \\

_— ~\7§ 3 Removedx
/ \\ // \

\
/ N/ \
N/ \
18 N N

Fig. 103
Involuted Starting Values - Case IIB
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Final results, starting value A at point. 8, are obtained by superimpos-
ing Cases IB and IIB.
For a starting value at some other point of the finite-difference

net, the function values can be determined by resolution and involution

in a similar manner.

5=8 The Laplace Equation. In triangular coordinates the Laplace

equation has the form

2 "2 n2
29 sin2p-a - 23 sinzs + 29 sin2a = 0 (39)
Ju ov oW

with @ equal to a given function G(u, v, w) on the boundary (38).
For a symmetrical network (8 = 7 = @), the corresponding

finite-difference equation written for an interior point ij is (Fig. 78)

{ 3\
2( Q1,5 * oy, )

1 Pt (40)

POQy 11+ Q-1 T Qug, -1 T Ruer, a1

\ J

At a boundary point kl, the function Q takes on the value of the given

function G-

= G (41)

QU Kl °

The boundary‘values are the starting values, and carry-over
proceeds from the boundary into the interior of the net, as previously
discussed in Art. 2-6. The finite-difference solution is again obtained
 from related solutions of the Poisson equation.

The interrelationship is established by considering the finite-

difference equation written for a point ij "a‘djacent to the boundary.
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From Fig. 104 this equation is

‘ | (
| Qg 5) 2 G,
Qjy = 9 | + < | .
bQy; 541+ 9y, 5-17 Ry, 3-1) DGy 541

ALl \A, 1

Boundary
i+1,7

i+1,j~-1

/\ N\
Fig. 104
Finite Difference Net Adjacent to the Boundary

Comparing this equation with the Poisson equation in finite-difference
form (Egq. 35), it is evident that the sum of the carried-over values

corresponds with the value Qli" This

wbove (8 Gy, 5 * P Giog g1)

sum may thus be congidered a new starting value at point ij and alge~
braic carry-over performed as before.

Final results for function coefficients due to a starting value X
at a boundary point of the triangular network are therefore equal to the
sum of final results due to starting values ) at the adjacent interior

points, multiplied by the corresponding carry~over factors, . .



THAPTER VI

ANALYSIS OF ALGEBRAIC CARRY-OVER

6-1 Philosophy. The solution of simultaneous linear difference equa-

tions by the algebraic carry-over method is presented in this disser-
tation. From the literature survey it is concluded that algebraic
carry-over is the only knownk approach to the problem which yields
exact final values obtained by summing infinite geometric series.

The basic philosophy behind algebraic carry-over is the con-
cept that certain types of matrices lend themselves to a solution by
the series approach.  These matrices need not be limited to finite-
difference approximations of continuous systems, as considered here,
but may represent the true sets of equations defining finite systems
(eg. continuous beams or frames).

The method of procedure derives from a visualization of the
problem on the finite network which serves as a model for the phy-
sical situation, as demonstrated in Chapters II th.fough V, and the
actual matrix is not directly investigated. It is nevertheless true
that, as the carry-dver proceeds, the matrix is divided into sub-
matrices (corresponding to isolated point sets), and the submatrices
are then interrelated (corresponding to carry-over series).

The steps of this procedure are:

(a) Selection of the point sets which can be isolated and

so‘lved by geometric series.

149
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(b) Determination of the method of interrelating these
isolated systems so as to again form geometric series,

thus achieving the final solution of the problem.

6-2 Principles. The two fundamental principles of the algebraic

carry-over method are the principle of the isolated system and thé
principle of interrelated systems.
I. The Principle of the Isolated System:

A portion of the network can be isolated and analyzed

independently by surrounding it with suppressed points

(points for which the function values are temporarily

taken to be zero).

II. The Principle of Interrelated Systems:

Two or more isolated systems can be interrelated and

analyzed by determining the carry-over values flowing

between them.

These principles correspond with steps (a) and (b) above (Art. 6-1).
The second principle, concerned with a final interrelétion of portions
of the network, may be conside;r-e'd'.fhé,. inverse of the .ﬁr’::s»_t principle,
which pertains to the initial isolation of these éyStems. Taken to-
gether, Principles I and II formulate the basic procedure of the al-
gebraic carry-over method és presented in this dissertation.

There are in addition a number of other principles which fa-
cilitate the application of carry-over to the solution of finite-difference
problems. The first of these are two broad and well known principles
applicable to all linear systems: resolution and superposition. As

used here these principles may be stated as follows.
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(a) Resolution: The analysis of a geometrically arranged
finite network with unsymmetrical starting values can
be simplified by resolving the system into ;iaasic cases
which take advantage of various combinations of symmetry
and antisymmetry.

(b) = Superposition: Final results for function values on the
network due to the initial system of starting values are
equal to the algebraic sums of the results corresponding
to each of the resolved systems.

The second set of principles, corollaries of Principles I and II,
are concerned with elimination of certain portions of the network from
consideration in the carry-over procedure. The first of these, the
concept of reduction, pertaiﬁs to elimination by geometry, the second,
that of over-relaxation, to elimination by removal.

(c) Reduction: Any finite network containing two symmetrical

systems A, A', or two antisymmetrical systems A, A",
can be reduced to a modification of the single system A
by incorporating propefly modified carry-over factors.

(d) Over-relaxation: A portion of the network can be removed
from the carry-over procedure by introducing the corre-
sponding over-relaxation factor at the point connecting
the removed system with the remainder of the network.

The final principle is that of involution, which enables the so-
lution of one problem to be obtained from the solution of others.

(e) Involution: The function values on a finite network due to

a starting value X at some point k1 are equal to the alge-

braic sums of the function values due to starting values
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A at points adjacent to kl multiplied by the corresponding

carry-over factors.

6-3 Conclusions. The system of finite~difference eqﬁations:c:orr.espond-

ing to either the Poisson or the Laplace equation in reectangular, skew,
polar, or triangular coordinates can be solved by summing infinite geo-
metric series. Each final result is the algebraic sum of one or more
infinite series whose terms are in themselves infiniie series. The so-
lution of Poisson's equation for a starting value at any point is achieved
by resolving the corresponding network into simpler systems and super-
imposing the final results. Resolution is performed in such a way as to
reduce each system to one solvable by interrelating its isolated parts.
The solution of Laplace's equation for a prescribed boundary value is
achieved by involving solutions of Poisson's equation through the method
of carrying-over from the boundary.

Three classes of series are defined and used in the solutions:
- the basic series, the circulatory series, and the carry-over series.
The basic and the circulatory series correspond with solutions of iso-
lated point sets, step one of the carry-over procedure (Art. 6-1). Thev
basic series is a simple geometric series forming on an internal set of
points; the circulatory series is the sum of several series forming on
one or more external closed rings. The carry-over series interrelates
these two, and thereby corresponds with step two of the carry-over
procedure (Art. 6-1). The internal and the external series, special
higher order forms of the bagic and circulatory series, are obtained
in certain cases. All final values are expressed in terms of these

various series.
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6-4 Extensions and Applicationg. Having established the fact that

solutions of finite-difference equations are obtainable and feasible by

the algebraic carry-over method, the possible uses of these solutions

can now be considered. Three important applications are immediately

evident:

(a)

The numerical error inherent in an approximate numeri-
cal solution of a finite-difference net is not present in an
algebraic carry-over solution. Thus whenever an "exact"
classical solution of the original differential equation is
available for some gpecial eonditions, the true error in-
volved in using networks of varying degrees of fineness
can be determined. In.this way, conclusions may be
reached pertaining to the minimum number of points
which should be congsidered in a given problem in order
not to exceed the allowable range of error.

In many cases, networks solvable by algebraic carry-
over will yield solutions sufficiently accurate (in terms

of the "exact'' solution) that they can be evaluated for
various values of the parameters involved (eg. length-
width ratio and load position for rectangular plates) and
useful tables prepared.

Whenever function values on finer networks are required
but complete solutions by algebraic carry-over are not
available or feasible, the existing algebraic results can
be used as an excellent set of initial approximations at
the network points, and a rapidly convergent numerical

iteration or relaxation procedure can be carried out.
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These important applications are direct extensions of this dissertation
and should be more fully investigated by research workers in the near
i‘uture. The ideas presented in points (a) and (b) have already been
adapted to the special problem of simply-supported rectangular plates.(42)
A modification of point (c) was used by French (15) in applying a humeri« .
cal carry-over procedure and incorporating over-relaxation factors anci
direct carry-over factors for bagic point sets within the finite-difference
network.

Finally, the results obtained in this dissertation suggest an even
more important extension of the work that has been done: the concept
that summing infinite geometric series may actually be the most natural
approach to the solution of many classes of matrix equations. Selecting
the network to fit a given system of equations and then visualizing the
series which form on that network could well be the true physical-mathe-
matical interpretation of this problem.

As only those types of matrices formed by five, seven, and nine
term difference equations are considered Iieré s it can not be concluded
that the extension of algebraic carry-over ‘to a general matrix would
prove feagible. However, the relative simplicity with which solutions
have been obtained and presented for the systems of equation investi~-
gated indicates the desirability of pur_Suing research along these lines.

It mighi ultimately prove possible to classify matrices into basgic types
and demonstrate directly on each matrix the methods of isolation and

interrelation which have been presented on the network.
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