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PREFACE

The scope of this study is primarily concerned with the construction
of analytic functions having, as singular sets, certain closed and bounded
sets, In comnnection with the functions constructed, I show that they
are: (1) analytic in the extended complex plane except at points of the
given closed and bounded set, (2) single valued in the complement of this
set, and (3) has each point of the given set as a singular point.

The ideas for this thesis evolved while I was a student in the
Department of Mathematics at Oklahoma State University working mainly
with Dr. O, H. Hamilton. I wish to express my gratitude to Dr. Hamilton
for his sound and patient counsel, his helpful criticisms, and kind
interest given me in the preparation of this thesis,

I am also indebted to the John Hay Whitney Foundation for a grant,

which made the preparation of this thesis poasible,
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CHAPTER I

INTRODUCTION
A, Statement of the Problem

V. V. Golubev, in his study, "Single Valued Analytic Functions
with Perfect Singular Sets," (7, pp. 107-157),% constructed, by
using definite integrals, single valued analytic functions having
a perfect, nowhere dense set of singular points. In the attempt
to extend his work to the problem of constructing, under very
general conditions, analytic functions bhaving a perfect, no:heras
dense, singular set, he posed the following question: Given an
arbitrary, perfect, nowhere dense point set E of positive lebesgue
one-dimensional measure in the complex plane; is it possible to
construct, by passing a Jordan curve through £ and by using definite
integrals, a single valued function, analytic in the extended plane,
which has E as its singular set? (7, pp. 128-129).

A more general problem with which this study is primarly con-
cerned is that of constructing analytic functions having for their
singular sets certain closed and bounded sets.

The present investigation is divided into three parts. In Chapter

II, we shall require the set E to belong to the class of irregular

lNumbers in parentheses refer to the bibliography at the end of
the paper.



point sets of finite (different from zero) Carathsodory linear
measure.2 Ve shall éssume that E possesses Property A; that is, if
p is any point of E, every neighborhood of p contains a subset of E
whose Caratheodory linear measurc is different from zero. Although
point sets belonging to this class were not included in Golubev's
investigation, from a set theoretic point of view, the present
investigation and his are comparable. Ve shall obtain, by using
definite integrals, a function @(z) having the following properties:

(1) @(2z) is analytic in the extended complex plane
except at points of E;

(2) @#(z) is single valued in the complement of &;

(3) Each point of E is an essential singularity of #(z).
Such a function, as far as we have bcen able to determine,Ahas not
been constructed for any irregular set.

In Section 1 of Chapter II, we define, for functions bounded and
measurable on E, an integral over E by using Caratheodory linear
measure. In Section 2, employing the integral thus obtained, we define,
in the compiementary sét, an analytic function by means of its integral
over &. In Section 3, we generalize Golubev's technique of construct-

ing a curvilinear integral of a function defined and continuous for

2Point sets of finite (different from zero) linear measure are
divided into two classes: the first, consisting of regular sets, and
the second, irregular sets. Regular sets are analogous to rectifiable
curves; irregular sets are dissimilar to regular sets in fundamental
geometrical properti:s. (Cf. 1, pp. L2L-L26; 3, pp. 1h2-1L3).
Throughout this study, the terms "measure" and "me:surable® shall
always be understoocd to mean "Caratheodory linear measure" and
Caratheodory "linearly measurable™ respectively.



a regular set E on a rectifiable curve, to the case where E is an
irregular set, having Property A, on a non-rectifiable Jordan curve,
We give, in Section 4(a), some properties of the curvilinear
integral; and in 4(b), we establish the equivalence of the two types
of integrals constructed on irregular sets.

In Chapter III, M is regarded as a bounded, non~degenerate,
locally connected, plane continuum which does not separate the plane.
We determine that there exists an analytic function F(z) having M as
its singular set by employing a new approachj that is, by making
use of the mapping of the complement of M onto the intérior of the
unit circle by a simple analytic function. The analytic function
F(z) is thus defined without the help of integrals.

We summarize our findings and give recommendatioﬁs for further

study, in Chapter IV,
B, Definition of Terms

We give, in the following, definition of terms that are used
in this study.

1, ILet E be a plane set of points, and P an arbitrarily chosen
positive number. Let Ul(P’E)’ Uz(P’E)’ cee 9 be’a finite or denumerable
sequence of open convex point sets which satisfies the following
conditions:

(a) Every point of E is an interior point of
at least one of the seta U, Uz, cee 9

9
(b) The diameter of U (pyE) is less than
for all valuegkof k.k P P



Denote by U(?,E) the collection of points Ul(P,E), Uz (P,E),
«ss 9 and denote generally by di the diameter of the point set

U i(P'E)° Let L’> represent the greatest lower bound of the sum

U r,E
for all possible coverings of E, As P decreases, L_ cannot

P

decrease, Consequently,

always exists, finite or infinite. L*(E) will be called the
Caratheodory exterior linear measure of E,

A set E will be called measurable if, for every set W of
finite exterior linear measure, the relation

L*(W) = L*(EW) + L*(C(E)W)

is satisfied, If the set E is measurable, we denocte the number
L*(E) by L(E) and call it the Caratheodory linear measure of E.

2, Let E be a linearly measurable set, and let p be any

point of the plane whether belonging to E or not. The upper

de-aity D*(p,E) and the lower demsity D (psE) of E at the point

lin sup LgEﬂcélg,rz 2

r—->0

r will be defined as

lim Inf

L(ENe(p,r))
r->0 2r



respectively, where c{p,r) is a circle with center p and radius
r. If D*(p,E) and D,(p,E) are equal, their common value will be
denoted by D(p,E) and will be called the density of the set E at
the point p.

3. A point p of a set will be called a regular point if
the density, D(p,E), exists and is equal to unity. Otherwvise,
the point p will be called irregular (1, p. 424). If almost all
point33 of E are regular, the set itself will be called regular,

(1, p. 424). If the subset of E consisting of irregular points is
of positive Caratheodory linear measure, E will be said to be irregular.

Ae A continuum is a compact,connected point set with at
least two points.

5 A point set M is comnected if and only if it cannot be
represented as the sum H‘l U Mz of two non~empty disjoint sets both
of which are open relative to M or both of which are closed relative
to M,

6. A non-null open connected set is called a domain,

7. A set of points M is bounded if the distances between pairs

of points of M have a finite least upper bound.
8, A point set which contains all of its 1limit elements is closed.
9. An oren curve is a locally compact continuum which is separated

into two connected point sets by the omission of any of its points.

3
"Almost all® is used here to mean %except at points of a
set of linear measure zero."



C. Review of the Literature

The curfent problem is one that has evolved as a result of
investigations made by various authors. D. Pompeiu (13, pp.914-915)
was the first to exhibit an interest in constructing, with the help
of defini?e integrals, an analytie function having a perfect,
nowhere dense, bounded set of essential singular points, He proved
that there exist a set E of two dimensional positive Lebésgue measure,
and a function continuous and analytic in the extended plane with
singular points in E,

Employing definite integrals, A. Denjoy (6, pp. 258-260) showed
the existence of a single valued function, analytic in the extended
plane, having a perfeét, nowhere dense set E of essential singularities
of one dimensional positive Lebesgue measure in the linear interval
0<x<1.

Golubev (7, p. 122) extended Denjoy's result to the case in
which E was a perfect, nowhere dense set of one dimensional positive

Lebesgue measure on a rectifiable curve L. He formed the function

b Pn
_e 4t _ o __dt E dt
£(z) ST-z St-z - S -3
a an

where (any bn) are interval components of L whose union is the

complement of E on L, a, an element of L, b, an element of L, a, < by,

for each n, t being any point of E, and z a fixed point not on L,



where " < " means " precedes " in a particular order. The line

integrals
| boat °n dat
S t -2z and  § t-2"
a a,

which are deprendent upon the particular rectifiable curve L, are
taken in the Lebesgue sense,

He in#eatigated the case in which a perfect, nowhere dense
point set E of positive one-dimensional Lebesgue measure is located
on a Jordan are C, x = x(t) and y = y(t), and established a corre-
spondence between E and a perfect nowhere dense set Et located on
the t-axis. Golubev considered further the integral of a function
@#(t), defined and continuous, for t in E, and constructed a single
valued analytic function having E as its singular set. Using the
construction

- d
£(s) = % x(t) - =

t
thus obtained, he disclosed that this rerresentation of the function

£(z)y in contrast with previcus analyses, was burdened with one

defect which considerably decreased the valus of such a representation.
The set Et’ located on the real t-sxis, and upon which #(t) depended,
was not related closely enough to the set E on the Jorden arc C to
permit one to infer significant properties of £(z) from the analytic

expressidn ﬁhich represented it. (7, pp. 127-129).



CHAPTER TI

- ANALYTIC FUNCTIONS WITH AN IRRECULAR
SET OF SINGULAR POINTS OF POSITIVE
CARATHEODORY LINEAR MEASURE

Section-l., Integral Representation. We consider, in the resal

plane, an irregular, closed and bounded point set E., Let p denote
any point of E, and f(p) a single valued, real valued function of a
point defined, bounded and measurable on E with respect t» Caratheodory
linear messure. A function f(p) is said to be messurable if for each
M > 0, the set E(f > )) has Caratheodory linear mensure.

We insert between the upper bound M and the lower bound m of
f(p) the following numberss

uo_gul_f_nz_g...’;nn_l_f_un.'
(no:m, ltn"‘M)

Let @ be greater than zero, and let these n divisions of the range

of f(p) be such that the greatest of these parts ¥, ~ X

5 il,fori=l,

2y oee s N is less than @,

Let Ei be the subset of E consisting of those points of E for

which n, _ < £(p) < o, . Dencte by g‘(p) the function which has the

i-1

value “1-1

function which has the value u, at all points 6f.Ei

eee » N} where AEi is the Caratheodory linear measure of E

at all roints of Ei’ for 1 =14 24 oo 3 0} 1let he(p) be the
s for 1 =1, 2,

1; and let

n
du = LE ~ (1.1)
]Sgse(p) u n,_,LE, (
=1



,ghﬁ(p)du = MLE, . (1.2)

Then
0 < Sh (p)du - Sgelpldu < 6 LE, = 6L(E), (1.3)

EB E6 i

i=1

vhere L(B) is the Caratheodory linear measure of E, since E is
linearly measurable,

Let, now, the range of f£(p) be successively subdivided by
introducing further points of division such that the corresponding
values of & form a sequence (em) such that ‘m approaches zero as

m aprroaches infinity., The set of numbers

Sgg (p)du and She (pldu
E'm E™n

are both bounded and monotone, the first being monotone increasing
and the second, monotone decreasing, As a result, these two sets

of numbers converge to a cormon limit as m increases without linmit.

This limit,

i} ';l.i;nw gg‘m(p)du = i -l-imm E“e,,,‘p"’“ (1.4)

"1s defined to be the valus of the integral

Sf(p)du
E

‘of £(p) taken over E,
We show that the value of the limit is independent of the
particular mode in which the range of f(p) has been successively

subdivided,



Let E;(p) and E;(p) be functions which correspond, in a second
mode of subdivision, to ge(p) and he(p). We superimpose these two
subdivisions of the range of f(p) and let E; (p) be the function

m

defined with respect to this new subdivision as €e (p) is defined
m

above, We have

) _<.§ gem(p)du- % gem(p)du < « L(E) (1.5)
0 f.% Eem(p)du - % Eem(p)du <e L(E) (1.6)

To show the first inequality, we note that in the finer subdivision

of the range of f(p) the difference between the maximum M and the

minimm m of £(p) in a given interval d of the subdivision is less

then e since this difference was less than e on the larger intervals

of which 4 is a subset. E; (p) and g‘(p) are values of the function
m

on the interval d and hence have a difference less than |M - m| which

is less than @ . By reasoning similarly with'Eé (p) and E; (p) we
m m

show the second inequality., Consequently,

l SE‘: g,m(p)du - SE': 'g'em(p)du | < ¢ LE).  (17)

As m approaches infinity, @,L(E) approaches zero. Therefore,

lim § g (p)du = lim § g, (Plaw.  (1.8)
m=—>c,kE m=—=>c.,E m

The same reasoning applies to the functions E; (p), he (p) and
m m

ham(p)-

10

We establish the following Lemmas, They will be used in connection

with the proof of Theorems appearing later in this study.
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Lemma I, If E = El U Ez where Ey and Ez are two disjoint subsets

of E, E, E1 and E2 being e: ch Caratheodory linearly measurable, and,

£(p) is measurable and bounded on E, E;, and'Ez. then,

Sf(p)du = § £(pldu, +§ £(p)du .
SEpu glpul sEzp )

Proofs Each of the ashtove integrals exist since f(r) is measurable

and bounded on E, El, and Ez' From the definition of the integral,
St£(pldu = lim  Jgg (p)du.
E m"‘>wE m

In like manner

§ flp)auy + § f(plau = lim  § gy, (plduy, + 1im § g (plau ,(1.9)
By 1 Ez 2 n = mEl lem 1 m = o Ez zem 2

where the limita are independent of the particular mode in which the

range of f(p) has been successively subdivided. Ba (p) is that function
- m
which has the value u,_; on EH» 1 =1, 29 cee 9 m2 gl‘m(p) and gz‘m(P)

are functions which have the value uy_q on Eli and E,i respectively.

Consequently, m
El n 5
1i=1
Q =
s z“m(p)du uy_1AE (1.11)
2 =

Now in défining

Sr(p)du , § f(P)dult and § f£(p)du_,
E E E 2

1 2
(p)

we use the same subdivisions of the range of f(p). Therefore, g

lam
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and g o (p) differ only in notations from g4 (p), that is, for every
) m

E.
gl‘m(p) on El’ there corresponds the same function gq (p) on In

m
like manner, the same reasoning applies to g, e (p) on Ez' Corresr:ondingly,

“le,

integrals,

m
(p). Forming the sum of the
m .

(p) and g,q (p) can be replaced by g
m

§ f(p)du, and § f(p)du
E "1 E 2
1 2

and making use of the foregoing, we have,

0

1y f(p)dn1 + % f(p)du.2

1i: Jau, + lim })du
| 2 n Slzl‘m(p uy ng‘m(p .

m=>c»E n -> cr:Ez

1n  Sg. (p)du = %f(p)@ (1.12)

m-=>c~nE
since L(B) = L(El) + L(Ez)’ where L(E), L(El)’ and L(Ez) denote the

Caratheodory linear measure of E, E_, and E2 respectively.

1
A similar determination can be achieved using $hy (p). But
N E'm
lin  $h (p)du = lin g, (p)du = S$f(p)du.
m=>cwrE 'nm mn~>cE m E

This Lemma may be extended, by induction, to the case where E is the sum

of any finite number of disjoint point sets.

Lemma II, If f(p) is unity, then Sdu = L(E), the Caratheodory
E

linear measure of E.

Proof: Since f(p) is bounded and measurable on E having respectively

M and m as its least upper and greatest lower bounds,

Smdu <§f(p)du < S$Mdu, (1.13)
E T E E

From the definition of the integral, we have
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i
§ mE, < %g‘m(p)du < %h‘.m(p)du < > MAE,, (1.14)
= f=1

where AE:[ denotes the Caratheodory linear mensure of E:l'

cage in wvhich m=M=1, € (p) = h‘ () =1 for every m. Upon
n mn

In the specisal

passing to the limit as in (1.4), ve have £(p) = 1, and consequently,

Sdu = L(E)
E
Lemma ITT, %kf(p)du = ISEf(p)du’

that is, a constant factor may be placed before the integral sign,

Proof: In relations (1.1) and (1.2), we replace the factors u_y

and u, by kwy_y and kuy respectively. For each m, %kg‘m(p)du = kl)';gqm(P)du.

From the laws of operation with limits, we have

lin  Skg, (p)du = ¥lim Sgq (p)du (1.15)
m=> cwE m m=> s E m

A similar relation holds for  1im §$kh, (p)du. The final result
m=>c¢nE m
nov follows from the definition of the integral.

Lemma IV, I%f(p)dul < %If(p)[du < ML(E),

vhere M denotes the maximum valus of f(p) over E and L(E) the Caratheodory

linear measurs of E, ,
Prooft f(p) is defined on E, Then £, (p) and £_(p) nre defined on
E as follows:

£(p) 1£ £(p) > O. -f(p) ir £(p) <O.
£,(p) = £ (p) =

0 otherwise. - 0 otherwise.

f+(p) = max(f(p)s0) and f£_(p) = -min(f(p),0). Since £(p) is bounded



and Caratheodory linearly measurable on E, £ (p) znd f_(p) are like-
wise bounded and Caratheodory linearly measurable on E, The integral

of £(p) over E, in terms of f_(p) and £_(p), is thus defined by

Sf(plau = 91, (p)du - $f_(pldu. (1.151)
E E E
Now let E) CE be the set on which f£{p) > 0 and E <E be the set on
which £(p) < 0, We have
Sf,(plda =3 £ (p)du =5 [£(p)]|au, (L.152)
E E, E,
and similarly,
Sf_(pldu =$ f_(p)au = |f(p)|du. (1.16)
E E E
2 a
From (1,152) and (1.16)
glf(p)ldu = SE‘f+(p)du + %f_(p)du. (1.17)

since E = El 1] Ez’ From (1.151) and (1.17), it follows that,

ML(E) > S;lf(p)ldﬂ 2 |§f+(p)dn - lS“;f.(p)ﬁul = lif(p)d\l! (1.18)

Lemma V. If f(p) and g(p) are two single valued, real valued,

functions of & point defined, bounded, and measurable on E, then,

S(£(p) + g(p))au = S$f(p)du + Se(pldu
E E E

Proofs Each of the given integrals existsy for since £(p) and g(p)
are each bounded and mensurable on E, then (£(p) + g(p)) is bounded and
measurable on E, We show that the integral in the left member of the
equality is equal to the two integrals in the right member,

First, we cornsider $(f(p) + A)du where A is a constant. From the
B

def'inition of the integral,
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’ m
S(f(p) +A)dw =  lim §gg (p)du +  lim 5 ACE,. (1.19)
E m-=>c>E m m ~> wn
i=1
Upon passing to the limit as in (1.4),
S(e(p) + A)au = §f(p)du + SAdu = §f(p)au + AL(E). (1.20)
E E E E

We next consider the integral of the sum of two functions,(f(p) + g(p)),
each being bounded and measurable on E, Let E be decomposed into n disjoint

measurable subsets Ei corresponding to functional values ul-l-ﬁ f(p) < Uy

vhere 1 =1, 24 ... s n. We have,

n

S(e(p) + gp)dn > \ S (u_y +e(p)aw, (L21)
e { = Ei
and, . n
%(f(p)-Pg(p))dn < %(“1 + g(p)lang. (L.22)
i
i=1

But by (1.20),

% (n.‘l-l + g(p))dui = % ui-ldui + % E(P)duit
i i i
and,

S (w, + glp))duy = § wdu; + § glplduy,
By B Ey

for each i, Making use of Lemma I, we have, from (1.21), (1.22), and (1.1),

Se(pldu + Sgg(plau < $(f(p) + g(p)lau < Se(plau +Sh (p)du  (1.23).
E E E E E

As the range of f(p) becomes successively subdivided by introducing
further points of division such that the corresponding values of e form

a sequence (em) ~> 0, the set of numbers %ge‘(p)du and Sh‘ (p)du converge
m Em
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to the common limit $f(p)du as m increases without limit. It follows
E

that $(f{p) + g(p))au =§f(p)au + Sg(p)du.
E . E E

Section 2. Analytic Functions Defined by Means of An Integral

Over its Singular Set., The integral of f(p) is a real number that depends

upon the point set E. In order to extend the integral to the complex
domain, we consider a complex valued

F(p) = £(p) + 1g(p) , (2.1)
where f(p) and g(p) are real valued functions, defined, bounded, and
measurable over E with respect to Caratheodory linear measure. Then,

SF(pldu = §f(p)au + 1 Sg(p)du (2.2)
E E E

is a complex number that-depends upon the set E,
We consider now the complex valued function

#(z) = S};F(p,Z)du ’ (2.3)

defined by a definite intégra.l which contains in the integrand a

parameter z, if F(psz) is a single valued function defined, bounded,

and measurable when p lies in E and z is a fixed point in the cbmplementary
set, C(E). We now establish Lemma VI which will aid in proving I,

Lemma VI, If E has Caratheodory linear measure, and F(psz) is

continuous, bounded, and measurable for z in C(E), and F(p,i) possesses

partial derivatives Fx(p,z) = Ux + iVy and Fy(p,z) = Uy + iVy, continuous

for every p in E and z in C(E), then,

#(z) = SF(pyz)du
E

exists for each z in C(E) and possesses derivatives with respect toxandy
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continuous in C(E)s namely,
¢x(3) = %Fx(Psz)du

# (2) =SF (psz)dun
y EY

Prooft Let F(psz) = U{pyXey) + 1¥(pyx,y). Then

% = 2 %‘U(P'mﬂ) = Ulpsxsy) + L(V(pyxtdxyy) = V(psxsy)))du. (2.4)
g = Um 725 (U(pyxtix,y) = U(psxey) + 1(V(psxttixsy) = Vipsxsy)))du,
bx ~> 0 E

(2.5) U(psxsy) and 1V{(pyxyy) have continuous derivatives with respect to
x and y by hypothesis, In order to apply the Theorem of Mean Value to
the above equality, we consider a closed interval a < x < b on the x axis,
For any x in this closed interval, ,

~ 1im
%g = Ox => 0 le %(Ux(p.ﬁﬁlbx,y)lkx + ivx(p,x'i'GzAx,y)Ax)du, (2. 6)

where 91 and Gz are positive real numbers each mumerically less than one.
Since, by assumption, U, (psxsy) and Vx(psx,y) are jointly continuocus in
Ps X, and y, the coefficlents of &x in (2.6) will approa?:h Ux(p,x,y) and
v x(p,x,y) as 1imits when &x approaches zero as a limit, Hence, if e, and

°a are infiniteasmals such that

axi:ino‘l=mi§mo.‘ =%
we may write
Uy (poxt8y0x57) = Up(paxsy) + €7,
Vi(psxt® Lxyy) =V, (poxsy) + 6, .
Hence,
%f = Ax _1_:’:’0 gé%(ﬂx(p.xsy)ﬁx + 1v(p-x,y)ﬁx + e;Ax + @ Ox)du. (2.7)

Therefore, given an @ greater than zero, there exists a § greater than



sero, such that if &x <@, then
-1
o <mEy e o, <rlEy-
We have
é E ( (Ux(p,x,y) + 1Vx(p,x,y)-)£sx + oy0x + Qabx)du = g(ﬂx(p,x.y ) +
1vx(proy) + ‘1 + Ca Jdu, (?.8) |
Now for Ox < 5;

‘% - ;Fx(p.z)dul = |z %((Ux(p.x.y) + 1V (poxsy))ox + @,0x + @ Ox)du -

| Si(_@_,s(p,x.y) ;x 1V, (poxey ) Jox
E

SI;Fx(p.l)dul = +te te Jdu - %(Ux(p.x,y) -

iVx(p.Xpy))du| = E:(gl + ca)du ig( zﬁm + E&T)du = Z%ET E:du +

SiTET Sou = e/2 + o2 =@, by lemmas I, TI, and IIL (2.9)
E

But @ is arbitrary, and hence,
¢x(s) = g?x(p.z)du. (2.10)
%y ressoning similarly, ve sﬁow that

¢y(z) = ?’y(p,z)du. (2.11)

This proves the lLemma,
We now establish the following fundamental integral theorems

THEOREM I, If Flp,z) is a contimuous, bounded, and measurable

function of p for a fixed = and continuous in z, the function
#(z) = SF(pys)du
E

is cont’nuous in C(E),
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Moreover, if F(p,z) has for each z a derivative Fz(p,z) continuous

 in p and z together, the function @(z) is analytic in C(E); that is,

#(z) = SFz(p,z)du
E

Proof: In order to prove the first part of the Theorem, we form the

difference

d(z + b2) - #(z) = SE‘(F(p. z + Oz) - F(p,yz))du. (2.12)

Let e be greater than zero. If F(p,z) is continuous in p and z for every

p in E and z in C(E), there exists a d such that for Az sufficiently small,
|F(pyz + £2) - P(pyz)| < Z%E.)
for |Az] < d and for all p and z. Therefore, by Lemmas II and III,

|8(z + 02) - B(z)]| =§|F(psz + Oz) = Fpyz)|du < &= Sdu = €. (2.13)
E L(E) &

Since @/L(E) may be made as small as desired for € sufficiently small,
the continuity of #(z) is assured under the conditions of the Theorem.

A necessary and sufficient conditionvfor F(p,i) to have a partial
derivative F,(p,z) for each z = x + iy is that Fx(p,z) and Fy(p,z) exist,
be continuous, and satisfy the Cauchy-Riemann differential equations,
Hence, from the existence and continuity of the partial derivative Fz(p,z),
there results the contimuity of the partial derivatives Fx(p,z) and
F (Poz).

y

Let F(pyz) = U(pyx,y) + iV(pyx,y). Since F(psz) is analytic in the
complementary set, the Cauchy-Riemann differential equations are
satisfieds that is, Ux(p,x,y) = Vy(p,x,y), and, Uy(p,x,y) = <V, (psxyy).

Also, let #(z) = u(x,y) + iv(x,y). Then,
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#(z) = %F(p,z)du = gﬁ(p.x:y)du +1 %V(p.xoy)du:

vhere

u(x,y) = %U(pax.y)du and v{x,y) = }S;V (paxyy)du,

Hence,

u (x,y) = %Ux(p.x.y)du = gvy(p.x.y)du = vy (xs3) (2.14)

by Lemma VI. Also,

u, (xsy) = gﬂx(p.x.y)du = -SE'Vx(p.x,y)dn = =vy(xsy) (2.15)

for the same reason, Therefore, the Gauchy—ﬁieménn differential
equations are satisfied for @#(z), and, this function is analytic in C(E);
that is,

g (z) = %Fz(p.z)du. (2.16)

This proves the second pert.
let us now apply the theorem and the lemmas proved above to the
construction of a function @F(z) having a given irregular set E of positive

linear measure ags its singular set. Accordingly, let

Flpyz) = 5—1'—2'

vhere , is any element in C(E), and construct the function

#(3) =5E‘5—En;-

This intepral exists and is analytic by Lerma VI and Theorem I. #(z)

is an snalytic function. TIis derivative is given by the formula

g (s) = §(;T?‘z')= ' (2.17)

for let z belong to C(E), we form the difference quotent



Q‘ bz) - ﬂs ! 1 du
g + £ 2 SEt(p ~ zl e — Q&)(p =" (2.18)

The 1imit of this integrand is

1
(v - 2)*
We show that the limit of the integral is
S,
g -2
COHSidOr’

o du - |
2P -z-08)p-2) SE'(;;%‘;): +Az§(pv_ - .sz)(p —yze  (2.29)

The second integral in the right member of (2.19) ie boundedy for let d

be the minimum distance from z to E, then,

1
'(p -z -0z)(p - 2 < @

if h is chosen so that D < h < ds and, |Oz] < h, Hence,

du . (2,20)
ST £ M) e < G K

Lz|§

Therefore, the second integral in the right member of (2.19) aprroaches

sero as Oz approaches gero. Thus,

g dy. .
%(p T3 < bz)(p < z) 2PProaches g(p - z)**

Azt bz) = dz) v —dn
Hence, y approaches a 1limitg namely, #'(z) = ,l?g(p e

In a manner similer to that used above for ﬂ(z), we can show that

¢' (z) = g(ﬁ)z

is analytic at every point of the complementary set, C(E), and its
derivative is given by the formuila

g"(z) = 2! %G,ﬂf—z)s- (2.21)
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In general, we can show that

¢(n—l)(z) = (n=1)! %(p—%)n

is analytic in C(E), and that its derivative is given by

¢(n)(2) = n! ]S;:(p fuz)n-i-l (2.22)

vhere n is any natural number.

From the well known fact that a function can be represented by a
power series in the neighborhood of any point of a domain in which it is
analytic, we have the following resultt:

COROLLARY I, If z = %, be any fixed point in C(E),

#(z) = § —du-
EP- 2

can be represented, in a certain neighborhood of this point, by a Taylor

series, This serles will converge and represent the function throughout

the largest circle, about z = z, as center, which contains ip iﬁ? interior

no point of E,

We investigate the nature of the function #(z) at 2 = <~ , and
prove ;

THEOREM II, #(z) =§:p—§1z- is analytic at z = o> é_n_gi_
#( ) =0,

Proof: Let us begin by making the transformation z' = 1/2 and let
h(z') = #(1/2'). That behavior is assigned to the function @(z) at
infinity, which h(z') exhibits at z' = 0. Hence, we examine the function
h(z') at z' = 0,

For h(z'), we have

hiz') =§ Shrlly (2.23)
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from which we find that h(0) = 0, We now take successive derivatives

of h(z') and then evaluate these derivatives at z' = 0 as follows:
net) = § gy W) = fam,  (2.2)
E\PZ = E

h"(z') = 21 S

—ndu_ n"(0) = -2$pau,  (2.25)
glpz' - 1) E

and in general
n=1 :
] - ¥ ( ) —— 1) 1
n(n) (') ("l)nn‘%(,Hn'ﬂ, ' (0) = —n! %pn’ du, (2.26)

vwhere n is any natural number,
The series

h(z') = h(0) + n*(0)z* + h*'(o)gt:2 + ... + h(“)(o)-g-;n S

becomes, by expressing h and its derivatives in terms of integrals,

h(z') = =Cz'du + $ps'®du + ... + SpTlzdu + ... )o (2.27)
E E B

Thig series is equivalent to the series

#z) = -(Sz~lan + Cpedu + ..o + P35 Pau 4+ ...) (2.28)
E E E -

'-'.; - z-lgdu + 3-a$pdll + ose + :-l‘gpmldu + wooeon )’ (2.29)
E E E

by Lemma II, The coefficients SpPdu are finite because the coefficients
. E

p"'l are bounded continuous functions of E, a set of finite Caratheodory
linear measure, The last series converges uniformly for |z| >R, where

R is the radius of a circle C about the origin enclosing E, Therefore,
#(z) is analytic in the neighborhood of z = ., . The absence of the
constant term indicates that #(z) has a root at infinitys that is,

#( <=} = 0. These conditions are sufficient for the function to be

analytic at gz = on .



We consider the single valued character of ﬂ(z) and the question
arises: Does @(z) return to its original value when z describes a
continuous closed path around E? Let C be a simple closed curve which
contains E in its interior. The doméin exterior to C we designate by
S. By Theorem I and 1I, #(z) is analytic in S. Moreover, S is simply
connected since any simple closed curve lying in S can be shrunk to a
roint without going outside the domain, Therefore, we have an analytic
function in a simply connected domain, a fact which proves, according
to the Monodromy Theorem, thet #(z) is single valued on any simple
closed path about E which lies in S, If z describes a simple closed
path through E, the asbove reasoning does not apply. The function #(z)
will not necessarily return to its original value for any such path
through B. This can be seen by considering the followings

Let E' be a perfect nowhere dense set of positive Lebesgue one
dimensional measure on the linear interval I: a < x <b. Consider

(L)
Pa) =g ol = § it r——;n;-*}h; (2.30)
a a

eq-z t-z-

n = n

where (an, bn) are interval components whose union is the complement
of E', a < b s for each n, t being any point of E', and 2z a fixed point
not on I, where "<" means "precedes" in a particular order. a and b are
the terminal points of I, The'integralsb
b n
—dt_
S E;ETE and $T-53
.a . a
n
are taken in the Lebesgue sense,

Upon integrating, we have
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F(z) = loglb - 3) - logls = #) - > (log(b, = 3) = loglay = z)). (2.31)
n=1l

The logarithmic functions are clearly rultivalued with branch pointas
at a, by By and b, Hence as z describes a simple closed path through
E, F(z) will be increased by some multiple of 2wi, depending upon how
many of the branch points are inclosed.

We can now state the following theorems

THEOREM III, The analytic function #(z) is single valued in every

domain exterior to a simple closed curve whose bounded complementary

domain contains E,

He come now to the problem of determining whether or not the given
irregular set of rositive Caratheodory linear measure is =2 singular set
for $(z). Related to this problem is the question of the existence of
a furction having a given irregular set of Caratheodory linear measure
zero as its singular set.

Regarding sets of linear measurs zero, W, Gross (8, p., 180)
conatructed an irregular get of positive linear mesgure of which the
rrojections on two rerpendicular directiona are of linear measure sgero,
A, 5. Besicovitch (1, pp. 455-458) formed a set of positive linesr
measure of which the projection on any direction ia of linear measurs
zero., These two investigetions are partiocularly significant here since
they shov tHe existence of sets of messure zero which are projections of
irregular sets of measure greaﬁer than zero., The question arisess Can
this procedure be reverseds that is, given a set of linear messure zero
on a Jordan curve without double points, is it possible to construct,
on another such Jorden curve, an irregular set of positive linear measure

for which the given set appears as a projection? For some regular sets,
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thie question has been anawered affima’cively.l As far as we have been
able to determine, the question remains unanswered for irregular sets,
As a consequence of this limitation, we must restrict owr discourse to
irregular sets of positive linesr measure having property A.z

The foregoing discussion brings us to

THEOREM IV, The point set B is a singular set for #(z).

Proof:s We first show that some points of E are singular for #(z).
Now the function #(z) eannot be a constant, For, suppose #(z) 1z a
constant, By Theorem III, exterior to a aimj:le closed curve vhich contains
E in its interior, @(z) is a single valued analytic function, According
to Theorem II, #(z) = 0, for £ = <». Therefore, if #(z) is constant,
#(z) 5 0, end, 2z@(z) & 0. But

tm 3f(z) = 1m § ;7:—‘1_—-1 =-Sa = -LE), (232)

2 => zZ=>¢nE
by Lemma ITI, We thus have a contradiction since the Caratheodory linear
measure L(E)} is known to be nonzero. We conclude, from Liouville's
" Theorem,” that at least some points of E are singular points for #(z).

How E, by assumption, possesses Property A: that the Caratheodory

linear measure of any subset included within any circle of radius P >0,
described about any one of its points, is different from zero. It follows
immediately that all points of E are essential singular points for #(z).

For let Q be any circle of radius F described about any point p of B such

I'The existence of a function having a singular set of measure zero,
in the case of some regular sets, has been shown by Golubev. (7, pp. 128-130),

2
Cf. p. 2.

3
A single valued analytic function which has no singularity either in
the finite portion of the plane or at infinity reduces to a constant,
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that BNC(Q) # 0. Then E is divided into two Caratheodory linearly
measurable subsetsy namely, El lying in the interior and on Q and E‘

lying in the exterior of Q. Then,

Bz) = —L. + ;- = g(a)+ #(a) (2.32)
Jpe-2 ‘' p=2 2
E, E
2
Now, applying the reasoning employed in the foregoing paragraph, we now
show that E, has an essentlal singular point for ﬂl(z) vhich 1is
accordingly an essential singular voint for #(z). Hence, in the interior
of any circle of radius P > 0, described about amy point p of E, and
satisfying the condition given above, there are singular points of #(z).
Thus, each point p of E is a 1imit point of roints which are themselves
limit points of E., Consequently, all points of E are essential singulér

points of #(z).

Section 3. The Curvilinear Integral Defined on Irregular Setis.

We consider the construction of an analytic expression analogous
to a curvilinear integral of F(p) on E,

R. L. Moore and J. R, Kline (12, pp. 218-223) have shown that if E
is a closed and bounded , totally disconnected point set in the plane,
there exists an open curve K (torologlcal open one cell) which contains E,

The set complementary to E in X is open and consists of a sequence
(h,) of denumerably many disjoint open arcs. Generalising the method of
Golubev (7, p. 122), we obtain E by removing a denumerable sequence of
open arcs in the following manner: first, we remove from E the comple-
mentary arc hy and thus decompose K into two sets K, and K. and E into
two sets E, = BNKy and!l =Eﬂl(a. Next, we remove from K - hy the



complementary arc hz‘ We obtaln three sets

x;. s:. B’; ’ (3.1)

where the set E;, for each m 1s the intersection of a closed connacted
subset, an interval or & ray, of X and E, |
In general, upon the removal from X - (h1+hz+... +hn) the arc

h, +1» complementary to E in K, we obtain a sequence

ntl _ntl ntl ntl
El » E‘ ') E, » XY [ En 9 ( 3. 2)

n+l
where B, , for each m, is the intersection of a closed connected sub-
set, an interval or ray of K and E, This operation continues, and we obtain

the double sequence of point sets

2, £

1 2

B, B, E?

3
(3.3)

3 3 3 3
B, B, B, B
on n n
E]n. » Ef [ E: » 34 » E,’ cones | 2 En-.'l
We denote by du: the Caratheodory linear measure of E: . Let F(p)
be a contirmuous function of p in E and F(pﬁ). the value of the function
at some roint p: on E:. We define the curvilinear integral of F(p) on

E by the mumber J and denote it as follows:

= %F(p)du = 1m Flppldu,  (3.1)

n~> ¢




For brevity, we call the sums

s,= )  r@ay , s, = FE2awd » ececeees
m
= n
n
sn = P(p.)d% P rsecccessce (3-5)
m=

sigma sums formed by removing from i, successively, the complementary
arcss hy» h‘, ces 9 hn‘ cen

We investigate the existence of the above limit, and show that J
is independent of the rearrangement of the sequence (hn)' J designates
some signa sum,

Lemma VII. le% K*' be a closed conmected subset of X, and, E' = K'(E,
Let Fio Fos coe y rnﬁg_g_i_x&t_o;g_o_t of n disjoint open intervals each a

subsot of K. Let Kys K » K 5 oee s K \) Do the ntl disjoint con-

n .
nected subsets of K =,U)Tis for each m, B % 1, 2 .0 p wily lot p be

2 polnt of B'MK,, and &' bo the Lnewr messure of E'MK,. Lot & be

2 positive real mmber such that the oscillation of F(p') on E' be icas

than ¢ . Let P' be an arbitrary point of E' snd du' the linear
neasure of E', Then,
L A
IP(o* au* - PR e’ < OL(E")
ne
Proofs The set complementary to E' in K' is open and consists of a

sequence (h,',) of denumerably many disjoint open arcs,
The sums S' and S} are formed with respect to K' in a manner similar

. to that in which Sn is formed with respect to K, with the following



excertiont there is only one functional value of F(p'), for p' on E' ,
involved in the sum S', whereas in S!'1 there is a functional wvalue of
p' for a point p* in each of the sets (Eg'), R=1, 2, «oo » ntl, whose

'
linear measure is dup . We write 5' in the form

gt = r(po)du:'.
m =
Then + ,
Is* - stf = [F(p")au’ - PR )al'| =
m=1
n+1l n + , . +
| E Flp' ol - E F(rp . | < ; IF(p') = PR ) &' (3.6)
m= ns= m=
< O L(E'),

since |F(p') - F‘(pg’” <@, form=1, 2, ... 5 n¥l,

Lerma VIIIL, Let Sr be a fixed signa sum consisting of r+l parts

obtained by the removal of r complementary arcs, successively, from KiE,

Lot the oscillation of F(p) on (B)s m =1, 2, ..e , 1, bs less than

6. Let Sy be a new sigma sum formed by the removal of the r complementary

arcs of Sr together with a finite number of other complementary arcs.

Then
|$1= - Srl < diL(E)
Proof: Lemma VII is valid for each of the sets (E;) of S, m =1, 2,
ees 9 T+, with respect to S¢, since Eg for each m is the intersection
of a connected subset of K and E and, morecwer, prlays th= role of S' in

the previous Lemma,



31

Let
Tr Ir Ir
du.l, duz 9 ese 9 dun+l

denote the linear measures of the sets

Els E, wu s B

respectively. Then

I I r
E=K +E + ... +E

Thus, it follows, by repeated application of Lemma VII, that
r r r _
S, = Spl <oyduy + Gldu, + ... + @, = GLE) (3.7)

Lemma IX. Let & be a number greater than zero. Then there exists a

number ny such that for n > ng, E:: for every m is of diameter less than

d; that __’2_, ifn> ng, every set E:. m=1, 2, ¢es » ntl, involved

in the sum Sn' is of diameter less than 3.

Proof: Suppose that the Lemma is false and E;; cannot be decomposed
into subsets each of which is of diameter less than 8. Then there exists
a monotonie descending sequence of sets (Ein) sach of diameter greater

than & and such that
(1) Erl < gl
(2) Ein is closed and compact .

Hence nE.’Egn =E s a subget nf K of diameter greater than or equal to &.

Therefore, EX contains at least two points, a and b, not separated in K
by any arc of the set (hn)' This is impossible since E is totally dis-
connected. Thus, we have a contradiction. We conclude that the number

na-, which satisfies the Lemma, exista.



Lemma X, let @ be greater than zero, There exists a d = §(e)

such that if S, and Sq are any iwo sigma sums defined by means of

decompositions of E into subsets of diameter less than 3 then
15, - 8,1 <e/2, '

¥here k = 1, 25 coe 2 Ny coe 3 Qs eee

Prooft A number § exists such that if E: is of diameter less
than §, and pi2 and p.l are polnts of £, then

|F(pp, X1) - Flp z)l < &/4L(E) »

since F(p) is uniformly continuous on the closed and bounded set i,

Let Sk and Sq be any two sigma sums such that the sets E; of E
involved, each have dlameter less than J.

There exists an integer r such that if we remove a finite collection
G of r arcs, hl' h # eee 3 hyy then G contains each of the arcs,; which
deternmines the sigma sum S and also each of the arcs, which determines
S ° We have,

k 4
|Sk-5|=|§ P(pk)au’ - ; Flp, )au |

L"‘" 21
:} FGE) - FOD o < ey LE) =0, (3.8)

by Lemma VIII,

In a similar manner, we can show that ‘Sq - Srl < e/l
ButSk-Sq=(S -s)- (s - S.). Therefore,
s, - }(sk..s)..(s-s)| |sk-sr|+isq-sr;

< a/k + e/l = 8/2. (3.10)
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THEOREM V. Let sigma sums S, be formed for k = 1, 2y ... » by ...

Qs +ee If 1im A: —> 0, where A: “orotes the maximum  diameter
k= o ‘
of E:, for each k and every m, then, lim Sk exists,

k=>cn
Proof: Let @ be greater than zero. Then, by lLemma X, there exists
a & = §(e)} by Lemma IX, there exists a k, such that, if k > k, and
p> 1, then |Sk+p' Skl <e/2 <a.
Since @ can be chosen as small as we please, the above relation

shows, by Cauchy's Convergence Principle, that

k+1
k
lim = lim F(p¥) (3.11)
k = o Sk k=> n dum
m -
exists. We define this limit to be J.

Lerma XI, Let hl’ hz, ces p hn_l_)__e a finite sequence of intervals

complementary to E in K3 let g)» gz. e By be a second finite sequence

of intervals complementary to E in K such that

n m
thhy =, Y8 .

Let also S; and S be the sume determined by the finite sequences (ny)

and (gi), and let only the maximum value of the function |F(p)| be used

in these sums, ’i‘hen, S‘2 < 31.

Proof: Since
Gny = U (3.12)
<
" T 58 >
and only the meximum value of |F(p)| is used in the sums S, and S,» the
relation :
S <8 : (3.13)

follows directly.
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THEORB‘! VI. _I_-‘;t 8.1 = hi’ hi-’ LK I h:l. a8 and

az = hi. h:, ves 9 h;. ceos _b_g_ different sequences 21’ t_llg_ e_c_a}_ g{g_p_en_

intervals, complementary to E in K, in any order. let

nl +1
n n
J=  lin Flp L)du *
m m

i T
m =

n +1
J = linm Fp 2)du 2
2 n ->cn n o

2 m=1

where duyl designates the measure of the intersection of E and a

maximm connected subset gf

n
k- ol ,1=1,2
n=1 B
Then
!Jl-le <e

Proof: Let @ be greater than zero. There exist integers n; and

n_ such that if n >n, and k >n
2 1 2
- 8l < .
19 n‘ e/2 (3.14)
2
19, - 83l <e/2 (3.15)
Now consider a third sequence

1
of the set of open intervals caomplementary to E in X, A number Wy

a, = hz' h:' vese 9 h;’ [ XN

can he found such that a subsequence of the original sequence consisting
of the segments

hi’ h:’ sse 9 h (3016)

3
b |

contains the first n terms of the sequence als namely,



1 1
h1' hi.’ ceeoe P %.

n v
Unl ¢ Ulh’
§=] 1 =171

This means that

and, therefore,

83 ‘< sl
¥, = n
by Lemma XI,

35

(3.17)

(3.,18)

(3.19)

In like manner, there exists a number v, such that a subsequence of

the sequence aj,consisting of the segments
hi' h:s cess § h:,
2
containg the first k terms of the secuence az; namely,

h;’ h:. es e [ ] !‘L;.

Consequently,
TR
Un U’hi
1=1 1=1
and therefore,
3 2
%, <5
by Lemma XI,
let w=w, +w. Then by Lemma X,'
1 2
]Jl" S:“ <'/2 »
15, - 55l <ef2 .
Therefore,

Since e ig arbitrary,
Jl = Jz.
We have thus shown that

(3.20)
(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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im J =J (3.28)

n
n=-—> .~

exists and is independent of the arrangement of the intervals (hy).

Section 4(a). Some Properties of the Curvilinear Integreﬁl.

We bBhall show some properties of the curvilinear integral which
~ we have developed., We begin with an analogue of a well known integral
theoren,

THEQREM VII. If M denotes the maxirum value of |F(p)| for any p

in E and L(E) denotes the linear measure of E, then for every v in E,

lgF(p)dul < ML(E)

Proofs From Sestion 3

[SF(plau| < SIF(p)ldu < M 1m @l (4.1)
E E n=> un
m=1

This summation represente for each n and every my m = 1, 2y ... » ntl,

the Caratheodory linear measure of the sets in the sequence. (E:)' and
equalsy 2s n becomes infinite, the linear measure of E,

If the open curve K which contains E be divided into two half lines

Kl and Ka having 1:} e;mmn a single point p belonging to E and containing
subsets E, and Ez of £ respectively, then because E has property A,[’ each

subset has positive Carathecdory linear measure, We prove

_— 1 — 2
common & single point of E. let E, = BNK;, and Ez = mx‘. Let

Lemma XII, let K. and K be half lines, subsets of K, having in

a =hys By ees » By oeee be a sequence of open intervals, in any order,

complementary to E in the open curve K. Of the first n intervals

!
“ce. p. 2.
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1 .1 1
h1’ h.Z’ coe 9 hn beloslging _t_Clg, let al =hl’ hzg cees 9 hn 1_.'!._3;_1_11_ Kl,

1

n
and az = z, h:, ese 9 h; lie i’l Kz' _I.gt dumi denote tllg measure of

1 2

the intersection of E and a maximum connected subset of

n
X, - mgihi » 1=1,2,

Let F(p) be continuous on E. Then

SF(p)du = § Fp)du +§ F(p)du,
E Eq E

2
Proof: By virtue of the contihuity of F(p) on the closed gnd bounded

set E and, according to Section 3, we can write
+

SF(p)du = 1im F(pM)au® ,
E n -> D m I
m=1
n . n n
where F(pm) is the value of the function F(p) for P, in Ez and dum the
Caratheodory linear measure of E;:. This limit is independent of the choice

of the points pg in E; and the arrangement of the intervals a, But

nH

lim F(pP)au” = m () F(pyl) d";l +
m=1 m=1
n+ 1
E F(pgz)dugz ) =
m=1
n1+ 1 n2+ 1l .
U \  F(pflafl + lin F(pPa)au’z 4  (4.3)
nl -—> [P, ) ’ n -=> w I m
m = 2 m=1

where F(ppl) and F(pgz) are the functional values of F(p) in E;:l and

Ezz respectively, From the above determinations, it follows that



SF(p)du = § F(p)dw; + § F(p)du
E E, E,

as8 required,

lemma XIXI, th; Kl and Kz be half lines, subsets of K, havihg in

common a single polnt of E. Let B, = ENK; and Ez = Eﬂx-a. Let

a= hl’hg’ ees » By o.. be a seguence of open intervals, in any order,
f the first n intervals bh,, hz’ eee » By

belongins _t_g_a’ let a-l = hi, hi’ see P hll;l lie 12‘1 and az = h;’ h:’ cee 9

complementary to E in K. O

h; lie in Kz. Let dn:i denote the megsure of the intersection of B
2 RN TR A S
and a paximum connected subset of
Ny
Ki_ Uhi,izl,Z.
: m=1 B

Let F(p) be continuous on E. Then,

SIF(p)ldu =§ |Flp)lduy + § [F(p)jou,
E E E

Prooft Bacause F(p) is continuous on E, we infer that |F(p)| is
continuous on this voint set. The proof of this Lemma, then, follows
directly from Lemms XII,

Ag a consequence of the definition of the integral, we observe
another property of the integrals namely, there 18 no prescribed sense
in which the integration is perform on E.

Wea note from Section 2 that a comslex valued function F(p) may
be written f£(p) + ig(p), where f(p) and g(p) are two real valued, single
valued, functions of p. We therefore define

SF(p)au
E

to be

Sf(p)au + 1 Jg(pldu (4. 5)
E E
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We have established, thus far, two integralss nsuiely, an integral
taken over an irregular closed and hounded set E of positive Caratheodory
linear messure, and one which we have defined as a curvilinear integral
ta¥en on the same point set. For brevity, we shall designate the former
integral as the (q)-integral and the latter as the (c¢)-integral. The
rreceeding remarks bring us to

Section 4(b). The Equivalence of the (c)-Integral of F(p) on E to

the (q)-Integral of F(p) over E.

Let the open curve K which contains E be divided into half lines Kl

and Kz having in common a single point p belonging to E and containing

subsets El and l?.2 of E, reapectively. Then, because E has property A,S
each subset has positive Caratheodory linear measure. Preliminary to an
investigation of the equivalence of the two integrals mentioned above,
we establish two Lermas which follows

Lemma XIV, If K; and Kz are half lines having in common a single
point of E, if El = Eﬂxl and Ez = Eﬂxz, then,

(c)‘g?(p)du = (e)§ Flpldu, + (c)§ Flpldu,

! 2

Proof: By definition, using the notations of Section 3 and making

use of the resulis of Lemma XII,

(e)SF{p)au = lin F(P:)d“: (4. 6)
B n~> cn
m=1
vhere p: is a point in Eg and du; is the Caratheodory linear measure of

E:. In like manner, by Lerma XII,

SCf. Pe 2.
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n,+ 1

(c)§ Flodan, = Un F(pPlaul — (4.7)
1 1

m=1

- n+1l
(c)g Flp)au, =  lm Flppa)dpz  (4.8)

E 1 =>wn N
2 2 m=1

where the limite are independent of the order of the sequence of open
intervals (h_), and the choice of the points p-l and p.2 of E-l and E 2
ntervals (h, ), an e choice o e points p - and p 2 o Em an Em ’
respectively. An arc of the intervals (hn) could not overlap a part of the
half lines K. and Kz since Kl and K2 have in common a single point p of

1
E, Hence, in defining

(c)SF(p)aus (c)§ F(p)duyy (c)§ Flpldu, ,
E E, E,

we use the same order of the sequence of open intervals (hn), and choose
in the sets E§1 and EE‘ a point psl and pgz, respectively, which is

n
the same as the point p; chosen in the corresponding Em. The superscript

n then replaces the superscript ny and n. We have,

+1
(c)§ Flplauw, + (c)§ F(plau, = 1im F(pol)avpl  +

El 1 E 2 nl -

. 2 m=1
n,+ 1

1im F(p 2)au'2 , (4.9)
ng => o / "o n

m=1

But pgl and pgz in Egl and Eﬁz, respectively, are points which agree
with p; in the corresponding Eﬁ. Thus each point pﬁl and pgz differ only
in notation from the point pﬁ where n is replaced by the superscript ny

and nz3 that is, for every Pﬁl on E:l there corresponds the same point



pg on EE. In like manner, the same reasoning arplies to the point pgz.
Correspondingly, F(pﬁl) and F(pgz) can be replaced by F(pz), where m

runs from 1 to ntl, It follows that

n+ 1l
(c)% F(p)du1 + (c)% F(p)du2 = ] Ei? § F(p;)duz
1 2 Al '
m=1
= (c)gF (p)au. (4.10)

Lemma XV, Let E ggg.Ez be two disjoint subsets of E such that

E = El U Ez' Then,
(q)SF(p)au = (q)§ F(p)du + (q)§ F(p)du
E E1 E
2
Proof: F(p) is continuous on the closed and bounded set E.
Consequently, F(p) is measurable on E, and by Section 1, it is integrable

over E in the (q)-sense. By Lemma I,

(q)Sf(p)du
E

(q)§ f(p)du + (q)% £ (p)du, (4.11)

and 1 2

i

(q)§g(p)du (q)% glp)dn + (q)SE' g(p)du. (4e12)

1 2
Therefore, in view of (4.5)

(q)§F(p)du = (q)%f(p)du + i(q)%g(p)du. (4.13)

From this result we infer that

(@) F(p)du = (q)S £(p)du + 1(q)§ glp)du (4.14)
El El El
and
(q)% F(p)au = (Q)'% fp)du + i(q)% g(p)du. (4.15)

2 2 2



From (4.13), (4.14) and (4.15), we conclude that

(q)%F(p)du ‘= (q)S F(pldu + (q)% F(p)du (4.16)
2

We now come to

THEOREM VIII. The (c)-Integral of F(p) on E is Equivalent to the

(q)-Integral of F(p) over E.

Proof: Consider the open curve K containing E, We remove from K,
successively, a finite collection G of arcs hi, hz’ cee 3 hn conplementary
to E in K forming the sets

1 1
E), E,

2 2 2
E}, E, E]

*Se OO OLOOESET IS

LA AR BN K BN N BN N N BN N N B N N J

n n n n
El’ EZ’ Es’ E:l’ see 9 En+l

We have defined

(c)F(p)du = (c)Sf(p)du + 1(c)Sg(p)du,®
B E B

where f(p) and g(p) are two single valued, real valued, functions of p.
On the closed and bounded set E, let f(p) and g(p) be everywhere non=
negative. Let M. and m; denote the lesst upper bound and the greatest

lower bound respectively, of f(p;), for pﬁ on Eg. We have,
n+1 n+1
n n ; n
mda < (e)§ flp)du < Mpdw (4.18)

nh
mx Enl m:‘

6Cf. p. 38.
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The sum

is nondecreasing, and the sum

\T
B s

B
i

is nonincreasing.
Consider now the least upper bound §Mdu and the greatest lower bound
E

Smdu obtained when n => ¢~ in such a manner that

E n

lim & =0
n—>c/_~.

where A:l denotes the maximum diameter of Eﬁ. From (4.18), we obtain
Smdu < (c)Sf(p)au < SMau . ' (4.19)
B E E .

The (q)- integral of F(p) over E

(@)SF(p)du = (q)Sf(p)au + 1(q)Se(p)du,
B E E

has already been shown to exist.’ Let the range of f(p) be divided

into subdivisions
a;o_<_alf_ ceee S & 4 Zan.

Denote by lﬁ and m§ the maximum and minimum values of f(p:;) in the

respective n subdivisions of the range of f(p) andvAE:: the linear measure

of Eﬁ where Eﬁ is that subset of E for which a _; < f(p) <-am.‘ We have

in this instance, as in the case of the (e¢)-integral,

7
Cf. Section 1, p. 8 ff., and Section 2, p. 16.



nfAER < (a)S P(PDME] < MAE (4.20)

EP
m=1 m n=

Now let the number n of the subdivisions of the range of f£(p) increase

indefinitely in such a vay that

lim B:=O
n=>cn

where B; is now the maxirmm diameter of E:.
From (4.20), we obtain

" Todu < (q)3f(p)du < SMdu . (4.23)
E E E

Consider now the double inequalities

{zdu < (e)Sf(p)du < SHdu . (422)
E E E
and
Cmdu < (q)Sf(p)du < SMau . (4.23)
B E E
Since
SMdu = Mjdu = ML(E)
E E
and -
Smdu = xmjdu = mL(E)
B E
by Lemma II, we have
mL(E) < (c)if(pldu <ML(E) (4e24)
and .
nL(E) < (q)%r(p)du < ML(E)., (5.25)
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where Eiij =0, for 1 # i, E1 = ENKy, and Kl, Kz' ees 9 Kn+1 are the
maximum comected subsets of

K‘ dh.
1311

Then (4.24) and (4.25) applied to the set E, become

+
» L(Ey) < ; (e)§ fpldu < M L(By)  (4.26)
= =7 B =

+
n S L(E;) < S (c)Sé flpldu < MS L(E,) (4.27)
i

i=1 i=1 1=1

Now let @ be greater than sero, Then from the contimuity of f£(p)
on the closed and bounded set E and the inequalities (4.26) and (4.27),
there exists in K some set H of segments hy» hz' e 3 hn complementary

to E such that
[(@)S f(plau - (e)§ £(p)au| < e/2L(E,)
Ey Ey
for each E, = E/KK,.
Consider now the sum of all such inequalities for 1 =1, 2, ... » ntl,

Making use of the results obtained by lLeumas XII and XIII, we have,

l(a)af'(p)du - (c)gf(p)du[ < @¢/2L(E). (4.28)
In a manner similar to that used above for f(p), we can show that.
l(q)%g(p)dn - (c)%g(p)dul < ¢/2L(E). (4.29)

From inequ,lities (4.28) and (4.29), we conclude,
I(q);S;F(p)du - (c)’_sE'F(p)dul <q. (4.30)

Since @ is arbitrary, the inequality (4.30) proves the Theorem
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CHAPTER III

AN ANALYTIC FUNCTION #ITH AvBOUNDED CONTINUUM
AS A SINGULAR SET

In exploring methods of‘obtaining analytic functions having
a prescribed singular set, we have constructed and employed integals
in the process. We now construct a function having a given set M as
its singular set by employing a new approach, that is, by making use
of a mapping of the complement of M onto the interior of the unit
circle, |

Let M be a bounded, non degenerated, locally connected plane
continuum which does not separate the plane. We first establish the
following Lemmas:

Lemma I. There exists a simple (1 - 1) analytic mapping H of

I, the complement of M, onto &, the interior of the unit circle C.

Moreover, the mapping H of I onto E can be extended to ¥ in the

sense that if p is a point of C, the boundary of E, H—l(p) is a prime

end of M, the boundary of I.

Proof: Because the boundary M of I is comnected, I is a simple
domain. Since the boundary of I consists of a bounded, non degenerate
continuum M, and I is simple and simply connected, there exists, by the
Riemann Mapping Theorem, a conformal mapping of I onto B, the interior
of C. Furthermore, by the foregoing, there exists a mapping function

H(z), single valued and analytic for z in I, the complement of M.
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Further, as a result of the simple connectivity of I, in the
mapping of I onto E, the prime ends of M, the boundary of I, and the
points of the circle C, the boundary of &, correspond to one another
in a (1 - 1) manner. This correspondence is in strict accordance with
a known theorem on prime ends. (S, p. 350, Theorem XIII).

Consistent with (5, pp. 331-336), a prime end of an arbitrary
simply connected region G is an equivalence class of chains of sub-
regions of G. Although a prime end, as defined above, is actually an
equivalence class of chains of subregions, we intend to refer to the

closed point set associated with the prime end as the prime end employed

in that which follows. The same closed point set, may, perhaps, be

asgsociated with one or more prime ends.

)
Lenma II, If f(z) = 5 2%, |z| <1, then £(z) is an
n=0 |

analytic function defined on E, the interior of the unit cirele C,

and has C for its natural boundary,

Moreover, if F(z) = f(H(z)) for z belonging to I, the complement

of M, then (1) F(z) is defined and analytic on I, the complement of

M, and , (2) has M for its singular set,
Crm)

: ]
Proof: Let £(z) = 5 2", |z] <1, as described in the Lemma
n=0
The proof of the first part of this Lemma, then, follows from a ¥known

theorem (1L, p. 163, Theorem 23.17).
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Let F(z) = f(H(z)) for z belonging to I. (1) H(z) is analytic for
2z in I and maps I onto &, the interior of the unit circle. BEy hypothesis,
f(z) is defined and analytic for z in E, the interior of the unit circle.
Hence for z in I, the composite function f(H(z)) is an analytic function
of an analytic function and consequently is itself analytic.1 It follows
that F(z) defined by the functional equation F(z)= f(H(z)) is analycic
for z and I. That F(z) is defined on I follows from the definition of F
and the foregoing.

(2) Since M is locally connected, M is locally connected at each of
its points, We shall first show that a point set associated with a prime
end of M, in this case, is a single point.

Let p be any point of M. We take as a neighborhood Hp of p the
interior of a circle with center at p. Conseguently, there exists for
any circle Ky with center at p, a concentric circle K2 such that every
point p' of M, interior to K,, is joined to p by a connected subset of M
lying wholly in K;. Let p be a point of countable character., As a
consequence of this property, there exists a sequence of concentric circles
Ky» K2, coe Kn, -+s With common center p such that K;., < K; for each i,
and such that ;rkn = v.

We consider as a chain of cross cuts (qn) those which lie on
concentric eirclar arcs (Kn) with end points on M. The end points of
these cross cuts are different from one another unless p is a terminal

point of M, in which case, the end points coincide. Now consider the

lAn analytic function of an analytic function is an analytic
function.
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subregions g;, g, oo > 8> s+ of I which are associated with the
cross cuts q4j, Qps s+s 5 Qp, ++o and which define an end e, of I,
Because of the local connectivity of H,.this chain of subregions can
be taken so that they converge to the point p of M. Therefore, the
end e, is a prime end Ej, (5, p. 337, Theorem V), and, furthermore,
the convergence of the chain of subregions (gn) tc the point p is a
necessary and sufficient condition for a prime end Ej to contain a
single point p (5, p. 352 Theorem XIV).

Now if p" is a point of C; the unit circle, a neighborhood

Non
of p", and f(z) defined as in Lemma II, then f(z), according to
Riemamn's Thecrem, cénnot be bounded in Np"' Denote E n Nén by

G'« The inverse mapping HL of H is single valued and mapé G' onto
some region G of I carrying p" onto a prime end p of M, the inverse
image of p" under the mapping H'l(p").

f(z) is unbounded in G!'. It follows that F(z) = f(H(z)) is
unbounded for z in G and hence for 2z in a neighborhood of p, that is,
p is a singular point for F(z). There exists a (1 - 1) correspondence
befween the points of C and the prime ends of M, the boundary of I.
f(z), being defined as in Lemma II, is bounded in the neighborhood of
every point of C. Therefore, F (z) by means of t he functional
equation F(z) = f(H(2)) is unbounded for z in the neighborhood of each
prime'end of M. Consequently, F(z) has M as ité singular set, since
the set of all prime ends of M constitutes the boundary of I.

Upon the validity of Lemmas I and II, we can state the following

Theorem:

THEOREM I. Let M be a bounded, non degenerate, locally connected,

plane continuum which does not separate the plane. Then there exists




a single valued function F(z), analytic (but not necessarily bounded)

in the extended plane, with M as its singular set.

50
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CHAPTER IV
SUMMARY

The problem with which this study is primarly concerned is that
of constructing analytic functions having for their singular sets
certain closed and bounded sets,

We have shown that if E is a bounded and closed point set, lying
in the real plane, which is irregular and has positive Caratheodory
linear measure, and which has property A,1 there exists a function
#(z) with the following properties:

(1) @(z) analytic in the extended z-plane except the
points of E; :

(2) @(z) single valued in the complement of Ej;

(3) Each point of E is an essential singularity of #(z).

We have also determined a single valued analytic function having
for its singular set a nondegenerate, bounded, locally connected plane
continuun M which does not separate the plane by making use of the
mapping of the complement of M onto the interior of the unit circle,

This analysis did not involve the use of integrals.

le. p. 2.
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RECOMMENDATIORS FOR FURTHZR STUDY

The following questions arise: (1) Does there exist an analytic
function having a bounded nondegenerate arbitrary continuum for i%é
singular sets? (2) If the answer to (1) is in the affirmative, then
do the properties of an analytic funciion having a bounded, nondegenerate,
locally connected continuum as a singular set differ from those of an
analytic functioﬁ having a bounded nondegenerate arbitrary continuum
as a singular set? By properties we mean the following:

(a) If ¥ denotes the arbitrary coutinuum, is sach

point of M a singular point for the function under

consideration?

(b) 1Is the function single valued in the complement
of M? '

(¢) Is the function bounded in the complement of M?
(d) Is the function analytic at z = o 7

Although we have no propositions which bear on these situations,

the answers might be a valuable complement to this study.
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