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PREFACE 

The scope of this study is primarily concerned with the construction 

of analytic functions having, as singular sets, certain closed and bounded 

sets. In connection with the functions constructed, I show that they 

are: (1) analytic in the extended complex plane except at points of the 

given closed and bounded set, (2) single valued in the complement of this 

set, and (3) has each point of the given set as a singular point. 

The ideas for this thesis evolved while I was a student in the 

Department of Mathematics at Oklahoma State University working mainly 

with Dr. o. H. Hamilton. I wish to express my gratitude to Dr. Hamilton 

for his sound and patient counsel, his helpful criticisms, and kind 

interest given me in the preparation of this thesis. 

I am also indebted to the John Hay Whitney Foundation for a grant, 

which made the preparation of this thesis possible. 
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CHAPTER I 

nrrroDUCTIOH 

A. Statement of the Problem 

V. v. Golubev, in his study, "Single Valued Analytic Functions 

with Perfect Singular Sets," (7, PP• 107-157),1 constructed, by 

using definite integrals, single valued analytic functions having 

a perfect, nowhere dense set of singular points. In the attempt 

to extend his work to the problem of constructing, under very 

general conditions, analytic functions having a perfect, nu"here 

dense, singular set, he posed the following question: Given an 

arbitrary, perfect, nowhere dense point set E of positive Lebesgue 

one-dimensional measure in the complex plane; is it possible to 

construct, by passing a Jordan curve through E and by using definite 

integrals, a single valued function, analytic in the extended plane, 

which has E as its singular set? (7, pp. 128-129). 

A more general problem with which this study is primarly con-

cerned is that of constructing analytic functions having for their 

singular sets certain closed and bounded sets. 

The present investigation is divided into three parts. In Chapter 

II, we shall require the set E to belong to the class of irregular 

1-umbers in parentheses refer to the bibliography at the·end of 
the paper. 
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point sets of finite (different from zero) Caratheodory linear 

measure. 2 We shall assume that E possesses Propert:;r A; tha~ is, if 

pis any point or E, evecy neighborhood of p contains a subset or E 

whose Caratheodor:;r linear measure is dilferent from zero. Al though 

point sets belonging to this class were not included 1n Oolubev' s 

investigation, from a set theoretic point of view, the present 

2 

investigation and his are comparable. We shall obtain, by using 

definite integrals, a function ~(z) having the following properties: 

(1) ¢(z) is analytic in the extended complex plane 
except at points of E; 

(2) ~(z) is single valued in the complement of l; 

(3) Each point of Eis an essential singularity cf ¢(z). 

Such a function, as far as we have been able to determine, has not 

been constructed for an:;r irregular set. 

In Section l of Chapter II, we define, for functions bounded and 

measurable on E, an integral over Eby using Caratheodor:;r linear 

measure. In section 2, emplo:;ring the integral thus obtained, we define, 

in the complementary set, an analytic function by means of its integral 

over E. In Section 3, we generalize Golubev's technique of construct-

ing a curvilinear integral of a function defined and continuous for 

2Point sets of finite (different from zero) linear measure are 
divided into two classes: the first, consisting of regular sets, and 
the second, irregular sets. Regular sets are analogous to rectifiable 
curves; irregular sets are dissimilar to regular sets in fundamental 
geometrical properti3Se (Cf. 1, PP• 424-426; 3, pp. 142-143). 
'lbroughout this study, the l;erms "measure" and "measurable" shall 
always be understood to mean "Caratheodory linear measure" and 
Caratheodory "linearly measurable" respectively. 



a regular set Eon a rectifiable curve, to the case where Eis an 

irregular set, having Property A, on a non-rectifiable Jordan curve. 

We give, in Section 4(a), some properties of the curvilinear 

integral1 and in 4(b), we establish the equivalence of the two types 

of integrals constructed on irregular sets. 

In Chapter III, Mis regarded as a bounded, non-degenerate, 

locally connected, plane continuum which does not separate the plane. 

We determine that there exists an analytic function F(z) having Mas 

its singular set by employing a new approach1 that is, by making 

use of the mapping of the complement of M onto the interior or the 

unit circle by a simple analytic function. The analytic function 

F(z) is thus defined without the help of integrals. 

We SU111marize our findings and give recommendations for f'urther 

study, in Chapter IV. 

B. Definition of Terms 

We give, in the following, definition of terms that are used 

in this study. 

1. Let Ebe a plane set or points, and p ~ arbitrarily chosen 

positive number. Let u1(p,E), U2 (p,E), ••• , be a finite or denumerable 

sequence of open convex point sets which satisfies the following 

conditions a 

(a) Every point of Eis an interior point of 
at least one of the sets u1, U2 , ••• , 

' (b) The diameter ~ of Uk(p,E) is less than p 
for all values of k. 
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Denote by U(f,E) the collection or points u1 (ptE), U2 Cp,E), 

••• , and denote generally by di the diameter of the point set 

U1(p,E). Let Lf represent the greatest lover bound or the sum 

u~d1 

tor all possible coverings or E. As r decreases, LP cannot 

decrease. Consequently, 

lila L = C (E) r-> o f 
always exists, finite or infinite. L*(E) vill be called the 

Caratheodory exterior linear measure or E. 

A set E will be called measurable if', for every set W of' 

finite exterior-linear measure, the relation 

L*(W) = L*(EflW) + L*(C(E)OW) 

. is satisfied. If the set E is measurable, we denote the number 

L-*(E) by L(E) and call it the Caratheodory linear measure of E. 

2. Let E be a linearly measurable set, and let p be any 

point or the plane whether belonging to E or not. The P:PJ?E!£ 

1\4."'Altt n·*(p,E) and the lover density D*(p,E) of E at the point 

p will be defined as 

lim sup L(E~p1r)) 
r -> 0 

L(Eilc(p,r)) 
lim inf' 2r 

r-> O 

4 



respectively, where c(p,r) is a circle vith center p and radius 

r. It r:f (p,E) and D*(p,E) are equal, their conmon value vill be 

denoted by D(p,E) and vill be called the density of the set Eat 

the point p. 

3. A point p or a set will be called a regular point if 

the density, D(p,E), exists and is equal to unit,'. Otherviae, 

the point p will be called irregular (1, p. 424). It almost all 

points.) of E are regular, the set itself vill be called regular, 

(1, p. 1.24). Ir the subset or E consisting or irregular points is 

or positive Caratheodory linear measure, E will be said to be irregular. 

4. A continuum is a compact,connected point set vith at 

least tvo points. 

5. A point set Mis connected it and only it it cannot be 

represented as the BUil ~ U M2 or tvo non-empty disjoint sets both 

ot which are open relative to Mor both ot vhich are closed relative 

to M. 

6. A non-null open connected set is called a domain. 

7. ! .,!ll El ppints .!! .!!. bounded it the distances between pairs 

ot points ot M have a finite least upper bound. 

8. A point set vhich cont.a.ins allot its limit elements is closed. 

9. An onen curve is a locally compact continuum which is separated 

into tvo connected point sets by the omission ot ar,:y ot its points. 

3 
"Almost an• is used here to mean •except at points or a 

set of' linear measure zero.• 
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c. Review of the Literature 

The current problem is one that has evolved as a result of 

investigations made by various authors. D. Pompeiu (13, pp.914-915) 

vas the first to exhibit an interest in constructing, vith the help 

of definite integrals, an analytic function having a perfect, 

nowhere dense, bounded set of essential singular points, He proved 

that there exist a set E of two dimensional positive Lebesgue measure, 

and a function continuous and analytic in the extended plane vith 

singular points in E. 

Employing definite integrals, A. Denjoy (6, pp. 258-260) showed 

the existence of a single valued function, analytic in the extended 

plane, having a perfect, nowhere dense set E of essential singularities 

of one dimensional positive Lebesgue measure in the linear interval 

0 .!_X.!_ 1. 

Golubev (7, p. 122) extended Denjoy's result to the ease in 

which E was a perfect, nowhere dense set of one dimensional positive 

Lebesgue measure on a rectifiable curve L. He formed the function 

f(z) = S' dt 
E t - z 

b 
= s dt 

t - z a 

b 
~ n dt 
L~ t-z 
n = 1 n 

where (an,· bn) are interval components of L whose union is the 

complement of Eon L, an an element of L, bn an element of L, 8n < bn 

for each n, t being ·any point of E, and z a fixed point not on L, 



/ 

where•<• means• precedes" in a particular order. The line 

integrals 
b dt 
S' t - z a 

and 
b 
n dt 

) t - z ' 
an 

which are dependent upon the particular rectifiable CUl"Ve L, are 

taken in the Lebesgue sense. 

He investigated the case in which a perfect, nowhere dense 

point set E of positive one-dimensional Lebesgue measure is located 

on a Jordan arc C, x = x(t) and 7 = y(t), and established a corre

spondtmce between E and a perteot novhere dense set Et located on 

the t-axis. Golubev considered further the integral of a function 

fl(t), defined and continuous, tort in Et and constructed a single 

valued analytic function having E as its singular.set. Using the 

construction 

f'(z) = S ~t)dl 
E x(t - z 

t 

thus obtained, he disclosed that this representation of the tunction 

f'(z), in contrast vith previous analyses, was burdened vith one 

defect vhich considerably decreased the value or such a representation. 

The set Et, located on the real t-ans, and upon which Jl(t) depended, 

was not related closely enough to the set Eon the Jordan arc C to 

permit one to infer significant properties or r(z) 1'rom the analytic 

expression which represented it. (7, pp. 127-129). 

7 



CHAPTER II 

. ANALYTIC FUNCTIONS WI'J'H AN IRREGULAR 
SET OF SINGULAR POINTS OF POSITIVE 

CARATHEODORY LINEAR MEASURE 

Section-1. Integral !!!Presentation. We consider, in the real 

.plane, an i""8gular, closed and bounded point set E. Let p denote 

any point of E, and f(p) a single valued, real valued f'unction or a 

point defined, bounded and measurable on B vith respect t::-i Caratheodory 

linear measure. A f'unction r(p) is said to be measurable if for each 

~ > o, the eet E(t > )l) has Caratheodory linear measure. 

We insert between the upper bound Mand the lover bound a ot 

t(p) the folloving numbers• 

• <u..<w < ••• <-- 1 <n. ~ - --J.. ..... 2 - -- n- - -n 

~ =•,Ji. = M) 
ll 

Let e be greater than zero, and let these n divisions or the range 

of t(p) be such that the greatest of these parts '11 - tt1_1, far 1 = 1, 

2, ••• , n is less thane. 

Let E1 be the subset or E consisting of those points of E far 

which it1_1 .! f'(p) < Ji1• Denote by '-(p) the f'unction which has the 

valm •i-l at all rointa or E1, for i. = 1, 2, ••• , 111 let b6 (p) be the 

function which has the valm Jli at all points ~t.E1, for i = 1, 2, 

••• , nf vhere AE1 is the Caratheodory, linear measure ot E1J and let 

n 

~ .. (p)du = L lli.-1.t.E1 (1.1) 

i = 1 

8 



and n 

~(p}du = L "P1· 
1=1 

(1.2) 

'1,(E), (1.3) 

vhere L(E) is the Caratheodory linear measure or E, since Eis 

linearly measurable. 

Let, now, the range or r(p) be successively subdivided by 

introducing further points or division such that the corresponding 

values or • rorm a ·--ce (I ) such that , approaches zero as -'\l- m m · 

m approaches infinity. The set of numbers 

s,, (p)du and She (p)du 
E m E m 

are both bounded and monotone, the first being monotone increasing 

and the second, monotone decreasing. As a result, these tvo sets 

ot numbers converge to a common limit as m increases without limit. 

This limit, 

11m S Be (p )du = 11m Sh,. (p )du (1. 4) 
m->cnB m m-><..,)1-m 

is defined to be the value of the integral 

· or t(p) taken over E. 

St(p)du 
E 

Ve shov that the value or the limit is independent of the 

particular mode in vhicb the-range or r(p) has been successively 

subdivided. 

9 



Let ie (p) and he (p) be functions vhi ch correspond, in a second 

mode of subdivision, tog (p) and h (p). We superimpose these tvo 
• e -

subdivisions or the range of f(p) and let ie (p) be the function 
m 

defined vjth respect to this nev subdivision as g8 (p) is defined 
m 

above. We have 

0 < S g (p)du- S g (p)du < • L(E) (1.5) 
-E 8m E 8m m 

-
0 < S g (p)du - S g (p)du < e L(E) (1.6) 

-E ~ E 8m m 

To show the firet inequality, ve note that in the finer.subdivision 

of the range of f(p) the difference betveen the maximum Mand the 

minimmn m of f(p) in a given interval d of the subdivision is less 

than• since this difference was less thane on the larger intervals m _ m 

of vhich dis a subset. g8 (p) and f..a(p) are values of the function 
m 

on the interval d and hence have a difference less than IM - ml vhich 

is less than e • By reasoning similarly vith 'ia (p) and ie (p) ve 
m m m 

show the second inequality. Consequently, 

l S ge (p)du - S ii_ (p)du I < e L(E}. (1.7) 
E m E -em m . 

As m approaches infinity, e_L(E) approaches zero. Therefore, 

lim S g (p)du = 
m -> c..,') E 8m 

11m S i 41 (p }du. 
m --> c..,') E m 

(1.8) 

The same reasoning applies to the functions ii8 (p}, he (p) and 
m m 

ii (p}. 
8m 

10 

We establish the following Lemmas. They vill be used in connection 

with the proof or Theorems appearing later in this study. 
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Lemma I. If E • Ei U Ea where E1 and Ea _!!:! ~ disjoint subset! 

o.t E, E, Bi _!!!!! E2 being ~ Caratheodory linearl1 measurable, and, 

f(p) is measurable 8!!.!! bounded.!?!! E, Ep and· E2 , then, 

Sf'(p)du = S f'(p)du.. + S r(p)du • 
E E --1. E 2 

1 a 
Proofs Each of the above integrals exist since f(p) is measurable 

From the definition or the integral, 

In like manner 

sr(p)du ::. 
E 

S f(p)du1 + S t(p)du = 
E E 2 

1 2 

lim SSe (p)du. 
m -> (.',) E m 

lim S g (p)du , (1. 9) 
m -c. "" E aem a 

a 

where the limits are independent of the particular mode in which the 

range of f(p) has been successively subdivided. g8 (p) is that function 
. m 

vhich has the value u1_1 on E1, 1 = 1, 2, ••• , ma 'i.m(p) and g28m(p) 

are f'u.~ctions vhich have the value u1•1 on Iii and E21 respectively. 

Consequently, 

S gle (p)du = 
E1 m 

Now in. defir;ing 

Sr(p)du, S r(p)du1, and~ r(p)du, · 
E ~ \ a 

(1.10) 

(1.11) 

we use the same subdivisions or the range or f'(p). Therefore, gli\n.(p) 
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and g 8 {p) differ only in notations from g8 {p), that is, tor every 
am m 

g1 (p) on E1, there corresponds the same function g• {p) on E. In 
~ m 

like manner, the same reasoning applies tog {p) on E. Correspondingly, 
a•m a 

g16 (p) and g • (p) can be replaced by g (p). Forming the Slllll of the 
--m a m 8m 

integrals, 

S f(p)d"':i. and S t{p)du 
El la a 

and making use or the foregoing, we have, 

S t(p)du + S f(p)du = 
E 1 E a 

lim S g,_ {p)dlli + lim ) g • {p)du 
m->""E ~ m-> E am 2 

1 a 1 "" a 

11m Sg (p)au = St{p)du {1.12) 
m->c.--,E9m E 

= 

since L{E) = L{E1 ) + L{Ea), where L{E), L(E:J_), and L(E2 ) denote the 

Caratheodory linear measure or E, E1, a.n.d E2 respectively. 

A similar determination can be achieved using Sh• (p). But 
, E m 

This Lemma may be extended, by induction, to the case where Eis the sum 

of any finite number of disjoint point sets. 

Lemma II. .It. t{p) .!!. unity, ~ Sdu = L{E), ~ Caratheodory 
E 

linear measure of E. 

Proof: Since t(p) is bounded and measurable on E having respectively 

Mand mas its least upper and greatest lover bounds, 

Smdu .! St{p)du .! SMdu. (1.13) 
E E E 

From the definition of the integral, we have 



(1.14) 

where AE1 denotes the Caratheodory linear me~aure ot E1• In the special 

caae in vhich m = M = 1, '• (p) = ha (p) = 1 to_r every m. Upon 
m m 

passing to the limit aa in (1.4), ve have f'(p) = 1, and consequently, 

~du= L(E) 
E 

Lamia III. Skt{p)du = llSt(p)du, 
E E 

~ ~, .!. constant factor may la!. placed betore · .!:!!!, integral !!me 

Proota In relations (1.1) and (1.2), ve replace the factors Ui-l 

13 

and ~ by lms.-l and lmt reepectiftly. For each •, Stg (p)du = k)g (p)du. 
E ~ E 9m 

From the lava or operation vi th limits, ve have 

lim ~k&e (p )du = klilll S '• (p )du 
m->~E • m->v-,E m 

(1.15) 

A similar relation holds for lim · Skh• (p )du. The final reau1 t 
m -> c,) E m 

nov follows trom the definition ot the integral. 

ISt(p)dul .! sf t(p) fdu < NL(I), 
E E -

Lemma IV. 

vbere M denotes ;Yii•xhmli value 2£. t(p) OYer" E !la. L(E) !b.!_ Caratheod017 

linear lllt&8Ul"9 of E. -------
Proof's t(p) is defined on E. Then f'+(p) and r_(p) are defined on 

E as f'ollovsa 

r (p) = 
+ 

f'(p) it f(p) > o. 

O othervlee. 

-t(p) it f(p) < o. 
r (p) = - 0 otherwise. 

f'+{p) • mu:(t(p),o) and r_(p) = -min(r(p).O). Since f'(p) ia bounded 
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and Caratheodory linearly measurable on B, r+(p) nnd r_{p) are like

wise bounded and Caratheodory linearly :measurable on E. The integral 

of t(p) over E, in terma or t+{p) and f'_(p), is thu det1ned by 

St(p)cm = )r+Cp)cm - Sr (p)du. (1.151) 
E E E -

lov let B1 c E be the set on vhich t(p) !. 0 and E2 c E be the set on 

vhi ch f' (p) < o. We baYe 

(1.152) 

and similarly, 

St (p)cm = S t_(p)du = S ft(p) lttu. {1.16) 
E - E I 

a a 

Fros (1.152) and (1.16) 

Slt(p)lcm = St+(p)du + sr_(p)cm, {1.17) 
E E E 

since E = ~ U E2 • Frcm. (1.151) and (1.17), it f'ollovs that, 

ML(E) > S lf'(p) ldu > tsr.(p)du - sr_(p)dul = JSt(p)dul (1.18) 
- E - E E B 

Lemma V. .!!. t(p) .!!!! g(p) !!:!. ~ single valued, !!!!. valuedp 

tunctiona 2!. .!. paint defined, bounded, !!'!!, marumrable 2!. B, then, 

S(t(p) + g(p))du = St(p)du + Sg(p)du 
E E E 

Proof's Each ot the gtven integral.a exist, tor since t(p) and g(p) 

are each bounded and measurable on E, then (t(p) + g(p)) is bounded and 

meaaurable on E.. We ahov that the integral in the left manber of' the 

equality is equal to the tvo integrals in the right member. 

First, we consider S(f'(p) + A)du vhere A is a constant. From the 
E 

definition of the integral, 
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m 

S (f(p) + A)du = lim S~ (p)du + lim \ AM1• (1.19) 
E m->c...-:iE m m->V')L_ 

1 = 1 

Upon passing to the limit as in (1.4), 

s (r(p) + A)du = Sf(p)du + SAdu = sr(p)du + AL(E). (1.20) 
E E E E 

We next consider the integral of the sum of two functions,(f(p) + g(p)), 

each being bounded and measurable on E. Let Ebe decomposed into n disjoint 

measurable subsets E1 corresponding to functional values u1_1 .! f(p) < u1, 

where i = 1, 2, ••• , n. We have, 

and, 

SCr(p} + g(p))du 
E 

S(r(p) + g(p))du 
E 

n 

.! L ~ <u1-1 + g(p))dui' 
1 = 1 i 

+ g(p))dui· 

But by (1.20), 

and, 

~ (ui-1 + g(p))dui = 
i 

S (u1 + g(p})du1 = S ~du1 + S g(p)~, 
Ei . Ei Ei 

(1.21) 

(1.22) 

for ea.chi. Making use of Lemma I, we have, from (1.21), (1.22), and (1.1), 

Sg(p)du + Sge(p)du .!. S (r(p) + g(p) )du .! Sg(p)du + Sh (p)du (1.23). 
E E E E E 8 

As the range of f(p) becomes successively subdivided by introducing 

f'urther points of division such that the corresponding values or• form 

a sequence <8m> -> o, the set or mmibers Sge. (p)du and S~ (p)du converge 
E m E m 
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to the common limit Sf(p)du as m increases without limit. It follows 
E 

that s (r(p) + g(p) )du = sr(p)du + Sg(p)au. 
E E E 

Section 2. Analytic Functions Defined EZ,_M.!.!!!!, ,2t !!!, Integral 

.2!!!:, ~ Singular .2!i• The integral or f(p) is a real number that depends 

upon the point set E. In order to extend the integral to the complex 

domain, we consider a complex valued 

F(p) = f(p) + ig{p) (2.1) 

where f(p) and g(p) are real valued functions, defined, bounded, and 

measurable over E vith respect to Caratheodory linear measure. Then, 

SF(p)du = sr(p)du + i Sg(p)du · (2.2) 
E E E 

is a complex num9er that·depends upon the set E. 

We consider now the complex valued function 

s/(z) = SF(p,z)du 
E 

(2.3) 

defined by a definite integral. which contains in the integrand a 

parameter z, if F(p,z) is a single valued function defined, bounded, 

and measurable when plies in E and z is a fixed point in the complementary 

set, C(E). We now establish Lemma VI which vill aid in proving I. 

X.mma VI. ]t E ,b!!. Caratheodorz,·linear measure, ~ F{p,z) .!!. 

continuous, bounded, ~ measurable ,!2!: z .!!!, .£00., . .!!!2. F{p,z) possesses 

partial derivatives Fx(p,z) = Ux + iVY 2 Fy(p,z) = Uy + iVy, continuous 

~ eve" p _!!!. E and z ,!!l C(E), then, 

s/(z) = SF(p,z)du 
E 

exists !2!:, ~ ~ 1!!, ~ .!E!! possesses derivatives ~ respect ~ .!. !ru! z. 



continuous .!!. .Q.{!l.t namel:z:• 

and -
i (z) = )Fx(p,z)du 

X E 

'I (z) = SF (p,z)du 
y E y 

Proota Let F(p,z) • U(p,x,y) + iV(p,x,y ). 'nien 

~ S (tJ (p,rtac:,y) - U (p ,x,y) + 1 (V(p,~,y) .. V (p,x,y) ))du. 
g 
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lilll ~(U(p,z+Ax,y) - U{p,x,y) + i(V(p,:x:tAx,y) - V(p,x,y)))du. 
L'«-> 0 E 

(2. 5) U (p,x,y) and iV (p,x,y) have continuous derivatives vi th respect to 

x and y by hypothesis. In order to appl.7 the Theorem of Mean Value to 

the aboYe eqwtl.ity, ve consider a closed interval a _! x _! b on the x axis. 

For any x in this closed interval., 

f = ,Ax. .:;1'10 2:' i (Ux(p~Ax,y )Ax + 1VX(p,x+e1Ax,y )Ax)du, (2.6) 

vhere • 1 and•1 are positive real numbers each numerically leas than one. 

Since, by assumption, Ux(p,x,y) and Vx(p,x,y) are jointly continuous in 

p, x, and y, the coet'ticienta or Ax in (2.6) -wm approach U (p,x,y) and . X 

Vx(p,x,y) aa limits when Ax approaches zero as a limit. Hence, i.f' e1 and 

• are intinitesmala such that 
l 

we may write 

Hance, 

Um 9l. = lim • = O, 
Ax->O Ax->O 1 

Ux(p,1'44:tAx,y) =. Ux(p,x,y) + ei, 

Vx(p•x+e/:.z,y) = Vx(p,x,y) + •a • 

f = Ax .:!180 Ai i(Ux(p,x,y)Ax + 1V(p.x,y)Ax + 91Ax + e1Ax)du. (2.7) 

Therefore, given an• greater than zero, there exists a o greater than 
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aero, such that if" Ax < a. then 

•1 < 2t(I) and •a < ntrT • 

~ )((Ux(p,x,y) + lVx(p,x,y))Ax + e1Ax + I Ax)du = S(tJx(p,x,y) + 
--.g · 1 K 

iVX(p,x,y) + •i + a1 )du. . (2.8) 

Nov f'or Ax < cJ; 

•0'- - ~r (p,11)dut • I zt S((t:J (p,x,y) ~ 1Vx(p,x,y)}Ax + • 1Ax + • Aic)du • · Iii gX I X a 

SPx(p,s)dul • 1 S-((Uz(p,x,y) ~lVz(p,x;y))Ax + 91 + e2 )du - SCUx(p,x,:y) • 
E B E 

iVx(p.x,y))duf : ~(91 + e1 )du ,!i( 2L(IJ + 2L{l))du •. ~du + 

~ ~du • e/2 + e/2 = e~ by I,emae I, II, and III. {2.9) 

But e is arbitrary, and hence, 

Jfx(•) = Sl'x(p,z)du. 
E 

(2.10) 

9Y reasoni.ng similarly, ve show that 

,_ (z) = SF (p,z)du. 
y B 7 . 

(2.ll) 

Thie proves the i.... 

Ve nov eatabliah the tollovlng f'undamental integral theorem, 

T1IB(DM ~ lt F(p,z) !!. .!. conti~, bounded • .!!!l measurable 

function ,gl, .2. tor .!. fixBd !. !!!.4. contimlollll .!!:!. .!.t th,. function 

l(z) = )F(p,s)du 
E 

le cont1nuoaa 1n C(E). 



Moreover, .U:. F (p, z) ~ .f2!:. ~ .!. !. deri va ti ve F z (p, z) continuous 

,!!l £.!!!.<!.!_together, ,2 function ¢(z) is analytic l!!, CJ!h ~ is, 

¢'(z) = SF (p,z)du 
E z 
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Proof: In order to prove the first part of the Theorem, we form the 

difference 

¢(z + t.z) - ¢(z) = S(F(p, z + t.z) - F(p,z))du. (2.12) 
E 

Let e be greater than zero. If F(p,z) is continuous in p and z for every 

pin E and z in C(E), there exists ad auch that for t.z sufficiently small, 

IF(p,z + t.z) - F(p,z)I < L~) 

for !t.zl < d and for all p and z. Therefore, by Lemmas II and III, 

1¢(z + llz) - ¢(z) I = S IF(p,z + llz) - F(p,z) !du < ..J...( ) Sdu = fi. (2.13) 
E LE E 

Since 1/L(E) may be made as small as desired for« sufficiently small, 

the continuity of ¢(z) is assured under the conditions of the Theorem. 

A necessary and sufficient condition for F(p,z) to have a partial 

derivative Fz(p,z) for each z = x + iy is that Fx(p,z) and F1 (p,z) exist, 

be continuous, and satisfy the Cauchy-Riemann differential equations. 

Hence, from the existence and continuity of the partial derivative Fz(p,z), 

there results the continuity of the partial derivatives Fx(p,z) and 

F (p,z). 
y 

Let F(p,z) = U(p,x,y) + iV(p,x,y). Since F(p,z) is analytic in the 

complementary set, the Cauchy-Riemann differential equations are 

satisfied1 that is, Ux(p,x,y) = VY(p,x,y), and, Uy(p,x,y) = -Vx(p,x,y). 

Also, let ¢(z) = u(x,y) + iv(x,y). Then, 
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vbere 

u(x,y) = SU(p,x,y)du and v(x,y) = SV(p,x,y}du. 
E g 

Hence, 

ux(x,y} = SUx(p,x,y)du = SV7 (p,x,y}du = v7 Cx,y} 
E E 

(2.14) 

by Lemma VI. Alao, 

u..Jx,y) = SD'x(p,x,y)du • -SVx(p.x,y)du • -vx(x,y) 
y E E 

(2.15) 

for the same reason. Theref'ore, the Cauchy-Riemann dU'ferential 

equations are satisfied tor fl(z}, and, this function is analytic 1n C(Eh 

that is, 

(2.16) 

This proves the second part. 

Let us now apply the theorem and the lemmas proved above to the 

construction of a fu..1"lction fl(z) having a given irregular set .i ot positive 

linear measure as its singular set. Accordingly, let 

F(p,z) = p : z 

where z is any element in C(E), and construct the function 

fl(z) = S dp • 
gP-Z 

'!.'his integral exists and is analytic by Lemma VI and Theorem L fl(z) 

is an analytic function. Its derivative is given by the formula 

(2.17) 

for let z belong to C(E), ve .form the difference quotent 



i!(z + l.z) - ft~zl = S( 1 - 1 ~ = S du • (2.18) 
t. E p - z - Az p - z'l:IZ gCP - z - Az)(p - z) 

The limit or this integrand is 

We show that the limit of the integral ia 

" du ;) ( >'· Ep-z 

Consider, 

~{p - z - ~HP - z) = ~(p ~z)* + ~(p - z _ ;;)(p - z)h (Z.l9) 

The second integral in the right ..a.ber of (2.19) is boundedf tor let d 

be the mini!'!:l'llffl distance f'rom z to E, then, 

I i I < i 
(p - z - Az) (p - z)2 (d -h)c? 

if h is chosen so that O < h < d, and, !Azj < h. Hence 9 

bzlS du . I < ~ I 1 Jdu < L(I~ • (2.20) 
g(p - z -Az)(p - z)2 - E (p • z -t.Ji)(p - z)2 - (d - h)d2 

Therefore, the second integral in the right member ot (2.19) approaches 

zf'Jro as 6z approaches zero. Thus, 

Hence, 

S du approaches 
E(p - z - llz)(p - z) 

iCz ± QZ.) - i<z} 
Az approaches a 11m1t1 namely, st• (z) = Sc an >' • 

EP-Z 

In a manner similar to that used above for fi(z), ve can shov that 

1a analytic at every point of the complementary set, C(E), and its 

derivative is given by the formula 

"" ( z) = 2! S _..dJL_)' • E{p-;;;; i (2.21) 



In general, we can show that 

,.it{n-1) ( ) _ ( l), c- du 
y, z - n- • ~ ( )n E p - z 

is analytic in C(E), and that its derivative is given by 

,ie{n) ( ) _ , S du +l 
'P z - n. ( )n 

E p - z 

where n is any natural number. 

(2.22) 

From the well known fact that a function can be represented by a 
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pover series in the neighborhood of any point of a domain in which it is 

analytic, we have the following result: 

COROLLARY I. Ir Z = Z o be ~ fixed point i!!_ C (E}, 

s/(z) = S d;n 
E P - z 

~ E!. r!Presented, ~ !. certain neighborhood c,f t~ point, by !: Taylor 

series. ,!!:!! series!!!!. converge~ represent~ function ~oughout 

~ largest circle, about z = z0 ~ center, w~ contains in its interior 

~ point 2!_ E. 

We investlgate the nature of the function ¢(z) at z = v:, , and 

prove 

THEOREM II. ¢(z) = S du 
E p - z 

1!. analytic at z = v:, and 

¢( v:,) = o. 

Proofs Let us begin by making the transformation z' = 1/z and let 

h(z'} = ¢(1/z'). That behavior is assigned to the function ¢(z) at 

infinity, which h(z•) exhibits at z' = o. Hence, we examine the function 

h ( z' ) at z' = O. 

For h(z'), we have 

h(z') = S z'du , 
E pz' - 1 

(2.23) 



tram vhich ve rind that b(O) = o. We now take successive derivatives 

or h(s') and then evaluate these derivatives at z' = 0 as tollovaa 

h'(z') = ~(pzc;»- l)a, 

b•(z' > = 21 Sc ~ i>'' 
E pz -

h' (o) = -Sdu, 
E 

(2.2S). 

23 

b (n) (0) = -n: S'Pn-ldu, (2.26) 
g 

where n ia 8l1J' natural mnaber. 

The aeries 
,z (n) ,n 

h(z') = h(O) + h' (O)z' + b•(o>f: + ••• + h (o~ + ••• 

beC01198, by expressing hand its derivatives in terms ot integral.a, 

h(s') = -()z'du + Sps12du + ••• + Spn-ls,ndu + ••• ). (2.27) 
B E E 

Thia series is equivalent to the aeries 

si(z} • -( sz-1du + S'pz-1du + ••• + Spn-ls-ndu + ... ) (2.28) 
E E E 

= -<s-1sdu + .-aSPdu + ••• + 
E g 

--~pn-ldu + •••.• >. (2.29) 
E 

by Lama IL The coetticienta Spndu are finite because the coetf'icienta 
I 

pn-l are bounded continuous tunctiona of' B, a set of finite Caratheodor,. 

linear mea8111"8. The last series converges unif'orml.7 tar ( z I >R, where 

R is the radiua or a circle C abau;t the origin enclosing&. Therefore, 

si(z) ie analytic 1n the neighbarhood or s • "'. The absence of the 

constant term 1ndicatee that fl(s) has a root at int'inityf that is, 

fl( c..,;..,j = O. These conditions are autficient tor the f'unction to be 

analytic at z = <.,). 



We consider the single valued character of /l(z) and the question 

arises, Does /l(z) return to its original. value when z describes a 

continuous closed path around E? Let C be a simple closed curve vhich 

contains E in its interior. The domain exterior to C we designate by 

s. By Theorem I and II. Jl(z) is analytic ins. Moreover, Sis simply 

connected since any simple closed curve lying in Scan be shrunk to a 

point without going outside the domain. Therefore, ve have an analytic 

f'unction in a silllply connected domain, a. fact which proves, according 

to the Monodromy Theorem, that Jl(z) is single valued on any simple 

closed path about E vhich lies ins. If z describes a simple closed 

path through E, the above reasoning does not apply. The function Jl(z) 

vill not necessarily return to its original value for any such path 

through E. This can be seen by considering the followings 

Let E' be a perfect nowhere dense set of positive Lebesgue one 

dimensional measure on the linear interval. Ia a,!X.! b. Consider 

b "' % 
=l dt -~ s dt, 

at-z } at-z 
~n . 

F(z) = S dt. 
E' t - z 

(2.30) 

where (a , b ) are interval components whose union iei the complement · n n 

of E', a < b , for each n, t being any point or E' , and z a fixed point n n 

not on I, vhere "<" means •prt:tcedee" in a particular order. a and bare 

the terminal points of I. The 
b 
g dt 

t - z .a 

integrals 
bn 

and {'t dt 
,.) t - z 
an 

are taken in the Lebesgue sense. 

Upon integrating, we have 



2.5 

(..-') 

l"(s) = lng(b - •) - log(e. - a) - k (loe(b,, - s) - log("n - s)). (2.31) 

The logarithmic tunctions are clearly- MU.1:tivalued with branch points 

at a. b• ~ and b:n• Hence as s describes a simple closed path · throush 

B, F(z) vill be increased b.r SClll9 multiple or 2111, depending upon hov 

many.of the branch points are inclosed. 

We can nov state the f'olloving theorana 

TJtEORll4 III. !!!.!, anaJ.uic t,mction fl(z) .!!. aiggle ftlued 1.!, ~ 
,, . 

domain exterior l2, .!. simple closed ourve vhoN bounded ggepleentaq 

domain contains E. 

We COlll8 nov to the probl• ot determining whether or not the given 

irregular set or positive Caratheodory linear meaaure 1a ti singular set 

tor 1'(11). Related to this problem 1a the question of the existence of' 

a function having a given irregular set or Caratheodory linear measure 

zero aa ita singular eet. 

Regarding sets ot linear measure zero, w. Grou (8. p. 180) 

constructed an irregular set or positive linear measure ot vhich the 

projections on two perpendicular directions are ot linear measure ll8rO. 

A. s. Buicovitch (1, pp. 455-4S8) formed a aet or positive linear 

measure ot which the projection. on Bff1 direction is or linear measure 

zero. Theae tvo 1nvutiptioll8 are particularly signif'ioant here since 

they shew tlf'e existence.or eeta ot me9.IR11"9 zero which are projectione or 

irregular aete ot meaaure greater than zero. The question arisea1 Can 

thia procedure be revereedt that ia11 given a set ot linear measure zero 

on a Jordan Clll"Y9 without double points, ia it possible to oonatruct, 

on another such Jordan curve, an irregular set or poeitive linear measure 

tor which the given set appears as a projection? For some regular sets, 



this question has been anavered at'tirmatively.1 As tar aa ve have been 

able to determine• the question remaina unanswered tor iITegular sets. 

Aa a conaequence or th.la limltation. we must restrict our discourse to 

irregulu- ata or poaitive linear measure having property A. 2 

The foregoing discussion brings ua to 

THEOREM IV. The pgint ,!!1 ! !!. .!. einplar !n !£. !W_. 
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Proof's We first show that some points or E are singular tor jl(s). 

low the 1'mction sl(z) cannot be a constant. For• auppose fl(z) 1a a 

aonnant. By Theorem III. uter1or to a simple cloeed C'.ll'ff vhich containe 

E in ita interior, fl(z) ia a single ftll18d analytic function. According 

to Theorem II, ,(z) = 01 tor s • c..-,. Therefore, if jl(z) is constant, 

Jl(z) • o, s,nd, ssl(z) 11 o. But 

1m .-c.> = (2.32) . _,. (,:) 

by Lenna llI. We thua haft a contradiction aince the Caratheodory linear 

meaaure L(B) 1a known to be nonzero. We conclude• from Liourille'a 

Theonla,3 that at lea.et 8CIJl8 points ot E are singular pointa tor Sl(z). 

lov B, by' ...-ption• poaaeseea Property Aa that the Caratheodory 

linear meaaure ot any eubaet included within any circle ot radius r > o. 

deacribed about any one of its points, is dttf'enmt tram zero. It follows 

1Daed1ately that all points ot E are eeaential singular points tor jl(z). 

For let Q be any circle or radiua f described about any point p or B such 

~ existence ot a function having a singular set ot measure zero, 
in the cue or some regular sets, baa been shown by Golubev.(7, pp. 128-130). 

2 
Ct. p. 2. 

3 
A single valued analytic function which baa no singularity either in 

the finite portion of' the plane or at intinity reducea to a constant. 



that. EllC(Q) Y. o. Then E ia divided into tvo Caratheodory linearly 

measurable subsets, namely, E1 lying in the interior and on Q and E1 

lying in the exterior or Q. Then, 

= fl! (z) + 'i. Cs). a 
(2.)2} 
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Bow, applying the reasoning employed in the toregoing paragraph, we nov 

shov that E1 has an essential singular point for ~(z) vhich is 

accordingly an essential singular point f'or fl(z). Hence, in the int.erior 

of any ci.rcle of radius p > o, described about any point p of' E, and 

satisfying the condition given above, there are singular points ot fl(z}. 

Thus, each point p or E is a limit point of' r,oints vhioh are themselves 

limit points or E. Consequently, all points or E are essential singular 

points of' $4(s). 

Section 3. The Curvilinear Intesr!! Defined$!!!. Irregular~. 

We consider the construction or an analytic expression analogous 

to a curvilinear integral or f(p} on E. 

R. L. Moore and J. R. nine (12, pp. 218-223) have shown that if' E 

is a closed and bounded, totally disconnected point set in the plane, 

there exists an open curve I (tor,ologieal open one cell) which contains E. 

The set complementary to E 1n JC is open and consists ot a sequence 

(hu) or demmerably many diejoint open arcs. Generalizing the method or 

Golubev (7, p. 122), ve obtain E by removing a denumerable sequence or 

open arcs in the following manners f'irst, ve remove from E the comple

mentary are h1 and thus decompose I into two sets r1 and Ka and E into 

tvo sets Bi • Bnl1 and Ea = IOl:2 • Next. 9 we remove f'rom 1t - b_i_ the 



complemen'ta.17 arch. We obtain three aeta 
a 

8a, ,.a, ga , 
l a , 
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(:3.1) 

vhere the set S:,, tor each mis the intersection ot a closed connected 

subset, an interval or a rq, ot Kand B. 

In general, upon the removal tram I - (bi + h1 + .. • + 1\i) the arc 

~ 1, complementary to I in r, ve obtain a sequence 

~l wn+l 1n+l 8n+l 
-i 1 •a t ) 1 ••• ' D t (3.2) 

n+l 
when Ba , tor each•, ia the intersection or a closed connected sub-

set, an intel"ftl or ray of I and E. Thia operation continues, and ve obtain 

the double eequence of point sets 

K2 ' r I ) 

•••••••••••••••••••••••••• 

n Jl ..n n n n 
IC' t & ' & ' B • B , ••••• ' En+l --1 a , 4 , 

(3.3) 

We denote by ~ the Caratheodory linear measure ot ( • Let F(p) 

be a continuous t\mction or p 1n E and P(~), the yalue ot the tunct.ion 

at some point ~ on S:. ·we define the CUJ."9'ilinear integral or P(p) on 

Eby the number 3 and denote it ae tollovaa 

J = SJ'(p)du == lim . : :r(p!)~ (3.4) 
B n-> G,") 

m= 



For brevity, ve call the IIUll8 

s1 • t r(p!>cm!. s1 • t r<J>!>w! ••••••••• 

Sn• ~ l'(p:)cm: • 

k 
••••••••• (3.5) 

Ve inTestlgate the existence or the aboYe limit. and shov that J 

is independent or the rearrangement or the aequance (h ). J deeignates 
n n 

aome aigma sum. 

Iamaa VIL Le;tc I' lt!..1. clo.,ed Oflll!gted aubset 2_t !, and, gt = l'fll. 

!!,t r1, r 1 , ... , rn ~!. finite .!!.t 2! !. diajoint !E!!. intenala each a 

subset 2!..!: ~ Jti• J[a , 1, , ... , l'.n+l .!?!_ ~ n+l disjoint!!!,-
n . n• 

nected subsets ot I'. • .,LLr11 tor •ch•••• 1, ?., ••• , .+1, let p ba 
-------..... J:.l - ---- --- m .-, 
!.~t !! s•nr.., ~ a: ~ t!!_ l.1ne8r meaaure :!. E'"'-· ~ tr be 

!. e1tive !!!!, mlllber ~.!!l!1.!l!. oaelllation !_f F(p'} 2.!l, K' ~ ~ 

.!i!!e CT• ~ p' 1:!!..!!l arbi;t:r;arY Poiat !! E' ,!!!! ~' ~ linear 

measure .![. s•. Then. 

IF(p • )4u• - ~ r(p:' >aa:' 1 < n.(E• J 

f.r 
Proot1 The set complementary to B' in K' ia open and consists or a 

sequence(~) of denumerably many disjoint open arcs. 

The 1rU1D11 S' and S:. are .f0l'lll9d vi th respect to I' in a manner similar 

to that in which Sn is formed vit.h respect to 1, vi.th the tolloving 



exception• there is only one functional value or F(p'), for p' on I' , 

involved in the 8UDl s•, vhereaa in S~ there is a functional value or 

p' for a point p' in each or the sets c~· ), m = 1, 2, ••• , n+l, whose 
t 

linear meuure ia ~ • We write s• in the form 

S' " t F(p').W:'• 

Then 

L ' . ' IS' - S~I = IF(p')du' - F(p: )~ I = 

:m = 1 

n+l 

I\ F(p')mi:' -

fr-;-y 

< CfL(E' ), 

' since lr(p•) - ll'(p: ) I < U- • tor m = 1, 2, • •• , n+l. 
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(3.6) 

Lemma VIIL Let Sr be.! rind sigma~ oonaitrting or r+l parts 

obtained El the removs1 ot r comrlementary ~· wcceaaively, from KJlE. 

Let the oscillation of F{p) on{(), m = 1, 2, ••• , r+l, be less than 

"i. Let St be ~ ~ sigma -~ f'o.rmed by the rel\10ftl. ot the r complementary 

~ or Sr together with!: finite number of other complementary~· 

Then 

••• 

1st - Sri< oi_L(E) 

Proofs Lemma VII is valid for each of the sets(:,;) or Sr'•= 1, 2, 

, r+l, vi.th respect to St, since~. for each m is the intersection 

or a connected subset or 1C and E and, more~r, vlsys th~ role or S' in 

the prfl'ious Lemna. 



Let 

d~, du~, ••• , du!+i 

denote the linear measures of the sets 

respectively. Then 

E =l!lr+Er +Er 1 2 + ••• n+1· 

Thus, it follows, by repeated application of Lennna VII, that 

!St - Sri < CSidur + Cfj_du: + ••• + dj_du~l = fJi~(E) 
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(3. 7) 

Lennna IX. ~ a.£!. !, number greater ~ Z!!:!:,_ ~ there exists .!:. 

number I\{~ t~ f!?!, n '> 11'' E~ f~ every m .!!, ~diameter,!!!!_ t~ 

01 ~ .!!., .!! n > Df, evecy ~ ~. m = 1, 2, ••• , n+l, involved 

in the sum S, is of diru.neter less than a: ---n -- --
n Proof: Suppose that the Lemma is false and E; cannot be decomposed 

into subsets each of which is of diameter less than~ Then there exists 

a monotonic descending sequence of sets (Ejn) each of diameter greater 
m 

than O and such that 

(1) x;n.+l c:: ~n 
' 

(2) Ejn is closed and compact. 
m 

Hence n~n = r!, a subset r,f R of diameter greater than or equal too. 
Therefore, E* contains at least tvo points, a and b, not separated in K 

by any arc of the set (hn)• This is impossible since Eis totally dis

connected. Thus, we have a contradiction. We conclude that the number 

n&" which satisfies the Lemma, exists. 



Lemma X. !!!l • J2!. ~ter t~ze.!:2!_ ~ exists !. 6 = cI(e) 

~ !hal . .!!. 8tc ~ Sq .!!:!. !!!] ~ alp ~ defined .2l. l!1!!!!!.. !!.!. 

d&COJ!ffiOSi tions .2! E ~ aub8ets 2[_ diameter less _tE.!l! f, .lh!!l 

IS - s I < •/2, 
k q 

vhere k = 1, 2, • • • , h, ••• , q, ••• 

Proo:f'1 A number ( exists such that it gk is of diameter less . m 
8 k k1 k 

than , and Pm.a and Pm are points of' g;, then 

IF(p!l) - ,(p:,) I < e/4L(E) , 

since F(p) is uniformly continuous on the closed and bcnmded set B. 

Let 5it and Sq be any tvo si.gma sums such that the sets~ ot E 

irm,lved, each have diameter less than ~ 

There exists an integer r euch that it' we remove a f'in:!te.colleetion 

Gorr arcs, h1, h2 , ••• , ~, then C contains each of the arcs, which 

detenrlnee the sigma sum S and also each or the arcs, which determines 
q 

st. We have, ~ 

l5ic - s .. 1 = I f;-y F{p!)c1u~ - ~:: r(p:>c1u:1 

r .. 1 

~ LIF(p:) - F(p!) ,cm: < 4L(E) L(E) == •/4 , (3.8) 

m=l 

by Lemma VIU. 

In a similar manner, we can show that I Sq - Sr I < e/4. 

But Sk - Sq = (3t - Sr) - (Sq - Sr)• 'l'heretore, 

rsk - Srl = I (5k - Sr) - (Sq - Sr)I .! 1sk - Sri + 1sq - 8rl 
< a/4 + e/4 = e/2. (3.10} 
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THEOREM V. ~t sigma ,m 8k ,!?!. formed f.2!, k = 1, 2, ... , h, ... 

k k 
q, ••• l.t 1:im ~.· --> o, where~ ~~1':Ytes. th!, maximum diameter 

k-.> <:...-, 

k . 
of I , for each k and every m, t_hen, - m .-. - ......... ___ _ lim sk exists. 

k -> (;) 

Proof: Let e be gt"'!ater t,han zero. Then, by Lemma X, there exists 

a I = cf(•h by Lemma IX, there exists a k0 such that, if k > k0 and 

P! 1, then ISk+p- sk I < e/2 < e. 

Since• can be chosen as small as ve please, the above relation 

shovs, by Cauchy's Convergence Principle, that 

(3.11) 

exists. We define this limit to be J. 

Lemma II. Let h1, h 2 , • • • , hn be .!_finite sequence o_! intervals 

complementary to E in 11 let g1, g2 , ••• ,~be! second tinite sequence 

of interval.a complementary to E in K such that 

Let also ~land ~2 be the~ determined by the finite sequences (h1) 

and (g1), and let only the max1wnun value ot the tunction JF(p)I be used 

in these sums. Then, s < s1• a-
Proof• Since 

(3.12) 

and only the max1mum value of f!'(p) I is used in the sums s1 and S2 , the 

relation 

follows directly. 

s < s 
a - 1 

(3.13) 



THEOREM VI. Let a1 = h11, h1, ••• , h1, ••• and 
- z n 

a2 = ~, h:, . . . , h!, . • • ~ different sequences f!! t~ S!:, 2!._ ~ 

intervals, complemen;tm ,1o E .!!!, I:• !!l !!!l.. order. ~ 
· n1 +l 

J'.l = lim k F(pn1)dun1 
~ -> c.,") m m 

m= 

n +l 

J = . lim _ t F(p Dz )du:a 
2 n->"-> m 

a m = 

where ~i designates t.!!!. measure .2!, t!!_ intersection 2!. E ~ !. 

ma.xi.mum connected aubset of 

, i = 1, 2. 

Then -
Proof's Let e be greater than zero. There exist integers 11)_ and 

n2 such that it n > ni and k > n2 

'
J - s1t < •/2 1 n 

(3.14) 

11 - s1 1 < •/2 a n (3.15) 

Nov consider a third sequence 

a = ~. h>, ••• , h,, ••• , --i a n 

of' the set of open intervals complementary to E in L A number v1 

can be found such that a subsequence or tho original sequence consisting 

or the segments 

(3.16) 

contains the tirat n terms or the sequence si• namely, 



Thia means that 

and, therefore, 

by Lemma XI.. 

1 l l hi• hJ, •••• I\;• 

n v1 
ij hl C l,~ 

1=11 i=l 1 
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(3.17) 

(3.18) 

(3~19) 

In like manner, there meta a number v such that a subsequence of . a 
the sequence a ,conaistinc or the segments 

J 

and therefore, 

I.et v = "1 + v,. Then by l,eJJJU. x. 

'There.tore, 

Since• ia arbitrary, 

IJ1 - s!t < e/2 ' 

IJ, - s: I < e/2 • 

J • J. 
l a 

We have tln.us shovn that 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 



lim Jn = J 
n ->"' 

(3.28) 

exists and is independent of the arrangement of the :i.ntervals (h1). 

Section lt(a). ~ Properties .2!. !2!, Currtlinear Inteel. 

We shall show sane properties of the curvilinear integral vhich 

we have developed. We begin with an analogue or a wll known integral 

theorem. 

'1'HEOP.IM VII. ]! M denotee !h!, maxtr:nun value _2!. JF(p) I !!?!:, ~ p 

.!!l E !!!2. L(E) denotes th!, linear measure !!, E, J:h!!!_ ,!!!: everz p JJl E, 

(SF (p )du I < ML(E) 
.E -

Proof's from Seotion 3 

·. fSF(p)duJ .! g fF(p) fdu .! M 
E E 

lim p ®/: (4.1) 

n-> ""L 
m=l 

This sunnation represents for each n and every m, m = 1, 2, ••• , n+l, 

the Carathoodory linear measure of the sets in the sequence(.() and 

equals, as n becomes infinite, the linea:r measure or E. 

tr the open curve K which eonta.ina Ebe divided into tvo half' lines 

K1 and K2 ha.vi.nf in common a single point p belonging to E and containing 

subsets E1 and E2 of E respectively, then because E baa propert,- A,4 es.eh 

subset has positive Ca.ra.theodory linear :measure. We prove 

common !. single point or ~ Let E1 = BflX1 , and E = EOK • Let 
- a .t -

a = h1 , h2 , • • • , 1\i• • • • be ~ sequence <!! open intervals, 1n ~ order, 

complementary_ to J!. !!!_ the 2E!!!. curve !- or the tl!:n.. l'!. intervals 

' .. er. p. ;i. 
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and a = h21 , h2 , ••• , h2 lie in K. Let duni denote the measure of 
- 2 a n2 ---- --- a - m - -

the intersection of E and a maximum connected subset of - ------- ..._. 

n~i 
Ki - U_ ~ 

m=l 
, i = 1,2. 

Let F(p) be continuous on E. Then - ....... - -----. 

S'f(p)du = S F(p)du1 + s· F(p)du 
E E E 2 

1 2 

Proofs By virtue of the continuity of F(p) on the closed and bounded 

set E and, according to Section 3, we can write 

SF(p)du = lim L F(pn)dun , 
E ... m m 

n -, "" 
m=l 

where F(pn) is the value or the function F(p) for pn in Ef' and dun the 
m m m m 

Caratheodory linear measure of~. This limit is independent of the choice 

of the points~ in ( and the arrangement of the intervals a. But 

p + 1 !1J. +1 

lim L\ F(pn)dun = lim c\ F(~l) d~l + 
n -> "-> m m n -> """' _! __ 

m=l m=l 

n+l 

~ F(pn2)dun2 ) = L_ m m 

m=l 

n2+ 1 

lim L F(pn2)dun2 , 
n->"-> m m 

2 m = 1 

+ (4.3) 

where F(~l) and F(p:a) are the functional values of F(p) in ~1 and 

respectively. From the above determinations, it follows that 



SF(p)du = S F(p)du1 + S F(p)du 
E Ei Ea 2 

aa required. 

Lemma IlII. ,!!1 'i !!!!! K 2 .!?.!_ .!?!!f lines, subsets !!!_ It, havihg .!!, 

common a single ppint or E. Let E.. = BnK1 and E = Btll • Let 
- - - - --i - a .a ·-

a • h1 ,h2 , • .. , ~, ... .!?!, .!. a,suence 9..t .21?!!!. intervale. JA .!5t order, 

c9lemen;m 12, E ,!i!. I. . .2!, t.b!. t.!£.!!. n interval• h1, h .a, • • • , ~ 
1 1 1 _ a a· 

bel5ing to a, let a.. = h1 , h , ••• , h lie in L and a - ~, h , ••• , 
- - - - -.L I Di - - -:I. - .I -:I. a 

h1 lie int. Let dnni denote the measure or the intersection ot E 
n2 -- a - --. - -- _ 

and a maximum connected subset of -- -n 
'1 - ijihi, i = 1, 2. 

m=l m 

Let F(p) be continuous on E. Then, - - .._. -
~ IF(p) f du = S IF(p) ldu1 + S IF(p) fdu 
E Ii I.a a 

Proott Because F(p) ii eontinucra on B, we inter that IF(p) I is 

continuous on this point eet. The proot or this Lemma, then, follows 

directly from Lemma XII. 

As a consequence or the detinition of the integral, ve observe 

another property or the integralf namel7, there is no prescribed sense 

in which the integration is perform on E. 

We note from Section 2 that a complex valued function F (p) may 

be written t(p) + ig(p), vhere f(p) and g(p) are two real valued, single 

valued, functions ot p. We therefore define 

to be 

~(p)du 
E 

St(p)du + 1 Sa(p)du 
E E 

(4.5) 
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We have estnblished, thua tar, two integrals• muaely, an integral 

taken over an irregular closed and bounded set E of positive Caratheodory 

linear measure, and one which ve have defined as a curvilinear integral. 

taken on the same point set. For brevity, we ahall deaignate the f'ormer 

integral u the (q)-i.ntegral and the latter as the (c)-1ntegral. The 

preceeding remarks bring us to 

Section 4(b). !h!. lg.uivalence .2!, l!!!, (c)-Intep;al .g! P(p) .2!!. B ~ 

lh!, (q)-In!:!Jtr!l ~ F(p) over E. 

Let the open curye I vhich contains Ebe divided into half lines K1 

and I having in common a single point p belonging to Band containing 
2 

subsets E1 and B2 ot B, respectively. Then, becauae E baa property A,5 

each subset bu positive Caratheodory linear measure. Preliminar.r to an 
investigation or the equivalence or the two integrals mentioned a~, 

w establish two Lemmas vhich toll.ova 

Lemma XIV. l!. 11 ~ K .1 !I!. b!!!, l!!!?.s having .!!l_ COIIIDOD .!. single 

J!C?iDt ~ E, .!! E:i. = Krl!ri !!!!. E, = EOJ(a' then. 

(c))F(p)du = (c)S F(p)dtL + (c)S P(p)du 
E ~ -~ \ a 

Proota By definition, using the notations or Section .3 and making 

use of the results of Lemma III, 

(c)SF(p)du = lint ~ F(p!)cm: (4.6) 
E n~~L 

m=l 

where p: is a point in E: and~ ia the Caratheodory linear measure of 

~. In like manner, by Lemma III, 

5 er. p. 2. 



(c)S F(p)_d',_ = 
El 

(c)S F(p)du = 
E a 

J 
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(4. 7) 

(4.8) 

where the limits are independent or the order or the sequence of open 

intervals (~), and the choice of the points p:1 and p:a or J\n1\ and (a, 

respectively. An arc of the intervals (l\i) could not overlap a part of the 

half' lines 'i and K2 since~ and K2 have in common a single point p of 

E. Hence, in defining 

(c)SF(p)du, 
E 

(c)S F(p)dup 
El 

(c)S F(p)du , 
E a 
a 

we use the same order or the sequence of open intervals(~), and choose 
· n n_ n..,, n 

in the sets r,;1 and ~--z a point,;:~ and Pm_2 , respectively, which is 

the Sallle as the point p! chosen in the corresponding 1:. The superscript 

n then replaces the superscript Di and n2 • We have, 

(c)S F(p)du 
E 1 
1 

+ (c)S F(p)du2 = 
E 

2 

El 

11m F(~l)du!!l 
~ -> c:n 

m=l 

+ 

(4.9) 

But ~1 and ~a in ~1 and i::2 , respectively, are points which agree 

with p: in the corresponding 1:. Thus each point p!l and p:a differ only 

in notation from the point p: where n is replaced by the superscript n1 

and naJ that is, for every p~ on Enl there corresponds the same point m m 



P! on~. In like manner, the same reasoning arplies to the point ~a. 

Correspondingly, F(~l) and F(pna) can be replaced by F(pn), where m 
""lll m m 

runs from l to n+l. It follows that 

(c)S F(p)d11_ + (c)S F(p)du 
El E, a 

= 
n+l 

lim L F(pn)dun m m 
n ->""" , 

m=l 

= (c)SF(p)du. (4.10) 
E 

Lemma IV. Let E:J_ ~ E2 be tvo disjoint subsets or E such that 

E = E1 U E2 • Then, 

(q)SF(p)du = {q)S F(p)du + (q)S F(p)du 
E E1 E1 

Proofs F{p) is continuous on the closed and bounded set E. 
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Consequently, F(p) is measurable on E, and by Section 1, it is integrable 

over E in the (q)-sense. By Le?11Da I, 

(q)St(p)du = (q)S r{p)du + {q)S t(p)du, (4.u) 
E El E 

and a 

(q)Sg{p)du = (q)S g(p)du + (q)S g(p)du. (4.12) 
E El E 

2 

Therefore, in view of U .. 5) 

(q)SF(p)du = (q)Sr(p)du + i(q)S'g(p)du. (4.13) 
E E E 

From this result ve inter that 

(q)S F(p)du = {q)S r(p)du + i(q)S g(p)du (4.14) 
El E1 E1 

and 

{q}S F(p)du = (q}S r(p)du + i(q}S g(p)du. (4.15) 
E E E 

2 2 2 



From (4.13), (4.14) and (4.15), we conclude that 
'( 

(q)SF(p)du = (q)S F(p)du 
E ~ 

W'e now come to 

+ (q)S F(p)du 
E 

a 

(4.16) 

THEOREM VIIl. !h!. (c)-Integral !!!,. F(p) .2!l E .!!. Equivalent~~ 

(q)-Integral !!!,. F(p) over E. 

Proof: Consider the open curve K containing E. We remove from K, 
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successively, a finite collection G of arcs h__, h, ••• , h complementary --1 a n 

to E in K fonning the sets 

We have defined 

El El 
1' a 

••••••••••••• 

• • • • • • • • • • • • • • • • 

(c)SF(p)du = (c)Sr(p)du + i(c)Sg(p)du,6 
E E E 

where f(p) and g(p) are two single valued, real valued, functions of p. 

On the closed and bounded set E, let f(p) and g(p) be everywhere non

negative. Let~ and~ denote the least upper bound and the greatest 

lower bound respectively, of f(p~), for p~ on~. We have, 
n+l n+l t I i<:iru: .! 

6 er. p. 38. 

(o)S f(~)du _.:: )m =: ~~ 
E~ 

(4.18) 
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The sum 

is nondecreasing, and the sum 

is nonincreasing. 

Cons:tder now the least upper bound SMdu and the greatest lower bound 
E 

Smdu obtained when n -> V'.:l in such a manner that 
E 

lim ~ = 0 
n -> G,) 

where ~: denotes the maximum diameter of ~· From (4.18), we obtain 

Smdu < (c)S'f(p)du < SMdu • (4.19) 
E - E -E 

The (q)- integral of F(p) over E 

(q)SF(p)du = (q)Sr(p)du + i(q)rg(p)du~ 
E E E 

has already been shown to exist. 7 Let the range or f(p) be divided 

into subdivisions 

a 0 < a1 < •••• < a 1 < a. - - - n- - ~-n 

Denote by~ and~ the maximum and minimum values of t(p!) in the 
n 

respective n subdivisions of the range of f(p) and t!I. the linear measure m 

of E: where E~ is that subset of E for which 8m-l ~ f(p) < 8m• We have 

in this instance, as in the case of the (c)-integral, 

7 
Cf. Section 1, p. 8 ff., and Section 2, p. 16. 



(4.20) 

Now let the number n of the subcUvisions or t.he range ot f'(p) increase 

indetinitely in such a way that 

lim rl1 = 0 m n-> en 

where Bn is now the 1nax!mum diameter or g1l-. m m 
From (4. 20), we obtain 

- Smtiu .! (q)St(p)du .! SMdu • 
E E E 

Consider nov the.double inequa.llties 

Smdu < (o)St(p}d.u < )Mdu . 
E - E -E 

~mdu < (q)St(p)d.u < SMdu. 
E - E -E 

Since 

SMdu • ~du = ML(E) 
E E 

Smdu = s,Sdu = mt(E) 
E E 

by Lema II, ve have 

and 

Let 

mL(E} .! (c))f(p)du .! ML(E) 
~ 

mL(E) .! (q}St(p)du .! ML(E). 
E 

(4.21) 

(4.22) 

(4.23) 

(4.24} 

(5.25) 
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where .BiflEJ = Ot tor 1 'I j, E1 = Ellr1, and x1, K1 , •••, )[n+l are the 

maximum connected subsets or 
n 

I• U ht• 
1=1 

Then (4.24) and (4.25) applied to the set :&1 become 

. C L(B1> .! r, (q~tp)du .! N t L(Bi) 

• L L(B1) .! L (c~/'p)du. .! NL L(Bi) 

i=l 1=1 1=1 

(4.26) 

(4.27) 

Nov let t be greater than ero. Then f'rom the continuity ot t(p) 

on the closed and bounded nt B and the 1nequal1 tiea (4.26) and (4. 27), 

there exists in! eome set ff~ segments h.., h, ••• , h complementary 
-1. I n 

to E auch that 
I (q)S f'(p)du - (c)S f'(p)dul < •/2L(B1) 

11 E1 

tor each E1 = Emc1• 

Consider nov the 8Ul1 of all such inequalities tor 1 = lt 2, ••• t n+l. 

Making use or the results obtained by Lermnas XII and XIII, ve have, 

I {q)St(p)du - (c)St(p)duf < e/2L(E). (4.28)· 
B B 

In a manner similar to that used above for r(p), ve can ehov that 

I (q)Sg(p)du - (c)Sg(p)dul < e/zL(E). (4.29) 
E E 

From inequ..litiea (4.28) and (4.29), ve conclude, 

I (q)SP(p)du - (c)SF(p}duf < •• (4.30) 
E E 

Since e is arbitrary, the inequality (4.30) proYeS the Theorem 



CHAPTER III 

AN ANALYTIC FUNCUON WITH A BOUNDED CONTINUUM 
AS A SINGULAR SET 

In exploring methods of obtaining analytic functions having 

a prescribed singular set, we have constructed and employed integals 

in the process. We now construct a function having a given set Mas 

its singular set by employing a new approach, that is, by making use 

of a mapping of the complement of M onto the interior of the unit 

circle. 

Let M be a bounded, non degenerated, locally connected plane 

continuum which does not separate the plane. We first establish the 

following Lemmas: 

Lemma I. There exists~ simple (1 - 1) analytic mapping Hof 

& ~ complement of M, ~ E, the interior of the unit circle £:. 

Moreover, ~. mapping ff of ! onto ! ~ be extended to ! in the 
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sense that if p is a poirrt of 2z. the boundary of E, H-1 (p) is ! prime 

end of ~ the boundary of !!. 
Proof: Because the boundary M of I is connected, I is a simple 

domain. Since the boundary of I consists of a bounded, non degenerate 

continuum M, and I is simple and simply connected, there exists, by the 

Riemann Mapping Theorem, a conformal mapping of I onto£, the interior 

of C. Furthermore, by the foregoing, there exists a mapping function 

H(z), single valued and analytic for z in I, the complement of M. 
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Further, as a result of the simple connectivity of I., in the 

mapping of I onto E., the prime ends of M, the boundary of I, and the 

points of the circle C, the boundary of Z, correspond to one another 

in a (1 - 1) manner. This correspondence is in strict accordance with 

a known theorem on prime ends. (5, p. 350, Theorem XIII). 

Consistent with (5, pp. 331-336), a prime end of an arbitrary 

simply connected region G is an equivalence class of chains of sub-

regions of G. Although a prime end, as defined above, is actually an 

equivalence class of cnains of subregions, we intend to refer to the 

closed point set associated with the prime end as the prime end employed 

in that which follows. The same closed point set, may, perhaps, be 

associated with one or more prime ends. 

"""' 
Lemma II. .!!. f(z) = L ,.nl, l•I < 1, then r(z) is an - --

n=O 

analytic function defined E!!. Et ~ interior or~ unit circle c, 

~ .!!!.!_ Q. £2..r .ll!!_ natural boundary. 

Moreover, 1!. F(z) = f(H(z)) !2!:. z belonging ~ I, ~e complement 

.2!. M, then (1) F(z) .!!. defined~ analytic E!!. I, ~ complement 2!., 

M, ~ t (2) ~ M f.2.r .ll!!_ singular S.2,l-

cn 

Proof• Let r(z) = L ,nl, l•I < 1, as described in the Lemma 

n = 0 

The proof of the first part or this Lemma, then, follows from a known 

theorem (14, p. 163, Theorem 23.17). 
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Let F(z) = f(H(z)) for z belonging to I. (1) H(z) is analytic for 

z in I and maps I onto E, the inteC'ior of the unit circle. By hypothesis, 

f(z) is defined and analytic for z in E, the interior of the unit circle. 

Hence for z in I, the composite function f(B(z)) is an analytic function 

of an analytic function and consequently is itself analytic.1 It follows 

that F(z) defined by the functional equation F(z) = f(H(z)) is analytic 

for z and I. That F(z) is defined on I follows fran tlE definition or F 

and the foregoing. 

(2) Since K is locally connected, Mis locally connected at each of 

its points. We shall first show that a point set associated with a prime 

end of M, in this case,is a single point. 

Let p be any point of M. We take as a neighborhood Np of p the 

interior of a circle with center at p. Consequently, the~e exists for 

any circle K1 with center at p, a concentric circle K2 such that every

point p' of .M, interior to K2, is joined top by a comiected subset of M 

lying wholly in K1• Let p be a point of countable character. As a 

consequence of this property, there exists a sequence of concentric circles 

Ki, K2, • • • , 'n, . . . with conun.on center p such that Ki+ 1 c 11. for each i, 

"' and such that r Kn = p. 

We consider as a chain of cross cuts (qn) those which lie on 

concentric circlar arcs {1n) with end points on M. The end points of 

these cross cuts are different from one another unless pis a terminal 

point of M, in which case, the end points coincide. Now consider the 

1An analytic function of an analytic function is an analytic 
function. 



subregions g1, g2, 

cross cuts q1, q2, 

. . . , 

. . . , 
... of I which are associated with the 

••• and which define an end em of I. 

Because of the local connectivity of M, this chain of subregions can 

be taken so that they converge to the point p of M:. Therefore, the 

end em is a prime end Eui, (5, p. 337, Theorem V), and, furthermore, 

the convergence of the chain of subregions {gn) to the point pis a 

necessary and sufficient condition for a prime end Ero to contain a 

single point p (5, p. 352 Theorem XIV). 

Now if p 11 is a point of C, the unit circle, Np II a neighbor hood 

of p", and f(z) defined as in Lemma II, then f(z), according to 

Riemann's Theorem, cannot be bounded in Np 11 • Denote E 11 N b)" 
p" 

G'. The inverse mapping H-1 of His single valued and maps G' onto 

some region G of I carrying p" onto a priIE end p of M, the inverse 

image of p" under the mapping lf9l{p"). 

f(z) is unbounded in G!. It follows that F(z) = f(H(z)) is 
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unbounded for z in G and hence for z in a neighborhood of p, that is, 

pis a singular point for F(z). There exists a (1 - 1) correspondence 

between the points of C and the prime ends of M, the boundary of I. 

f(z), being defined as in Lemna II, is bounded in the neighborhood of 

every point of C. Therefore, F (z) by means oft he functional 

equation F(z) = f(H(z)) is unbounded for z in the neighborhood of each 

priD13 end of M. Consequently, F(z) has M as its singular set, since 

the set of all prime ends of M constitutes the boundary of I. 

Upon the validity of Lenmas I and II, we can state the following 

Theorem: 

THEOREM I. Let~ be~ bounded,~ degenerate~ locally connected, 

plane continuum which does~ separate the plane. Then there exists 



! single valued function F(z), analytic (but not necessarily bounded) 

in the extended plane, with!~ its singular set. 

so 



CHAPTER IV 

SUMMARY 

The problem with which this study is primarly concerned is that 

of constructing analytic functions having for their singular sets 

certain closed and bounded sets. 

We have shown that if Eis a bounded and closed point set, lying 

in the real plane, which is irregular and has positive Caratheodory 

linear measure, and which has property A, 1 there exists a function 

¢(z) with the following properties: 

(1) ¢(z) analytic in the extended z-plane except the 
points of E; 

(2) ¢(z) single valued in the complement of E; 

(3) Each point of Eis an essential singularity of ¢(z}. 

We have also determined a single valued analytic function having 

for its singular set a nondegenerate, bounded, locally connected plane 

continuum M which does not separate the plane by making use of the 

mapping of the complement of .M onto the interior of the unit circle !I 

This analysis did not involve the use o! integrals. 

1 
Cf. p. 2. 
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REC~DATIONS FOR FURTH~R STUDY 

The following questions arise: (1) Does there exist an analytic 
/' 

function having a bounded nondegenerate arbitrary continuum for its 

singular sets? (2) If the answer to (1) is in the affirmative, then 
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do the properties of an analytic function having a bounded, nondegenerate, 

locally connected continuum as a singular set differ from those of an 

analyt:.ic function having a bou11ded nondegenerate arbitrary continuum 

as a singular set? B7 properties we mean the following: 

(a) If ii denotes the arbitrary co.ffi:.inuum., is each 
point of Ma singular point for the function under 
consideration? 

(b) Is the funct,ion single valued ·in the complement 
of M? 

(c) Is the function bounded in the complement:. of M? 

(d) Is the function analytic at z = v,? 

Although we have no propositions which bear on these situations, 

the answers might be a valuable complement to this stud,-. 
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