By
RAYMOND CARPENTEER
Bechelor of Arts Hendrix College Conway, Arkansas 1928
Master of Arts Columbia University New York, New York 1937

Submitted to the Faculty of the Graduate School of the Oklahoma state University
in partial fulfillment of the requirements for the degree of DOCTOR OF EDUCATION

May, 1959

Thesis Approved:

To
My wife, Wilma,
whose aid, encouragement, and
inspiration have beem invaluabie.

FREFACE

The status of the elementary teacher with reference to his preparation and ability to teach arithmetic, in the opinions of many witers in the field, reached a 30 m ebo after Worid War II Through the efforts of many people and many agencies, conditions have improved and are still improving.

Identifying the concepta and prosesses of mathematics needed by Wh elementary teacher in teaching elementary arithmetic seemed to be neceasary in ordsy that the concepts and processes raight be emphasized in the teachers' training. It was hoped that this study would aid in the training of the teachers of elemeatary arithmetic.

Frofound gratitude is expressed to Dr. James H. Zant, Professor of Mathematics, whose inspiration, guidance, and patience hare made this study possible.

Appreciation is expressed to Dr. James W. Richardson, Professor of Education, for his counseling and helpful suggestions throughout this ntudy. Sincere gratitude is expressed to Dr. James E. Frazier for his interest and helpful suggestions.

The witer is indebted to the many elementary sehool principals Who supplied the names and addreases of so many good teachers.

The writer is also indebted to the experts and elementary teachers Who contributed to this investigation by giving their time and opinions in answering the questionaire.
R. C.

TABLE OF CONTENTS

Chapter Foge
I. THE PROBLEM 1
Statement of the Problem 1
Importance 1
Need Ior the study 3
Basic Assumptions 5
Hypothesis 5
Definition of Terms 6
Plan of Study 6
II. PARTIAL REVIEW OF RETLATED LITERATURE 8
Introduction 8
Learning Theories in Mathematics 9
Importance of Meanings in Arithmetic 13
Meanings in Arithmetic Teachers Should Develop 15
Status of Arithmetic Teachers 16
Surmary. 18
III. THE PROCEDURE FOR THE STUDY 20
Introduction 20
Selection of Concepts and Processes 20
The Questionnaire 22
Selection of the Experts 25
Selection of the Elementary Teachers 26
Summary 31
IV. ANALYSIS OF DATA, CONCEPTS 33
The Categorles of Concepts 33
Treatment of Data. 36
Summary. 54
V. ANALYSIS OF DATA, PROCESSES 56
The Categories of Processes 56
Treatment of Data 57
Summary 64
Chapter Page
VI. SUMMARY OF FINDINGS 66
The Findings 67
VII. CONCLUSIONS AND RECOMMENDATIONS 73
Recommendations 73
A SEIECTED BIBLIOGRAPHY 75
APPENDICES 82

LIST OF TABLES

Table Page
I. Percentage of Questionnaire Returns for the Experts 26
II. Questionnaire Returns for Elementary Teachers 28
III. Amount of Mathematics and Teaching Experience of Elementary Teachers. 29
IV. The Importance of Mathematical Concepts of Order and Rank 37
V. The Importance of Mathematical Concepts of Synthesis 38
VI. The Importance of the Concepts of Analysis 40
VII. The Importance of Mathematical Concepts of Comparison 41
VIII. The Importance of the Concepts of Measure 43
IX. The Importance of the Concepts of the Number System 48
X. The Importance of the Mathematical Concepts of a Family Budget 49
XI. The Importance of Certain Mathematical Concepts of Business 50
XII, The Importance of the Mathematical Concepts of Graphs 51
XIII. The Importance of Certain Mathematical Concepts of Verbal. Problems 52
XIV. The Importance of Other Mathematical Concepts for the Elementary Teacher 53
XV. Average Ratings of Concepts 53
XVI. The Importance of the Mathematical Processes of Counting and Numerating 58
XVII. The Importance of the Mathematical Processes of Grouping and Regrouping in Elementary Arithmetic 60
XVIII. The Importance of the Mathematical Processes of Comparing in Elementary Arithmetic 61
XIX. The Importance of the Mathematical Processes of Graphing 62
XX. The Importance of the Mathematical Processes Involved in Solving Problems in Elementary Arithmetic 63
XXI. Average Ratings of Processes. 64

CHAPIER I

THE PROBLEM

The purpose of this study is to identify the concepts and processes of mathematics needed by an elementary teacher to teach arithmetic adequately in gradea one to six.

Importance

The preparation of an elementery teacher is multiphasic in its specific demands and general in that $i t$ covers most of the areas of a liberal education. A liberal education s a necessity for every teacher.

For the teacher, however, being well educated is a necessity. Without it, the teacher cannot imerpret any field of knowledge in its proper relationship to the whole of society. And without it, the teacher will not be reaperbed by a socieby which is itself becoming increasingly well educated.

Most elementary teachers are assi gned a grade to teach and are expected to teach one group of students all subjects throughout the school year. The teacher muat know well the subject matter of the particular grade in which he is to teach, and he should know what has preceded as well as that which is to follow.. Modern psychology has shown that the child should be developed into a well integrated individual. Then the teacher must know the past, work in the present, and plan for the future

[^0]for each and every child in his class.
It must be remembered that the mathematical concepts, skills, and quantitative understandings that the students acquire can be no better than those possessed by their teachers. Hence, teachers must strive constantly to increase their own understandings as well as to search for more "know how" for effective teaching. ${ }^{2}$

Instruction in mathematics should place emphasis on the development of a vocabulary of mathematical terms as well as on understandings. Most of the vocabulery difficulty in mothematics is caused by a lack of understanding of technical terms, such as, exponent, congruent, equation, numerator, denominator and percentage. 3

The problem of what constitutes adequate training for the elementary school teacher is broad and has many ramifications. It is impractical to attack this problem in its entirety. Hence, the problem must be limited. To teach arithmetic adequately, the elementary teacher must be familiar with certain concepts and processes of mathematics.

If you should wish to qualify for such a position (elementary teacher of arithmetic), the main requirement would be that you "understand" arithmetic. You cannot teach what you do not know. Here is the arithmetic that you would have to teach in the first six grades:
(1) Basic concepts, processes and vocabulary of arithmetic; (2) our decimal system of numeration, including the concept of decimal fractions; (3) computation, whole numbers and common and decimal fractions; (4) principal units of measurement for everyday use; (5) solution of problems involving computation and units of measurement; (6) identification of geometric figures; (7) use of simple graphs; (8) estimation and checking of answers to problems. 4

Additional examples are given in Chapter II, pages 13 to 16 , concerning the importance of mathematical concepts and processes to the elementary teacher.

2
Improvement of the qeaching of Mathematics, Oklahoma State Department of Education, 1.957 , p.64.

3
Ibid., p. 68.
4 "Guidance Report of the Commission on Post War Plans," the Mathematics Teacher, XI (November, 1947), 324.

Featherston and Hull 5 state that research does not
. . . throw much light on the problem of which specific concepts should be included in teacher education courses. It sheds no light at all on the most desirable ways of teaching these concepts. In short, it seems from the $1955-56$ research that the important specific understandings in mathematics that should be included in the teacher education program have not been determined.

Thus, since the concepts and processes of elementary arithmetic must be usea in teaching for understanding and meaning, they must first be identified. The teacher must know and understand the concepts and processes which he is to teach or else he will be poor and inefficient. Hence, the identification of these concepts and processes is most important for the teacher.

Need for the Study

Many articles have appeared giving the shortcomings of the teaching of arithmetic. A test of over one thousand ninth grade pupils in three eastern states showed extreme weakneases in all but the most simple examples of computation, problem solving, understandings and judgments. 6 Almost identical failings were shown in a test given to one thousand freshmen in college.

The evidence points clearly that we are not achieving functional competence in arithmetic at the elementary school level, at the junior high level, and at the senior high school level. 7

Many pupils not only fail to learn the processes and concepts of arithmetic, but stop taking mathematics as soon as possible. Some of
${ }^{5}$ E. Glenn Featherston and J. Dan Hull, Analysis of Research in the Teaching of Mathematics, 1955 and 1956, u. S. Department of Heaith, Education and Welfare, Office of Education, p. 20.

6
Ben A. Sueltz and John W. Beredick, "The Need for Extending Arithmetical Learnings," Mathematics Teacher, XLIII (February, 1950), 71.

7 Ibiay, 72.
the main reasons for the dropmouts point directily to the teachers. 8 Glemon9 reports the following in a doctoral study at Harvard University in 1948: A test consisting of 80 items on basic understandings was given to three groups of students and teachers of elementary arithmetic. The group consisted of 144 freshmen at the time of entrance into college, 172 seniors just before graduation, and 160 in-service teachers at the end of a school year. All had indicated that they wanted to become elementary teachers or were already elenentary teachers.

Some of the items on the test and apparent degree of difficulty follow. An easy item was: Changing the order of addends in an addition example does not change the value of the answer. An item of medium difficulty was: Dividing the duridend and divisor by ten does not change the value of the answer (quotient). One of the most difficult items in the test was: A digit in the unjts " place represents a value one-tenth as large as the same aigit in the tens' place.

The average number of items correctily answered by the freshmen was 35.45 and the per cent of total (80) was 44.31. The average number of items correctly answered by the seniors was 34.19 and the per cent of the total was 42.73 . The teachers worked correctly an average of 43.81 items or 54.77 per cent of the total.

These findings seem to suggest several aspects of needed redirection in the program of in-service development of teachers of arithmetic. Curriculum revision of the professional courses must be concerned with emphasizing the subject matter as well as with the principles of teaching the subject matter. 10

8 Henry S. Dyer, Robert Kalin, and Frederic M. Lord, Problems in Mathematical Education (Princeton, 1956), p. 3.

9 Vincent J. Glennon, "A Study of the Growth and Mastery of Certain Basic Mathematical Understandings of Seven Educational Levels," Mathematics Teacher, XLII (December, 1949), 389-396.

10 Ibid., 395.

Research shows that there is a lack of understanding of meanings in elementary arithmetic by the teachere. Research fuxther shows that many teachers are weak in mathematical processes such as computation, problem solving, and judgments. Asc, \geqslant great number of elemeatary teacherg exhibit an uniarorable atritude towary arithetic. II Thus, there is a need for the identification of the concepts and proeesses of mathemetics.

Basic Assumptione

The basic assumptions for this study are as follows:

1. Meeting various classroon situations which require making decisions concerning the use of text material requires an understanding of the concepts and processes of mathematics on the part of the elementary teacher.
2. To teach ariotmetic adequately for pupil learning with meaning and understanding, the teacher must himself understand the underlying mathematical concepts and processes.
3. Elementary teacher needis. introlving concepts and processes of arithnetic, are of prime importance in their training.

Hypothesis

The consensus among the experts who best know the field of arithmetic and its teaching regaxding the concepts and processes needed by an elementary teacher for adequacy in the classroom can be identified and stated as catagories which can be used as criteria for planning a program of preparation of elementaxy teachers for giving effective

[^1]instruction in arithmetic.

Definitions of Terms

Certain terms need to be defined with reference to their use in this paper:

Concepts are the elements of kowledge. Concepts as used here are identified by mathematical terms which are used by the teacher or textbook to develop the child in his mathernatical understanding, thinking, and reasoning. If a term has quantitative or spatial significance, it Is Included as a concept.

Process is an operation, a course of procedure, a series of actions, motions, or operations definitely conducive to an end.

By process is meant the way in whicin the learner operates in order to attain certain learning producta. Proceas refers to the way in which one learns. But it, olso, has a larger significance because process, a way of learning, itself becomes established and a particular way of learning with its consequent mearing for a way of attacking new problems is often as important to the individeal as the particular product. 12

Plan os stuay

Preliminary identification of concepts and processes was made on a frequency of occurrence basis from a number of selected elementary arfithmetic textbooks. The concepts and processes were used to formulate a questionnaire which was sent to a selected group of college teachers in mathematics and mathematics education. The questionnaire was also sent to a much larger group of selected elementary teachers. The final selection of concepts and processes was based upon the importance attached to

12 G . Lester Anderson and Arthux I. Gates, "The General Nature of Learning," Learning and Instruction. Forty minth Yearbook of the National Society for the Study of Education, Part I (University of Chicago, 1950), pp. 27-28.
each item by both the experts and the elementary teachers as shown on the questionnaire.

Percentages were given for each item according to the three check spaces on the questionnaire. An average was figured between the teachers and experts. This average was used to determine the importance of the concepts and processes. An average rating of sixty per ceat or higher in any check space was used to determize its importance. If none of the three check spaces received a sixty per cent or higher rating, then a combination of two space ratings was used to determine the importance of the concept or process. A sixty per cent or higher rating in any check space indicates a good majority. Also, a low rating by one group would necessitate an extremely high rating by the other group to have a rating of sixty per cent.

CHAPTER II

PARTIAL REVIEW OF RELATED LITERATURE

Introduction

The objectives of this chapter were: (1) to show the changes which have taken place in the teaching of mathematics over the past half century, (2) to emphasize especially the latest theories of learning as related to mathematics, (3) to relate these to the present study, and (4) to indicate the plight of the elementary teacher.

It seemed advisable to discuss the theories of learning which have affected the changes in the teaching of arithmetic. Thorndike's psychology led to the "drill" theory of learning in mathematics. The field theories of learning which stem from the Gestalt psychology led to the "meaning" theory of learning in mathematics. Meanings and understandings are the essence of the "meaning" theory. The meanings and understandings of the concepts and processes of arithmetic are important in the training of elementary teachers. Lists of mathematical concepts and processes have been made, but few attempts have been made to determine the importance of them. The purpose of the present study has been the identification of the concepts and processes of arithmetic needed by elementary teachers.

The demand for elementary teachers since World War II has been so great that many unqualified teachers have been certified to teach. The requirements which were of necessity relaxed have been gradually brought back to normal and have been raised generally throughout the
country.

Learning Theories in Mathematics

Too little is know about how children leam in mathematics.
Psychology has made great progress in many fields, but littie in mathematics. ${ }^{1}$ Some discussion of two general theories of learning is given in order to describe the development and application of learning theories in mathematics.

Learning theories fall into two major families: stimulusresponse theories and cognitive theories, but not all theories belong to these two familied.?

Stimulus-response Theories. The strinulusmesponse theories of Edward. L. Thorndike and his followers have dominated learning for over half a century. The laws of learnixg: (I) effect, (2) readiness, and (3) exercise which Thormike first promigatal had a great influence upon all education. He later made fuadamental revisions in the laws of exercise and effect. However, the law of exercise had made its impact upon the teaching of mathematice in the form of the "drili" theory.

Transfer of learning, gilso, played a part in the early mathematics program. It was given as a reason for studying mathematics. Discipline of the mind and transfer were practicaliy synonymous. The study of mathematics, Latin, and Greek afforded the necessary discipline to carry over into any profession.

Thorndike disagreed with this idea of transfer of learning. He explained transfer by what he cailed identical elements in the different

1 Henry S. Dyer, Robert Kalin, and Frederic M. Lord, Problems in Mathematical Education (Princeton, 1956), p. 4. p. 8.
${ }^{2}$ Ernest R. Hílgard, Theories of Learning (2nd ed., New York, 1956),
situations. Similar elements would carry over from one learning situation to another, thus helping to effect a solution to a new situation.

Glennon and Hunnicutt 3 reported that numerous studies which were made earlier in the century have shown the effect of meaningfulness of the material being learned on the facility with which it is learned and on the permanance of learning. The studies reported by McLellan and Dewey ${ }^{4}$ in 1895 and Thorndike 5 in 1922, writing specifically on the psychology of arithmetic, stressed the importance of teaching for meanings and understandings. ${ }^{6}$ Their writings, however, were often misinterpreted and in general did not bring about any significant change in methodology from drill teaching to meaningful teaching.

McLellan and Dewey issued The Psychology of Numbers in 1895 It taught us . . . the importance of the whole. The authors said in substance, let us begin with wholes, because they give significance to parts. Let us not believe that we should begin with parts and that the pupil can in some way put them together to meike meaningful wholes. 7

Thorndike seemingly tried to change to emphasis on meanings, but the drill method was too win established.

Field Theories. The cognitive or field theories of learning stem

3 Vincent J. Glennon and C. W. Hunnicutt. What Does Research Say About Arithmetic? Association for Supervision and Curriculum Development, A Department of the National Education Association (Washington, 1953), p. 12.

4 James A. McLellan and John Dewey, The Psychology of Numbers (New York, 1916).

5 Edwerd L. Thorndike, The Psychology of Arithmetic (New York, 1922), p. 19.

6 Edward L. Thornaike, New Methods in Teaching Arithmetic (New York, 1921), pp 58-59.

7 B. R. Buckingham, "Significance, Meaning, Insight - These Three," Mathematics Teacher, XXXI (January, 1938), 26.
from the Gestalt psychology.
Field theory claims that learning is not so much a matter of establishing connections between stimuli and responses as it is of finding patterns in the stimuli perceived, "that is, seeing some sort of organization and meaning in the field of experience." 8

Structuring and understandings, or insights, are basic to this type of learning. Thinking is reorgeaizing understandings, experiences, and fects to effect a solution to a problem.

Maconnell ${ }^{9}$ stertes:
On the contrary, it is part and parcel of a theory of learning which stresses organization rather than discreteness, understanding rather than memorization, and exercise of the higher mental processes rather than dependence upon lower-order habits.

The field psychologist thinks in terms of the organization and systematic arrangement of the whole rather than in terms of elements set out in unrelated, disconnected form. Wholes are organized structures of parts rather than a mere collection of parts and are more than the collection of all the parts. 10

Practice definitely has a place only after understandings have been developed. The function of practice is to increase efficiency of performance in operations which are already clearly understood. The structure of the number system and the systematic character of number relations should be enhanced through the drill program. ${ }^{11}$

Furthermore, present learning theory stresses the importance of meanings throughout the whole range of number operations in addition to

8 Dyer, Kalin and Lord, p. 7.
9 T. R. McConnell, "Recent Trends in Learning Theory," Arithmetic in General Education. Sixteenth Yearbook of the National Council of Teachers of Mathenatics (Columbia University, 1941), p. 276.

10 G. T. Buswell, "The Psychology of Learning in Relation to the Teaching of Arithmetic," The Teaching of Arithmetic. Fiftieth Yearbook of the National Society for the Study of Education, Part II (University of Chicago, 1951), p. 146.

11 Ibid., p. 147.
continued insistence on competence in computation. ${ }^{12}$
The "meaning" theory of teaching arithmetic which grew out of the "field" theories of learning was first promulgated by Brownell ${ }^{13}$ in 1935:

The "meaning" theory conceives of arithmetic as a closely knit system of understandable ideas, principles, and processesThe true test (of learning) is an intelligent grasp upon number relations and the ability to deal with arithmetical situations with proper comprehension of their mathematical as well as their practical significance. ${ }^{14}$

Definitions of terms, concepts, and processes do not constitute meanings or understandings. There is no meaning in stating from memory that $5 \neq 7=12$. There is meaning when we say that 12 is 10 and 2 and that $5+7=(5+5)+2$ or $10 \neq 2$. There is meaning in every mathematical concept and process. There is meaning in each step of every process.

Meanings are the paths to all desirable outcomes in arithmetical instruction, and unless meanings are comprehended the outcomes are never reached... . In arithmetic, meaning is the import of relationships inherent in number study, the sense which the relationships are intended to express. Relationships constitute the meanings. 15

Meanings and ideas are dynamic facts of experience. Moreover, they shed light back upon the experiences from which they grew and thus give larger meanings to these experiences. 16

12 Ibid., p. 149.
13 William A. Bromell, "Psychological Consideration in the Learning and the Teaching of Arithmetic," Teaching of Arithmetic. Tenth Yearbook of the National Council of Teachers of Mathematics (Columbia University, 1935), p. 19.

14 Ibia.
15 C. Newton Stokes, Teaching the Meanings of Arithmetic (New York, 1951), p. 4.

16 Harry Grove Wheat, The Psychology of Teaching of Arithmetic (Boston, 1937), p. 149.

An experience can have meaning only in terms of previous understandings and insights. Meaning is always based upon experience, and experience is maaningful only in terms of whet the learner already understands. . . Insight is more than understanding. It is a mental state in which the learner is fully aware of the conditions and relations which constitute a given behavior pattern and from which other userul pattems may evolve or take form. 1 ?

Tmportance of Meaxings in Axthmetic

Mathematical tems have alwaws been interspersed in all reading materials from the daily nevapaper to the most technical books of any area of knowledge. Very little conversation tokes place which does not include many mathematical terms.

Horn ${ }^{18}$ reports:
Every investigator has show the incidence of arithmetical terms to be very large - how large depend upon how broadly "arithmetical terms" are defined. If indefinite and marginal terms are included, such as more, heavy and high, the incidence shown in an analysis of recently published geography texts runs as high as one word in seven. This is not surprising when one realizes that of the first 1069 words in the list compiled by Thorndike and Lorge,, 19 more than one in ten are reasonably specific arithmetical, geometrical, or statistical terms, and if indefinite mathematical terms are included, the proportion is about one in four.

Pressey ${ }^{20}$ reports a study made to deterraine the "absolutely essential" words, the "important" but not essential words, and the "animportant" woxds in 19 different subjects. She had each text checked by two different people and used as many texts and people as necessary to raise the

17 Stokes, pp. 8-9.
18 Ernest Horn, "Arithmetic in the Elementary School Curriculum," The Teaching of Arithmetic. Fiftieth Yearbook of the National Society for the Study of Education, Part II (University of Chicago, 1951), pu. 10.

19 Edward L. Thorndike and Irving Lorge, The Teacher's Word Book of 30,000 Words (New York, 1944).

20 Luella Cole Pressey, "The Detemmination of the Technical Vocabulary of the School Subjects," School and Society, XX (July 19, 1924), 91-96.
reliability to a high level. Then, the list of arithmetical words was checked by 103 summer school teachers. They rated 117 of these mathematical words "ebsclutely essential" and 26 words "jmportant" under common mathematical words. They also rated 83 words "absolutely essential," 274 "important" and 49 "unimportant" but included in the texts under arithmetic.

A very considerable proportion of the words rated as absolutely essential by teachers of mathematics and arithmetsic are also deemed essential by teachers of other subjecta. Among the words considered. essential in art, for example, are area, balance, breadth, circle, cube, depth, dimension, distance, horizontal, length, meesure, parailel, perpendicular, rectangle, square, triangle, and unit. 21

Thus, a pupil may have a good vocabulary and be a good reader at any state of development, yst Pail because of the technical words of some subject. The incidence of mathematical worde in all reading material makes the learning of meanings most important.

Brownel122 gives importance to meanings by listing their adventages or values:
(1) Arithmetic can function in intelligent living only when it is understood. In practical. livirg we must be inteliligent in quantitative situations . . . To the degree that metumtions difeer from the completely faniliar, we must be able to think... . and one does not think effecm tively with mechanical skills alone. Thinking is possible oniy to him who possesses rich meanings.
(2) Meanings facilitate learning. Through meanings we secure ino sights and note relationships which, without meanings, we should not likely hit upon. The insights in turn enable us to foresee connections and to tie together various aspects of the learning task which without understanding, would have to be mastered separately one at a time.
(3) Meanings increase the chances of transfer. It is because meanings do transfer that they facilitate learning... . . The effects of

21 Horn, p. 10.
22
William A. Brownell, "When is Arlthmeric Meaningful?" Journal of Educational Research, XXXVIII (March, 1945), 494m497.
meanings are cumulative; their contributions to learning increase in amount as they enable the learner to gain new insights, to discover short cuts, and to apply in new ways what has been learned.
(4) Meaningful arithmetic is better retained and is more easily rehabilitated than is mechanically learned arithmetic. Meanings strengthen skills by supplying a structure to support them. When the skills no longer function, the structure remains, and on this basis the skills can be renewed.

Many examples can be given showing the importance of meanings. A second grade class which had worked on meanings of position in counting and a few simple addition computations, all less thsn ten, suddenly had the problem $19 \neq 9 \not \subset 9$ to woxk. Finally, a boy came up with this solution: Nineteen is 1 ten and. 9, take 1 from the second 9 and add I to the first 9 in 19 to make 2 tens, then take 1 from the 8 and add to the last 9 to make 3 tens and 7 which is 37. The entire class thoroughly understood and worked severai other examples. 23

Meanings in Arithmetic Teachers Should Develop

Many lists of mathemaicical terms, conceptes, processes, gad phrases have been made with littile or no agrement as to which are essential. Probably the most complete list, together with derinitions, is to be found throughout Buckingham:s book, Elementary Arithmetic, Its Meaning and Practice, ${ }^{24}$ Also, the better arithmetic textbooks would contain good lists of meanings.

Omitting such topics as measurement, Bromell, suggests four categories of meanings: 25

23 Ibid., $495-496$.
24 B. R. Buckingham, Elementary Arithmetic, Its Meaning and Practice (Boston, 1947).

25 William A. Brownell, "The Place of Meaning in the Teaching of Arithmetic," Elementary School Journal, XIVII (January, 1957), 257-258.
l. One group consists of whole numbers, common fractions, decimal fractions, per cent, ratio and proportion, denominate numbers, and the technical terms of arithmetic -- addend, divisor, common denominator, etc.
2. A second group of arithmetical meanings include understandings of the fundamental operations. Children must know what happens with each operation (to the numbers) and when to use each operation.
3. A third group of meanings is composed of the more important principles, relationships, and generalizations of arithmetic. This includes such principles as the order of adding or multiplying does not matter, and both numerator and denominator may be multiplied or divided by the same number without change of value.
4. A fourth group of meanings relates to the understanding of our decimal number system and its use in rationalizing our computational procedures and algorisms. This includes place values and uses (applications) in "borrowing" and "carrying."

Of course, the teacher must have adequate training to teach these meanings. This means more than bare definitions of terms. It means analysis and synthesis so that the student will discover and generalize the mearings.

Status of Arithmetic Teachers

The great shortage of elementary teachers since Worid War II has brought about undesirable results. Many unqualified teachers were hired, and certification standards were lowered or ignored. Furthermore, most of the teachers colleges have no mathematical requirements for elementary teachers. Thus, there has been a wide range in the abilities of the teachers.

The minimum requirements for certification of elementary teachers by states in 1955 showed that one state required less than one year of college training, four states required one but less than two years, 12 required two but less than three years, two required three but less than four years, and 29 required four years of college training. The 1955 report
showed improvement over the Iast reports in 1949 and 1953. 26 However, many unqualified persons are teaching each year on temporary certificates.

The requirements in mathematics for the teachers are extremely low. Many elementary teachers are teaching with one or two years of high school mathematics, and the arithmetic they had in elementary school.

Grossnickle ${ }^{27}$ gives some requirements in mathematics for certification of elementary teachers. Three staites had blanket requirements (a choice of fields which included mathematics), 35 states had no requirements, and 10 states had specific requirements which averaged 3.4 semester hours of mathematics.

Layton ${ }^{28}$ states that the average requirements over the whole nation for the lowest certificate was mathemstics content .52 semester hours, and for methods in mothematics .16 semsster hours. The means for the highest certificates differ very littye from these.

More than three-fourths of the teachere colleges require no mathematics of any kind for admission, and womthirds of them require no courses in background mathematics for elementary teachers. Also, in more than half of the colleges offering curricula which prepare teachers for the elementary grades, a background course in mathematics is missing. 29

26 W. Earl Armstrong and T. M. Stinnett, A Manual on Certification Requirements for School Personnel in the United States, National Education Association (Washington, 1955), pp. 1-3.

27 Foster E. Grossnickle, "The Training of Teachers of Arithmetic," The Teaching of Arithmetic. Fiftieth Yearbook of the National Society for the Study of Education, Part II (University of Chicago, 1951), p. 205.

28 W. I. Layton, "The Certification of Teachers of Mathematics," The Mathematics Teacher, XIII (December, 1949), 378.

29 Grossnickle, pp. 208, 210.

Although the model length of the training program for elementary teachers during the last twenty-Iive years increased. from two years to four years, the amount of training required in mathematics decreased during that interval. 30

The picture is not nearly so bad as painted, however. In the twenty-five years since Brownell started expounding the "meaning" theory, a great change has taken place. Nevertheless, Mueller and Moser ${ }^{31}$ warn that:

Reports from consultants working with the inwservice training of teachers indicate that the biggest single barrier to a more effective implementation of meaningful arithmetic is the inadequacy in the mathematical background of the teachers themselves. Teachers cannot do a creditable job teaching that which they neither practice nor understand.

They further give three reasons for improved mathematics teaching: (1) Teachers have accepted the meaning approach and are energetic and enthusiastic about improving their teaching. (2) The emerging point of view is that arithmetic must be taught as a structured systern of related ideas, principles and processes with imbedded social applications. (3) This movement for better instruction in mathematics rests on the broadest possible base for the greatest number of teachers and will begin with the concepts essential for providing a solid foundation for later mathenatical learning.

Summary

Teaching of arithmetic has run the ganut from the strict disciplinary ideas of the nineteenth century to the other extreme of

30 Ibid., p. 229.
31 Francis Mueller and Harola Moser, "Background Mathematics for Teachers of Arithmetic," Emerging Practices in Mathematics Education. Twenty-second Yearbook of the National Council of Teachers of Mathematics (Washington, D.C., 1954), p. I8I.
advocating no mathematics in the elementary school in the twentieth century, 32 The change has been deliberate and gradual, and today neither extreme exists.

Arithmetic was taught for discipline of the mind and body. This attitude was dominant well into this century. Drill, memory work, and forced learning of abstract arithmetic were the essentials of the old masters. Discipline in mathematics was closely associated with punishment. Anything which was hard to do and took a lot of time contributed to discipline. An idle mind was the devil's workshop. Hence, if a student were busy with drill work, memory work, or outlandish problems, he never gave the teacher any trouble.

Soon after the turn of the century teaching of arithmetic began to take on new meaning. Experiments were performed. Psychology made great progress in analyzing the learning process and establishing connections between interests and learning. . The "meaning" theory of teaching arithmetic began to displace the "drill" theory. New texts based upon meanings, understanding, interests, and needs were written, These books have utilized the latest knowledge and theories of learning. They are well organized and well written, but not too up-to-date. Publishing companies are reluctant to revise and to include the new and modern concepts.

The teachers themselves were the chief deterrent to the change from the "drill" theory to the "meaning" theory of teaching arithmetic. They were taught and trained in the "drill" method and have been very slow to change. The "drill" method still predominates with many teachers.

32 E. R. Breslich, "Importance of Mathematics in General Education," Mathematics Teacher, XIIV (January, 1951), 4; Glennon and Hunnicutt, 17.

CHAPIER III

THE PROCEDURE FOR THE STUDY

Introduction

The aims of this chapter were to describe and analyze the procedures used to obtain the data for this investigation.

The identification of the concepts and processes of elementary àrithmetic necessitated: (I) a preliminary selection of mathematical concepts and processes from selected elementary arithmetic textbooks, (2) the making of a questionnaire to help determine the importance of the concepts and processes, (3) the checking of the questionnaire by a group of experts and by a group of elementary teachers.

The procedures of selecting the concepts and processes, of making the questionnaire, of selecting both the experts and teachers have been described in this chapter. Also, certain personal data such as the amount of college credit in mathematics and mathematics methods, units of high school mathematics, number of years teaching experience which were collected from the teachers have been analyzed in this chapter. A comparison was made between the percentages of answered questionnaires in this investigation, and published reports of returns of questionnaires in general.

Selection of Concepts and Processes

The elementary arithmetic textbooks have been completely designed
and written within the past twenty years, and have included the latest in psychology of learning and the "meaning" theory of teaching arithmetic. These textbooks which are well written and well oxganized contain a complete set of concepts and processes.

The following items were considered in the selection of the arithmem tic books from which the concepts and processes were chosen:

1. Those books authored by outstanding educators.
2. The extent of the use of the books.
3. The major publishing companies of elementary books.
4. Recency of publication.
5. The Oklahoma state adoptions in arithmetic.

Six complete sets of elementary arithmetic books were selected and analyzed to obtain the major concepts and processes. Also, a few other books were checked for possible concepts missed or not appearing in three or more of the six sets. The criterion of selection was that a concept or process must appear in three or more of the books to be considered important.

The analysis of the arithmetic books (See Appendix C p. 98) consisted of a page by page scanning for mathematical concepts and processes which were recorded by code for particular text and grade in a notebook. For example, the Rowew Peterson arithmetic series was listed.I. Hence, I, I would indicate Rowe-Peterson Book I (Grade I) and under I, 6 would be recorded all new concepts and processes appearing in RowePeterson Book 6 (Grade 6). An attempt was made to make the lists as complete as possible and not repeat concepts and processes from later books in a series. The following sets of books were used:

Brueckner, Leo J. et al., Arithmetic We Use (Grades One to Six)

Clark, John R. et al., Growth in Arithmetic (Grades One to Six)
Mallory, Virgil s. et al., Using Arithmetic (Grades One to Six)
Morton, Robert Lee, et al., Making Sure of Arithmetic
(Grades One to Six)
Studebaker, J. A. et al., Study Arithmetics (Grades One to Six)
Wheat, H. G.: et al., Rowe-Peterson Arithmetic
(Books One to Six)
TWo other books were used:
Bartoo, G. C. et al., Adventures with Numbers (Grade I)
Stern, Catherine. Discovering Arithmetic (Grade I)
Then, two alphabetical listings were made on large cardboard sheets. The first group consisted of concepts and processes for the first three grades, and the second group consisted of concepts and processes for the next three grades. The lists were then checked for frequency in the six sets of books and the extra ones.

If a concept was checked under three or more of the book columns, it was considered important enough to go into the questionnaire. The concepts were again arranged into related groups and put into a questionnaire.

The Questionnaire

The guiding principles in the construction of the questionnaire were:

1. Give clear and distinct instructions and explanations at the beginning of the questionnaire.
2. Minimize respondents' work by the use of simple checks. Thus, a three-itemmating scale was used: (1) essential, (2) desirable, (3) unimportant.
3. Group related concepts and processes in order to facilitate checking.
4. Refine the questionnaire through conferences and interviews with members of the investigator's committee and colleagues.

The questionnaire (Appendix A) was divided into two parts: One part included the concepts and processes selected by the above procedure for grades one, two, and three; and the other part embodied the concepts and processes of grades four, five, and six. The assumption was that a teacher in grades one, two, or three would not feel competent to check the importance of the concepts and processes of grades four, five, and six, and that a teacher of grades four, five, or six, would not wish to checlr the questionnaire for the first three grades. There seems to be a natural grouping in our school systems of the first three grades into one subgroup, and the next three grades into a second subgroup, and the seventh and eighth, or seventh, eighth, and ninth grades into a third subgroup. The universality of the first two subgroups and the variability of the third subgroup prompted the limitation of this study to grades one to six. The rating scale was reduced from five possible checks to three in order to facilitate the task of the respondent. The directions for marking and explanations were clearly stated. Suggestions for refinement of the questionnaire were made by members of the investigator's committee and by his colleagues.

The first page of the questionnaire follows:

Directions for Scoring

The following concepts and processes of elementary arithmetic were selected on a frequency of occurrence basis from six major sets of elementary arithmetic books. These concepts and processes may vary in importance in the mathematical development of the child.

Concepts are the elements of knowledge. Concepts as used here are simply mathematical terms which are used by the teacher or textbook to develop the child in his mathematical understanding, thinking and reasoning. Processes are the operations such as adding, subtracting, multiplying, dividing, measuring, etc., which the child performs with numbers.

Please check in the space at the right according to the importance which you consider the concept or process to have in the mathematical development of understanding, reasoning, and thinking of the child. The ratings are (1) essential, (2) desirable, (3) unimportant.

CONCEPIS

PART I: FIRST, SECOND AND THIRD GRADES

The questionaire was then sent to a group of experts in the area of mathematics education, and to a selected group of elementary arithmetic teachers.

Selection of the Experts

It was assumed that college teachers working in the field of mathematics education were qualified to pass Judgment upon the relative imm portance of the concepts and processes in the quantitative development of the child.

The selection of the experts was based upon the following achieve ments:

1. Authors of elementary amonmethe books.
2. Authors of other books asd arbiches rejesed to the teaching of arithmetic.
3. Those working particuinizy is the gea of mathematics education.
4. Elementary supervisors, espectaziy tr teachers colleges and large city school systems.

Table I shows the response of the expars to the questionnare. Thirty-two questionnaires were sent to college personnel. One question naire was returned since the recipient was deceased. The responses were as follows: 68 per cent checked and returned the questionaire; 6.5 per cent had completely retired: 13 per cent did not respond; 3 per cent rem ported lack of time; 3 per cent were in executive positions and referred the questionnaire to the education deparment with no further answer; 6.5 per cent refused to check it. Who experts refused to check the questionnaire. One retumed it unchecked, stating there was a dichotomy between the directions on the questiomaire and the letter of transm
mittal, but stated that if he checked the questionnaire in line with the purpose of this study he would have to check all items essential. The other expert who did not check the questionnaire stated he saw little value in this type of study.

The 68 per cent returns on the eight-page questionnaire compared. favorably with Shannon'sl 67 per cent on questionnaire of five or more pages.

TABLE I

PERCENIAGE OF QUESTIONNAIRE REITURNS FOR THE EXPERTS

	Answered	Unanswered	Not Returned
		67.7	4.2

Selection of Elementary Teachers
The elementary teachers' opinions concerning the items on the questionnaire were needed in the identification of the concepts and processes. Also, those teachers who actualliy teach these concepts and processes to the children should know which ones are important. The following criteria were used:

1. Only school systems which were members of the North Central Association of Colleges and Secondary Schools were selected.
2. Only independent school districts were chosen.
3. Only elementary schools of 12 teachers or more were chosen.

I J. R. Shannon, "Percentages of Returns on Questionnaires in Re putable Educational Research," Jourmal of Educational Research, XLII (October, 1948), 140.

In some cases where one elementary principal had two or more buildings under his supervision, the minimum of 12 teachers possibly consisted of all the elementary teachers in the system.

These criteria were based upon the assumptions that the requirements for teachers were higher in these schools, that the teachers were better qualified and did a higher type of teacking because of supervision, inc service meetings, and conferenees.

A letter (Appendix B) was writiten to the elementery principal asking for the name, address, and grade of teaching of tive or more of his better teachers from grades one to six. He was asked to select the teachers on the basis of the following criteria:

1. Do they seem to be better teachers in comparison to others in their field.
2. Do pupizs seem to rate higher in arithmetic after being taught by these teachers in comparison with other teachers?
3. Have the teachers been sucessfun teachers over a period of years?

The principais were quite whare of the mathematics situation in the schools and the need for improving the teaching of mathematics. They felt they had many good teachers and were interested in the new ones having the best preparation possible. They further felt that the experienced and better teachers could give much aid to the young and new teacher. Consequently, there was almost one hundred per cent response by the principals. Also, most of them gave more names than the minimurn of five which was requested. More than four hundred names of elementary arithmetic teachers were received. Three hundred sixty questionnaires were sent, and two hundred forty-five were checked and returned.

Sixty-eight per cent of the elementary teachers checked and returned the questionnaire. Six per cent returned the questionnaires unanswered and 26 per cent did not return the questionaires. This average was low compared to Shannonss 69.9 per cent for 4.5 page questionnaires, but it compares favorably to Trow's ${ }^{3}$ opinjon. He stated that usually a third to a half of the persons circulated did not answer.

The per cent of answered questionnaires (Table II) from elementary

TABLE II

QUESTIOMNATRE RETURNS FOR ELEMEMTARY TEACHERS

Grade	Answered	Thanswered	Not Returned
First	70.0	6.0	24.0
Second	68.0	4.0	28.0
Third	74.2	3.7	22.2
Fourth	60.7	13.5	27.8
Fifth	61.9	9.5	28.6
Sixth	69.6	2.9	27.5
Average	68.0	6.1	25.9

teachers ranged from a low of 60.7 per cent for the fourth grade teachers to a high of 74.1 per cent for the third grade teachers. Fifth grade teachers responded only slightly better with 61.9 per cent checking the questionnaires. The total returned questionnaires (answered and unanswered) showed fourth grade 72.2 per eent, fifth grade 71.4 per cent and sixth grade 72.5 per cent. The reasons for the low returns for the fourth and
2. Ibid., 140 .

3 William Clark Trow. Scientific Method in Education (Boston, 1925), p. 101.
fifth grades are unknow, but the ciose and fairily high total returns of questionnaires would indicate something was amiss. It might indicate a lack of lnowledge of concepts and processes of the other two grades in the subgroup. Also, the high rating of the third grade teachers might indicate a more thorough knowledge of the concepts and processes of that subgroup. The sixth grade teachers showed a relatively high percentage 69.9) of answered questionnaires which would indicate a good knowledge of the concepts and processes of the fourth, fifth and sixth grades.

The main objective in giving the data in Tables I and II was to compare the responses to the questionnaire with the responses to questionnaires in general. No other treatment of this data seemed pertinent to this problem except the comparisons which were just given.

There is evidence (Table III) that the principais followed the criteria in the selection of the teachers. Five people of the 245 who

TABLE TII

AMOTMT OF MATHEMATECS AND TEACHINK EXPERIENCE OF ELEMEMEARE TEACHERS

GRADE	High School Mathematics (units)	College Mathematics (sem. hrs.)	Mathematics Methods (sem. hrs.)	Teaching Experience (years)
First	2.45	4.14	1.55	19.07
Second	2.88	3.73	1.89	19.64
Third	2.87	3.84	1.87	18.60
Fourth	2.92	4.89	1.92	17.31
Fifth	2.97	6.13	2.83	16.09
Sixth	3.23	7.37	2.47	20.78
Total Average	2.91	5.11	2.10	18.66

answered questionaires gave two years' teaching experience, two showed
three years' teaching experience and five showed four years' teaching ex. perience. All others had more than four years of teaching experience. The average number of years of teaching experience ranged from a low of 16.09 years among the fifth grade teachers to a high of 20.78 years among the sixth grade teachers. The average number of years of teaching for all teachers who answered the questionaires was 18.66 years.

Tho teachers with one year of experience returned the questionnaire unanswered and gave incompetence as the reason for not checking. One teacher with two years' expexience retumed the unanswered questionnaire with the same explanation. Two teachers returned the unanswered questionnaire and gave lack of time, two others gave illness, and two others returned the unanswered questionnaire with no zeason. One tescher gave substitute teaching as a reason for not answexing the questionnaire. The most frequent reason given for not answering the questionnaire was lack of time. A total of nine people, or less than 3 per cent, gave lack of time as the reason for not answering i.t. The next most frequent reason given was incompetency. Seren people, or 2 per cent, gave unqualified or incompetent as the reasom for not checking the questionnaire. Other reasons were: too many school duties, lost or misplaced questionnaires, illness, and extension work. Most of these reasons were given on a card included in a follownp letter concerning the questionnaire.

The elementary teachers showed a low of 2.45 units of high school mathematics in the first grade to a high of 3.23 units in the sixth grade. The oxder of high school units in mathematics from highest to lowest was sixth (3.23), fifith (2.97), fourth (2.92), second (2.88), third (2.87), and first (2.45). The average of 2.91 units in high school compared favorably with the mathematies requirements to enter most colleges,
especially teachers colleges.
The same order exists for the number of semester hours of college mathematics as for units of high school mathematics. The sixth grade teachers had a high of 7.37 semester hours in mathematics; fifth grade teachers showed 6.13 semester hours; fourth grade teachers showed 4.89 semester hours; first grade teachers had 4.14 semester hours; third grade teachers had 3.84 semester hours; and second grade teachers were low with 3.73 semester hours. Fifty or 20 per cent of the elementary teachers had no college mathematics. The average of 4.11 semester hours is extremely high compared with the amount required for certification of elementary teachers.

The number of semester hours in mathematics methods ranged from a low of 1.55 semester hours for first grade teachers to a high of 2.83 semester hours for fifth grade teachers. The order again from highest to lowest was fifth grade, sixth grade, fourth grade, second grade, third grade, and first grade. The average number of semester hours of methods in mathematics for the 245 elementary teachers was 2.10 semester hours which was much higher than the amount required for certification.

SUMMARY

The concepts and processes of elementary arithmetic were selected on a frequency of occurrence basis from six sets of elementary books, grades 1 to 6 . These concepts and processes were arranged in related groups and put into a two-division questionnaire. The entire questionnaire was sent to a group of experts in the field of mathematics and mathematics education. The first section of the questionnaire including the concepts and processes of the first, second, and third grades
was sent to a selected group of first, second, and third grade teachers. The second part of the questionnaire, including the concepts and processes of the fourth, fifth, and sixth grades, was sent to a selected group of fourth, fifth, and sixth grade teachers.

The data concerning the teachers indicated they were well-trained, experienced, and capable teachers. No teacher of less than two years' experience answered the questionnaire. The average was 18.66 years' experience. Their training showed an average of 2.9 high school units in mathematics, 5.1 semester hours in college mathematics, and 2.1 semester hours of mathematics methods. The rank in amount of training both in high school and college from highest showed sixth, fifth, fourth, third, second, and first.

The per cent of returns of the questionnaires was good in comparison to published reports on similar types of surveys. There was some indication from the per cent of returns from the elementary teachers that possibly the fourth grade teachers felt most incompetent to check the concepts and processes of the fifth and sixth grades. Also, there was a slight indication that the fifth grade teachers felt incompetent to check fourth and sixth grade concepts and processes. There was some evidence that third and sixth grade teachers were most confident in checking the concepts and processes in their respective groups.

CHAPIER IV

ANALYSIS OF DATA, CONCEPIS

The objective of this chapter was to analyze the data in terms of the categories as mentioned in the hypothesis. Also, the concepts have been rated as set forth at the end of Chapter I. An average rating of sixty per cent or higher in any check space indicated the importance of the concept. If none of the three check spaces received a sixty per cent or higher rating, then a combination of two space ratings has been used to indicate whether the concept was, or was not, important.

Concepts are the elements of knowledge. Concepts are identified by mathematical terms or words which are used by the teacher or textbook to develop the child in his mathematical understanding, thinking and reasoning.

The Categories of Concepts

The categories were based upon the findings of an unpublished doctorel dissertation by J. J. Stipanowich, ${ }^{1}$ and six sets of arithmetic books listed in Chapter III. Stipanowich lists 33 topics in axithmetic which were recommended by 75 per cent of the educators who answered his questionnaire as being needed in a basic mathematics course for

1 J. J. Stipanowich, "The Development and Appraisal of a Course in Basic Mathematics for Prospective Elementary School Teachers," (unpublished Ed. D. dissertation, Northwestern University, 1956), pp. 85-87.
elementary teachers. Twenty-six of these topics were recommended by 90 per cent of the educators. The major topic headings were:

Growth in Numbers

Hindu-Arabic Numerals
Numbers in Our System
Denominate Numbers and Measurement

The Fundamental Operations Using Integers
Checking the Results
The Fundamental Operations using Common Fractions

The Fundamental Operations using Decimal Fractions
Aids to Problen Solving in Arithmetic

The 33 topics listed were all subheadings under these major topics. Also, the major topic headings correspond somewhat to the chapter headings in the arithmetic books which were used in the survey of this study. Hence, the categories were based upon these two related sources of topics.

The questionnaire corresponds closely to the following categories involving concepts which were considered important to the elementary
teacher. The first eleven of the categories are as follows:
I. The concepts of order.
(a) Numbers (or integers) in order.
(b) Numbers in rank.
II. The concepts involving synthesis.
(a) Addition.
(b) Multiplication.
III. The concepts involving analysis.
(a) Subtraction.
(b) Divisionq
IV. The concepts of comparison.
(a) Certain antonyms or marginal mathematical terms.
V. The concepts of measure.
(a) Area.
(b) Capacity.
(c) Volume.
(d) Counting.
(e) Length.
(f) Values (or money).
(g) Parts.
(h) Time.
(i) Weight.
(j) Other related concepts.
(k) Various mystems of measurement.

1. English.
2. Metric.
VI. The concepts involved in a thorough understanding of the number system.
(a) Other number systems.
(b) Structure of the number system.
(c) Natural numbers.
(d) Common fractions.
(e) Decimal fractions.
(f) Percentage.
VII. The concepts of a family budget.
VIII. Certain concepts of business.
IX. The concepts of graphs.
X. Certain concepts pertaining to verbal problems.
XI. Other mathematical concepts.

Treatment of Data

A table which corresponds to each category has been constructed and lists the data, arter treatment, from the questionnaire. All tables in this chapter express in per cent the opinions of the teachers concerning the concepts of elementary arithmetic according to the three checks on the questionnaire. Each concept was checked by the elementary teachers in one of three apaces as follows: (1) essential, (2) desirable, (3) unimportant. These check points under each classification were totaled and per cents, based on the total answered questionnaires, were calculated. Similar data was given for the experts. An average was figured between the per cents of the teachers and experts. All analyses were based upon the average rankings. The conclusions for the category as a whole were based upon the ratings of a majority of the concepts in each category. Some of the subheadings were also rated by this same method.

Concepts of Order. Table IV lists the concepts of order and rank. The ordering principle in mathematics states that any integer has an antecedent which is smaller than the given integer, and a successor which is larger. Concepts of order are the natural numbers. Rank means the position held as first, second, third, etc. The integers, both symbols and words from one to ten, were rated "essential" by 99 per cent of both the experts and elementary teachers. The integers from eleven to twenty were rated "essential" by the experts and teachers in per cents ranging from 88 to 92. The integers by tens to 100 were rated "essential" by 82 per cent or more of both the experts and elementary teachers. The concepts of rank were rated "essential" from a high of 91 per

THE IMPORTANCE OF MATHEMATICAL CONCEPIS OF ORDER AND RANK FOR ELEMENTARY TEACHERS

Percentage of (1) essential, (2) desirable, (3) unimportant, (4) blank.

Concepts	Teachers				Experts					Average		4
	1	2	3	4	1			4	1		3	
Numbers												
count	84	12	3	1	95	0	0	5	89.5	6.0	1.5	3.0
each	73	23	3	1	86	9	0	5	79.5	16.0	1.5	3.0
1 one	98	2	0	0	100	0	0	0	99.0	1.0	0.0	0.0
2 two	98	2	0	0	100	0	0	0	99.0	1.0	0.0	0.0
3 thinee	98	2	0	0	100	0	0	0	99.0	1.0	0.0	0.0
4 four	98	2	0	0	100	0	0	0	99.0	1.0	0.0	0.0
5 five	98	2	0	0	100	0	0	0	99.0	1.0	0.0	0.0
6 six	98	2	0	0	100	0	0	0	99.0	1.0	0.0	0.0
7 seven	98	2	0	0	100	0	0	0	99.0	1.0	0.0	0.0
8 eight	98	2	0	0	100	0	0	0	99.0	1.0	0.0	0.0
9 nine	98	2	0	0	100	0	0	0	99.0	1.0	0.0	0.0
10 ten	98	2	0	0	100	0	0	0	99.0	1.0	0.0	0.0
11 eleven	84	14	1	1	100	0	0	0	92.0	7.0	0.5	0.5
12 twelve	83	14	1	2	100	0	0	0	91.5	7.0	0.5	1.0
13 thirteen	78	18	2	2	100	0	0	0	89.0	9.0	1.0	1.0
14 fourteen	78	18	2	2	100	0	0	0	89.0	9.0	1.0	1.0
15 fifteen	77	19	2	2	100	0	0	0	88.5	9.5	1.0	1.0
16 sixteen:	77	21	1	1	100	0	0	0	88.5	10.5	0.5	0.5
17 seventeen	76	21	2	1	100	0	0	0	88.0	10.5	1.0	0.5
18 eighteen	76	21	2	1	100	0	0	0	88.0	10.5	1.0	0.5
19 nineteen	76	20	2	2	100	0	0	0	88.0	10.0	1.0	1.0
20 twenty	78	20	2	0	100	0	0	0	89.0	10.0	1.0	0.0
30 thirty	72	22	3	3	100	0	0	0	86.0	11.0	1.5	1.5
40 forty	72	22	3	3	95	5	0	0	83.5	13.5	1.5	1.5
50 fifty	72	22	3	3	95	5	0	0	83.5	13.5	1.5	1.5
60 sixty	70	24	3	3	95	5	0	0	82.5	14.5	1.5	1.5
70 seventy	70	24	3	3	95	5	0	0	82.5	14.5	1.5	1.5
80 eighty	70	23	3	4	95	5	0	0	82.5	14.0	1.5	2.0
90 ninety	69	24	3	4	95	5	0	0	82.0	14.5	1.5	2.0
100 one hundred	74	19	3	4	95	5	0	0	84.5	12.0	1.5	2.0
Ordinal numbers												
first	87	13	0	0	95.	5	0	0	91.0	9.0	0.0	0.0
second	87	13	0	0	95	5	0	0	91.0	9.0	0.0	0.0
third	87	13	0	0	95	5	0	0	91.0	9.0	0.0	0.0
fourth	80	20	0	0	95	5	0	0	87.5	12.5	0.0	0.0
fifth	76	24	0	0	95	5	0	0	85.5	14.5	0.0	0.0
sixth	66	27	2	5	86	14	0	0	76.0	20.5	1.0	2.5
seventh	64	29	2	5	86	14	0	0	75.0	21.5	1.0	2.5
eighth	64	29	2	5	81	14	5	0	72.5	21.5	3.5	2.5
ninth	64	29	2	5	81.	14	5	0	72.5	21.5	3.5	2.5
tenth	63	30	1	6	81.	14	5	0	72.0	22.0	3.0	3.0

cent for the concepts first, second, and third to a low of 72 per cent for the concept tenth. Others were fourth, fifth, sixth, seventh, eighth and ninth. All concepts of order were rated "essential."

Synthesis and Analysis. Table V showe the concepts pertaining to synthesis in elementary arithnetic. Snythesis in arithnetic is the act of putting groups together. The following concepts, related to addition, were rated "essential": ada, and, plus (\dot{L}) how many, altogether, together. Three concepts -.. solurm, sum, and total -- were rated "desirable." The last three terms appeared only on the first halif of the questionnaire and might have received a higher rating by the fourth, fifth, and sixth grade teachers. The concept total received a 62 per cent "essertial"

TABLEE V

THE JMPORTANGE OF MATHEMATIGAL DONCEPIS OF SNYTHESIS FOR ETEMENTARY TEACHERS

Percentage of (1) essential, (2) desirable, (3) unimportant, (4) blank.

Concepts	Teachers				Experts				Average			4
	1.	2	3	4	1.	2	3	4	1.	-	3	
Addition												
add	93	3	0	4	100	0	0	0	96.5	1.5	0.0	2.0
and	78	14	1	7	81	14	5	0	79.5	14.0	3.0	3.5
column.	58	23	15	4	48	33	19	0	53.0	28.0	17.0	2.0
plus (f)	76	18	3	3	76	19	5	0	76.0	18.5	4.0	1.5
how many	92	6	2	0	90	10	0	0	91.0	8.0	1.0	0.0
sum	58	28	13	1	57	33	5	5	57.5	30.5	9.0	3.0
total	44	38	15	3	62	33	5	0	53.0	35.5	10.0	1.5
altogether	67	29	2	2	76	14	10	0	71.5	21.5	6.0	1.0
together	54	32	8	6	67	24	9	0	60.5		8.5	3.0
Multiplication												
multiplier	90	9	0	1	72	24	0	0	83.0	16.5	0.0	0.5
multiply	47	17	27	9	90	5	5	0	68.5	11.0	16.0	4.5
product	90	10	0	0	61	19	0	0	85.5	14.5	0.0	0.0
partial product	67	23	9	1	52	48	0	0	59.5	35.5	4.5	0.5
tables	91	7	1	1	52		14	5	71.5	18.0	7.5	3.0
twice	75	12	7	6	66	24	5	5	70.5	18.0	6.0	5.5

rating by the experts, but only 44 per cent "essential" by the teachers. The following concepts, related to multiplication, were rated "essential": carrying, multiplier, multiply, product, tables, and twice. One concept, partial product, was rated "desirable."

Twelve concepts under addition and multiplication were rated "essential," and rour concepts were rated "desprable." Thus, the category was rated "essential" because the majority of the items were so rated.

Table VI shows the concepts pertaining to anaiysis in elementary arithmetic. The following concepts, related to subtraction, were rated "essential": difference, how many left, minus (-), take away. The following group of concepts were rated "desirable": count change, left (over), remainder, exceeds, minuend, subtrahend, and needs. one concept, cross (out), was rated "unimportent."

The following concepts, related to division, were reted "essential": fractions, borrowing, dividend, quotient, trial quotient Cancellation was rated "desirable" and caret (Λ) was rated "unimportant." The experts rated the concept cancellation low in the (1) "essential" column, and about average or 48 per eents in the (3) "unimportant" check space. Opinions expressed by the experts were to the effect that the operation of reducing fractions was a division process and violated the meaning of the word cancellation. Fiftymfive per cent of the elementary teachers believed cancellation was an "essential" concept in elementary arithmetic, and 24 per cent of the elementary teachers believed it was a "desirable" concept.

The category was rated "desirable" because there was not a distinct majority for either check space. There were 9 concepts rated "essential," 8 concepts rated "desirable," and 2 concepts rated "unimportant." Subtraction was rated "desirable" because a majority of the items were so
rated. Division was rated "essential" because a majority of the items were rated "essential."

TABLE VI
THE IMPORTANCE OF THE CONCEPTS OF ANALYSIS FOR THE ELEMENTARY TEACHER

Concepts	Teachers				Experts				Average			
	1	2	3	4	1	2	3	4	1	2	3	4
Subtraction												
count change	57	33	6	4	57	33	5	5	57.0	33.0	5.0	4.5
cross (out)	31	42	22	5	19	10	57	14	25.0	26.0	39.5	9.5
difference	67	22	9	2	71	24	0	5	69.0	23.0	4.5	3.5
how many left	88	11	0	1	95	5	0	0	91.5	8.0	0.0	0.5
left (over)	47	35	12	6	71	29	0	0	59.0	32.0	6.0	3.0
minus (-)	72	22	4	2	71	19	10	0	71.5	20.5	7.0	1.0
remainder	42	31	23	4	57	38	5	0	49.5	34.5	14.0	2.0
take away	87	6	5	2	81	14	5	0	84.0	10.0	5.0	1.0
exceeds	58	29	8	5	57	24	14	5	57.5	26.5	11.0	5.0
minuend	72	21	2	5	33	34	33	0	52.5	27.5	17.5	2.5
subtrahend	72	21	4	3	3.3	34	33	0	52.5	27.5	18.5	1.5
need. (s)	41	33	18	8	66	19	5	10	53.5	26.0	11.5	9.0
Division												
fractions	86	11	2	1	100	0	0	0	93.0	5.5	1.0	0.5
borrowing	88	7	4	1	67	5	19	9	77.5	6.0	11.5	5.0
carat (A)	29	35	30	6	29	33	38	0	29.0	34.0	34.0	3.0
cancellation	55	24	16	5	19	33	48	0	37.0	28.5	32.0	2.5
dividend	88	10	1	1	67	33	0	0	77.5	21.5	0.5	0.5
division	89	10	0	I	81	19	0	0	85.0	14.5	0.0	0.5
quotient	90	9	0	1	81	19	0	0	85.5	14.0	0.0	0.5
trial quotient	70	23	4	3	67	28	5	0	68.5	25.5	4.5	1.5

Comparison. Certain concepts of comparison are considered important by the teachers, experts, and textbooks in developing a sense of relationships such as a sense of space and space relationships, a sense of direction and direction relationships, a sense of size and size relationships. These are not wholly mathematical concepts but are marginal concepts of a mathematical nature. Table VII lists the concepts of comparison.

Percentage of (1) essential, (2) desirable, (3) unimportant, (4) blank.

Concepts	Teachers				Experts				Average			4
	1	2	3	4	1	2	3	4	1	Average	3	
Comparisons												
bove-below	77	18	2	3	86	14	0	0	81.5	16.0	1.0	1.5
bigwlittle	92	7	1	0	95	5	0	0	93.5	6.0	0.5	0.0
bottom-top	87	12	1	0	86	14	0	0	86.5	13.0	0.5	0.0
fast-slow	82	16	1	1	95	5	0	0	88.5	10.5	0.5	0.5
few-many	82	13	3	2	95	5	0	0	88.5	9.0	1.5	1.0
fewer-more	70	24	3	3	90	10	0	0	80.0	17.0	1.5	1.5
first-last	92	7	1	0	95	5	0	0	93.5	6.0	0.5	0.0
heavier-lighter	46	37	14	3	76	24	0	0	61.0	30.5	7.0	1.5
heavy-light	48	40	8	4	90	10	0	0	69.0	25.0	4.0	2.0
in-out	73	23	2	2	71	19	10	0	72.0	21.0	6.0	1.0
large-small	89	9	1	I	95	5	0	0	92.0	7.0	0.5	0.5
larger-smaller	69	28	2	1	90	10	0	0	79.5	19.0	1.0	0.5
largestmsmallest	68	27	3	2	86	14	0	0	77.0	20.5	1.5	1.0
left-right	93	7	0	0	95	5	\bigcirc	0	94.0	6.0	0.0	0.0
long-short	87	12	0	1	95	5	0	0	91.0	8.5	0.0	0.5
longer-shorter	66	29	2	3	90	10	0	0	78.0	19.5	1.0	1.5
longest-shortest	65	28	4	3	86	14	0	0	75.5	21.0	2.0	1.5
more--less	90	7	2	1	90	10	0	0	90.0	8.5	1.0	0.5
old-young	63	27	7	3	86	9	5	0	74.5	1.8 .0	6.0	1.5
older--younger	48	42	8	2	71	24	5	0	59.5	33.0	6.5	1.0
oldest-youngest	44	42	10	4	67	28	5	0	55.5	35.0	7.5	2.0
tall-short	79	18	2	1	95	5	0	0	87.0	11.5	1.0	0.5
tailermshorter	58	35	3	4	86	14	0	0	72.0	2.4 .5	1.5	2.0
tallerst-shortest	58	32	7	3	81	19	0	0	69.5	25.5	3.5	1.5
wide-narrow	56	32	10	2	76	14	10	0	66.0	23.0	10.0	1.0
high-low	81	18	1	0	86	14	0	0	83.5	16.0	0.5	0.0
higher-lower	54	38	5	3	86	14	0	0	70.0	26.0	2.5	1.5
highest-lowest	54	34	7	5	81	19	0	0	67.5	26.5	3.5	2.5
before-after	63	30	6	1	76	14	0	10	69.5	22.0	3.0	5.5
buy-sell	64	30	3	3	76	19	0	5	70.0	24.5	1.5	4.0
full-empty	61	34	4	1	76	19	0	5	68.5	26.5	2.0	3.0
east-west	62	30	7	1	76	19	0	5	69.0	24.5	3.5	3.0
north-south	63	29	7	1	76	19	0	5	69.5	24.0	3.5	3.0
increase-decrease		22	7	2	71	24	0	5	70.0	23.0	3.5	3.5
more-less	78	16	2	4	81	14	0	5	79.5	15.0	1.0	4.5
nearest-farthest	65	28	4	3	71.	24	0	5	68.0	26.0	2.0	4.0
part-whole	79	16	3	2	86	9	0	5	82.5	12.5	1.5	3.5
share-keep	48	37	9	6	76	19	0	5	62.0	28.0	4.5	5.5
sum-difference	84	10	3	3	90	5	0	5	87.0	7.5	1.5	4.0
upward-downward	57	34	5	4	86	9	0	5	71.5	21.5	2.5	4.5

Concepts of coroparison rated "essential" were: above-below,
bismittle, bottom-top, fastmslow, few-many, fewer-more, first-last, heavier-lighter, heavy-Iight, inout, Iargemsmall, Iarger-smaller, largest-smailest, left-right, long-short, longer mhorter, longestshortest, more-less, old-young, tall-short, taller-shorter, tallestm shortest, wide-narrow, high-low, higher-lower, highest lowest, beforeafter, buy sell, full empty, east-west, north-south, increase -decrease, more-less: nearest-farthest, part-whole, share-keep, sum-difference, and upward-downard. Oniy two pairs of concepte of comparison were rated "desirable." These were older-younger, and oldest-ycungest. This category was rated "essentiai" because 38 pairs of concepts were rated "essential" and 2 pairs were patek "desirable."

Measure. The idea of measure is most important to ail mankind in this scientific age. Certainuy, concepts of measure vary in their importance to man accoraing to their use. Table VIII lists the concepts of measure and their importance as rated by the teachers and the experts.

The concepts of capacity (volume) rated "essential." were teaspoon, tablespoon, cup, pint, quart, gallon, peck, and bushel. Those rated "desirable" were half pint and barrel. The concept gill was rated "unimportant."

No concepts strictly of volume were rated "essential." Cubic units such as cubic inches, cubic feet, cubic yerds were rated "desirable." Board feet and cubic centimeters were roted "unimportant."

The concepts of counting which were rated "essential" were units, pairs, dozen, and zero. Score and gross were rated "desirable." Quire and ream were considered "unimportant."

TABLE VIII

THE IMPORTANCE OF THE CONCEPIS OF MEASURE FOR THE ELEMENTARY TEACHER

Percentage of (1) essential, (2) desirable, (3) unimportant, (4) blank.

Concepts:	Teachers				Experts				Average			
	1	2	3	4	1	2	3	4	1	2	3	4
Area.												
surface	76	13	6	5	95	0	0	5	85.5	6.5	3.0	5.0
square units	71	15	7	7	95	5	0	0	83.0	10.0	3.5	3.5
(in., fto., yas.												
acre	59	26	12	3	67	33	0	0	63.0	29.5	6.0	1.5
section (sq. mi.		36	17	5	33	43	19	5	37.5	39.5	18.0	5.0
Capacity (volumes)												
teaspoon	76	22	1	1	71	29	0	0	73.5	25.5	0.5	0.5
tablespoon	76	22	1	1	71	24	0	5	73.5	23.0	0.5	3.0
cup	80	19	1	0	71	24	0	5	75.5	21.5	0.5	2.5
gill	17	39	40	4	19	57	19	5	18.0	48.0	29.5	4.5
pint	93	7	0	0	95	5	0	0	94.0	6.0	0.0	0.0
half pint (cup)	35	43	15	7	57	38	5	0	46.0	40.5	10.0	3.5
quart	93	7	0	0	95	5	0	0	94.0	6.0	0.0	0.0
gailon	93	7	0	0	95	5	0	0	94.0	6.0	0.0	0.0
peck	84	11	5	0	81	19	0	0	82.5	15.0	2.5	0.0
bushel	83	12	5	0	86	14	0	0	84.5	13.0	2.5	0.0
barrel	39	42	19	0	24	15	19	5	31.5	47.0	19.0	2.5
Volume												
cubic units (in., f゙t., yds.		24	30	16	67	5	14	14	48.5	14.5	22.0	15.0
board feet	23	31	41	5	28	39	28	5	25.5	35.0	34.5	5.0
cubic centimeter	6	21	70	3	29	33	33	5	17.5	27.0	51.5	4.0
Counting												
units	94	5	0	1	95		0	0	94.5	5.0	0.0	0.5
pairs	90	7	3	0	100	0	0	0	95.0	3.5	1.5	0.0
dozen	91	8	1	0	90	5	0	5	90.5	6.5	0.5	2.5
score	55	34	9	2	43	28	24	5	49.0	31.0	16.5	3.5
gross	33	39	25	3	33	43	19	5	33.0	41.0	22.0	4.0
quire	12	37	48	3	5	42	48	5	8.5	39.5	48.0	4.0
ream	15	43	39	3	14	43	38	5	14.5	43.0	38.5	4.0
zero	89	8	2	1	95	0	0	5	92.0	4.0	1.0	3.0
Length												
inch	67	25	6	2	95	5	0	0	81.0	15.0	3.0	1.0
foot (feet)	74	17	6	3	95	5	0	0	84.5	11.0	3.0	1.5
foot ruler	69	24	5	2	86	14	0	0	77.5	19.0	2.5	1.0
yard	58	31	9	2	86	14	0	0	72.0	22.5	4.5	1.0
yardstick	43	40	8	9	52	38	5	5	42.5	39.0	6.5	7.0
linear	74.	20	5	1	95	5	0	0	84.5	12.5	2.5	0.5
rod	49	34	16	1	29	62	9	0	39.0	48.0	12.5	0.5

TABLE VIII (Continued)
Percentage of (1) essential, (2) desirable, (3) unimportant, (4) blank.

Concepts	Teachers				Experts				Average			4	
	1	2	3	4	1	2	3	4	1	2	3		
Length, contd.													
		15	3	0	100	0	O	0	91			0.0	
hand.	4	34	58	4	9	48	38	5	6.5	41.0	48.0	4.5	
spen	2	37	57	4	5	52	38	5	3.5	44.5	47.5	4.5	
pace	2	34	59	5	5	52	38	5	3.5	43.0	48.5	5.0	
fathom	4	44	48	4	5	43	47	5	4.5	43.5	47.5	4.5	
nautical mile	6	40	51	3	14	48	38	0	10.0	44.0	44.5	1.5	
knot	8	44	44	4	19	48	28	5	13.5	46.0	36.0	4.5	
Money													
change	57	36	5	2	81	9	0	10	69.0	22.5	2.5	6.0	
coins	64	27	6	3	90	10	0	0	77.0	18.5	3.0	1.5	
cent	92	7	1	0	95	5	0	0	93.5	6.0	0.5	0.0	
penny	92	7	0	1	90	5	5	0	91.0	6.0	2.5	0.5	
nickel	95	5	0	0	95	5	0	0	95.0	5.0	0.0	0.0	
dime	95	5	0	0	95	5	0	0	95.0	5.0	0.0	0.0	
querter	87	12	1	0	90	10	0	0	88.5	11.0	0.5	0.0	
halfodollar	82	17	1.	0	81.	19	0	0	81.5	18.0	0.5	0.0	
doller, silver	56	34	9	1	62	33	5	0	59.0	33.5	7.0	0.5	
dolise, bill	74	18	6	2	90	10	0	0	82.0	14.0	3.0	1.0	
Parts													
halves	80	16	2	2	90	10	0	0	85.0	13.0	1.0	1.0	
thirds	53	36	7	4	71	29	0	0	62.0	32.5	3.5	2.0	
fourths	58	29	6	5	81.	19	0	0	69.5	24.0	4.0	2.5	
Extehs	12	31	45	12	43	38	19	0	27.5	34.5	32.0	6.0	
Time													
clock (o'clock)	83	12	2	3	90	10	0	0	86.5	11.0	1.0	1.5	
short hand (hr.)	87	9	2	2	81	19	0	0	84.0	14.0	1.0	1.0	
long hand (min.)	87	10	2	1	76	24	0	0	81.5	17.0	1.0	0.5	
hour	91	7	1	1	90	1.0	0	0	90.5	8.5	0.5	0.5	
haifohour	77	1.8	2	3	90	10	0	0	83.5	14.0	1.0	1.5	
half-past	65	27	5	3	57	33	5	5	61.0	30.0	5.0	4.0	
days (names)	82	1.7	1	0	90	10	0	0	85.0	13.5	0.5	0.0	
hours	75	24	1	0	90	10	0	0	82.5	17.0	0.5	0.0	
minutes	64	26	7	3	81	19	0	0	72.5	22.5	3.5	1.5	
seconds	33	31	31	5	52	29	19	0	42.5	30.0	25.0	2.5	
calendar	72	23	0	0	90	10	0	0	83.5	16.5	0.0	0.0	
week	82	17	0	1	86	14	0	0	84.0	15.5	0.0	0.5	
months (names)	67	32	1	0	90	10	0	0	78.5	21.0	0.5	0.0	
months (length)	12	52	1	0	62	33	5	0	37.0	42.5	18.5	2.0	
year (length	98	2	0	0	95	5	0	0	96.5	3.5	0.0	0.0	
leap year	79	1.9	2	0	86	9	5	0	82.5	14.0	3.5	0.0	
decade	60	32	7	1	71	19	10	0	65.5	25.5	8.5	0.5	
century	70	25	5	0	86	9	5	0	78.0	17.0	5.0	0.0	

TABLE VIII (Continued)
Percentage of (1) essential (2) desirable, (3) unimportant, (4) blank.

Concepts	Teachers				Experts				Average			
	1	2	3	4	1	2	3	4	1	2	3	4
morning (A.M.)	98	2	0	0	95	5	0	0	96.5	3.5		0.0
noon	98	2	0	0	95	5	0	\bigcirc	96.5	3.5		0.0
afternoon (P, M) $^{\text {) }}$	98	2	0	0	95	5	0	\bigcirc	96.5	3.5	0.0	0.0
midnight	96	4	0	0	95	5	0	0	95.5	4.5	0.0	0.0
daylight savings	49	34	15	2	7	29	0	0	60.0	31. 5		1.0
table	60	27	12	1	71	29	0	0	65.5	28.0		0.5
zones, standard	61	29	9	1	62	38	0	0	61.5	33.5	4.5	0.5
Weight												
ounce	23	34	35	8	62	29	9	0	42.5	31.5	22.0	4.0
pound (Ib.)	49	35	11.	5	90	5	\bigcirc	5	69.5	20.0	5.5	5.0
hundredweight	32	38	27	3	43	19	33	5	37.5	28.5	30.0	4.0
ton	83	12	5	0	71	24	5	0	77.0	18.0	5.0	0.0
long ton	24	41	30	5	24	43	33	0	24.0	42.0	31.5	2.5
grain	19	28	50	3	24	29	42	5	21.5	28.5	46.0	4.0
carat	2	24	69	5	\bigcirc	43	52	5	1.0	33.5	60.5	5.0
Other terms												
abacus	21	32	39	8	43	43	9	5	32.0	37.5	24.0	6.5
average	83	15	2	0	90	5	0	5	86.5	10.0	1.0	2.5
census	35	48	14	3	52	33	10	5	43.5	40.5	12.0	4.0
dimensions	71	20	7	2	76	1.9	\bigcirc	5	73.5	19.5	3.5	3.5
altitude	62	27	9	2	65	24	5	5	64.0	25.5	7.0	3.5
depth	62	30	7	1	86	5	4	5	74.0	17.5	5.5	3.0
distances	80	16	2	2	90	5	0	5	85.0	10.5	1.0	3.5
height	83	15	1	1	90	5	\bigcirc	5	86.5	10.0		3.0
thickness	70	27	2	1	86	9	0	5	78.0	18.0		3.0
width	83	. 15	2	2	90	5	0	5	85.5	10.0		3.5
Measurement												
English system	70	14	12	4	86	9	5	0	78.0	11.5		2.0
Metric system	16	34	43	7	38	43	19	0	27.0	38.5	31.0	3.5
millimeter	7	38	52	3	24	52	24	0	15.5	45.0	38.0	1.5
centimeter	4	32	58	6	28	48	$2{ }^{\text {a }}$	0	1.5 .5	45.0	38.0	1.5
meter	6	34.	57	3	33	48	19	0	19.5	41.0	38.0	1. 5
kilometer	6	33	58	3	24	52	24	0	15.0	42.5	41.0	1.5
milliliter	5	21	71	3	5	43	52	0	5.0	32.0	61.5	I. 5
Iiter	5	21	74	0	19	48	33	0	12.0	34.5	53.5	0.0
kiloliter	4	21	72	3	5	47	48	0	4.5	34.0	60.0	1.5
milligram	4	31.	62	3	1.4	29	48	9	9.0	30.0	55.0	6.0
gram	43	9	53	4	24	48	28	0	14.0	43.5	40.5	2.0
kilogram	3	20	73	4	9	57	29	5	6.0	38.5	51.0	4.5

The following concepts of length were rated "essential": inch, foot or feet, foot ruler, yard, Inear, and mile. Concepts rated "desirable" were yard.stick and rod. Other concepts of length ifttle used and rated "unimportant" were hand, span, pace, fathom, nautical mile, and knot.

A11 concepts of value (noney) except gilver dollar were rated "essential." The "essential" concepts were change, coins, cent, perry, nickel, dime, quarter, haifodollar, and doliar bill.

The measure of partis as halves, thirds, and fourthe were rated "essential." Sixths was rated "desirable."

The concepter of tine rated "essential" were clock or orclock, short (hour) hand, long (minute) hand, hour, halfohour, half-past, days (names), hours, minutes, calendar, week months (names), year, leap year, decade, century, morning (A.M.), noon, afternoon (P.M., midnight, day light savings, table, and standard zones. The concept length of months was rated "desirable."

The two concepts of wezgt which were rated "essential" were pound (Ib.) and ton. Those oncegts of weight which :ated "desirable" were ounce, and hundredwejght. Long ton, grain, and carat rated "unimportant."

Some other concepts of measure which were rated "essential" were average, dimensions, altitude, depth, distances, height, thickness, and width. The two concepts abacus and census were rated "desirable."

The English System of measurement was rated "essential" by 78 per cent of the teachers and experts. The metric system and all metric measure concepts were rated "unimportant."

The category on measure was rated "essentio. ." because a. large maiority of the items were so rated. The subheadings which were rated
"essential" were area, capacity, counting, values (money), parts, time, and other related concepts. Those which were rated "desirable" were length, weight, and various systems of measurement. One subheading, volume, was rated "unimportant." The Engisish system of measurement was rated "essential," but the metric system was rated "unimportant."

The Number System. The HinduaArabic number system has probably been one of man's greatest achievements in symbols and logic. A thorough understanding of the number syatem and ail. concepts pertaining to ito is vital to an elementary teacher. Table XX ling the concepts pertainm ing to the number systern, and the importance which the teachers and experts attach to them.

The concepte of numers which were rated "essential" were Arabic, even, odd, whole, position, digits, group (B), zero, units, ones place, tens, tens place, hundreds, hundreds place, thousands, millions, and billions. Roman numbers were rated "desirable." Three ancepts under group(s) which were rated "unimportant" were oneness, twoness, and fiveness.

The folloning concepty of frections were pabed "essentral": part (of whole), denominator, equal parts, common, numerator, halves, thirds, fourths, fifths, sixths, sevenths, eighthe, equivalent, improper, proper, invert, lowest terms, mixea numbers, like (similas), and unlike. Iwo concepts which were rated "desirable" were ratio, and recipe (mixture).

The concepts pertaining to decimals which were rated "esseatiel" were decimal point, tenths, hundredths, per cent, thousandths, and mixed decimals. One concept, cents point, was rated "desixable."

The category was rated "essential" because 43 concepts were rated "essential," 4 concepts were rated "desixable," and 3 concepts were rated "unimportant." ELEMENTARY TEACHER

Percentage of (1) essential, (2) desirable, (3) unimportant, (4) blank.

Concepts	Teachers				Experts				Average			4
	1	2	3	4	1	2	3	4	1	2	3	
Numbers												
Arabic	86	11	2	1	76	10	0	14	81.0	10.5	1.0	7.5
even	89	10	1	0	90	5	0	5	89.5	7.5	0.5	2.5
oda	89	10	1	0	90	5	0	5	89.5	7.5	0.5	2.5
whole	93	6	0	1	90	0	0	10	91.5	3.0	0.5	5.0
position	89	10	1	0	95	5	0	0	92.0	7.5	0.5	0.0
digits	84	12	3	1	76	10	9	5	80.0	11.0	6.0	3.0
group(s)	68	23	8	1	95	0	0	5	81.5	11.5	4.0	3.0
oneness	16	14	57	13	52	5	38	5	34.0	9.5	47.5	9.0
twoness	14	16	57	13	48	9	38	5	31.0	12.5	47.5	9.0
fiveness	13	15	59	13	48	9	38	5	30.5	12.0	48.5	9.0
zero	80	14	3	3	95	0	0	5	87.5	7.0	1.5	4.0
units	81	17	1	1	86	5	5	4	83.5	11.0	3.0	2.5
ones ${ }^{\text {P place }}$	72	14	7	7	100	0	0	0	86.0	7.0	3.5	3.5
tens	98	2	0	0	100	0	0	0	99.0	1.0	0.0	0.0
tens ${ }^{2}$ place	72	14	7	7	100	0	0	0	86.0	7.0	3.5	3.5
hundreds	98	2	0	0	100.	0	0	0	99.0	1.0	0.0	0.0
hundreds' place	67	15	11	7	90	5	0	5	78.5	10.0	5.5	6.0
thousands	97	3	0	0	100	0	0	0	98.5	1.5	0.0	0.0
millions	76	20	4	0	100	0	0	0	88.0	10.0	2.0	0.0
billions	50	31	16	3	76	24	0	0	63.0	27.5	8.0	1.5
Roman	48	49	3	0	52	43	0	5	50.0	46.0	1.5	2.5
Fractions												
part (of whole)	98	1	0	1	100	0	0	0	99.0	0.5	0.0	0.5
denominator	89	6	4	1	95	5	0	0	92.0	5.5	2.0	0.5
equal parts	94	5	1	0	100	0	0	0	97.0	2.5	0.5	0.0
common	86	7	7	0	95	5	0	0	90.5	6.0	3.5	0.0
numerator	91	5	4	0	95	5	0	0	93.0	5.0	2.0	0.0
halves	95	5	0	0	100	0	0	0	97.5	2.5	0.0	0.0
thirds	94	6	0	0	100	0	0	0	97.0	3.0	0.0	0.0
fourths	94	6	0	0	100	0	0	0	97.0	3.0	0.0	0.0
fifths	89	10	1	0	95	0	5	0	92.0	5.0	3.0	0.0
sixths	85	12	3	0	95	5	0	0	90.0	8.5	1.5	0.0
seventh.s	75	20	3	2	57	24	19	0	66.0	22.0	11.0	1.0
eights	80	15	3	2	90	10	0	. 0	85.0	12.5	1.5	1.0
equivalent	70	19	10	1	100	0		0	85.0	9.5	5.0	0.5
improper	80	12	7	1	86	9	5	0	83.0	10.5	6.0	0.5
proper	83	9	7	1	86	9	5	0	84.5	9.0	6.0	0.5
invert	69	16	13	2	62	14	24	0	65.5	15.0	12.5	1.0
lowest terms	83	7	9	1	81	19	0	0	82.0	13.0	4.5	0.5
mixed numbers	83	9	7	1	95	0		0	89.0	4.5	6.0	0.5
ratio	19	48	30	3	90	10	0	0	54.5	29.0	15.0	1.5
recipe(mixture)	33	52	15	0	57	33	10	0	45.0	42.5	12.5	0.0

TABLE IX, Contd.
Percentage of (1) essential, (2) desirable, (3) unimportant, (4) blank.

Concepts	Teachers				Experts				Average			
	1	2	3	4	1	2	3	4	1	2	3	4
Decimals												
decimal point	89	7	3	1	100	0	0	0	94.5	3.5	1.5	0.5
cents point	44	29	23	4	52	28	5	15	48.0	28.5	14.0	9.5
tenths	85	7	7	1	100	0	0	0	92.5	3.5	3.5	0.5
hundredths	83	7	10	0	100	0	0	0	91.5	3.5	5.0	0.0
per cent	52	29	19	0	71	24	5	0	61.5	26.5	12.0	0.0
thousandths	61	22	15	2	90	10	0	0	75.5	16.0	7.5	1.0
mixed	63	21	13	2	86	0	9	5	74.5	10.5	11.0	4.0

Miscellaneous Applications. None of the concepts relating to a family buaget were "essential" to the elementary teachers as shown in Table X. Concepts of a family budget which were "desirable" were income, clothing, food, health, recreation, savings, shelter or rent, save, and spend. Those concepts rated "unimportant" were advancement, insurance,

TABLE X
TEE IMPORTANCE OF THE MATHEMATICAL CONCEPTS OF A FAMILY BUDGET FOR THE ELEMENIARY TEACHER

Percentage of (1) essential, (2) desirable, (3) unimportant, (4) blank.

Concepts	Teachers				Experts				Average			4
	1	2	3	4	1	2	3	4	1	,	3	
Budget (family)												
income	33	53	13	1	48	33	14	5	40.5	43.0	13.5	3.0
advancement	10	48	35	7	24	52	19	5	17.0	50.0	27.0	6.0
clothing	36	49	12	3	48	33	14	5	42.0	41.0	13.0	4.0
food	42	43	12	3	62	19	14	5	52.0	31.0	13.0	4.0
health	36	44	16	4	62	19	14	5	49.0	31.5	15.0	4.5
insurance	11	56	30	3	24	47	24	5	17.5	51.5	27.0	4.0
recreation	27	51	16	6	33	48	14	5	30.0	49.5	15.0	5.5
savings	40	47	11	2	52	33	10	5	46.0	40.0	10.5	3.5
shelter (rent)	28	51	16	5	43	33	19	5	35.5	42.0	17.5	5.0
miscellaneous	12	51	23	14	24	24	24	28	18.0	37.5	23.5	
save	43	39	13	5	67	19	4	10	55.0	29.0	8.5	7.5
spend	52	36	7	5	67	19	5	9	59.5	27.5	6.0	7.0

and miscellaneous. These are not strictly mathematical concepts. However, the study of a family budget is found in most of the arithmetic textbooks.

The concepts of a family budget were "desirable." The majority, or 9 concepts of a family budget, were rated "desirable," and 3 concepts were rated "unimportant."

Table XI lists the concepts relating to business and the imporm tance of these concepts as rated by the elementary teachers and the exm perts. None of the concepts of business were rated "essential." The concepts of business rated "desirable" were prices, cost price, list price, marked price, sale price, selling price, retail price, save, sell, spend, and cost. The two concepts net price and wholesale price were rated "unimportant."

TABLE XI
THE IMPORTANCE OF CERTAIN MATHEMATICAL CONCEPTS OF BUSINESS FOR THE ELEMENTARY TEACHER

Concepts	Teachers				Experts				Average			
	1	2	3	4	1	2	3	4	1	2	3	4
Business												
prices	53	34	9	4	62	19	9	10	57.5	26.5	9.0	7.0
cost	51	38	9	2	62	24	9	5	56.5	31.0	9.0	3.5
list	16	54	27	3	38	33	24	5	27.0	43.5	25.5	4.0
narked.	25	47	25	3	38	33	24	5	31.5	40.0	24.5	4.0
net	22	4.4	30	4	28	29	33	10	25.0	36.5	31.5	7.0
sale	39	43	17	1	48	33	9	10	43.5	38.0	13.0	5.5
selling	36	44	17	3	57	28	10	5	46.5	36.0	13.5	4.0
retail.	25	51	23	1	29	38	28	5	27.0	44.5	22.5	3.0
wholesale	21	48	28	3	14	48	33	5	17.5	48.0	30.5	4.0
save	43	39	13	5	67	19	4	10	55.0	29.0	8.5	7.5
sell	49	38	10	3	57	29	5	9	53.0	33.5	7.5	6.0
spend	52	36	7	5	67	19	5	9	59.5	27.5	6.0	7.0
cost	42	27	4	27	76	19		5	59.0	23.0	2.0	16.0

The category on business was rated "desirable" because a majority of the items were so rated.

Table XII lists the concepts pertaining to graphs and their importance as rated by the teachers and experts. Only the concept bar graph was rated "essential." The concepts of graphs rated "desirable" were divided bar, horizontal bar, vertical bar, circle, line, picture or pictograph, scale, scale drawing, scale model, and scale maps.

TABLE XII
THE IMPORTANCE OF THE MATHEMATICAL CONCEPIS OF GRAPH FOR THE ELEMENTARY TEACHER

Concepts	Teachers				Experts				Average			
	1	2	3	4	1	2	3	4	1	2	3	4
Graphs												
bar		44	5	7	81	14	0	5	62.5	2.9 .0	2.5	6.0
divided	30	41	21	8	34	33	14	19	32.0	37.0	17.5	13.5
horizontal	36	47	13	4	62	24	5	9	49.0	35.5	9.0	6.5
vertical	38	47	12	3	62	24	9	5	50.0	35.5	10.5	4.0
circle	44	39	13	4	52	24	19	5	48.0	31.5	16.0	4.5
line		36	8	4	62	33	5	0	57.0	34.5	6.5	2.0
picture (pictograph)												
	43	43	11	3	67	24	9	0	55.0	33.5	10.0	1.5
scale	39	34	14	13	48	28	5	19	43.5	31.0	9.5	16.0
drawing	34	50	14	2	52	48	0	0	43.0	49.0	7.0	1.0
model	28	49	18	5	48	52	0	0	38.0	50.5	9.0	2.5
maps	52	38	9	1	62	33	0	5	57.0	35.5	4.5	3.0

The concepts of graphs were rated "desirable."
Table XIII lists the concepts pertaining to problems which are essential for understanding and solving problems. The "essential" concepts were verbal story problems, onemstep problems, two-step problems, hidden facts, questions, answers, approximate answers, estimate answers, round (off) answers, checking, check (work), number stories, problems,
and round. All concepts under problems were rated "essential."
Certain concepts pertaining to verbal problems were rated
"essential."

TABLE XIII
THE IMPORTANCE OF CERTAIN MATHEMATICAI CONCEPIS OF VERBAL PROBLEMS FOR THE ETEMENTARY TEACHER

Concept:	Teachers				Experts				Average			
	I	2.	3	4	1.	2	3	4	1	2	3	4
Problems												
verbal (story)	85	7	1	7	62	1.4	0	24	73.5	10.5	0.5	1.5 .5
one -step	91	8	0	1.	76	24	0	0	83.5	16.0	0.0	0.5
two-step	85	15	0	0	76	24	0	0	80.5	19.5	0.0	0.0
hidden facts	68	22	8	2	76	10	9	5	72.0	16.0	8.5	3.5
questions	90	8	0	2	86	14	0	0	88.0	11.0	0.0	1.0
answers	80	15	2	3	81	19	0	0	80.5	17.0	1.0	1.5
approximate	48	45	6	1	76	19	5	0	62.0	32.0	5.5	0.5
estimate	51	43	6	0	81	19	0	0	66.0	31.0	3.0	0.0
round(off)	39	49	9	3	81	14	5	0	60.0	31.5	7.0	1.5
checking	75	15	0	10	71	19	0	10	73.0	17.0	0.0	10.0
check (work)	54	37	7	2	67	28	\bigcirc	5	60.5	32.5	3.5	3.5
number stories	75	18	3	4	57	29	9	5	66.0	23.5	6.0	4.5
problems	66	21	8	5	81.	9	5	5	73.5	15.0	6.5	5.0
round	71	20	5	4	67	24.	0	9	69.0	22.0	2.5	6.5

Table XIV lists some other mathematical concepts which are important. Those concepts rated "essential" were same, equals, circle, squares, each, both and fewer. Other mathematical concepts rated "desirable" were air mail, stamps or postage, alike (as many as), and triangle.

The category was rated "essential" because a majority of the concepts were so rated.

TABLE XIV
THE IMPORTANCE OF OTHER MATHEMATICAL CONCEPIS FOR THE ELEMENTARY TEACHER

Perceatage of (1) essential, (2) desirable, (3) unimportant, (4) blank.

Concepts	Teachers				Experts				Average			4
	1	2	3	4	1	2	3	4	1	2	3	
air meil	25	50	20	5	38	38	19	5	31.5	44.0	19.5	5.0
stamps (postage)		41	13	3	62	24	5	9	52.5	32.5	9.0	6.0
alike (as meny as)												
	66	33	1	0	52	43	0	5	59.0	38.0	0.5	2.5
same	80	17	2	0	81	14	0	5	80.5	15.5	1.0	3.0
equals	78	18	3	1	86	9	0	5	82.0	13.5	1.5	3.0
circle	76	22	2	0	66	24	5	5	71.0	23.0	3.5	2.5
squares	61	27	9	3	71	19	0	10	66.0	23.0	4.5	6.5
triangle	28	38	27	7	67	24	4	5	47.5	31.0	15.5	6.0
each	73	23	3	1	86	9	0	5	79.5	16.0	1.5	3.0
both	72	23	3	2	86	9	0	5	79.0	16.0	1.5	3.5
fewer	65	28	4	3	86	9	0	5	75.5	18.5	2.0	4.0

Table XV lists the number of concepts which were checked (1) essential, (2) desirable, (3) unimportant, and (4) no rating. Per cents have been calculated on the total for each group and have been included in the table.

TABLE XV
AVERAGE RATINGS OF CONCEPIS
Data taken from Tables IV - XIV (per cent is figured on total)

	Essential		Desirable		Unimportant		No Rating		Total
		\%	No.	\%	No.	\%	No.	\%	
Concepts	232	69.46	66	19.76	36	10.78	0	0.00	334

A total of 334 mathematical concepts were checked by the elementary teachers and experts. Two hundred thirty-two concepts or 69.46 per cent were rated "essential." sixty-six mathematical concepts or 19.76 per
cent were rated "desirable." Thirty-six mathematical concepts or 10.78 per cent were rated "unimportant."

The experts generally rated the mathematical concepts higher than the elementary teachers rated them. The trends in checking were quite similar between the two groups of respondents. An item which was rated low in the "essential" column by the experts generally was rated low by the elementaxy teachers. Also, those items which were rated high in the "essential" column by the experts were rated high by the teachers.

The tables showed four sets of per cents for a total of 100 per cent for each concept. The fourth per cent represents those respondents who did not check the concept. The average per cent of omission checks for all the concepts was 2.56 .

SUMMARY

Approximately 69 per cent of the 334 mathematical concepts checked by the elementary teachers and experts were rated "essential," 20 per cent of the mathematical concepta were rated "desirable" and II per cent of the mathematical concepts were rated "unimportant."

Seven of eleven categories of mathematical concepts were "essential" to the elementary teachers according to the check sheets of the elementary teachers and experts. These were the categories on the concepts of order, synthesis, comparison, measure, number system, verbal problems, and other mathematical concepts. Four categories were "desirable" for the elementary teachers. These categories were on the concepts of analysis, budget, business, and graphs. Of the subheadings under the eleven categories 18 were rated "essential," 5 were rated "desirable," and i was rated "unimportant."

Reference was made in Chapter II to the＂importance of meanings，＂ and to＂meanings teachers should develop．＂The important concepts discussed in this chapter are adequately representative of the catego－ ries which Brownell suggests．${ }^{2}$ A definition is not sufficient for most of these concepts．As an example，the dictionary defines foot as a unit of length of 12 inches．A few pages further，it defines an inch as a small unit of measure，one twelfth of a foot．This has little or no meaning．Thus，meanings and understandings of the important concepts of mathematics should be part of the training of the elementary teacher．

いいいいいいいいい

2 supra，p． 15.

CHAFIER V

ANALYSIS OF DATA, PROCESSES

The objective of this chapter was to analyze the data which concerns the processes of elementary arithmetic in terms of the categories as mentioned in the hypothesis. The processes were rated in the same manner as the concepts in Chapter IV. An average rating of sixty per cent or higher in any check space indicated the importance of the process. If none of the three check spaces received a sixty per cent rating, then a combination of two check spaces was used to indicate the importance of the process.

Process is an operation, a course of procedure, a series of actions. Processes are the actions, operations, procedures, and doings of the learner in making knowledge a part of his being or existence.

The Categories of Processes

The categories of processes were based upon the topics listed by Stipanowich ${ }^{1}$ and the topics included in the six sets of elementary arithmetic textbooks which were listed on pages 21-22. The following list of processes continues the categories of the questionnaire begun in Chapter IV²:

1 J. J. Stipanowich, "The Development and Appraisal of a Course in Basic Mathematics for Prospective Elementary School Teachers," (Unpublished Ed. D. dissertation, Northwestern University, 1956), pp. 85-87.

2 Supra, pp. 34-36.
XII. The processes of counting and numerating.
(a) Counting.
(b) Numerating.
(c) Recognizing quantitiea.
XIII. The processes of grouping and regrouping.
(a) Adaing.
(b) Subtracting.
(c) Multiplying.
(d) Dividing.
XIV. The processes of comparing.
(a) Comparing relatively.
(b) Measuring.
XV. The processes involved in graphing.
XVI. The processes involved in solving problems.
(a) Reading with understanaing.
(b) Choosing mathenatical processes and the operating of them.
(c) Checking mathemetron compatitions.

Treatment of Data

A table which corresponds to each category of processes has been constructed, and Iists the data, after treatment, from the questionnaires. The tables express in per cent the opinions of the teachers and experts, and an average between the two groups concerning the mathematical processes of elementary axithmetic. Each process was checked by the elementary teachers in one of three spaces as follows: (1) essential, (2) desirable, (3) uaimportant. These check points under each classification were totaled and per ceats, based on the total answered questionnaires, were calculated. Similar data were given for the experts. An average
was figured between the per cents of the teachers and the experts. All analyses were based upon the average rankings. The conclusions for the category as a whole were based upon the ratings of a majority of the subheadings in each category. Some of the subheadings were also rated by this method.

Counting, Wumerating, and Recognizing Quantities in Mathematics. Counting is progressively giving numbers as 1, 2, 3, 4 . . . or 5, 10, 15 . . . Numerating is working with numbers. Recognizing quantities is associating names and symbols, and identifying groups.

Table XVI lists the processes of counting, numerating, and recognizing quantities in mathemakics and their relsted subheadings according to

TABIE XVI
THE IMPORTANCE OF THE MATHEMATTCAL PROCESSES OF COUNTING
AND NUMERATING FOR THE ELEMEMTARY TEACHER
Percentage of (1) essentiol, (2) desirable, (3) unimportant, (4) blank.

their importance as rated by the elementary teachers and the experts. Counting, counting by ones, and counting by groups were rated "essential." Numerating and related processes of Iearning about numbers (meaning), reading numbers, using numbers, writing numbers, Arabic numbers, and positions were rated "essential." Numerating in Roman numbers Was rated "desirable." Recognizing quantities also was rated "desirable." Associating number names, words, symbols, and identifying groups which are subheadings under recognizing quantities were rated "essential."

The category of counting and numerating was rated "essential" because 13 items were rated "essential" and 2 items were rated "desirable." Grouping and Regrouping. Grouping is assembling objects according to some comon characteristic. Regrouping is separating a group into smaller groups.

Table XVII shows the processes of grouping and regrouping and their ratings by the elementary teachers and experts. Adding and related processes of carrying and putting together were rated "essential." Subtracting and related processes of changing large groups into smaller groups, counting change, how many left, take away, and borrowing or carrying back were rated "essential." Counting away was rated "desirable."

Multiplying and carrying, a subheading under multiplying, were rated "essential." Also, dividing was rated "essential." That fifty-four per cent of the elementary teachers did not check this process probably indicated a misunderstanding.

The category on grouping and regrouping was rated "essential" because a majority, or 15 processes, was rated "essential" and 2 processes were rated "desirable。"

TABLE XVII
THE IMPORTANCE OF THE MATHEMATICAL PROCESSES OF GROUPING AND REGROUPING IN ELEMENTARY ARITHMEIIC FOR THE ELEMENTARY TEACHER

Percentage of (1) essential, (2) desirable, (3) unimportant, (4) blank.

Comparing. Table XVIII lists the processes of comparing and their ratings as given by the elementary teachers and experts. Comparing and the subheading measuring were rated "essential." Comparing quantities was rated "desirable." Subheadings under comparing quantities rated "essential" were fractions (relative size), values in purchases, and comparing by difference. One process, comparing quantities by ratio, was rated "desirable."

The process of measuring and the subheadngs of English system,

TABLE XVIII
THE IMPORTANCE OF THE MATHEMAITCAI PROCESS OF COMPARING IN EIEMENTARY ARTITINETTC FOR THE ELEMENTARY TEACHER

Processes	Teachers				Experts				Average			
	1	2	3	4	1			4	1	2	3	4
Comparing	54.	31	6	12	90	5	$0^{\text {b }}$		72.0	18.0	2.0	8.0
measuring	5.1	38	6	5	95	5	0	0	73.0	21.5	3.0	2.5
Comparing quantities												
	47	10	1	42	67	0	0	33	57.0	5.0	0.5	37.5
fractions (relative size)												
	85	11	2	2	100	0	0	0	92.5	5.5	1.0	1.0
values in purchases												
by difference	65	30	3	2	100	0	0	0	82.5	15.0	1.5	1.0
by ratio	16	48	17	19	95	5	0	0	55.5	26.5	8.5	9.5
Measuring	47	23	3	27	76	5	O	1.9	61.5	14.0	1.5	23.0
English Systern	74	11	10	5	95	0	0	5	84.5	5.5	5.0	5.0
metric system	16	35	43	6	38	48	9	5	27.0	41.5	26.0	5.5
areas	64	25	9	2	86	9	0	5	75.0	17.0	4.5	3.5
capacity	4 O	30	28	2	82	9	5	5	60.5	19.5	16.5	3.5
Ierigth	52	39	6	3	95	5	0	0	73.5	22.0	3.0	1.5
money, identifying and value												
	7.1	21	4	4	90	10	0	0	80.5	15.5	2.0	2.0
money, reading,	writ	ing,	and	mea	ing							
	72	1.5	2	11	86	0	0	14	79.0	7.5		12.5
time	87	4	1	8	90	5	0	5	88.5	4.5	0.5	6.5
in hours and half hours $\% 50.5$												
	81	15	2	2	81	19	0	0	81.0	17.0	2.0	1.0
in days	66	27	5	2	86	14	0	0	76.0	20.5	2.5	1.0
in months	54	33	8	5	81	19	O	0	67.5	26.0	4.0	2.5
in years	89	9	1	1	95	5	0	0	92.0	7.0	0.5	0.5
in decades	49	39	11	1	57	38	5	0	53.0	38.5	8.0	0.5
in centuries	48	33	9	10	71	24	5	0	59.5	28.5	7.0	5.0
volume	32	42	19	8	67	28	0	5	48.5	34.5	9.5	6.5
weight	84	12	2	2	95	0	0	5	89.5	6.0	1.0	3.5

areas, capacity, length, money (identifying and value), money (reading, Writing, and meaning), time, time in hours and haif hours, time in days, time in months, time in years, and measuring were rated "essential."

Measuring in metric system, measuring in centuries, and measuring
volume were rated "desirable."
The category on comparing was rated "essential" because a majority of the processes were so rated.

Graphing and Problem Solving. Tabie XIX lists the processes of graphing and their importance. Graphing showed 42.5 per cent "essential" and 42.5 per cent blank, hence no rating could be made. Interpreting (understanding) graphs, reading graphs and maps, and using graphs were rated "essential". Drawing to scale and mapping were rated "desirable."

TABLE XIX
THE IMPORTANCE OF THE MATHEMATICAL PROCESSES OF GRAPHING FOR THE ELEMENTARY TEACHER

Percentage of (1) essential, (2) desirable, (3) unimportant, (4) blank.

Processes	Teachers				Experts				Average			
	1	2	3	4	1	2	3	4	1	2	3	4
Graphing	28	22	3	47	57	5	0	38	42.5	13.5	1.5	42.5
drawing to scale 27		56	14	3	67	24	0	9	47.0	40.0	7.0	6.0
interpreting (understanding)												
	54	37	5	4	95	5	0	0	74.5	21.0	2.5	2.0
reading graphs, maps												1.0
using	56	33	7	4	86	14	0	0	71.0	23.5	3.5	2.0
mapping	33	50	12	5	67	33	0	0	50.0	41.5	6.0	2.5

The processes involved in graphing were rated "essential" since three items were rated "essential" and two items were rated "desirable."

Table XX lists the processes involved in solving problems in elementary arithmetic and their ratings as given by the elementary teachers and experts. Solving problems, and subheadings, reading problems, understanding problems, deciding (thinking), were rated "essential." The subheadings under thinking, planning and deciding of solving number stories, and solving problems wexe rated "essential." Checking was rated
"desirable." Approximating in round numbers, a subheading under checking, was rated "essential."

TABLE XX
THE IMPORTANCE OF THE MATHEMARICAL PROCESSES INVOLVED IN SOLVING PROBLEMS IN ELEMENIARY ARITHMETIC FOR THE ELEMENTARY TEACHER

Percentage of (1) essential, (2) desirable, (3) unimportant, (4) blank.

Processes	Teachers				Experts				Average			
		2		4	1		3	4	1	2	3	4
Solving problems reading understanding deciding (thinkin		0	0	38	67	0	0	33	64.5	0.0		35.5
	98	2	0	0	95	0	0	5	96.5	1.0	0.0	2.5
	99	0	1	0	95	0	0	5	97.0	0.0	0.5	2.5
		1	1	0	95	0	0	5	96.5	0.5	0.5	2.5
Thinking, planning, deciding												
-	54	9	0	37	81	0	0	19	67.5	4.5	0.0	28.0
solving number stories												
	80	15	3	2	62	29	9	0	71.0	22.0	6.0	1.0
solving problems		17	7		81	24	0	5	77.5	15.5	3.5	3.5
Checkingapproximating in	36	7	0	57	81	,	0	14	58.5	6.0	0.0	40.5
	roun	35	3	5	95	5	0	0	76.0	20.0	1.5	2.5

The category on solving problems was rated "essential" because a majority of the processes were so rated. Eight items were rated "essential," and one item was rated "desirable."

Table XXI lists the number of processes which were checked (1)
essential, (2) desirable, (3) unimportant, and (4) no rating.
Per cents have been calculated on the total for each group and have been included in the table.

TABLE XXI
AVERAGE RATINGS OF PROCESSES
Data taken from Tables XVI - XX (per cent is figured on total)

	$\begin{aligned} & \text { Essential } \\ & \text { No. } \quad \end{aligned}$		$\begin{aligned} & \text { Desirable } \\ & \text { No. } \% \end{aligned}$		Unimportant No. \%		No RatingNo.		Total
Processes	56	80.00	13	18.57	0	0.00	1	1.43	70

A total of 70 mathematical processes which included 14 main headings and 56 subheadings was checked by the elementary teachers and experts. Fiftymsix, or 80 per cent, of the mathematical processes were rated "essential." These included 9 major headings and 47 subheadings. Thirteen or 18.57 per cent of the mathematical processes were rated desirable. These thirteen processes included four major headings and nine subheadings. One process, graphing, could not be rated individually by the methods set forth at the beginning of this chapter as it received an "essential" rating of 4.2 .5 per cent and an "omission" rating of 42.5 per cent. However, the category was rated "essential" because three subheadings were rated "essentrial" and two subheadings were rated "desirable."

SUMMARY

Eighty per cent of the 70 mathematical processes checked by the elementary teachers and experts were rated "essential." Approximately 19 per cent of the mathematical processes were rated "desirable," and 1 per cent of the mathematical processes was not rated. All categories of mathematical processes were rated "essential" to the elementary teacher. These categories were the processes of counting and numerating, grouping and regrouping, comparing, graphing, and solving problems.

These processes adequately cover those recommended from the Guidance Report on the Commission on Post War Plans. 3 Meanings and understandings have great significance in the mathematical processes of arithmetic for the elementary teacher. An example which is inadequately treated in the textbooks and the teacher education books on arithmetic is the "inversion" rule in division of fractions. Most authors simply state the rule and give little or no explanation. It is simply an application of the principle that both numerator and denominator of a fraction can be multiplied by the same number without changing the value of the fraction. The multiplier is so chosen that the denominator becomes one.

These meanings and understandings of all mathematical processes of arithmetic should be a part of the training of the elementary teacher.
${ }^{3}$ Supra, p. 2.

CHAPIIER VI

SUMMARY OF FINDINGS

This investigation was concerned with the problem of identifying the concepts and processes of mathematics needed by an elementary teacher to teach arithmetic in grades one to six.

The need for this investigation has been supported by research which has shown a lack of understanding of meanings in elementary arithmetic by the teachers. Many teachers are incompetent in mathematical processes. Many teachers exhibit unfavorable attitudes toward arithmetic because of incompetency and a lack of understanding.

The design of the investigation was based upon three assumptions:

1. Meeting various classroom situations which require making decisions concerning the use of text material requires an understanding of the concepts and processes of mathematics on the part of the elementary teacher.
2. To teach arithmetic adequately for pupil learning with meaning and understanding, the teacher himself must understand the underlying mathematical concepts and processes.
3. Elementary teacher needs involving concepts and processes of arithmetic are of prime importance in their training.

The purposes of the investigation were (1) to identify the concepts and processes of elementary arithmetic, and (2) to ascertain from the opinions of a selected group of elementary teachers and experts the
importance of these concepts and processes.
The first purpose was obtained by analyzing thirtymeight elementary arithmetic textbooks which included six complete sets of books from grades one to six, and two extra first grade books. The second purpose was obtained through a questionnaire which was checked by a group of elementary teachers and a group of experts. A careful selection of both the elementary teachers and the experts was made. The teachers were selected from approved independent schools of more than twelve teachers and upon recommendation of their principals. The experts were selected from authors of elementary arithmetic textbooks, authors of books on elementary arithmetic, authors of articles on arithmetic, and mathematics educators. These included college teachers, and elementary supervisors in both teacher colleges and large city school systems.

The "essential" topics in elementary arithmetic have been fairly well established. The categories of concepts and processes were based on these established lists of topics, and especially on the six sets of arithmetic textbooks which were used in the survey for this study. Thus, the categories and questionnaire: were closely related since they came mainly from the same sources.

The Findings

The basis for identification of mathematical concepts and processes was the importance attached to these items by the elementary teachers and by the experts.

Those categories and mathematical concepts rated "essential" from the checks on the questionnaire of both the elementary teachers and the experts were:
I. The concepts of order which included the natural numbers: one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, thirty, forty, fifty, sixty, seventy, eighty, ninety, and one hundred; and the ordinal numbers: first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth.
II. Synthesis which included the following concepts of addition and multiplication: add, and, plus, how many, altogether, together, carrying, multiplier, multiply, product, tables, and bwice.
IV. Comparison which included the following pairs of antonyms of mathematical significance: above-below, big-little, bottomtop, fast-slow, few-many, fewer-more, first-last, heavierlighter, heavy-light, in-out, large-small, larger-mmaller, largest-smallest, left-right, long-short, longer-shorter, longestmshortest, more-less, old-young, tall-short, tallershorter, tallest-shortest, wide-narrow, high-low, higherlower, highest-lowest, before-after, buy-sell, full-empty, east-west, north-south, increase-decrease, more-less, nearest-farthest, part-whole, share-keep, sum-difference, and upward-downward.
V. Measure which included the following useful units of the

English system: teaspoon, tablespoon, cup, pint, quart, gallon, peck, bushel, units, pairs, dozen, zero, inch, foot or feet, foot ruler, yard, linear, mile, change, coins, cent, penny, nickel, dime, quarter, half-dollar, dollar bill,
halves, thirds, fourths, clock or o'clock, short (hour) hand, long (minute) hand, hour, halfohour, halfopast, days (names), hours, minutes, calendar, week, months (names), year, leap year, decade, century, morning (A. M. M $^{\prime}$), noon, afternoon (ㄹ. M.) midnight, daylight savings, table, standard zones, pound (1b.), average, dimensions, altitude, depth, distances, height, thickness, width, English system of measurement.
VI. The number system which included the following basic concepts for all numbers: Arabic, even, odd, whole, position, digits, groups, zero, units, ones' place, tens, tens place, hundreds, hundreds'place, thousands, millions, billions; part (of whole), denominator, equal parts, common, numerator, halves, thirds, fourths, fifths, sixths, sevenths, eighths, equivalent, improper, proper, invert, 1owest terms, mixed numbers, like, (similar), unlike, decimal point, tenths, hundredths, per cent, thousandths, and mixed deeimals.
X. Concepts pertaining to verbel problens which included: verbal story problems, one step problems, two step problems, hidden facts, questions, answers, approximate answers, estimate answers, round (off) answers, checking, check (work), number stories, problems, and round.
XI. Other, or miscellaneous concepts which included: same, equals, circle, squares, each, both, and fewer.

The following concepts from the four categories rated "desirable" were rated "essential": difference, how many left, minus, take away, fractions, borrowing, dividend, quotient, trial quotient, and bar graph. Those categories and mathematical concepts rated "desirable" were:
III. Analysis which included the following concepts of subtraction and division: count change, left (over), remainder, exceeds, minuend, subtrahend, needs, and cancellation.
VII. Family budget which included: income, clothing, food, health, recreation, savings, shelter or rent, save, and spend.
VIII. Business which included the following general terms of retail selling: prices, cost price, list price, marked price, sale price, selling price, retail price, save, sell, spend, and cost.
IX. Graphs which included: divided bar, horizontal bar, vertical bar, circle, line, picture or pictograph, scale, scale drawing, scale model, and scale maps.

The following concepts from those categories rated "essential" were rated "desirable": column, sum, total, partial product, older-younger, oldest-youngest, half pint, barrel, cubic inches, cubic feet, cubic yards, yardstick, rod, silver dollar, sixths, length of months, ounce, hundred weight, abacus, census, Roman numbers, ratio, recipe (mixture), cents point, air mail, stamps or postage, alike (as many as), and triangle.

Those categories and mathematical processes rated "essential" from the checks on the questionnaires of both the elementary teachers and the experts were:
XII. Counting and numerating which included the following elementary basic understandings and manipulations: counting, counting by ones, counting by groups, numerating, learning about numbers (meaning), reading numbers, using numbers, writing numbers, Arabic numbers, positions, associating number names, words, symbols, and identifying groups.
XIII. Grouping and regrouping which included: adding, carrying, putting together, subtracting, changing large groups into smaller groups, counting change, how many left, take away, borrowing or carrying back, multiplying, and dividing.
XIV. Comparing which included: comparing, measuring, fractions (relative size) values in purchases, comparing by difference, measuring in the English system, measuring areas, capacity, length, money (identifying and value), money (reading, writing and meaning), time, time in hours and half hours, time in days, time in months, and time in years.
XV. Graphing which included: interpreting (understanding) graphs, reading graphs and maps, and using graphs.
XVI. Solving problems which included: reading problems, understanding problems, planning, deciding, thinking, solving, number stories, solving problems, and approximately in round numbers.

All the categories of mathematical processes were rated "essential." Some of the subbeadings rated "desirable" were: numerating in Roman numbers, recognizing quantities, count away, comparing quantities, comparing by ratio, measuring in metric system, measuring in centuries, measuring volume, drawing to scale, mapping, checking (problems).

A rating of "essential" meant that an average of 60 per cent of both the elementary teachers and experts checked these items in the "essential" check space on the questionnaire. A rating of "desirable" meant either an average check of 60 per cent or more in the "desirable" check space or a combination of two check spaces to make 60 per cent or higher. Although the "essential" check space may have shown a higher rating than the "desirable" check space, the combination was rated "desirable."

A total of 334 mathematical concepta and a total of 70 mathematical processes were checked for importance by 245 elementaxy teachers and by 21 experts. Two hundred thirtyotwo concepts or 69.46 per cent were rated "essential." Sixtymisis mathematical conceptis or 19.76 per cent were rated "desirable" Thirtymsix mathemtical concepts or 10.78 per cent were rated "unimportint." Fiftyweix or 80 per cent of the mathematical processes were rated "essential." Thirteen or 18.57 per cent of the mathematical processes were reted "deairable." None were rated "unimportanto" One procest was not rated.

A total of 404 mathematical concepts and processes were checked by the elementary teachers and experts. Approximately 71 per cent of these concepts and processes were rated "essential." Approximately 20 per cent of the concepts and processes were rated "desirable," and 9 per cent were rated "unimportant."

Thus the consensus concerning the concepts and processes of mathemetics of both the experts and the elenentary teachers as set forth in the hypothesis has been determined.

An arbitrary rating of 60 per cent, which was more than one-half of the gtes, was chosen in making the final decision for the importance of each item. Although a more rigorous statistical treatment was possible, this treatment on the basis of 60 per ceat or higher seened adequate for this investigation.

This type of study has certain inherent weaknesses such as: (1) inability to comanicate equally well to all respondents, (2) subjectivity in response, (3) failure to respond, and (4) inability of the investigator to check further on the rexponses.

CONCLUSIONS AND RECOMMENDATIONS

Two general conclusions seem evident from this investigation. 1. A clear consensus exists among veteran and competent elementary teachers, (a) concerning what concepts of elementary arithmetic are "essential" in the teaching of arithmetic, (b) concerning what processes of elementary arithmetic are "essential" in the teaching of arithmetic.
2. A clear consensus exists among the experts (a) concerning what concepts of elementary arithmetic are "essential" for the elementary teacher, (b) concerning what processes of elementary arithmetic are "essential" for the elementary teacher.

Recommendations

The concepts and processes which have been identified in this study do not include the totality of those which the teacher will likely need in the coming years. New and modern mathematical concepts are beginning to infiltrate the elementary school courses. Modern mathematics emm phasizes structures, or patterns, which permeate all mathematics. The number system is based upon these structures. Structuring is an overall processing which extends throughout mathematics.

As a result of the findings in this study, the investigator makes the following recommendations:
I. All concepts and processest of elementary arithmetic which were rated "essential" should be strongly emphasized in the training of elementary teachers.
2. All concepts and processes of elementary arithmetic which were rated "desirable" should be included in the training of the elementary teacher.
3. All concepts and processes of elementary arithmetic which were rated "essential" along with their meanings and uses should be included in the textbooks for the training of elementary teachers.
4. These recomendgtions should be organiged under the framework of the categories listed in Chapters IV and V and put into a bulletin for immediate use in the training of elementary teachers at both the pre-service and in-service levels.
5. College teachers should not only add new and modern mathematical concepts and processes, but should experiment to show whether these concepts and processes can be taught and, if so, whether they are an aid in understanding arithmetic and msthematics.
6. college teachers should explain and demonstrate to elementary teachers the structures as they permeate all mathematics, and should experiment to show whether these structures are an aid in waderstanding and development of mathematical thinking.

SEIECTED BIBLIOGRAPHY

Anderson, G. Lester, and Arthur I. Gates. "The General Nature of Learning." Learning and Instruction. Forty-ninth Yearbook of the National Society for the Study of Education, Part I. Chicago: University of Chicago Press, 1950. Pp. 12-34.

Armstrong, W. Earl and T. M. Stinnett. A Manual on Certification Requirements for School Personnel in the United States. National Education Association, Washington, D. C., 1955.

Armstrong, W. Earl. "The Teacher Education Curriculum." The Journal of Teacher Education, VIII (September, 1957), 230-243.

Benezet, L. P. "Story of an Experiment." Journal of the National Education Association, XXIV (November 1935, January 1936), 241-244 and 301-303.

Breslich, E. R. "The Importance of Mathematics in General Education." Mathematics Teacher, XIIV (January, 1951), 1-6:

Brownell, William A. "The Place of Meaning in the Teaching of Arithmetic." Elementary School Journal, XIVII (Januery, 1947), 257-258.

Brownell, William A. "Psychological Consideration in the Learning and the Teaching of Arithmetic." The Teaching of Arithmetic. Tenth Yearbook of the National Council of Teachers of Mathematics. New York: Teachers College, Columbia University, Bureau of Publications, 1935. Pp. l-32.

Brownell, William A. "Readiness and the Arithmetic Curriculum." Elementary School Journal, XXXVIII (January, 1938), 495-508.

Brownell, Wiliiam A. "When Is Arithmetic Meaningful?" Journal of Educational Research, XXXVIII (March, 1945), 481-498.

Brownell, William A., and Harold E. Moser. Meaningful Versus Mechanical Learning: A Study in Grade II Subtraction. Duke University Research Studies in Education, No. 8. Durham, N. C.: Duke University Press, 1949.

Buckingham, B. R. Elementary Arithretic, Its Meaning and Practice. Boston: Ginn and Company, 1947.

Buckingham, B. R. "Significance, Meaning, Insight - These Three." Mathematics Teacher, XXXI (January, 1938), 24-30.

Buckingham, B. Re and J. MacLathy. "The Number Abilities of Children When They Enter Grade One." Report of the Society's Committee on Arithnetic. Twenty ninth Xearbook of the National Society for the Study of Education, Part II. Bloomington, Ill.: Public School Publishing Company, 1930. Fp. 473-524.

2-Buswell, G.T. "Introduction" (Chapter I). The Teaching of Arithmetic. Fiftieth Yearbook of the National Society for the Study of Education, Part II. Chicago: Uniwersity of Chicago Press, 1951. Pp. 1-5.

Buswell, G. T. "The Psychology of Learning in Relation to the Teaching of Arithmetic." The Teaching of Arithmetic. Fiftieth Yearbook of the National Society for the Study of Eaucation, Part II. Chicago: University of Chicago Press, 1951. Pp. 143w154.

Buswell, G. T. "Needed Researeb in Arithnetic." The Teaching of Arithmetic. Fiftieth Yearbook of the National Society for the Study of Education, Part II Chicago: University of Chicago Press, 1951. $\mathrm{Pp} .282 \mathrm{wa7}$.

Developing Meaningrul Practices in Arithmetic. A publication of the Central New York School Study Council. Syracuse, New York: School of Education, Syracuse University, 1951.

Dodes, I. A. "The Science of Tesching Mathemsuics." Mathematice Teacher, XLVI (March, 1952), $157-166$.

Dutton, W. H. "Attitwades of Prospective Teachers Toward Arithmetic." Elementary School Journal, ITI (October, 1951), 84-90.

Dyer, Henry S_{0}, Robert Kalin, and Frederic M, Lord. Problems in Mathematics Eucation. Princeton: Educabional Testing Service, 1956.

Featherston, E. Glenn, mine Jom Hull. Analyms of Research in the Teaching of Arithmetic, 1955 and 1956. U.S. Department of Health, Education and Weliare, Office of Education, Washington, D. C.

Fehr, H. F. "Present Research in the Teaching of Arithmetic." Teachers College Record, LII (October, 1950), 11-23.

Glenn, W. H. "Curxiculum Development to Capitalize on the Interrelationships of the Many Areas of Mathematics." Bmerging Practices in Mathematics Education. Twentymecond Yearbook of the National Council of Teachers of Mathematics. Weshington, D.C.: National Council of Teachers of Mathematics, 1954. Pp. 9-15.

Glennon, Vincent J. "A Study of the Growth and Mastery of Certain Basic Mathematical Understandings of Seven Educational Levels." Mathematics Teacher, XLII (December, 1949), 389-396.

Glennon, Vincent J. "A Study in Needed Redirection ins the Preparation of Teacherg of Arithmetic." Mathemstice Teacher, XIII (December, 1949), 389-396.

Glemon, Vincento J. and ©.W. Hunnicutto What Does Research Say about Arithmetic?" Association for Supervision and Curriculum Developm ment, A Department of the National Eaucation Association, Washington, D.C.s 1953.

Grossuickle, Foster E_{o} "The Training of Teachers of Arfthmetic." The Teaching of Arrthmetic. Fiftieth Yearbook of the National Society for the Study of Education, Part II. Chicago: University of Chicago Press, 1951. Pp. 203-231.
"Guidance Report of the Commission on Post War Plans." Report of the Commission on Postwar Plans of the Nataonal Council of Teachers of Mathematics. Mathematics Teacher, XL (November, 1947), 315-339.

Guaderson, A. G. "Number Coneepts Held by Seven Year olds." Mathematics Teacher, XXXIII (January, 1940), 18-24.

Harap, H. and C. E. Mapes. "The Lemrning of Fundamentals in an Arithmetic Activitu Program." Elementary Schocl Journal. XXXIV (March, 1934), 515-525.

Harding, L. W, and I. P. Bryan. "An Experimental Comparison of Drill and Direct Experience in Arithmetic Learning in a Fourth Grade." Journal of Educational Reseameh, XXXVIT (January, 1944), 321-337.

Hartung, M. L. "Modern Methods and Current orticicisms of Mathematical Education." School Sctence and Mathematios, LV (February, 1955), 85 - 0 。

Havighurgt, R.e. "Can Mathemathenan and Edueatonists Cooperate?" Methematice Teacher, XXX (May, 1937), 211-213.

Hightower, H. W. "Efiect of Instructional Procedures on Achievement in Fundamental Operations in Arithmetie." Educational Administration and Supervision, XL (October, 1954), 336-348.

Hilgard, E.R. Theories of Learning. New York: Appleton ${ }^{-C e n t u r y-~}$ Crofts, 1948.

Hilgard, E.R. Theories of Learning, Second Edition. New York: Appleton-Century-Crofts, 1956.

Hoel, L. "An Experiment in Clinical Frocedures for Arithmetic." Emerging Practices in Mathematics Education. Twenty-second Yearbook of the National Council of Teachers on Mathematics. Washington, D. C.: National Council of Teachers of Mathematics, 1954. Pp. 222-232.

Horm, Ernest. "Arithnetic in the Elementary school Curriculum." The Seaching of Arithmetic. Fiftieth Yearbook of the National Society For the Study of Education, Part II. Chicago: University of Chicago Prese, 1951. Pp. 6m21.

Improvement of the Teaching of Mathematics. Oklahoma State Department of Education, Okiaboma City, Oklahoma, 1957.

Kinsella, J. J. "Some Reflections on the General Mathematics Situation." School Science and Matheramtics, LIV (June, 1954), 431-438.

Kinzer, Jo, mad L. Kinzer. "College Chemistry Students Deficient in Arithnetic Academic Dats." Educational Research Bulletin, XXVII (January, 1948), 8-10.

Koenker, R.H. "Arithmetic Readiness at the Mindergarten Level." Journai of Educational Research, XIII (November, 1948), 218-223.

Layton, W. I. "The Certification of Teachers of Mathematics." Mathe-matics Teacher, XLII (December, 1949), 377-380.

MacLane, S. "The Impact of Modern Mathenatics." Bulletin of the National Association of Secondary School Prineipals; XXXVIII (May, 1954), 66m70.

Mallory, V. A. "Providing for Individual Needs in Mathematice." Mathematics Teacher, XXX (May, 1937), 214-220.

McConnell, T. R. "Recent Treads in Learming Theory." Arithmetic in General Education. Sixteenth Yearbook of the National Council of Teachers of Methematics. New York: Teachers College, Columbia University, Bureau of Publications, 1941. Pp. 268-289.

McLellan, James A., and tohn Dewey. The Psychology of Numbers. New York: D. Appleton Century Compeny, 1916.

Morton, R. L. Teaching Arithmetic in the Elementary School, Volume II, Intermediate Grades, New York; Silver Burdett Company, 1938.

Morton, R. L. Teaching Arithmetic. What Research Says to the Teacher. No. 2. Washington D. C.: National Education Association, october, 1953.

Mueller, Francis, and Harold Moser. "Background Mathematics for Teachers of Arithmetic." Fmerging Practices in Mathematics Education. Twenty-sec ond Yearbook of the National Council of Teachers of Mathematics. Washington, D. C.: National Council of Teachers of Mathematics, 1954. Pp. 180-188.

Newsom, C.V. "Mathematical Background Needed by Teachers of Arithmetic." The Teaching of Arithmetic. Fiftieth Yearbook of the National Society for the Study of Education, Part II. Chicago: University of Chicago Press, 1951. Pp. 232-"250.

Orleans, J. S. The Understanding of Arithmetic Processes and Concepts Possessed by Teachers of Arithmetic. New York: Office of Research and Evaluation, Division of Teacher Education, College of the City of New York, Publication No. 12, 1952.

Phillips, C. "Background and Mathematical Achievement of Elementary Education Students in Arithmetic for Teachern." School Science and Mathematics, LIII (January, 1953), 48-52.

Plank, E.N. "Observation on Attitudes of Young Children Toward Mathematics." Mathematice Teacher, XIIII (October, 1950), 252263.

Potter, M. A. "Corrailing the Wandering Decimail Point." Mathematics Teacher, XL (February, 1947), 51-57.

Pressey, Luella Cole. "The Determination of the Technical Vocabulary of the School Subjects." School and Society, XX (July 19, 1924), 91-96.

Rosenquist, L. L. Young Children Lesmn to Use Arithmetic. Boston: Ginn and Company, 1949.

Shannon, J. R. "Percentages of Returns on Questionnaires in Reputable Educational Research." Journal of Educational Research, XLII (October, 1948), 138-141.

Skinner, B.F. "The Science of Lemanng and the Aut of Teaching." Harvard Educationsi Review, XNI (Spring, 1954), 86-97.

Smith, R. "Meaningful Division." Mathemarice Teacher, LIII (January, 1950), 12-18.

Smith, R. "Frotisions fow Tncividue Deveneaes." The Learning of Mathematics, Its Theory and Pnotbice. Twentymirst Yearbook of the National Council of Teachers of Mathemetics. Washington, D. C.: National Council of Teacherg of Mathematics, 1953. Pp. 271-203.

Spitzer, H. F. "Techniques for Evaluating Outcones of Instruction in Arithmetic." Elementary School Journal, XIIX (September, 1948), 21-31.

Stipanowich, J. J. "The Development and Appraisal of a Course in Basic Mathematics for Frospective Elementary School. Teachers." (Unpublished Ed. D. dessertation, Northwestern University, 1956).

Stokes, C. Newton. Teaching the Mearings of Arithmetic. New York: Appleton-Century-Crofts, 195..

Storm, W. B. "Arithmetic Meanings That Should be Tested." Arithmetic 1948. Supplementary Educational Monographs, No. 56. Chicago: Univergity of Chicago Prees, 1948. Fp. 26-3i.

Sueltz, Ben A., and John W. Beredick. "The Need for Extending Arithmetical Learning." Mathenatics Teacher, XLIII (February, 1950), 69-73.

A Survey of Mathematical Education. A study of the Causes of Student Drop-out, Failure, and Incompetence at the Elementary and Secondary Levels. Research Bulletin No. 55-27, Educational Testing Service, Princeton, N. J., 1955. Multilithed.

Swenson, E. J. "Arithmetic for Preschool and Primary-grade Children." The Teaching of Arithmetic. Fiffieth Yearbook of the National Society for the Study of Education, Part II. Chicago: University of Chicago Press, 1951. Pp. 53-75.

Thiele, C. L. "Arithmetic in the Middle Grades." The Teaching of Arithmetic. Firtieth Yearbook of the National Society for the Study of Education, Part II. Chicago: University of Chicago Press, 1951. Pp. 76-102.

Thiele, C. L. "An Incidental or an Organized Program of Number Teaching?" Mathematics Teacher, XXXI (February, 1938), 63-67.

Thorndike, Edward L. New Methods in Teaching Axithmetic. New York: Rand-MeNally and Company, 19eI.

Thorndike, Edward L. The Psychology of Arithmetic. New York: Macmillan and Company, 1922.

Thorndike, Edward L., and Irving Lorge. The Teacher's Word Book of 30,000 Words. New York: Columbia Universivy Press, 1944.

Thrum, M. E. "The Developments of Concepts of Magnitude." Child Development, VI (June, 1935), 120-140.

Trow, William Clark. Scientific Method in Education. Boston: Houghton Mifflin Company, 1925.

Turner, I. S. The Training of Mathematics Teachers. Fourteenth Yearbook of the National Council of Teachers of Mathematics. New York: Teachers College, Columbia University, Bureau of Publications, 1939.

Twenty-first Yearbook of the National Council of Teachers of Mathematics. The Learning of Mathematics, Its Theory and Practice. Washington, D. C.: National Council of Teachers of Mathematics, 1953.

Van Engen, H. "An Analysis of Meaning in Arithmetic." Elementary School Journal, XIIX (February and March, 1949), 321-329 and 395-400.

Van Engen, H. "Some More Thoughts on Placing the Decimal Point in Quotients." Mathematics Teacher, XXXVIII (October, 1945), 243-245.

Washburne, C.W. "Mental Age and the Arithmetic Curriculum; A Survey of the Committee of Seven Grade Placement Investigations to Date." Journal of Educational Research, XXXIII (March, 1931), 210-231.

Washburne, C.W. "A Reply to Browneil's Critique of the Committee of Seven's Experiments." Elementary School Journal, XXXIX (February, 1939), 417-431.

Washburne, C. W. "When Should We Teach Arithmetic?" Elementary School Journal, XXVII (May, 1938), 659-665.

Washburne, M. F. "Mathematical Ability, Reasoning, and Academic Standing." American Journal of Psychology, L (November, 1937), 484-488.

Weaver, J. F. "Misconceptions about Rationalization in Arithmetic." Mathematics Teacher, XIIV (October, 1951), 377-381.

Weaver, J. F. "Some Areas of Misunderstanding about Meaning in Arithmetic." Elementary School Journal, LI (September, 1950), 35-41.

Wheat, H. G. How to Teach Arithmetic. Evanston, Illinois: Row, Peterson and Company, 1951.

Wheat, H. G. "rhe Nature and Sequence of Learning Activities in Arithmetic." The Teaching of Arithmetic. Fif'tieth Yearbook of the National Society for the Study of Education, Part II. Chicago: University of Chicago Press, 1951. Pp. 22-39.

Wheat, H. G. The Psychology and Teaching of Arithmetic. Boston: D. C. Heath Publishing Company, 1937.

Wilson, J. D. "Trends in Elementary and Secondary School Mathematics, 1918-1948." (Unpublished doctorel dissertation, Stanford University, 1949).

Woody, C. "A General Educator Looks at Arithmetic Readiness." Mathenatics Teacher, XXX (November, 1937), 314-321.

APPENDIX A

Directions for Scoring

The following concepts and processes of elementary arithmetic were selected on a frequency of occurrence basis from six major sets of elementary arithmetic books. These concepts and processes may vary in importance in the mathematical development of the child. .

Concepts are the elements of knowledge. Concepts as used here are simply mathematical terms which are used by the teacher or textbook to develop the child in his mathematical understanding, thinking and reasoning. Processes are the operations such as adding, subtracting, multiplying, dividing, measuring, etc., which the child performs with numbers.

Please check in the space at the right according to the importance which you consider the concept or process to have in the mathematical development of understanding, reasoning, and thinking of the child. The ratings are (1) essential, (2) desirable; (3) unimportant.

CONCEPIS
PART I: FIRST, SECOND AND THIRD GRADES

		1	2	3			1	2	3
41	yardstick				92	4 four			
42	Volume:				93	5 five			
43	half pint (cup)				94	6 six			
44	pint				95	7 seven			
45	quart				96	8 eight			
46	Parts				97	9 nine			
47	halves				98	10 ten			
48	thirds				99	11 eleven			
49	fourths				100	12 twelve			
50	sixths				101	13 thirteen			
51	Money				102	14 fourteen			
52	coins				103	15 fifteen			
53	cent				104	16 sixteen			
54	penny				105	17 seventeen			
55	nickel				106	18 eighteen			
56	dime				107	19 nineteen			
57	quarter				108	20 twenty			
58	half-dollar				109	30 thirty			
59	dollar, silver				110	40 forty			
60	dollar, bill				111	50 fifty			
	MPPARISONS				112	60 sixty			
61	above-below				113	70 seventy			
62	big-little				114	80 eighty			
63	bottom-top				115	90 ninety			
64	fast-slow				116	00 one hundred			
65	few-many					ODINAL NUMBERS			
66	fewer-more				117	first			
67	first-last				118	second			
68	heavier-lighter				119	third			
69	heavy-light				120	fourth			
70	in-out				121	fifth			
71	Iarge-small				122	sixth			
72	larger-smaller				123	seventh			
73	largest-smallest				124	eighth			
74	Ieft-right				125	ninth			
75	long-short				126	tenth			
76	longer-shorter					THER TERMS			
77	longest-shortest				127	air-mail			
78	more-less				128	alike (as many as)			
79	old-young				129	same			
80	older-younger				130	answer			
81	oldestmyoungest				131	both			
82	tall-short				132	cents point			
83	taller-shorter				133	change			
84	tallest-shortest				134	check (work)			
85	wide-narrow				135	circle			
86	high-low				136	cost			
87	higher-lower				137	count			
88	highest-lowest				138	dozen.			
	JMBERS				139	each			
89	1 one				140	equals (三)			
90	2 two				141	fewer			
91	3 three				142	group (s)			

PROCESSES
FIRST, SECOND AND THIRD GRADES

		1. Essential 2. Desirable 3. Unimportant		
		1	2	3
168	Adding			
169	carrying			
170	putting together			
171	Checking			
172	Comparing			
173	measuring			
174	Counting			
175	by ones			
176	by groups			
177	Dividing			
178	separating into equal groups			
179	cutting into equal parts			
180	Grouping			
181	Measuring			
182	length			
183	money (identifying and value)			

184	reading, writing and meaning	1	2	3
185	time, in hours and half-hours			
186	time, in days			
187	time, in months			
188	volume (liquid)			
189	Multiplying			
190	Numerating			
191	learning about numbers (meaning)			
192	reading numbers			
193	using numbers			
194	Writing numbers			
195	Recognizing quantities			
196	associating number names, words, bymbols			
197	identifying groups			
198	Subtracting			
199	changing larger units to smaller			
200	counting away			
201	counting change			
202	how many left			
203	take away			
204	Thinking (planning-deciding)			
205	solving number stories			
206	solving problems			

PART II: FOURTH, FIFTH AND SIXTH GRADES

			2			112	3
76	tens			124	centimeter		
77	hundreds			125	meter		
78	thousands			126	kilometer		
79	millions			127	hand		
80	billions			128	span		
81	whole			129	pace		
	RACTIONS			130	fathom		
82	part (of whole)			131	nautical mile		
83	denominator			132	knot		
84	equal parts				IME		
85	common			133	morning (A.M.)		
86	numerator			134	noon		
87	halves			135	afternoon (P.M.)		
88	thirds			136	midnight		
89	fourths			137	daylight savings		
90	fifths			138	year		
91	sixths			139	leap year		
92	sevenths			140	decade		
93	eighths			141	century		
94	equivalent			142	table		
95	improper			143	zones, standard		
96	proper				REA		
97	invert			144	surface		
98	lowest terms			145	square units		
99	mixed numbers				(in. ft. yd.)		
100	ratio			146	acre		
101	recipe (mixture)			147	section (sq. mi.)		
102	like (similar)				APACITY (volume)		
103	unlike			148	teaspoon		
	CIMALS			149	tablespoon		
104	decimal point			150	cup		
105	tenths			151	gill		
106	hundredths			152	pint		
107	per cent			153	quart		
108	thousandths			154	gallon		
109	mixed			155	peck		
	FASUREMENT			156	bushel		
110	English System			157	barrel		
111	Metric System			158	milliliter		
	UNTIING			159	Iiter		
112	units			160	kiloliter		
113	pairs				LUUME		
114	dozen			161	cubic units		
115	score				(in. ft. etc.)		
116	gross			162	board feet		
117	quire			163	cubie centimeters		
118	ream				ITGFI		
119	zero			164	hundredweight		
	NGIT			165	ton		
120	Iinear			166	long ton		
121	rod			167	grain		
122	mile			168	milligram		
123	millimeter			169	gram		

PROCESSES
FOURTH, FIFTH AND SIXTH GRADES

		1. Essential 2. Desirable 3. Unimportant			
					,
182	Dividing				
183	borrowing (carrying back)				
184	getting an average (addition)				
185	Multiplying				
186	carrying				
187	Numerating				
188	Arabic numbers				
189	Roman numbers				
190	positions				
191	Subtracting				
192	borrowing (carrying back)				
193	Solving Problems				
194	reading				
195	understanding				
196	deciding (thinking)				
197	Measuring				
198	English System				
199	Metric System				
200	areas				
201	capacity (volume)				

		1	2	3
202	time			
203	years			
204	decades			
205	centuries			
206	weight			
207	Graphing			
208	drawing to scale			
209	interpretating (understanding)			
210	reading graphs, maps			
211	using			
212	mapping			
213	Comparing quantities			
214	fractions (relative size)			
215	values in purchases			
216	by difference			
217	by ratio			
218	Checking			
219	approximating in round numbers			

PERSONAL DATA SHEET

Please fill in the following blanks:
Name Address \qquad
School in which you work \qquad
Grade of teaching, if self contained \qquad
If departmentalized, what department
Studied mathematics as follows: (Give number of years)
High School

General Math \quad years
Algebra
years
Geometry \quad years Other (Specify)

Semester hours of college mathematics \qquad
Semester hours of special methods of mathematics in college \qquad Number of years of teaching \qquad

APPENDIX B

NORTHEASTERN STATE COLLEGE

Tahlequah, Oklahoma
Department of Mathematics
(date)
(Inside address)

I am sure that you, as a college teacher and leading educator, share my interest in the adequate preparation of elementary teachers. Since elementary teachers exert a tremendous influence upon children in developing attitudes, interests, enthusiasms, habits and ambitions, they should be carefully selected, excellently trained and most happy in their work. The purpose of this study is to identify the concepts and processes of mathematics needed by an elementary teacher to teach arithmetic adequately in grades one to six. It is hoped this may be of use in the preparation of elementary teachers.

Would you please take a few minutes to check the enclosed questionnaire? Also, if there are other concepts or processes which you consider important, I would sincerely appreciate your listing them.

In order that I might get an opinion from successful teachers on the job, would you please list the names and addresses of five or more elementary arithmetic teachers or supervisors in your area.

Dr. James H. Zant of Oklahoma State University is advising with me, and would appreciate your cooperation in making this survey.

Thank you very much for your time in helping me make this survey. A summary will be sent to you when the survey is completed.

Sincerely yours,

Raymond Carpenter
Associate Professor of Mathematics

Tahlequah, Oklahoma

Department of Mathematios
(inside address)

As a mathematics teacher in college, I am very much interested in the preparation of elementary teachers of arithmetic. I have prepared a questionnaire on the concepts and processes of elementary arithmetic, and need the opinions of a number of elementary teachers on the importance of these concepts in the teaching of elementary students.

I want to solicit your help, and wish to ask you to list five or more of your better elementary arithmetic teachers within grades one to six, together with their addresses and the grade which each one teaches.

Please select the teachers with the following in mind:

1. Do they seem to be better teachers in comparison with others in their field?
2. Do pupils seem to rate higher in arithmetic after being taught by these teachers in comparison with other teachers?
3. Have these teachers been successful as teachers over a period of years?

I will in no way involve your name with these teachers. I want an honest, voluntary response to the questionnaire. I have already had responses from a number of coliege professors and would like very much to compare these with successful teachers in the field.

Dr. James H. Zant of Oklahoma State University, Stillwater, Oklahoma is assisting me with this survey, and joins with me in thanking you for your prompt and helpful cooperation.

Sincerely,

Raymond Carpenter Associate Professor
of Mathematics

From: (Give your name and address)

NORTHEASTERTV STATE COLLEGE
Tahlequah, Oklahoma
Department of Mathematics
(date)
(inside address)

As a superior teacher in your field, your experience would be most valuable in the training of elementary teachers. And, as a teacher in a college whose main objective is the preparation of teachers, I am vitally interested in the preparation of elementary teachers of arithmetic.

In the pages which follow, there is a questionaire (or that part of the questiomaire which embraces the grade or grades you are teaching) based on concepts and processes which children experience in grades one to six. The purpose of this study is to identify the concepts and processes of mathematics needed by an elementary teacher to teach arithmetic adequately in grades one to six. It is hoped that the results of this survey may be used in more adequate preparation of elementary teachers.

Will you please check the questionnaire, fill out the personal data sheet, and return them to me in the self addressed envelope? Dr. James H. Zant of Oklahoma State University is advising me with this survey, and joins with me in thanking you for your time. If you so indicate, a summary of the results will be mailed to you when it is completed.

Yours very truly,

Raymond Carpenter Associate Professor of Mathematics

NORTHEASTERN STATE COLLEGE

TAHIEQUAH, OKIAHOMA

Department of Mathematics
(date)
(inside address)

Two weeks ago you received a questionnaire on the concepts and processes of elementary arithmetic for grades one to six. It is very important that I have your answer as soon as possible.

Would you please check the enclosed postcard, or the questionnaire, and mail it to me as mbon as you can conveniently do so?

Thank you very much.
Sincerely,

Raymond Carpenter
Associate Professor
of Mathematics

APPENDIX C

ARITHMETIC BOOKS ANALYZED FOR LIST OF CONCEPTS AND PROCESSES

Brueckner, Leo J., F. E. Grossnickle, and Elda L. Merton. Arithmetic We Use (Grades One to Six). Chicago: John C. Winston Company, 1942.

Clark, John R., Charlotte W. Junge, and Harold E. Moser. Growth in Arithmetic (Grades One to Six). New York: World Book Company, 1952.

Mallory, Virgil S., Dennis H. Cooke, and Amanda Loughren. Using Arithmetic (Grades One to Six). Chicago: Benf. H. Sanborm and Company, 1946.

Morton, Robert Lee, Merle Gray, Elizabeth Springstun and William L. Schaaf. Making Sure of Arithmetic. (Grades One to Six). New York: Silver Burdett Compeny, 1952.

Studebaker, J. W., W. C. Findley, G. M. Ruch, and F. B. Knight. Study Arithmetice (Grades one to Six). Chicago: Scott Foresman and Company, 1947.

Wheat, H.G., Geraldine Kauffman, and Harl R. Douglass. Row-Peterson Arithmetic (Books One to Six). Evanston: Row, Peterson and Company, 1954.

Two Other Books Used

Bartoo, G. C., Bess Stinson, and Jesse Osborn. Adventures with Numbers (Grade l). St. Louis: Webster Publishing Company, 1952.

Stern, Catherine. Discovering Arithmetic (Grade I). Boston: Houghton Miffilin Company, 1952.

APPENDIX D

LIST OF EXPERTS
Dr. Lee E. Boyer
Millersville State Teachers CollegeMillexsville, Pennsylvania.
Dr. Leo J. Brueckner
7267 Hollywood Blvd., Apt. 3Hollywood, California
Dr. B. R. BuckinghamEditorial DepartmentGinn and Company
Boston, Massachusetts
Dr. Sarah Burkhart
Office of the County Superintendent
Tulsa, Oklahoma
Dr. G. T. Buswell
Professor of Educational Psychology
University of California
Berkeley, California
Dr. John R. Clark
Mt. Road, Route 3, Box 149
New Hope, Pennsylvania
Dr. Chester K. Davis
Director of Training School
Arizona State College
Flagstaff, Arizona
Dr. Harold Fawcett
Chairman, Dept. of Eaucation
Ohio State University
Columbus, Ohio
Dr. Bob Fouch
Florida State University
Tallahasse, Florida
Dr. William Gage
University of Florida
Gainesville, Florida
Dr Glennadine Gibbs
Iowa State Teachers College
Cedar Falls, Iowa

Dr. Foster Grossnickle State Teachers College
Jersey City, N. J.
Miss Frankie E. Harris
Northeastern State College
Tahlequah, Oklahoma.
Dr. R. L. Morton
Professor of Education
Ohio University
Athens, Ohio
Dr. Francis Mueller
State Teachers College
Towson, Maryland
Dr. C. V. Newsom
President, New York University
New York City, N. Y.
Dr. Edna E. Parker
Associate Professor of Education
Florida State University
Tallahasse, Florida
Dr. Ann Peters
Keene Teachers College
Keene, New Hampshire
Miss Mildred E. Randels
Northeastern State College
Tahlequah, Oklahoma
Dr. C. C. Richtmeyer
Central Michigan College
Mt. Pleasant, Michigan
Dr. Herbert F. Spitzer
Principal, University Elementary School
Iowa City, Iowa
Dr. C. Newton Stokes
Professor of Mathematics
Temple University
Philadelphia 22, Pennsylvania
Dr. Ben A. Sueltz
Professor of Mathematics
State Teachers College
Cortland., New York

Dr. Robert L. Swain
New York State Teachers College
New Platz, New York
Dr. Esther J. Swenson
Professor of Elementary Education
University of Alabama,
University, Alabama
Dr. C. L. Thiele
Dirisional Director, Exact Sciences
Detroit Public Schools
Detroit, Michigan
Dr. Vaud Travis
Northeastern State College
Tahlequah, Oklahoms
Dr. Henry VanEngen
University of Wisconsin
Madison, Wisconsin
Dr. Harry G. Wheat Professor of Education West Virginia University Morgantown, West Virginia
Dr. Mary Witt University School
Florida State University
Tallahasse, Florida
Dr. Clifford Woody (deceased)
School of Education
University of Michigan
Ann Arbor, Michigan
Dr. F. Lynwood Wren
Professor of Mathematics
Gearge Peabody College of Teachers
Nashville, Tennessee

APPENDIX E

PRINCIPALS AND SUPERVISORS WHO RECOMMENDED ET EVENTARY TEACHERS TO CHECK THE
 QUESTIONNATRE

AIABAMA
Mise Flora Maxy Pearson
Westlawn Sohool
Mobile, Alabama
Mrs. Dorthia Taube
City and County Supervisor
of Elementary Education
Mobile, Alabema
Miss Sara Davis
Verner School
Tuscaloosa, Alsbama
Miss Katie Williams
Iuscaloosa County Schools
Tusceloosa, Alabana
Miss Margaret Strickland
West End School
Tuscaloosa, Alabana
CALTHORNIA
Miss Sagie M. Ostendorf
Williams Elementary School
Bakersfield, California
KANSAS
Miss Ida M. Tinnin
Frances Willard Elementary School
Arkansas Gity, Kansas
Jim Harris
Central Elementary School
Miss Vida M. Willioms
Whittier Elementary School
Coffeyville, Kansas
James Yates
Columbus, Kansas
Mise Vere Clark
Kansas Are. Elementary School
Emporia, Kansas
Miss Margaret Stinsman
Central. Flementary School
Hutchinson. Kansas
W. A. Culp
Washington Elementary School
Independence, Kansas
Mapes Davis
L. M. Alcott Elementary School
Kansas Cuty, Kansas
W. I. Duby
Washington Elementary School
Newtony Kansas
Ralph Loyd
Hawthorne Elementary School
Ottawa, Kensas
George I: Dove
Washington Elementary School
Parsons, Kansiss
Joe Heitz
Eugene Field Elementary School
Pittsburg, Kansas
C. A. Brooks
Lincoln Elementary School
Salina, Kansas
Miss Althea Smith
Classen Elementary School
Wichita, Kansas
Waiter W. Smith
College High Elementary School
Wichitea, Kansas
Ralph E. Jones
Franklin Flementary School.
Wichita, Kansas

Miss Jessie Thompson
Willard Elementary School
Wichita, Kansas

MISSOURI

Marvin Thomas
Central School
Boonville, Missouri

Mrs. Lyda Gibbs
Jefierson Elementary School
Cape Girardeau, Missouri
Joe M. Barnes
Ridgeway School
Columbia, Missouri
Paul G. Fleeman
Grant Elementary School
Columbia, Misbouri

Mrs. Mildred Kearnes
Benton and Oldham Elementary Schools
Independence, Missouri
Miss Bess N. Dahl
Hale H. Cook Elementary School
Kansas City, Missouri
Eugene P. Wheeler
Humbolat Elementary School
Kansas City, Missouri
William L. Wynn
J. Milton Turner Elementary School
Kirkwood 22, Missouri
Ines M. Harrison
Central Elementary School
Neosho, Missouri
C. E. Coursey

Wheatley Elementary School
Popular Bluffi, Missouri
Miss Virginia Renshaw
Boyd Elementary School
Springfield, Missouri

Mrs. Enma Gann
Holland Elementary School
Springfield, Missouri
Charles R. Swan
Robberson Flementary School
Springfield, Missouri
Herbert F. Church
Adams Elementary School
St. Louis, Missouri,
Lloyd L。 Glenn
South Park Elementary School
St. Joseph, Missouri
Elizabeth J. Watson
Eugene Field School
Webb City, Missouri
Harold T. Downs
Lockwood Elementary School
Webster Groves, Missouri

OKL_AHOMA
Mise Bonnie M. Allen Irving Elementary School Ada, Oklahoma
S. G. Hove

Wilson Elementary School
Altus, Oklahoma.
Paul Bailey
Sunset Elementary School
Anadarko, Oklahoma
Mrs. Irene McGoodwin Elementary Coordinator
Ardmore Public Schools
Ardmore, Oklahoma
J. H. MicBride

Garfield Elementary School
Bartiesville, Oklahoma
Paul Starks
Highland Park Elementary School
Bartlesville, Oklahoma

Ernest B. Godley
Huston Elementary School
Blackrell, Oklahoma

Miss Linnie Wood
Edison Elementary School
Bristow, Oklahoma
M. Cecil Rhoades

Southside Blementary School
Broken Arrow, Oklahoma

Bill J. Anthig
Claremont Elementary School
Claremore, Oklahoma
Clarence Stringer
Elementary School
Coweta, Oklahoma

Clyde Bowen
Wilson Elementary School
Cushing, Oklahoma

David I. Williams
Washington Irving Elementary School
Durant, Oklahoma
Miss Leona Kennedy
Coordinator Elementary School
Edmond, Oklehoma
Miss Hazel Kirbie
Longfellow Elementary School
Elk Uity, Oklahoma
Honer Stout
Lincoln Elementary School
El Reno, Oklahoma

Miss Esther Hinshawe
Adams Elemeatary School
Enid, Oklahoma
Miss Ethel MacGoddard Coolidge Elementary School
Enid, Oklahoma
Mrs. Irene Sloan
Harrison Elementary School
Enid, Oklahoma

Miss Frances Leeper
Centrel Elementary School Guthrie, Oklahoma

Harrimon Steele Central Elementary School Idabel, Oklahoma.

Miss Thelma Talla
Elementary Coordinator
Lawton Public Schools
Lawton, Oklahoma
Delbert Wolf
Wilson Elementary School
Miami, Oklahoma
Herbert Flowers
Country Estates Elementaxy School.
Midwest City, Oklahoma

Miss Virginia Rose
Sooner Elementary School
Midwest City, Oklahoma
Arthur Toon
Houston Elementary School
Muskogee, Oklahoma
Eiland. Rainwater
Irving Elementary Schocl
Muskogee, Oklahoma
Eschol R. Haley
Longfellow Elementary School.
Muskogee, Oklahoma
Miss Cordia V. Callihan
Whittier Elementary School
Muskogee, Oklahoma
Miss Foy Runyen
Coordinator of Elementary Schools
Norman Public Schools
Norman, Oklahoma
Howard C. Thompson
Elementary and Junior High School
Nowata, Oklahoma

Wade Davenport
Adans Elementary School Oklahoma City, Oklahoma

Dalton L. Eads
Buchanan Elementary School
Oklahoma Ci.ty, Oklahoma
Miss Clara M. Wade
Coolidge Elementary School
Oklehoma City, Oklahoma
Miss Lila G。Quinn
Fillmore Elementary School.
Oklahoma City, Oklahoma
Earl Martin
Johnson Elementary School
OkIahoma City, Oklahoma
Darrell McFeaters
Nichols Hills Elementary School
Oklahoma City, Oklahoma
Leon C. Nance
Shields Heights Elementary School
Oklahoma City, Oklahoma
Miss Nina Birkhead
Stan Watie Elementary School
Oklahoma City, Oklahoma
E. O. Davis

Westwood Elementary School
Okichoma City, Oklahoma
Miss Mildred Nelson
Coordinator of Elementary Education
Okmulgee, Oklahoma
Eldon Wagner
Elementary Schools
Pawhuska, Oklahoma
L. E. States

Elementary School
Perry, Oklahoma
Miss Cleo Melton
Elementary Supervisor
Ponca City Public Schools
Ponca City, Oklahoma

Miss Ruth Stanford
Central Elementary School
Pryor, Oklahoma
F. N. Shields

Elementary Grade School 1-3
Putnam City, Oklahoma
Dan Davis
Elementary Grade School 4-6
Putnam City, Oklahoma
J. W. Fleming

Jefferson Elementary School.
Sapulpa, Oklahoma
H. B. Smith, Jr.

Roosevelt Elementary School
Seminole, Oklahoma
Woodrow Floya
Elementary School
Stiglex, Oklahoma
Miss Nora Hinrichs
Eugene Field and Westwood
Elementary School:
Stillwater, Oklahoma
J. H. King

Jefferson and Will Rogers Elementary Schools
Stillwater, Oklahoma
N. S. Hopkins

Lincoln \& Highland Park Elementary Schools
Stillwater, Oklahome
Gerald Bowers
Elementary and Jr High School
Stilwell, Oklahoma
Leonard W. Rainwater
Elementary Schools
Tahlequah, Oklahoma
Arley U. Garrett
Alcott Elementary School
Tulsa, OkIahoma
Curtis Turner
Eugene Fifeld Elementaxy School
Tulsa, Oklahoma
W. E. Hagar

Frankin Elementary School Tulsay Oklahoma

James S. Elledge
Houston Elementary School
Tulsa, Oklahoma

George J. Hooper
Lanier Elementary School
Tulsa, Oklahoma
R. D. Rutherford

Lowell Elementary School
Tulsa, Oklahoma
A. M. Calloway

Elementary School
Wagoner, Oklahoma
Mrs. Beatrice Taylor
Elementary School
Walters, Oklahome

Terry McCarty
Elementary School
Weatherford, Oklahoma
Raymond G. Fleming
Central Elementary School
Wetumka, Oklahoma

Ellis DeWeese
Elementary School
Wilburton, Oklahoma.

WEST VIRGINIA

Everett Bailey
Knob School
Princeton, West Virginia

VITA
Raymond Carpenter
Candidate for the Degree of
Doctor of Education

Thesis: IDENTIFYING CONCEPTS AND PROCESSES IN MATHEMATICS NEEDED FOR THE ADEQUATE PREPARATION OF ELEMENTARY TEACHERS

Major Field: Higher Education
Minor Field: Mathematics
Biographical:
Personal data: Born at Ozark, Arkansas, October 8, 1907.
Education: Attended grade school at a rural school in Franklin County, Arkansas; graduated from Conway, Arkansas High School in 1925; received the Bachelor of Arts degree from Hendrix College, Conway, Arkansas in 1928; received the Master of Arts degree from Columbia University in 1937; completed requirements for the degree of Doctor of Educam tion in May, 1959.

Professional experience: Taught in high schools in Louann, Arkansas, 1928m1930, Idabel, Oklahoma, 1930-31, Pawhuska, Oklahoma 1931--1942 (high school principal, 1938-1942), U. S. Army 1942-1945. Associate professor of mathematics, Northeastern State College, 1946-1959.

Professional Organizations: Kappa Mu Epsilon; Mathematics Association of America; National Council of Teachers of Mathematics; National Education Association; Oklahoma Education Association.

[^0]: 1 W. Earl Armstrong, "The Teacher Education Curriculum," The Journal of Teacher Education, VIII (September, 1957), 235-236.

[^1]: ${ }^{11}$ W. H. Dutton, "Attitudes of Prospective Teachers Toward Arithmetic," Elementary School Journal, III (October, 1951), 84-90.

