INCREASED HARVEST OF WARM WATER FISH

THROUGH SUPPLEMENTAL FEEDING

By
RALPH WILLIAM ALTMAN
Bachelor of Science
Oklahoma State University
St111water, Oklahoma 1952
Master of Science Oklahoms State University Stillwater, Oklahoma 1956

Submitted to the Paculty of the Graduate School of the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPEY
May, 1959

INGREASED HARVEST OF WARM WATER FISH

THROUGH SUPPLEMENTAL FEEDING

PREFACE

The lack of an adequate harvest of fish from ponds and from large impoundments is one of the major problems in fishery management. Fishery biologists commonly agree that fish populations tend to become large and that individual kinds tend to become stunted due indirectly to an insufficient harvest. The present paper discusses experiments conducted to determine if fish could be aggregated in given areas by feeding and to determine if fish so aggregated could be more readily harvested.

The study herein described could not have been effected without the support of numerous cooperators. I wish to express my appreciation to all of them.

Special thanks are due my adviser, Professor W. H. Irwin, who proposed and directed the work as a graduate research problem and also assisted with some of the field work. I am also indebted to committee members Professors Roy W. Jones, Bryan P. Glass, Robert Totusek, Fred LeCrone and David S. Berkeley for their suggestions.

I am indebted to the Oklahoma Cooperative Wildife Research Unit and its cooperating agencies for research fellowship and to the Zoology Department and Research Foundation for providing funds for equipment and assistance in the field.

I wish also to express my appreciation to Professor G. A. Moore, who assisted in the identification of the fish; to Professor I. V. Holt, who identified the aquatic plants; to Mr. Ernest Vincent, who assisted in some
of the ifeld work; to the landowners, who permitted the use of the ponds used in the study; and to the staff of the Stillwater office of the Soil Conservation Service, who permitted the use of their files for pond selection and who classified the soil types.

TABLE OF CONTENTS

Page
INTRODUCITON 1
PROGEDURES AND MATERTALS 6
pond Selection 8
Areas for Sampling with Seines 8
Food and reeding Methods 10
Seines and Seining 11
Traps and Trapping 14
Weights and measurements 15
DATA AND OBSERVATIONS 16
Pond 1 16
Food and Feeding-areas 17
Seines 19
Traps 20
Observations 22
Pond 2 24
Food and Feeding-areas 25
Seines 27
Traps 28
Obseryations 31
Pond 3 32
Food and Peedingoareas 33
Seines 35
Traps 36
Observstroms 38
Pond 4 39
Food, Feedingomerss, and Iraps 40
Seines 40
Observations 42
Pond 5 43
Food and feeding-areas 43
Seines 46
Traps 46
Observarions 49

Page

Pond 6 50
Food and Feedingeareas 50
Seines 52
Traps 53
Observations 54
Pond 7 56
Food and Feeding-areas 57
Seines 59
Traps 60
Observations 62
DISCUSSION 64
Seines and Traps 64
Species of Fish and Their Relative Abundance 66
Activity of Fish 69
Alternate Feeding 69
Possible Values of Supplemental Feeding Programs 70
SUMMARY 72
LITERATURE CITED 74
APPENDIX 77
A. Fish Caught with Seines in Pond 1 78
B. Pish Caught with Traps in Pond 1 79
C. A Comparison of the Numbers, Weights, and Ranges in Length of Fish Caught with Traps in Feeding- and in Check-areas in Pond 1 83
D. Fish Caught with Seines in Pond 2 84
E. Fish Caught with Traps in Pond 2 85
F. A Comparison of the Numbers, Weights, and Ranges in Length of Fish Caught with Traps in Feeding- and in Check-areas in Pond 2 89
G. Fish Caught with Seines in Pond 3 90
H. Fish Caught with Traps in Pond 3 91
I. A Comparison of the Numbers, Weights, and Ranges in Length of Fish Caught with Traps in Feeding- and in Check-areas in Pond 3 96
J. Fish Caught with Traps in Pond 4 97
K. A Comparison of the Numbers, Weights, and Ranges in Length of Fish Caught with Traps in Feeding- and in Check-areas in Pond 4 100
L. Fish Caught with Seines in Pond 5 101
M. Fish Caught with Traps in Pond 5 102
N. A Comparison of the Numbers, Weights, and Ranges in Length of Fish Caught with Traps in Feeding- and in Check-areas in Pond 5 105
0. Fish Caught with Seines in Pond 6 106
P. Fish Caught with Traps in Pond 6 107
Q. A Comparison of the Numbers, Weights, and Ranges inLength of Fish Caught with Traps in Feedingo andin Check-areas in Pond 6. 110
R. Fish Caught with Seines in Pond 7 111
S. Fish Caught with Traps in Pond 7 112T. A Comparison of the Numbers, Weights, and Ranges inLength of Fish Caught with Treps in Feeding andin Gheck-areas in Pond 7 116

LIST OF TABLES

Table Page
I. A Description of the Seven Farm Ponds Used in the Study 9
II. Feeding Schedule for Pond 1 19
III. Numbers and Weights and Their Corresponding Percentages of Fish Caught with Seines from Feeding and from Check- areas in Pond 1 21
IV. Numbers and Weights and Their Corresponding Percentages of Fish Caught with Traps from Feeding- and from Check- areas in Pond 1 21
V. Feeding Schedule for Pond 2 27
VI. Numbers and Weights and Their Corresponding Percentages of Fish Caught with Seines from Feeding and from Check- areas in Pond 2 30
VII. Numbers and Weights and Their Corresponding Percentages of Fish Caught with Traps from Feeding- and from Check- areas in Pond 2 30
VIII. Feeding Schedule for Pond 3 35
IX. Numbers and Weights and Their Corresponding Percentages of Fish Caught with Seines from Feeding and from Check- areas in Pond 3 37
X. Numbers and Weights and Their Corresponding Percentages of Fish Caught with Traps from Feeding and from Check- areas in Pond 3 37
XI. Numbers and Weights and Their Corresponding Percentages of Fish Caught with Traps from Feeding a and from Check- areas in Pond 4 42
XII. Feeding Schedule for Pond 5 46
XIII. Numbers and Weights and Their Corresponding Percentagesof Fish Caught with Seines from Feeding- and from Check-areas in Pond 548
Table Page
KIV．Numbers and Weights and Their Corresponding Percentages of Eish Caught with Traps from Feedingo and from Checko arems in Pond 5 48
XV．Feeding Schedule for Pond 6 52
XVI．Numbers nd Weights and Their Corresponding Percentages of Fish Caught with Seines from Feedingo and from Check－ areas in Pond 6 54
XVII．Numbers and Weights and Their Corresponding Percentages of Fish Caught with Treps from Feeding－and from Check－ aress in Pond 6 54
XVIII．Feeding Schedule for Pond 7 59
Xix．Numbers and Weights and Their Corresponding Percentages of IIsh Caught with Seines from Feeding and from Check－ areas in Pond 7 61
XX．Numbers and Weights and Their Corresponding Percentagesof wish Caught with Traps from reedingm and from Checkaress in Pond 7 。。。．．．．．．．．．．．．．．．．．．61
XXI。 The Numbers of rish Caught with Traps and with Seines in Fesding and fu Check－areas and Their Percentages 65

LIST OR FTGURES

Figure Page

1. Sketch of Pipe Rigged to Hold and Release Seines.. 13
2. Sketch Showing Arrangement of Pipes Around a Sampling Area 13
3. Locstions of feedingareas and Traps in Pond 1.0 .0. 18
4. Locations of peedingoareas and Traps in Pond $2 . .$. 26
5. Locations of Fedingoreas and Traps in Pond 3...... 34
6. Locatioms of Treps in Pond 4 41
7. Locations of Feeding-areas and Traps in Pond 5 45
8. Locations of Feeding-meas mind Traps in Pond 6 51
9. Locations of recdingmareas and Traps in Pond $7 . . .$. 58

INTRODUCTION

The data herein presented concern a study based on the hypothesis that fish in farm ponds could be caused to aggregate by distributing food in a given area and that the fish so aggregated could be more easily harvested. Food in dry, pellet form was distributed in seven ponds beginning on June 5, 1956 and ending November 13, 1956. Seines and wire traps were used to collect fish from areas where food was placed and from established check-areas. The resultant harvest of fish, with seines and with traps, showed that fish could be concentrated in an area where food was placed. It seems apparent that the increased harvest of warm-water fishes from impoundments would be beneficial.

Westerman (1949), Davis (1953), and Stroud and Seaman (1957) called attention to the fact that warm-water fish management has not received the attention nor has it attained the degree of improvement enjoyed by trout management. Yet, as pointed out by Westerman (1949), Meehean (1952), Saila (1952), Davis (1953), Carlander (1955), and others, more waters are available for warm-water fish, larger yields per unit area can be produced, and more people fish for warm-water fish than is true for trout.

It is apparent from observations made by Pryor (1941), Riggs and Sneed (1951), Swingle (1957), King (1957), and many others, that both large and small impoundments, now so commonplace in the plains states have a great potential for producing protein food in the form of fish.

Jenkins (1957) stated that unfertilized ponds in Oklahoma, less than 5 acres in size, support an average of 360 pounds of fish per acre per year and that the total poundage may vary from 150 to 670 pounds depending on the location of the pond and the conditions on the watershed. King (1955) suggested that an average of 200 pounds, or more, of game fish per acre is expected from the 500,000 acres of water (including lakes, ponds, and streams) now present in Oklahoma.

According to Thompson (1950) there were only 2 artificial lakes of more than 10 surface acres in existence in Oklahoma in the year 1900. Oklahoma now has at least 100,000 farm ponds with an additional 12,000 being constructed each year (Ward, Leonard, and Martin, 1954). Many of the ponds are not used for fish crops but could be so used if the fish could be edequately harvested. Aldrich (1947) said, "...there are thousands upon thousands of pounds of fish in Oklahoma waters unused and largely wasted because we are too specialized in our harvesting methods and tastes."

Considerable progress has been made toward understanding the difficulties involved in fisheries management. Fishery biologists including Bemnett (1943), Swingle (1945), Irwin (1946, 1957), Thompson (1947), and Houser (1957) agreed that fish-populations tend to become large and individual kinds to become stunted or that an unfavorable balance between carnivorous and forage fish develops.

Irwin (1947) stated:
One of the most important practices in pond management is to make certain that the crop is harvested. This is good agricultural practice. Keep the numbers of the fish of all kinds balanced with their available food supply and they all grow well. Overplant any field and you harvest a poorer rather than a better crop.

The views expressed above by Irwin (1947) were supported by Swingle (1947), Eschmeyer (1951), Meehean (1952), Jenkins (1954), and Heard (1956). Carlander (1952) and Maciolek (1954) stated that very few farm ponds are adequately harvested. In agreement with this statement, but with respect to large reservoirs, Thompson (1950) and Heard (1956) stated that the most important problem involved in reservoir management is the lack of an adequate harvest. They further stated, "We must harvest our fish crops if we are to preserve good fishing in our reservoirs."

As reported by Bennett (1943), Thompson (1947), Eschmeyer (1951), Carlander (1952), Moorman (1957) and Irwin (1957), it is evident in most instances that hook and line fishing does not sufficiently harvest a fish population from a pond or reservoir. Moorman (1957) discussed the harvest of fish by hook and line from 18 ponds in Iowa and pointed out that about 65 pounds of fish per acre per year were harvested from the 6 most heavily fished ponds and that the harvest from the other 12 ponds would not exceed 20 pounds per acre per year. However, a few exceptionally good harvests have been reported. Leonard (1950) reported that 326 pounds of bass, 149.5 pounds of bluegills, 186.75 pounds of crappie, 139.5 pounds of channel catfish, and 53 pounds of bullheads were harvested by hook and Iine from a four-acre pond near Stillwater during the period from April through November, 1949. Buck and Cross (1952) discussed a phenomenal harvest of crappie from a three-acre cove in Canton Reservoir. Within a period of 69 days extending from January 10, 1950 to March 25, 1950, hook and line fishermen harvested more than 426,000 legal-sized white crappie from the cove. The harvest amounted to 22 tons of fish per surface acre for the cove and was equivalent to a harvest of 27 pounds per surface acre for the entire reservoir. Krumholz (1952) said:

Ordinarily, at least half of the total weight of any fish-population can be harvested annually without having any detrimental effect on the ability of the population to maintain itself. In fact, the experimental evidence at hand indicates that such a harvest is highly desirable.

King (1955) stated:
Under most conditions Oklahoma's game fish species can be harvested up to about 70 percent and still have no worries about the populations maintaining themselves. In fact, they should be harvested to this amount to keep the population in a healthy catchable condition.

The foregoing observations indicate that under most circumstances, the success of hook and line fishing must be increased or harvest by some other means will be necessary to control fish populations in ponds and reservoirs.

Irwin (1957) said, "Fish concentrations lead to a greater harvest. Feeding the fish about fishing docks has some promise. ... Certainly the various means of fish concentrations should be studied."

Traps used in conjunction with baiting or feeding show some promise as a means of controlling populations (Byrd and Moss, 1955). Hubbs and Eschmeyer (1938) and an article in the Sport Fishing Institute Bulletin Number 35 (1954) have suggested that seining, when species are concentrated in certain areas, is beneficial by reducing populations of fish.

Feeding practices at trout hatcheries and farms have caused trout to congregate. Similar practices have been successful in limited experiments with other species (Brown, 1957). It seems probable that most species could be congregated in like manner.

Houser (personal commication) with a crew of fisheries men from the Oklahoma Department of Wildlife Conservation did some experimental feeding (baiting) in Fort Gibson Lake in 1957 and 1958. Cottonseed cake was broadcast by hand from a boat over selected areas, 150 to 200 feet square,
near the shoreline. Water depths were generally less than 12 feet in the areas used. During the initial stages of the investigation about 300 pounds of food were used in an area. In succeeding phases the amount of food was decreased to 50 pounds. Houser believed there was no apparent decrease in the number of fish caught when using the lesser amount of food. Samples of fish were taken with a nylon haul seine, 1,400 feet long and 15 feet deep. One half the seine was 1 inch mesh, the other half was $1 \frac{1}{2}$-inch mesh. Best results, during the summer months, were obtained when samples were made the day following the distribution of food. Best results were obtained in January and February when samples were made three days following food distribution. Houser's records showed that many more fish were caught in areas where food was placed than in check areas. He also felt that with this method there were possibilities for a more or less selective harvest of certain species of fish depending on the season of the year and the type of area used.

If fish can be aggregated in feeding areas in ponds and lakes, fishery workers and management agencies could have at their disposal techniques which might bring about a greater and more consistent harvest and a technique which would provide continuous fishing for the fisherman. Both would aid in controlling population sizes. The surplus fish harvested could be used to stock other waters if needed. The technique may well be more practical than complete eradication of fish by poisoning or by draining the impoundment.

PROCEDURES AND MATERTALS

Seven farm ponds were selected in May, 1956 for the purpose of studying the rezetions of fish to supplemental feeding. The prosimity of the ponds chosen permitted daily feedings and observations.

Areas used as feeding-sites in each pond were cleared of brush and other debris in oxder to facilitate seining and trapping operations. In addition, large quantities of aquatic vegetation were removed from the areas severall times during the summer months.

Food was placed in a sampling area in each pond every day (a few Sundays excepted) durimg the period from June 5 to. August 31, 1956. Food was distributed on alternate days begimaing September 1 and continued in this maner to November 13 at wich time all field work was suspended. Food was broadest by hand from the bank at about the same hour each time a given pond was visited. Observations were made and notes were taken concernimg feeding activity of fish, condition of the water, and condition of the westher on cach wisit to the ponds.

Seimes (mets) and wire traps were used to collect fish in areas where food was placed (referred to as feeding-areas) and in other similar areas (called check-areas) where food wis not placed. Fish that were collected were cownted, identified, weighed, measured for total length and then were returned to the pond.

The following terms as used in the muscript are defined.

1. Feeding-area, or feeding-site, is ampling area where food was distributed.
2. Check-area is a sampling area where food was not distributed.
3. Clear water is witer in which fish can be seen at a depth of 6 inches.
4. Turbid water is water in which fish cannot be seen except when they disturb the suxface. Turbid water xesulted from suspended soil particles or from algal blooms.
5. Intense activity. This term is used to denote first, that large numbers of fish (including small and/or large fish) created such a turmoil in the feeding-area that counting of their numbers was impossible, and second, thet the activity began immediately after food was placed in a feeding-aree and continued for the duration of the observation period.
6. Heavy activity. This term is used to indicate that fish 7 inches or more in length were observed at least 10 times during the observation period, or that groups (containing 10 or more small fish) wexe observed at least 6 times.
7. Moderate activity. This term is used to indicate that fish 7 inches or more in length were observed at least 5 but less than 10 times or that groups (containimg 10 or more small fish) were observed from 2 to 5 times during the observation period.
8. Scattered activity. This term is used to denote that at least some activity occurred in the area but not enough to be placed in the other categories.

The aetivities of fish in feeding-areas, for purposes of clarity and simplicity, were recorded in fieldnotes under headings 5, 6, 7, and 8 listed above.

Pond Selection

The seven ponds, used in the study and mabered consecutively from 1 through 7 , were selected from large number of ponds examined in the vicinity of Stillwater. Ponds were chosen or the following bases: 1. sime, about 1 surface acre or more, 2. suitability for sampling with seines and/or traps, 3. location, with respect to ease of access and to travel time required betwen ponde and 4 . cooperation of landowners. Tale I contains a int of the ponds, the owners, legal description in reference to the Indian Mexidian, maximum sime in surface acres, and the condition of the wher for each pond.

Areas for Sampling with Seines

Two areas to be sampled ith seines were selected in Ponds $1,2,3$, 5, 6s and 7. These greas, 25 feet wide and 25 feet long (625 square feet) and as similar as possible it all respects, were located on opposite sides of the pond or as far apart as feasible. The areas began at the feathered edge and extended to depths of 5 to 6 feet at points 25 feet from the shoreline. One area in Pond was che dimensions given sbove, whie the other was modified somewhe in siwe and shape becouse of stumps and deep water No areas suitsble for sampling with seines wexe found in Pond 4 because of the presence of large amomits of debris, sott-mud botrom, and deep water.

The areas were measured and their cormers marked with wooden stakes at the shoreline and with $1 / 2$-inch pipes in the pont The pipes were long enough to be driven into the bottom of the ponds and to extend 3 to 4 feet above the surface of the water. Extremely dry weather and the accompanying

TABLE I
A DESCRIPTION OF THE SEVEN FARM PONDS USED IN THE STUDX

Pond	Owner	Legal Description With Reference to the Indian Meridian	Maximum Size Surface Acres	Water Conditions
1	Chris Go White		1.04	clear
2	Chris Go White		2.50	clear－turbid
3	Chris Go White	$\mathrm{NE} 1 / 4 \mathrm{NEL} / 4 \mathrm{~S}$ 。31， T 。 20 No ， $\mathrm{R}_{0} 2 \mathrm{E}_{\text {。 }}$	3.30	turbid
4	Carl S．Andrews		2.10	turbid
5	W．E \％Young		1.12	cleareturbid
6	E．B．Epperson		1.12	turbid
7	Stillwater Hatchery	$\mathrm{SEI} / 4 \mathrm{SEL} / 4 \mathrm{~S}$ 。 $13, \mathrm{~T}$ 。 19 N 。 R 。 2 E 。	2.53	cleareturbid

water loss necessitated moving the marker stakes in order to maintain sampling areas of their original size.

Food and Feeding Methods

The supplemental food used in all ponds during the course of the study was CO-OP 18-percent egg-mash in pellet form purchased from the Consumers Cooperative Association. Availability and moderate cost were factors which determined the choice of the food. The following is an analysis of the food as shown on the tag attached to each bag of food.

$$
\mathrm{CO}-\mathrm{OP}
$$

18 PERCENT EGG MASH

Guaranteed Analysis

Crude Protein, not less than	18.00 percent
Crude Fat, not less than	3.00 percent
Crude Fiber, not more than	7.50 percent
N.F.E., not less than	50.00 percent

FLEXIBLE FORMULA AND INGREDIENTS

Meat and Bone Meal
Soybean Oil Meal
Dehydrated Alfalfa Meal
Wheat Bran and Wheat Gray Shorts
Ground Corn and Grain Sorghum Chop
Ground Oats
*Poultry Mixing Balancer
Ground Limestone
Defluorinated Phosphate

Salt

**CO-OP Mineral Concentrate
Feeding Cane Molasses
18.00 percent
3.00 percent
50.00 percent
*CO-OP Poultry Mixing Balancer contains Riboflavin, Calcium Pantothenate, Niacin, Choline Chloride, Vitamin B_{12} Supplement, D-Activated Animal Sterol (Source of Vitamin D3), D L Methionine, Antibiotic Feed Supplement, Fish Meal, Alfalfa Meal, Corn Distillers Solubles, Ground Corn, Grain Sorghum Chop, Dried Whole Whey, Cottonseed Meal, Dried Grain Fermentation Solubles, Vitamin A Feeding Oil, and Butylated Hydroxytoluene (Preservative).
**CO-OP Mineral Concentrate contains Manganese Sulphate, Ferrous Sulphate, Iron Oxide, Copper Sulphate, Cobalt Sulphate, Potassium Iodide, Zinc Sulphate, Sulphur, DiCalcium Phosphate.

Ponds were wisited daily during the period June 5 to August 31, 1956 and food was placed in one of the areas selected for sampling with seines. Approsimately 3.5 poumds of pellets were scattered over each feeding-area. On September 1,1956 the amomt of food was increased to 5.0 pounds and the food was distributed only on alternate days throughout the remainder of the study.

One area in each pond, selected for sampling by seines, received food daily for preseribed period of time. Periodically during the prescribed period, fishes wre collected with seines and/or with traps from feedingareas and from established check-areas. At the end of prescribed periods food was distributed in what had previously been the check-area; then the former feeding-area became a check-area and both areas wexe re-sampled.

Seines and Seining

Fish samples were taken with seines from the two selected areas in each pond at intervals of three to four weeks. Seines were usually set in the early morning hours, food throw into the feeding-area one to two hours later, and the seines dxopped about thirty minutes after feeding. The seines were then pulled into or near the shore where captured fish were collected.

Two seines, 75 feet long, 8 feet deep, and $3 / 4$-inch square (1t-inch stretched) meshs made of Number 9 Nyak thread, were used to obtain samples of fish from the areas described. Minow seines, 75 feet long, 6 to 8 feet deep and of $1 / 4$-inch mesh were also utilized to take samples in three ponds. Each seine was marked on the floatine and leadine with colored strings tied at intervals of 25 feet. The markers indicated the parts of the seine to be hung at the corners of the sampling area.

Pipes as illugtrated in Figure 1 were rigged to hold and release seines. The pipes, $1 / 2$ inch in diameter, were made in varied lengths for use in different depths of water. Some pipes were threaded which permitted extensions to desired lengths by the use of collars and added pipe. Pipes were dripen into the bottoms of the ponds at intervals of 6 feet on three sides of the sampling areas (fig. 2). The pipes were set in place a day or two before seined samples were caken.

Seines could wsully be set axound two areas in thirty minutes by two persons but when mecessary one person could set the seines in sixty minutes. The sequence of steps genexally followed in setting seines was as follows. (1) Seines were stretched along the shore in front of the area to be sampled. The parta of the seine bearing marker strings were placed adjacent to the wooden stakes denoting the limits of the area. (2) Esch person went to a wooden stake and lifted both the floatine and the leadine. (3) Both persoms wiaded from the shore to the corner pipes, pulling the seine. (4) One person draped the geine over supporting arm (Fig. $1, d)$ on the corner pipe and held it firmly. (5) The other person then went to the center pipe, lifted the seine above the water, draped it on the supporting atm, repeated the operation at the second corner, and at all pipes between the corners. (6) Both persons, starting at the comers, worked toward shore draping the seine over arms on the pipes. (7) The seine was adjusted so thet it did not touch the weter and the ropes on the ends of the seine were tied to stakes on sore. (8) Cotton tripropes were tied to the pull rods (rig. H, C) on each pipe, tightened and tied by the second end to an anchor pipe loceted on shore midway between the boundery stakes. When the ropes were pulled, one after the other or

Pigure 1. Sketch of pipe rigged to hold and release seimes. Inegend. Points and b are pivot points, is a pull rope running to shore which pulls rode, releasing the short pipe, d, on which the seine is dreped and allows the seine to drop into the wter.

Figure 2. Sketch showing arramgement of pipes (rigged to hold and release seimes) sround a sampling area.
several at one time, the seine slid off the rods and into the water, thus forming a three-sided enclosure. Since the shoreline served as the fourth side of the enclosure, the ends of the seine could then be grasped and the entire seine pulled onto or near the shore where the entrapped fish were collected.

Traps and Trapping

Wire traps (Buck and Cross, 1951) with chicken wire netting of 1-inch mesh were used extensively in all ponds and were the only pieces of equipment used to obtain samples of fish in Pond 4. The traps had several advantages over seines. (1) Traps could be used in a greater variety of habitats than could seines. (2) They could be run and reset in a minimum of time, and by one man. (3) They could be left in the pond for several days without causing excessive damage to equipment or to fish. (4) They were durable, requiring only minor repairs to be kept in continuous operation. (5) Although bulky to transport, they could be moved from one pond to another and set in a minimum of time. (6) Most important, traps were effective in capturing fish in all ponds.

Periodically two or more traps were set in each pond to obtain samples of fish. Generally they were placed in the pond one or two days before checking began, and were set where water was not too deep for wading. This permitted the traps to be carried to and from the shore while setting and checking. Traps were generally set with one end facing toward the center of the pond. When only two traps were used, a trap was located at about the center of each area selected for sampling with seines. When more than two traps were used, the additional ones were set some distance from the feeding-areas in additional check-areas where water depths were comparable.

Traps were set in the same general area in exch pond throughout the study, but were sometimes moved toward the center to compensate for the receding watex level.

Weights and Measurements

Abstract

All fish samples were malymed as soon as they were remowed from seines and traps. The uswal field procedure was to carry traps to a convenient station on shore, remove the fish and place them in a container filled with water. Seines were pulled onto or near the shore where fish were removed by hand or with dipnets and placed in the containers. Each catch was sorted as to species and the following data recorded. The total lengths of the fish were measured to the nearest one-eighth inch. The total lengtiv used was that length from the most antexior point of the fish, mouth closed, to the most posterior tip, tail lobes compressed. Weights in pounds and hundredths of pounds were recorded for each fish. Departwres from the described procedures were made in certain instances. Average lengths and/or weights were determined from a represemtative group selected from the eatches consisting of small specimens.

When feeding was chaned from one ares to the alternate feeding-arex, the actual mumbers of fish carght in the new feeding-area and in the checkareas were recorded. No zlowanes were made, when tabulatimg data concerming fish caught, for the possible residual effects of food in the old wres.

data and observatrons

Descriptions of the ponds studied, their watersheds, and uses are presented herein. In adition, feeding and checkareas (inciuding locations of traps) im each pond are described. Daca concerming feeding, trapping, the numbers, Hinds, and weights of fish captured both with traps and with seimes are presented.

Pond 1

Pond 1 was formed in 1951 by the construction of an earthen dam across \& comparatively deep ravine. Water was supplied by rumoff from about 40 acres of protrie grasiland and from suall spring located mear the northweatern corner of the pond. Normally the grass on the waterghed was not grazed but wes cut for hay crop. The soll of the watershed consisted of sandy loam over a red clay or elaypan substrate. The water fmpounded cleared and at spillway level covered slightly more tham one surfoce acre with witer depths that reached 16 feet. The water level in the pond was approsimately 2.5 feet below spillway level at the begimning of the study and dropped sill more.

The pond wis stocked with golden shiners in the summer of 1951 and with 125 largemouth bass fingerings during the summer of 1952. The origin of the supply of green sumith found in the pond was unknown. Fishing in the pond was limited to few people and records of catches were not obtainable。

Food and feedingareas. Food was first distributed in Pond 1 at 8:00 (am. June 5, 1956. Approwimately 3.5 pounds of pellets were scattered daly, through June 12, in the area indicated by X in Figure 3. This area was centatively picked on June 5 as one of two feeding-areas in the pond. Later examination of the area, by wading and checking depths, revealed that weter depthe near the shore were too great and thet aquatic vegetation was too dense for successful use of seines. After further examination of the pond during the afternoon of Jume 12 , areas 1 and 4 (Fig. 3) were selected. The ares were used alterntely as feedingmaxeas and as check-areas throughout che reminder of the study. Aquatic vegetation, rocks, and other debris which would hinder seining were xemoved by hand, with pitchforks, mad by a chin dugged through the axea.

Area 1, 25 feet wide by 25 feet long, was located where water depths ranged from less than an inch near the shore to 48 inches, 25 feet from the shore. The botton soil was firm and sloped gradually toward the center of the pond. Considerable amonts of aquatic vegetation were removed from this area several time during the summer.

The sime and shape of area 4 was modified because of stump, the slope of the botcom, and deep water. This area, 16 feet wide by 39 feet long, was loceted where water depthe ranged from about 1 inch near the shore to about 60 inches, 16 fest from the shore. The bottom soil was firm and sloped steeply townd the cemter of the pond. Lakeward, the watex deepened xapidly, being 8 feet deepp about 2 feet beyond the margin of the sample area.

Pond 1 was visited daily through August 31 and on each visit about 3.5 pounds of pellets were scetcered in area 1 or in area 4 . The amount

Figure 3. Locations of Feeding-areas and Traps in Pond 1
of food was increased to 5 pounds on September 1 and food was distributed on alternate days through November 13. A11 feeding in Pond 1 was done between the hours of $6: 00$ and $10: 00 \mathrm{a} . \mathrm{m}$. but more frequently between $7: 30$ and $8: 00 \mathrm{a} . \mathrm{m}$. Table II summarizes data concerning the feeding schedule followed in Pond 1.
table II
FEEDING SCHEDULE FOR POND 1

Dates food was distributed				Feeding area used	Pounds of food used per feeding
From		To			
June	5	June	13	X	3.5
June	14	June	19	1	3.5
June	20	July	9	4	3.5
July	10	August	7	1	3.5
August	8	August	31	4	3.5
*September	1	September	9	4	5.0
*September	10	October	16	1	5.0
*October	17	November	13	4	5.0

*Food distributed on alternate days only

Seines. Seines were used on three different occasions to obtain samples of fish from Pond 1. The areas were first sampled with $1 / 4$-inch mesh minnow nets on July 27. The seines were set around areas 1 and 4 at $6: 45 a_{0} m_{0}$, food was placed in area 1 at $8: 45 a_{0 . m}$, and the seines were dropped at $9: 15$ a.m. A second sample was made with a $3 / 4$-inch mesh seine on July 31. The seine was set around area 1 at $6: 30$ a.m., food was thrown into the area at $9: 15 \mathrm{a} . \mathrm{m} .$, and the seine was dropped at $9: 45 \mathrm{a} . \mathrm{m}$. Only one green sunfish was captured in the seine. Data concerning this sample are not included in the results since only one area was sampled. A third sample was taken with $3 / 4$-inch mesh seines on September 10 . The seines
were set mround areas 1 and 4 att 7:00 a.mos food was placed in area 4 at 9:00 a.mo, and the seimes were dropped at $9: 30$ a.m.

The dates on which samples were made, the feeding-area used, the kinds, the numbers and weights, and the ranges in lengths of the fish caught im feedimg- and in checkareas are shown in Appendix A. Table III is sumary, compiled from data contained in Appendix A_{3} showing numbers and weights and their corresponding percentages of fish caught with seines in feedingmarem and in check-areas in Fond 1.

Traps. Four wire traps were used in taking samples of fish from Pond 1. Samples were taken at periodic intervals during the months of July, August, October, and November. Traps were placed in the pond (in the general locations indicated in Figure 3) amd periods of sampling began on July 23, on August 21, and on October 1. The traps were moved at times toward the center of the pond to compensate for changing water depths. They were visited, genersily around $10: 00$ in the morning, on twenty-eight occasions during the periods described above.

The dates that the traps were visited, the feeding-areas, the kinds, murabers, and the cotal weights of the fish caught in the feeding- and in the check-areas are shown in Appendix B. A comparison of the numbers, weights, and ranges in leagthe of the fish caught in the feeding- and in the checkareas is shown in Appendiz G. Talle IV is sumary, compiled from date contained in Appendi* B, showing numbers amd weights and theix corresponding percentages of fish caught with traps in feedingoareas and In check-areas in Pond 1 . Where two or more check-areas of equal size were used at the same time, the results were averaged.

Trap 1 was placed mear the center of feeding-area 1. This area was

NUMBERS AND WETGHTS AND THETR CORRESPONDING PERCENTAGES OF 飞ISH CAUGHT WITH SEPNES FROM FEEDING. AND FROM CHECK AREAS IN POND 1

Area	Total mumber	Percent of total	Total weight in pounds	Percent of total
Teeding	26	78.8	4.00	76.6
Check	7	21.2	1.22	23.4
	TOTAL	33	100.0	5.22

TABLE IV

NUMBERS AND WEIGHES AND THE IR CORRESPONDING PERCENTAGES OF FISH CAUGHT WITH TRAPS FROM FEEDING AND FROM CHECK-AREAS IN POND 1

Area	Total mumber	Percent of Total	Total weight in pounds	Percent of total
Eecdimg	300	71.4	79.39	70.8
Check	120	28.6	32.69	29.2
TOTAL	420	100.0	112.08	100.0

was cleared of vegetation and debris to facilitate seining and thus was barren of cover for fish. The trap was easily discernible from the shore on calm days when light conditions were suitable. The depths of water at the sites of trap 1 were 40 inches on July 23, 38 inches on August 17, and 54 inches on November 13.

Trap 2 was placed in a small cove near the northeastern corner of the pond. The trap was set in a small area relatively free of aquatic vegetation but surrounded on all sides by dense vegetation. It was placed with one end adjacent to a heavy stand of cattails. First impressions were that this particular area would be an ideal place for fish to loiter and trapping results indicated this to be true. Water depths in the area were 44 inches on July 23, 41 inches on August 17, and 48 inches on November 13.

Trap 3 was set near the western shoreline of the pond about 50 feet from trap 1. The trap was placed in an old erosion channel just off a ledge where aquatic vegetation was quite dense. Water depths in this area were 56 inches on July 23, 54 inches on August 17, and 42 inches on November 13.

Trap 4 was placed in feeding-area 4 approximately 60 feet across the pond from trap 1. The trap, set in an area free of vegetation, was placed with one end adjacent to the inner boundary of area 4 . Here aquatic vegetation, stumps, and submerged trees provided suitable hiding places for fish. Water depths at the sites of trap 4 were 54 inches on July 23, 54 inches on August 17, and 48 inches on November 13.

Observations. Areas suitable for seining in Pond 1 were difficult to find and to maintain because of changing water levels and continued growth of aquatic plants. The water remained clear throughout the study and the
level dropped appreciably. Measurements of depth made on August 17 revealed that the water level was 19 inches below the level recorded on June 16. Flowering plants, consisting of Najas spp. and Potamogeton spp., and algae, primarily Chara spp., constituted a problem during June, July, and August and had to be removed from areas where samples were collected with seines.

Fieldnotes conceraing the activities of fish in Pond 1 showed that fish were not seen as frequently in feeding-areas of this pond as in some other ponds used in the study. Fish were noticeably present in or around the feeding-areas on only 16 days during the 118 days that the pond was visited. The numbers of fish seen during any one observational period varied between 1 and 5 and consisted of bass or green sunfish (estimated at 6 to 10 inches in length). As is shown in Appendices A and B, largemouth bass and green sunfish were the predominant species captured both with traps and seines. The total catch of other species was represented by 1 bluegill, 1 golden shiner, 2 redear sunfish, and 1 hybrid sunfish. Hook and line fishing in Pond 1 was tried and the results recorded on only three occasions. The first fishing was done just after 5:00 p.m. on June 26 by Mr. Claude Ward and the writer. Both persons used casting rods with small flatfish as lures and fished for 20 minutes. Mr. Ward caught 4 green sunfish and 3 largemouth bass from the feeding-area while the writer caught only 1 green sunfish from the alternate feeding-area. The other two trials with hook and line were conducted by the writer on June 27 and on October 15. Food was thrown into one feeding-area, fishing was tried for a 10 -minute period in the area; then the alternate feeding-area was tested for a similar period of time. The results were as follows: 2 green sunfish and 1 largemouth bass were caught in the feeding-area on June 27 and

3 basg were caught in the feeding-area on Dctober 15. No fish were caught either time in the alternate feeding-areas.

Data concerning trapping during October and November suggested that a greater catch per trap was made during this period than during the precedimg months. However, this was not necessarily true since traps were wisited only every 4 to 8 days as compared to daily visits during the preceding months.

Pond 2

Pond 2 was formed in 1952 by the construction of an earthen dam across * cavine. Water was supplied by mumff from approximately 55 acres of prairie gixsaland which was mormally used as a pasture. The soil of the witershed consisted of sandy loam over a red clay or claypan substrate. The impounded water was turbid at the beginning of the study on June 5 and remained turbid until about Augugt I. At this time the water became quite clear and remainel so, except for short periods of time following showers. At apilway level the water impounce covered about 1.5 surface scres with water depths that reached 17 feet. The water level in the pond was 3 feet below spillway level on Jume 5 and the level dropped still more.

The pond was scoced by Mix. Foxd Mercer with approximately 250 golden shimers in the fall of 1952 and with 75 lagemouth bass (about 6 inches long) in September, 1953. Additional hiners from small pool located Gout one-fourth mile upstreax undoubtedly entered Pond 2 during overflow periods. The black bullheads found in the pond were not listed in the records regarding the stocking of the pond. They probably came from an old pond located just across the fence whoh at high water levels became
a part of Pond 2. In 1956 water still remained in this old pond and contained hundreds of smal catiish. Public fishing in Pond 2 was discouraged but some fishing did occux. No records of catches were obtainable.

Food and feedingmareas. Food was first distributed in Pond 2 at 8:20 a.m. June 5, 1956. Areas 1 and 2 (Fig. 4) were selected on June 11 and were used alternately as feeding and as check-areas durimg the study. These areas were cleared of vegetation and other debris on June 11 .

Area 1325 feet wide by 25 feet long, was located where water depths ranged frow less than i inch near the shore to 58 inches, 25 feet from the shore. The bottom soil was firm and in some mreas sandstone ledges made it quite difficult to drive the pipes used to hold seines. The bottom sloped gradually towmed the center of the pond.

Area 2 , the same size as area 1 , was located nearer the dam on the same side of the pond where water depths were essentially the same as in area 1. Deep water mad fence on the opposite shore prohibited the use of seines on that side. The western boundary of area 2 was 95 feet from the eastern boundary of area 1 . The bottom soil in area 2 was firm, but wis cowered with about 3 inches of fine silt which, when disturbed, caused the witer to become quite turbid.

Pond 2 was visited daily beginning June 5 and endimg August 31. About 3.5 pounds of pellets were scattered in are 1 or im area 2 on each visit. The mount of food was increased to 5 pounds on september 1 and food was distributed on altemate days through October 22. All feeding in Pond 2 was done between the hourg of $6: 15$ and $10: 15$ a,m. but more frequently befwen $7: 40$ and $8: 10$ a.m. Table V sumarizes date concerning the feeding schedule followed in Pond 2.

Figure 4. Locations of Feedingearess and Treps in Pond 2

TABLE

FEDDING SCHEDULE FOR POND 2

Dates food was distributed				F'eeding area used	Pounds of food used per feeding
From		To			
June	5	Judy	3	1	3.5
Jndy	4	Inily	22	2	3.5
July	23	August	31	1	3.5
*September	1	Segtember	9	1	5.0
*September	11	Oetober	1	2	5.0
*October	3	October	22	1	5.0

*Tood distributed on alternate days only
Seimes. Seines were used on five different occesions to obtain samples of fish from Pond 2. The areas were first sampled with $3 / 4$-inch mesh seines on June 20 . The seines were set around areas 1 and 2 at 6:00 a.m.s food me placed in area 1 at $8: 35$. m. and the seines were dropped at 9:05 0.7.

A second similar sample was taken on July 13. Selnes were set around both areas at 7:00 a.m. food was scattered in area 2 at 8:00 a.m. and the seimes were dropped at $8: 10$ on. A strong wind made it difficult to Kecp the seines on the hangexs. Whem the seines were dropped, one cormer of the seine around area 1 caught on pipe and hod to be released. This necessitated wading the area to release the seine. The action may have distrubed any fish present. Hundreds of golden shiners were seen going through and over the seine as it was being pulled through the feedingarea towned the shore.

A thited similus sample wes takem on July 18. The seines were set axoumd both areas at $8: 00$ a.m. food was placed in area 2 at 9:25 a.m., and the seines were dropped mit $9: 50$ an. The weter secmed to "erupt" as
hundreds of shiners leaped about as if other fish were chasing them. Aggin, in the feeding-area, hundreds of shiners were seen escaping through and over the net as it wis pulled toward shore.

Mimnow geines (1/4-inch mesh) were used on August 22 to take fourth sample. The seines were set at 7:00 a.m., food was distributed in area 1 at $8: 00$ amo, and the seines were dropped at $8: 30$ a.m. An estimated 7,200 golden shiners were captured in the feeding-area and 33 golden shiners wexe captured in the check-area. The estimate was based on counts made from representative group thet was weighed. The shiners in the group ranged from $1 \frac{3}{2}$ inches to 5 inches in length and there were at least 200 shiners per pound with total catch of 36 pounds from the feeding-area.

A fifth sample, using $3 / 4$-inch mesh seines, was taken on September 18 . The seines were set around both areas at $6: 30$ a.mo, food wiss distributed in area 2 8:00 a.m.g and the seines were dropped at 8:30 a.m. A large number of shiners were seen going over and through the seine in area 2 as it wals being pulled to shore.

The dates on which samples were made, the feeding-area used, the kinds, the numbers and weights, and the ranges in lengths of the fish caught in feeding and in check-areas are shown in Appendix D. Table VI is sumary, compiled from data contwined in Appendix $\mathbb{D}_{\text {, }}$ showing numbers and weights and their corresponding percentages of fish caught with seines in freding-areas and in checkwareas in Pond 2.

Traps. Two to four wire traps were used in taking samples of fish from Pond 2. Samples were taken at periodic intervals during the months Of June, July, and September. Traps were located in the pond in the gemeral sites indicated in Figwre 4. At times the traps were moved toward
the center of the pome compensate for changes in water depth. Two traps were first set in the pond on Jume 27 and two more were set on July 6. The traps were visited, gemeraly around $10: 30$ omog on fourteen different occesions during the period June 27 to July 13 . Traps 1,2 , and 4 , set on September $1_{\text {. mere }}$ wisited on atermate days through September 21 . The location for trap 3 became unsuitable fox trapping because of shallow water and dense growth of aquatic vegetation.

The dates that the traps were visiteds the feeding-areas, the kinds, mumbers and the total weights of the fish caught in the feeding- and in the check-areas are shown in Appendix E. A compaxison of the numbers, weights, and ruges in lengths of the fish caught in the feeding- and in the check-aress is shown in Appendix F. Table WII is a sumary, compiled from data contained in Appendix F_{a}, showing numbers and weights and their corresponding percentages of fish caught with traps in feeding-areas and in chech-areas in Pond 2. Where wo or more check-areas of equel size were used at the same time, the results were aweraged.

Trap 1 was pluced near the center of feeding-area 1 . This area was cleared of yegeterion and debris to fecilitate seining. The depths of Whter at the sices of trap 1 were 54 inches on June 29,42 inches on August 17, and 38 inches on \$eptember 19.

Trap 2 ws placed near the center of feeding-areaz. This area was also cleared of vegetation nud debris. Water depths at the sites of trap 2 were 50 inches on June 29, 42 inches on August 17 , and 39 inches on September 19.

Trap 3 was set nexu the westexn shoreline of the pond 75 feet from trap 1. Shallow water and dense vegetation prohibited use of this area

TABLE VI

NUMBERS AND WETCHTS AND THETR CORRESPONDING PERCENTAGES OF FISH CAUGHT WITH SETNES EROM FEEDING AND FROM CHEGK AREAS IN POND 2

Area	Total mumber:	Percent of total	Total weight in pounds	Percent of total
Feeding	7236	99.5	61.60	94.0
Check	40	0.5	3.90	6.0
TOTAL	7276	100.0	65.50	100.0

TABLE VTI

NUMBERS AND WETGHTS AND THEIR CORRESPONDING PERCENTAGES OR PISH CADGHT WITH TRAPS EROM FEDDINGAND FROM GHECK AREAS IN POND 2

Area	Total number	Percent of total	Total weight in pounds	Percent of total
Feeding	107	88.4	68.89	87.0
Check	14	11.6	10.32	13.0
	TOTAL	121	100.0	79.21

for trepping after July 13. Water deptha at the sites of trap 3 were 40 inches on June 29 and 24 inches on August 17.

Trap 4 , placed in an old erosion chamel just off a ledge, was locaced directly across the pond about 125 feet from trap 1. Areas nearby contained many limbs and stwmps and had water depths that reached 7 feet. The depths of water at the sites of trap 4 were 48 inches on June 29, 36 inches on August 17, and 31 inches on September 19.

Observations. Ghanging water levels and growths of aquatic vegetation constituted problems in Pond 2 as they did in most of the ponds during the study. However, once the plants (mostly Chara spp. and Najas spp.) were removed from the feeding-areas they did not return in sufficient quantities to be aserious problem.

Fieldmotes concerning the activities of fish in feeding-areas showed that activity was first observed 7 days after feeding was begun and was apparent on 65 days during the 106 -day period that the pond wes visited. Intense activicy was recorded for 20 days, heavy activity was recorded for 10 days. moderate metivity was recorded for 13 days, ma seattered activity wis recorded for 22 days. On many occasions hundreds of golden shinexs seemed to burst into activity immediately atter food was added to a feedingarea. The fish rose to the surface and often into the air in a maner that reminded one of am exption of small geyser. Since they scattexed in different directions in great haste, it seamed they must have been purmued by enemies. Laxgex fish, probably largemouth bass or black bullheads. often surfaced during these intense displays of activity which followed feeding. Records of fish cautht in traps and seines (Appendices (1) and E) show that only largemonth bass, black buliheats, and golden
shinters were captured in this pond and were probably the species observed.

The heaviest activity of fish in feedingmareas occurred prior to August 1. By this time the water in the pond had cleared and remained so for the rest of the study period. Some fish were active in the areas after August $\mathbb{I}_{\text {。 but they were not as numerous as in June and July. }}$

Hook and Iine fishing was tried in Pond 2 on June 27 and on September 7. Food was thronn in and fishing was conducted for a 10 minute period in the feeding-ares, then for a similar period in the check-area. The results were as follows: 3 bass (10 to 11 inches in length) were caught in the feedingarea on June 27 and 2 bass (Il inches in length) were caught in the feeding-area on September 7. No fish were caught in either test in the check-mxeas.

Pond 3

Pond 3 wis formed int 1947 by the construction of an earthen dam across a comparatively deep ravime. Water was supplied by runoff from 48 acres of prairie grassland and from 6 acres of cultivated land. The soil of the wretershed consisted of sway low over w red clay or claypan substrate. The impounded water was turbid and remained so throughout the study. The water at spllway level covered about 3.3 auface acres with water depths that reached 17 foet. The water lewel in the pond was approximately 3.5 feet below spillwy level on June 5, 1956 and dropped still more. Forty to fifty head of cettle were pastured part time on the grassiand for at least half of each year, and wexe permitted to dxink at the pond.

The pond was stocked in the fall of 1948 with largemonth bass, green sunfish, black crapple, and bluegill. Public use of the pond for fishing
and swixming wat permitted. Mr. White, the landowner, believed that other species of fish were released in the pond by fishermen. No records of catches were obtainalbe but general reports on fishing indicated an excellent catch of bess and cxappie in 1955.

Food and feeding-arems. Food wiss first distributed in Pond 3 at 8:35 (an. June 5. 1956. Areas 1 and 4 (Fig. 5) were selected on June 9 and used alternately as feeding and as check-areas. These areas were cleared of vegetation and other debris on June 18 .

Area 1.25 feet wide by 25 feet long, was located where water depths ranged from less than 1 inch near the shore to 63 inches, 25 feet from the shore. The bottom soil was firm and sloped gradually toward the center of the pond.

Aren 4, the swe sixe as area 1 , was located 130 feet across the pond from area 1. Water depths and conditions of the bottom soil were essentially the smue in aree 1 . A number of stumps and roots, located along the lakeward side of area 4, likely provided suitable hiding places for ficho

Pond 3 was wisited daily begimang June 5 mad ending August 31. About 3.5 pounds of food were distributed in area 1 or in area 4 on each visit. The amount of food was increased to 5 pounds on September 1 and food was distributed on alternate days through October 22. All feeding in Pond 3 was done betwen the hours of $6: 20$ and $10: 30$ a.m. but more frequently betwem 7:15 and 8:30 2.m. Table VIII sumaximes data concerning the feeding schedule followed in Pond 3.

Figure 5. Iocations of feeding-areas and traps in Pond 3

TABIE VIII

FEEDING SCHEDULE FOR POND 3

Dates food was distributed				Freding area used	Pounds of food used per feeding
Firom		To			
Jwne	5	June	12	1	3.5
Jume	13	July	4.	4	3.5
July	5	July	21	1	3.5
July	22	August	31	4	3.5
*September	1.	September	11	4	5.0
*September	12	October	22	1	5.0

Heod distributed on alternate days onis
Seines. Seines ($3 / 4$ inch mesh) were used three times to obtain samples of fish from Pond 3. Wedingmaeas were first sampled with seines on June 2l. The seines mere set around areas 1 and 4 at $6: 30$ a.m., food was placed in rea 4 at $8: 45$ a.mog and the seines were dropped ar $9: 15 \mathrm{a}$.m. A few ripples on the surface of the water indicated the some fish were in ares 4 when the seine wes dropped. No activity was detected in area 1.

A second seinedmsample was taken on July 19. Seines were set around both areas at $7: 30$ a.m. food was scattexed in area 1 at $9: 40$ a.m., and the seines were dropped at $10: 10$ an No visible sign of 1 ish activity whs detected in either ares. Thee largemouth bass. estimated length 10 to 12 inches, fumped over the net in area 1 as it was being pulled to strore.

A thixd sample mag made on August 20. Seines were set around both sxeas at 6:30 man. food wis digtributed in axea 4 at $7: 55$ a.m. and the seines were dropped at $8: 25$ an. There was no evidence of fish feeding in either area before the selnes were dropped.

Ihe dates on which samples were made, the feeding-area used, the kinds, the numbers and weights, and the ranges in lengths of the fish
caught in feeding and checkoreas are shown in Appendix G. Table IX is a sumary, compiled from data contained in Appendix G, showing numbers and weights and their corresponding percentages of fish caught with seines in feeding-areas and in check-ayeas in Pond 3.

Traps. Four wire traps were used in taking samples of fish from Pond 3. Samples mere collected at periodic intervals during the months of July, August, September, and October. The traps were set in the pond (In the general locations indicated in Figure 5) on the afternoons of July 17 and Saptember 1. The traps were moved times toward the center of the pond to compensate for changing whter depths. They were visited on twenty-mine different occasions duximg the period described above, generaly around 11:30 in the morning.

The dates that the traps were visited, the feedingoreas, the kinds, numbers and the totall weights of the fish caught in the feeding-and in the check-areas are shown in Appendix H . A comparison of the numbers, weights, and ranges in lengths of the fish caught in the feeding- and in the check-areas is shown in Appendix I. Table X is a summary, compiled Exom data contained in Appendiz $\mathbb{H}_{\text {, }}$ showing numbers and weights and their corresponding percentages of fish caught with trapa from feeding-areas and from check-axeas in Pomd 3. Where two or more check-areas of equal sime were used at the same time, the results were averaged.

Trap 1 was placed near the center of feeding-area 1 . This area was cleared of all vegetwion mad dabis to facilitate seinimg. The depths of water at the sites of trap 1 were 52 inches on July 18,46 inches on August 30 , and 47 inches on october 22.

TABLE IX
NUMBERS AND WEIGHTS AND THEIR CORRESPONDING PERCENTAGES OF FISH CAUGHI WITH SEINES FROM FEEDTAGAND FROM CHECK-AREAS IN POND 3

Area	Total number	Percent of total	Total weight in pounds	Percent of total
Feeding	103	82.4	17.68	
Check	22	17.6	2.85	13.1
		125	100.0	20.53

table X

NUMBERS AND WETGHTS AND THETR CORRESPONDING PERCENTAGES
OR FISH CAUGHT WITH TRAPS FROM FEEDING AND FROM CHECK-AREAS IN POND 3

Area	Total number	Percent of total	Total weight in pounds	Percent of total
Feeding	280	84.6	47.97	84.2
Check	51	15.4	9.02	15.8
total	331	100.0	56.99	100.0

Trap 2 was placed near the dam and in the southeast corner of the pond. Sand had been placed over the bottom to provide a better area for swimers. The trap was found several feet from its original site on several occasions. Evidently it had been moved by swimers. Water depths at the sites of trap 2 were 51 inches on July 18, 48 inches on August 30 and on October 22.

Trap 3 was set in the western exd of the pond in an old erosion chanel just off ledge. Water depths in this area were 49 inches on July 18, 39 inches on August 30 , and 34 inches on October 22.

Trap 4 was placed mear the center of feeding-area 4 where water depths were 53 inches on July 18,48 inches on August 30 , and 46 inches on October 22.

Obsexvations. Changing water levels and growths of aquatic plants constituted some problems in Pond 3. Large amounts of aquatic vegetation (mostly Chara spp.) wexe removed from the feeding-areas on June 20 and the areas remained relatively clear of vegetation during the rest of the study. Trap-sites were not fifected to any great extemt by the lowering water-level since the traps could be moved to deeper water. Feeding-areas were more difficult to mintain because stumps, brush, and other debris had to be removed when it became necessary to extend the limits of the feeding.areas. Measurements of depth made on August 17 revealed that the water level was 17 inches below the level recorded on June 16.

Fieldmotes concerning the metivities of fish in feeding-areas showed that activity was apparent on 32 days duxing the 106 -day period that the pond was visited. Heavy activity was recorded for 7 days, moderate activity for 6 days, and scattered activity for 19 days. The kinds of fish involved in the zctivity were not identified.

Records showed that fish activity was first obsexved 10 days after feeding was begun. Further observations of activities were recorded daily during the month of June and through July 18. Scattered activity was observed on only seven visits after July 18.

When feeding was changed from one site to the alternate feeding-areas, records showed that no metivities of fish were observed in the new feedingaxea for a period of two to four days and that a similar period of time elapsed before larger mumber of fish were caught in the trap located in the new feeding-area.

Pond 4

Pond 4 was formed in 1952 by the construction of an earthen dam across a ravine. Water was supplied from 25 acres of prairie grassland normally used as paxt of a pasture for 25 to 30 head of cattle. The soil of the watershed consisted of claypan prairie over a heavy clay subsoil. The impounded water was turbid and covered approximately 2.1 surface acres at spillway level with water depths that reached 17 feet. The water level in the pond w® 3.5 feet below spillway level at the begimaing of the study and dropped still more.

The pond was stocked with largenouth bass, green sunfish, redear sunfish, bluegill, and black crappie in the spring of 1953. Although black bullheads wexe caught in the traps during the study and catches of channel Catish were reported by fishermen, no data concerning stocking of the 1atter two species were recorded: The owner reported that 20 or 30 bass weighing 2.5 to 3.5 pounds were caught in 1955 but that only a few fish were caught during 1956.

Food, feeding-greas, and traps. Food was first distributed in Pond 4 9:15 a.m. June 5, 1956 and daily visits wete made through June 16. The pond was not visited from June 17 to Jume 28 , but daily visits were made again beginning June 29 and ending August 24. On August 24, the study of the pond wes discontinued. About 5 pounds of food were scattered on the surface of the water in an area (about 6 feet by 15 feet) directly above trap 1 or trap 2 (rig. 6) on each visit. The sites for trap 1 and trap 2 were selected and maked by stakes on July 1 and were used as Qltermate feeding-aitea during the study. Trap 1 was set near the weatern shorelime of the pond where water depths were 44 inches on August 7 and 42 inches on August 17 . Trap 2 was set about 400 feet across the pond from trap 1. Water depths at the sites of trap 2 were 46 inches on August 7 and 44 inches on August 17.

Food was distributed in the area above trap 1 , Jume 5 through August 13, and in the area above trap 2 beginnimg August 14 and ending August 24. A11 feeding in Pond 4 was done between the hours of $10: 45$ and $11: 45 \mathrm{a} . \mathrm{m}$. The dates that the traps were visited, the feeding areas, the numbers, kinds and total weights of Eish that were caught are shown in Appendix J. A comparison of the numbers, wights, and xanges in lengths of the fish caught in the feeding and in the check-areas is shown in Appendix K. Table XI is a sumary, compiled from date contained in Appendix J, showing numbers and weights and their corresponding percentages of fish caught with traps fumm feeding-areas and from check-areas in Pond 4.

Seines. The afternoon of June 13 was spent trying to find areas in Pond 4 suitable for seining. Deep watex, softmud bottom, 2 heavy growth of aquatic plants, pars of junked automobiles, wixe, and other debris

Eligure 6. Locations of Traps in Pond 4
would have made seining practically impossible. Hence no seined samples were taken.

TABLE XI
NUMBERS AND WEIGHTS AND THEIR CORRESPONDING PERCENTAGES OF FISH CAUGHT WITH TRAPS FROM EEEDING- AND FROM CHECK-AREAS IN POND 4

Area	Total number	Percent of total	Total weight in pounds	Percent of total
Feeding	42	75.0	15.97	74.0
Check	14	25.0	5.61	26.0
Total	36	100.0	21.56	100.0

Observations. The water in Pond 4 remained turbid throughout the study and measurements of depth, made on August 17, revealed that the water level was 20 inches below the level recorded on June 15. Aquatic plants created no real problem since seines were not used.

The pond was visited on 65 days during the months of June, July, and August. Fieldnotes comeerning the activities of fish in feeding-areas showed that no activity was observed during the month of Jume. The first activity was observed on July 7 , eight days after feeding was resumed on June 29. Fish metivity in the feeding-area was observed on 25 days during the period from July 7 to August 24 with most of the activity occurring in July. Heavy activity was recorded for 9 days, moderate activity for 3 days, and scattered activity for 13 days. The fish did not often surface but on ocessions churned the water into froth. When changing from one feeding-area to another, there was a delay of about three days before the number of fish caught in the new feeding-area surpassed the number caught in the new check-area.

Pond 5

Pond 5, formed by the construction of an earthen dam across a ravine, was made deeper during the spring and summer of 1955. The low water level during 1955 permitted soil to be removed from the upper end of the pond. The soil removed was used to increase the height of the dam. Water was supplied by runoff from 5 acres of prairie grassland (a pasture) and from about 25 meres of cultivated soil. Water from the cultivated fields was diverted into the pond by the use of a series of terraces. The soil of the watershed consisited of prairie upland and silt-loam over a claypan substrate. The landower stated that water in the pond ran over the spillway quite often duritg years in which rainfall was normal. The impounded water was imtermittently clear and turbid during the study. At spillway level the water covered about 1.12 surface acres with water depths that reached 10 feet. The water level in the pond was approximately two feet below spillway level on June 5 and dropped still more.

The pond was stocked in 1955 with black crappie, channel catfish, and largemouth bass. Thixteen largemouth bass weighing 2.5 to 6.5 pounds were released in Pond 5 on June 8, 1956.

Pood and feeding-areas. Food was first distributed in Pond 5 at 9:30 a.m. June 5, 1956. About 3.5 pounds of pellets were seatitered daily through June 9 in an area indicated as area X in Figure 7 . An examination of area X on Jwe 9 reveqled the water to be shellow and so choked with aquatic vegetation that seining was impossible. Areas 1 and 4 (Fig. 7) were then chosen and used altermately as feeding- and as checkareas throughout the remainder of the study. Vegetation and debris were removed from area 1 just before seines were used in July. Area 4 did not meed to be cleared.

Area 1, 25 feet wide by 25 feet long, was located just off the dam where water depths ranged from about 6 inches near the shore to about 44 inches, 25 feet from the shore. The bottom soil had a firm layer on top but was spongy or "mucky" below, permitting a person to sink to the knees in mud when carrying a trap to or from the area.

Area 4 , the same size as area 1 , was located across the pond where water depths ramged from less than an inch near the shore to 49 inches, 25 feet from the shore. The bottom soil was firm and sloped gradually coward the center of the pond.

Pond 5 was visited daily through August 31 and on each visit 3.5 pounds of pellets were scattered in area 1 or in area 4 . The amount of food was increased to 5 pounds on September 1 and food was distributed on alternate days through October 22. All feeding in Pond 5 was done between the hours of $8: 00 \mathrm{a}_{\circ} \mathrm{m}$. and $11: 45 \mathrm{a}_{0} \mathrm{~m}_{0}$, but more frequently between 8:30 and 9:30 a.m. Table XII summarizes dats concerning the feeding schedule followed in Pond 5. Food was placed in both feeding-areas 1 and 4 on August 15 and on September 26 in order to see bow much time would elapse before the catch of fish in the new feedingearea would equal or suxpass the catch in the new check-area.

Figure 7 . Locations of feedingareas and traps

TABIE XII
EEEDING SCHEDULE FOR POND 5

Dates food wos distributed				Feeding area used	Pounds of food used per feeding
From		To			
June	5	June	9	X	3.5
June	10	Iu1翟	5	1	3.5
July	6	July	12	4	3.5
July	13	August	15	1	3.5
August	16	September	1	4	3.5
*September	3	September	26	1	5.0
*September	27	October	22	4	5.0

*Food distribured on alcernate days only
Seimes. Seines (3/4-inch mesh) were used on two occasions to obtain samples of fish from Pond 5. The first sample was taken on July 24. Seines were set around axeas I and 4 at $6: 30$ a.m., food was distributed in area 1 at $8: 45$ a.m.g and the seines were dropped at $9: 20$ a.m. A second sample was mede on August 24. Seines were set around both areas at $7: 00$ a.m.n food was scatcered in axea 4 at $8: 40$ a.m.g and the nets were dropped at $9: 15$ a.m.

The dates on which samples were made, the feeding-area used, the kinds, the numbers and weights, and the ranges in lengths of the fish caught in feedingo and in check-axeas are shown in Appendix In Table XII is a sumary, compiled from data contained in Appendis \mathbb{I}, showing numbers and weights and theix corresponding percentages of fish caught With seines in feeding-areas and in check-axeas in Pond 5.

Traps. Two to four wire traps were used in taking samples of fish from Pond 5. Samples were taken in August with four traps and in Septembex with two traps. Traps were placed in the general locations indicated in wigure 7. At times the traps were moved townrd the center of the pond
to compensate for changes in water depth. Four traps were set on August 7 at 1:00 pom. The traps were visited daily from August 8 through August 20, generally around $10: 45$ 2.m. Two traps were set, one in area 1 and one im area 4, on september 22 and were visited daily from September 24 through September 29, usually around 10:00 a.m. Trap-areas 2 and 3 were not used after September 22 because the traps were needed elsewhere.

The dates that the traps were visited, the feeding-areas, the kinds, mumbers, and the total wights of the fish caught in the feeding- and in the check-areas are show in Appendix M. A comparison of the numbers, weights, and ranges in lengths of the fish caught in the feeding- and in the check-areas is show in Appendix N. Table XIV is a summary, compiled from data contained in Appendis M showing mumbers and weights and their corresponding percentages of fish caught with traps in feeding-areas and in check-areas in Pond 5. Where two or more check-areas of equal size were used at the same time, the results were averaged.

Trap I was placed near the center of feeding-area 1 . This area was cleared of aquatic vegetation and debris to facilitate seining. The depths of witer at the sites of trap 1 were 34 inches on August 8 and 28 inches on September 24.

Trap 2 was set outside the feeding-areas in water 37 inches deep and mear \log surrounded by brush and aquatic vegetation.

Trap 3 was set outside the feeding-areas, in the southwest corner of the pond near afallen tree. It was set in water 38 inches deep and was surrounded by brush snd aquatic vegetation.

Trap 4 was placed meax the center of feeding-aree 4 across the pond from area 1. The depths of water at the sites of trap 4 were 42 inches on August 8 and 34 inches on September 24.

NUMBERS AND WETGHTS AND THEIR CORRESPONDING PERCENTAGES OF FISH CAUGHT WITH SEINES FROM FEEDINGAND FROM CHEGK-AREAS IN POND 5

Area	Total number	Percent of total	Total weight in pounds	Percent of total
Feeding 28 80.0 10.96				
	7	20.0	2.31	82.6
			100.0	13.27

TABLE XIV
NUMBERS AND WEIGHTS AND THEIR CORRESPONDING PERCENTAGES OF FISH CAUGHT WITH TRAPS FROM FEEDING* AND FROM CHECK $\triangle A R E A S$ IN POND 5

Area	Total number	Percent of total	Total weight in pounds	Percent of total
Feeding	127	88.2	38.95	
Check	17	11.8	3.58	91.6 8.4
	TOTAL	144	100.0	42.53

Observations. The water in Pond 5 was turbid at the beginning of the study but began to clear about one week later. The water remained Clear through August 15 , became turbid and remained so for about 1 week, cleared for 5 days, becæme turbid for 1 week, cleared for 6 days, and then became turbid on September 11 and stayed turbid through October 22. Possible causes of these intermittently clear and turbid conditions follow. (1) The water level in the pond dropped considerably during the sumer. Measurements of water depth made on August 14 revealed that the water level wed 16 inches below the depth recorded on June 16 . (2) When the water supply in other ponds on the farm was exhausted, the cattle (25 head of dairy cows) drank and waded in Pond 5, thereby stirring the silt on the bottom. (3) Organic matter carried from the barn and feedlot by runoff water was deposited in the pond. (4) Aquatic plants were quite mumerous in the pond and may have helped in clearing the water.

Fieldnotes showed that Pond 5 was visited on 107 days and that activities of fish were observed on only 20 of these visits. All activities were recorded as scattered since only one to three fish were actually observed in the feeding-areas on any particulax visit. Most of the activity observed occurred during the month of July. On several occasions live grasshoppers were thrown into the feeding-areas and they disappeared within seconds.

When feeding was changed from one site to the alternate feeding-area, records showed that two or three days elapsed before the number of fish caught in the trap located in the new feeding-area surpassed the number caught in the new check-area.

Turtles were often caught in the traps: and when food was thrown into an area, turtles came from all directions to the feeding-area.

Pond 6

Pond 6 was formed in 1936 by the construction of an earthen dam across a ravine. Water was supplied by runoff from about 20 acres of prairie grasslamd normally used as part of a pasture for three horses and three cows. Waste products from these animals and from a dog kennel (holding 20 to 40 dogs) washed into the pond and provided organic matter. In addition several pickup loads of chicken litter were dumped into the pond in 1955. The impounded water was turbid from an algal bloon at the beginming of the study and became highly turbid before the pond was dropped from the study on September 3. An abundant supply of algae (mostly Microcystis spp. and Anabaena spp.) comtributed to the apparent green color and the turbid nature of the water. At spillway level the water covered about 1.12 surface acres with water depths that reached 9.5 feet. A thick layer of silt deposited over the bottom soil of the pond decreased the depth of the pond and made wading in the pond difficult. The water level in the pond was 2.5 feet below spillwey level the begining of the study and dropped still more.

The fish in the pond were poisoned with rotenone in the spring of 1954 and the pond wis stocked in late sumer with largemouth bass, black cxapies chamel catrigh, and bluegill. Some of the bass that were stocked weighed about two pounds. No records were available concerning the stocking of green sunfish in the pond. Fishing in the pond was not restricted but little Eishing was done.

Food and feedingareas. Food was first distributed in Pond 6 at 9:45 a.mo. June 5, 1956. Areas 1 and 3 fig. 8) were selected on Junc 6 and were used alternatiy fe feeding-areas and as check-areas during the

Figure 8. Locations of feedingoareas and traps in Pond 6
study. These areas were cleared of vegetation and other debris on June 22.

Area 1.25 feet wide by 25 feet long, was located where water depths ranged from less than 1 inch near the shore to 42 inches, 25 feet from the shore. The bottom soil was firm but was covered with a layer of soft mud about 14 inches deep. The botton sloped gradually toward the center of the pond.

Area 3, the same size as area 1 , was located across the pond where water depths were essentially the same as in area 1 . The bottom soil in axea 3 was fimm but was covered with 2 layer of soft mud 4 inches deep.

Pond 6 wぁs visited daily beginning June 5 and ending September 3. About 3.5 pound of pellets were scattered in area 1 or in area 3 on each visit. All feeding in Pond 6 was done between the hours of 8:30 and 11:00 a.m. brt more frequently between 9:00 and 10:00 a.m. Table XV sumarimes data concernimg the feeding schedule followed in Pond 6.

TABLE XV
REEDEAG SCHEDULE FOR POND 6

Dates food wes distriibuted				$\begin{gathered} \text { Feeding area } \\ \text { used } \end{gathered}$	Pounds of food used per feeding
		To			
June	5	June	20	1	3.5
June	21	InIIE	21	3	3.5
July	23	Augrsit	8	1	3.5
August	9	September	3	3	3.5

Seines. Seines (3/4winch mesh) were used twice to obtin samples of fish from Pond 6. The low water and the soft mud on the bottom made further seining impteticel. The first sampling was done on July 9. Seines
were set around arems 1 and 3 at $6: 30$ mom food was placed in area 3 at 8:55 m.m., and the seines were dropped at 9:30. A second sample was made was made on August 7 . Seines were set around both areas at 6:30 a.m., food was seattered in area 1 at $10: 00$ a.m., and the seines were dropped at 10:30 a.m.

The dates on which samples were made, the feeding-area used, the kinds, the mumbers and weights, and the ranges in lengths of the fish caught in feeding and in checkareas are shown in Appendix 0 . Table XVI is a sumary, compiled from data comtained in Appendis O, showing numbers and weights and their corresponding percentages of fish caught with seines from feeding-areas and from checkareas in Pond 6.

Traps. Three wire tiraps were used in taking samples of fish from Pond 6. The traps were placed in the pond in the locations indicated in Figure 8 on August 2. They were visited, generally around $10: 45 \mathrm{a}$.m., on twelve occasions.

The dates that the traps were visited, the feeding-areas, the kiads, numbers, and the cotal weights of the fish caught in the feeding-area and in the check-areas are shown in Appendix P. A comparisom of the numbers, weights, and ranges in lengtho of the fish caught in the feeding- and in the check-ares is shown in Appendir Q. Tale XVII is a summary, compiled from data contained in Appendix $\mathbb{P}_{\text {s }}$, showing numbers and weights and their corresponding percentages of fish caught with traps from feedingareas and from check-areas in Pond 6. Where two or more check-areas of equal size were used at the same time, the results where averaged.

Trap 1 was placed mear the center of feedingarea 1 . This area was cleaned of debris to facilitate seiming. The depth of the water at the site of trap 1 wise 34 inches on August 3.

Trap 2 was set in the northeast comer of the pomd where the water was 34 inches deep and the mud 18 inches deep.

Trap 3 was set near the center of feedimg-area 3 where the water was 36 inches deep and the mul \& inches deep.

TABLE XVI

NUTBERS AND WETGHIS AND THETR CORRESPONDING PERCENTAGES OF FTSH CAUGHT WITH SEINES FROM FEEDING- AND FROM CHEGK-AREAS IN POND 6

Area	Total muber	Percent of total	Total weight in pounds	Percent of total
Feeding	72	75.8	10.70	85.6
Check	23	24.2	1.79	14.4
	TOTAL	95	100.0	12.49

TABIE XVII

NUMBERS AND WEIGHTS AND THEIR CORRESPONDING PERCENTAGES OF FISH CAUGHT WITH TRAPS FROM FEEDING-AND FROM CHECK-AREAS IN POND 6

Area	Total mumber	Percent of total	Total weight in pounds	Percent of total
Feeding	767	69.3		
Check	339	30.7	30.11	70.2
	TOTAL	1106	100.0	30.58

Observations. Arens suitable for seining or trapping in Pond 6 were difficult to mantain because of a decreasing water level and a soft-mud bottom. The whter in the pond remaned turbid throughout the study. Measurements of depth made on August 14 revealed that the water level was 20 inches below the level recorded on Jume 14.

A $3 / 4$-inch mesh seine 150 feet long and 8 feet deep was pulled through Pond 6 on June 8. The seine was not long enough to cover the entire width of the pond near the dam, nor was it deep enough to reach the bottom at this point, but an attempt was made to seine as much of the pond as possible. Small fish were observed going over the seine both when progress was halted because of debris and while the seine was being pulled through the water. Mud and the large number of fish entangled in the seine made the landing operation difficult.

The total catch and the disposal of the fish caught in the seine follow. (1) An estimated 3,500 to 4,500 small fish (3.5 to 4.5 inches in length) consisting of bluegill and green sunfish were removed and piled on the shore. (2) About 100 bluegill and green sunfish (5 to 6 inches in length) were returned to the water. (3) Thixty golden shiners (3 to 7 inches in length) were returned to the water. (4) Ninety largemouth bass (8 to 12 inches in length) were returned to the witer. (5) Thirteen largemouth bass (estimated weight, 2.5 to 6.5 pounds each) were transported to Pond 5 and released.

Most of the fish caught in the traps in Pond 6 (see Appendix 0) on August 3, August 4 , and August 6 were dead when the traps were examined. Hence the weights of these fish listed may be more than actual liveweights of the fish. More than 90 percent of the total number of fish caught with traps in Pond 6 were not recurned to the water, but were left on the shore. The fish that were returned were largemouth bass, golden shiners and bluegill or green sumfish at least 6 inches in length.

Fieldnotes concerning the activities of fish in feeding-areas showed that activity was apparent on 31 days during the 83 -day period that Pond 6
was visited. Heawy sctivity wes recorded for 7 days, moderate activity was recorded for 9 days, and gcattered activity was recorded for 15 days. Records showed that activities of fish in a feeding-area were first observed mine days after feeding was begur in the pond, and that most of the observations recorded thereafter occurred between June 13 and July 19. No activity was noted after July 31. Most of the activity that occurred in the feeding-areas was surface feeding of small fish and occasional splashes created by larger fish (probably largemouth bass).

When feeding was changed from one site to the alternate feedingarea, records showed that one to three days elapsed before the number of fish caught in the trop located in the new feeding-area surpassed the number caught in the new checkwarea.

Dead fish were found along the shoreline of Pond 6 on June 25 and 26 , on July 18 and 19, and on August 1, 2, and 3. The largest kill was recorded on June 26 when 325 fish (consisting of 4 bass, 10 to 14 inches in length, and 321 small bluegills, golden shiners, and fathead minnows) were found near the perimeter of the pond. Fills recorded on other dates consisted of golden shiners and/or bluegill, five to fifteen in number.

Pond 7

Fond 7 was formed at least as early as 1938 by the construction of an earthen dam across a ravine. Water was supplied by runoff from about 35 actes of land. Water drained into the pond from 18 acres of prairie grassland, from cultivated fields, from residential lots and from city streets. The soil of the watershed was prairie upland over claypan substrate. The impounded water was clear at the beginning of the study,
but became turbid fdue primaxily to the development of a heavy bloom of algae consisting of Micxocystis spp., Chlorella spp., and Euglena spp.) by August 27 and remained so throughout the study. At spillway level the water impounded covered about 2.53 surface acres with water depths that reached 10 feet. The water level in the pond was 3 feet below spillway level on June 15 and dropped still more.

The water drained from the pond and the pond made deeper in 1953. Later the pond refilled with water and was stocked with fish. An excess of chicken manre was dumped in the pond in the spring of 1954 which resulted in a fish-kill. The pond was restocked in the fall of 1954 with channel catish, golden shimers, largemonth bass, and black srappie. Additional fish and other species were reported as being stocked by local fishermen.

Food amd feeding-areas. Food was first distributed in Pond 7 at 10:30 a.m. June 15, 1956. Areas 1 and 2 (Fig. 9) were selected on June 16 and were used alternately as feeding- and as check-areas during the study.

Area 1,25 feet wide by 25 feet long, was located where water depths ranged from less than 1 inch mear the shore to 42 inches, 25 feet from the shore. The bottom soil was firm but was covered with layer of silt about 3 inches deep. The bottom sloped gradually from the shore toward the center of the pond.

Ares 2, the same sige as axea 1 , was located on the game side of the pond where water depths and soil conditions were essentially the same as in area 1.

Pond 7 ws visited daily beginning June 15 and ending August 31 and on each visit mbut 3.5 pounds of pellets were scattered in area 1 or 4 .

Figure 9. Locations of feeding-areas and traps in Pond 7

The amount of food was increased to around 5 pounds on September 1 and food was distributed on alternate days through October 22. All feeding in Pond 7 was done between the hours of $8: 40$ and $11: 30$ a.m. but more frequently around 9:30 am. Table XVIII sumarizes data concerning the feeding schedule in Pond 7.

TABLE XVIII
FEEDING SCHEDULE FOR POND 7

Dates food was distributed				$\begin{gathered} \text { Feeding-axea } \\ \text { used } \end{gathered}$	Pounds of food used per feeding
From		To			
June	15	July	4	1	3.5
July	5	July	29	2	3.5
July	30	August	17	1	3.5
August	18	August	24	2	3.5
August	25	August	31	1	3.5
*September	1	September	15	1	5.0
*September	17	September	26	2	5.0
*September	27	October	22	1	5.0

*Food was distributed on alternate days on1y

Seines. Seines were used on three different occasions to obtain samples of fish from Pond 7. The areas were first sampled with $3 / 4$-inch mesh seines on June 25. The seines were set axound areas 1 and 2 at $7: 30$ 2.m., food was placed in area 1 at $10: 15$ 2.m., and the seines were 2 dropped at $10: 45$ 2.m.

A second sample was made with $3 / 4$-inch mesh seines on July 21 . The seines were set around areas 1 and 2 at $6: 30$ m.m., food was scattered in area 2 at $9: 45 \mathrm{a}_{0} \mathrm{~m}_{0,}$ and the seimes were dropped at $10: 25 \mathrm{a}_{\mathrm{om}}$. Soon after food was thrown into area 2, the water seemed to "erupt" as hundreds of small fish (presumably golden shiners) leaped about as though they were
being chased oy other fish. As the seines were being pulled to the shore, many small fish were noticed going through and over the net.

Minow seines (1/4-imeh mesh) were used on August 14 to take a third sample. The seines were set around areas 1 and 2 at $6: 30$ a.m., food was sectuered in area 1 at $9: 30$ a.m. and the seines were dropped at 10:00 a.m. An estimated 9,600 golden shiners were caught in the feeding-area and 20 golden shiners wexe caught in the check-area. The estimate was based on counts made of sepresentative group of shiners that was weighed. The shimers in the group ranged from 1.5 inches to 6 inches in length and there were at least 200 shiners per pound with a total catch of 48 pounds from the feeding-area.

The dates on which samples were made, the feeding-area used, the kinds, the mumers and weights, and the ranges in lengths of the fish caught in feeding- and in check-areas are shown in Appendix R. Table XIX is sumary, compiled from data contained in Appendix R, showing numbers and weights and their corresponding percentages of fish caught with seines in feeding-areas and in check-areas in Pond 7.

Traps. Three wire traps were used in taking samples of fish from Pond 7. The traps were placed in the pond fin the general locations indicated in Figure 9) om August 16 and on September 22. At times the traps Were moved towerd the center of the pond to compensate for changes in water depth. They were visited between the hours of $9: 30$ and $11: 30$ a.m. on 18 different occssions during the months of August and September.

The dates that the traps were visited, the feedingmareas, the kinds, numbers. and the total weights of the fish caught in the feeding- and in the check-area are shown in Appendix S. A comparison of the numbers,

TABLE XIX

NUMBERS AND WETGHTS AND THEIR CORRESPONDTNG PERCENTAGES OF FISH CAUGHT WITH SEINES FROM FEEDINGAND FROM CHECR-AREAS IN POND 7

Area	Total number	Percent of total	Total weight in pounds	Percent of total
Feeding	9645	99.7	61.00	97.6
Check	25	0.3	1.50	2.4
		9670	100.0	62.50

TABLE XX

NUMBERS AND WETGHTS AND THEIR CORRESPONDING PERCENTAGES OF FISH CATMHT WITH TRAPS FROM FEEDING AND FROM CHECK AREAS IN POND 7

Area	Total number	Percent of total	Total weight in pounds	Percent of total
Feeding	84	76.4	47.42	78.9
Check	26	23.6	12.70	21.1
TOTAL	110	100.0	60.12	100.0

weights, and xanges in lengths of the fish caught in the feeding- and in the check-areas is shown in Appendix T. Table $X X$ is a summary, compiled from data contained in Appendix S, showing numbers and weights and their corresponding percentages of fish caught with traps in feeding-areas and in check-areas in Pond 7. Whexe two or more check-areas of equal size were used at the same time, the results were averaged.

Trap 1 was placed near the center of feeding-area 1 where water depths were 30 inches on August 17 and 24 inches on September 24.

Trap 2 was placed near the center of feeding-area 2 where water depths were 33 inches on August 17 and 26 inches on September 24.

Trap 3 was placed near the northwestern corner of the pond where water depths were greater than the depths in the feeding-areas. However, rocks and concrete on the bottom prohibited the use of this area as a feeding-area because pipes, rigged to hold seines, could not be driven into the bottom. The depth of the water at the site of trap 3 was 47 inches on August 17. No trap was used in this location duxing September. Observations. Water from Pond 7 was used in cooling processes in the Stillwater Hatchery and as stock-water for several horses. A decreasing water leyel with the accompanying loss in surface area and an abundant growth of algal forms created some problems in Pond 7 but did not seem to affect the activities of fish in the feeding-areas to any great extent.

Fieldnotes concerning the activities of fish in feeding-areas showed that activity was apparent on 72 days during the 100 -day period that the pond was visited. Intense activity was recorded for 22 days, heavy activity was recorded for 20 days, moderate activity was recorded for 10 days, and scattered activity was recorded for 20 dass.

Activity of fish in feeding-area was first observed on June 29, 14 days after feeding was begun in the pond. The activity was scattered but gradually increased in intensity during the month of July. A great many small fish and a few large ones were observed in the feeding-areas during the period from July 7 to July 28. The greatest activity of fish in , feeding-areas occurred during the period from July 29 through August 16. During the latter period, hundreds of golden shiners seemed to "erupt" from the area and to scatter in all directions as though they were being chased. These "eruptions" often occurred within minutes after food was placed in an area and continued for the entire observation period. Observation periods varied from five to thirty minutes in this pond. Larger fish often surfaced during the intensive displays of activity which followed feeding. Fish were observed in the feeding-area mearly every day throughout the remaindex of the study but their activity was not as great as that occurring through August 16 .

When feeding was changed from one site to the alternate feeding-area, records showed that to activity was observed in the new feeding-area for three to five days amd that activity was still observed in the old feedingarea during this time.

DISCuSSION

Although ponds used in the study were carefully selected, Pond 4 and Pond 6 became unsuitable in late summer and were eliminated from further study because of low water levels and/or growths of aquatic plants. Drouth conditions and high rates of evaporation during the sumer of 1956 decreased water levels in all the ponds studied. In addition, pond waters were used extensively by livestock, thereby decreasing water levels still further.

Seines and Treps

In all ponds studied, data concerning the numbers of fish caught in feeding and in check-areas, with seines and with traps, showed that in all cases more fish were caught in feeding-areas than in check-areas. On an average, at least three times as many fish were caught in feedingaxeas as were caught in corresponding check-areas. Where two or more check-areas of equal size were used at the same time in trapping, the results were averaged. The mumbers of fish caught in all ponds, both with seines and with traps in the feeding- and check-areas, and their corresponding percentages are sumarized in Table XXI.

The total number of fish which were caught with seines from all ponds was 17,234 . Disregarding the numbers of golden shiners, the numbers of other fish caught in the feeding-areas represented 81.4 percent of the total number caught with seines from all ponds.

TABLE XXI
THE NUMBERS OF FISH CAUGGT WITH TRAPS AND WITH SEINES IN FEEDINGAND IN CHECK \sim AREAS AND THEIR PERCENTAGES-

Pond	Traps				- Seines			
	Feedingarea		Check-Area		FeedingoArea		- Check Area	
	Number	Percent	Number	Percent	Number	Percent	Number	Percent
1	300	71.4	120	28.6	26	78.8	7	21.2
2	107	88.4	14	11.6	7,2362	99.5	40	00.5
3	280	84.6	51	15.4	103	82.4	22	17.6
4	42	75.0	14	25.0		eined sam	were	
5	127	88.2	17	11.8	28	80.0	7	20.0
6	767	69.3	339	30.7	72	75.8	23	24.2
7	84	76.4	26	23.6	9,645 ${ }^{2}$	99.7	25	00.3
TOTAL	1,707	74.6	581	25.4	17,110	99.3	124	00.7

$1_{\text {Percentages }}$ were computed by dividing the total numbers caught in a pond into the number caught in each area.
${ }^{2}$ Includes golden shiners taken in 1/4-inch mesh seines.

The total number of fish which were canght with traps from all ponds was 3,037. This total represents the number of fish taken from feedingareas and from the checkmareas in all ponds. On a per area basis, the numbers of fisk caught in the feeding-areas represented 74.6 percent of the total number caught with traps.

Species of Fish and their Relative Abundance

The following outline reviews in order of decreasing abundance the species of fish which were caught with seines and with traps in all ponds. The numbers of each species caught with seines and with traps, the percentages of the total catches, and the ponds from which the fish were caught are included.

Harge mubers of golden shimers were captured when minnow seines (1/4-inch mesh) were used in Ponds 2 and 7. The number of shiners accounted for approximately 98.0 percent of the total catch with seines. Since all other seined-samples were made with seines of $3 / 4$-inch mesh, percentages for the other species canght can be better expressed by omitting the numbers of golden shimers from the total. Also the golden shiner is the only fish included which is not considered a sport-fish and probably showld be omitted for practical purposes. The percentages shown for the fish caught with seines in items 2 through 9 are therefore based upon the total catch of all species, exclusive of golden shiners.

1. Golden shiner, Notemigonus crysoleucas (Mitchill)

Seines. Total number, 16,858 ; percentege of total 98.0
From Ponds 2, 6, and 7
Traps. Total mumer, 40 ; pexcentage of total, 1.3
From Ponds 1, 2, 3, 6, and 7
2. Bluegill, Lepomis macrochixus Rafinesque

Seines. Total number, 163: percentage, 43.4
From Ponds 3 and 6
Traps. Total number, 1,420; percentage of total, 46.8
rrom Ponds $1,3,4$, and 6
3. Green surfish, Lepomis cyanellus Rafinesque

Seines. Total number, 76; percentage, 20.2
From Ponds 1, 3, 5, 6, and 7
Traps. Total numer, 694; percentage of total, 22.9
From Ponds 1, 3, 4, 5, 6s and 7
4. Largemouth bass, Micropterus salmoides (Lacépéde)

Seines. Totel number, 53; percentage, 14.1
From Pomde 1, 2, 3, 5, 6, and 7
Traps. Total number, 394 ; percentage of total, 13.0
From Ponds 1, 2, 3, 5, 6, and 7
5. Black crappie, Pomoxis nigromaculatus LeSueur

Seines. Total number, 49; percentage, 13.0

From Ponds 3, 5, and 7

Traps. Total numbex, 348; percentage of total, 11.5
From Ponds 3. 4, 5, and 7
6. Black bullkead, Ictalurus melas (Rafinesque)

Seines. Total number, 31: percentage, 8.2
From Ponds 2, 5, and 7
Traps. Total number, $106 ;$ percentage of total, 3.5
From Ponds 2, 4, 5, and 7
7. Redear sumish, Lepomis microlophus (cưnther)

Seines. Total number, 4; percentage, 1.1
From Pond 3

Traps. Total number, 32; percentage of total, 1.1
From Ponds 1, 3, 4, and 7
8. Chamel catfish, Ictalurus punctatus (Rafinesque)

Seines. Total number, 0 .
Traps. Total number, 2 ; percentage of total, insignificant Erom Pond 7
9. Hybxid sunfish, Lepomis spp.

Seines. Total number, 0
Traps. Total number, 1 ; percentage of total, insignificant From Pond 1

For all species listed, except channel catfish and hybrid sunfish, considerably higher percentages in both numbers and weights of fish were caught in feeding-areas than in check-areas. Chanmel catfish and hybrid sunfish were not caught in sufficient mumbers to warrant conclusions.

Golden shiners were readily attracted to feeding-areas but were not collected in large numbers when seines with $3 / 4$-inch mesh or traps covered with 1 -inch mesh chicken wire were used. On many occasions shiners were seen in feeding-arems in Ponds 2, 6, and 7. Larger fish, either bass, bluegill, bullheads, crappie, or green sumfish, were seen in the areas at the same time. Whether the larger fish were attracted by the concentration of shiners, by the food, or by a combination of the two is not knowa. At times activities of fish were quite vigorous in feeding-areas as shiners scattered in all dixections when disturbed or pursued by the larger fish。

Bluegill, green sumfish, largemouth bass, black crappie, black bullheads, and redear sunfish were also attracted to feeding-areas. The numbers of fish for each of these species constituted about the same proportionate part of the total catch with seines (excluding golden shiners from the catch) as with traps. In clear ponds, bass and green sunfish were often observed snatching pellets of food before the pellets could sink to the bottom. Some of the fish captured from feeding-areas with seines were dissected in order to see what they had been eating. Pellets of food were found at one time or another in the digestive tracts of all species listed.

Activity of Fish

Fieldnotes concerning the observation periods showed that visible activities of fish were more pronounced in ponds with turbid water than in ponds with clear water. An absence of visible activity did not signify that fish were not wtilizing the area since comparable numbers of fish were caught, both with seines and with traps, in ponds with clear water and ponds with turbid water.

In ponds where activities of fish were observed, records showed that the fish were first noticeble seven to fifteen days after feeding was begun. When feeding was changed to the alternate feedimg-area, one to three days elapsed before the catch in the new feeding-area exceeded the catch of the new check-arex.

Alternate Feeding

There were no significant differences between feeding 3.5 pounds of food daily or feeding 5.0 pounds of food on alternate days, neither with
respect to the amount of visible activities nor with respect to the number of fish caught.

Possible Values of Supplemental Feeding Programs

Information gaimed from the study indicates that a supplemental feeding program would be valuable in the following respects.

1. Fish could be concentrated in the desired locations in ponds or in larger impoundments.

The tesults of seining and trapping duxing the study showed that the common species of fish found in farm ponds tended to congregate where food was placed. It seems probable that these species and perhaps other species found in laxgex impoundments would react to feeding in similar manner. Some feeding experiments were conducted in one of the large reservoirs in Oklahoma by Mx. Al Houser. The results of his investigations (personal communcation with Mr. Houser) indicated that many of the species of fish found in reservoirs were also atracted to feeding-areas. Some of Houser's experiments were conducted during the summer months of 1957 and January and February, 1958. During the sumper months, catches of 3,800 pounds of fish (including game nd non-game species) were taken in a single seine haul. Houser reported that cotal catches averaged somewhat larger durimg the months of January and February and that fewer game species, including bass, crappie, and channel catfish were taken during this period.
2. Concentrations of fish should lead to greater harvests.

The tremendous hervest of white crappie by hook and line
fishermen from Canton Reservoir were the results of large concentrations of fish in a small area (Buck and Cross, 1952). Concentrations were not caused by feeding in this case. Feeding or baiting techniques are employed around fishing docks in order to concentrate fish for the angler. Thowgh hook and line fishing was not tested sufficiently to dxaw definite conclusions about catches from feeding-areas, the fact that fish did concentrate should give fishermen a better chance to harvest them. A greater harvest of fish from areas of concentration would certainly be possible if seines, traps, or chemicals were used.
3. Concentrations of fish in desired locations in ponds or in larger impoundments should be of value in population studies.

Studies of fish populations with respect to numbers, kinds, and growth rates could possibly be made from fish obtained by seining or trapping in selected areas where they were concentrated by feeding. Likewise, seining or trapping in selected areas could be used to control populations by thinning undesirable numbers or species.

SUMMARY

1. Experiments were conducted in farm ponds from June 5 through November 13, 1956 to determine if feeding would concentrate $f i s h$, thereby allowing them to be more easily harvested. The results are presented.
2. The food used in the study was CO-OP 18-pexcent Lay-Mash in pellet form.
3. A method was devised for suspending a seine above the water and for dropping it, when desixed, in such a manner that warning to the fish was minimal.
4. In ordex of their abundance the following species were concentrated and captured with seines and/or with traps: golden shiners, bluegill, green sumfish, laxgemouth bass, black crappie, black bullhead, redear sumfish, channel catfish, and aybrid sunfish.
5. Greater numbers of the fish harvested were found in feeding-areas than in check-ares.
6. Data concerning fish caught with seines fincluding golden shimers) show that 99.3 percent of the total catch came from feedingareas. Excluding golden shiners from the catch with seines, 81.4 percent of the remaining species were caught in feeding-areas. Data concerning fish taken with traps reveal that 74.6 percent of the total catch was from the feeding-areas.
7. Fish were first observed to congregate in feeding-areas as early as 7 days in some ponds and as late as 15 days in other ponds after feeding
wes begum. After fish became accustomed to eating in an area and the feeding was changed to an alternate area, fish were observed to congregate in the new area after 1 day in some ponds and after 3 days in other ponds.

Aldrich, A. D. 1947. Eat more fish. Okla. Game and Fish News, 3(11): 14.
Anomymous. 1954. Fish conservation fundamentals. Sport Fish. Inst. Bul. $35,8 \mathrm{p}$ 。

Bennett, Ceorge W. 1943. Management of small artificial lakes. Ill. Nat. Hist. Surv. Bul. 22, 357-376.

Brown, Margaret E. 1957. The physiology of fishes. Academic Press Inc., New York. 2 v.

Buck, Homer and Erank B. Cross. 1952. Early limnological and fish population conditions of Canton Reservoir, Oklahoma, and fishery management recomendations. Rept. to the Okla. Fish and Game Council, reproduced by the Res. Found., Okla. A. \& M. Col., Stillwater, Okla., 110 p 。

Byrds I. B. and D. D. Moss. 1955. The production and management of Alabama's state-owned public fishing lakes. Trams. Amer. Fish. Soc., 85: 208-216.

Carlander, Kenneth D. 1952. Farm fish pond research in Iowa. Jour. Wild1. Mgmt., 16:258-261.
1955. The standing crop of fish in lakes. Jour. Fish. Res. Bd. Camada, 12: 543-570.

Davis, H.S. 1953. Culture and diseases of game fishes. Univ. of Calif. Press, Berkeley: 332 p.

Eschmeyer, R.W. 1951, ms. Where are we going in fish conservation? Paper presented at 5th Okla. Consery. Comif. Feb., 1951.

Heard, Bill. 1956. Fishing boom' Okla. Game and Fish News, 12(3): 16-17.
Houser, Alfred. 1957. A study of the comercial fishery of Lake Texoma. Okla. Fish. Res. Lab.Rept. 63, 32 p.

Hubbs, Carl L. and R.W. Eschmeyer. 1938. The improvement of lakes for fishing. Mich. Dept. Conserv. Inst. Fish. Res. Bul. 2, 233 p.

Irwin, W. H. 1946. Impoundments of Oklahoma and problems arising from their comstruction. Proc. ist Okla. Wildl. Conf., 3-11.

Irwin，W．H．1947．Fish production in farm ponds．Proc． 4 th Okia． Conserv．Convos 30－34．

1957．The management of large impoundments for fish pro＊ duction．Proc．10th Conf．Stheast．Assoc．Gane and ingh Commissrs． （1956），271．275．

Jemkins，Robert Mo 1957．How many fish inmy farm pond？Okia．Game and Fish News， $13(4): 14015$ ．

King，John wo 1955．Getting your share of fish？Okla．Game snd Fish News， $10(9): 7$ 。

1957．Fith conservetion facts．OkIa．Game and Figh News， $13(3): 23$.

Krumholw，Louis A．1952．Mangement of Indiama ponds for fishing．Jour． Wildi。Mgnt． $16: 254-257$ 。

Leonard，Edgar M．1950，ms．Ten years of management and fishing on an Oklahoma ferm pond．Paper presented at 12th Midwest Wildl．Comfon Columbus，Ohio，Dec． $14=16,1950$.

Maciolek，John A．1954．Axtificial fertiliweton of lakes and ponds． A review of the litergture． \mathbb{U} ．S．Fish mind widi．Servo，Spec．Sci． Rept． $113,41 \mathrm{p}$ ．

Mexcan，0．Lloyd．1952．Problems of farm fish pond management．Jour． WH1dI．Mgmt．，16：233－238．

Moorman，Robert B．1956．Some factors related to success of fish popu－ lations dr Iowatarm ponds．Trans．Aner．Wisho Soc．86：361－370．
 7：89－93．

Riggs Carl $D_{0,}$ and Kemmit E．Sned．1951．Cam Oklahoma miford extensive

Saila，Saul B．1952．Some xesults of tam pone management studies in Nem York．Jonr．Wild．Mgrt．16：279－282．
 1956．Spec．Pub．Sport Fisho Insto 2，31，84。
 Agx．Expt．Sta．Ala．Polytechnic Inst．Bul． $254,30 \mathrm{p}$ 。

Swingle， H 。S．1952．Farm pond investigations in Alabana Iour．Wild Mgutto 16：243－249．

Swingle, H. S. 1957. Preliminary results on the commercial production of channel catish in ponds. Proc. 10 th Conf. Stheast. Assoc. Game and Fish Comissrs. (1956), 160-162.
1945. Improvement of fishing in old ponds. Trans. 10th N.Amer. Wildi. Conf., 299-308.

Thompson, William H. 1947. Farm pondso-real and potential values. Prog. Fishocult., 9: 133-135.
1950. Present status of fishery managenemt in Oklahoma. Prog. Fishmoult. 12: 193-195.

Ward, H.C., E.M. Leonard, and I. Mayo Martin. 1954. Farm ponds for fish in Oklahoma. Spec. pulb. Okla. Game and fish Depto, 31 p .

Westerman, \mathbb{F}. A. 1949. Warmawater fishes. Mich。Conserv., 18(3): 3-6.
1949. Trout fishing-esport or meat? Mich. Conserv., $18(2): 3.7$.
$A P P E \mathbb{N} \mathbb{I}$

APPENDIX A
FISH CAUGHT WITH SEINES IN POND 1

Date	Feeding Area	Species of Fish ${ }^{7}$	Total Numbers From Areas		Total Pounds From Areas		Length Range in Inches From Areas	
			Feeding	Check	Feeding	Check	Feeding	Cheok
July 272	1	1．bass	2	1	0.11	0.18	5．3－5．5	6.8
		g．sunfish	11	2	0.70	0.20	1．3－3．5	4．3－5．3
Sept。 10	4	1．bass	6	1	1.55	0.32	7．0－8．1	8.1
		g．sunfish	7	3	1.64	0.52	5.607 .8	5．1－6．5
TOTAL			26.	7	4.00	1.22		

l_{1} 。bass largemouth bass；g。 sunfish＝green sunfish．
21／4－inch mesh seines used．

APPENDIX B
FISH CAUGHT WITH TRAPS IN POND 1

Date	Species of Fish ${ }^{1}$	Feeding-Area		Check Areas					
		Number	Pounds Total Weight						
		Area 1		Area 2		Area 3		Area 4	
Juiy 24	1. bass	10	2.03	5	0.88	3	0.58	2	1.03
	g. sunfish	13	4.04	0		5	1.19	5	1.13
	g o shiner	0		0		0		1	0.20
	h. sunfish	1	0.42	0		0		0	
July 25	1. bass	7	1.30	1	0.22	1	0.19	1	0.13
	g. sunfish	8	2.11	4	0.81	3	0.72	8	1.68
July 26	1. bass	6	1.41	4	1.90	2	0.29	0	
	go sunfish	3	0.68	3	0.64	3	0.35	0	
July 27	1. bass	3	0.79	0		0		2	0.24
	g. sunfish	5	0.91	2	0.43	1	0.12	1	0.05
July 28	1. bass	0		1	0.18	0		1	0.16
	g. sunfish	2	0.39	2	0.20	2	0.71	2	0.57
July 30	1. bass	4	1.21	1	0.68	4	1.23	0	
	go sunfish	8	1.89	5	1.44	2	0.53	6	1.77
July 31	1. bass	1	0.17	0		0		1	0.13

APPENDIX B（Continued）

		Area I		Area 2		Area 3		Area 4	
July 31	g．sunfish	9	1.73	0		4	1.03	2	0.31
	$r_{\text {．}}$ ，sunfish	0		0		0		1	0.44
Aug。1	1．bass	0		0		1	0.18	1	0.19
	g．sunfish	6	1.48	0		2	0.60	1	0.24
	rosunfish	0		0		0		1	0.42
Aug。2	1．bass	1	0.24	0		1	0.13	0	
	go sunfish	4	1.06	1	0.15	2	0.52	0	
Aug。 3	1．bass	3	1.21	0		0		0	
	g．sunfish	6	1.14	0		3	0.83	2	0.66
Aug。 4	1．bass	1	0．20	1	0.15	4	0.73	0	
	g．sunfish	0		3	1.21	0		3	0.90
Aug． 6	1．bass	1	0.27	1	0.24	1	0.70	4	0.64
	go sunfish	10	2.04	3	0.81	0		3	0.73
Aug。 7	1．bass	3	1.12	1	0.79	2	0.80	0	
	g．sunfish	4	0.98	0		0		4	0.64
		Area 4		Area 2		Area 3		Area 1	
Aug． 23^{2}	1．bass	4	1.04	2	0.70	0		0	
	g．sunfish	4	1.09	0		0		2	0.48

APPENDIX B（Continued）

		Area 4		Area 2		Axea 3		Area 1	
Aug． 24	1．bass	3	1.12	0		0		0	
	gosunfiish	2	0.44	1	0.19	1	0.15	1	0.21
Aug． 25	1．bass	4	1.36	3	1.65	0		1	0.34
	g．sunfish	3	0.61	0		0		2	0．46
Aug。 26	1．bass	1	0.11	2	0.32	0		0	
	g．sunfish	3	0.90	0		1	0.17	0	
Aug。 27	1．bass	3	0.70	2	0.64	0		0	
	g．sunfish	1	0.38	0		0		1	0.24
Aug． 28	1．bass	2	0.70	0		1	0.14	1	0.20
	gosunfish	1	0.42	3	0.96	0		1	0.13
Aug。29	1．bass	5	1.39	2	0.79	0		1	0.17
	gosunfish	2	0.66	1	0.11	0		0	
		Area 1		Area 2		Area 3		Area 4	
Oct． 3^{2}	1．bass	3	0.64	2	0.47	0		4	0.93
	g．sunfish	5	0.90	3	1.01	1	0.11	2	0.43
Oct． 7	1．bass	6	1.49	9	1.70	2	0.80	3	0.53
	g．sunfish	13	3.14	7	2.28	3	0.62	19	4.98
Oct． 11	1．bass	7	1.89	2	0.41	0		10	4.56

APPENDIX B (Continued)

		Area I		Area 2		Area 3		Area 4	
Oct. 11	g. sunfirh	26	6.59	6	1.68	1	0.30	25	6.39
Oct. 16	1。bass sunfish	3 14	$\begin{aligned} & 0.51 \\ & 3.52 \end{aligned}$	5 16	1.80	0	0.43	0 3	0.47
		Area 4		Area 2		Area 3		Area 1	
Oct. 22^{2}	1. bass	9	1.95	5	1.36	2	. 0.46	3	0.96
	g. sunfish	8	2.50	9	2.47	0		6	1.60
	bluegill	0		1	0.53	0		0	
Oct. 28	1. bass	7	2.66	5	1.85	1	0.23	2	0.49
	g. sunfish	7	2.26	4	1.20	0		0	
Nov. 5	1. bass	5	1.65	3	1.43	0		5	0.79
	g. sunfish	12	4.01	9	2.65	1	0.34	4	1.22
Nov. 13	1. bass	4	1.93	4	1.47	0		0	
	go sunfish	12	4001	6	2.01	0		1	0.14
total		300	79.39	150	44.91	61	15.18	149	37.98

I $_{\text {。 bass }}$ = largemouth bass; g. sunfish s green sunfish; g. shiner $=$ golden shiner; h, sunfish $=$ hybrid sunfish; rosunfish m redear sunfish.
${ }^{2}$ Feeding changed to area indicated.

APPENDIX C
A COMPARISON OF THE NUMBERS, WEIGHTS, AND RANGES IN LENGTH OF' FISH CAUGHT WITH TRAPS IN FEEDING- AND IN CHECK AREAS IN POND I

Species of Fish	Total Numbers in Areas		Total Pounds in Areas		Length Range in Inches	
	Feeding	Check ${ }^{\text {I }}$	Feeding	Check ${ }^{\text {I }}$	Feeding	Check
largemouth bass	106	128	29.09	37.58	6.0 -13.6	$6.0-12.4$
bluegill	0	1		0.53		8.0
green sunfish	193	228	49.88	58.90	4.809 .3	40308.8
redear sunfish	0	2		0.86		7.8
hybrid sunfish	1	0	0.42		7.0	
golden shiner	0	1		0.20		7.5
TOTAL	300	360	79.39	98.07		

${ }^{1}$ Includes more than one check-area.

APPENDIX D
FISH CAUGHT WITH SEINES IN POND 2

Date	Feeding Area	Species of Fish	Total Numbers From Areas		Total Pounds From Areas		Length Range in Inches From Areas	
			Feeding	Check	Feeding	Check	Feeding	Check
June 20	1	1. bass -	3	1	2.65	0.19	11. $5-14.0$	$\begin{gathered} 7.3 \\ 11.3-11.5 \end{gathered}$
		b. bullhead	11	2	9.36	1.58	10.8-12.8	
July 13	2	b. bullhead	2	0	1.68		11.5-11.8	
July 18	2	1. bass	2	0	1.37		10.0-11.8	
		b. bullhead	4	0	3.31		10.8-11.5	
Aug. 222	1	1. bass	3	2	1.07	0.13	5.5-11.5	5.5-5.6
		b. builhead	2	1	1.43	0.80	10.8-11.5	11.3
		go shiner	72003	33	36.00	0.26	1.5-5.0	1.5-5.0
Sept。18	2	1. bass	5	0	1.42		$\begin{array}{r} 6.5-11.5 \\ 10.5-12.3 \end{array}$	12.0
		b. bullhead	4	1	3.41	$0 \% 94$		
TOTAL		\because	7236	40	61.60	3.90		
l_{1} 。bass = largemiouth bass; bobulhead = black bullhead; g. shiner = golden shiner.								
$21 / 4$ inch mesh seines used.								
3 Total number estimated by weight-count method.								

APPENDIX E

FISH CAUGHT WITH TRAPS IN POND 2

APPENDIX E (Continued)

APPENDIX E（Continued）

		Area 1		Area 2		Area 3	Area 4	
Sept． 5	b．bullhead	2	1.72	0		no trap	0	
Sept。 7	1．bass b。bullhead	4 2	$\begin{aligned} & 2.46 \\ & 1.72 \end{aligned}$	1	0.24	no trap	1	0.18
Sept。9		0		0		no trap	0	
		Area 2		Area 1		Area 3		Area 4
Sept。 11	b．bullhead g．shiner	1	$\begin{aligned} & 0.95 \\ & 0.13 \end{aligned}$	0		no trap	0	
Sept。 13	1．bass	6	0.91	0		no trap	0	
Sept。 15	b。bullhead	0		1	0.85	no trap	0	
Sept． 17	1．bass b。bullhead	7	$\begin{aligned} & 1.13 \\ & 1.20 \end{aligned}$	0		no trap	0	
Sept． 19	1．bass b．bullhead	2 2	$\begin{aligned} & 0.40 \\ & 2.39 \end{aligned}$	0		no trap	0	0.32

APPENDIX E (Continued)

	Area 2		Area 1		Area 3		Area 4	
Sept. $21 \quad \begin{aligned} & \text { I. bass } \\ & \text { bobullhead }\end{aligned}$	5 2	$\begin{aligned} & 1.12 \\ & 2.29 \end{aligned}$	1	0.21		no trap	0 0	
TOTAL	107	68.89	13	9.74	7	5.64	13	10.12

APPENDIX F
A COMPARISON OF THE NUMBERS, WEIGHTS, AND RANGES IN LENGTH OF FISH
CAUGHT WITH TRAPS IN FEEDING AND IN CHECK-AREAS IN POND 2

Species of Fish	Total Numbers in Areas		Total Pounds in Areas		Length Range in Inches	
	Feeding	Check ${ }^{\text {l }}$	Feeding	Check I	Feeding	Check
largemouth bass	50	19	21.64	15.20	5.3-15.3	6.3-15.0
black bullhead	56	14	47.12	10.30	10.5-13.0	$6.4-12.6$
golden shiner	1	0	0.13		6.5	
TOTAL	107	33	68.89	25.50		

${ }^{1}$ Includes more than one check-area.

APPENDIX G
FISH CAUGHT WITH SEINES IN POND 3

Date	Feeding Area	Species of Fish ${ }^{1}$	Total Numbers From Areas		Total Pounds From Areas		Length Range in Inches From Areas	
			Feeding	Check	Feeding	Check	Feeding	Check
June 21	4	1．bass	3	0	1.86		$9.0=12.0$	
		bluegill	17	5	2.28	0.51	3.808 .0	2．3－5．1
		b．crappie	4	3	0.65	0.43	5．5－7．0	5．3－7．0
		r．sunfish	1	0	0.32		7.5	
July 19	1	1．bass	2	0	1.13		$8.3-11.5$	
		bluegill	53	7	6.93	0.69	1．3－6．5	2．0－5．5
		b．crappie	1	1	0.21	0.25	7.3	7.8
Aug。 20	4	1．bass	2	1	1.20	0.30	9．5－11．5	8.1
		bluegill	10	3	1.54	0.41	4．3－6．5	4．5－5．8
		b。crappie	5	2	0.89	0.26	4．9－7．6	5．5－7．0
		g．sunfish	2	0	0.16		4．5－4．8	
		r．sunfish	3	0	0.51		$5.1-6.3$	
TOTAL			103	22	17.68	2.85	＊	

l_{1} ．bass ． largemouth bass；b。crappie $=$ black crappie；r．sunfish $=$ redear sunfish；gosunfish $=$ green sunfish．

APPENDIX H
FISH CAUGHT WITH TRAPS IN POND 3

Date	Species of Fish ${ }^{1}$	Feeding-Area		Check-Areas					
		Number	Pounds Total Weight	Number	Pounds Total Weight	Number	Pounds Total Weight	Numbe	Pounds Total Weight
		Area 1		Area 2		Area 3		Area 4	
July 18	bluegill	11	1.32	0		0		2	0.15
	b. crappie	3	0.36	1	0.10	5	0.72	3	0.24
July 19	bluegill	8	0.75	0		1	0.10	0	
	b. crappie	8	1.11	0		3	0.44	6	0.52
July 20	1 。bass	2	2.21	2	1.08	0		1	1.02
	bluegill	8	0.97	1	0.09	1	0.08	2	0.33
	b. crappie	6	0.92	1	0.26	3	0.34	2	0.35
	rosunfish	2	0.67	0		0		0	
July 21	1. bass	2	1.47	0		1	0.30	0	
	bluegill	11	1.30	1	0.12	2	0.19	1	0.15
	r. sunfish	1	0.10	0		0		0	
	b. crappie	0		0		3	0.36	4	0.51
July 22	1. bass	0		1	0.32	0		0	
	bluegill	5	0.68	1	0.09	2	0.34	1	0.11
	b. crappie	3	0.41	0		2	0.35	2	0.32

APPENDIX H (Continued)

		Area 4		Area 2		Area 3		Area 1	
July 23	1. bass	1	0.06	0		0		0	
	bluegill	0		0		0		3	0.31
	b. erappie	3	0.49	1	0.08	5	1.03	2	0.29
Jury 24	bluegill	12	0.95	0		1	0.17	1	0.08
	b. crappie	2	0.16	0		3	0.28	1	0.06
July 25	1. bass	2	1.82	2	0.43	0		1	0.70
	bluegill	13	1.37	0		0		1	0.07
	b. crappie	5	0.75	0		0		2	0.30
July 26	1. bass	0		1	0.82	0		0	
	bluegill	11	0.97	0		0		0	
	b。crappie	3	0.42	0		2	0.24	1	0.06
July 27	1. bass	0		0		1	0.80	0	
	bluegill	5	0.51	0		0		0	
	bo crappie	0		2	0.32	1	0.07	1	0.07
July 28	bluegill	8	0.75	0		0		1	0.11
	b. crappie	2	0.27	1	0.10	1	0.04	0	
July 30	1. bass	3	1.63	1	0.30	0		2	1.16
	bluegill	4	0.63	1	0.08	1	0.09	1	0.08
	b.crappie	3	0.59	3	0.32	3	0.43	0	
	r. sunfish	1	0.15	0		2	0.31	0	

APPENDIX H（Gontinued）

		Area 4		Area 2		Area 3		Area 1	
July 31	1．bass	0		1	0.45	0		1	0.88
	bluegill	7	0.42	0		0		1	0.14
	b．crappie	4	0.36	2	0.30	1	0．11	0	
	r．sunfish	2	0.25	0		0		0	
Aug。1	1．bass	1	0.68	1	0.41	0		0	
	bluegill	7	0.69	0		2	0.27	0	
	b．crappie	2	0.26	2	0.17	0		1	0.08
Sept。 3	bluegill	3	0.46	1	0.06	0		0	
	b．crappie	0		0		2	0.17	1	0.35
	g．sunfiish	4	0.64	0		2	0.26	0	
	r．sunfish	3	0.46	0		0		0	
Sept． 5	bluegill	4	0.28	0		0		0	
	b．crappie	5	1.05	0		0		0	
	g．sunfish	5	0.88	0		6	0.93	0	
	rosunfish	4	0.62	0		0		0	
Sept． 7		2	1.83	0		0		0	
	bluegill	1	0.10	0		0		0	
	b．crappie	5	1.26	1	0.17	0		3	0.90
	g．sunfish	2	0.35	1	0.19	2	0.40	0	
	r．sunfish	1	0.17	0		1	0.16	1	0.23
Sept。 9	bluegill	3	0.20	0		1	0.11	0	
	b．crappie	3	0.41	1	0.10	0		0	
	g．sunfish	1	0.06	0		0		0	

APPENDIX H (Continued)

APPENDIX H（Continued）

			1		2				
Sept。 21	g．sunfish	1	0.18	0		0		0	
	g．shiner	1	0.13	0		0		0	
Oct． 3	1．bass	1	0.32	0		0		0	
	bluĕgill	2	0.15	1	0.05	0		0	
	b．crappie	2	0.20	0		0		0	
	g．sunfish	3	0.48	0		0		0	
Oct． 7	bluegill	2	0.09	0		0		0	
	go sunfish	2	0.34	0		0		0	
	r．sunfish	1	0.16	0		0		0	
Oct． 10				t	ere mo	nto	ng ar		
Oct． 11		0		0		0		0	
Oct． 13		0		0		0		0	
Oct． 22	bluegill	1	0.07	0		0		0	
total		280	47.97	31	6.41	63	9.63	59	

I_{1} 。bass＝largemouth bass；g．sunfish \approx green sunfish；r．sunfish $=$ redear sunfish；g。 shiner $=$ golden shiner；b．crappie $=$ black crappie．

APPENDIX I
A COMPARISON OF THE NUMBERS, WEIGHTS, AND RANGES IN LENGTH OF FISH CAUGHT WITH TRAPS IN FEEDING* AND IN CHECK-AREAS IN POND 3

Species of Fish	Total Numbers in Areas		Total Pounds in Areas		Length Range in Inches	
	Feeding	Check	Feeding	Check ${ }^{1}$	Feeding	Check
largemouth bass	21	17	14.94	9.06	4.8014 .3	6.8-13.0
bluegill	140	35	14.26	3.60	3.5-7.1	3.5-6.5
black crappie	75	86	11.66	11.91	4.3-8.6	4.0-8.0
green sunfish	21	11	3.20	1.78	4.806 .4	4.906 .0
redear sunfish	22	4	3.78	0.70	4.3-7.5	5.0-6.4
golden shiner	1	0	0.13		6.1	
TOTAL	280	153	47.97	27.05		

${ }^{1}$ Includes more than one check-area.

APPENDIX J
FISH CAUGHT WITH TRAPS IN POND 4

APPENDIX J (Continued)

		Area 2		Area 1	
Aug. 14	bluegill	1	0.08	2	0.19
	b. crappie	0		2	0.47
Aug, 15	b, bullhead	0		1	0.88
	bluegill	0		3	0.35
	g 。 sunfiish	0		1	0.08
Aug. 16		0		0	
Aug. 17	b. bullhead	1	0.80	1	0.89
	b. crappie	2	0.23	0	
	g, sunfish	2	0.37	0	
	resunfish	1	0.14	0	
Aug. 18	b. bullhead	2	1.75	0	
	bluegill	2	0.20	0	
Aug. 20	b. bullhead	1	0.82	0	
	b. crappie	1	0.51	1	0.14
	g. sunfish	1	0.14	0	
Aug. 21	bobullhead	4	3.30	0	

APPENDIX J (Continued)

Aug。	21	g. sunfish r 。 sunfish	Area 2		Area 1	
			1	0.18	0	
			1	0.18	0	
total			42	15.97	14	5.61

I_{b}. bullhead $=$ black bullhead; go sunfish $=$ green sunfish; r. sunfish a redear sunfish; b. crappie Ξ black crappie.

APPENDIX K
A COMPARISON OF THE NUMBERS, WEIGHTS, AND RANGES IN LENGTH OF FISH GAUGHT WITH TRAPS IN FEEDING AND IN CHECK-AREAS IN POND 4

Species of Fish	Total Numbers in Areas		Total Pounds in Areas		Length Range in Inches	
	Feeding	Check	Feeding	Check	Feeding	Check
bluegill	13	5	1.12	0.54	$4.0-5.8$	4.5×5.5
black bullhead	14	5	12.01	4.44	11.0-12.0	10.8-11.8
black crappie	8	3	1.70	0.55	5.009 .5	5.0.8.0
green sunfish	4	1	0.69	0.08	5.0-6.3	4.3
redear sunfish	3	0	0.45		5.3-5.5	
TOTAL	42	14	15.97	5.61		

APPENDIX L
FISH CAUGHTT WITH SEINES IN POND 5

Date	Feeding Area	Spécies of Fish ${ }^{1}$	Total Numbers From Areas		Total Pounds From Areas		Length Range in Inches From Areas	
			Feeding	Check	Feeding	Check	Feeding	Check
July 24	1	1. bass	4	0	4.46		9.3-16.1	
		b. bullhead	2	0	1.71		10.0-11.3	
		b. crappie	12	3	2.41	0.23	4.8 -9.3	4.2-4.8
		g. sunfish	0	1		0.11		5.0
Aug。 24	4	1. bass	1	0	0.43		9.3	
		b. builhead	0	1		1.37		12.0
		b. crappie	9	2	1.95	0.60	$4.3-10.0$	4.5-9.0
TOTAL			28	7	10.96	2.31		

11. bass = largemouth bass; b. bullhead $=$ black bullhead; b. crappie $=$ black crappie; go sunfish $=$ green sunfish.

APPENDIX M
FISH CAUGHT WITH TRAPS IN POND 5

Date	Species of Fish ${ }^{1}$	Feeding-Area		Check-Areas					
		Number	Pounds Total Weight						
		Area 1		Area 2		Area 3		Area 4	
Aug. 8	1. bass	3	6.17	0		0		0	
	b. crappie	2	1.19	0		0		0	
	b. bulihead	0		1	1.22	0		0	
Aug。 9	b. crappie	4	0.95	1	0.08	0		0	
	b. bullhead	1	0.70	0		0		1	1.19
Aug. 10	b. crappie	4	0.80	1	0.07	1	0.11	0	
	b. builhead	1	1.30	0		0		0	
Aug. 11	1. bass	1	0.39	0		0		0	
	b. crappie	3	0.77	0		0		1	0.07
Aug. 13	b. crappie	5	1.10	2	0.18	0		0	
Aug. 14	b, crappie	5	0.59	1	0.51	0		1	0.07
	g. sunfish	1	0.10	0		0		0	
Aug. 15	b. crappie	8	1.76	0		1	0.12	1	0.10

APPENDIX M（Continued）

		Area 4		Area 2		Area 3		Area 1	
Aug． 16	b．crappie	7	0.35	0		0		2	0.10
	g．sunfish	3	0.21	0		0		0	
Aug。 17	1．bass	2	3.44	0		0		0	
	b．crappie	6	0.86	1	0.09	2	0.14	1	0.05
Aug。 18	b．crappie	16	1.54	2	0.08	0		1	0.10
	g．sunfish	2	0.21	0		0		0	
	b．bullhead	1	0.73	0		0		0	
Aug。20	b．crappie	10	1.05	1	0.13	1	0.10	2	0.22
	g．sunfish	2	0.31	0		0		0	
	b．bullhead	1	1.20	0		0		0	
Aug。 21	b．crappie	21	1.17	5	0.20	1	0.04	3	0.12
	b．bullhead	0		0		1	1.40	0	
TOTAL		109	26.89	15	2.56	7	1.91	13	2.02
		Area 1		（no traps used in area 2 and area 3）				Area 4	
Sept． 24	1．bass	3	4.65					0	
	b．crappie	3	0.93					1	0.12
Sept． 25	b．bulihead	1	1.05					0	
	b．crappie	1	0.16					0	

APPENDIX M (Continued)

		Area 1		(no traps used in area 2 and area 3)	Area 4	
Sept. 26	1. bass b. crappie	1 3	$\begin{aligned} & 0.46 \\ & 0.66 \end{aligned}$		0 1	0.14
		Area 4		(no traps used in area 2 and area 3)	Area 1	
Sept. 27	1. bass b. crappie	0 2	0.50		1 2	$\begin{aligned} & 0.46 \\ & 0.66 \end{aligned}$
Sept。28	1. bass b. crappie	1	$\begin{aligned} & 2.87 \\ & 0.12 \end{aligned}$		0	
Sept. 29	b. orappie	2	0.66		0	
TOTAL		18	12.06		5	1.38

ll $_{\text {. bass }}=$ largemouth bass; bobulihead a black bullhead; b. crappie $=$ black crappie; g. sunfish $=$ green sunfish.

APPENDIX N
A COMPARISON OF THE NUMBERS, WEIGFTS, AND RANGES IN LENGTH OF FISH CAJGHT WITH TRAPS IN FEEDING- AND IN CHECK-AREAS IN POND 5

Species of Fish	Total Numbers in Areas		Total Pounds in Areas		Length Range in Inches	
	Feeding	Cheek ${ }^{\text {I }}$	Feeding	Check ${ }^{\text {I }}$	Feeding	Check
largemouth bass	11	1	17.98	0.46	9.0-16.5	$9.5-12.3$
black bullhead	5	3	4098	3.81	10.0-12.0	11.5-12.3
black crappie	103	36	15.16	3.60	$3.6-11.0$	3.5-10.0
green sunfish	8	0	0.83		$4.8-5.0$	
TOTAL	127	40	38.95	7.87		

Includes more than one check-area.

APPENDIX 0
FISH CAUGHT WITH SEINES IN POND 6

Date	Feeding Area	Species of Fish ${ }^{1}$	Total Numbers From Areas		Total Pounds From Areas		Length Range in Inches From Areas	
			Feeding	Check	Feeding	Check	Feeding	Check
July 9	3	1. bass	3	0	3.59		9.3-16.0	
		bluegill	38	11	2.88	0.95	$4.3-6.3$	4.0-5.8
		g. sunfish	4	2	0.72	0.14	4.5-7.3	5.0-5.1
		g. shiner	3	1	0.32	0.10	6.5-7.0	7.0
Aug。 7	1	1 . bass	2	0	1.43		11.0-11.3	
		bluegill	12	7	0.91	0.38	4.3-5.4	4.0-4.5
		g. sunfish	9	2	0.74	0.22	5.0-5.8	$5.1-5.8$
		g. shiner	1	0	O. 17		7.0	
TOTAL			72	23	10.70	1.79		

1. bass = largemouth bass; go sunfish $=$ green sunfish; g. shiner $=$ golden shiner.

APPENDIX P
FISH CAUGHT WITH TRAPS IN POND 6

Date	Species of Fish ${ }^{1}$	Feeding Area		Chech－Areas			
		Number	Pounds Total Weight	Number	Pounds Total Weight	Number	Pounds Total Weight
		Area 1		Area 2		Area 3	
Auge 3^{2}	bluegill	150	16.50	75	7.50	80	9.40
	ge shiner	10	1.60	6	0.84	6	0.84
Aug． 4^{2}	1．bass	1	0.70	0		0	
	bluegill	53	6.36	15	1.52	20	1．83
	g 。 shiner	0		0		1	0.18
Aug． 62	bluegill	128	14.36	46	3.45	62	6.10
	g 。 shiner	0		0		1	0.17
Aug。 7	bluegill	56	3.41	27	1.40	17	1.16
	g．sunfish	10	0.75	12	0.85	16	1.48
	g 。 shiner	0		0		1	0.10
Aug。 8	bluegill	58	4.24	5	0.45	29	2.16
	g ，sunfish	11	1.06	6	0.50	7	0.77
	g 。 shiner	2	0.24	2	0.28	0	

APPENDIX P (Continued)

		Area 3		Area 2		Area 1	
Aug。 9	bluegill	26	1.83	8	0.49	18	1.47
	g. sunfish	8	0.74	1	0.16	9	1.01
	g. shiner	1	0.12	1	0.15	0	
Aug. 10	bluegill	32	2.88	21	1.32	16	1.00
	g. sunfish	10	0.89	6	0.66	8	0.90
	go shiner	2	0.33	1	0.14	0	
Aug. 11	bluegill	46	3.06	3	0.43	16	1.20
	gosunfish	6	0.76	6	0.60	2	0.22
Aug. 13	bluegill	39	3.22	16	1.14	19	1.36
	g. sunfish	4	0.44	5	0.61	3	0.25
Aug. 14	bluegill	23	1.77	7	0.53	10	0.57
	g. sunfich	2	0.19	2	0.25	4	0.65
Aug。 15	bluegill	34	2.20	12	0.82	11	1.07
	g. sunfish	13	1.66	8	0.78	13	1.26
	g. shiner	1	0.12	0		0	

APPENDIX P (Continued)

		Area 3		Area 2		Area 1	
Aug. 16	bluegill	33	2.04	5	0.28	10	0.59
	gosunfish	8	0.64	2	0.16	1	0.10
TOTAL		767	72.11	298	25.31	380	35.84

Il. bass = largenouth bass; go sunfish $=$ green sunfish; g, shinex a golden shiner.

2AImost all of the fish captured on these dates were dead.

APPENDIX Q
A COMPARISON OF THE NUMBERS, WEIGHTS, AND RANGES IN IENGTH OF FISH GAUGFP WITH TRAPS IN FEEDING AND IN CHECK-AREAS IN POND 6

Species of Fish	Total Numbers in Areas		Total Pounds in Areas		Length Range in Inches	
	Feeding	Check ${ }^{1}$	Feeding	CheckI	Feeding	Check
largenouth bass	1	0	0.70		11.0	
bluegill	678	548	61.87	47.24	3.5-6.0	$2.8-5.8$
green sunfisis	72	111	7.13	11.21	4.4-6.0	4.3-7.3
golden shiner	16	19	2.47	2.70	$6.0-7.0$	6.0-6.5
TOTAL	767	678	72.11	61.15		

Includes more then one checkwarea.

APPENDIX R
FISH CAUGHT WITH SEINES IN POND 7

Date	Feeding Area	Species of Fish ${ }^{1}$	Total Numbers From Areas		Total Pounds From Areas		Length Range in Inches From Areas	
			Feeding	Cheek	Feeding	Check	Feeding	Check
June 25	1	1. bass	2	0	1.60		$10.5=11.0$	
		b. bullhead	1	0	0.70		10.5	
July 21	2	1. bass	5	0	4.89		10.5-12.5	
		b. crappie	4	1	1.89	0.29	8.3-9.3	7.0
		g, sunfish	3	1	0.57	0.25	$4.8-7.0$	6.5
Aug. 142	1	I. bass	2	0	1.54		$10.5 \mathrm{min.5}$	
		b. crappie	1	1	0.30	0.63	8.0	9.5
		g. sunfich	27	2	1.51	0.18	1.8-7.0	3.5-4.8
		g. shiner	96003	20	48.00	0.15	$2.5-6.5$	2.5-6.0
TOTAL			9645	25	61.00	1.50		

1. bass \equiv largemouth bass; b. bullhead a black bullhead; b. crappie a black crappie; g. sunfish $=$ green sunfish; g, shiner a golden shiner.

21/h-inch mesh seines used.
3Fotal weight estimated by weight-count method.

APPENDIX S
FISH CAUGHT WITH TRAPS IN POND 7

Date	$\begin{gathered} \text { Species } \\ \text { of } \\ \text { Fish } \end{gathered}$	FeedingoArea		Check-Areas			
		Number	Pounds Total Weight	Number	Pounds Total Weight	Number	Pounds Total Weight
		Area 1		Area 2		Area 3	
Aug, 17	1. bass	3	3.39	0		0	
	b. bullhead	0		0		1	0.65
	b. crappie	4	1.66	0		1	0.38
	go sunfish	1	0.18	2	0.27	2	0.04
		Area 2		Area 1.		Area 3	
Aug. 18	1. bass	1	0.70	$3 \quad 3.02$			
	b. builhead	0		1	0.72	0	
	b. crappie	0		2	0.79	0	
	g. sunfish	0		1	0.28	2	0.32
Aug. 20	1. bass	0	0.66	1	0.74	1	0.71
	b. erappie	2		0		0	
	g. sunfish	0		1	0,20	0	
Aug. 21.	1. bass	2	2.13	2	2.08	4	3.37
	b. builhead	1	0.72	0	.	0	
	b. crappie	6	3.95	0		0	

APPENDIX S（Continued）

		Area 2		Area 1		Area 3	
Aug。 21	g．sunfish	2	0.46	0		0	
Aug。 22	I．bass	2	1.74	0		1	I． 22
	b．crappie	2	1.00	0		0	
	g 。sunfish	2	0.13	1	0.18	0	
Aug． 23	b．builhead	1	0.70	0		0	
	b．crappie	2	0.84	0		0	
	g．sunfish	1	0.43	1	0.09	1	0.20
	g．shiner	0		0		1	0.06
	c．catfish	1	1． 22	0		0	
Aug． 24	g．sunfish	4	0.36	1	0.10	1	0.16
		Area 1		Area 2		Area 3	
Aug． 25	1．bass	0		11.02		0	
	b．crappie	0		20.72		0	
	g 。 sunfiish	1	0.13	1	0.08	0	
Aug． 27	1．bass	1	0.96	1	0.80	000	
	b，crappie	0		1	0.50		
	g．sunfìsh	0		1	0.27		
Aug． 28	1．bass	2	$\begin{aligned} & 1.79 \\ & 0.57 \end{aligned}$	0		0	
	b．crappie	1					
	g 。 sunfish	0		1	0.05		

APPENDIX S (Continued)

		Area 1		Area 2		Area 3	
Aug. 28	c. catfish	1	3.26	0		0	
Aug。 29	b. crappie	1	0.31.	0		0	
	g. sunfish	6	0.52	1	0.06	0	
	r. sunfish	0		0		1	0.23
Aug. 30	1. bass	2	2.47	0		0	
	b. bullhead	0		1	0.81	0	
	b. crappie	2	0.98	0		0	
	g. sunfilsh	2	0.13	0		0	
		Area 2		Area 1		Area 3	
Sept. 24	1. bass	4	2.86	1	0.79	0	
	b. crappie	3	1.40	0		0	
	g. sunfish	0		1	0.17	0	
Sept. 25	1. bass.	2	1.99	0		0	
	b. bullhead	0		1	0.78	1	0.83
	b. crappie	2	1.06	0		0	
	g. sunfish	0		1	0.24	0	
Sept. 26	b. crappie	2	0.78	0		0	
	g. shiner	1	0.10	0		0	

APPENDIX S（Continued）

			Area 1		Area 2		Area 3	
Sept。 27		1．bass	2	1.56	0		0	
		b．crappie	1	0.40	0		0	
		g．sunfish	1	0.32	2	0.47	0	
Sept． 2		1．bass	3	2.65	0		0	
		b．crappie	2	0.86	0		0	
		b．bullhead	0		2	1.65	0	
		g 。 sunfish	3	0.70	1	0.18	1	0.16
Sept． 29		1．bass	1	0.88	0		0	
		b．crappie	1	0.47	0		0	
TOTAL			84	47.42	35	17.06	17	8.33

II．bass $=$ largemouth bass；b。bullhead $=$ black bullhead；b．crappie $=$ black crappie；g．sunfish $=$ green sunfish；r ．sunfiish $=$ redear sunfish；g．shiner $=$ golden shiner；c．catfish channel catfish．

APPENDIX 1
A COMPARISON OF THE NUMBERS, WEIGHTS, AND RANGES IN LENGTH OF FISH CAUGHT WITH TRAPS IN FEEDING- AND IN CHECK-AREAS IN POND 7

Species of Fish	Total Numbers in Areas		Total Pounds in Areas		Length Range in Inches	
	Feeding	Check 1	Feeding	CheckI	Feeding	Check
Iargemouth bass	25	15	23.12	13.75	10.3-12.9	10.5-12.3
black bullhead	2	7	1.42	5.44	10.5-10.8	10.3-11.5
black crappie	31	6	14.94	2.39	7.5-13.0	$7.5-8.5$
green sunfish	23	22	3.36	3.52	3.807 .5	3.8-7.0
redear sunfish	0	1		0.23		6.0
golden shiner	1	1	0.10	0.06	6.0	5.5
channel catfish	2	0	4.48		15.0-20.1	
TOTAL	84	52	47.42	25.39		

Includes more than one check-area.

VITA

Ralph William Altman

Candidate for the Degree of
Doctor of Philosophy

Thesis: TNGREASED HARVEST OF WARM WATER FISH THROUGH SUPPLEMENTAL FEEDING

Major Field: Zoology
Biographical:

Personal data: Born at Thomas, Oklahoma, December 25, 1919.

Education: Attended Southwestern State College, Weatherford, Oklahoma, 1949-1951; graduated from Oklahoma State Unim versity with a major in Zoology in May 1952; received a Master of Science degree from Oklahoma State University with a major in Zoology in May 1956; completed requirements for the Doctor of Philosophy degree from Oklahoma State University in July 1958, with a major in Zoology.

Expexience: Served three years (1942-1945) in United States Air Force; worked summers of 1953 and 1954 for McGimpsey Fisheries, Langley, Oklahoma; employed as park ranger during the summers of 1951, 1952, and 1955 at Glacier National Park, Montana; graduate teaching assistant in Zoology, Oklahoma State University, 1953-1955; Research Fellow, Oklahoma Cooperative Wildife Research Unit, Oklahoma State University, 1955-1958.

Organimations: Sigma xi, Phi Kappa Phis and Wildife Society.

