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CHAPTER 1

GENERAL INTRODUCTION
PART I

DELAY TYPE COMPENSATION

The method of using a compemsator in conjunction with a controlled
system has long been practised by control system designers in order to
obtain a desirable steady state or dynamic performance. Howéver, in the
past, only passive networks were used. So far as the purpose of compen-
sation is concerned, most of the developments are to stabilize an unsta-
ble system or to improve the steady and/or the transient state performance
of a system.

The use of a delay-type device (or the short-time-memory device) as
a compensator to form a follower-type control system, in which it is de-
sired to cause the output to follow or match the input at all times as
closely as possible, has been proposed by several authors in recent
years., (1-6).

According to the physical conception, an ideal follower-type control
system can not be made by using a passive network. This is based upon
the fundamental conception of dissipation of energy stored in the system.
But it is possible to make an active network such as a delayvliﬁe device
meet such requirements. This is shown to be true by research and experi-

ments which will be described later.



(I} Historital Background

In 1940, H. E. Kallman (1) devised the first delay-line filter, which
he called the "Transversal Filter" to distinguish it from the conventional
filter, Kallman assumed in his paper, that the delay-line was perfect
with smooth energy flow, no internal dissipation, and no reflections.

As shown in Fig. 1, Kallman's delay line consisted of a number of
small section of lumped-constant filters. It is terminated by a resistan-
ce equal to the characteristic impedance of the line to eliminate reflection.
Along the delay line numerous tapping points are provided to secure a
;ignal of specified time delay. The input signal passes from the input

terminal and is propagated along the line. The energy is largely dissi-
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Fig. 1 The Transversal Filter



pated in the terminating resistance. Small portions of energy are
tapped from the line at the various tapping points. After amplification
and possible change of polarities, the amplified signals are added to-
gether at a summing point. The desired response can be achieved by
designating differemt values of amplification for the amplifiers.
However, the purpose of the above particular work was to produce
a filter which had the required amplitude and phase characteristics and
which, within itséif, produced a linear phase-lag response. Apparently
no attempt was made to establish the necessary design procedure or to
utilize that network as a compensator for operation in combination with
a confrol system.

The work of A, M, Hopkin: (2) in 1951, describes the use of an
amplified command signal plus two delayed and amplified signals to
control a non-linear second order system under the conditions which
would be imposed by a step function command signal.

:The design of the delay-type compensator, named the "Signal
Component Control Compensator"” was described by J. F. Calvert and
D. J. Gimpel (3) in 1952. In that paper, a polynomial command time
function is used. The design was based on the Laplace transformation.
They made the application of step command to first and second order
control system. The result is that the transient respomse will quickly
follow the command and all the natural modes of oscillation are removed.

In 1954, J. F. Calvert and D, J. Ford (4) published a paper based
on the latter’s Ph.D. dissertation. In this paper they described three
new types of delay line compensators with all anmalysis in the frequency

domain:



(1) Taylor's Series Compensator {TSC)===-ec-eecmeccmcecnocaanax For

polynomial command signal. |

(2) Fourier Series Compensator (FSC)mmmmmm e e For

sinusoidal command signal.

(3) Fourier Integral Compensator (FIC)=-=-=s-msecmccmomocmannn- For

sinusoidal command signal. |

In 1955, J; F. Calvert and T. W. Sze (5) published a paper discussing
a general application of short time memory devices. A satisfactory result
was given when this device was used on the following system:

(1) Open loop circuit.

(2) Closed loop circuit.

(3) Feedback circuit.

(%) Feedforward circuit.

(5) The circuit of the combination of (3) and (4).

A more important document related to this report is the Ph.D, disser-
tation of Dr. TrJ;t B. Thompson (6) in which he derived a new method for
the design of a delay-type compensator. This method is based in the time
domain, using time series. By applying this method he work the same prob-
lem as the three previous authors did. The result showed that the time
series method is shorter and more direct than those which used frequency
analysis, and the results are equally good.

In this report, the method of analysis is based on the Thompson
scheme. The author applies this method to synthesize the design of delay
line compensators, for various orders of systems, with various types of
command time functions. The procedure will be stated in the end of this

chapter and the details will be seen in Chapter II.



(I1) Function of Delay Line Compensator
The function of a delay line compensator may be demonstrated as

shown in the following diagram:
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Fig. 2 Block Diagram of Compensated System

As shown in Fig. 1, the delay line itself is composed of a number
of small sectional lumped-constant filters. A resistance which is equal
to the characteristic impedance of the line is used at the end of the
line to eliminate reflection. Along the delay line a number of taps are
provided to sécure signals of specific delay.

The input signal passes from the input terminal and is propagated
along the line, and the energy is largely dissipated in the terminating
resistance,

Wﬁen the first sampled signal enters through the first terminal and
is amplified by the amplifier Bo, then this amplified signal is trans-
mitted to the mixing device. Through the compensator component it pro-
duces a compensating action to the control system.

Before the second signal passes in, the whole circuit will be under
the domain of the first., By the same manner, each succeeding signal passes
through the system. When steady state is reached, the output will follow

the input in direct correspondence.



PART II

THE TIME SERIES

The method of synthesizing network problems can be classified into
two families, One is frequency analysis and the gther is time doméin°
It is well known that the Fourier Integral, LaplacemTransformafion and
many other theorems found in the textbooks most were based on frequency
analysis., (7-9). The trend to use time domain has grown stronger in
recent years, The reason is that the time domain method is considered
more suitable to some particular problems. The time series operatiomn in
conjunction with the design of delay line compensators belongs entirely
to the method of time domain,

The time series was first employed by A, Tustin (10) in 1947, As
he stated in his paper, he used a polynomial to describe a time function.
Such a polynomial is called a time series. Using the technique of poly=-
nomial manipulation, he synthesized the problem of linear systems with
time series,

W. H, Huggins (11}, in his paper, used Taylor's series expansion to
determine the system transfer function for impulse response, His method
laid the foundation of later time domain development.

In 1950, a Ph,D. dissertation presented by A, Madwed {12) made the
application of time series to the solution of differential eqﬁations;>
Time series proved to be a useful tool in network synthesis,

Two more papers announced in 1954 by Freddy Ba H1i (13) and J. G,
Truxall (14) introduced the use of time series for synthesis,

R. Boxer and S. Thaler {15) published a paper in 1956 using z-
transform and synthetic division finding the tiﬁe response directly

when the system transfer function was given. The response resulting was

6
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in the form of a time series., It shows tha;:time series can be applied
to analysis problems,

In 1956, Thompson's paper (16) introduced a method for the design
of delay line compensators using time series,

In this papef the author applies this method in the synthesis of
the delay line compensators., The definition and manipulation of time
series is shown in Appendix A; more detailed derivation of time series
calculus and the relations between time series and other transformation
methods can be found in reference 6 of the Bibliography.

There are two important points concerning the design method. One
is that all the responses must be expressed in time series. The methods
of getting time series expressions for a system response when system
transfer function is given is shown in Appendix C. Thevsecond point is
that the design is baséd on the polynomial operation of time series. The
fundamental relation will be shown later,

The relations among the time series and the compensator design can

be simply related as follows:

v o | G ) B(s) . DW®)

Fig. 3 Schematic Diagram of Compensation

Referring to the above figure, v(t) is the system command function;
and q(t) is the response of the system. According to the Theorem of
Laplace-Transformation, the function relating the input and output is

called the system transfer function. Let the transfer function of the



system be G(s), and express the relation in Laplace form that is:

(s} = 3%)1 | (1-1)

where s is the Laplace variable.
If the compensator is connected in cascade to the control system

as shown in Fig. 3, the transfer function will be:
D(s
B(s) = s) (1-2)
q(s) |

where D{s) is the prescribed desired response which actually is the
input command function itself,
For this particular method, the compensator designed is to use the

relation much like the one shown above, that is:

» ) = 53 (1-3)

the special feature of the above equation is that the D(x) and IXxj are
all the time seriés expressions of the deéired and uncompensated responses
respectively.

| The result of this design is also in the form of a time series. This
time series B{x) is defined as the successive gains of the amplifiers of

the delay line compensator.



PART III

GENERAL SCOPE OF STUDY

(1) The Design Criterion
A general delay line compensation schematic.diagram is shown in Fig. 4.

The control system under consideration has a transfer function which is:

o(s) = —%%f% (1-4)

where s is the Laplace variable, N(s) and D(s) are the numerator and de-

nominator of G(s) respectively; both are polynomial of s. Usually the order

of N(s) is lower than D(s).

The compensator, for convenience, is considered to consist of two parts

cascaded as:

B(s) = W (o) (1-5)
e | T
—_ } |
V() : . | :
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Fig. 4 Delay Line Compensation
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Thus the system overall transfer function becomes:

F(s) = ql’s) - N(s) Dx(s) (1-6)

v(s)  D(s) Ny(s)

It is possible by conventional network design to produce a transfer
1

function of N (s) where Ny(s) is equal to N(s)., Such network gemerally
takes the form of a cascaded passive network., This means to produce a

transfer function having poles matching the zeros of N{s), which gives:

F(s) = q(s) - Dx(s) (1-7)

Thus the design of the compensator will be concerned entirely with the
&ééign of D(s). :F§6$Xﬁq, (1-7) we know tﬁét, ifztﬁé compensated g;;éém
is to be an ideal system, F(s) should be equal to unity. So that the
instantaneous difference between the command function and the output sig-
nal is zero at all times. This idealization is never possible by any
practical method,

‘The next best objective would be to remove all modes of oscillation
and periodic errors in the transient response,

It is well known that the denominator of the transfer function

F(s) is the characteristic equation of the system, that is:

D{s)

2 e e eemow om
ap + ays + apgs f;gns

an (5‘01)(S’U2) """"" (s-up) (1-8)

where u's are the roots of the characteristic equation and poles in the
complex plane (8) of'the control system., The order of the system is given
by n.

Corresponding to a step command the generalized form of the transfer

function of a delay line compensator (5) is:
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B(s) = Bo+Bye Sl 4o oo + Bpe ®'n (1-9)
where n is the order of the system, and the exponents T's are the time
delays which are positive real quantities, and fhe coefficient B's are
the amplifier gains which are either positive or negative real numbers.

The system transfer function is now:

B, + Bye~STi + Boe~5T2

ap + a3s8 + ags2 + = - = = © = = = = - = = + a,st {1=10)

- s o W W @ @ - -»n+Bne"’sTn

the numerator N(s) of G(s) is assumed to be removed by the use of 1/Hy(s).
It is desired now that the final value of the response to a unit step

function to be unity, thus by the final value theorem we have:

1 = lim s (Bg + BlemSTL+ .- .- - - - + Bne-sTg>
%0 s (ao + 238 + = == ene - - -+ aps?
= (Bo+ By +Bo+ = = = = « = = = = = +B,) / ao (1-11)
hence (B, + B3 +Bp+ == == = = = = =~ +Bp ) = a {1-12)

This equation is defined as a set of amplifier gains for the delay
line compensator,
For a particular case, when a is equal to unity, Eq. {1-12) reduces to:

n

Z B =1 - {1-13)

K=20
this criterion is deduced for step input. And it can be held for all

kinds of input functions, upon proper treatment of the desigh of D{s).

{I1) The ‘System Transfer Function

The gemeralization of the synthesis mainly depends upon the system
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used., Through this synthesis, three different kinds of systems are to be
used, such as first order, second order and third order systems. (It will
shown later than this synthesis can be extended to any higher order system.)

In choosing the control system, the following two conditions must be
considered:

(1) This system must be as general as possible,

(2) This system is considered to be stable., (That is, no

poles or zeros containing positive real parts in the
system complex plane),

Fortunately, a second order system, which has been used by four
authors {3=6) is available and can be used as a check to the previous
studies,

By the similar ways we select our suitable system in first and third

order as listed below:

TABLE I

First Order Second Order Third Order

1

1 1
(s + 1) {(s2 + 0.8s + 1) | (s® + 1.8s2 + 1.8s + 1)

{III) The Command Function

This synthesis contains a series of calculatigps using five different
kinds of command time functions, These time funcfions can easily be'found
in any common servomechanism book, The time functions and their Laplace

Transforms are shown in Table II.
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TABLE II
Time Function Heaviside Expression Laplace-Transform
Unit Impulse ‘ '6(t) 1
Unit Step u(t) 1/s
Ramp Function t.u(t) 1/s2
t2/2! £721.u(t) 1/s3
t3/3! /31-0(t) 1/s*

(1V).The Specification of the Delay Line

For the sake of simplicity throughout the synthesis, the delay
interval between taps along the delay line at t = 0.5 second., That is,
when four amplifiers are used the length of the delay line should be

1,5 seconds,

(V) The Method of Study
The method involved in this synthesis may be stated by the follow-
ing:
(1) This design method started from a given uncompensated response,
For a certain system and a given cémmand signal, the response can be
obtained by the following methods:
{a) Use Laplace Transformation method to get the time functionm;
calculate in tabulated fdrm by the substitution of t,.
(b) Use the system response transfer function and apply the
method of Boxer and Thaler (15) expanding it into time

series,
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(c) Copy the response or read it directly from the oscillograph

or other graphical recorder,

(2) For the follower-type compensating system, after all the modes
of oscillation and periodic errors are removed, the output signal will
follow the input instantaneously. Thus the desired response is approx-
imately the same as the input command signal, except for a very small
transient period (i.e, before the follower action becomes steady), 1In
this process the so-called transient response is not defined, In order
to get the proper results, it is necessary to preassign some suitable
values for the desired i‘esponse°

(3) To write the time series expression of the desired and the
uncompensated responses, use the same time interval (say 0,5 second),
Choose sufficient terms of the time series,

(4) Apply polynomial division of the two time series as follows:

Dix + Dox2 + Dgx3 + = = = = = = = = « < + Dmxm
Q1X + qoX28 + a3 + = = = & = = =~ - - - + qpx™
=B, +Bix+BaxZ+ - - - == - o= + ByxK (1-14)

the process based on approximation, both polynomails are arranged in the
manner of ascending power of x, The division carries on until the re-
mainder of the division approaches zero.

(5) The coefficients B are the amplification factors of these
amplifiers of the compensator, The number of stages of the amplifiers
determines the length of the delay lime. The relation is:

L=(N+1)v ' (1-15)
where L is the length of the delay line in seconds, N is the number of

amplifiers, and v is the delay length between taps in secomds,
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(6) Check the coefficients of the polyﬁo@iai B(x) with the basic

design criterion:

i By = 1 (1-13)

1f the answer does not confirm with the prescribed condition some necess-
ary modification or a new design is needed.

(7) In completing the design, a verification procedure is needed,
Using time series multiplication to multiply out the B(x) with Q(x)
yields the desired response., The accuracy of the result will be seen from
a comparison of the designed response to the prescribed response, An

ideal compensator can be obtained if proper treatment is applied.



CHAPTER II
TIME SERIES METHOD
PART I
BASIC TIME SERIES METHOD

As stated before, the principle of compensation is based upon the
elimination of the poles of the control system transfer function, So
far as the time series method is concerned, there is no need to find
the locatioﬁs of these poles., The whole process acts as a short cut
for the convolution of two time functions. However, the convolution
process is not so apparent when using time series, This will be
seen in the following illustratien,

The method of design is described in Chapter III. An outline of
this method will be given below:

{(a) Find the time series expression of the uncompensated time

response,

(b) Choose the desired response and express it in time series
form,

(¢) Determine the co-efficients of the amplifiers of the
transversal filter circuit by time series division 6f the
desired and uncompensated response,

- (d) Verification of design.

Taking a second order system with a step command function as an

16
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example, the design procedure can be demonstrated as follows:
(1) Uncompensated Response:
From TABLE I and TABLE II, we can get the overall system transfer

function of this system is:

1
as) = s (s2 + 0.8s + 1) ’ (2‘1)

in order to obtaiﬁ éwmore accurate result the time éeries evaluate&»here
is based on Laplace Transggrmation method; the effective values calcu-
lated up to eight places. A set of calculated data is listed in TAﬁLE
ITI. The response is plotted as shown in Fig, 13, Curve A,
(é)” The ﬁesired Response: m

The desired response of this system is éhbwﬁ in Curve B of Fig. 5;wv
When the time is below one second, the curve is a dotted line, whicﬁ |
means during the transit period the value is undefinedo In this case,
it is assumed to be a straight line. The ordinate at time equals 0.5

second is assumed to be 0,5 unit.

4

14
N =~
‘
o[- ‘B 7 ~ |
w o8+
a) el ! Fig. 5 Response Curves
g aél—d A;:%gggﬁﬁgg?“ of Second Order
& o4 i B— DESIRED. | - System with
E i 1 RESPONSE 1 Unit Step Input
[
02T
H - )
o 1 Z 3 5 6 7 B8 5 1o

TIME IN SECDNDS

(3) Time Series Division:

The time series of the uncompensated response Q(x) is:



TABLE IIT

Responses of Second Order System With Step Input

Time Exact Boxer & Thaler Compensated¥*
(sec,) Solution Solution Response

0.0 0.00000 0.00000 0.00000

0.1 0.00487 0.02410

0.2 0.01889 0.09360

0.3 0.04129 0.20470

O.h 0.07117 0.35280

0.5 0.10766 0.10239 0.53720

0.6 0. 14992 0. TOTTO

0.7 0.19709 0.83940

0.8 0.24834 0.93030

0.9 0.30287 ' 0.98300

1.0 0.35991 0.35504 1,00000

1,1 0.41878

1.2 0,47872

1,3 0.53896

1.4 0,59900

1.5 0.65827 0.65698 0.99999

1.6 0, 71627

1.7 0.77253

1.8 0.82666

1.9 0.87828

2.0 0,92711 0.93023 0.99930

2,1 0.97288 :

2,2 1.01540

2,3 1.05449

2.4 1.09006

2.5 1.12207 1,12823 0.99930

3.0 1,22812 1,23510 0.99930

3.5 1.25319 1.25881 0.99960

h,o - 1,21889 1,22175 0.'99980
k5 1.15172 114142 1,00000

5.0 1.07609 1.,07312 1,00000

* Compensated Response use Bo= 4.9573, By = =7.2838, Bz = 3.3265

18
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Qs) = qo + qux + qx2 + - - - - - + qpx" {2-2)
and for the desired response is:
Dx) =055 +x2 + x3 + = = = = = + x {2=3)

where n is positive integer, The value of n required is dependant
upon the necessity to get a definite series B(x).

The division is related by the following:

B(x) = %%f%
. 0.5+ x2+ %3 4 & 4 2 e e + %0
qiX + Q%2 + @axd + = = = = = = + gpx"
= Bo = Bix + Box (2-4)
where the co-efficients of Q(x) and B{x) are:
qp = 0.10239 g = 1.23510
g2 = 0,35504 g7 = 1.25881
“qz = 0,65698 g = 1,22175
ay = 0,93023 a9 = 1,141k2
5 = 1,12823 Q10 = 1.07312
Bo = (+) 4.883
By = (-) 7.166
B = (+) 3.283

This polynomial division ended with all B's higher than B, equal
to zero., Therefore, only three amplifier are needed along the delay
line,

(4) Verification of Design:
From the above result, the sum of the co-efficients B is approx-

imately equal to unity; " This result is confirmed with our design
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criterion,

With a further consideration, a verification of the above design is
made by multiplication of the two cascaded system.  The final form of
the compensated system shows that Curve C at the time 0,5 second is not
passing through the point of argument, The aétual value at that time is
0,5257. Then recalculate B(x) using 0.5257 instead of 0.5 which finally
yiélds:

B(x) = 4.9575 = 7.2838x + 3,3265%" (2-5)
A better approximation is obtainéd by this modification and the compen-

sated response with the use of these new constants is plotted in Fig, 6.
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PART II

A MODIFICATION OF THE METHOD

The last example shown how the time?series division relates the
desired and the uncompensated responses. So far as the more general
problem is concerned, the method may be difficult., Some modifications
help the method work adequately, One of the modifications is called,
"The Amplitude Constraint Method! . (16). This method is probably
the simplest one to be introduced,

From the polynomial division of Eq. (2-4) an inverse operation
yields an important relation between those coefficients which can be

readily written as the following:

p(x) = B(x)-Q(x) (2-6)
suppose these time series take the forms:

D(x) = dg + dix + dpx® + ==w--- + dpx® {2-7)

Qx) = qo + qix + gox® + ------ + g %" (2-8)

and the time series B(x) has definite terms
B(x) = Bg + Byx + Bor2 + ---c-= + Byx (2-9)
where k < n. The n and k may be any positive integers. Multiply them

out in terms of their coefficients, Then Eq, (2-6) becomes:

D{x) (Bg + Byx + Box2 + =reeccsecwa- + Byx je

n
(do + Q1% + q2x2 + ---ocmoomoo- + g o™

hn

o1
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4 L
= Bgqo + (BOQ1?+'BIQO)X
+ (Bogz + B1qy * Baqy)x®

+ (Bogs + Bigz + B2qy + Baqo)x®

4 cmmesmemsmmsseamscem—————————
+ (Boqy + B1Qg « 1 + ==-----=-- + Bpqo) X
+ ——————————— - - - - Sp oy - .
n
+ (Boqn + qun - 3 + cmccrecnm= + qun - k)x (2“"10)

Comparing the coefficients of Eq. (2-7) with those of Eq, {2-10) gives

the set of useful relationships shown below:

dO = Bp9o
dy = Bogy + Biqo
ds = B°q2 + B1qy + Bzqq
dg = Bgqs + Bjqs + BgQi + BSQd
(2-11)
die = Bogk + Bigg - , + -=m-m--- *+ Brdo
dn = Boqn + quh =1 Fommemeeee * Bk - x

It is evident that the d's are the coéfficiehts of the desired respense,
When the desired response is chosen, these values are known since all

‘q's are known quantities, From ParE IV‘of @hépter‘III{ we know the value
of the desired responée in the very shCrt transient perio& is undefined;
but it should be defined because those early terms, especialiy the lead-
ing term, are very important for the determination of the correct amplifier
gains, Fortunately, the useful relations listed in Eq, (2-11) can be

used fo determine ﬁhoée unknown values, fhe method is to write a set of

simultaneous equations which relate the known quantities to the unknown.
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Solve these equations to get enough information to define the desired
response, Then the design method of time series division may be applied.
This method shows its greatest advantage in the design of higher
order system compensators, Illustrated below is the constraint method
of design for a_§econd order system with ramp input. Such a system can
be compensated by using four amplifiers with a delay line length of one

and a half seconds, The time response of this system is tabulated in
TABLE IV, a time series can readily be written as the following:

Qx) = 0,01873x + 0,13177x® + 0,38616x3 + O,78h85xh

+ 1.30072x$ + 1.8919hx6 + .2.515.25::‘7 + 3,13519x8
+ 3,72867%° + 14.2855Lx 0 (2-12)
And the desired response is:
D(x) = dyx + dox® + 1.5%0 + 2.0x" + 2.5%° + 3.0x°
+ h,oxl +-h.5x8 + S,Ox9 + 5.5x10 (2-13)
d, and dp are to be determined by the following set of equations:
0.38616B, + 0.13177B; + 0.01873Bz + 0,00000Bz = 1,5
0.784858,, + 0.386168; + 0.13177Ba + 0.9187335 = 2.0 (o1
1,30072B, + 0,78485B; + 0.38616Bz + 0,13177Bg = 2.5
Bo + By + Bz + B3 = 1.0

The upper three equations are based upon Eq. (2 ~1]) and the lower is
based upon the design criterion, In this case we need just to solve
B, and B; only.

.Bo

9;7#2112
(-) 19.09317

Substitute B, and By into Eq. (2-11) and then

By

dy 0.182414

it

d=

i

0.9259901



TABLE IV

' SECOND ORDER SYSTEM WITH RAMP INPUT

Time . Command Uncompensated Compensated
Signal Responses Response
0.0 .000000 0.000000 0.000000
.1 . 100000 0.000209 0.002040
.2 -200000 0.001327 0.027927
3 300000 0.004273 0.041619
R - 400000 0.009839 0,095824
5 - 500000 0,018729 0. 182450
.6 -600000 0.031564 0.303422
T - 700000 0.048876 0.450709
.8 .800000 0.071117 '0.611102
.9 900000 0.098653 0,.773080
1,0 1.000000 0,131773 0.926152
1.1 1,100000 0. 170690 1.062929
1.2 1.200000 0.215545 1,184549
1.3 1,300000 0.266411 1,2954k41
1.k 1,400000 0.323299 1.399402
1.5 1, 500000 0,386157 1.500000
1.6 - 1,600000 0.L454885 1.599903
1.7 1,7700000 0.529331 1.699936
1.8 1.800000 0.609301 1.799962
1.9 1.900000 0.694563% 1,899984
2.0 2.,000000 0,784851 1,999999
2.5 2.500000 1.300723 2,500000
3.0 3,000000 1.891939 2,999911
3.5 3.500000 2.515251 3,499780
4,0 k4, 000000 3,135194 3,999648
4.5 L, 500000 3.728671 4, 499540
5.0 - 5,000000 L, 285545 4.9994T1
5.5 . 5.500000 806406 5.499445
6.0 6,000000 5,298915 5.999448
6.5 6.500000 5.773933 6.499479
7.0 7 .000000 6.242266 6.999499
7.5 7.500000 6.712510 7.499549
8.0 8.,000000 7.190039 7.999569
8.5 8.500000 7.676987 8.499594 -
9.0 9.000000 8,172882 8,999596 sz
9.5 9.500000 8.675602 9.499596 T
10,0 10.000000 9, 179206

9.999569

2k
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Substitute d; and dz into Eq. (2-13) and a modified desired response is
obtained, Use this time series divided by Q(x) yields:
B(x) = 9.742112 - 19.093017x + 13.559651x2 - 3,208748x>

This,qquation describes the positions and the quantities of the ampli-

fiers,
TABLE V
Amplifiers Positions Polarity Amplifier Consant
Bo 0,00 Sec, - (+) 9, 742112
By 0.5 Sec, . (-) 19.093017
B> 1.0 Sec, (+) 13,559651
Bs 1.5 Sec. (-) 3,208748

Verification of this design gave the result as shown in Fig, 7, Curve C.
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Fig. 7 Response Curves of a Second Order
System With Ramp Input



PART III

SUMMARY OF THE SYNTHESIS

This work includes three kinds of contrel system and five kinds of
command time functions. Fifteen cases were evaluated, An outline of
this synthesis is summarized as follows:
(1) The types of control systems are listed in TABLE I,
{2) The types of command time functions are listed in TABLE II,
{3) The solution of uncompensated responses as time functions
are listed in TABLE X -~ XII in Appendix D.

(4) The calculated values of uncompensated, desired and
compensated responses are listed in TABLE XIII - XXV of
Appendix D.

(5) The required amplification factors are listed in TABLE VI~
VIII.

(6) The responses curves of each system were plotted as shown
in Fig, 8 to Fig. 20,

For the unit impulse input the design method is simply the basic
time seriés methed, For any other higher order input the design is

based on the modified method,

26
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TABLE VI

LIST OF AMPLIFICATION COEFFICLENTS

FIRST ORDER SYSTEM

1B % 1By B2 Ba 4BY
B, + 6.10701k 3,033900 +-8,183097 + 9.931281 + 10.853358
B, - 5,000000 - 2.033900 - 9,366194 - 14293820 - 17.448136
B2 +.2,183097 + 6.793795 + 10,4758k
Bs - 1,431256 - 2,888507
B, + 0,007h41
*

control system, and k is the minus power of Laplace variable (S) of the command
function. TFor example, 1Bo is the amplification factor of the first order sys-

tem with unit impulse input.
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TABLE VII

LIST OF AMPLIFICATION COEFFICIENTS,

OF SECOND ORDER SYSTEM

2By

2B, 2B1 Y 2Ba
B, + 5,060916 + 4,957300 + 9.7k2112 + 11;."030886 + 16.055847
By - T.432011 - 7.283800 -19.093017 - 33.96231k - b1.344773
Bo + 3.392482 + 3.326500 | +13.559651 + 33.299858 + L2, 447238
Bs - 3.208748 - 15.235930 - 17.981473
B), + 2.867536 + 0.001677 *
B + 1.821484

* See Discussion (L), Chapter III.



TABLE VIII

LIST OF AMPLIFICATION COEFFICIENTS

OF THIRD ORDER SYSTEM

6¢

3% 381 382 383 3By
B, +10.961667 + 11.6731ho + 30,608858 + 50.,725856 + 52,145422
B, -22,695814 - 23.486423 - 81.583580  -163,594350 -153,572590
Bo +16,967455 + 16.939101.  + 85.311557 +220.457390 +151.155590
Bs - 4,233080 - L4,125818 - Lo,711hk7  -153.6711%0  + 0.000217 *
B), + T.374609  + 55.321330  -113,341660
Bs '8.239068 ©  + 87.346066
Bg - 22,733028

% See Discussion (h>s

Chapter III.
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CHAPTER III
CONCLUSIONS AND DISCUSSTONS
PART I
CONCLUSION

Surveying the result of the synthesis, some generalized properties of
the principles and process of the design are summarized as follows:

(1) 1If a physical system can be characterized by a linear differential
equation of kth order, and if a command signal is a function of t of the
order of n, then the delay line compensator employing (k + n + 1) taps
can fulfill the criteria upon proper adjustment. If a first order impulse
is used, the number of taps should be the same as the unit step function.
Further, this result is independent of the magnitude of the command func-
tion,

(2) The delay line device can force the output to folléw or match the
input within a small time interval. This time interval actually equals
the delay provided by the delay line. Thus we may minimize the delay
length by using higher amplifier gains; and also we can use lower gains by
using a longer delay line. ‘

(3) The delay device can force the response to follow or match the
command signal for all times greater than or equal to some fixed tia;

interval,
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(4) The length of the delay line is determined by the number of taps

required and the delay length between taps. The total length should be:

L = v - i(k,+ n) | (3-1)
Where L is the total length of the"line in seconds. v is the delay
length between two taps in seconds. K and n are positive integérs as
defined in (1),

(5} For a given system and a given command function, the minimum
number of taps (or the minimum number of amplifiers) is determined as
stated above in (1). If the length of the delay line is changed, the gain
of the amplifiers must be changed. The behaviour is that for the longer
delay line, smaller amplifier gain factors may be used.

(6) A common characteristic among the compensators is that the polar-
ities of these amplifiers take a sign opposite tg those adjacent. (Wﬁé;
few exceptional cases will be discussed 1até§}§

- (7) This synthesis was carried up to a third order system, but the
process showed that theoretically one can'design’the compensator, using
this method, for any higher order of systems with the driving function of

this kind up to any degree,



PART II

DISCUSSIONS

(1) Something About the Design:

The Time-Series Method for the design of delay-line compensators is

an improvement over earlier methods. The advantages of this method are:

(2)

(a)

(b)

(£)

Data can be used directly from graphical fecords without

ever having to find a methematical expression of the out-
put. Or, if tabulated data is available, it can be used
directly.

On the other hand, if the transfer fumnction is available, the
output data is not required.

All mathematical operations are algebraic. Complex analysis
is not required.

The effects of adding sampling points or of shifting

sampling points are readify observed since all the

analysis is in the time domain,

. Compensation of this kind is perfectly.smOOth with no over-

shoot and no oscillation. The compensator can force the
output to follow the input quickly within a very short time
interval,

The accuracy of this method can be held to the range of 1%
to 0.01% upon proper calculation. (The problems related to

accuracy will be discussed later).

Design of the Compensator With Slide-Rule Accuracy:

Generally speaking, in this study two points of view are involved.
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The first is theoretical proof of the applicability of this methéd}
The result is quite satisfactory in this regard. The second question
is, "Will this design method work on some actual problems with slide-
rulé a;curacy?”

In answering this question we made a little further study under
the following considerations:

(a) Take the data on the graph.

"(b) Assume the desired response directly, without making
N any modifications.

(c¢) Calculate the values with a slide~rule,

Finally, we find that the process is limited by the accuracy of the
prescribed desired res%&nse. The results of this analysis are:

(a) For impulse responses, the procedure and‘tﬁe results are almost
the same.. Evén with the umae of the slide-rule, the answer is still accur-
ate enough. H

(b) For step input in the low order systems (say first and second
order) this work gives quite close results. As for third order systems,
due to the difference between the prescribed desired response and the
assumed value, a small deviation occurred in the compensated system which
can be found in Curve C of Fig. 21. The system used here is the same as
Fig. 17. |

{(c) As for higher order system and higher order input, the process
is very difficult. Some modifications are needed. However, if the
necessary modification ig made, slide-rule calculation can work well.

(3) Accuracy of the Method:

The problem related to the accuracy of the design method is mainly
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dependent upon the prescribed desired response, If high accuracy is
required, a precise gglculation is needed.

However, in practice with the time series.division, oné finds that
the accuracy is greatly affected by the exactnesé of tﬁe first few terms
of these twp time series, This éffect was pointed out by W, H. Huggins
(18) several years ago. The difficulty arises because the long division
process is controlled by the leading term in the series. When this lead-
ing term is small, even a small error is enough te procude an appreciable :
error component in the quotient. When this quoﬁiéﬁt is used in fhe‘divi-
sion process, largeverror wiil be introduced into the remainders after the
first subtraction. In subsequent steps these errors will be repeaﬁedly
amplified énd‘propagated. It is apparent, when the subsequent error is
large enough, the division operation will not lead to a quotient series
that converges. | ‘ . ‘ :

The error occurs in several ways such as:
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(a) Determination of constants in solving the time responses.

(b) Error introduced in taking the data from a graph.

(¢) The error introduced in the estimated response.

(d) The error introduced by the elimination of the effective value

of the lower digits,

So far as this design method is concerned, the influence of the above
effect might be overcome, The reason is that the %eading term of the desir-
edu;esponse is determined by the uncompensated respéﬁse and some known
quantities, This can be seen in the Amplitude Constraint Methed. Since
the attention is focused on the leading term of the uncompensated response,
one can control the error by carefully calculating the few leading terms
of the uncompensated response, Of course a better design will be yielded
when the elimination of other possible errors is attained.

{4) Effect of Elimination of the Amplifier.

It will be observed that a few irregular amplification factors
appear in the list of Table VII ~ VIII. These values have two common
features:

{a) Negligible magnitude.

(b) Irregular polarity.

Those data are exceptions of the statement of the conclusion in Part I
~of this Chapter. (6). The possibility of the elimination of those irre-
gularities will now be considered,

First, consider the v;riation of the amplifier gains. When the
amplifier gain is equal to unity, it is merely connected directly. When
iﬁe gaih'is quite sméll,wWe might consider it an open connection.

~ Secondly, consider the effect of the elimination of amplifier. From
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Fig. 23 we can find, if By is absent the step compensation curve at this
time interval changes to the dotted line. The result will be the same.
From the above two points of view, it is possible to omit those which are

insignificant.



PART III
RECOMMENDATIONS FOR FUTURE STUDY

It would appear that the future study might continue along one
of the following dixectidns:

(A) Synthesizing the delay line coﬁpensators using time series
method, for the other type of command functions such as sinusoidal or
exponential command, etc. It can be expected that the time series
method will be uéeful in such design.

(B) The second proposal is to design the delay line compensator
using time series method for composite command signaln That is, the
signal abpligd to a given system is a linear combination of more than
one simplé function.

Another similar_object is to design the compensator using con-
tinuous varied command function which is considered to be plece-wise

continuous as shown below:

AMPLITUDE

Fig. 24 Varied Continuous Command Function

L
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(C). The design of delay line compensators in this paper is based
on the assumption that the delay)lines used have equi-distant taps.
Work might be extended along anofher line, "What is the effect of
variation of tap spacing?"

The behaviour with variation of length between taps has been dis-
cussed by Thompson. (16). The result is that for a given system with
a given command signal, a minimum number of taps (equal space between
taps) are‘determinedt The variation of delay length between taps
affects only the gains of the amplifiers in his example. It is
suggested that study be given to the position of taps to get optimum

results.
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APPENDIX A
ALGEBRA OF TIME SERIES

The purpose of this appendix is to illustrate some operational
- methods of the time series. First let us consider how a time function

is expressed by using a time series.

) P

Fig. A - 1 Sampled-data

$to Time Function

o Vv Y 3y av 591/17 nv

A given function f(t) as shown in Fig. A-1 having values f(nv)
for tLEQual nv where the n are integers and the v are arbitrary small
increments of t can be expressed approximately as the sequence of
function f{(nv):

f(t) = £(o), £(v), f(2v),---~f(nv),----- (a-1)
For a convenient notation which*leads to operational methods let the
sequence be wrtten as a sum;

00 .
£ u)ﬁr,Z' f(nv)x" (A-2)
n=20
where x" is the time correspondence which indicates the delay of each

pulse at time equal nv. Finally the form of a time series is:

49
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£(x) = £(o) + £(v)x.+ £(2v)x® + -=ceuau- + f(nv)x" (A-3)
This notation is exactly the same as the P-Transférm. (6). The fime
seriés of this form has its great advantage in that it can be manipu-
lated as a polynomial. The following several paragraphs will intro-
duce such good properties.
(1) Addition and Subtraction:

It is evident from geometrical considerations that the sum of two
time series is found By adding their values at each instant. For example,

£1(x)

and £2(x) = by + bix + box® —-- oo (A-4)

ag + ajx + agx® ------omceeoo--

the the sum of the two functions is,
£1(x) + £2(x) = (8, + by) + (a1 + by)x + (az + b2)x + ---- (A-5)
vSubtraction\is the reverse operation offadﬁ::ition°
(2) Multiplication and Division: |
Multiplication and‘division of time series are perfo:med in exactly
the same way as multipiigation and division of polynomials:
f{x) =a+bx+cx?
fa(x) = A+ Bx+C x2 (A-6)
the product of £ (%) and fp(x) '
F(x) = £1(x)- f2(x)

a + bx + cx2
A + Bx + Cx2

Aa'+‘Abx + Acx2
Bax + Bbx2 + Bex® )
Cax® + Cbx® + Cex

F(x) = Aa+ (Ab + Ba)x + (Ac + Bb + Ca)x® + (Bc + Cb)x° + Cex (A-T)

And for division we have,
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s - £a(x)

2
A + Bx + Cx . ]
a+bx +cx2 Aa + (Ab + Ba)x + (Ac + Bb + Ca)x- + (Bc + Cb)x® + Cox '
Aa + Abx +  Acx® ' " )
Bax + ~ (Bb + Ca)x® + (Bc + Cb)x3 + Cex
Bax + Bbx2 ___+ Bex® o
T Cax® + Cbx® + chﬁ
Cax® + Cbx®  + Ccx

It is shown clearly here how the notation used facilitates the
manipulations by keeping the sequences of increments properly labeled
throughout the operation. This is emphasized by using more simpiifieﬁ
‘notation in the following example of multiplication:

£,(x) b

fa(x)

%+ x +x

x + 2x% + %2

We write them in an alternate manner,
fl(t) = 0303051:1515
f2(t) =0,1,2,1 (A"B)

By the polynimi@l multiplication as performed below:

£2(x) " £o(x) = x' + x5 + hab + 3xT + 18  (a-9)
A geometrical interpretation of the above example as shown in the

following:
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Fig. A - 2 Delay of Pulse as a Result of Time
Series Multiplication



APPENDIX B
THE DELAY OPERATOR¥

The Delay Operator used in the time domain analysis is:

TP | (B-1}
where T is the delay time in»second} p represerits the operation of the
differentiation. The“delay>operator acting upon F{t) has the significant

e TP F(t) = F(t - T) | (B-2)
an

The validity of relationship can be demonstrated by expanding e

in power series of p and comparing that of F(t - T) by Taylor's Theorem:

e”TP F(t) = [1 + Tp + T?P3/21 +-==-1] F(t)
= F(t) + TF'(t) + %f- Froo{t) + -==-
= F(t -T) (B-3)

The Laplace Trangformation of a de;ayed function is precisely
Eq. (B-2), if the complex variable of the Laplace Transform has the same
meaning as the differentiation factor p, the transform of F{t) is:
L [#(e)] =j” F(t) e~St de = F(s) (B-k)
\ o : »

If F(t - T) is subsituted in Eq. (B-l)

-s{t =T © -st
Vfﬂm F(t - T) e s( ) dt = e'sT ¢I~ F{t=T) e dt
o o

(B-5).
It follows that F(t) = 0 at- 0<t<T - then
wa(t-T) et dt = e StR(s) (B-6)
(o]

This latter condition is always satisfied in the development.

* Adapted from reference (3).
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APPENDIX C

MEANS OF FINDING TIMEVRESPONSE
IN THE FORM OF TIME SERIES
In this appendix, three methods of finding time response in the

form of a time series will be introduced. (1) Use the method of Boxer
and Thaler to obtain time series directly. (2) Use the formal Laplace
Transform method of getting the solution of time response, tabulate the
data, write the time series. (3) Take the data from a graph when this
response is a graphicalﬁsolu;ion.

(1) Method of Boxer and Thaler:

The step to obtaiﬁ the time series when the system overall transfer

function is known is:

(a) Express the function F(s) as a rational fraction in power of
s by dividing the-numerato: and denominator by sU,

(b) Substitute for s a rational fraction in power of z~ 1 obtained
from Z- transform table and rearrange F(s) as a rational frac-
tion in power of z‘4P

{c) Divide the resulting expression by T where T is the time
interval between points at which the solution is desired,

{(d) Expand the fraction by synthetic division into a series of

the ‘form:

Do + D1z * + Dpz 2 + Dgz™8 + w=-mmemmeocee—cn + Dpz 0

5k
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where D, the coefficient of z, is the approximate value of the time
responsevat t=nT, Change the expression to the following:

Do + D1X + Dgx2 + =--cece--- + D X + memmmm—ce——e--
Example l--Second order system step input:

This example will be based upon a second order system as shown

in Fig. C-L The Laplace transform of the output is given by:

Ws) = B+ s2+s
t | 1 q(t)
u(L) : s(s+1) o

Fig. C~1 Third Order Control System
Following the step=by-step procedure outlined above, the transform is

expressed in the power of S:

8 3
As) = 14ty g2

" subgtituting the corresponding forms from Table IX and dividing the
result by T,
6T (2 1 + zg?)

As) = (1246141%) - (36 + 67-9T2) 271 + (36-6T-9T2)z"2 - (12-6T+12)7°3

Y

the solution is obtained by choosing T and dividing the denominator into
the numerator, Suppose we choose T = 0.5 and here we use x instead of

z which causes the output to be expressed as:
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Z - TRANSFORM
S°K "% - Transform F(271)
gl T 14 2%t
2 1= z=3
5= ™ 1+ 1027t + 27
12 (1 = z=2)2
- e gty gt
2 (%1 = g"1)2
gl LR R R
§ (1. 720
9*5 T g™l o4 116 & 11270 4 g

2l

(1 -2
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1,5% + 1.5%°
15,25 - 36075x‘+ 30.75%2 = 9.25x%3

Q(s)

Carrying out the long division process,

. 0,0984x + 0.335%°+ 0,610+ ,853x"
15.25 = 36,75% + 30,75% - 9.25x | 1.5% + 1.5%x2

The pointsobtained in this case are plotted on the figure:

121

7 ]

Exact Solution ‘
Approximate Solution

.4_|

AMPLITUDE

; 2 3 &4 5 e 7 ] o /o
Fig. C-2 Exaet and Approximate Solution ..

To Third-Order System
(IL) Laplace Transform method:
| If the system transfer function is given, take inverse Laplace
Transform to get the time function of the response through some necessary
operations, Once the time function is found, calculate the response point-
by-point by substitution:of t.intoithe time: funétion., These values calcu-
lated are the coefficients of the time series,
Example 2:
Suppose the overall transfer function of a third orde; system with
step input is:

1
Qls) = g(s + 1)(s + 0.85 + 1)

by Heaviside's expansion theorem we get:
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1 5 .1 _8+5.8
s) = Ty 6(s+1). 6 (s + 0.k) + (0.9165)2

using Laplace Transform table find the solution

Q(t) = 1 - 2e7t . 0,996e=0-k3in (0.9165t +.0.168)
- |

Calculate the time response polnt=-by-point using the time interval

0.5 second, The values as listed below:

: o) e ae)

0.0. 0.000000 5,5 1,090705
0.5 0.03%0905 6.0 1,048565
1.0 0.12091k 6.5 1,010015
1.5 0.284099 7.0 0.981849
2.0 0.492739 7.5 0.966k44T
2.5 0.707535 8.0 0.962781
3.0 0.893903 8.5 0.967767
3.5 1.030150 9.0 0.977573 h
4,0 1,109276 0.5 0,988647
4,5 1,136551 10,0 0.998346
5.0 1.125026

The time series of this time function will be:

Q(x) = 0.031x + 0,121x% + 0,284x3 4 ~mccecmcccnaaan etc,

(III) Graphical Data:

In this case, -this is the‘great advantage of the time series approach,
The data taken from oscillographic or other graphical records does not
require the operation of finding an exact mathematical expression for use
in the calculation. The time series representation of such data may be
written down by inspection, The values of the function at the successive

equidistant points become the coefficients of the x in the time series.



59

FIMN .
P // \
5 . !

f ™\ F ig s C “’3

/ .

/1. ] An Oscilloscopic
b Graph
N/ o
A |

~ :

From the graph,.taken directly from the oscilloscope, we can write

the time series of such a response as:

Q(x) = 0.005 + 0.02x + 0.0kx2 + 0.07x> + 0,11x* + =mcmmeno-



APPENDIX D
LIST OF DATA

This appendix confains three groups of data, The nature of each
group of data is briefly specified as follows:
(1) Group I

The functions listed in Tables X-XIIare the solutions of uncompensated
time responses for various types of systems (as listed in Table I) with
various types of command functions (as>listed in Table II)c All those
functions are solved by using Invefse Laplace-Transformation,
(2) Group II

All data listed in this group are the calculated responses of each
individualicése appearing in the synthesis, For each table three kinds
of responses are contained,

(a) Uncompensated response is calculated by substituting t in the

. equations listed in Group I. Those are the exact solﬁtions of
the uncompensated systems. .

{b) The desired response is assigned based on the design criteria,
{¢c) The compensated response is the response of the compensated

system designed byL?;meFSeries method.,

All curves plotted in Chapter II, as a result of Time=Serieshdesign

method are based upon the above tabulated data,
{3) Group III
The data caontained in this group are the results designéd‘by

slide~rule accuracy referring to Part II-C, Chapter III,
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TABLE X

SOLUTIONS OF TIME RESPONSE OF FIRST ORDER SYSTEM

Command ‘Overall System
Function Transfer Function Uncompensated System Response
. ) :
8(¢) TTOX R(t) = 70.%¢
, —1 0.kt
u(t) (s + 0.4) R(t) = 2.5(1-e™)
teu(t) e =0, ht
S2(s + o.h) R(t) = 2,5t -6,25(L~-¢ ° )
t? 1 2 ) 0.kt
>7u(e) (s + 0.0 R(t) = 1.25t% - 6,25t + 15,625(1 - € O°*F)
-EiU(t) Ty * ' 2:2¢3 - (2,5)2 t% 4 (2,5)3 - (2.5)% (1 - e’o'ht)
p s*(s + 0.k) R(t) = 3 3 X

19



TABLE XI

SOLUTIONS OF TIME RESPONSE OF SECOND ORDER SYSTEM

Ovt_arall . Uncompensated System Response
Transfer Function
1
&(¢) _sé +0.85+ 1 R(t) = K et sin Bt
_ 1. -t
u(t) s(s® + 0.85 + 1) R(t) = 1-Re ™ Sin (Bt +62)
_1 ‘ | Kt
teu(t) s2(s® + 0.8 + 1) R(t) = t—2a+ Ke = Sin (Bt "‘7:'-‘,9_2)l
t2 1 ,
> u(t) $3(s2 + 0.85 + 1) R(t) = i - 2at - b+ Ke 3 sin (Bt + d3)
o et 2!
ﬁu(t) n 1'- . R(t) = -t—a'«-ata-bt-PCeKe'dt Sin (Bt + 6y)
3: s7(s2 + 0.85 + 1) ; L)
NOTE: a = 0.400000 B = 0.916515
‘ b = 0.360000 61 = 1.138120
Cc = 1,088000 62 = 2.320000
K = 1,091100 05 = 0.336266
= 0,40000 8), = 1.495500

<9



SOLUTIONS OF TIME RESPONSE OF THIRD ORDER SYSTEM

TABLE X

II

Command Overall System <
Function Transfer Function Unco;n_pensated System Response
1 -‘d 1
o(t) (S+1)(5%F 0.85+ 1) R(t) = Kie™% - Kee™ © Sin(Bt + 8,)
1 i , '
u(t) . s(s+1){(s2 + 0.85 + 1) R(e) = 1 - Kie b - ng'“t sin (gt + 1)
1 | -t < ..
teu(t) s S+1)(s2 + 0.65 + 1) R(t) = t - a+ Kje " + Koe Sin (p+ 92)Y
— e
2 u(t) L _ t% -t ot
2! s3 {8+1){s3+ 0.85 + 1) R(t) = Sy attb-Ke - Ke TSin (Bt+oa)
3 1
£ - t3 a 5 -t o .
3;°“l<t) sl‘(s+1)(s2+ 0.88 + 1) R(t) = 37 > t5 + bt - ¢ + Ky~ + Kge' - Sin(pt+oy)
Note: a = 1.800000 Ko = 0.996027 8; = 0.168133
b = 1.440000 A = 0.400000 g2 = 1.327620
¢ = 0.352000 B = 0.916515 65 = 2.486587
K= 0.833333 8o = 2.150540 6L = 0.504400
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TABLE XIII

RESPONSES OF FIRST ORDER SYSTEM
WITH UNIT IMPULSE INPUT

64

Time Uncompensated ‘Compensated
" (Sec.) Response ﬁéqunse
0.0 1.000000 0.000000.
0.1 0.960789 5.867555
0.2 0.923116 5.63748L
0.3 0.886920 5.416436
©0.h 0.8521k44 5.204054
0.5 0.818731 5, 000000
"0.6 0.786628 0.000000
0.7 0.75578k4 0.000000
0.8 0.726149 0.000000
0.9 0.697676 0.000000
1.0 0.670%20 0.000000
1.1~ 0.64L4036 0.000000
1.2 0.618783 0.000000
1.3 0.594520 0.000000
1.k 0.571209 ~0.000000
1,5 0.548811 0.000000
2.0 0.449329 0.000000
2.5 0.367879 - 0,000000
3.0 0.301194 0.000000
3.5 0.246597 0.000000
4,0 0.201897 '0.000000
k.5 0.165299 0.000000
5.0 0.135335 0.000000
5.5 0.110803 0,000000
6.0 0.090717 0.000000
6.5 0.0742Th 0,000000
7.0 0.060810 0.000000
7.5 0.049787 0.000000
8.0 0.040762 0.000000
8.5 0.033373 0.000000
9.0 0.027324 0,000000
9.5 0.022371 0.000000
10.0 0.018315 0.000000




" TABLE XIV

RESPONSES OF FIRST ORDER SYSTEM

WITH UNIT STEP INPUT

Command Uncompensated Compensated
Signal Response Response
0.0 1.250000 0.000000 0.000000
0.1 0.096120 0.174554
0.2 0.184810 0.335615
0.3 0.266667 - 0.484273
0.k 0.342350 0.621708
0.5 0.412090 0.748355
0.6 1.250000 0.476540 0.865397
0.7 0.536000 0.973376
0.8 .0.590880 1.073038
0.9 0.641550 1.165055
1.0 B _ 0, 68683800 1.249989
1.1 1.250000 0.729570 1.246445
1.2 i 0.771387 1.250903
1.3 0.808170 1.250035
1.4 0.842150 1.250009
1.5 0.873500 1,246465
1.6 1.250000 0.902450 1.250019
1.7 ‘ 0.929170 1.249999
1.8 0.953840 1.249020
1.9 0.976610 1.250015
2.0 0.997620 1.250000
2.5 1.250000 1.079135 1.247900
3.0 1.136610 1,227685
3.5 1.173860 -
4.0 1.199050 - 1.248300
4.5 .
5.0 1,227100 - 1,250100
5.5 1.250000 3
goo * 1.239720 1.,250000
5
7.0 1.245370 1.250000°
7 ° 5 =
8.0 1.250000 1.250000
80 5
9.0 1.250000 1.250000
9.5
10.0 1.250000 1.250000




TABLE XV

RESPONSES OF FIRST ORDER SYSTEM
' WITH RAMP INPUT

Compensated

Time ' Command Uncompensated
f{:Sec.) Signal - . Response Response
0.0 0.00000 0.000000 0.000000
0.1 0.25000 0.004934 0.040373
0.2 0.50000 0.019477 0.159381
0.3 0.75000 0.043253 "~ 0.353939
©0.b -1.00000 0.075899 0.621087
0.5 1,25000 0. 117067 0.957970
0.6 1.50000 0.166424 0.315657
0.7 1.75000 0.223648 1.647710
0.8 - 2,00000 0.288431 1.955149
0.9 2.25000 0.3604TT 2.238935
1,0 2.50000 0,439500 2500000
1.1 2.75000 0.525228 2.749996
1.2 3.,00000 0.617396 . 3.000002
1.3 3,25000 0.715753 3.249999
1.k 3.50000 0.820057 3.,500003
1.5 35.75000 0.939973 3.750000
2,0 5.00000 1.558306 5.000000
3.5 6.25000 2.299246 6.249999
3.0 7.50000 3, 132464 7.500000
3.5 8.75000: 4.041231 8.750000
4,0 10,00000 5.011853 9,999999
4.5 11.,25000 6.033118 11,250003
5.0 12, 50000 7.095846 12. 500000
5.5 1.375000 8.192519 13.749990
6.0 15,00000 9.3%16988 1.5000016
6.5 16.25000 10.464210 16.249995
7.0 17.50000 11,630063 17.500003
7.5 18.75000 12.811169 18.749990
8.0 20,00000 14, 00476k 20.000010
8.5 21.25000 15.208583 21,249998
9.0 22,50000 16. 420773 22,499992
9.5 23.,75000 17.639818 23,75001k
10.0 25,00000 18.864473 24 , 999992




TABLE XVI

RESPONSES OF FIRST ORDER SYSTEM
WITH t2/2 ! 0INPUT.

Time Command Uncompensated Compensated
(sec.) Signal Response Response
0.0 0.000000 0.000000 0.000000
0.1 0.012500 0.000166 0.001645
0.2 0.050000 0.001308 0.012088
0.3 0.112500 0.004369 0.043388
0.4 0.200000 0.010253 0.101826
0.5 0.312500 0,01983%% 0.196954
0.6 0.450000 0.033939 0.334691
0.7 0.612500 0.053380 0.511435
0.8 0.800000 0.078922 0.721349
0.9 1.012500 0.111308 0.918873
1.0 1,250000 0.151250 1,218580
1.1 1.512500 0.199431 1496614
1.2 1.800000 0.256509 1.793352
1.3 2.112500 0.323117 2.110553%
1.4 2.450000 0.399858 2, 44974y
1.5 2.812500 0.487319 2.812500
2.0 5,000000 1.10423k4 4.999999
2.5 7.812500 2.064384 7.812500
3.0 11.,250000 3,418841 11.249900
3.5 15,312500 5.209422 15.312291
4,0 20.000000 7.470367 20,000000
L.5 25.312500 10, 229705 25,312000
5,0 3], 250000 13.510%86 31,249338
~ 545 37.812500- T.331202 37.811657
6.0 45,000000 21,707531 LY, 998907
6.5 52.812500 26,651975 52,811250
7.0 61.250000 32,174842 61.248496
7.5 70.312500 38, 284566 70,310790
8.0 80.000000 Ll . 988091 79.998050
8.5 90.312500 52,291040 90.310270
9.0 101.250000 60.198070 101.247630
9.5 112,812500 68.712960 112,809790
10.0 125,000000 77.838820 124 ,997070




RESPONSES OF FIRST ORDER SYSTEM

TABLE XVII

WITH! 2781 InpUT

Command Uncompensated Compensated
Signal Response Response
0.0 0.000000 0.000000 0.000000
.1 0.000417 0.000003 0.000028
.2 0.003333 0.000064 0.000682
.3 - 0.012500 0.000328 0.003510
b 0.026667 0.00103k 0.011060
.5 0.052083 0.002501 0,026758
.6 0.900000 0.005152 0.055072
e 0.142917 0.009467 0.100216
.8 0.213333% 0.016028 0.165953
.9 0.303750 0.025480 0.255225
1.0 0.416667 Q.038542 0.370339
1.1 0.554583 0.056005 0.512701
1.2 0.720000 0.078727 0.683968
1.3 0.915417 0.107624 0.885535
1.4 1.143333 0.143688 1.119458
1,5 1,406250 0. 187953 1.138771
1.6 1. 706667 0.241526 1,693040
1.7 20.47083 0.305560 2.037625
1.8 2. 430000 0.381258 2.424205
1.9 2.857917 0. 469886 2.855225
2.0 3.333335 0.57274T 3.3333%33
2.5 6.510417 1.349k456 6.517460
3.0 11.250000 2.702898 11,257213
3.5 17.864583 4.841028 17.868447
h.o 26 .,666667 7.990749 26 .66666M4
k.5 37.968750 12,.394488 37.966849
5.0 52.083333% 18.307368 52.083325
5.5 69.322917 25.994913 69.330277
6.0 -90.000000 35.731170 90.021587
6.5 114, 427000 L7,797140 114, 470600
7.0 142.916670 62.479570 142.991220
7.5 175.981250 80.069810 175.895600
8.0 213.%33333 100.863100 213,.498240
8.5 255.885420 125.157820 256.111450
9.0 303.750000 153.254939 304, 047270
9.5 357.239580 185.457190 '357.620250

10.0 416.666667 222,069620 hi7.141730°




TABLE XVIII

RESPONSES OF SECOND ORDER SYSTEM
WITH UNIT IMPULSE INPUT

Time Uncompensated Compensated
(sec.) Response Response

0.0 0.00000 0.00000
0.1 0.09600 0.48585
0.2 0.18300 0.95145
0.3 0.26200 - - 1.32596
0.4 0.33300 : 1,68529
0.5 0.39519 , 2,00000
0.6 0.44800 ‘ 1.55382
0.7 0.49300 1.04720
0.8 0.53000 , _ 0.73509
0.9 0.55900 0.32889
1,0 0.58034 : ) 0, 00000
1.1 0.59400 ‘ 0.00000
1.2 0.60100 0.00000
1.3 0.60200 0.00000
1.4 0.59600 0.00000
1.5 0.58733 0.00000
1.6 0.57200 0.00000
1.7 0.55100 0.00000
1.8 0.52800 0.00000
1.9 0.50300 0.00000
2.0 0.47350 0.00000
2.1 0.44200 0.00000
2.2 0.40800 0.00000
2.3 0.37300 0.00000
2.4 0.33800 0.00000
2.5 0.30163 0.00000
3,0 0.12555 0.00000
3.5 -0.01780 0.00000
4,0 -0.11031 0.00000
4,5 -0, 15007 _ 0.,00000
5.0 -0.14643% 0.00000




TABLE XIX

RESPONSES OF SECOND ORDER SYSTEM WITH t2{2L INPUT

Time Command Urdcompensated Compensated
(sec.) Signal Response Response
0.0 .000000 0.000000 0.000000
.1 .005000 0.000022 0.000302
.2 .020000 0.000080 0.001128
.3 .055000 0.000335 0.004703
i - 0B0000O 0.001009 0.014160
.5 . 125000 0.002400 0.0%3680
.6 + 180000 0.0058T3+ 0.067643
T .245000 0.008849 0.121432
.8 . 320000 0.014799 0.196266
.9 . 405000 0.02%236 0.291748
1.0 . 500000 0,034704 0.405388
1.1 .605000 0.049772 0.533559
1.2 - T20000 0.069028 0.670667
1.3 845000 0.093071 0.814398
1.4 .980000 0.122501 0.963254
1.5 1; 125000 0. 157929 1,117062
1.6 1.280000 0.199920 1.276625
1.7 1.445000 0.249680 1.443900
1.8 1.620000 0.305963% 1.619752
1.9 1.805000 0.371110 1.804964
2.0 2.,000000 0. 445037 1,999999
2.5 3.125000 0.962357 33125000
3.0 L. 500000 1.758317 k,500011
3.5 6.125000 2.859606 6.124933%
4.0 8.000000 4, 272950 8.000000
k.5 10. 125000 5.9903%32 10. 125000
5.0 12.500000 T.99547L 12.500000
5.5 15.125000 10.269846 15.601000
6.0 18.000000 12.797143 18.034200
6.5 21.125000 15.565848 21,.125472
7.0 2k, k00000 18.569973 24 .500585
7.5 28.125000 21.808447 28.125753
8.0 32,000000 25.283712 32,000922
8.5 36.125000 29.000067 36.126010
9.0 40.500000 32.962196 40.501200
9.5 45.125000 37.174089 45.126213%
10.0 50.000000 41,638469 50.000500
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TABLE XX

RESPONSES OF SECOND ORDER SYSTEM WITH t3/3! INPUT

Time ' -Command Uncempensated Compensated
(sec.) Signal Response Response
0.0 0.000000 0.000000 0. 000000
.1 0.000167 0.000005 0.000016
.2 0,00133%3 0.000010 0.000032
3 0.004500 0.000016 0,000087
b 0.020833 0.000226 0.001047
5 0.020833 0.000226 0.00%631
.6 0.036000 0.000577 0.009227
.7 0.057167 0.001248 0.,019948
.8 0.085333 0.002410 0.038478
9 0.121500 0,004289 0.066159
1.0 0. 166667 0,007158 0, 105573
1.1 0,221833 0,011349 0.158%92
1.2 0,288000 0.017252 0.225500
1;3 0.366167 0.025315 0.307029
L.k © 0.457333 0.036047 0.404231
1.5 0. 562500 0,050017 0.516735
1.6 0.682667 0.067853 0.644708
1.7 0,818833 0.090243 0.788567
1.8 0.,972000 0.11793%0 0.949034
1.9 1.143167 0.151715 1.126401
2.0  1.33%333 0. 1924ho 1,321737
2.1 -1, 543500 0.241035 1.535998
2,2 L1 TTU66T 0.298424 1.770248
2.3 . 2.027833 0.365609 2.025592
2.4 2,304000 Q. 4h3626 2.303180
2.5 2,604167 0:533546 2,604167
3.0 4,500000 1,201393 L, 500000
3.5 T.145833% 2,34288L 7. 145837
k.0 10.666667 4.113105 10,666671
h,5" 15, 187500 6.666560. 15, 179461
5.0 20,833333 10151409 20, 797364
5.5 27.T726167 14,706888 27.633462
6.0 36,000000 20, 463375 35,802996
6.5 45,770233 27.544226 45,424919
7:0 57. 166667 36,068425 56,621602"
Te5 70.312500 46.153234 69.518L472
8.0 85.333333 57.916325 8h,242531
8.5 102,354170 71.477130 100,922410
9.0 121, 500000 86.957360 119,685150
9.5 142,895830 104, 480960 140.659390
10,0 166.666667 124, 173540

163,970040




TABLE XX1I

RESPONSES OF THIRD ORDER SYSTEM =
WITH UNIT IMPULSE INPUT

Time Uncompensated Compensated
{sec.) Response Response

0.0 0,000000 0,000000
0.1 0.004768 0.052262
0.2 0.017761 0. 194690
0.3 0,03T448 0:410491
0.4 0.062376 0.683749
0.5 0.091227 1,000001
0.6 0.122809 1,237983
0.7 0.156054 1,3075129
0.8 0.19001k4 1.23%2969
0:9 0.223854 1,038127
1.0 0,256847 0, 744006
1;1 0.288370 0, 454666
1.2 0,317898 0,244273
1.3 0. 344995 0.104595
1.k 0:36931k4 0,026121
1,5 05390585 0.000Q04
2.0 0. 446629 - 0.000000
2.5 0.421490 0.:000000C
3.0 0.3%6217 0000000
345 0.221296 0000000
) 0.105723 0000000
4.5 0,010628 0.000000
5.0 =0,053008 0:000000 .
5:5 =0:083603 0.000000 -
6.0 -0, 086412 0000000
6.5 =0,070354 0.000000
7.0 =0, 045087 0000000
T:5 =0,018867 0.000000
8.0 0.002628 0.000000
8.5 0.01657k4 0.000000
9.0 0,022620 0.000000
9:5 0,022132 0000000
10.0 0.017354 0.000000




TABLE XXII

RESPONSES OF THIRD ORDER SYSTEM
WITH UNIT STEP INPUT

1,000000

Time Command Uncompensated Compensated
' Signal Response Response
0.0 1, 000000 0.000000 0. 000000
o1 1.000000 0.00755k 0.088178
22 1,000000 0,010742 0.:125%90
+3 1,000000 0,015321 0,178841
ol 1, 000000 0.,021888. 0,255503
5 1.:000000 0030905 0.360758
6 1.000000 0.042709 0:321136
o7 1,000000 0.0557527 0.419239
.8 1.000000 0.075487 0.521343
s9 1.000000 0.096628 0.613881
1,0 1,000000 0:12091k 0.685596€
1.1 1.000000- 0, 148240 0.855300
1.2 1,000000 0.178448 0.,91380k
1.3 1.000000 0.2113297 0.953L478
1.k 1,000000 0.246639 0.980364
1,5 1,000000 0.284099 0.999999
2.0 1,000000 0. 492739 1. 000000
2,5 1.000000 0.707535 05999999
3.0 1,000000 0.893903 0.981598
3,5 1,000000 1.030150 0.982565
L.0 1,000000 1, 109276 0:97693k
k;s5 1,000000 1,136551 0.975941
5.0 1.000000 1125026 0:978992
5.5 1,000000 1,090705 0,98L588
6.0 1,000000 1,048565 0.991031
645 1.000000 1.010015 0:996905
7.0 1,000000 0,981849 1,00131k
T:5 1,000000 0,9564k47 1,003909
8.0 1,000000 0962781 1.004805
8.5 1,000000 0.967767 1.004402
9:0 1.000000 0.977573 1.003221
9:5 1,000000 0.98864T 1:001766.
10.0 0.9983456 1,000430




TABLE XXITI

RESPONSES OF THIRD ORDER SYSTEM

WITH RAMP INPUT

.

10,000000

Command Uncompensated Compensated

Signal Response Response

0.0’ 0.000000 0.000000 0.000000
.1 0.100000 0.00003%6 0.001089
.2 0,200000 0,000076 0.002320
63 0. 300000 0.000300 0.009177
ol 0.400000 0.000903 0.027645
35 0, 500000 0.00213k 0.065329
6 0. 600000 0.004281 0.128117
T 0. 700000 0.007657 0.228185
.8 0.800000 0.012595 0.361063
9 0,900000 0,01943k 0:521166
1,0 1, 000000 0.028511 0:698575
1.1 1,100000 - 0.040157 0,882963
1.2 1,200000 0054684 1.055613%
1.3 1.300000 0.072390 1,213789
1.4 1,400000 0.09%3543 - 1.354809
1,5 1, 500000 0.118388 1.h797h2
1.6 ' 1,600000 0, 147136 1.591284
1.7 1,7700000 0.179968 1.697413
1.8 1.800000 0.217030 1.79954k4
1.9 1,900000 0.258435 1.899988
2,0 2.000000 .04 304260 2.000000
2.5 2,500000 0.600080 2.499999
3.0 3,00Q000 1.000013 3, 000000
3.5 3,500000 148338k 3.499997
4,0 1 ;000000 2,022071 3,999842
L5 L ; 500000 2,587622 . h99555
5.0 55000000 3, 145492 1,999163
5:5 5, 500000 3.712802 5.498732
6.0 6.000000 L. 248793 5.998383
6.5 6.5000Q0 b, 76357k 6.498111
7.0 - 75000000 5,260957 5,997954
7:5 . 7500000 5. T47086 7497906
8.0 8.000000 6.:228398 T7.997917
8.5 8500000 65710209 8497985
9.0 9,000000 7:195996 8,998071
9:5 9+500000 7687303 9.498145
0.0 8,184053 9.998202




TABLE XIV

- RESPONSES OF THIRD ORDER SYSTEM

WLEH: £7 /2L INBUT

e

- 50,000000

33, 454415

Command Uncompensated Compensated
Signal ‘Response Response
0.0 0.000000 0.000000 0.000000
.1 0.005000 0.000009 0.000456
2 0.:020000 0.000011 0.000588
3 0045000 0000028 0;001395
. 0, 080000 " 0,000085 0.004291
5 0.125000". 0.0002324 __0,011789
.6 0, 180000 0.,000548 - 0,026315
T 0.245000 0.001138 0:055818
.8 10,320000 0.002142 0:104136
s9 0.405000 0003732 0. 175489
1.0 0, 500000 - 0,006117 0, 272266
1.1 0.,605000 0.009535 0.,3%96058
1.2 0.:720000 0014261 0:539796
1.3 0.845000 0.020595 0. 700306
1.k 0980000 0,028871 0.872563
1,5. 1,125000. 0:0%0kL5 1,051431
1.6 1280000 0.052697 1,232552
1.7 1.445000 0,069027 1.417555
1.8 1.620000 0.088850 1,60599k
1.9 1.805000 0.112595 1,798184
2,0 2.000000 0. 140702 1.997016
2.1 25205000 0: 173613 2,204176
2.2 2.420000 0:211776 2:419788
2.3 2.645000 0,255639 - 2,644448
2,k 2,880000 0.,305643 2,879982
2.5 3, 125000 0, 362225 3, 125000
3.0 L, 500000 0.758278 L ;500002
3.5 6. 125000 1.376219 6.125005
4.0 8.,000000 2,250892 8.000006
k.5 10, 125000 3,402730 10, 125012
5.0 12,500000 L4, 839004 12, 500303
5.5 15, 125000 64557061 15, 125464
6.0 18,000000 - 8:548361 18.001165
645 21,125000 10,802278 21,126839
7.0 2k, 500000 - 13,309015 2k, 502816
7.5 28.125000 16,061357 28, 125457
8.0 32,000000 19,055308 32,00L428
8.5 36, 125000 22,289854 365130360
9.0 40, 500000 25,T766196 Lo,506310
9:5 5,125000 29, 486784 L5,132150
0.0

50,007890




TABLE XXV

RESPONSES OF THIRD ORDER SYSTEM WITH t3/3 INPUT

Cd

Time Command

Uncompensated Compensated
(sec,) Signal , Response _ Response
0.0 0,000000 - 0,000000 0000000
.1 0.000167 0000003 0.000148
.2 0.001333 0,000003 0,000138
.3 0.004500 : 0, 000003 0.000166
b 0:010667 05000007 0:000369
:5 0:020833 05000021 0001076
6 0.036000 0.000057 105002521
o7 0,05T167 0.000137 0006741
;8 0,085333 0.000296 - 0,014936
L9 0:121500 0.000583 0.029%05
1.0 0; 166667 0.001067 0052459
16l 0: 221853 0,001839 0.087603
- 04288000 0.003016 0. 13659k
1.3 0,366167 0.,004Th3 0:20236k4
Lok 0; h27333 0.007198 0s 28629&
1.5 0562500 0,010592 0:391627
1.6 0682667 0,015717 0, 517487
17 0,818833 0+021233 0:664831

1.8 04972000 0.029096 0.833565
1.9 1,143167 0:039133 1,023331
2.0 1,%33%33% 05051759 1233593
2.1 1, 543500 0.067L33 1.463506
2,2 1, 774667 0:086657 1.713433
2,3 2,027833 0. 109978 1,983081
2.4 2,304000 0.137989 2,272899
_2.5 2,604167 0,171326 2,58376
2:6 2,929333 0:210 ‘ 2,917059
2.7 3,280500 0, 256755 3:273690
2,8 34658667 04310292 - 3,655428
249. k0646833 0372138 k.063725
3.0 L, 500000 0:4L311% -4 .500000
3.5 7.145833 0: 966659 7, 145833
k,0 10,666667 1.862206 10. 666679
4,5 15, 187500 3.263823 15,187522
5.0 20.833333 5,312400 20,831440
5.5 27.729167 8.149825, 27.729200
6.0 36,000000 11,915013 36.,018430
6.5 45,770833 16, 741949 45,843507
T.0 57.16666T - 22@75%h12, 57. 349459
7.5 70312500 30,091879 T0.6T9660
8.0 85.333333 38,861019 85.973110
8.5 102,354170 : 49,187280 103,363805
9.0 121,500000 61,191170 122,977785
9.5 142,895830 4. 99k 170 144 ;943200
10.0 169. 380550

166. 666667 90,719130



TABLE XXVI

{A) AMPLIFIER GAINS DESIGNED ON SLIDE-RULE ACCURACY

Amplifier | Polarity | Gains

B, (+) 10.6

Bl ( *)' 20,1

B2 (+) 1302

Bg (“’) 2"’7

{B) COMPENSATED RESPONSE
Time » Desired Compensated

{sec,) Response Response
0.0 0: 000000 0000000
0.5 0:333333 04327593
1,0 0, 666667 10,660496
1.5 1,000000 -~ 0,989030
2,0 1.000000 - 1,025258
2:5 '1,000000 '1.019463
3.0 1,000000 - 0.991001
3.5 1.000000 " 0,961212
4.0 1,000000 . 0941473
k.5 1000000 0,935Lk46
5.0 1,000000 0.941637
5:5 '1,000000 0.955870
6.0 1.000000- 0973289
6.5 1,000000 0, 989730
7.0 . - 1,000000 - 1,0024k7
7:5 1,000000 1,010246
8:0 1,000000 1.013268
8.5 1,000000 1,0125%2
9:0 1.000000 1,009%59
9:5 -1,000000 ©1,005457
10.0 1.000000 1.001657
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