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CHAPTER I 

GENERAL INTRODUCTION 

PART I 

DELAY TYPE COMPENSATION 

The method of using a compensator in conjunction with a controlled 

system has long been practised by control system designers in order to 

obtain a desirable steady state or dynamic performance. However, in the 

past, only passive networks were used. So far as the purpose of compen­

sation is concerned, most of the developments are to stabilize an unsta­

ble system or to improve the steady and/or the transient state performance 

of a system. 

The use of a delay-type device (or the short-time-memory device) as 

a compensator to form a follower-type control system, in which it is de­

sired to cause the output to follow or match the input at all tim@s_, as 

closely as possible, has been proposed by several authors in recent 

years. ( 1-6). 

According to the physical conception, an ideal follower-type control 

system can not be made by using a passive network. This is based upon 

the fundamental conception of dissipation of energy stored in the system. 

But it is possible to make an active network such as a delay-line device 

meet such requirements. This is_shown to be true by research and experi­

ments which will be described later. 

1 



2 

(I) Historical Background 

In 1940, H. E. Kallman (1) devised the first delay-line filter, which 

he called the "Transversal Filter'' to distinguish it from the conventional 

filter. Kallman assumed in his paper, that the delay-line was perfect 

with smooth energy flow, no internal dissipation, and no reflections. 

As shown in Fig. 1, Kallman's delay line consisted of a number of 

small section of lumped-constant filters. It is terminated by a resistan-

c~ equal to the characteristic impedance of the line to eliminate reflection. 

Along the delay line numerous tapping points are provided to secure a 

signal of specified time delay. The input signal passes from the input 

terminal and is propagated along the line. The energy is largely dissi-

M, M1 ----... -----. 
L.,, L, Li, 

( a) TG, Tc, 
·---

y(t) 

l 
(b) 

~(t) 

l 
R 

Fig. 1 The Transversal Filter 
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pated in the terminating resistance. Small portions of energy are 

tapped from the line at the various tapping points. After amplification 

and possible change of polarities, the amplified signals are added to-

gether at a summing point. The desired response can be achieved by 

designating different values of amplification for the amplifiers. 

However, the purpose of the above particular work was to produce 

a filter which had the required amplitude and phase characteristics and 

which, within itself, produced a linear phase-lag response. Apparently 

no attempt was made to establish the necessary design procedure or to 

utilize that network as a compensator for operation in combination with 

a control system. 

The work of A. M. Hopkin: (2) in 1951, describes the use of an 

amplified connnand signal plus two delaye4 and amplified signals to 

control a non-linear second order system under the conditions which 

would be imposed by a step function command signal. 

,The design of the delay-type compeni;ator, named the "Signal 

Component Control Compensator" was described by J. f. Calvert and 

D. J. Gimpel (3) in 1952. In that paper, a polynomial command ti~e 

function is used. The design was based 4>n the Laplace transformation. 

They made the application of step command to first and second order 

control system. The result is that the transient response will quickly 

follow the command and all the natural mqdes of oscillation are removed. 

In 1954, J. F. Calvert and D. J~ FoJ:d (4) published a pap~r based 
, 

on the latter s Ph.D. dissertatiori.. In this paper they described three 

new types of delay line compensato-rs wtt):\ all analysis in the frequency 

domain: 
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(1) Taylor's Series Compensator (Tse)-------------------------- For 

polynomial command signal. 

(2) Fourier Series Comp~nsator (FSC)--------------------------- For 

sinusoidal command signal. 

(3) Fourier Integral Compensator (FIC)------------------------- For 

sinusoidal conunand signal. 

In 1955, J. F. Calvert and T. W. S~e (5) published a paper discussing 

a general application of short time mem,ory devices. A satisfactory result 

was given when this device was u,ed on the f~llowing system: 

(1) Open loop circuit. 

(2) Closed loop circuit. 

(3) Feedback circuit. 

(4) Feedforward circuit. 

(5) The circuit of the combination of (3) and (4). 

A more important document related to this report is the Ph.D. disser­
~ 

tation of Dr. Truet B. Thompson (6) in which he derived a new method for 

the design of a delay-type compensator. This method is based in the time 

domain, using time series. By applying this method he work the same prob­

lem as the three previous authors did. The result showed that the time 

series method is shorter and more direct than those which used frequency 

a,nalysis, and the results are equally good. 

In this report, the method of analysis is based on the Thompson 

scheme. The author applies this method to synthesize the design of delay 

line compensators, for various orders of systems, with various types of 

conunand time functions. The procedure will be stated in the end of this 

chapter and the details will be seen in Chapter II. 



(II) Function of Delay Line Compensator 

The function of a delay line compensator may be demonstrated as 

shown in the following diagram: 

V(t) 

r-------------t 
I 
I 
I 
I 
I 

-l---------T 

<>-----1--1 J:?c(S) I : GCSJ=N(') 9.C,t:) ConfrG/ 
NJSJ 1---+----!-~ DC:..,,;,;;,~ r-..,......--i variable 

'---~--------! 

Cc:m.fro/ 
system 

!------------1 

Fig. 2 Block Diagram of Compensated System 

As shown in Fig. 1, the delay line itself is composed of a number 

5 

of small sectional lumped-constant filters. A resistance which is equal 

to the characteristic impedance of the line is used at the end of the 

line to eliminate reflection. Along the delay line a number of taps are 

provided to secure signals of specific delay. 

The input signal passes from the input terminal and is propagated 

along the line, and the energy is largely dissipated in the terminating 

resistance. 

When the first sampled signal enters through the first terminal and 

is amplified by the amplifier Bo, then this amplified signal is trans-

mitted to the mixing device. Through the compensator component it pro-

duces a compensating action to the control system. 

Before the second signal passes in, the whole circuit will be under 

the domain of the first. By the same manner, each succeeding signal passes 

through the system. When steady state is reached, the output will follow 

the input in direct correspondence. 



PART II 

THE TIME SERIES 

The method of synthesizing network problems can be classified into 

two families. One is frequency analysis and the other is time domain. 

It is well known that the Fourier Integral, Laplace=Transformation and 

many other theorems found in the textbooks most were based on frequency 

analysis. (7-9). The trend to use time domain has grown stronger in 

recent years. The reason is that the time domain method is considered 

more suitable to some particular problems. The time series operation in 

conjunction with the design of delay line compensators belongs entirely 

to the method of time domain. 

The time series was first employed by A. Tustin (10) in 1947. As 

he stated in his paper, he used a polynomial to describe a time function. 

Such a polynomial is called a time series. Using the technique of poly= 

nomial manipulation, he synthesized the problem of linear systems with 

time series .. 

W. H. Huggins (11), in his paper, used Taylor's series expansion to 

detennine the system transfer function for impulse response. His method 

laid the foundation of later time domain development. 

In 1950, a Ph.D. dissertation presented by A. Madwed (12) made the 

application of time series to the solution of differential equations. 

Time series proved to be a useful tool in network synthesis. 

Two more papers announced in 1954 by Freddy Ba Hli (13) and J$ G. 

Truxall (14) introduced the use of time series for synthesis. 

R. Boxer ands. Thaler (15) published a paper in 1956 using z­

transform and synthetic division finding the time response directly 

when the system transfer function was given. The response resulting was 

6 



in the form of a time series. It shows that time series can be applied 

to analysis problems. 

In 1956, Thompson's paper (16) introduced a method for the design 

of delay line compensators using time series. 

In this paper the author applies this method in the synthesis of 

the delay line compensators. The definition and manipulation of time 

series is shown in Appendix A; more detailed derivation of time series 

calculus and the relations between time series and other transformation 

methods can be found in reference 6 of the Bibliography. 

There are two important points concerning the design method. One 

is that all the responses must be expressed in time series. The methods 

of getting time series expressions for a system response when system 

transfer function is given is shown in Appendix C. The second point is 

that the design is based on the polynomial operation of time series. The 

fundamental relation will be shown later. 

The relations among the time series and the compensator design can 

be simply related as follows: 

vet) 0-0 -------1,____G_cs_} _ _,I ~) _I __ s_cs_>_:--o D(t) 

Fig. 3 Schemati9 Diagram of Compensation 

Referring to t:he above fig_u;re" v(t) is the system command function; 

and q(t) is the response of the system. According to the Theorem of 

Laplace-Transformation, the function relating the input and output is 

called the system transfer function. Let the transfer function of the 



system be G(s), and express the relation in Laplace form that is: 

G(s) = .s{.tl 
v( s) 

wheres is the Laplace variable. 

8 

( 1-1) 

If the compensator is connected in cascade to the control system 

as shown in Fig. 3, the t'ransfer function will be: 

B( s) = ~~ :~ ( 1-2) 

where D(s) is the prescribed desired response which actually is the 

input command function itself. 

For this particular method, the compensator designed is to use the 

relation much like the one shown above, that is: 

·-is B(x) =g,~~~ (1-3) 

the special feature of the above equation is that the D(x) and Cix) are 

all the time series expressions of the desired and uncompensated responses 

respectively. 

The result of this design is also in the form of a time series. This 

time series B(x) is defined as the successive gains of the amplifiers of 

the delay line compensator. 



PART III 

GENERAL SCOPE OF STUDY 

( I) The Design Criterion 

A general delay line compensation schematic diagram is shown in Fig. 4. 

The control system under consideration has a transfer function .. which is: 

G(s) = N( s) 
D(s) 

( 1-4) 

wheres is the Laplace variable, N(s) and D(s) are the numerator and de= 

nominator of G(s) respectively; both are polynomial of s. Usually the order 

of N(s) is lower than D(s). 

The compensator, for convenience, is considered to consist of two parts 

cascaded as~ 

B( s) 

· r--- ,-------------------r------·r 
I I 

.,..__...,__~ I 

vet) 1 

L ,.s ..,_: -

Nx<S) I 
I __ _,, 
I 
I 
I 
I 

I I 
I I I 

I Ro Die Cs) ; I 
l ~ : I r----------. _________ .._ _____ _ 
1 D (S) i 
: Cornfensofor .B(S)= -2._ r 

1 Nx<S) : 
1------------- - ----------- -- _____ ...J 

GcsJ=Ncs) _ 
D(S) s.ct) 

l 

Fig. 4 Delay Line Compensation 

9 

( 1-5) 
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Thus the system overall transfer function becomes: 

F( s) = q( s) N( s) 
= • ( 1-6) 

v( s) D(s) 

It is possible by canventional network design to produce a transfer 
1 

function of Nx(s) where Nx(s) is equal to N(s). Such network generally 

takes the form of a cascaded passive network. This means to produce a 

transfer function having poles matching the zeros of N(s), which gives: 

F( s) = q( s) 
v( s) 

= ( 1-7) 

Thus the design of the compensator will be concerned entirely with the 

~~sign of D(s). ;·F;~~·~q. (1-7) we know that~ i:f.th~ compensated ·~;~~~m 
is to be an ideal system, F(s) should be equal to unity. So that the 

instantaneous difference between the command function and the output sig-

nal is zero at all times. This idealization is never possible by any 

practical method. 

The next best objective would be to remove all modes of oscillation 

and periodic errors in the transient response. 

It is well known that the denominator of the transfer function 

F(s) is the characteristic equation of the system, that is: 

D(s) 

( 1-8) 

where u's are the roots of the ·characteristic equation and poles in the 

complex plane (8) of the control system. The order of the system is given 

by n. 

Corresponding to a step command the generalized form of the transfer 

function of a delay line compensator (5) is: 
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B( s) ( 1-9) 

where n is the order of the system, and the exponents T's are the time 

delays which are positive real quantities, and the coefficient B's are 

the amplifier gains which are either positive or negative real numbers. 

The system transfer function is now: 

- ---- + B8 e-sTn 
• • + 8n_Sn ( 1-10) 

the numerator N(s) of G(s) is assumed to be removed by the use of 1/.x(s)e 

It is desired now that the final value of the response to a unit step 

function to be unity, thus by th~ final value theorem we have: 

1 

hence 

= Um 
s+o 

s (B0 + B1e-sn.+ - - - - - - - + Bne·sTn) 

s (ao + a1s + .... -· - ·-··- - - - + ansn 

= (Bo+ B1 + B2 + - - - - - - - - - - +Bn) I ao 

- + Bn) = ao 

( 1-11) 

( 1-12) 

This equation is defined as a set of amplifier gains for the d~lay 

line compensator. 

For a particular case, when a0 is equal to unity, Eq. (1.,.12) reduces to: 

n 
( 1-13) 

K = 0 

this criterion is deduced for step input. And it can be held for all 

kinds of input functions, upon proper treatment of the design of D(s)e 

( II) The ··system Transfer Function 

The generalization of the synthesis mainly depends upon the system 
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used. Through this synthesis, three different kinds of systems are to be 

used, such as first order, second order and third order systems. (It will 

shown later than this synthesis can be extended to any higher order system.) 

In choosing the control system, the following two conditions must be 

considered: 

(1) This system must be as general as possible. 

(2) This system is considered to be stable. (That is, no 

poles or zeros containing positive real parts in the 

system complex plane). 

Fortunately, a second order system, which has been used by four 

authors (3=6) is available and can be used as a check to the previous 

studies. 

By the similar ways we select our suitable system in first and third 

order as listed below: 

TABLE I 

First Order Second Order Third Order 

1 1 1 
{s + 1, (s~ + o.Bs + 1l (s3 + l.8s2 + 1.8s + 1, 

(III) The Command Function 

This synthesis contains a series ·of calculations using five different 

kinds of command time functions. These time functions can easily be found 

in any common servomechanism book. The time functions and their Laplace 

Transforms are shown in Table II. 



TABLE II 

Time Function Heaviside Expression Laplace-Transform 

Unit Impulse ~( t) 1 

Unit Step U(t) 1/s 

Ramp Function t •U( t) 1/s2 

t2/2! b2! •U( t) 1/ss 

t3/3! ;/3! •U(t) 1/s4 · 

( IV:) , The Specification of the Delay Line 

For the sake of simplicity throughout the synthesis, the delay 

interval between taps along the delay line at t = 0.5 second. That is, 

when four amplifiers are use4 the length of the delay line should be 

1.5 seconds. 

(V) The Method of Study 

The method involved in this synthesis may be stated by the follow-

ing: 

(1) This design method started from a given uncompensated response. 

For a certain system and a given command signal, the response can be 

obtained by the following methods: 

(a) Use Laplace Transformation method to get the time function; 

calculate in tabulated form by the substitution oft. 

(b) Use the system response transfer function and apply the 

method of Boxer and Thaler (15) expanding it into time 

series. 
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(c) Copy the response or read it directly from the oscillograph 

or other graphical recorder. 

(2) For the follower-type compensating system, after all the modes 

of oscillation and periodic errors are removed, the output signal will 

follow the input instantaneously. Thus the desired response is approx-

imately the same as the input conunand signal, except for a very small 

transient period (i.e. before the follower action becomes steady). In 

this process the so-called transient response is not defined. In order 

to get the proper results, it is necessary to preassign some suitable 

values for the desired response. 

(3) To write the time series expression of the desired and the 

uncompensated responses, use the same time interval (say 0.5 second). 

Choose sufficient terms of the time series. 

(4) Apply polyno,mial division of the two time series as follows: 

q1x + ~x2 + q3xs + -

= B0 + B1x + B,x2 + ( 1-14) 

the process based on approximation, both polynomails are arranged in the 

manner of ascending power of x. The division carries on until the re-

mainder of the division approaches zero. 

(5) The coefficients Bare the amplification factors of these 

amplifiers of the compensator. The number of stages of the amplifiers 

determines the length of the delay line. The relation is: 

L = (N + l)v ( 1-15) 

where L is the length of the delay line in seconds, N is the number of. 

amplifiers, and vis the delay length between taps in seco~ds. 



(6) Check the coefficients of the polynon,riai B(x) with the basic i: ' ' 
design criterion: 

n 

~ 
k = 0 

15 

if1 the answer does not confirm with the prescribed condition some necess-

ary modification or a new design is needed. 

(7) In completing the design, a verification procedure is needed. 

Using time series multiplication to multiply out the B(x) with Q(x) 

yields the desired response. The accuracy of the result will be seen from 

a comparison of the designed response to the prescribed response. An 

ideal compensator can be obtained if proper treatment is applied. 



CHAPTER II 

TIME SERIES METIIOD 

PART I 

BASIC TIME.SERIES METHOD 

As stated before, the principle of compensation is based upon the 

elimination of the poles of the control system transfer function. So 

far as the t,:l:me series method is conc.e~ed, there is no need to find 

the locations of these poles. The whole process acts as a short cut 

for the convolution of two time functions. However, the convolution 

process is not so apparent when using time series. This will be 

seen in the following illustration. 

The method of design is described in Chapter III. An outline of 

this method will be given below: 

(a) Find the time series expression of the uncompensated time 

response. 

(b) Choose the desired ·response and express it in time series 

form. 

(c) Determine the co~efficients of the amplifiers of the 

transversal filter circuit by time series division of the 

desired and uncompensated response. 

(d) Verification of design. 

Taking a second order system with a step command function as an 

16 
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example, the design procedure can be demonstrated as follows: 

(1) Uncompensated Response: 

From TABLE I and TABLE II, we can get th~ overall system transfer 

function of this system is: 

1 
q( s) = s (s2 + o.8s + 1) (2-1) 

in order to obtain a more accurate result the time series evaluated here . ' 
is based on Laplace Transformation method; the effective values calcu~ 

lated up to eight places. A set of calculated data is listed in TABLE 

III. The response is plotted as shown in Fig. 13, Curve A. 

(~) The Desired Response: 

The desired response of this system is shown in Curve B of Fig. 5~­

When the time is below one second, the curve is a dotted line, which 

means during the transit period the value is undefined. In this case, 

it is assumed to be a straight line. The ordinate at time equals 0.5 

second is assumed to be 0.5 unit. 

1.4-
,,,.. r-... A 

I' "'"'-
1.2 

B / I'. - ~ 
1,0 

I 
.. I 

, 
I A,-1UNc:OMP,E.t ,SATI,:ri 

. I 

' 'I REPONS! -
Fig. 5 

I B - -OesrR.ED, ... 
., 

l . RlSP1;:>r,,i5E=., 
I J ,. , 
~ 

I 2.. ' b 6 7 6 9 I 0 r . 
, TlM~ IIJ .SECONDS 

0 

(3) Time Series Division: 

The time series of the uncompens~t~d response Q(x) is: 

Response Curves 
of Second Order 

System with 
Unit Step Input 



TABLE III 

Responses of Second Order System With Step Input 

Time Exact Boxer & Thaler Compensated* 
(sec .. ) Solution Solution Response 

o.o 0.00000 0.00000 0.00000 
0.1 0.00487 0.02410 
0.2 0.01889 0.09360 
0.3 0.04129 0.20470 
Oo4 0.07117 0.35280 
0.5 0.10766 0.10239 0.53720 
o.6 0014992 0.70770 
0.7 0.19709 0.83940 
o.8 0.24834 0.93030 
0.9 0.30287 0.98300 
1.0 0.35991 0.35504 1.00000 
1.1 o.41878 
1.2 o.47872 
1.3 0.53896 
1.4 0.59900 
1.5 0.65827 0.65698 0.99999 
1.6 ,,0.71627 
1.7 0 .. 77253 
1 •. 8 0.82666 
1.9 0.87828 
2.0 0.92711 0.93023 0.99930 
2.1 0.97288 
2.2 1.01540 
2.3 1.05449 
2.4 1.09006 
2.5 1.12207 1.12823 0.99930 
3.0 1.22812 1.23510 0 .. 99930 
3 .. 5 1.25319 1.25881 0 .. 99960 
4.o 1.21889 1.22175 0.99980 
4.·:t 1.15172 1.14142 1 .. 00000 
5.0 1.07609 1.07312 1.00000 

* Compensated Response use Bo== 4.9573, Bi = -7.2838, B2= 3.3265 
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and for the desired response is: 

D(x) = Oo5X + x2 + x3 + 

where n is positive integero The value of n required is dependant 

upon the necessity to get a deiinite series B(x). 

where 

'· 

The division is related by the following: 

B(x) = Q(,tl 
Q(x) 

~ Oo5X + x2 + x3 + 
q1x + q2x2 + q3x3 + 

the co-efficients of Q(x) and 

ql = 0.10239 

q2 = 0.35504 

q3 = 0.65698 

q4 = 0093023 

q5 = 1.12823 

B(x) 

% 

q7 

qg 

q9 

qlO 

- - - + xn 
n 

- = + qnX 

are: 

= 1.23510 

= 1.25881 

= 1.22175 

= 1.14142 

= 1.07312 

Bo = (+) 40883 

Bi = ( -) 7.166 

B2 = (+) 3.283 

19 

(2-2) 

(2-3) 

(2-4) 

This polynomial division ended with all B's higher than Bzequal 

to zero. Therefore, only three amplifier are needed along the delay 

line. 

{4) Verification of Design: 

From the above result, the sum of the co-efficients Bis approx-

imately equal to unity. This result is confirmed with our design 
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criterion., 

With a further consideration, a verification of the above design is 

made by multiplication of the two cascaded system. The final form of 

the compensated system shows that Curve Cat the time 0.5 second is not 

passing through the point of argument. The actual value at that time is 

005257. Then recalculate B(x) using 0.5257 instead of 0.5 which finally 

'yields: 

(2=5) 

A better approximation is obtained by this modification and the compen= 

sated response with the use of these ~ew constants is plotted in Fig. 6, 
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PART II 

A MODIFICATION OF THE METHOD 

The last example shown how the time-series division relates the 

desired and the uncompensated responses. So far as the more general 

problem is concerned, the method may be difficult. Some modifications 

help the method work adequately. One of the modifications is ~alled, 

1The Amplitude Constraint Method" • ( 16). This method is probably 

the simplest one to be introduced. 

From the polynomial division of Eq. (2-4) an inverse operation 

yields an important relation between those coefficients which can be 

readily written as the following: 

D(x) = B(x)•Q(x) 

suppose these time series take the forms: 

D(x) 

Q(x) = ------ + 

and the time series B(x) has definite terms 

( ) 2 ' k Bx = B0 + B1x + B2x + ------ + ~kx 

(2-6) 

(2-7) 

(2-8) 

(2-9) 

where k < n. Then and k may be any positive integers. Multiply them 

out in terms of their coefficients. Then Eq., (2-6) becomes: 

k 
D(x) = (B0 + B1x + B2x2 + ------------ + Bkx )• 

n 
(qo + q1x + ct2x2 + ------------ + qnn ) 

,- ·(t41Af_; 

·:.: .... , 

21 
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= Bdq0 + (Bo(J:1 * B1q0 )x 

+ ( B0 42 + B1q1 + B~q0 )x2 

+ (Boqs + B1CJ2 + B2q1 f: B3qo)k3 

+ -----------------------------

+ (Boqk + B1qk = i. + -------~-- + Bkqo) xk 

+ -----------·------------~-~--

( 2-10) 

Comparing the coefficients of Eq. (2-7) with those of Eq. (2-10) gives .. 

the se't of useful r~li':1,tion~hips shown below: 

= 

= 

d2 = B0 C!2 + B1q1 + B2q0 

d:3 = Boqs + B1 q2 + B2q1 + B3·qo 
(2-11) 

= 

' 

It is evident that the dfs are the coefficients of the desired response. 
I 

When the desired response is chosen, these values are known since all 

q's are known quantities. From Part IV of Chapter IIIt we know the value 

of the desired response in the very short transient period is undefined; 

but it should be defined because those early terms, especially the lead= 

ing term, are very important for the determination of the correct amplifier 

gains. Fortunately, the useful relations listed in Eq. (2-11) can be 

used to determine those unknown values. The method is to write a set of 

simultaneous equations which relate the known quantities to the unknown. 



23 

Solve these equations to get enough information to define the desired 

responseo Then the design method of time series division may be applied. 

This method shows its greatest ad~antage in the design of higher 

order system compensators. Illus.trated below is the constraint method 

of design for a second order system with ramp input. Such a system can 

be compensated by using four amplifiers with a delay line length of one 

and a half seconds. The time response of this system is tabulated in 

TABLE IV, a time series can readily be written as the following: 

Q(x) = 0.01873x + 0.13177x2 + Oo38616xs + o.78485x4 

+ l .. 30072x~ + l.89194x6 + 2.51525x7 + 3.13519x8 

+ 3 .. 72867x9 + 4.28554x10 

And the desired response is: 

D(x) = dix + d2x2 + 1.5x3 + 2.ox4 + 2.5x5 + 3.ox6 

+ 4.0x7 + 4.5x8 + 5o0x9 + 5,.5x10 

di and d2 are to be determined by the following set of equations: 

o .. 386l6Bo + 0~13177Bi + o.ol873B2 + O.OOOOOBs = 1.5 
., 

o.78485B0 + o.38616Bi + o.13177B2 + o.o187JB3 = 2.0 

lo30072B0 + Oo78485Bi + 0.386l6B2 + 0.13117Bs = 2o5 

Bo+ B,2 + Bs = loO 

(2-llt-) 

. The upper three equations are based upon Eq. (2 ·--1~ and the lower is 

based upon the design criterion. In this case we need just to sol~e 

B0 and Bi only. 

' 
Bi = (-) 19.09317 

Substitute B0 and Bi into Eq. (2-11) and then 

di = 0.182414 

da = 0 .. 925991 



TABLE IV 

. SECONP ORDE>R SYSTEM ·wrm RAMP INPUT 

Time Command Uncompensated Compensated 
{ Sec.) Signal Responses Response 

o.o. .000000 0.000000 0.000000 
.1 .100000 0.000209 0.002040 
.2 .200000 0.001327 0.027927 
.3 .300000 0.004273 0.041619 
.4 .400000 0.009839 0.095824 
.5 .. ~00000 0.01872, 0 .. 182450 
.. 6 .. 00000 0.03156 0.303422 
,.7 .700000 0.048876 o.450709 
.,8 .800000 0.071117 ·0.611102 
.9 .900000 0.098653 0.773080 

1.0 1 .. 000000 0.131773 0.926152 
1.1 1.100000 0.170690 1.062929 
1.2 1.200000 0.215545 1.184549 
l;,3 1 .. 300000 0.266411 1,.295441 
L4 l,.400000 0.323299 1.399402 
1.~ .. l.~00000 o.~861~7 1.500000 
1 •. 1~ 66660 0.548 5 1.599903 
1. 7 1,.700000 0.529331 1.699936 
1.8 1.800000 0.609301 1.,799962 
lo9 1.900000 0.694563 1.899984 
2.0 2.000000 0.784851 1.999999 
2 .. 5 2.500000 1.300723 2 .. 500000 
.3.0 3~000000 1.891939 2.999911 
3.5 3.500000 2.515251 3.499780 
4.o 4.000000 3.135194 3.999648 
4.5 4 ... 500000 3.728671 4.499540 
5.0 5.000000 4.285545 4.999471 
5.5 5.,500000 4.806406 5.499445 
6.o 6.000000 5.298915 5.999448 
6.5 6.500000 5.773933 6.499479 
7.0 7.000000 6.242266 6.999499 
7.5 7.500000 6.712510 7.499549 
8.o 8.,000000 7.190039 7.999569 
8.,5 8.500000 7.676987 8. 499594 ' .' 
9.0 9.000000 8.172882 8.,999596;' 
9.5 9.500000 8.675602 9.4~Q596 · 

10 .. 0 10 .. 000000 9.179206 9.,999569 

24 
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Substitute d1 and d2 into Eq. (2-13) and a modified desired response is 

obtained. Use this time series divided by Q(x) yields: 

B(x) = 9.742112 - 19.093017x + 13.559651x2 - 3.20~748x3 

lfhis.equation describes the positions and the quantities of the ampli-,, 

fiers. 

TABLE V 

Amplifiers Positions Polarity Amplifier Consant 

Bo 0.00 Sec •. (+) 9.742112 

B1 0.5 Sec. (-) 19.093017 

B2 1.0 Sec. (+) 13.559651 

B3 1.5 Sec. (-) 3.208748 

Verification of tmis design'gave the result as shown in Fig. 7, Curve C • 
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PART III 

SUMMARY OF THE SYNTHESIS 

This work includes three kinds of control system and five kinds of 

command time functions. Fifteen cases were evaluated. An outline of 

this synthesis is summarized as follows: 

( 1) The types of control systems are listed in TABLE I. 

('2) The types of command time functions are listed in TABLE II. 

(3) The solution of uncompensated responses as time functions 

are listed in TABLE X - XII in Appendix D. 

(4) The calculated values of uncompensated, desired and 

compensated responses are listed in TABLE XIII - XXV of 

Appendix Do 

(5) The required amplification factors are listed in TABLE VI­

VIII. 

(6) The responses curves of each system were plotted as shown 

in Fig. 8 to Fig. 20. 

For the unit impulse input the design method is simply the basic 

time series method. For any other higher order input the design is 

based on the modified method. 
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TABLE VI 

LIST OF AMPLIFICATION COEFFICIENTS 

FIRST ORDER SYSTEM 

1:f!o*. 1B1 1B2 x&s i~ 

,B 
0 

+ 6.107014 3.033900 +B.183097 + 9.931281 + 10.853358 

B1 - 5eOOOOQO - 2.03;;900 - 9.366194 - 14.293820 = 17.448136 

B2 + .-2.183097 + 6.793795 + 19.475844 

Bs - 1.431256 - · 2.888507 

B4 + 0.007441 

* nBk-the amplifier factor of a specific system" whet:~ ,n denotes the order of the 
control systemj and k is the minus power of Laplace variable (s) of the command 
function. For example:, 1 Bo is the amplification factor of the first order sys­
tem with unit impulse input. 



TABLE VII 

LIST OF AMPLIFICATION COEFFICIENTS, 

OF SECOND ORDER SYSTEM 

2B 0 2B1 2Pe 2B3 ~4 

Bo + 5.060916 + 4.957300 + 9. 742112 + 14.030886 + 16.055847 

Bi - 7 .432011 - 7.283800 -19.093017 - 33.962314 - 41.344773 
JU 

+ 3.392482 + 3.326500 +13.559651 + 33.299858 .. + 42.447238 ():) B2 

B3 - 3.208748 - 15.235930 - 17.981473 

B4 + 2.867536 + 0.001677 * 

B5 + 1.821484 
I 

* See Discussion ( 4), Chapter III. 



TABLE VIII 

LIST OF AMPLIFICATION COEFFICIENTS 

OF THIRD ORDER SYSTEM 

3Bo 3B1 3B2 3B3 3B4 

I\) Bo +10.961667 + 11.673140 + 30.6o8858 + 50.725856 + 52.145422 
\0 

B1 -22.695814 - 23.486423 - 81.583580 -163.594350 -153.572590 

B2 +16.967455 + 16.939101 t. 85.311557 +220.1,J.57390 +151.155590 

B3 - 4.233080 - 4.125818 - 40. 711447. -153.671140 . + O .000217 * 

B4 + 7.374609 + 55.321330 -113.341660 

B5 .'8~2:,9068'' + 87.346066 

B6 - 22.733028 

* See Discussion (4), Chapter III. 
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CBAPT:f!R III 

CONCLUSIONS AND DISCUSSIONS 

PART I 

CONCLUSION 

Surveying the result of the synthesis, some generalized properties of 

the principles and process of the design are summarized as follows: 

(1) If a physical system can be characterized. by a linear differential 

equation of kth order, and if a command signal is a function oft of the 

order of n, then the delay line cotnpensator employing (k + n + 1) taps 

can fulfill the criteria upon proper adjustment. If a first order impulse 

is used, the number of taps should be the same as the unit step function. 

Further, this result is independent of the magnitude of the command func­

tion. 

(2) The delay line device can force the output to follow or match the 

input within a small time interval. This time interval actually equals 

the delay provided by the delay line. Thus we may minimize the delay 

length by using higher amplifier gains; and also we can use lower gains by 

using a longer delay line. 

(3) The delay device can force the response to follow or match the 

command signal for all times greater than or equal to so~e fixed time 

interval. 
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(4) The length of the delay line is determined by the number of taps 

required and the delay length between taps. The total length should be: 

L = V • (k + n) (3-1) 

Where L is the total length of the·· line in seconds. v is the delay 

length between two taps in seconds. Kand n are positive integers as 

defined in ( 1). 

(5) · For a given system and a given command function, the minimum 

number of taps (or the minimum number of amplifiers) is determined as 

stated above in (1). If the length of the delay line is changed, the gain 

of the amplifiers must be changed. The behaviour is that for the longer 

delay line, smaller amplifier gain factors may be used. 

(,6) A common characteristic among the compensators is that: the polar­

ities of these amplifiers take a sign opposite tgi those adjacent. (the 

few exceptional cases will be discussed later)'~; 

(7) This synthesis was carried up to a third order system, but the 

process showed that theoretically one can design tpe compensator; using 

this method, for any higher order of systems with the driving function of 

this kind up to any degree. 



PART II 

DISCUSSIONS 

(1) Something About the Design: 

The Time-Series Method for the design of delay-line compensators is 

an improvement over earlier methods. The advantages of this method are: 

(a) Data can be used directly from graphical records without 

ever having to find a methematical expression of the out­

put. Or, if tabulated data is available, it can be used 

directly. 

(b) On the other hand, if the transfer function is available, the 

output data is not required. 

(c) All mathematical operations are algebraic. Complex analysis 

is not re qui red. 

(d) The effects of adding sampling points or of shifting 

sampling points are readily observed since all the 

analysis is in the time domain. 

(e). Compensation of this kind is perfectly smooth with no over­

shoot and no. osc.Ulation. The compensator can force the 

output to follow the input quickly within a very short time 

interval. 

(fJ · The accuracy of this method can be held to the range of 1% 

to 0.01% upon proper calculation. (The problems related to 

accuracy will be discussed later). 

(2) Design of the Compensator With Slide-Rule Accuracy: 

Generally speaking, in this study two points of view are involved. 



The first is theoretical proof of the applicability of this method. 

The result is quite satisfactory in this regard. The second question 

is,. "Will this design method work on some actual problems with slide-

rule accuracy?" 

In answering this question we made a little further study under 

the following considerations: 

(a) Take the data on the graph. 

'(b) Assume the desired response directly, without making 

\ any modifications. 

( c) Calculate the values with a slide .. ,rule. 

Finally, we find ;hat the process is limited by the accuracy of the 

prescribed desired resp~nse. The results of this analysis are: 

(a) For impulse responses, the procedure and ·the results are almost 

the sanie •.. Even with the Pl" of the slide-rule, the answer is still accur­

ate enough. 

(b) For step inp\J,t in. the low order systems (say first and second 

order) this work gives quite close results. As for third order systems, 

due to the difference 1:,etween the prescribed desir.ed response and the 

assumed value, a small deviation occurred in the compensated system which 

can be found in Curve C of Fig. 21. The system used here is the same as 

Fig. 17. 

(c) As for higher order system and higher order input, the process 

is very difficult. Some modifications are needed. However, if the 

necessary modification is made, slide-rule calculation can w9rk well. 

(3) Accuracy of the Met~od: 

The problem related J:o the accuracy of the design method is mainly 
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dependent upon the prescribed desired response. If high accuracy is 

required, a precise calculation is needed. 
·,:-;·:··. 

However, in practice with the time ser.ies division, one finds that 

the accuracy is greatly affected by the exactness of the first few terms 

of these two time series. This effect was pointed out by W. H. Huggins 

(18) several years ago. The difficulty arises because the long division 

process is controlled by the leading term in the series. · When this lead-

ing term is small, even a small error is enough to procude an appreciable 
.. ', ' . . ·, 

error component in the quotient. When this quotient is used in thedivi-

:sion process, large error will be· introduced into tne remainders after the 

first subtraction. In subsequent steps these errors will be repeatedly 

amplified:: and propagated. It _is apparent, when the subsequent el:'ror is 

large enough, the division operation wil~ _not lead to a quotient series 

that converges. 

The error occurs .in several ways such as: 



(a) Determination of constants in solving the time responseso 

( b) Error introduced in taking the data from a graph. 

(c) The error introduced in the estimated responseo 

(d) The error introduced by the elimination of the effective value 

of the lower digits. 

So far as this design method is concerned, the influence of the above 
:•. 

effect might, be overcome. The reason is that the lead:i,ng term of the desir-
;.;,.-

ed response is determined by the uncompensated response and some known 

quantities. This can be seen in the Amplitude Constraint Me~h6do Since 

the attention is focused on the leading term of the uncompensated response, 

one can control the error by carefully calculating the few leading terms 

of the uncompensated response. Of course a better design will be yielded 

when the elimination of other possible errors is attained. 

(4) Effect of Elimination of the Amplifier. 

It will be observed that a few irregular amplification factors 

appear in the list of Table VII - VIII. These values have two common 

features: 

(a) Negliglble magnitude. 

(b) Irregular polarity. 

Those data are exceptions of the statement of the conclusion in Part I 

of this Chapter. (6). The possibility of the elimination of those irre-

gularities will now be considered. 

First, consider the variation of the amplifier gains. When the 

amplifier gain is equal to unity, it is merely connected directly. When 

(t~e gain is quite stnai:H, we might consider it an open connection. 

Secondly, consider the effect of the elimination of amplifier. From 
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Fig. 23 we can find, if B5 is absent the step compensation curve at this 

time interval changes to the dotted line. The result will be the same. 

From the above two points of view, it is possible to omit those which are 

insignificant. 
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PART III 

RECOMMENDATIONS FOR FUTURE S'l'UDY 

It would appear that the future study might continue along one 

of the following di;rections: 

(A) Synthesizing the delay line compensators using time series 

method, for the other type of command functions such as sinusoidal or 

exponential command, etc. It can be expected that the time series 

method will be useful in such design. 

(B) The second proposal is to design the delay line compensator 

using ti~e series method for composite command signalo That is, the 

signal applied to a given system is a linear combination of more than 

one 'Simple function. 

Another similar object is to design the compensator using con-

tinuous varied command function which is considered to be piece-wise 

continuous as shown below': 

I 
I 

--j- - ··- I ____ 1 __ 

I '! I 
I : : 

Fig. 24 Varied Continuo~s Command Function 
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(c). Tlle design_ of delay line compensators in this paper is based 

on the assumption that the delay lines used have equi-distant taps. 

Work might be extended along another line, "What is the effect of 

variation of tap spacing?" 

The behaviour with variation of length between taps has been dis­

cussed by Thompson. (16). The result is that for a given system with 

J given cqmmand signal, a minimum number of taps (equal space between 

taps) .are determined._ The variation of delay length between taps 

affeets only the gains of the amplifiers in his example. It is 

su,gested that study be given to ~he position of taps to get optimum 

results. 
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APPENDIX A 

ALGEBRA OF TIME SERIES 

The purpose of this appendix is to illustrate some operational 

methods of the time series. First let us consider now a time function 

is expressed by using a time series. 

f<t)' 

0 V iy 3V 4V 5V nv 

tig. A - 1 Sampled-data 
Time Function 

A given funct·ion t(t) as shown in Fig. A-1 having values f(nv) 

fort-equal nv where· then are integers and the v are arbitrary small 

increments oft can be expressed approximately as the sequence of 

function f( nv): 

f(t) = f(o), f(v), t(2v),-- .. -'.f(mr),----- (A-1) 

For a convenient notation which leads to operational methods let the 

sequence· be wrtten as a sum1 

co 

f(f:.)~L f(nV'')xn (A-2) 
n = 0 

where xn is the time correspondence which indicates the delay of each 

pulse at time equal nv. Finally the :form o,f a time series is: 



f(x) = f(o) + f(v)x,+ f(2v)x2 + -------- + f(nv)xn (A-3) 

This notation is exactly the same as the P-Transform. (6). The time 

series of this form has its great advantage in that it can be manipu-

lated as a polynomial. The following several paragraphs will intro-

duce such good properties. 

(1) Addition and Subtractioa: 

It is evident from geometrical considerations that the sum of two 

time series is found by adding their values at each instant. For example, 

f 1 (x) = a0 + a~x + a2 xa ---------------

and f;:?(x) = b0 + blx + bax2 -------------- (A-4) 

the the sum of the two functions is, 

(A-5) 

Subtraction 'is the reverse operation of ,ad(lition. 

(2) Multiplication and Division: 

Multiplication and division of time series are performed in exactly 

the same way as multiplipation and division of polynomials: 

f 1! x) = a + b ~ + c x2 

r.i. x) = A + B x + c x2 

the product of f~(x) and f,e(x) 

a+ bx+ cxa 
A+ Bx+ cxa 

Aa + Abx + Acx2 
Bax + Bbx2 + Bcx3 . · 4 

Cax2 + CbxS + Ccx 

(A-6) 

F(x) = Aa + (Ab + Ba)x + (Ac + Bb + Ca)x2 + '(,~~c + Cb):x:3 + Ccx ~ (A-7) 

And for division we have, 



A + Bx + Cx2 . 
a¥bx +cx2 Aa +(Ab+ Ba)x +(Ac+ Bb ~ Ca)x2 +(Be+ Cb)xs 

Aa + Abx + · Acx2 " 
Bax + ( Bb· + Ca)x2 + ( Be + Cb)x3 
Bax + Bbx2 + Bcx3 

Cax2 + 
Cax2 + 

Cbx3 
Cbx3 

+ Ccx4 

+ Ccx4 

It is shown clearly here how the notation used facilitates the 

manipulations by keeping the sequences of increments properly labeled 

throughout the operation. This is emphasized by using more simplified 

·notation in the following example of multiplication: 

f 1 (x) = x3 + x4 + x5 

f.a(;it) = x + 2x2 + x3 

We write them in an alternate manner, 

fa( t) = O, 1,2, 1 
., 

By the polyn:·.mia.,1 multiplication as performed below: 

Q,:Q,,,O, 1, 1, 1 
0 . '.1'4,~,o 1 

,, J; 'c::, 
10 '0 '0 ,.0' 1, 1, 1 

r,0,0,0:~2 ,2,2 
0.0.0, 1, 1.1 I 

o,o,o,o,1,3,4,3,1 

A geometrical interpretation of the above example as shown in the 

following: 

(A-8) 

(A-9) 
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Fig. A - 2 Delay of Puls~ as a Jesult of Time 
Series Multiplication 
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APPENDIX B 

THE DELAY OPERATOR* 

The Delay Operator used in the time domain analysis is: 

a·Tp ( B-1) 

where T is the delay time in second,,, p represents the operation of the 

differentiationo ThedE=lay operator acting upon F(t) has the significant 

e-Tp F(t) = F(t - T) (B-2) 

The validity of relationship can be demonstrated by expanding e=Tp 

in power series of p and comparing that of F(t - T) by Taylor's Theorem: 

Tp ( r, 22 :-1 e· F t) = L 1 + Tp + T P /2'! +·---:_i F( t:) 

= F( t) + TF' ( t) + T2 F: 1 ' ' ( t) +. - - - -
2! 

~ F(t - T) (B-3) 

The Laplace Transformation of a delayed function is precisely 

Eq. (;B-2), if the complex variable of the Laplace Transform has the same 

meaning as the differentiation factor p, the transform of F(t) is: 

L [F( t:)~ = .J: F( t) e•st dt = F(s) 

If F( t - T) is subsituted in Eq. (B-4). 

!o~ F( t - T) e -s( t -T) dt • .-sT f: F( t-T) 

·It follows that F( t) = 0 at O< t < T then 

~oo -st ~o F(t-T) e dt = e·stF(s) 

This latter condition is always satisfied in the development. 
* Adapted from reference (,3). 
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( B-4) 

-st 
e dt 

{B=5) 

(B-6) 



APPENDIX C 

MEANS OF FINDING TIME RESPOijSE 
IN THE F0~ OF TIME SERIES 

In this appendix, three methods of finding time response in the 

form of a time series will be introduced. (1) Use the method of Boxer 

and Thaler to obtain time series dir~ctly. (2) Vse the formal Laplace 

Transform method of getting the solution of time respon~e, tabulate the 

data, write the time se.ries. (3) Take t;he data from a graph when this 

response is a graph,:l.:cal solution. 

(1) Method of Boxer and ,Thaler: 

The step to obtain the time series when the system overall transfer 

function is known is: 

(a) Express the function F(s) as a rational fraction in power of 

s by dividing the numerator and denominator by smo 

(b) Substitute for s a rational fraction in pa.,er of z=1 obtained 

fromZ-transform table and rearrange F(s) as a rational frac= 

tion in power of z${. 

(c) Divide the resulting expression by T where.Tis the time 

interval between points at which the solution is desired. 

(d) Expand the fraction by synthetic divis~on into a series of 

the ·form: 



where D, the coefficient of z, is the approximate value of the time 

response at t= nT. Change the expression to the following: 

Do+ D1x + D,2X2 + ---------- + Dnxn + --------------

Example 1--Second order system step input: 

This example will be based upon a s_econd order system as shown 

in Fig. C~L· The Laplace transform of the output is given by: 

Q(s) = 
1 

s3 + s2 +s 

u( t) t) 1 q( ,,,. s{s+1} -

Fig. C-1 Third Order Control System 

Following the step~by-step procedure outlined above, the transform is 

expressed in the power of S: 

Q( s·) = 
·a s . 

substituting the corresponding forms from Table IX and divid-ing the 

result by T, 

Q( s) 
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the solution is obtained by choosing T and dividing th,e denominator into 

the numerator. Suppose we choose T = 0.5 and here we use x instead of 

z which causes the output to be expressed as: 



TABLE IX 

Z • TRANSFORM .. 

s• · z • Trana form Fk 2· 1 

•.2: T 1 + 1-1 s -2 '1 • ··1 

s·• •• 1 + 101'"'1 + 1'"':I. T - · · '( 1 • z•l)• 12 

s·• Ts • 1 .... 
I, + I - (11 "' 1•1)S 2 

.4 'r~) (,,·1+ 4,·• + .··, T4 s T'·~' < 1 •• -1)42 •' -
720 

.. , T5 •1 •a ·s •4 I + 111 t 111 +I. s -··· ( 1 ~ 1•1j5 . 24 
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Q(s) = 

Carrying out the long division process, 

, o .. 0984x + 0.335x2 + o·.61ox3'+ .853x4-
15.25 - 36.75x + 30.75x - 9.25x I l.5x + l.5x2 

The points obtained in this case are plotted on the figure: 

I 2.. 
-I""' ........ . , ,..._ 

10 I 

I 
I 

j - E]iact Solution 
./ ' itunroximate Solution 

J .. /'' 

I 
I.I 

I z.. 3 6 "' 
.. 

7 s 9 lo 
0 

tr 

Fig. 0-2 Exact and Approximate Solution , 
To Third-Order System 

(II,) Laplace Transform method: 

If the system transfer function is given, take inverse Laplace 

Transform to get the time function of the re~ponse through some necessary 

operations. Once the time function is found, calculate the response point-

by-point by substituti.:on:·.of' t,·,lntoi1the.·.t:lme1 .. func:tllon. These values calcu-

lated are the coefficients of the time series. 

Example 2: 

Suppose the overall transfer ft,1nction.of a third order system with 

step input is: 

1 
Q(s) = s(s + l)(s + o .. 8s + 1) 

by Heaviside's expansion theorem we get: 



_L - 5 _ 1.. s + 5.8 
Q( s) = S 6(S+l). 6 (s + o.4) + (0.9165)2 

using Laplace Transform table find the solution 

Q(t) = 1 - 5e-t - o.996e·0.4sin (o.9165t +.0.168) 
6 

Calculate the time response point-by-point using the time interval 

0.5 second. The values as listed below: 

t Q( t) t Q( t) 

o.o 0.000000 5"5 1.090705 
0.5 o.03q905 6.o 1.048565 
1.0 0.120914 6~5 1.010015 
1 .. 5 0.284099 7.0 0.981849 
2.0 o •. 492739 7.5 0.966447 
2.5 0.707535 8.o 0.962781 
3.0 0.893903 8.5 0.967767 
3.5 1.030150 9.0 0.977573 
4.o 1.109276 0.5 0.988647 
4.5 1.136551 10.0 0.998346 
5.0 1.125026 

The time series of this time function will be: 

Q(x) il= o.031x + 0,12lx2 + o.284x3 + ---------------- ei:c. 

(III) Graphical Data: 

In thfs case, ·. this is the great advantage -of the time series approach. 

The data taken from osdllographic or other graphical records does not 

require the operation of finding an exacf mathematical expression for use 

in the calculation. The time series representation of such data may be 

written down by inspection. The values of the function at the successive 

equidistant points become the coefficients of the x in the time series. 
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Fig. C-3 

An Oscilloscopic 
Graph 

From the graph, taken directly from· i:be oscilloscope, we can write 

the time series of such a response as: 

Q(x) = 0.005 + o.02x + o.o4xa + 0~07x~ + o.11x4 + 
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APPENDIX D 

LIST OF DATA 

This appendix contains three groups of data. The nature of each 

group of data is briefly specified as follows: 

( 1) ~roup I 

The functions listed in TablesX-XIIare the solutions of uncompensated 

time res.ponses for various types of systems ( as listed in Table I) with 

various types of command functions ( as listed in Table II). All those 

functions are solved by using Inverse Laplace-Transformation. 

(2) Group II 

All data listed in this group ire the calculated responses of each 

individual case appearing in the synthesis. For each table three kinds 

of responses are contained. 

(a) Uncompensated response is calculated by substituting tin the 

_equations listed in Group I. Those are the exact solutions of 

the uncompensated systems. 

(b) The desired response is assigned based on the design criteria. 

(c) The compensated response is the response of the compensated 

system designed by. Time~Series method. 

All curves plotted in Chapper II, as a result of Time-Series design 

method are based upon the above tabulated data. 

( 3) Group III 

The data caontained in this group are the results designed by 

slide-rule accuracy referring to Part II-C, Cha:pter IIIo 
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Conunand 
Function 

.8( t) 

u( t) 

t•u(t) 

t2 
-.u( t) 
2! 
-

ts 
-.u( t) 
3! 

,,,.-,--

TABLE X 

SOLUTIONS OF TIME RESPONSE OF FIRST ORDER SYSTEM 

Overall System 
Transfer Function 

Uncompensated System Response 

--
1 

s +, 0~4 R(t) = E-0.,4t 
-
1 

2.5( 1 - E-0_.,4t) s(s + o.4) R( t) = 

1 
S2 (S + 0.4) R( t) = 2~5t - 6.25 (1 - E-o. 4t) 

1 
S3 (s + o.4) R( t) = l.,25t2 - 6.25t + 1~:t,.:625(1 - E-0.4t) 

1 

s4cs + o.4) R( t) ~:5ts - (2.5)2 t 2 + (2. 5)3 _ (2.!f)-4 (1 _ E-0.4t) = " 2! _I 

0\ 
I-' 



Connnand 

8(t) 

u(t) 

t•:1,1( tJ 

t2 
2 ! u{ t) 

' 
t3 3f u{ t) 

NOTE: 

TABLE XI 

SOllJTimtS OF TIME RESPONSE OF SECOND.,ORJ)ER SYSTEM 

Overall 
Transfer Function 

1 

~2 + o.as + 1 

1 I 

s(s2 + o.B~ + 1) 

1 
s~(s2 + o.8~+ 1) 

1 
s3 (.s2 -i- o.a, + 1) 

, 1 ' 

s4cs2 + 10.as + 1) 

a = O. 4ooooo 
b = o.36oo00 
C = 1_.000000 
K = 1~091100 
o< ·= o.4oo00 

Uncompensated System Response 

R(t) 

R( t) 

R(t) 

. ll( t) 

R(t) 

= K e:-c:4t Sin f3t 

-a<t ( ) = 1 - Ke Sin f3t + 91 

;: 

4t ,; = t - 2a + K£. Sin (f3t +,~2) 

2 • -e{t I 

= ~ . - 2at - b + KE Sin {~t + lfo) 
2! 

= ~ - at2 - ht+ C - Ke:-~t Sin (f3t + 04) 
3! ' 

f3 = 0.916515 
01 ;= L 138120 
02 = 2.320000 
93 = 0 .. 336266 
84 = 1.495500 

O'\ 
I\) 



Command 
Function 

b(t) 

u( t) _ 

t•u( t) 

t 2 .u(t) 
2! 

ts 
3! 0 u(t) 

Note: 

TABLE XII 

SOLUTIONS OF TIME RESPONSE OF THIRD ORDER SYSTEM 

Overall System 
Transfer Function 

1 

( s+1)( s2+ o.8.:s + 1) 

1 
S(S+l)(S2 + 0.8S + 1) 

1 
SlS+l)(S2 + 0.8rg + 1) 

1 
ss (s+1)( s2+ o.8s + 1) 

Uncompensated System Response 

' 

R( t) = K11£-t - ~€ .4t Sin(f3t + 90 ) 

R(t) = 1 - K1e-t - K2€-«t ~in (t3t + 81) 

R(t) = t - a+ K1e-t + ~€-«t Sin (13+ 92) 

. ~----------,~ , __ _ 

R(t) = t2 
2! 

-t 
at + b - Kie -<Xt ( ) K2€ Sin f3t+e3 

1 

s\ s+1)( s2+ o.8·S + 1) R( t) tS _! t2 + bt 
= 3! = 2 C + K1€-t + K2~,"'c(t Sin(t3t+e4) 

a= 1.800000 
b = 1.440000 
C = 0.352000 
K1= 0.833333 

Ka= 0.996027 
o( = 0. 400000 
13 = 0.9165115 
eo = 2.150540 

e1 = 0.168133 
e2 = 1.327620 
es= 2.486587 
e4:;: 0.504400 

0\ 
\.I,! 



Time 
(Sec.) 

o.o 
0.1 
o~.2 
0.3 
o.4 
0.5 

· a.6 
0.7 
o.8 
0.9 
1.0 
Lt·· 
1.2 
1.3 
1.4 
1.5 
2.0 
2.5 
3.0 
3.5 
4.o 
4.5 
5.0 
5.5 
6.o 
6.5 
7.0 
7.5 
8.o 
8.5 
9.p' 
-9.5 

10.0 

TABLE XIII 

RESPONSES OF FIRST ORDER SYSTEM 
WITH UNIT IMPULSE INPUT · 

Uncompensated 
; Response 

1.000000 
0.960789 
0.923116 
0.886920 
o.85214~-
0.818731 
0.786628 
0.755784 
0.726149 
0.697676 
o.6~0320 

o.49329 
0.367879 
0.301194 
0.246597 
0.201897 
0.165299 
0.135335 
0.110803 
0.09Q7'J7 
o.07427li­
o.060810 
0.049787 
0.040762 
0.033373 
0.027324 
0.022371 
0.018315 
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·qotl)pensated 
:R~sp9nse 

0.000000. 
5.867555 
5.637484 
5.416436. 
5.204054 
5."000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

. 0.000000 
0.000000 
0.000000 

· 0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 



Time 
(Sec.) 

o.o 
0.1 
0.2 
0.3 
o.4 
o.~ 
o. 
0.7 
o.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
l.~ 
1. 
1. 7 
1.8 
1.9 
2.0 
2.5 
3.0 
3.5 
4.o 
4.5 
5.0 
5.5 
6.o 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 

··.TABLE XIV 

RESPONSES OF FIRST ORDER SYSTEM 
WITH UNIT STEP INPUT 

Command Uncompensated 
Signal Response 

1.250000 0.000000 
0.096120 
0.184810 
0.266667 
0.342350 

1.250000 
o.4120~0 
o.4765 o 
0.536000 
0.590880 
o.64l'550 

· '(l)~ 688,320:~ . 
1.250000 0.729570 

0.771387 
0.808170 

1.250000 

o.842150 
0.873,00 
0.902 50 
0.929170 
0.953840 

' 0.976610 
0.997620 

1.250000 1.079135 
1.136610 
1. i,,aeo 
1.199050 

1.227100 
1.250000 

1.239720 

1.245370 

1.250000 

1.250000 

1.250000 

Compensated 
Response 

0.000000 
0.174554 
0.3:35615 

. o.484273 
0.621708 
0.748355 
o.8~5397 

,, 

0.973376 
1.073038 
1.165-055 
l.24*,f9 
1.24 5 
1.250903 
1.250035 
1.250009 
1.246465 
1.250019 
1.249999 
1.249020 
1.250015 
l.2~0000 
1.2 7900 
1.227685 

1~248300 

l.250l00 

1.250000 

1.250000 · 

1.25oe60 

1.250000 

1.250000 



Time 
(,Sec.) 

o.o 
0.1 
0.2 
0.3 
o.4 
0.5 
o.6 
0.7 
o.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
2.0 
li'o 5 
.3 .o 
3.5 
4.o 
4.5 
5.0 
5.5 
6.o 
6.5 
7.0 
7.5 
8.o 
8.5 
9.0 
9.5 

10.0 

TABLE XV 

RESPONSES OF FIRST ORDER SYSTEM 
WITH RAMP INPUT 

Command Uncompensated 
Signal Response 

0.00000 0.000000 
0.25000 0.004934 
0.50000 0.019477 
0.75000 0.043253 

. 1.00000 0.075899 
1.25000 0.11~067 
1.50000 0.16 424 
1.75000 0.223648 
2.00000 0.288431 
2.25000 0.360477 
2.50000· o.439500 
2.75000 0.525228 
3.00000 0.617396 
3.25000 0.715753 
3.50000 0.820057 
3.75000 0.939973 
5.00000 1.558306 
6.25000 2.299246 
7.50000 3.132464 
8. 75000,:., 4.041231 

10.00000 5.011853 
11.25000 6.033118 
12.50000 7.095846 
1.375000 8.192519 
15.00000 9.316988 
16.25000 10.464210 
17.50000 11.630063 
18.75000 12.811169 
20.00000 14.004764 
21.25000 15.208583 
22.50000 16.420773 
23.75000 17.639818 
25.00000 18.864473 
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Compensated 
Response 

0.000000 
0.040373 
0.159381 
0.353939 
0.621087 
0.957970 
0.315657 
1.647710 
1.955149 
2.238935 
2.500000 
2.749996 
3·:000002 
3.249999 
3.500003 
3.750000 
5.000000 
6.249999 
7.500000· 
8.750000 
9.999999 

11.250003 
12.500000 
13.749990· 
1.5oooot,6 
16.249995 
17.500003 
18.749990 
20.000010 
21.249998 
22.499992 
23.750014 
24.999992 



Time 
(Sec.) 

()~o 
0.1 
0.2 
0.3 
o.4 
0.5 
o.6 
0.7 
o.8 
0.9 
1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
2.0 
2.5 
3.0 
3.5 
4.o 
4.5 
.o 

' ,~5 
6.o 
6.5 
7.0 
7.5 
8.o 
8.5 
9.0 
9.5 

10.0 

TABLE XVI 

RESPONSES OF FIRST ORDER SYSTEM 
WITH ,t2f2!r:;Iff-'UT 

Command Uncompensated 
Signal Response 

0.000000 0.000000 
0.012500 0.000166 
0.050000 0.001308 
0.112500 0.004369 
0.200000 0.010253 
0.,12500 0.019823 
o. 50000 0.033939 
0.612500 0.053380 
0.800000 0.078922 
1.012500 O.lll308 
1.250000 0.151220 
1.512500 0.1991.i.31 
1.800000 0.256509 
2.112500 0.323117 
2.450000 0.399858 
2.812500 
5.000000 

o.48121, 
1.10423 

7.812500 2.064384 
11.250000 3.418841 
15.312500 5.209422 
20.000000 7,470367 
25.312500 10.229705 
1.250000 13. 10 86 

37 .8125 0-· 11.,,~2 2 
45.000000 21. 707531 
52.812500 26.651975 
61.250000 32.174842 
70.312500 38.284566 
80.000000 44.988091 
90.312500 52.291040 

101.250000 60.198070 
112.812500 68.712960 
125.000000 77.8388~0 

Compensated 
Response 

0.000000 
0.001645 
0.012988 
0.043388 
0.101826 
0.196954 
0.334691 
0.511435 
0.721349 
o.~18873 
1.218580 
1.496614 
1.793352 
2.110553 
2.449744 
2.812500. 
4.999999 
7.812500 

11.249900 
15.312291 
20.000000 
25.312000 
1.24 8 

37 .811 57 
44.998907 
52.811250 
61.248496 
70.310790 
79.998050 
90.310270 

101.247630 
112. 809790, 
124.997070 



Time 
(Sec.) 

OoO 
. 1 
.2 
.3 
.4 
.5 
.6 
. 7 . 
• 8 
.9 

1.0 
1.1 
1.2 
1.3 
1. 4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.'0 
2.5 
3.0 
3°5 
4.o 
4.5 
5.0 
5.5 
6.o 
6.5 
7.0 
7.5 
8.0 
8.5 
9.0 
9.5 

10.0 

TABLE XVII 

RESPONSES OF FIRST ORDER SYSTEM 
Wt1'1U t'~J,:Jf' INPUT 

Command Uncompensated 
Signal Response 

0.000000 0.000000 
0.000417 0.000003 
0.003333 0.000064 
0.012500 0.000328 
0.026667 0.001034 
0.052083 0.002501 
0.900000 0.005152 
0.142917 0.009467 
0.213333 0.016028 
0.303750 0.025480 
o.416667 0.038542 
0.554583 0.056005 
0.720000 0.078727 
0.915417 0.107624 
1.143333 0.143688 
1.406250 
1no6667 

0.187953 
0.241526 

20.47083 0.305560 
2.430000 0.381258 
2.857917 o.469886; 
3.333,33 
6.510 17 

o.572z41 
1.349 56 

11.250000 2.702898 
17.864583 4.841028 
26.666667 7.990749 
37.968750 12.394488 
52.083333 18.307368 
69.322917 25.994913 
90.000000 35.731170 

114.427000 47.797140 
142.916670 62.479570 
175.981250 80.069810 
213.333333 100.8.63100 
255.885420 125.157820 
303.750000 153.254939 
3579239580 185.457190 
416.666667 222.069620 

Compensated 
Response 

0.000000 
0.000028 
0.000682 
0.003510 
0.011060 
0.026758 
0.055072 
0.100216 
0.165953 
0.255225 
0.370339 
0.512701 
0.683968 
0.885535 
1.119458 
L 138771 
1.693040 
2.037625 
2.424205 
2.855225 
3,.333333 
6.517460 

11.257213 
17.868447 
26.666664 
37.966849 
52.083325 
69.)30277 
90.021587 

114.470600 
142.991220 
175.895600 
213.498240 
256.111450 
304.047270 
357.620250 
417.141730' 



Time 
(Sec.) 

o.o 
o. 1 
0.2 
o.; 
o.4 
0.5 
o.6 
0.7 
o.s 
0.9 
1.0 
1.1 
1.2 
1.; 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 
2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
3,.0 
3.5 
4.o 
4.5 
5.0 

TABLE XVIII 

RESPONSES OF SECOND ORDER SYSTEM 
WITII UNIT JMPULSE INPUT 

Uncompensated 
Response 

0.00000 
0.09600 
0.18;00 
0.26200 
o.;;;oo 
0.39519 
o.44800 
o.49;00 
o.5;000 
0.55900 
0.58034 
0.59400 
0.60100 
0.60200 
0.59600 
0.58733 
0.57200 
0.55100 
0.52800 
0.50300 
o.47350 
o.44200 
o.40800 
0.37300 
o.;3800 
0.30163 
0.12555 

-0.01780 
-0.11031 
-0.15007 
-0.14643 

Compensated 
Response 

0.00000 
o.48585 
0.95145 
1.;2596 
l.68529 . 
2.00000 · 
1. 55;82 
1.04720 
0.73509 
o.;2889 
0~00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0~00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 



70 

TABLE XIX 

RESPONSES OF SECOND ORDER SYSTEM WITH '~a',{ilf,Y'QPUT 

Time Command U~compensated Compensated 
(Sec.) Signal Response Response 

•. ";.• .. 

o.o • 000000 0.000000 0.000000 
.1 .005000 0.000022 0.000302 

'.2 .020000 0.000080 0.001128 
.3 .055000 0.000335 0.004703 
.4 ·~080000 0.001009 0.014160 

:g .125000 0.002400 0.033680 
~180000 O • ()bll,t,1:,+ 0.067643 

.7 .245000 0.008849 0.121432 

.8 .320000 0.014799 0.196266 

.9 .405000 0.023236 0.291748 
1.0 .500000 o.o,4704 o.405388 
1.1 .605000 o.o 9772 0.533559 
1.2 .720000 0.069028 0.670667 
1.3 .845000 0.093071 0.814398 
1.4 .980000 0.122501 0.963254 
1.5 1~125000 0.157929 1.117062 
1.6 1.280000 0.199920 1.276625 
1.7 1.445000 0.249()80 1.443900 
1.8 1.620000 0.305963 1.619752 
1.9 1.805000 0.371110 1.804964 
2.0 2.000000 o.445037 1.999999 
2.5 3.125000 0.962357 3ll25000 
3.0 4.500000 1.758317 4.500011 
3.5 6.125000 2.859606 6.124933 
4.o 8.000000 4.272950 8.000000 
4.5 10.125000 5.990332 10.125000 
5.0 12.500000 7.995474- 12.500000 
5.5 15.125000 10.269846 15.601000 
6.o 18.000000 12.797143 18.034200 
6.5 21.125000 15.565848 21.125472 
7.0 24.400000 18.569973 24.500585 
7.5 28.125000 21.808447 28.125753 
8.0 32.000000 25.283712 32.000922 
8.5 36.125000 29.000067 36.126010 
9.0 40.500000 32.962196 40.501200 
9,5 45.125000 37.174089 45.126213 

10.0 50.000000 41.638469 50.000500 
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TABLE XX 

RESPONSES OF SECOND ORDER SYSTEM WITH t3/3! IN:E'UT 

Time ,connnand Uncompensated Compensated 
(Se~.) Signal Response Respopse 

·b~o 0.000000 0.000000 0.000000 
.1 0.000167 0.000005 0.000016 
•. 2 0 .. 001333 0.000010 0.000032 

.• 3 0 .. 004500 0.,000016 0.000087 
... 4 0.020833 0.000226 0.001047 
.5 0.020833 0.000226 0.003631 
.6 0.036000 0.000577 0.,009227 
• '7 0.057167 0.001248 0.019948 
.8 0.085333 0.002410 0.038478 
.9 0.121500 0.004289 0.066159 

l,;O 0.166667 0.007158 0.105573 
·1 .. 1 0.221833 0.011349 0.158392 
l,;2 0.,288000 0.017252 0 .. 225500 
1.3 0.366167 0.025315 0.307029 
1.4 o.457333 0.036047 o.404231 
1.5 0.562~00 0.050017 0.516735 
1.6 0.682 67 0.067853 o.644708 

(' 1.7 0.818833 0.090243 0.788567 
1.8 0.972000 0 .. 117930 0.949034 
1.9 1.143167 0.151715, l;,126401 
2.0 . 1.,a3333 0.1~2449 1.,321737 
.2.1 -1.5~3500 0,.2 1035. 1.535998 

· 2,;2 · 1~774667 0.298424· 1.770248 
2.3. 2.027833 ' "'·, ,0.365609 2.025592 
2.4 2.,304000 · ·Q.443626 .2.303180 
2.5 2.,§04167 0.533546 2.604167 
3.0 4.500000 · l,;201393 4.500000 
3.5 7.145833 2.342884 7,;145837 
4.o 10.666667 4. 113105 10.666671. 
4.5 15.187500 6.666560 .. 15.179461 
5.0 20.833333 10.151409 20 .. 797364 
5.5 27.726167 14.706888 27.633462 
6.o 36.000000 20.463375 35.802996 
6.5 45.770233 27.544226 45.424919 
7.0 57.166667 36.068425 56.621602 
7.5 70.312500 . 46.153234 69.518472 
8.o 85.333333 57.916325 84 .. 242531 
8.5 102.354170 71.477130 100.922410 
9.0 121.500000 86.957360 119.685150 
9.5 142.895830 104.480960 140 .. 659390 

10.0 166.666667 124.173540 163.970040 
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TABLE XX.I 

RESPONSES OF THIRD ORDER SYSTEM . 
WITH UNIT IMPULSE INPUT 

Time Uncompensated Compensated 
(Sec.) Response Response 

o;o . ,• 0.000000 0.000000 
0 .. 1 0.004768 00052262 
0.;2 0.017761 0.194690 
o.; o.0;7448 0.;410491 
o.4 0.062376 0 .. 683749 
o .. ~ 0.091227 1.000001 
o .. 0.122809 1.~3798; 
0;,7 0.156054 l.;;075129 
o .. 8 0 .. 190014 1.2;2969 
0.9 0.223854 1 .. 0;8121. 
l.;O 0.256847 Oo744gg6 
1.1 0.288370 o.454 6 
1 .. 2 o.;17898 0.,244273 
1 .. 3 o.;44995 0.104595 
l.;4 0.,369;14 . 0 .. 026121 
1.5 0.,,0585 0.000004 
2 .. 0 o. 6629 . 0 .. 000000 
2.5 o.421490 0.;000000 
3.0 o.;36217 0 .. 000000 
;.5 0.221?96 0.000000 
4~0 0.10572; 0.000000 
4.5 0.010628 0.;000000 
5 .. 0 -0.053008 0;,000000 
5 .. 5 -0.08;60; 0 .. 000000 . 
6.o o0Q·.0861t-12 0.000000 
6~5 -0.670354 0.000000 
7 .. 0 -0.045087, 0.000000 
7.5 -0.018867 0.000000 
8.o 0.002628 0.000000 
8.5 0.016574 0.000000 
9.0 0.022620 0.;000000 
9.,5 0.,0221;2 0.;000000 

10.0 0.017354 0 .. 000000 



Time 
(Seco) 

o.o 
.1 
.2 
.. ; 
.4 
,e5 

. ~6 
.,7 
.. 8 
.;9 

1.0 
l.;l 
l.;2 
1.3 
1·4 0 . 

lo5 
2;,0 
2 .. 5 
3.0 
3.5 
4.o 
4.,5 
5.0 
5.5 
6;,0 
6 .. 5 
7.0 
7.5 
eel'> 
8 .. 5 
9.0 
9o5 

10.0 

TABLlli XXII 

RESPONSES OF THIRD ORDER SYSTEM 
WITH UNIT STEP INPPT 

COJl1llland Uncompensated 
Signal Response 

1 .. 000000 0.000000 
1.:.000000 0.,007554 
l;,000000 ojo10742 
1.000000 0.015321 
1.,000000 0;,021888 
l.;000000 o.o,09_o5 
1 .. 000000 o.,0~2709 
1.000000 0.0~57f>27 
l;,000000 0.075487 
1.000000 0.096628 
1.000000 0;,120914 
l.;000000- 00148240 
l;,000000 0.178448 
1.,000000 0.2113297 
1.000000 0.246639 
1.000000 00284099 
l;,000000 0;,492739 
l;,000000 0.707535 
1 .. 000000 0.89390; 
l;,000000 10030150 
l;,000000 1.109276 
l;,000000 l.;136551 
1.000000 1 .. 125026 
1 .. 000000 1,,090705 
1.000000 1 .. 048565 
1 .. 000000 1.010015 
l.;000000 0.981649 
1~000000 0.,956447 
1.000000 0.962781 
1.,000000 0.967767 
1.000000 o.·977573 
1.000000 0.988647 
1.000000 0.9983456 
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Compensated 
Response 

0'0000000 
00088178 
0;,125390 
0;,178841 
o_.255503 
0.,360758 
0.321136 
o.419239 
0.,521343 
0 .. 613881 
0.685596 
0.;855300 
0.913894 
0.,953478 
0.980364 
0.;999999 
1.000000 
0.,999999 
o.,9S1598 
0.982565 
0.,976934 
0.,975941 
0.,978992 
0.984588 
0.991031 
0.99690.5 
1.001314 
1..003909 
1-.004805 
1.004402 
1.003221 
10001766. 
10000430 



Time 
( Seco) 

0.,0' 
.1 
.2 
.. , 
.4 

.• s 
"86 
.7 
.. 8 
.9 

,l.;O 
1.1 
1.2 
1.3 
1.4 
1 .. g 
1. 
1.7 
1.8 
1.9 
2 .. 0 
2.5 
3.0 
3.5 
!~.o 
4.5 
5.0 
5.,5 
6.o 
6.5 
7.0 
7.5, 
B.o 
8.5 
9 .. 0 
9.;5 

10.0 

TABLE XXIII 

RESPONSES OF THIRD ORDER SYSTEM 
WITH' RAMP INPUT 

Connnand· Uncompensated 
Signal Response 

0.000000 0.;000000 
0.100000 0.000036 
0.200000 0.000076 
0.300000 0.000300 
o.400000 0.000903 
o.gooooo 
o. 00000 

·0~0021a4 
0.0042 1 

0.700000 0.007657 
0.800000 0 .. 012595 
0.900000 0.019434 
1;000000 0.028511 
1~100000 · 0 .. 040157 
1.200000 0.054684 
1.300000 0.072390 
1.400000 0.093543 
l;gOOOOO . 

' 1. 00000 
0~118388, .. 
0.147136 

1,.700000 0.179968 
1.800000 0.217030 
1.900000 0.258435 
2.000000 ,0.304260 
2.500000 .. 0.600080 
3.009000 1.000013 
3~50000Q 1483384 
4.000000 2.022071 
4.500000 2.587622 
5.000000 3.145492 
,~500()00 3.712802 
6~000000 4.248793 
6.500~00 4.7,63574 
7.000000 5.260957 
7.509000 5.747086 
a.000000 6.228398 
8 .. 500000 6 .. 710209 
9.000000 7.195996 
9.509009 7 .. 687303 

100000000 8.184053 

Co~pensated 
Response 

0 .. 000000 
0.001089 
0.002320 
0 .. 009177 
0.027645 
0.065329 
o. 128117 
0.228185 
0 .. 361063 
0.521166. 
o.6§85g5 . 
o .. 8 29 3 
1.055613 

.1.213789 
1.354809 
1.479742 
1.591284 
1.697413 
1.799544 
1.899988 
2.000000 
2.499999 
3.0QOOOO 
3.499997 
;.999842. 
4.499555, 
4.999193 
5.498732 
5.998383 
6.~98111 
5;,997954 
70497906 
7~997917 
8~497985 
e:.,998071 
9.4981415 
9.998202 



Time 
( Seco) 

o .. o 
.l 
.2 
.3 
~4 . 

:g 
.7 
.8. 
.;9 

l.;O 
1.1 
1.,2 
i..;3 
1.4 
1.5. 
1.6 
1.7 
1.8 
1.,9 
2.0 
2.1 
2.2 
2.3 
2 •. 4 
2 .. 5 
3.0 
3.,5 
4.o 
4.5 
5.0 
5.,5 
6.o 
6~:5 
7PO 
7.5 
8.o 
8.5 
9.0 
9.,5 

.10.0 

TABLE XIV 

·. RESPONSES OF THIRD ORDEJ.,l. SYSTEM 
Wifti'IY-f.:.?/:6 i~t·f•rmN-1_ . 
. .. . ~ . ,-:.! ~~1;·, ... ~;P.~..li , 

Command lJ~compensated 
Signal Response 

0 .. 000000 00000000 
0 .. 005000 0.0000.09 
0.020000. 0.000011 
0 .. 045000 0.;_000028 
o.o8opoo 0~000085 
.o .. 125000'. 0.;0002324 
0.180000 0.000548 
o .. ·245000 0 .. 001138 
.0 .. 320000 0.;002142 
0~405000 0.;003732 
0,500000, . 0.006117 
0.605000 0 .. 009535 
0.720000 0 .. 014261 
o.845000 Q.;020595 
0.980000 O,i0?0071. 
1 .. 125000, , 0.039445 
1'.280000 (h052697 
1 .. 445000 0.069027 
l.;620000 o •. q88850 
1 .. 805000 0.112595 
2.000000 0::140102 
2~295000 0.173613 
2.420000 0.;2U776 
2 .. 645000 0 .. 255639 · 
2 .. e80000 0 .• 305643 
, .. 125000 ,0.;3622?5 

,.500000 0.;758278. 
6.125000 1.;762'19' 
8;,000000 2 .. 250892 

10.; 125000 -3 .. 402730 
12.;500000 4.839004 
15,.125000 6 .. 557061 
18.000000 8.548361 
21.,125000 10.802278 
24.,500000· 13 .. 309015 
28.125000 -16 .. 061357 
32 .. 000000 19 .. 055308 
36 .. 125000 22.289854 
40 .. 500000 250766196 
45.;125000 29_.486784 
50.000000 33.454415 
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Compensated 
Response 

0.000000 
0.000456 
00000588 
0 .. 001395 
0~004291 
0 .. 011789 
0 .. 026315· 
0.055818 
0.;104136 
0.,175489 
0.;272266 
0 .. 396058 
0.539796 
00700306 
0.,872563 
l.;051431 
1 .. 232552 
1 .. 417555 
1 .. 605994 
1 .. 798184 
1.997016 · 
2 .. 204176 
2 .. 419788 
2;,644448 
2.,1379982 
3.;125000 
4.500002 
6 .. 125005 
8.;000006 

10;, 1250.12 
12.;500303 
15.,125464 
18.001165 
21.;126839 
240502816 
28 .. 125457 
32 .. 004428 
36 .. 130360 
40;.506310 
45.132150 
50 .. 007890 



TABLE XXV 

RESP9NSES OF THIRD ORDE~ SYSTEM WITH t3/Jiif\'slt~PUT. 

Time Conunand Uncompensated Compensated 
(Sec·~) Signal Response Response 

o.o p.000000 0.000000 0.,000000 
.1 0.000167 0.000003 0.000148 
• 2 0.001333 0.000003 . 0.000138 
.3 0.004500 0.090003 0.000166 
.4 o.0106Ei7 0.;000001 0.000369 
o5 0·~020833 o .. oood21 0,,601076 
.6 0 ... 036000 0~000057 0.;1002521 
.7 0.0571$7 0.000137 O;,p06741 
.8 0 .. 085333 0.000~96 0.01493($ 
.9 o .. 121;qo 0.000583 0 .. 029305 

1.0 0.,166667 0,001067 0.052459 
, 1.1 o.:;!21833 0.001639 0 .. 087603 
I i.,2 0;2aeooo 0.003016 0.136594 
1.3 0,(366167 0.004743 00202364 
1.4 o.45733:, o.00719S 0.;286894 I , 

1.5 o,g62gdo 0,010592 0*391627 
1.6 ,o. ~8267 00015717 0.,517487 
lo7 0.8188.33 0.02123.3 0.,664831 
1.e Oi972000 0.029096 0 .. 833565 
1.9 1.14.3167 ·b.0.39133 1.,023331 
2.0 1.,a'''' 2.1 1.5 3500 

o,og1l59 0.0~1~,, lt2g359g 
1.4 350 

2.2 1.774667 0.086657 'li7~34:,3 
2,3 2.0:27833 0.109978 1.983081 
2.4 2i,30!i.OOO 0.1:,7989 2.272899 
2.~ 2.604167 Otl7lg26 2+583763 
2. 2.929.333 0.210 68 2.917059 
2 • .7 3o28050Q, o.2;67:,5 3.,273(;i90 
2.8 3;,658667 0.310292 3.,655428 
~,sr 4f0,~s,, 1 0 .. 372138 4.063725 
3.0 4.500000 o,44gl13 1 4 .. 500000 
3.5 7.145833 1 0~96 6;9 '7.145833 
4.o 10 .. 666667 1 1 .. 862206 10.666679 
4 .. 5 15.,187500 3.,263823 15.187922 
5.0 20 .. 833333· 5.312400 20 .. 831440 
5.5 27.729167. 8.149825: 27.729200 
6.o 36 .. 000000 11 .. 915013 36,,018430 
6 .. 5 45.770833 16.741949 45.,843507 
7.0 57.166667. 22,,,751412 57.;349459 
7.5 70~312500 30~·09 879 70,,679660 
8.0 85.333333 38.861019 85.973110 
8.,5 102.,354170. 49 .. 187~801 103 .. 363805 
9.0 121;,500000 61.191170 122.977785 
9.5 142.,895830 74.994170 144 .. 943200 

10.0 166.666667 90.,719130 169.380550 



TABLE XXVI 

(A) AMPLIFIER GAINS DESIGNED ON SLIDE-RULE ACCURACY 

Amp a fle!r Polarity 

Bo (+) 

B1 (..;) 

B2 (+) 

Bs ( "') 

(B) COMPENSATED RESPONSE 

Time 
(Sec.) 

OoO 
O.i5 
1;.0 
l.; 5 
2.0 
2.5 ,.o 
3.5 
4~0 
!f,.5 
5 .. 0 
5 .. 5 
6.;0 
6.5 
7.0. 
7.5 
800 
8.5 
9.0 

.9.5 
lOoO 

Desired 
RespQnse ... 

0.000000 
0.33333;. 
0 .. 666667 
1.000000·· 
1~000000 
1 .. 000000 

.· LOOOOOO 
.· 1.000000 
1~000000 . 
1.000000 
1.000000 
1.000000 
· 1 ii 000000,. 
l,;000000 · 
1.000000 
1.000000 
1.000000 
hOOOOOO ·. 

· 1 ~·oeoooo 
. l.;0000(?0 
1.000000 

Gains 

1006 

20ol · 

13.2 

2b7 

Compensated 
Response· 

0.000000 
00327593 

. ·.0.660496 
0.989030 

'l;,025.258 
l.;019463 
0.,991001 
o_.961212 
0.941473 
0.935446 
0.,941637 
0.;95587<;) 
0.,973289 
o·.98973© 

. 1.002447 
l.'~010246 
1.013268 
1.012532 
.1 ~.009.~;9 
1..005457 . 
1.001657 
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