STUDIES IN FLUIDIZATION

Ву

JAMES MATHIAS WEBER

Bachelor of Science

g-8

Alabama Polytechnic Institute

Auburn, Alabama

1951

Submitted to the faculty of the Graduate School of the Oklahoma State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1959

OKLAHOMA STATE UNIVERSITY LIBRARY

FEB 29 1960

STUDIES IN FLUIDIZATION

Thesis Approved:

Thesis Adviser Mac Vice un Dean of the Graduate School

ii 438783

ACKNOWLEDGEMENT

First, I wish to thank Dr. Robert N. Maddox who suggested this problem and whose guidance made possible its completion. I am indebted to the Dow Chemical Company for the fellowship which allowed me to attend Oklahoma State University. In addition, I wish to acknowledge the contribution of the fluid-cracking catalyst by American Cyanamide Company and Cities Service Oil Company.

Finally, I wish to thank my wife who was very patient while this work was in progress.

TABLE OF CONTENTS

Chapte	er	P	'age
I.	INTRODUCTION	6	1
II.	THEORY OF FLUIDIZATION	٠	5
	Pressure Drop	9 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 7 8 10 11 12 12 14 15
III.	DESCRIPTION OF APPARATUS	¢	18
IV.	EXPERIMENTAL PROCEDURES	٥	20
V.	DISCUSSION OF RESULTS	9	23
VI.	SUMMARY AND CONCLUSIONS	ø	27
BIBLIO	GRAPHY	¢	29
APPEND	DICES:		
Α.	DEFINITIONS AND NOMENCLATURE	•	33
в.	APPARATUS DETAILS	o	38
С.	CALIBRATION AND EXPERIMENTAL DATA	0	42
D.	SAMPLE CALCULATIONS	•	89
E.	GRAPHS	¢	94

Table			с. 										Page
I.	Summary	of	Experiments.	\$ \$	÷	*	÷	õ	٠	\$ ġ.	æ	÷	24

LIST OF TABLES

ς.

A

LIST OF FIGURES

Figu	ire	F	age
1.	Fluidized System	•	3
2.	Pressure Drop as a Function of Fluid Velocity		5
3.	Froude Number as a Function of Particle Density.	•	8
4.	Porosity as a Function of Reynolds Number	•	9
5.	Log Porosity as a Function of Log Reynolds Number	•	9
6.	Friction Factor as a Function of Reynolds Number	•	10
7.	Friction Factor as a Function of Reynolds Number	•	11
8.	Viscosity as a Function of Aeration Rate		14
9.	Fluidized Systems	•	17
10.	Gas Rate as a Function of Solids Rate	•	25
11.	Column Details		39
12.	Injection Point Details	•	40
13.	Injection Point Details and Cone Details	•	41
14.	Pressure Drop as a Function of Gas Velocity 3A .	•	95
15.	Pressure Drop as a Function of Gas Velocity $5A-1$ 5A-2	•	96 96
16.	Pressure Drop as a Function of Gas Velocity 7A .	•	97
17.	Pressure Drop as a Function of Gas Velocity 8A .	•	98
18.	Pressure Drop as a Function of Gas Velocity 9A .	•	99
19.	Pressure Drop as a Function of Gas Velocity 9A . 1C .	•	100 100
20.	Pressure Drop as a Function of Gas Velocity 1B .		101

List of figures (continued)

F	1	g	u	r	e
_	_	9	-	_	-

Figu	ire									1	Page
21.	Pressure	Drop	as	a	Function	of	Gas	Velocity	2B .	•	102
22.	Pressure	Drop	as	a	Function	of	Gas	Velocity	3B .		103
23.	Pressure	Drop	as	a	Function	of	Gas	Velocity	4B .	•	104
24.	Pressure	Drop	as	a	Function	of	Gas	Velocity	5B-1 5B-2	•	105 105
25.	Pressure	Drop	as	a	Function	of	Gas	Velocity	1D .		106
26.	Pressure	Drop	as	a	Function	of	Gas	Velocity	ID : IF :	:	107 107
27.	Pressure	Drop	as	a	Function	of	Gas	Velocity	2D .		108
28.	Pressure	Drop	as	a	Function	of	Gas	Velocity	3D-1 3D-2	•	109 109
29.	Pressure	Drop	as	a	Function	of	Gas	Velocity	4D .		110
30.	Pressure	Drop	as	a	Function	of	Gas	Velocity	lE .		111
31.	Pressure	Drop	as	a	Function	of	Gas	Velocity	2E .	•	112
32.	Pressure	Drop	as	a	Function	of	Gas	Velocity	3E .	•	113
33.	Pressure	Drop	as	a	Function	of	Gas	Velocity	1G .	•	114
34.	Pressure	Drop	as	a	Function	of	Gas	Velocity	1H .	•	115
35.	Pressure	Drop	as	a	Function	of	Gas	Velocity	и.	•	116
36.	Pressure	Drop	as	a	Function	of	Gas	Velocity	IJ.		117
37.	Pressure	Drop	as	a	Function	of	Gas	Velocity	IK .	•	118
38.	Pressure	Drop	as	a	Function	of	Gas	Velocity	и.		119
39.	Pressure	Drop	as	a	Function	of	Gas	Velocity	1M .		120
40.	Pressure	Drop	as	a	Function	of	Gas	Velocity	IN .	•	121
41.	Pressure	Drop	as	a	Function	of	Gas	Velocity	10 .	•	122
42.	Rotameter	Cal	lbra	ti	lon Rot	ame	eter	Number Th	nree.	•	123
43.	Rotameter	Cal	Lbre	ati	lon Rot	ame	eter	Number Fo	our .	•	124

CHAPTER I

INTRODUCTION

Until World War II there was little application of fluidized beds by industry; consequently, very little information about fluidized beds was published. However, during this period many fluid-catalytic cracking units were built in this country. In 1947 literature about fluidization began appearing, and since that time a number of articles have been published.

Despite this, much work still needs to be done in the field of fluidization. There seems to be a growing interest in applying fluidized beds to additional processes. One recent application is the use of a fluidized bed in the production of SO₂ from low-grade sulfur ore (1).

Terms relating to fluidization are found in tabulated form in Appendix A. "A fluidized bed is a mass of solid particles which exhibits the liquid characteristics of mobility, hydrostatic pressure, and an observable upper free surface or boundary zone, across which a marked change in concentration of particles occurs." (2)

Figure 1 shows a typical fluidized system including both a reactor and a regenerator. Dense phases are found in the lower portions (above the grids) of the reactor

and regenerator, and dilute phases are found in the disengaging sections of the reactor and regenerator. These two phases can also be found in the transfer lines between the two vessels. For example, a dense phase exists in the transfer line from the bottom of the standpipe to the bottom of the reactor.

2

As was previously stated, there have been many articles published about fluidized systems since 1947. They can be divided into three main groups: One, heat transfer in fluidized systems (20, 34, 35, 31, 13, 11); two, mass transfer in fluidized systems (21, 10, 29, 9, 30); and three, the general characteristics of fluidized systems (38, 18, 39, 36, 23, 22, 19, 6, 17, 14, 4, 36, 16, 5, 28, 26, 33).

The general characteristics of fluidized systems can again be divided into three main classes: One, the uniformity of fluidization and its measurement (32, 27, 24); two, the pressure drop in transfer lines (7, 3, 8); and three, basic observations about fluidized beds in general (relating particle size, size of equipment, gas rates, etc.).

Again, this last group about basic observations in fluidized systems can be sub-divided into several groups, and one such sub-division shall be the subject from this point.

When solid particles fall from the regenerator (or reactor) into the standpipe (see Figure 1), they come from a turbulent phase. During this fall in the standpipe the

3

d:

particles are partially aerated. As they approach the top of the bed, which is moving downward in the standpipe, rapid deaeration takes place. Dickman and Forsyth (5) developed a method whereby the deaeration characteristics of fluidcracking catalyst can be predicted in the laboratory. A correlation is found between their observed results and commercial operation. (From this point on, the terms "catalyst" and "solid particles" are synonymous.)

In plant operation, aeration gas is added at intervals along the standpipe to control the deaeration rate and to reduce unsteady operation, such as bumping and slugging, in the standpipe. (From this point on, "aeration gas" and "dispersing medium" are synonymous.) It is known that the catalyst forms large masses in some commercial standpipes. This causes serious bumping (i.e., forming large falling masses). In commercial operation where there are hundreds of pounds of catalyst being transported, considerable forces are built up when these masses form and then fall.

The purpose of this investigation was to determine the effect of two variables on the flow of catalyst in a standpipe. These were-, the type of injection points along the standpipe for the aeration gas; and the minimum amount of injection medium required to keep the solid particles flowing smoothly in the standpipe.

CHAPTER II

THEORY OF FLUIDIZATION

The theory of fluidization is still in the formative stage despite the number of correlations in the literature. In the succeeding sections these correlations are presented and their application discussed.

Pressure Drop

One of the simplest correlations in fluidization is a correlation of pressure drop as a function of fluid velocity.

Fluid velocity

FIGURE 2. PRESSURE DROP AS A FUNCTION OF FLUID VELOCITY From observation, we find that as the fluid velocity increases the pressure drop increases. Starting with low velocities, there is a steady pressure buildup. Then point C, called the point of minimum fluidization, is reached. At Point B the solid particles begin movement. This movement is actually a readjustment of the particles to allow a maximum amount of free space for the injected medium. Instability of the bed increases until point C is reached. Any additional increased flow of the gas will cause fluidization to start. This additional increase in gas rate causes the condition known as "minimum fluidization". With the addition of more air all the particles are in motion. The pressure drop between A and B is caused by the resistance to flow through a packed bed. This behavior is dependent on the particle size and on the density difference between the particle and the dispersion medium.

There are two forces acting on a fluidized bed. One force is acting to raise the particles, and the other force is acting to settle the particles. The force tending to raise the particles consists of two things--the buoyant force and the friction force. The buoyant force comes from the injection medium, and the friction force comes from the gas passing over the solid particles. The force keeping the particles in the static state is the weight of the particle, or the pull of gravity on each particle mass.

When these two forces are equal, the following equation can be written:

 $\frac{g}{g_{c}} \begin{array}{c} (1-\epsilon) & (L)(A) & (\rho) + (-\Delta P_{f})(A) = g & (1-\epsilon)(\rho_{s})(L)(A) \\ \hline g_{c} & \\ \hline Force Up & + & Force up = Force down \end{array}$

 $P = \frac{(1-\epsilon)^2}{\epsilon^3}$ (2)

There are two basic forces of fluidization: the weight gradient through the bed $(1-\epsilon)$ $(\rho_s - \rho_g)$ and the viscous drag of the fluid acting upward to disperse the bed $(^{\Delta P}/L)$ (g), the latter called the fluid flow gradient. There appears to be a third force or combination of forces, the net effect of which is to retain the bed in a compacted state. Such forces may be either electrostatic or fluid dynamic in origin, or both.

Froude Number Correlations

Before one progresses further in the study of fluidization, a distinction must be made between particulate and aggregate fluidization. (See Appendix A for definitions.) The data of Wilhelm and Kwauk (37) suggests that a correlation between particulate and aggregate fluidization can be derived by means of the dimensionless Froude Number.

$$N_{F,r} = \sqrt[v]{dpg}$$
(3)

Lowenstein (18) presents a nomograph for rapid estimation of fluidization velocities. If the particle diameter is plotted as a function of Froude Number a graph similar to Figure 3 results.

or:

Particle Diameter

FIGURE 3. FROUDE NUMBER AS A FUNCTION OF PARTICLE DIAMETER

Porosity

The porosity is given by the following equation:

$$\xi = \frac{L - L_0}{T}$$
(4)

Just before fluidization is reached, the bed swells, and the bulk density decreases. This is followed by the condition known as fluidization.

Olin and Patterson (25) found a relation between porosity and Reynolds Number.

<u>dp u e</u> FIGURE 4. POROSITY AS A FUNCTION OF REYNOLDS NUMBER Over the range of their data, using clean round sand, the following empirical relation holds:

$$\frac{L-L_0}{L} = \frac{(0.033)}{(dp^{0.36}) (Re^{0.14})}$$
(5)

If the log porosity as a function of log Reynolds Number were plotted on a bed undergoing fluidization a graph similar to Figure 5 results.

Log dp u V/

FIGURE 5. LOG POROSITY AS A FUNCTION OF REYNOLDS NUMBER

With the data of Wilhelm and Kwauk (37), line BC can be formed by extrapolation. Point C represents the free settling velocity of the individual particles.

Dimensionless Relations

Excluding shape factor (which is discussed in the section entitled Relative Velocities), the following variables are important in a fluidized system:

 $(g\Delta P)$, d_p , L, μ_0 $(\rho s - \rho f)g$, s, μ Definitions are found in the table of nomenclature. These variables, with the additional dimensionless variable,f, were formed by Wilhelm and Kwauk into four dimensionless groups as follows:

$$d_{\rm p} = \frac{u_{\rm o} \rho_{\rm s}}{P} = {}^{\rm N} {\rm Re}$$
(6)

$$\frac{d_p^3 \rho_s g}{\mu^2} \qquad (\Delta P) = K \Delta p \qquad (7)$$

$$1/2 \frac{d_p^3 \rho_{fg}}{r^2} (\rho_s - \rho_1) = \kappa \delta p$$
 (8)

$$\frac{\mathbf{L}-\mathbf{L}_{0}}{\mathbf{L}} = \boldsymbol{\epsilon}$$
(9)

Equation seven is the product of a modified friction factor for the flow of fluids through granular beds by the square of the modified Reynolds Number. Equation eight is the product of the drag coefficient of particles settling under the influence of gravity and the square of the modified Reynolds Number. It may be noted that the usual 4/3 in the drag coefficient is changed to 1/2 so that KAp and K'Ap may be referred to a common scale (see Figure 6).

Friction Factor Relations

A correlation by Olin and Patterson (25) relates friction factor, Reynolds Number, and the particle size. the term $\left(\frac{3}{(1-\epsilon)^2}\right)^2$ is used in the friction factor to correct for voids. The relation shows that for a constant Reynolds Number, as the particle size increases, the friction factor increases (Figure 7).

FIGURE 7. FRICTION FACTOR AS A FUNCTION OF REYNOLDS NUMBER

Relative Velocities

In a confined fluidized bed the net velocity of the particles will be zero. When the bed has a net motion with respect to the fluid, the velocity is the difference $(v-v_p)$ in the velocities. Therefore, in a bed where the solid particles are moving downward, the correct modified Reynolds Number will be:

$$N_{\rm Re} = \frac{d_{\rm p} (v - v_{\rm p}) \rho}{\mu}$$
(10)

Toomey and Johnstone (33) found a relation between the energy required for fluidization and the terminal settling velocity of spherical particles.

$$\frac{\ln v^g}{v^v} = \frac{1}{(Kd_p^{0.5} - k)} \frac{\Delta p^{ke}}{\Delta p^{mf}}$$
(11)

Shape Factors

Leva (16) has presented data that gives a correlation for shape factors. The equation derived is for all particles.

 $\lambda = 0.205 \quad \underset{\overline{V}}{\underline{A}} \quad \underset{p}{d_p} 2/3 \qquad (12)$ For spheres λ is equal to 1.0 and for all other particles λ is less than 1.0. It is to be noticed that shape factor and sphericity are the same thing.

Segregation Tendency

One of the advantages of a fluidized bed is the uniformity of the solid particles with relation to the total gas stream. However, due to channeling or slugging conditions, the bed can become less uniform than a fixed bed. This condition can be visualized by using a sample of extreme particle sizes. It takes more air to suspend a very large particle than it does a very small particle. In commercial operations the solids "wear out", thus becoming increasingly smaller (this varies in operation) until they are carried off by the fluidizing medium.

Lapple (12) states that a bed of free flowing particles with a high segregation rate will exhibit predominantly "aggregative" fluidization, but with a low segregation rate the bed will exhibit mainly "particulate" fluidization.

By use of the Carman-Kozeny correlation Lapple obtained the following equation:

$$u_{o} = \frac{L}{f (\rho_{s} - \rho_{f})(\epsilon_{2} - \epsilon_{1})} (\frac{g_{c}}{(\epsilon_{3})^{3}}$$
(13)
$$a^{2} \mu^{5} L_{1}$$

Segregation is represented by un.

Several conclusions may be drawn from Equation (13). These conclusions are taken from Lapple (12):

"1. The segregation tendency is inherent in any fluidized bed and is self-accelerating. This conclusion is drawn from the dependence of u_0 (segregation rate) on ($(2-\epsilon)$); as segregation proceeds (2 increases and (1 decreases; consequently their difference increases and thereby the segregation rate also increases. The limit is reached if (2 becomes 1.0 and (1 becomes the voidage of the settled bed. When this situation exists, stable channels pass through a stagnant bed, and segregation has proceeded to completion. This situation normally occurs only with materials which are not free-flowing.

2. The segregation rate is greatest at the bottom of the bed since u_0 is proportional to L_f . As a corollary, deeper beds should exhibit greater segregation and correspondingly poorer quality of fluidization.

3. Liquid fluidized beds have much smaller segregation rates than do gas fluidized beds, because of the roughly fifty-fold higher viscosity and the smaller density difference. This is believed to be the principal reason for particulate fluidization in Wilhelm and Kwauks water fluidized beds and aggregative fluidization of the air fluidized beds. 4. High density particles have correspondingly high segregation rates. As a corollary, decreasing the effective particle density by using hollow or vesicular particles, or by using porous flocs, should decrease the segregation rate. 5. The smaller the particle, the larger its specific surface and consequently the smaller its segregation rate. Unfortunately, decrease of particle size is often accompanied by decrease in the free flow quality of a powder, which may offset the advantages of lower segregation rate."

Viscosity Relationships

The data of Dickman and Forsythe (5) shows a correlation between viscosity and aeration rate (ft./sec.). This correlation is found in Figure 8.

Aeration Rate (ft./sec.)

FIGURE 8. VISCOSITY AS A FUNCTION OF AERATION RATE

This concept relates changes in fluidity to changes in viscosity. The method is briefly: When the air in a fluidized system is shut off, the system "settles", and

during this settling period, there is a change in viscosity (measured by a suspended Bookfield Viscometer). A correlation exists between this change in viscosity and the flow properties of the solids.

Application of Theory to Problem

The theory of fluidized beds has been presented in the first part of this chapter. To the present time, studies have been confined to vertical chambers of varying diameters with various means for injection of fluidizing medium. The present literature covers the various types of grid systems for the distribution of the gaseous medium by the system at different states of fluidization.

Little information is available for fluidized systems that would be encountered when the main body of solids is moving countercurrent to the gas. Application of this principle may be found in vertical transfer lines where the force of gravity is used to transport the solids. An analogous picture is a countercurrent extraction column. If slugs of gas and slugs of solids occur, they are detrimental to smooth operation.

A basic understanding of what actually happens in standpipes is essential before one proceeds. (From this point on the terms "column" and "standpipe" are synonymous.)

In most operations in the actual reaction vessel, the solids are in a turbulent state of fluidization. As they are withdrawn by spilling over into the standpipe, they

go from a lean phase to a dense phase. They fall a short distance in a completely aerated state (lean phase). The laws governing free fall could apply in some cases. The particles then "hit" the main body of solids which is moving downward. In this interval of time, while "hitting", the solids undergo a rapid deaeration. If no fluidizing air is used to combat this rapid deaeration, the solid particles will form a mass and move down the bed.

Another problem enters when one considers flow in the standpipe. It is known that the type of grid system greatly determines the quality of fluidization. However, when gas is added to a standpipe, the downward flow of solid particles must not have an elaborate grid system to block flow. Therefore, gas will have to be added at points. It is assumed that the gas will diffuse toward the wall, and then the gas will act as though evenly distributed.

In this work air was used as the aeration gas, and entry was made at several points along the standpipe. Several methods of dispersing the gas were used: 1) running the tubes to the center of the standpipe and pointing upward; 2) extending the tube across the standpipe and having several outlets in the tube (this is like a portion of grid); 3) introducing the air through outlets in a cross arrangement at the bottom of the column. Figure 9 shows a conventional fluidizing column and standpipe.

CHAPTER III

DESCRIPTION OF APPARATUS

Most work on fluidized beds has been done in confined vessels with a suitable gridwork at the bottom to disperse the gas. To study the downward flow of solids in standpipes, a false bottom must be employed. A column was chosen that had a large lenth-to-diameter ratio. The diameter was large enough so that wall effects were small. A column having a diameter of three and one-half inches was chosen.

The drawings of the column and associated pieces of equipment may be found in Appendix B. The column and its associated pieces of equipment will be described briefly.

The column was a plexiglass pipe five feet high, three and one-half inches inside diameter, and one-fourth of an inch thick. Plexiglass was chosen so that visual observations could be made. Eleven one-half inch holes were drilled in one side of the pipe to serve as pressure taps. Ten one-half inch holes were drilled on the opposite side of the column to serve as gas injection holes.

The false bottom was a cone that fitted on the bottom of the column, and the diameter of the hole at the bottom of this cone determined the rate of flow of solids. The cone was a thin aluminum plate, and was analogous to the

slide valve used in some commercial operations. It was believed that a slide valve would create a dead zone in this small-scale equipment, and that a cone would allow more uniform downward movement of the solids. Three types of injection tubes made of 1/4-inch copper tubing were used. Type number one was a tube extending from the wall to the center of the column. The tube was bent ninety degrees so that the outlet was pointed up along the centerline. Type number two was a tube extending from one wall to the opposite wall. This tube had four 1/16-inch diameter holes drilled in it. These holes were evenly spaced on one side along the length of the injection tube. Type number two connected at the center, with only one gas inlet.

Pressures were read on water-filled manometers. A pipe cleaner was inserted in the pressure tap line at the standpipe end to keep the pressure line free of solids.

Rotameters were used to meter the gas into the column. Calibration data on these rotameters are found in Appendix C.

On the runs using the conical false bottom a fivegallon can was fastened at the bottom of the column. The can received the solids and prevented the fluidizing medium escaping from the bottom of the column.

CHAPTER IV

EXPERIMENTAL PROCEDURE

The tests were divided into three groups. In group one a used microsphere - cracking catalyst was employed, while in group two a new one was used. In group three two series of runs were made: one series in which the used catalyst was employed and a second using the new catalyst. The new catalyst was obtained from American Cynamide Company, and the used catalyst was obtained from Cities Service Oil Company. The analysis of both of these catalysts was made by the American Cynamide Company. The analysis of the two catalysts is found in Appendix C.

The test runs are lettered from A to O. Runs A through C were made with the new catalyst, and Runs D through F were made with the used catalyst. Runs G through O were made using both catalysts in the same manner as Run F. One set of operating conditions will be given as an example.

Runs G through O were made in the same manner as Run E, but the solid flow rate was changed. Both new and used solids were used in Runs G through O, each run being labeled as either new or used catalyst.

It was thought that the bottom of the column should be closed and some data obtained in the confined bed. These

runs are labeled A. Then the cone was placed on the bottom of the column, a flow rate established, and data obtained. These runs are labeled B. In Runs A the minimum rate of fluidizing gas for fluidization was found. In Run C this minimum fluidizing rate was added to a column with no catalyst, and catalyst in weighted amounts was added to the column. Pressure readings were recorded after each addition.

In the A runs the catalyst was added to the column to a height of forty-nine inches from the bottom. Air was introduced in different amounts using the three types of injection points. Pressure drops were measured at various points on the column.

In Runs B catalyst was added to the column and a rateof-flow of solids from the bottom of the column was established. Air was introduced in different amounts using the three types of injection points. Pressure drops were measured at various points on the column. Catalyst was added manually to maintain a fluidized height of forty-nine inches in the bed.

In some of the runs the pressure-drop curve was established by increasing the flow rate past the minimum fluidization rate and then, without doing anything to the system, the pressure drop was observed by slowly decreasing the air flow. Runs 3A and 1D are examples of this procedure.

Runs 5A-1 and 5A-2 were made to check the addition of air, using two injection lines. The top part of the bed was fluidized using injection location F. A minimum gas rate was found which was maintained while air was added at the bottom of the column, using injection point A. A minimum gas rate was established at this point. A comparison of this run and a run using only injection point A was made.

In Runs G through O, the catalyst flow rate was changed by changing the diameter of the hole in the bottom of the cone.

There was some question as to the validity of the pressure point taps used. A pressure traverse was made across a diameter of the column to establish that the pressure measured at the wall of the column was representative.

CHAPTER V

DISCUSSION OF RESULTS

Because of the quantity of data, the results are divided into three main groups. Group one consists of Runs A and B; group two consists of Runs D and E; and group three consists of Runs G through O. The data are summarized in Table I. For details of conditions of each run, see Chapter IV.

The three types of injection points used made very little difference in the amount of air required for fluidizing the microsphere-cracking catalyst. An average air velocity (expressed as feet per hour) of twenty-five feet per hour, plus or minus one foot per hour, was needed to fluidize the bed with zero net downward particle motion. As the net downward motion of the catalyst increased, the amount of gas needed for fluidization increased. This is shown in Figure 10.

It took more air to fluidize the used catalyst than it did the new catalyst. The average particle size was the same, but the used catalyst had a much higher bulk density. The pressure drop across the used catalyst was also greater.

Runs 3A (Figure 13) points out an interesting relation in the gas rates needed in a fluid bed. Two curves are

TABLE I

SUMMARY OF EXPERIMENTS

Run	Type Catalyst	Net Catalyst Velocity in /min.	Minimum Air Required ft./hr.	Figure
7A	New M. S.	0.0	26 <u>+</u> 0.2	16
8A	New M. S.	0.0	25 <u>+</u> 0.5	17
9A	New M. S.	0.0	24 <u>+</u> 0.5	18
2B	New M. S.	3.0	37 <u>+</u> 0.2	21
3B	New M. S.	3.0	5	22
4B	New M. S.	3.0	36 <u>+</u> 0.2	23
1D	Used M. S.	0.0	32.0	25
2D	Used M. S.	0.0	37.0	27
4D	Used M. S.	0.0	33.0	29
ie	Used M. S.	3.0	40	30
2e	Used M. S.	3.0	44	31
3e	Used M. S.	3.0	50	32
1G 1H 1J 1K 1L 1M 1N 10	Used M. S. Used M. S. New M. S. New M. S. Used M. S. Used M. S. New M. S. New M. S.	0.5 1.5 1.5 0.75 0.75 4.0 4.0 4.0 4.0 4.0	26.5 <u>+</u> 0.5 31.5 <u>+</u> 0.5 27.8 24 25.5 41.0 40.1 40.2 40.1	33 34 35 36 37 38 39 40 41

plotted--one with an increasing gas velocity and the other with a decreasing gas velocity. This data shows that it takes less gas to keep a bed fluidized than it does to fluidize a static bed.

A simple experiment was devised to determine if the pressure readings were the same along the axis of the column as they were at the wall of the column. It was found that the pressure was the same at the wall and at the center of the column at a given height.

In runs 5A-1 and 5A-2 it was found that by placing two injection points in the column in different locations no less gas was required to fluidize the total bed. In standpipes when the solids are moving very rapidly the only reason for having multiple points is to keep agglomerates from forming. Multiple points should not be sought where minimum use of fluidizing gas is required.

A correlation was found to exist between the amount of air needed for fluidization and the terminal settling velocity of a single sphere. Equation (14) shows this relation.

$$V_n = 2/3 u_t + V_p$$
 (14)

The derivation of this equation is found in Appendix

D.

CHAPTER VI

SUMMARY AND CONCLUSIONS

A correlation between the terminal settling velocity and minimum velocity required for fluidization has been found for a microsphere-cracking catalyst. This relation is as follows:

 $V_n = 2/3 u_T + V_p$ (14)

The type of injection system made very little difference in the amount of air required to fluidize a given bed of catalyst. The three types of injection systems included a point, a tube, and a cross.

This experimental work shows that multiple injection points at different heights require more air to fluidize a given volume of catalyst.

Less gas is required to keep a bed in the fluidized state than to reach a fluidized state from a static condition. There seems to be a third force, the effect of which is to retain the bed in a compacted state. An experimental program should be carried out to see what this force is.

The experiments which form the basis for this thesis were done with a microsphere catalyst, which, from a theoretical standpoint, should give the most ideal results. There are several fluid catalysts that are inherently hard

to fluidize. An experimental program should be carried out to see if the equation derived in this work could be used when other solids were fluidized.

BIBLIOGRAPHY

1.	Anon., Chemical Engineering, 62, No. 8, 288 (1955).
2.	Anon., Industrial Engineering Chemistry, 41, 1249 (1949).
3.	Belden, D. H., Kassel, L. S., <u>Industrial Engineering</u> Chemistry, 41, 1174 (1949).
4.	Berg, Clyde, <u>Chemical</u> <u>Engineering</u> <u>Progress</u> , 51, 327 (1955).
5.	Dickman, Robert, Forsythe, W. L, Jr., <u>Industrial</u> <u>Engineering</u> <u>Chemistry</u> , 45, 1174 (1953).
6.	Fabar, Leonard, <u>Industrial</u> Engineering Chemistry, 41, 1184 (1949).
7.	Happel, J., <u>Industrial Engineering</u> Chemistry, 41, 1161 (1949).
8.	Harin, O. H., Molstad, M. C., <u>Industrial</u> <u>Engineering</u> <u>Chemistry</u> , 41, 1148 (1949).
9.	Hobson, M., Thodos, G., <u>Chemical Engineering Progress</u> , 47, 370 (1951).
10.	Hsu, C. T., Molstad, M. C., <u>Industrial</u> <u>Engineering</u> <u>Chemistry</u> 47, No. 8, 1550 (1955).
11.	Kettenring, K. N., Manderfield, E. L., and Smith, J. M., <u>Chemical Engineering Progress</u> , 46, 139 (1950).
12.	Lapple, C. E., <u>Fluid and Particle Mechanics</u> , First Edition, University of Delaware, Newark, Delaware, 1954.
13.	Leva, M., Weintraub, M., Grummer, M., <u>Chemical</u> <u>Engineering Progress</u> , 45, 563 (1949).
14.	Leva, Max, Grummer, Milton, <u>Chemical</u> <u>Engineering</u> <u>Progress</u> , 48, 307 (1952).
15.	Leva, Max, Grummer, M., Weintraub, M., and Pollchik, M., Chemical Engineering Progress 44: 619 (1948).
- 16. Leva, Max, Grummer, M., Pollchick, M., <u>Chemical Engi-</u> neering Progress, 44, 511 (1948).
- 17. Lewis, W. K., Gilliland, E. R., and Bauer, W. C., Industrial Engineering Chemistry, 41, 1104 (1949).
- 18. Lowenstein, L., <u>Chemical Engineering</u>, Vol. 62, No. 4, 189 (1955).
- 19. Matheson, G. L., Herbst, W. A., and Holt, P. H., 2nd, <u>Industrial Engineering Chemistry</u>, 41, 1099 (1949).
- 20. Mickley, H. S., and Trilling, C. A., 2nd, <u>Industrial</u> <u>Engineering Chemistry</u>, 41, 1099 (1949).
- 21. McCune, L. K., Wilhem, R. H., <u>Industrial Engineering</u> <u>Chemistry</u>, 41, 1124 (1949).
- 22. Miller, Clark O., Logwincek, A. K., <u>Industrial Engi-</u> neering <u>Chemistry</u>, 43, 1220 (1951).
- 23. Morse, R. D., <u>Industrial Engineering Chemistry</u>, 41, 1117 (1949).
- 24. Morse, R. D., Ballow, C. O., <u>Chemical Engineering</u> <u>Progress</u>, 47, 199 (1951).
- 25. Olin, H. L., Patterson, J. S., Petroleum Engineer, 5, C5-C12 (1951).
- 26. Othmer, D. F., <u>Fluidization</u>, New York: Reinhold Publishing Corporation, 1956.
- 27. Osberg, G. L., <u>Industrial</u> <u>Engineering</u> <u>Chemistry</u>, 43, 1871 (1951).
- 28. Parent, J. D., Vagal, N., Steiner, C. S., <u>Chemical</u> <u>Engineering Progress</u>, 4B, 429 (1947).
- 29. Resnick, W. E., White, R. R., <u>Chemical Engineering</u> <u>Progress</u>, 45, 377 (1949).
- 30. Satterfield, C. N., Resnick, Hymen, and Wentworth, Ralph L., <u>Chemical Engineering Progress</u>, 50, 460 (1954).
- **31.** Singer, E., Wilhem, R. H., <u>Chemical Engineering</u> <u>Progress</u>, 46, 343 (1950).
- 32. Shuster, W. W., Kisliak, P., <u>Chemical Engineering</u> <u>Progress</u>, 48, 455 (1952).

- 33. Toomey, R. D., Johnstone, H. F., <u>Chemical Engineering</u> <u>Progress</u>, 48, 220 (1952).
- 34. Van Heerden, C. A., Nobel, P. P., Van Krevelin, D. W., Industrial Engineering Chemistry, 45, 1237 (1953).
- 35. Wamsley, W. W., Johanson, L. N., <u>Chemical Engineering</u> <u>Progress</u>, 50, 347 (1954).
- **36.** Wilhelm, R. H., Valentine, S., <u>Industrial Engineering</u> <u>Chemistry</u>, 43, No. 5, 119, 1203 (1951).
- 37. Wilhelm, R. H., Kwauk, M., <u>Chemical Engineering</u> <u>Progress</u>, 44, 201 (1948).
- 38. Vener, R. E., <u>Chemical Engineering</u>, Vol. 62, No. 7, 181, (1955).
- 39. Zeng, F. A., <u>Industrial Engineering Chemistry</u>, 41, 280 (1949).

APPENDIX A

DEFINITIONS AND NOMENCLATURE

1. A "fixed bed" is a body of motionless solid particles supported by direct contact with each other and the retaining walls.

2. A "moving bed" is a similar body in which the particles remain in direct contact and are substantially fixed in position with respect to each other, but move with respect to the retaining walls.

3. A "fluidized mass" of solid particles is one which exhibits the mobility and hydrostatic pressure characteristic of a fluid. This condition may be achieved through suspending the particles by means of a stream of gas or liquid rising past the particles.

4. A "fluidized bed" is a mass of solid particles which exhibits the liquid-like characteristics of mobility, hydrostatic pressure, and an observable upper free surface or boundary zone across which a marked change in concentration of particles occurs. (In a fluidized bed, the random motion of the particles increase with increasing velocity of the supporting medium.)

4a. "Particulate fluidization" of a bed refers to a condition in which the particles are individually and uniformly dispersed. (Particulate fluidization is commonly

observed in beds fluidized by a current of liquid. The term "tectering" as used in the ore-dressing industry refers to a relatively high-density suspension of this type.) In contrast, coexistence of dense and dilute suspensions (bubbles) within a fluidized bed is termed "aggregative fluidization" (aggregative fluidization is commonly observed in beds fluidized by a current of gas).

4b. A "quiescent fluidized bed" is a dense fluidized bed which exhibits little or no mixing of the solid particles. (Such a bed is analogous to a body of liquid at rest, having a well-defined upper free surface.)

4c. A "turbulent fluidized bed" is a fluidized bed in which mixing of the mass of solids takes place. (The degree of turbulence, increasing from the lower limit of quiescentbed conditions to violent mixing, depends upon the dynamics of the system. The passage of bubbles through the bed may give rise to such turbulence and mixing. While such a bed may operate at a gas velocity below the free-falling velocity for the bulk of the solid particles, it can also be maintained at a velocity materially above the free-falling velocity if a continuous feed of solids is supplied to the bed. The boundary zone or interface at the free upper surface of a turbulent fluidized bed is generally diffuse, as in the surface of a boiling liquid.)

5. A "dispersed suspension" is a mass of solid particles or aggregates suspended in a current of liquid of gas rising past the particles, which differs from a fluidized

 $\mathbf{34}$

bed in that an upper level or interface is not formed under conditions of continuous solids entrainment and uniform superficial velocity. (This is usually observed under conditions of low solids feed rate. Thus, in general, a dispersed suspension is analogous to a vapor, whereas a fluidized bed is analogous to a liquid. One example of this condition is observed in a pneumatic transport. In a vessel containing a fluidized bed a dilute suspension of entrained particles above the bed also is such a dispersed suspension and is frequently referred to as the "dense phase".)

6. "Channeling" is the establishment of flow paths in a bed of solid particles through which a disproportionate quantity of the introduced liquid passes.

7. "Slugging" is a condition in which pockets of bubbles of the supporting fluid grow to the diameter of the containing vessel, and the mass of particles trapped between adjacent pockets moves upward in a piston fashion. (This condition is usually limited to a vessels of high length-to diameter ratio.)

8. The term "dense phase" is used to denote a high ratio of solids to gas, and the term "dilute phase" is used to denote a low ratio of solids to gas in a fluidized system.

9. "Aeration" is the act of forcing gas into the spaces between the solid particles.

10. "Deaeration" is the act of releasing the gas from the spaces found between solid particles.

• • • •			
			36
Nome	enclature:		
		ананан алан алан алан алан алан алан ал	Area of bed
	K	***	Constant
	Kdp	=	Pressure drop
•	K	Ŧ	Pressure drop
	L and Lf		Thickness of bed or height of bed
	Lo	400 1	Height of an equivalent bed without fluidization
	L	-	Length of flow path
	NFr		Froude number (dimensionless)
	NRe	9 9	Reynolds number
	٧ _P	17 18 18	Net velocity of particle with respect to walls
	V	*	Volume of particle
	Vn	=	Velocity required for fluidization
	∆ 8	:	Volume of gas per unit time in the discontinuous phase
	VV	-	Volume of gas per unit time in the continuous phase
•	dp	*	Diameter of particle
	g	-	Gravitational constant
	s _c	-	Conversion gravitational constant
	k	3	Constant
	u _e	.	Segregation rate
	ut	-	Terminal gravitational setting velocity
	V	=	Velocity
	vp		Velocity of particle
	f	49) 680	Porosity of bed
	(3, (2, (1	# 6	Porosity in different sections of bed
	Ff	3	Modified friction factor

	Р	2	Pressure drop
	-∆Pf	=	Pressure drop required for fluidizing
	⊿ p ^{ke}	=	Total pressure drop due to kinetic energy loss
	△ p ^{mf}		Total pressure drop at incipient fluidization
	pand pf, pg		Density of fluidizing medium (fluid)
	S	3	Density of solid
. .	γ	eteras Again	Viscosity of fluid
	λ	-	Shape factor
	G		Mass velocity of fluid

37

.

.

APPENDIX B

APPARATUS DETAILS

FIGURE 11. COLUMN DETAILS

Type Number One

Type Number Two

#00 rubber stopper

1/4" copper tubing

top view

FIGURE 12. GAS INJECTION DETAILS

FIGURE 13. INJECTION DETAILS AND CONE DETAILS

APPENDIX C

DATA

Inspection data on cracking catalyst--Sample FW 1778, American Cyanamide Company (new microsphere)

Grade 60/70

(Sample No. FW 1778)

<u>Chemical</u>	Analysis	(Ignited bases)
% A1203		13.9
% S04		0.42
$\% Na_2 0$		0.05
% Fe~	۲.	0.03

Physical Properties

Particle Size Wt. % less than 150 microns 99 100 microns 87 80 microns 70 74 microns 65 40 microns 19 30 microns 10 20 microns 3 10 microns 1 62 average particle size (microns)

The test methods are in the Cyanamide Manual of Test Methods.

Structure

Surface area	575	m^/g	
Pore volume	0.83	cc/g	
Apparent bulk density	0.41	g/cc	

Catalytic activity

Volume	basis	87
Weight	basis	105

Inspection data on cracking catalyst--Sample from Cities Service Oil Company (used microsphere)

Chemical	Analysis	(Dry	basis	%	by-weight)
Al ₂ 03				20	0.0
Fe				(0.22
Na ₂ 0				(0.13
^۲ ۲				(0.5

Physical Properties

Pa	Particle Size			I	Nt.	%
le	ss than	150	microns		99	
		100	microns		93	'
		90	microns		89	
		80	microns		84	
		74	microns		81	
		70	microns		73	
		60	microns		43	
		50	microns		23	
		40	microns		8	
		30	microns		0	
		20	microns		0	
		10	mic rons		🔞	
average	partic.	le si	ize (microns)		62	

Structure

Surface area	126 m ² /g
Pore volume	0.45 cc/g
Apparent bulk density	0.70 g/ce
Catalytic activity	
Volume basis	52
Weight basis	38
	N / 1

Validity of Pressure Taps

Location	of pressure tapPoint 3
Pressure Tap	at wall of column
Pressure Tap	1/2 inch from edge
Pressure Tap	1 inch from edge
Pressure Tap	1 1/2 inch from edge
Pressure Tap	at center of column

Pressure	in- MM	-	ਸ੦ਸ
diffection.	TATTAT	<u>OT</u>	11011
31	70		
3	70		
3	70		
3	70		
3'	70		

Rotameter #1

Rotameter setting	Meter cu. f <u>Before</u>	Time (sec.)	
	•	0.000	1.90
7.00	U	0.009	T CO
2.0	0	0.122	60
2.9	0	0.182	60
3.8	0	0.238	60
5.25	0	0.2	34.1
6 • 25	, O	0.304	41.5
8.7	0	0.3	29.9

Rotameter #2

Rotameter setting	Meter s cu. ft <u>Before</u>	ettings ./min. - After	Time (sec.)
1.1 2.3 3.0 3.8 5.05 6.2 7.7 9.5		0.05 0.1 0.1 0.2 0.3 0.3 0.4 0.5	72 74.3 41.5 46.5 54.1 43.8 48.5 51.5
Rotameter #3			
Rotameter setting	Meter s cu. ft <u>Before</u>	ettings ./min. - After	Time (sec.)
2 3 4.2 5.6 6.65 7.75 9.1 10.3 11.7 13 14.7		0.02 0.26 0.04 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2	50.3 40.4 39.5 64.3 50.3 41.7 32.9 56.4 49.4 41.8 36.1

Rotameter #4

Rotameter setting	Meter cu.f <u>Before</u>	Time (sec.)		
1.5	0	0.02	42.3	
3.8	0	0.03	37.5	
5.65	0	0.04	37.2	
6.95	0	0.1	79.2	
6.95	0	0.1	80	
8.8	Ó	0.15	101.4	
11.85	0	0.1	51.3	
14.4	Ó	0.1	42.3	
17.65	• • 0	0.1	34.7	
20.0	0	0.15	46.3	
22.9	0	0.2	54.1	
24.8	0	0.2	51.0	

Rotameter #5

Rotameter setting	Before	Time (sec.)		
1 .0	0	0.02	51.1	
3.0	0	0.03	42.5	
6.0	0	0.05	40.5	
9.0	0	0.10	55.2	
12.0	0	0.15	61.0	
15.0	0	0.15	48.9	
18.0	0	0.20	54.7	
22 .0	0	0.20	43.3	
24.9	0	0.20	38.0	

Data for Runs B and E

Catalyst flow rate data (new catalyst)

<u>Time (min.)</u>	Height of catalyst from top of column (in.)
0	11
1	14
0	11
1	13.8
0	11
1	14.2

<u>Catalyst dens</u> :	ity, bulk (new catalyst)
977 gms. gros: - <u>553 gms. tare</u> 424 gms. net	s _ or 424 ^g /100 cc. or 0.42 g/cc.
<u>Catalyst flow</u>	<u>rate data (used catalyst)</u>
Time (min.)	Height from top of column (in.)
0 1	10 13

н.,

. •

•

۰. ۲

Run number			• •	• •	• •	ə •	• •	•	• •	.lA
Data	• • •	• • •	• •	• •	••	• •	• •	0	••	.3/27/56
Type in jec	tion po	oint.	• •	••	••	• •	• •	•	• •	.Number One
Location i	njectio	on poi	nt.	o .	۱	¢ 4	• •	٠	ن ه ه	.Point A
Location p	ressure	e taps	• •	\$ •	• •	• •	• •	•		.∆P ₁ at 1
		۰۴,								${\it \Delta P}_2$ at 2
			•							ΔP_3 at 3
										${\it \Delta P}_4$ at 4
			•							ΔP_5 at 5
Height of	bed fro	om bot	tom	of	olun	m, i	nche	s	e e	.49
Rotameter	used	• • •	• •	• •	•	* •	• •	•	• •	.Number One
Type catal	yst .	• • •	• •	• •	• •	9 0	• •	٠	••	.New M. S.
Rotameter <u>setting</u> 1.80 1.60 1.10 0.90	ΔP _{1(mi} 360 370 360 360	△P ₂ 11ime 380 385 365 360	ΔP3 ters 370 380 365 360		P ₄ wate 20 20 520 515 510	ΔP5 280 280 275 270		H	eigh	t of bed, (in.) 58 1/4 56 1/2 54 3/4 53

ţ

í١

Run number. .2A .3/28/56 Data. • • Type injection point. . . .Number One • . ٠ Location injection point. . .Point A Location pressure taps. . ΔP_1 at 6 ΔP_2 at 7 △P3 at 8 ΔP_4 at 9 **△**P₅ at 10 Height of bed from bottom of column, inches . . .49 Rotameter used. . . .Number One Type catalystNew M. S. . . Rotameter $\Delta P_1 \Delta P_2 \Delta P_3 \Delta P_4$ setting (millimeters of water) ΔP_5 Height of bed (in.) 1.60 217 162 108 50 4 54 3/4 55 1/2 1.80 210 160 115 60 10 52 1/2 1.10 202 143 43 98 2

<u>Data</u>

Run number
Data
Type injection point
Location injection point
Location pressure taps AP_1 at 1
ΔP_2 at 2
∆P ₃ at 3
$ extsf{DP}_4$ at 4
ΔP_5 at 5
Height of bed from bottom of column, inches49
Rotameter used
Type catalyst
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
The velocity will be decreased slowly especially in the range of the "break".
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Run number 3A (continued)

Rotameter setting	∆P _{l(1}	AP2 nillim	ΔP ₃ sters	ΔP_4 of wat	$\triangle P_5$ er)	Height of bed (in.)
2.85	345	360	360	310	270	53 1/2
2.5	350	364	358	308	266	53 1/2
2.3	346	363	355	310	270	53 1/4
2.05	346	357	355	306	266	53
1.75	335	352	356	307	265	52 1/2
1.30	320	340	336	305	267	52 1/4
1.0	326	344	340	308	265	52
0.75	356	375	355	286	250	51 1/2
0.55	347	367	340	270	240	51 1/2
0.25	312	325	315	253	222	51 1/4

Turned air off -- let settle "naturally" -- no external movement to cause settling.

Rotameter setting	∆P ₁ {mi	∆P2 Lllimet	△P3 sers of	∆P4 Wate:	ΔP_5	Height of bed (in.)
0.35	380	370	312	248	218	51 1/4
0.65	415	405	340	270	240	51 1/4
0.85	440	430	362	290	255	51 1/4
1.20	468	455	385	310	270	51 1/4
1.45	486	477	404	325	280	51 1/4
1.75	514	505	425	340	30 0	51 1/4
2.0	360	375	358	307	268	52 1/4

Turned air off -- settled to a height of 49"

Rotameter <u>setting</u>	ΔP_{1}	∆P ₂ Lllime	ΔP_3 ters of	ΔP_4 wate:	$r)^{\Delta P_{5}}$	Height of	bed (in.)
0.5	430	425	360	295	256	49	
0.9	484	460	410	330	285	49	
1.6	565	550	462	380	325	49	

<u>Data</u>

. ,

Run number	•. •, • •		- - -	• •	\$ • •	• •	• • •	.4A
Date	• • • •		• • •	• •		0 0	∞ € 0	.3/29/56
Type injec	tion po	oint	. ¢ a		• 4 o	• •	¥ 0 0	.Number One
Location i	njectio	n poin	.t	• •	0 6 9	0 ¢	0 0 0	Point A
Location p	ressure	taps.	0		* * *	6 0	8 0 G	.∆P ₁ at 10
								ΔP_2 at 9
								ΔP_3 at 8
								$ extsf{DP}_4$ at 7
								$ extsf{DP}_5$ at 6
Height of	bed fro	m bott	omo	f col	umn,	inch	es	.49
Rotameter	used	• • •	• •	• •	• • •	• •	• • •	.Number Four
Type catal	yst	• • •	• •	••	· · ·	•. •		.New M. S.
Rotameter setting 0.5 1.15 1.70	$\begin{array}{c} \Delta P_1 \\ \underline{\text{(mil}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	∆P2 2 <u>limete</u> 16 18 41	∆P <u>3</u> <u>rs_c</u> 55 60 80	△P4 <u>f wat</u> 125 145 145	△P 6er) 19 22 5 20	5 5 5 5	<u>Height</u>	; of bed (in.) 49 49 -
Ran rate u	p and t	urned	down	rate	grad	uall	۷.	
Rotameter <u>setting</u> 10.0 7.6 5.45 2.8 1.9 1.45 1.05 0.60		△P2 1imete 65 70 70 68 55 50 45 40	△ P3 95 95 95 92 80 80 76 72	△P4 <u>f</u> wat 170 167 165 160 150 150 140		5 15 20 00 75 5	<u>Height</u>	5 of bed (in.) 56 55 55 55 57 57 57 57 57 57 57

Cut off air -- let bed settle "naturally".

Run number 4A (continued)

	- • -					
Rotameter setting	∆P ₁ (mi	∆P2 llimet	∆P3 ers of	△P4 wate	$\triangle P_5$	Height of bed (in.)
0.5	0	18	55	120	180	50 1/4
0.7	0	20	58	130	195	50 1/4
0,95	0	24	62	140	207	50 1/4
1.25	0	25	65	148	220	50 1/4
1.65	0	25	70	158	240	50 1/4
2.05	0	25	74	165	240	50 1/4
2.7	0	47	83	150	210	54 1/4
5.5	0	64	90	160	216	56 1/4

Cut off air -- settled to a height of 49"

Rotameter	ΔP_1	ΔP_2	ΔP_3	ΔP_4	ΔP_5		
setting	(mi	llime	ters of	wate	c)	Height of	<u>bed (in.)</u>
0.55	0	17	52	123	190	49	
1.55	0	15	60	150	240	49	
2.20	0	50	78	155	210	52	44
5.10	0	55	80	160	210	54	3/4

Data

...5A-1 Run number. . 5A-2 . .3/29/56 Date. . Type injection points . . .Number One Location injection pointsPoint A Point F Location pressure taps. 5A-1 5A-2 ΔP_1 at 10 AP, at 1 ΔP_2 at 9 $\triangle P_2$ at 3 ΔP_3 at 8 $\triangle P_3$ at 6 ΔP_4 at 7 $\triangle P_4$ at 7 ΔP_5 at 6 ΔP_5 at 9 Height of bed from bottom of column, inches . . .49 Rotameter used. 5A-1 Number Three 5A-2 Number Four Type catalyst . .New M. S. é é . Run 5A-1 (only injection point F was used) ΔP_2 Rotameter ΔP_1 $P_1 \Delta P_2 \Delta P_3 \Delta P_4 A$ (millimeters of water) ΔP_5 setting Height of bed (in.) 100 1.4 0 11 41 65 49 1.8 15 129 0 53 95 49 2.18 0 17 77 142 193 49 2.50 0 20 70 105 112 49 1/2 20 71 108 112 $49 \ 3/4$ 3.0 0 The pressure taps were changed over to the ones indicated for test 5A-2. ΔP_4 was not changed, therefore, the reading should be approximately equal. 49 3/4 56 ^a 72 106 108 18 2.5

Run number 5A-1 and 5A-2 (continued)

Rotameter number three was placed at reading of 2.5 throughout run 5A-2.

Run 5A-2

Both injection points are used: A and F

in.)

(Placed setting back to 2.5 and checked)

2.15	332	350	212	151	50	
(Now	cut	off i	njection	point	at F.)	
2.15	322	345	215	152	49	

Run number		6 ¥ 0		• • • • •	¢ 0 0 ¢ ¢	6A
Date	• • •	6 6 9	 .	* * * *		3/29/56
Type injec	tion p	oint.	* * * *		\$ \$ \$ \$ \$ \$	Number Two
Location i	njecti	on poir	nt		ې ده دې دې	. Point A
Location p	ressur	e taps	¢ ¥ ¢ .	u v e c	0 0 0 0 0 b	. ΔP_1 at 1
					-	$\triangle P_2$ at 3
						$ riangle P_3$ at 6
						$ riangle P_4$ at 7
			·			ΔP_5 at 9
Height of	bed fr	om bot	tom of	column	, inches .	49
Rotameter	used.	• • •	¢ ç *	• • * •	9 0 0 0 0	Number Four
Type catal	yst .	• • •		• • • •	3 6 6 7 9	New M. S.
Rotameter setting	∆P ₁ 	∆P ₂ Llimeto	ΔP ₃ ers of	$\Delta P_4 \Delta$ water)	P ₅ He	ight of bed (in.)
0.2	388 491	314	173	113	18	49
0.6	436	353	195	1.27	18	49
0.8	465	372	204	133	19	49
1.05	488	395	218	140	19	49
1.3	520	420	228	148	19	49 1/8
1.5	540	435	236	152	19	49 1/8
1.6	544	436	239	153	19	49 1/8
1.8	555	444	240	156	19	49 1/8
2.0	570	456	248	160	19	49 1/B
2.3	580				^{مس}	
2.5	548 700	411 7 8 6	223	160	42	52 1/2
11.70 7.1	090 305	077 12170	<u> スズU</u>	160 161	02 6.6	55
0•4 1 c	090 400	070 201	005 005	10T 10T	00 R0	20 57
4.0 6 1	400	901 305	660 994	160 160	70 17 A	07 57 1/9
سك ف∪	T L	$\mathbf{v} \mathbf{v} \mathbf{v}$	$\omega \omega \phi$	TOO	1 4	U/ 1/0

Run number.7A Date. Type injection point. Number Three • • Location injection point.Point A · · · · . ٠ Location pressure taps. . \dots \dots \square \square \square at 1 . . . • . ΔP_2 at 3 **∆**P₃ at 6 ΔP_4 at 7 ΔP_5 at 9 Height of bed from bottom of column, inches . . .49 Rotameter used. Number Four Type catalyst New M. S. • • . . . Rotameter ΔP_1 ΔP_4 ΔP_5 ΔP_2 ΔP_3 (millimeters of water) Height of bed (in.) setting 15 0.3 455 382 205 138 49 1.15 567 470 245 160 15 49 1.35 258 15 49 585 486 170 1.55 507 268 178 595 15 49 1.75 410 375 225 167 52 56 2.3 53 1/2 414 380 230 168 57 2.8 416 385 230 170 58 54 54 3/4 418 389 235 170 3.8 60

Remarks: Bottom of column completely closed.

 $h_{1,1}$

Data

Run number	. 0 0	¢	ŵ	¢	4	¢	¢	٥	9	٩	ø	Ф	0	ø	ø		۵	Ð	.8A		
Date	0 9	٥	¢	ø	¢ •	9	¢	0	\$	•	٠	¢	¢	¢	ø	ø	ø	ø	.4/1/	/56	
Type injec	tion	ı p	oi	nt	¢ I	ø	ଦ	Ð	ø	Ф	0	ø	¢	٢	¢	¢	ø	ø	.Numb	er	Two
Location i	nje	cti	on	p	oir	ıt	٩	0	Ø)	¢	ø	٥	¢	Đ	ü	0	¢	ې	.Poin	it A	
Location p	res	sur	'e	ta	ps	0	4	с. Ф	¢	ø	٥	œ	9	G	۵	¢	¢	6	ΔP ₁	at	l
																			۵₽ ₂	at	3
																			ΔP_3	at	6
																			ΔP_4	at	7
																			ΔP_5	at	9
Height of	seti	tle	đ	be	d 1	fr	om	່ງ	ot	to	m								4.0		
or column,	ind	ene	S	¢	•	9	9	ø	٠	0	٠	•	¢	٠	٠	0	٥	ه	.49		
Rotameter	used	1.	¢	•	٠	o	•	Ŷ	۰	q	•	٠	÷	ø	o	٠	٠	÷	.Numb	er	Four
Type catal	yst	Q	•	•	•	0	¢.	۰	٠	٠	٠	6	e	٠	•	•	۰	٠	.New	M.	s.
Rotameter setting	ΔP	L (m	ے انا	P2 li	met	∆]	P3 rs	0	$\Delta_{\mathbf{f}}$	P ₄ wa	te	Δ r)	P ₅	5		He	ei₽	tht	; of b	eđ	(in.)
0.5	473	3	4	10		2	26]	.50)	ملدرون مارد. م	10	5					49		
0.7	520)	4	44		2	43		1	.60)		11	-					49		
1.15	572	3	4	90		2	65	I	1	.77			12	;					49		
1.75	384	1	3	72		2	20		1	.65	5		53	5					53		
2.5	390)	3	72		2	25		1	65			55	5					54		
3.9	398	5	3	80		2	30	·	1	.70)		60)					55		

Run number		• •	۰ ،	÷	•	٠	÷	٩	٠	٠	¢	٠	٠	¢	\$	•	•9A	
Date	• •	• •	• •	٠	٠	•	٠	•	•	٠	٠	٠	٠	÷	٠	٠	.4/1/56	
Type injec	tion	. poi	Lnt.	٠	٠	•	٠	•	÷	٠	٠	٠	٠	*	٠	ø	.Number On	18
Location i	njec	tior	ı po	int		æ	ų	ø	ú	÷	¢	¢	÷	ů	٥	٥	.Point A	
Location p	ress	ure	tap	s.	÷	6	٠	٠	٠	Ŷ	¢	¢	9	æ	÷	ø	.∆P ₁ at 1	
																	ΔP_2 at 3	
																	$ riangle extsf{P}_3$ at 6	
																	$ riangle P_4$ at 7	
																	△P5 at 9	
Height of of column,	sett inc	led	bed	fr	om •	. b	ot •	to	m •	3	٥	o	٠	٠	٥	Q	.49	
Rotameter	used	lo •	e o	٠	٠	•	٠	٠	ð	٠	٠	•	9	o	٥	ð	.Number F	our
Type catal	yst.	0 9	њ 9	٠	٠	٠	•	•	•	0	ø	٠	٠	÷ a	a	٠	.New M. S	•
Rotameter setting	∆P ₁	(mi]	NP2 Llim	∆ ete	P3	0	Δ_{f}	P4 wa	te	$\begin{array}{c} \Delta \\ r \end{array}$	P5	-		He	ig	ht	of bed (:	<u>in.)</u>
0.4	455	i i	592 170	, c	212		1	45			10 יי						49	
	545	4	160	2	45		1 1	60 65			15						49 10	
1.5	367	1	570	2	30 230		ו	70			-Ω 50						53	
1.8	370	123	575	2	35		ī	72			54						53 1/2	
3.4	373	3	80	2	30		1	75			58						54 1/2	

- · · · ·			• •	٠	• •	٠	Ŭ	•	•	٠	٠	٠	٠	.1B
Date	* * 0	* a *	••	•	• •	•		•	•	•	•	•	•	.4/13/56
Type injec	tion p	oint.	• •	٠	• •	٠		٠	4	٠	٠	•	٠	.Number One
Location i	njecti	on po	int.	٠	• •	•	•	٠	•	•	٠	٠	¢	.Point A
Location p	ressur	e tap	s	•	• •	•	•	¥	•	٠	٠	٠	٠	ΔP_1 at 1
														∆P2 at 3
														$\triangle P_3$ at 6
														$ riangle P_4$ at 7
														$ riangle P_5$ at 9
Height of	bed fr	om bo	ttom	of	00	Lun	ın,	i	nc	she	s	•	•	.49
														Mumber Found
Rotameter	used.	• • •	• •	• 1	• •	٠	۰	٠	٠		•	٠	٠	*Momper Four
Rotameter Rate catal	used. .yst fl	.ow in		umn	•••	•	•	•	•	•	•	•	•	.3 inches per minute
Rotameter Rate catal Type catal	used. .yst fl .yst .	.ow in	col	• umn	•••	•	¢	•	•	•	•	•	•	.Number Four .3 inches per minute .New M. S.

Run number.	ê 6 6 é	s o • "e	• • • •	, 6 0 0 0 0	
Date	k 4 6 0		» • • •	• • • • •	4/13/56
Type injection	on point		• • • •		Number Two
Location inje	ection po	oint	• • * •	ë 🕈 e ë b	Point A
Location pres	sure ta	95		0 8 5 0 0	AP _l at 1
					ΔP_2 at 3
					ΔP_3 at 6
					ΔP_4 at 7
					${\it \Delta P_5}$ at 9
Height of bed	from b	ottom of	column,	inches .	• •49
Rotameter use	ed	• • • •	• • • •	• • • • •	Number Four
Rate catalyst	; flow i	ı columr	1	s , , , , ,	3 inches per minute
Type catalyst	- • • • •	9 0 9 8	* * * *)	New M. S.
Rotameter ΔH setting 39 0.1 39 0.3 40 0.6 41 0.8 40 1.0 39 1.4 40 2.3 41 4.5 41	$\begin{array}{c} & \Delta P_2 \\ \hline (millin) \\ \hline 330 \\ \hline 7 & 345 \\ \hline 0 & 345 \\ \hline 0 & 345 \\ \hline 5 & 335 \\ \hline 5 & 330 \\ \hline 3 & 332 \\ \hline 0 & 327 \\ \hline 0 & 335 \\ \hline 3 & 338 \\ \hline \end{array}$	ΔP_3 166 175 174 170 164 165 168 175 178	△P ₄ △ <u>of water</u> 115 65 110 110 110 112 111 120 121	P ₅ 12 16 17 18 14 17 18 21 22	

Run number	• • •	• • •	• •	• •	• •	•	• •	÷	÷	٠	٠	÷	• 3B
Date	• • •	• • •	• •	÷ ۱	• •	• •	• •	٠	٠	٠	٠	٠	.4/13/56
Type injec	tion p	oint.	• •	•	• •	•	• •	•	٠	٠	٠	•	.Number Three
Location i	njecti	on poi	int.	• •	• •	•	• •	٠	٠	٠	٠	٠	.Point A
Location p	ressur	e tapa	3. ,	•	• •	•	• •	. •	•	•		•	.ΔP _l at l
				·									ΔP_2 at 3
													ΔP_3 at 6
													${ m \Delta P}_4$ at 7
													$\Delta extsf{P}_{5}$ at 9
Weight of				-	7			•					
Hergin Or	bea ir	OM DOT	5 U O III	OL	COT	.um i	1, :	1 ne	s ne	38	٠	•	.49
Rotameter	used.		• •	•••	• •		1, : • •	•	• пе	•	•	•	.49 .Number Four
Rotameter Rate catal	bea fr used. yst fl	om bon •••• ow in	colu	mn.		. UM I	1, : • •	•	• .	•	•	•	.49 .Number Four .3 inches per minute
Rotameter Rate catal Type catal	bea fr used. yst fl yst .	om bon • • • ow in	colu	umn.		•	1, : • • • •	•	• ne	•	•	•	.49 .Number Four .3 inches per minute .New M. S.

÷

Run number. . •4B .4/13/56 Date. Type injection point.Number One 4 . . . Location injection point. . . .Point A Location pressure taps. . . . ΔP_1 at 1 . ΔP_2 at 3 ΔP_3 at 6 ΔP_4 at 7 ΔP_5 at 9 Height of bed from bottom of column, inches . . .49 . .Number Four Rotameter used. . . Rate catalyst flow in column. . .3 inches per minute Type catalystNew M. S. Rotameter $\Delta P_1 \quad \Delta P_2 \quad \Delta P_3 \quad \Delta P_4 \quad \Delta$ setting (millimeters of water) $\Delta P_4 \Delta P_5$ 336 130 0.15 365 184 20 0.25 375 340186 134 20 0.45 385 341 186 135 20 0.65 334172 160 360 18 1.0 365 336 173 118 19 1.3 375 338 175 112 10 1.6 376 340 176 108 8 2.7 380 178 108 8 341

Run numbe	er	• •	••	٠	•	•	ø	٠	•	¢	٠	٠	v	٠	٠	٠	• 5B - 2 5B - 2	1 2	
Date		• •		۰	•	•	¢	۰	•	•	٠	•	•	•	٠	•	.4/19	9/5	6
Type inje	octio	n poi	ints	8 .	÷	٠	4	o	÷	٠	•	6	•	•	•	٠	.Num	oer	One
Location	inje	ction	ı po	in	ts	٠	٠	٠	•	•	٠	•	•	•	9	•	.Poir Poir	nt 1 nt 1	4. F
Location	pres	sure	tap	s.	Ş	•	•	•	¢	÷	٠	٠	٥	•	٠	٠	.∆P _l	at	l
																	${\sf QP}_2$	at	3
																	ΔP_3	at	6
																	${\sf AP}_4$	at	7
																	ΔP_5	at	9
Height of	bed 3	fron	n bc	otto	om	of	? (201	Lun	ın,	i	nc	he	s	¢	٠	.49		
Rotameter	use	d	• •	٠	•	÷	¢	•	٠	•	•	•	÷	ų	5E 5E	3-1 3-2	Num Numi	oer oer	Three Four
Type cata	alyst	• •	* •	٠	٠	٠	٠	٠	٠	÷	o	¢	٠	٠	٠	٠	"New	Μ.	S.

Run 5B-1

(Only injection point F was used)

Rotameter	ΔP_1	ΔP_2	ΔP_{z}	ΔP_A	ΔP_5
<u>setting</u>	<u>tm</u>	illime	<u>ters o</u>	<u>t wate</u> :	<u>r)</u>
0.3	160	172	115	80	0
0.45	180	220	145	100	0
0,75	185	250	184	130	0
1.20	150	235	120	95	0
1,95	200	195	155	120	0

Rotameter number 3 was set at a reading of 1.2 and left at this point throughout run 5B-2

Run number 5B-1 and 5B-2 (continued)

Run 5B-2

Both injection points are used: A and F

Rotameter	ΔP_1	ΔP_2	ΔP_3	ΔP_4	ΔP_5								
setting	(n	<u>aillím</u>	eters (of wat	er)								
0.2	374	345	180	120	0								
0.4	390	350	185	110	0								
0.7	370	340	175	120	0								
1.0	385	342	180	125	0								
1.5	390	347	162	102	0								
0.9	375	340	180	-	0								
0.6	376	337	160	105	0								
0.3	383	350	186	130	20								
Rotameter	Number	Four	at mi	nimum	(0.6)								
Rotameter setting	⊿P ₁ (mi	∆P ₂ 111imet	ΔP_3	∆P4 f wate:	ΔP_5 r)								
0.6	376	337	160	105	0								
Cut off Ro	otamete	er Numb	per Th	ree									
Rotameter 	ΔP_1 (n	∆P2 nillime	ΔP_3	ΔP_4	ΔP_5 er)								
	376	337	160	105	0								
Run numbe	r	• • •		•	• •	• •	٠	• •		•	10		
--	---------------------	--	---	----------------	-------------	---------------------	------------------------------	--	---	---	--	--	-------------
Date	• • • •	• • •	• • •	•	••	• •	٠	• •	• •	•	4/	14/5	6
Type inje	ection po:	int		٠	• •	•	٠	.	• •	•	. "Nu	mber	One
Location	injection	n poir	it	٠	• •	۵ ۵	٠	0 ¥	0 é	*	Po	int .	A
 Location	pressure	taps.	, , • •	•	• •	÷ 0	٠	¢ •	9 U	• •	.⊿P	1 at	l
											ΔP	2 at	3
											ΔP	3 at	6
											٨P	4 at	7
											۵F	5 at	` `9
Rotameter	used	• • • •	• • •	4	••	• •	•	• •	••	•	Nu	mber	Four
Rotameter catalyst	was set in tube.	at l. Cata	5 (d lyst	ete is	rmi: ade	ned ded	in in	run 200	9A) gran	wi1 1s i	th no Incre	ment	S.
Type cata	alyst	• • •		٠	• •	• •	ä	• •	• •	•	Ne	w M.	s.
Rotameter	setting	4 o a		٠	• •	• •	÷	• •	• •	•	(1	.5)	
Weight of catalyst in tube, grams 200 400 600 800 1000 1200 1200 1400 1600 1800 2000 2200 2400	Heig in bot	nt of tube, ttom, 9 1 12 1 15 1 15 1 15 1 23 1 35 1 35 1 38 1	cata fro inch /2 /4 /4 /4 /4 /4 /4 /4 /4	lys m es	t 	ΔP ₁ 	∆ (mi 1 1 2 2	P2 1111 0 0 5 32 60 80 .20 .48 .81 .10 .41	△ P ₃ netei () () () () () () () () () () () () ()	5 ())))))))))))))	P4 2 of wa 0 0 0 0 0 0 0 0 0 24	(P5) 000000000000000000000000000000000000	
2600		42	-, -			310	2	274	110)	52	0	

Run number 1C (continued)

Weight of catalyst in tube, grams	Height of catalyst in tube, from bottom, inches	ΔP ₁	∆P ₂ (mill:	∆P ₃ imeters	۵P ₄	ΔP5 water)
2800	46	330	307	142	78	D
3000	49	355	335	175	120	18
3200	52 1/4	375	355	205	150	45

c.

,

<u>Data</u>

.

Run numbe	er	4 4 4	6 3 0		* 3 *	ŭ 🕈	¢ 4 4	.1D
Date	• • •	\$ 9 9	• ¢ ¢		• • •	ø e	÷ ÷ •	.4/21/56
Type inje	ection]	point.	* * *	• •	2 \$ \$	• •	0 0 V	.Number One
Location	injecti	ion poi	int	Qu Qu	@ \$ \$	e e	9 0 4	Point A
Location	pressu	re tapa	3	¢ 0	\$ % ¢	• •	• • •	ωP _l at 1
								ΔP_2 at 3
								$\Delta P_{\mathfrak{Z}}$ at 6
								$\Delta extsf{P}_4$ at 7
								${\tt AP_5}$ at 9
Height of	bed fi	rom bot	ttom c	of col	umn, i	nche	S	.49
Rotameter	used.	ŧ © ♦	a o •	e 4	• 0 •	• •	ф е о	.Number Four
Type cata	lyst .	≪ e ¢	\$ • •	¢ è	0 0 9	• •	* • •	.Used M. S.
Rotameter		ΔP	ΔP ₃	ΔP_4	ΔP _E	j .	Height	of bed (in)
0.1	$-\frac{11}{516}$	453	235	162	22	<u>-</u> :	10 LBIIC	49
0.2	535	467	245	167	27	7		49
0.3	552	485	251	170) 28	3		49
0.4	570	500	261	176	5 28	3		49
0,5	585	512	265	182	29)		49
0.6	598	526	276	188	3 29)		49
0.7	616	536	280	190) 29)		49
0.8	629	552	284	194	- 30)		49
0.9	65 8	57 8	300	204	31	-		49
1.0	672	592	308	211	. 32	;		49
1.1	679	596	310	211	. 32	;		49
1.2	693	606	314	214	- 32			49
1.4	732	635	340	230) 32			49
1.5	747	dainti	346	237	33)		49
1.6	763	=	350	239	33)		49
1.º7	777		355	245) 55)		49
7*8	792	્યત્ર	365	256) 33 N 77) ·		49
1.6.57	007	24CW	JIC	(137				49

Run number 1D (continued)

,

Rotameter	ΔPı	ΔP_2	ΔP_3	ΔP_4	ΔP_5	
setting	(n	nillĩm	eters c	of wate	ər)	Height of bed (in.)
2.05	822	-	381	261	33	49
2.20	848		392	268	33	49
2.4	880	-	408	275	33	49
2.5	892	-	414	284	33	49
2.75	585		380	270	65	51
3.0	570	606	395	295	75	52
3.7	580	610	395	296	80	53
4.5	590	633	396	297	100	54
5.5	625	635	397	295	101	55
8.0	628	-	398	296	122	56
5,9	610	640	392	305	120	6223
4.5	555	600	375	286	111	55 1/2
3.3	495	555	350	270	- 100	et
3.0	425	400	380	250	. 7 0	53
2.8	375	400	290	255	70	52
2.5	540	320	300	245	65	51 3/4
2.3	550	575	365	250	55	52
2.1	555	575	350	260	60	52
~•⊥ 1.9	570	595	350	250	60	52
15	525	550	330	250	55	52
1 0	435	515	300	215	50	51 3/4
0.5	420	470	275	200	45	51 1/2
20	770	660	350	246	35	49
ン・U . う A	925	715	362	255	33	49
న• 1 2 క	020 Q15	710	367	252	33	49
ム•U 9 17	040	760	372	255	33	49
ん・/ り ウ	000	700	300	260	20	49
ム•9 7 9	900 520	100	000 70 5	200	70	
0.0 70	520	μφ.	700	ພ≀⊥ 901	00	52 52
0.9	$\binom{570}{600}$		(300)	201	90	
5 0	1000 505		10901 705	205	105	55
5.0	(275)	-	000 (705)	290	100	55
.	(010)		10907	700	176	50
8.0	(600)	ulan	292	208	T99	59
<i>a a</i>	610°		ZOF	710	170	577 1/9
6.0	(545)	0001	395	310	130	57 1/2
	1575		ROF	010	n o	50 1 /0
4.0	(295)	-	(305)	240	70	52 1/2
	\$3057		·310/			57 7 /0
3.0	$(^{240})$	-	(205)	210	55	51 1/2
	260'		`275'			
2.5	(550)	-	365	258	60	51 1/4
_ ~	` <u>5</u> 80'			055		
2.0	(540)	-	340	255	ູວວ	ΤC
	`560'		0.05	07.0	4 -	
1.0	(480)	C 10	295	210	45	6 2
	` 500'					

							1
Run number	• • •	0 0 0	0 * ø	0 0 0			.2D
Date	9 0 0	6 6 6	5 6 G	6 0 0	0 4 9 V) (<u> </u>	.4/23/56
Type injec	tion p	oint.	* • •	0 0 0	\$ \$ \$ \$.Number Two
Location i	njecti	on poi	nt	0 0 0	* * * *		.Point A
Location p	ressur	e taps			0 000		.∆P _l at l
							ΔP_2 at 3
							$\Delta extsf{P}_{3}$ at 6
							ΔP_4 at 7
							∆P ₅ at 9
Rotameter	used.		• • •				.Number Four
Height of	bed fr	om bot	tom of	colum	m, incl	nes	.49
Type catal	.yst .	• • •		0 ¢ 8			.Used M. S.
Rotameter setting	∆P _{l(m}	∆P2 illîme	∆P ₃ ters o	ΔP_4 of wate	ΔP_5	Heigh	t of bed (in.)
0.2	500	405	230	170	26		49
0.5	556	451	258	187	22		49
1.0	631	512	290	208	24		49
1.5	715	580	328	235	26		49
2 0	780	650	326	267	30		49
ו⊂ 2 2	805	660	361	266	30		40
	000	676	366	255	30		40
<i>ん</i> .⊎ 9 5	010	600	370	06A	30		
ລ	040	000	70	204 965	30		49
6.0 0		700	177	200	30		40 40
2.7	078	710	202	200	50		49
2.8	903	702	390	270	3U R0		49
2.9	913	740	992 592	270	50 R 0		49
3.0	940	758	395	270	30		49
5.2	708	680	395	275	55		ρŢ
3.5	(⁷⁸⁸) 794)	680	394	280	65		52
3.7	(⁶⁹⁰) 705	675	391	282	75		52 1/2
4.0	$\binom{630}{670}$	$\binom{660}{670}$	390	290	87		53

Run number 2D (continued)

Rotameter	ע₽ן	∆P2	∆P3	∆ P4	ΔP_5	
setting	<u></u> tm:	illime	ters of	f water	<u>;)</u>	Height of bed (in.)
4.5	$(\frac{690}{700})$	$\binom{665}{670}$	398	295	90	53 1/2
5.1	$\binom{690}{705}$	675	399	300	105	54 1/2
8.0	(⁷⁰⁸) 714)	676	412	315	150	59
5.1	(⁶²⁰ 680)	(⁶⁰⁰ ₆₆₀)	383	300	120	6 2
4.5	$({}^{640}_{710})$	$({}^{655}_{670})$	375	295	100	53
4.0	$(\frac{575}{615})$	$({}^{645}_{655})$	364	2 7 5	100	an
3.5	(⁵⁶⁵) 675)	(⁶²⁵) 655)	360	265	80	52 1/2
3.0	(⁵⁶⁰ (₆₈₀)	(⁶³⁰ (₆₆₀)	350	271	74	5.0
2.5	$(\frac{520}{590})$	contex	$(\frac{330}{370})$	245	65	51 1/2
2.0	$(\frac{540}{586})$	-	(³⁰⁵) (₃₅₀)	215	50	51
1.5	(⁵⁴⁰) (₅₅₀)	$(\frac{360}{540})$	(²⁸⁰ (₃₂₀)	$\binom{225}{240}$	45	51
0 . 9	485	475	248	170	33	50 1/2

.

.4

.3D-1 Run number. . 3D-2 . .4/23/56 Date. Type injection points . . . "Number One Location injection pointsPoint A Point F Location pressure taps. . . . ΔP_1 at 1 0 0 ΔP_2 at 3 ΔP_3 at 6 ΔP_4 at 7 ΔP_5 at 9 Height of bed from bottom of column, inches . . .49 Rotameter used. 3D-1 Number Three **\$**. 3D-2 Number Four Type catalyst Used M. S. 9 . 9 ٠

Run 3D-1

(Only injection Point F was used)

Rotameter setting	∆P _{l(r}	∆P ₂ nillim	ΔP_3 eters (ΔP_4	∆P5 er)	Height of bed (in.)
1.05	58	74	94	74	8	49
1,8		157	208	165	18	49
2.45	-	190	245	212	36	49
3.4	80	100	(¹²⁰ (₁₅₀)	170 (180)	<u>4</u> 0	51 1/2
3.0	120	150	$\binom{175}{200}$	(¹⁷⁰)	$\binom{30}{50}$	51
4.6	-	175	255	220	50	52

Run 3D-2

Rotameter Number Three was set at 3.0 using injection Point F. It was left at this setting throughout run 3D-2.

Run number 3D-1 and 3D-2 (continued)

Rotameter	ΔP_1	ΔP_2	ΔP_{z}	ΔP_A	ΔP_5		
setting	(n	<u>ni llím</u>	eters	of wat	er)	Height of	bed (in.)
0.6	610		300	220	60	52	
0.95	655		310	227	65	52	1/4
1.5	725	600	320	230	70	52	1/2
2.05	782	660	320	233	72		
2.4	825	695	322	230	70	53	
2.7	865	720	320	230	73		
2.95	885	745	324	230	70	53	
3.2	$(\frac{510}{550})$	-	355	260	95	54	1/2

Cut off Rotameter Number Three

Rotameter setting	ΔP _l ΔP ₂ (millim	$\Delta P3 \Delta P4$ leters of wate	$\frac{\Delta P_5}{r}$	Height of bed (in.)	
3.2	$(\frac{490}{570})$ -	$\binom{356}{360}$ 260	94	54	
3.5	$\binom{575}{660}$ $\binom{630}{710}$	$\binom{405}{330}$ $\binom{280}{290}$	(⁷⁵) (82)	-	

Using rate 3.5 on Rotameter Number Four, Rotameter Number Three was cut back in at a rate of 3.0

3.5	,480	 ,360,	267	,103,	
	(620)	(365)		(107)	

Run number. .4D Date. .4/23/56 .Number Three Type injection point. . Location injection point. .Point A ΔP_1 at 1 Location pressure taps. . . ΔP_2 at 3 ΔP_3 at 6 ΔP_4 at 7 ΔP_5 at 9 Height of bed from bottom of column, inches . . .49 Rotameter used. . .Number Four Type catalyst . . .Used M. S. **∆**P₃ $\Delta P_{4_{\pm a}}$ ΔP_5 $\begin{array}{ccc} \Delta P_1 & \Delta P_2 & \Delta P_3 & \Delta P_4 & \Delta \\ & & (\text{millimeters of water}) \end{array}$ Rotameter Height of bed (in.) setting 0.6 650 279 190 28 49 0,9 736 316215 33 -49 1.35 780 340235 33 49 _ 35 49 1,8 910 395 268 728 35 2.5 960 800 288 49 415 51 3/4 2.9 610 405 288 72 ----670' (⁶⁵⁰ 660) 3.6 385 290 86 53 (395) (300)(⁶²⁵) 665) 396 306 54 1/25.2 650 110 (⁶⁷⁰ (₆₈₅) $({}^{400}_{405})$ 8.0 650, 311 140 58 (666) 620) 660) (³⁸⁰ 390) 5.0 294 56 1/2 110 (⁵⁶⁰) $(\frac{340}{360})$ 3.5 255 53 92

Run	number	4D	(continued)	

Rotameter setting	⊿₽ l(m	∆P2 illim	ΔP_3 eters d	∆P ₄ of wate	ΔP_5	Height of b	ed (in.)
3.0	$(\frac{510}{630})$	-	340	$\binom{267}{(275)}$	81	52 3	/4
2.5	$(\frac{440}{570})$	-	(³³³)	$\binom{195}{215}$	75	52	
2.0	(⁵⁸⁰)		$\binom{296}{310}$	$\binom{205}{214}$	50	52	
1.5	(⁵²⁵)	-	185	190	48	4 59	

Run number. .lE . . .4/24/56 Date. ¢ Type injection point. . .Number One Location injection point. . .∠P₁ at 1 ΔP_2 at 3 ΔP_3 at 6 ΔP_4 at 7 ΔP_5 at 9 Height of bed from bottom of column, inches . . .49 . .Number Four Rotameter used. . . Type catalyst . . .Used M. S. .3 inches per minute Catalyst flow rate.

Rotameter	ΔP_1	ΔP_2	ΔP ₃	ΔP_A	ΔP_5
setting	(I	<u>nillīm</u>	eters	of wate	er)
0.5	625		300	210	30
0.9	640		316	215	31
1.3	625		310	215	32
2.1	645	-	305	210	35
3.3	600		260	170	-
5.8	650	-	290	210	38
8.3	660		310	215	40
1.8	590	- compo			
1.65	590		1966		
2.4	610		<u></u>	-	-
2.7	590		-	· 🗕	-

Run number	
Date	1
Type injection point	Two
Location injection point	
Location pressure taps ΔP_1 at	1
∆ P ₃ at	3
Rotameter used	Four
Type catalyst	s.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>)</u>

<u>Data</u>

Run numbe	r.	•	Ð	٩	*	٨		۲	٠	٠	•	\$	¢	¢	4	¢	٠	Ŷ	ø	.3E
Date	٠	٠	Ð	Ø	õ	0	9	۴	ð	•	¢	ø	¢	٢	•	÷	۲	4	¢	.4/24/56
Type inje	cti	on	p	oi	nt	Ð	÷	•	¢	٠	÷	٠	•	Ģ	9	4	÷	٠	٠	"Number Three
Location	inj	ec	ti	on	p	oi	nt	÷.	• @	ø	٩	e	¢	ø	ø	4	•	¢	¢	.Point A
Location	pre	SS	ur	8	ta	ps	•	¢	¢	¢	¢۲.	6	Ğ ı	Ð	ġ	¢	æ	٩	۵	⊿P ₁ at 1
																				ΔP_3 at 6
Rotameter	' us	ed	٠	¢		۲	•	٠	9	٩	۵	¢	¢	¢	\$	٩	•	÷	\$	Number Four
Height of	be	d :	fr	om	b	ot	tc	m	of	C	01	un	ın,	i	ne	he	98	٩	ø	.49
Type cata	lys	t	٠	•	÷	4	÷	•		\$	a	•	*	•	•	4	٠	•	ű	.Used M. S.

Rotameter	ΔP_1	ΔP_3
setting	(millimeters	of water)
0.5	465	195
0.8	490	215
1.1	530	230
1.5	575	250
2.0	635	270
2.4	670	280
2.7	680	295
3.0	595	295
3.5	580	-
5.0	660	444

Run number. .lF .4/23/56 Date. Type injection point. . .Number One Location injection point. .Point A •∆P₁ at 1 Location pressure taps. . ΔP_2 at 3 ΔP_3 at 6 ΔP_4 at 7 ΔP_5 at 9 .Number Four Rotameter used. Rotameter was set 3.0 with no catalyst in the tube. Catalyst was added in 600 grams increments. . .Used M. S. Type catalyst . . ΔP₅ Weight of catalyst $\Delta P_1 \quad \Delta P_2 \quad \Delta P_3 \quad \Delta P_4$ in tube, grams (millimeters of water) Rotameter setting in tube, grams 0 5 3.0 600 0 0 0 3.0 1200 35 --0 0 0 0 3.0 0 1800 100 66 0 0 3.0 2400 190 145 0 0 0 3.0 3000 260 0 0 220 0 320 0 3.0 3600 310 66 0

(³⁸⁸) 395) 3.0 380 168 0 4200 70 $(\frac{405}{500})$ 3.0 4800 $\binom{250}{270}$ 160 0 $(\frac{490}{560})$ $(\frac{360}{380})$ 70 3.0 5530 130

Run number
Date
Type injection point
Location injection point
Location pressure taps ΔP_1 at 1
ΔP_3 at 6
Rotameter used
Height of bed from bottom of column, inches49
Type catalyst
Catalyst flow rate

Rotameter	ΔP_1	ΔP_3
setting	(millimeters	<u>of wåter)</u>
0.5	730	330
1.0	740	322
1.5	730	328
2.0	732	328
2.5	733	328
3.5	7 34	329
0.8	738	322
0.2	722	325
1.7	729	600

.

Run number. ••••••.1H ٢ ۲ ٠ . . . 4 æ 4 9 Type injection point. . . . • • • • • • • • • Number Three . . Location injection point. Point A ΔP_3 at 6 Rotameter used. Number Four . ക് . Height of bed from bottom of column, inches . . .49 Type catalyst . . . • Catalyst flow rate. • • • • (1.5) inches 4 ٩ ۵ per minute

Rotameter	ΔP1	ΔP_3
setting	(millimeters	of water)
0.5	736	320
1.0	744	325
1.5	736	322
2.0	738	316
2.5	739	319
0.8	739	319

Run numb	er.	٠	•	•	۲	٥	٠	0	G	Ŷ	5	¢	0	9	6	4	œ	٠	٠	. 11
Date	• •	•	¢		٠	¢	G	٠	ø	9	٠	÷	Ð	٠	٠	۰	٠	ø	*	•5/25/56
Type inj	jecti	lon	ı p	oi	.nt	•	÷	٠	•	•	•	¢	•	÷	\$	٠	•	¢	•	.Number Three
Location	in;	jec	ti	.on	L P	ooi	int	j,	Ð	\$		G	٠	۲	•	ø	٠	¢	۹	.Point A
Location	. pre	988	ur	. e	tε	ips	3 .	¢	œ.	•	e	æ	٠	9	ŧ	•	•	٠	٩	.∆P _l at 1
																				ΔP_3 at 6
Rotamete	r us	seð	le.	٠	*	Ű	•	÷	٠	4	٠	٠	٠	÷		÷	¢	\$	ŵ	"Number Four
Height o	of be	ed	fr	or	ı b	ot	sto	om	01	2 (sol	Lun	nn,	, i	nc	she	38	٠	¢	.49
Type cat	alys	st	۲	٠	ų	a	٠	٠	4	٠	٠	\$	٠	ə	٠	ø	٠	٠	٩	.New M. S.
Catalyst	flo	w	re	ιte	•	•	•	٠	4	Ģ	6	4	٠	ø	۵	ş	ø	9	¢	.(1.5) inches per minute

Rotameter	ΔP_1	ΔP_3
setting	(millimeters	of water)
0.3	430	190
0.5	427	183
0.7	432	185
0.9	431	63
1.5	438	186
2.9	439	187
0.4	428	185
1.2	4 35	188
0.1	426	429

Run number. ••••••••]J ø ۵ ¢ . a Date. • • • • • • • • • 5/25/56 . • Location injection point. Point A ø . . ÷ Location pressure taps. \dots \dots \dots $\square P_1$ at 1 ΔP_3 at 2 Number Four Rotameter used. • Height of bed from bottom of column, inches . . .49 Catalyst flow rate. . . . ÷ * ۹ ¢ per minute

Rotameter	ΔP_1	ΔP_3
setting	<u>(millimeter</u>	s of water)
1.3	409	350
0.3	40 8	360
0.6	405	361
0.8	404	356
1.1	405	363
1.5	415	370
2,5	417	372

Run number. . . .lK e o5/25/56 Date. œ ۵ Type injection point. Number Two ÷ ø \$ 3 \$ ٠ Location injection point.Point A Location pressure taps. . . •••• ΔP_1 at 1 • ø **e** e ø ٩ ΔP_2 at 2 . . "Number Four Rotameter used. . . • Height of bed from bottom of column, inches . . .49 Type catalystNew Catalyst . . Catalyst flow rate. . . .(0.75) inches • • . a . per minute

Rotameter	ΔP_1	ΔP_2
setting	(millimeters	<u>of wäter)</u>
0.2	410	350
0.3	411	355
0,5	418	365
0.6	425	360
0.7	428	360
0.9	416	360
1.2	422	æ
3.8	430	365

Run numb	er.	٠	9 9	\$	٠	٠	٠	¢	٠	٠	٠	•	٠	•	•	٠	٠	6	.ll
Date	••	•	• •	•	•	٠	٠	٠	•	•	٠	•	•	•	•	•	¢	٠	.5/25/56
Type inj	ecti	on	ро	int	t.	٠	٠	•	•	•	٠	٠	•	•	•	٠	•	•	Number Two
Location	inj	eci	tio	n I	poi	int		٠	•	٠	٠	•	•	•	•	÷	•	٠	.Point A
Location	pre	ssi	ure	τε	ap	٠	•	•	٠	٠	٠	٠	•	9	•	٠	٠	•	.∆P ₁ at 1
Rotamete	r us	ed	• •	•	٠	•	٠	٠	•	•	•	•	•	•	٠	•	ę	•	Number Four
Height o	f be	d :	fro	m t	pot	tc	m	of	l c	01	un	ın,	i	nc	he	s	0	•	.49
Type cat	alys	t.	• •	•	•	٠	•	•		•	•	•	•	•	÷	•	•	•	.Used M. S.
Catalyst	flo	w 1	rat	e.	•	•	•	•	٠	•	•	•	•	•	•	•	•	٠	.4 inches per minute

Rotameter	ΔP_1
<u>setting</u>	(millimeters of water)
0.1	740
0.3	735
0.5	748
0.7	730
1.4	749
0.9	748
2.0	755
3.1	756
0.4	738
0.2	750 or 745
0.7	732

Run	n	um	Ъ	er	ĕ	•	•	¢	ø	8	¢	•	٠	ø	6	٠	٠	٠	٩	٠	۴	٠	۹	. 1M
Date	э.	•		¢	÷	•	¢	¢,	•	٠	ø	¢	ø	ې	¢	٠	Ð	٠		¢	0	6	ø	,5/25/56
Type	Э.	in	j	ec	ti	on	r	oi	nt	6	٠	6	ð	¢	ø	•	6	÷	٠	•		¢	٠	.Number One
Loca	at:	10	n	1	nj	ēC	ti	on	p	oi	nt		Ġ	ø	0	ė	8	۲	6)	ف	ē	٠	¢	.Point A
Loca	at	10	n	p	re	55	ur	.6	ta	p	•	٠		ŧ	ø	¢		e ,	•	٠	٠	ø	÷	.∆P ₁ at 1
Rota	im	et	e:	r	us	e d	÷	ð	•	0	٠	۲	•	ė	۴	÷	4		÷	٠	٠	÷	•	Number Four
Heie	ţh	t	0:	f	be	d	fr	om	. b	ot	tc	m	of	, c	ol	un	ın,	1	nc	eh€	s	\$	Ð	.49
Type	3	ca	t	al	ys	t	۲		¢		٠	•	۲	Ð	٠	۲	÷	\$	÷	9	¢	\$	•	.Used M. S.
Cata	1	ys	t	f	10	W	rø	te	٠	٠	٠	÷		•	٠	٠	٠	0	•	٠	•	٠		.4 inches per minute

Rotameter	Δ
setting	(millimeters of water)
0.1	750
0.2	757
0.3	745
0.4	748
0.5	752
0.7	758
2,5	760
4.1	759
1.5	759

<u>Data</u>

.

Run number	• • • • • • • •	1N
Date	• • • • • • • • • •	5/25/56
Type injection point	• • • • • • • •	Number One
Location injection point.		Point A
Location pressure tap	• • • • • • • • •	⊿P _l at l
Rotameter used	• • • • • • • • •	Number Four
Height of bed from bottom	of column, inches	49
Type catalyst	• • • • • • • • •	New M. S.
Catalyst flow rate	• • • • • • • • •	• • •4 inches per minute
Rotamater		۸P-

MODULIO DOL			
setting	(millimeters	of	water)
0.1	420		
0.2	 415		
0.3	430		
0.4	405		
0.5	415		
0.6	 423		
0.8	425		
1.5	428		

Run	n	un	цþ	81	: •	٠	\$	ð	٠	4	÷	٠	¢	÷	ð	\$	¢	۵	0	Ġ	Ġ	\$	õ	. 1.0
Date	э.	,	•	٠	٠	٠	0	ø	\$	ð	\$	Ġ	Ŭ	¢	÷	٠	÷	Ŷ	¢	4	3	ą.	ŵ	.5/25/56
Typ	8	ir	ıj	6(ti	.on	Į	tod	.nt	Ĵa	¢	•	٥	ü	¢	\$	÷	ġ	ġ	ø	¢	Ŕ	٩	Number Two
Loo	at	1(on	-	int	e c	ti	. or	ıŢ	001	nt) a	ð	6	•	÷	ð	Ŷ	Ô	ŵ	ð	ő	ð	Point A
Loci	at	i	on	Ĩ	pre	988	uı	: 0	te	ip	¢	\$	ö	٠	¢	٠	٠	\$	ф	\$	æ	ê	9	AP ₁ at 1
Rot	am	et	:0	r	us	sed		6	ŧ	٠	٠	\$	\$	Q	٠	¢	¢	6	¢	¢	ø	4	ġ	Number Four
Hei	gh	t	0	f	be	đ	ſı	on	1 12	ot	tc	m	of	Ċ	ol	.ur	m,	1	nc	he	s	¢	¢	.49
Typ	Э	80	at	a	Lys	st	٠	۵	\$	۲	٠	¢	¢	9	æ	4	ø	8	•	¢	ø	ø	ø	.New M. S.
Cat	al	y	st	ſ	:1c	W	re	ite) e	•	¢	6	۰	٠	•	٠	٥	٠	٥	ò	٠	ð	¢	.4 inches per minute
					F	lot	ân	iet	ei									1	. e T	- J	مد م	۵	P1	
					-	30	0.	1	18									Τ	111	.11	.IIIE	υτ 6 2) OI WATER)

BELLTIN		THTTTTHE CELS	OT.	MELCET
0.1		430		
0.2		431		
0.3		410		
0.5	- -	430		
0.8		432		
1.5		435		

APPENDIX D

SAMPLE CALCULATIONS

SAMPLE CALCULATIONS

Diameter of column, inside, inches	
Area of column, inside, square feet 0.06678	
Factor from cu. ft./min to ft./hr. = 0.899	
ft./hr. = $\frac{cu. ft.}{min.} \times \frac{60 min.}{1 hr.} \times \frac{1}{0.06678 sq. ft.} = ft./hr.$	
Catalyst rate	:5 ite
0.06678 x 0.25 = .0167 (cu. ft./min.) of catalyst volume displacement	
Catalyst velocity feet/hour	
ft./hr. = $\frac{3 \text{ in.}}{\text{min.}} \times \frac{60 \text{ min.}}{1 \text{ hr.}} \times \frac{1 \text{ ft.}}{12} = 15 \text{ ft./hr.}$	
Sample Calculation:	
Run Number	
Rotameter settingcu.ft./min.ft./hr. 94.3AP1 (MM of HOH)1.800.10594.33601.600.0980.93701.100.05549.53600.900.0435.9360	
DERIVATION OF EQUATION (14)	
Let:	
Fg = the gravitational accelerating force (dynes)	
Fr = the resisting upward drag force (dynes)	

- u = relative velocity between the main body of fluid and particle or body cm./sec.
- uT = terminal gravitational settling velocity of body or particle relative to fluid cm./sec.

Fg	=	g _L M _p / <u> </u>	(15)
${}^{\mathrm{g}}{}_{\mathrm{L}}$	=	local acceleration	lue to gravity, cm./sec. ²
м _р	-	mass of particle, g: $\pi \rho_p^{D_5/6}$	cams.
6b	=	true density of par	ticle (gms./cu.cm.)
(2 =	density of medium (gm./cu.cm.)
repre	sent	the force down.	
Fr	. =	$(e^{\frac{u^2}{2}})Ap^{C}$	(16)
6	=	density of bed, gm.,	cu.cm.
u	Ξ	relative velocity be and particle or bod;	etween main body of fluid 7, cm./sec.

Ap = area of projected plan $\mathbb{T}D_p^{2/4}$, cm.²

c = drag coefficient (dimensionless)

Fr represents the force up,

Fg

When Fr is equal to Fg the terminal velocity has been reached and then $u = u_{T}$. Therefore:

$$gIM_{p} / \frac{(e_{p}-e)}{p} / = \rho \frac{u^{2}}{2} A_{p}C$$

$$\frac{or \text{ solving for } u:}{u = \sqrt{\frac{2 \text{ gL Mp}(e_{p}-e)}{(e_{p} - A_{p}C)}} \text{ or } u_{T} = \sqrt{\frac{2 \text{ gL Mp}(e_{p}-e)}{(e_{p} - A_{p}C)}} (17)$$

$$A_{p} = \pi D_{p}^{2/4}$$

$$M_{p} = e_{p} \pi D_{p}^{3/6}$$

$$Fr = \pi D_{p}^{2} e_{p} u^{2/8}$$
(18)

By substitution and solving for ur:

$$u_{\rm T} = \sqrt{\frac{4g^{\rm L} D_{\rm p}}{3\rho_{\rm C}}} \qquad (19)$$

For streamline flow when the inertial terms are negligible the following relation holds:

$$\mathbf{F}_{\mathbf{r}} = 3\pi\mu u D_{\mathbf{p}} \tag{20}$$

This is recognized as Stokes Law.

Converting the velocity needed for fluidization into terms of Reynolds Number:

$$N_{Re} = Du\rho/\mu$$
(21)

$$D = \text{diameter of particle, cm.}$$

$$u = \text{velocity of air, cm./sec.}$$

$$(P = \text{density of particle, gm./cu.cm.}$$

$$\mu = \text{viscosity of air, gm./cm.sec.}$$

$$N_{Re} = \frac{0.0062 \text{ cm. x . 193 x 2.56}}{0.018}$$

This puts the flow in the streamline range; therefore, Stokes relation should hold.

Substitution of Equation 18 into Equation 16 gives the following drag coefficient:

$$\mathbf{c} = \frac{24 \, \mu}{\mathrm{e}^{\mathrm{uD}_{\mathrm{p}}}} = \frac{24}{\mathrm{N}_{\mathrm{Re}}} \tag{22}$$

The combination of Equation 19 and Equation 22 gives the following:

$$u_{\rm T} = \frac{g^{\rm D} p^2 (\rho p - \rho)}{18 \rho}$$
 (23)

Substitution of data into Equation 25 gives:

$$u_{\rm T} = \frac{980 \times 0.0000384 \times (2.54-0.001)}{18 \times 0.018}$$

ur = 0.295 cm./sec.

= 34.8 ft./hr.

The terminal velocity of 34.8 feet per hour is one and onehalf of that velocity required for fluidzation. The following equation holds for the data presented:

$$V_{\rm n} = 2/3 \, u_{\rm T} + V_{\rm p}$$
 (14)

ur = terminal velocity

 $v_p =$ net velocity of particle with respect to walls of the vessel.

Data points from Equation 14 are plotted in Figure 10.

APPENDIX E

.

GRAPHS

Pressure Drop plotted as a function of Gas Velocity on Runs 3A through 10.

GAS VELOCITY, FEET PER HOUR

.

VITA

James Mathias Weber

Candidate for the Degree of

Master of Science

Thesis: STUDIES IN FLUIDIZATION

Major Field: Chemical Engineering

Biographical:

- Personal data: Born in Oklahoma City, Oklahoma, July 7, 1930, the son of Max M. and Catherine Jones Weber.
- Education: Attended grade school in Birmingham and Lipscomb, Alabama; was graduated from West End High School in Birmingham in 1948; received the Bachelor of Science degree from the Alabama Polytechnic Institute with a major in Chemical Engineering in June, 1951; completed requirements for the Master of Science Degree in May, 1959.
- Professional experience: Worked with Phillips Petroleum Company in Bartlesville, Oklahoma, as a Research Engineer from June, 1951, until September, 1955; is presently employed by the Dow Chemical Company in Freeport, Texas, as a Senior Research Engineer.