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PREFACE 

Fer many years the navigator has been the work horse of 

the Air Force. Vl/hile the pilot sits and watches "George", the 

autopilot, fly the airplane the navigator is slaving in hjs 

cubbyhole. As speed and range grow greater his problems are 

intensified. The tools that the naviga_tor uses have not kept 

pace with the rapid advance of aerial technology. One of his 

prime needs is a fast accurate method for making celestial 

calculations. 

The computer presented in this study is an attempt to 

supply the basic design of a computer whtch will solve the 

navjgators celestial problems quickly and accurately. No at

tempt has been made to present a 11 finished article", one which 

the navigator could pick up and use tomorrow, but is rather a 

study of a basic design which cculd be refined for his use. 

It will probably be noted, that e:xplanattons of astro

nomical and mathematical phenomena are often discussed in a 

very non-technical fashion. It was felt that the fins points 

of these subjects were of no conseauence in the immediate 

problem, and would only tend to add redundance to the pic

ture. The assumptions made are those generaJ.ly accepted in 

the study of aerial navigation. 

Indebtedness is acknowledged to Professor Paul Mccollum 

whose valuable guidance a11.d encouragement throughout the 
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construction of the morlel and the wr 1 ting of ti11s study were 

of imralua~le airl: and to M~. Glenn Stotts who helped im-

measurably jn being able to produce needed parts and techni~ 

cal assistance at crucial times during construction of the 

model. I wish also to thank Professors Caskey and Mendenhall 

of the Oklaho~a State University mathematics department fer 

t11eir aid in the development of the basic eauations. Gratitude 

is also expressed for the many expressicns of interest., and 

suggestions, offered by the me~bers cf t~e Electrical Engi-

neering Department, especially the comments and surgestions 
~· 

made by Dr. H.T. Fristce. 

It is felt that special mention should be ~ade of the 

valuable assistance afforded by Wr ip:ht-Field personnel. The 

T-J computer used as a basis for this study was loaned by 

Wrjght-Field. Most of t11e vital narts of trie mcdel 1,•rnre 

supp15_ed frorr. surplus stocks made available to me by 1Nright-

Fi.eJd personnel. 
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CHAP'J'ER I 

( THE REQUIREMENT 

Ever since the first man ventured any appreciable 

distance from his home cave he has needed some method of 

finding his way home again or finding his way back to that 

bountiful fishing stream. At first he provided his own 

trail by dropping pebbles or breal,ing branches. When the 

hunters that lived near large bodies of water decided that 

it was easier to ride in a boat than to scramble through 

briar thickets along the shore, a new method of fi~ding 

their way was needed, and their eyes turned toward the 

heavens. 

The modern specialist had his counterpart in the pre

historic man who by his training, skill, and pure instinct 

could look at the pattern of the stars and unerringly point 

the way. Anytime man wished to travel great distances by 

land or sea this specialist was in great demand. His skill 

was so revered that he was often the chief or leader of his 

tribe. Man's insatiable desire to travel and conquer new 

worlds soon made the deroands for this talent greater than the 

supply and the task fell on lesser men, men who knew that the 

stars stayed in their same relative position but they needed 

props to ajd them on their way. Because of this need the 
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first navigation instruments were invented, 

It was soon apparent that the bright lights of the sky 

seemed to rotate around one of thei.r dimmer brothers. Of all 

the stars in the sky only one seemed to always stand still, 

and they called it Polaris, the pole star. The early mariner 

soon learned that if he sailed his ship directly toward Polaris 

the star seemed to rise in the sky. When i.t had r i.sen to a 

certain height, say to the first yardarm or to the top of 

the mast he needed only to turn to the right or left, keep it 

at this height, and he would sail to his intended destination. 

Soon man's ingenuity developed more accurate devises. One 

clever fellow found that if he put marks on a stick and held 

the stick at arms length with the bottom mark on the horizon 

he could make the other marks represent the latitude of any 

port that he desired. He didn't have to move from the Cap

tain's bridge to take a sight at his friendly guiding light 

no matter what direction he was sailing. In the Bishop Museum 

in Honolulu is preserved the Sacred Calabash. This ancient 

sextant was used by the early Hawaiians to find their way home 

from the Island of Tahiti. It was found that the angle measured 

betv1.1een sighting holes in this gourd was 19° 30' the exact 

latitude of Hawaii. From these modest beginnings grew our 

present system of celestial navigation and our vast array of 

navigation instruments. About 1730, Thomas Godfrey of 

Philadelphi.a and Captain Hadley of the British Navy independ

ently invented our first modern sextant. The principle used 

in both cases was that of projecting on a mirrored eyepiece 



the images of t~e horizon a~a t~e star with a mechanism for 

changing a11.d measuring the angle between the pick-up prisms 

so that the two could· be brought into co incidence on the 

mirror. With the advent of aerial navigation, a bubble or 

pendulum has been subst5tuted for the natural horizon but 
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the principle remains the same to this date. The only P'J.rpose 

of any sextant is to measure the angle between the horizon 

and the observed star. This angle is called the observed 

altitude or H0 • 

In explaining the use of the sextant for position 

finding, the most used and probably the best method is t~rough 

the analogy of a flag pole with a long rope tied to the top. 

If we visualize this flag pole, and assume that a man is 

holding on to the rope and keepi11g it taut all the t5me, we 

can outline most of the important defi.nitions that we will 

need. Since we assume t~e ~tar to be at the top of the pole, 

the base of the pole where it enters the ground or in other 

words the point on the earth directly below the star is called 

the Sub Point. The angle formed by the rope and the ground 

is the observed altitude, H0 • If the man walks around the 

base of the pole holding the rope taut he follows a circular 

path which is called a line of posj. tion or LOP. The angle 

formed at any instaht of time between a line drawn from the 

man to the Sub Point and a line drawn from the Sub Point 

toward true noith is called the Azrnith, z. If the man comes 

closer to t~e Sub Point or goes further away, a new H0 is 

formed: so for any H0 there is only orle 10n. Now assume 



for a moment that the man is uncertain of his position but 

he has a set of tables whicb tells him what angle the star 

and Sub Point will form at different distances from the Sub 

Point. He would first assume a position which he thought 
' 

was fairly close to his actual position, and by using the 

tables he could find the a le he should measure j_f he were 

actually at this assumed position. This angle is called the 

computed altitude, Tic· He wc 11 ld then measure the H0 and find 

that it varied slightly from the He. If the angle were greater 

than the He he would be closer to the Sub Point than he had 

thourht, jf the angle were less he would be f11rther away. By 

applying a correction proportional to the difference between 

the Ho and He he could find the exact LOP that his actual 

position would fall on. Now, if he were further restricted 

by having two flag poles and two ropes to hold onto, he would 

be on two LOP 1 s w'd ... ch coincide at onJ.y two places. In actual 

practice these lines of position are so great in radius that 

they appear as straight lines on the plotting chart and the 

redudent position is so far remc~ed, geographically, that there 

is no question as to which is the actual position. 

To complete the list of definitions, we must visualize 

the lattice work formed by the earthly latitude and longitude 

lines, projected ont into space and i.nscribed on the celestial 

sphere. The earth is considered to be at the center of the 

sphere with all of the stars at the same distance from the 

center. thus forming a very large hollow sphere contaiDing all 

of the stars on its inner surface. The very great distances. 



to the stars allow this assumption with no measurable error. 

The lines on the celestial sphere corresponding to the earthly 

latitude lines are calJed Declination lines, Dec., w~ile the 

lines corresponding to the longitude lines are called Hour 

Circles. As was done with Greenwich on the earth to aid in 

the measurement of longitude, an arbitrary point on the 

celestial sphere was selected as a reference for all east 

and west angular measurements. This point is called the. first 

point of Aries. All east and west angular measurements are 

made from the Hour Circle passing through this point. At the 

pole, the angles between the Hour Circles are called Hour 

Angles. The different Hour Angles that are of the most 

interest ir: this study are: The Siderial Hour Angle, SHA, 

the angle between the first point of Aries and the Hour Circle 

that goes through the star we are using. Greenwich Hour Angle, 

GHA, the angle from Greenwicli of any subject Hour Circle. 

Local Hour Anple, LHA, the angle bet1Neen 0~1r lonri tude a:id the 

star. Figure one shows the relative pos 4 tjons of these hour 

circles. 

One additional piece of information which may be needed 

is the definition of a Great CircJe. A Great Circle is the 

li~e formed on the surface of a s~here by a plane passed 

through any two points on the surface of the sphere and its 

center. When projecting the surface of a sphere on a flat 

plane the Great Circle appears as a curved lirie but still re-

presents the shortest distance between two points on the surface 

of the sphere. 
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Figure 1. The Celestial Sphere 
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With the var1ous definitions listed above firmly in mind, 

let it be explored further how the navigator f1xes his position 

on earth by use of the stars. As was briefly mentioned before, 

the stars stay in their same position relative to each other,. 

and to the observer on the earth they follow the same path 

across the sky day in and day out., varying only i.n the time 

w~ich they rise above the horizon. It may be well to note 

here that the above statement is not true of the sun, the 

moon, a~a the planets w~ich, due to their closeness to earth, 

travel a different but predictable path each day throuphout 

the year. Since the stars are fixed in space for all practi

cal purposes, their positions can be described in the celestial 

sphere by their Dec. and SHA as surely as Chicago or New York 

can be located by its latitude and lonfitude. Furthermore, 

by knowing the GHA of Aries the corresponding GHA and SHA 

can be combined, thus locating the Sub Point of the star. 

The triangle formed by 'the longi.tude line running through 

this position, the lonpitude line running through the Sub 

Point of the star, and the Great Circle line between this 

position and the Sub Point, is called the Celestial Triangle. 

The lonritude lines running through the Sub Point and this 

pos:ition are known. What is not known is the length and Z 

of the Great Circle li.ne joining these twp posi.tions. In 

addition to the information listed before, figure one shows 

this celestial triangle with its different parts lab§led. 

All systems and plans for Celestial Navigation are 

simply different methods for finding these unknown quantities. 
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Harking back to the flag pole analogy, it is recalled 

that the unknown distance from the Sub Point was found by 

measuring the angle of the star above the horizon atid com

paring it with an angle precomputed from an assumed position. 

This method lends itself very well to practjcal application 

esped.aJ ly since one minute of arc j s equal to one nauti.cal 

mi.le when measured on the surface of the earth. Most methods 

employ this principle, but two notable exceptions are the 

British "Astrograph" and the "Weem,s Star Charts". Both the 

"Ast:r:ograph" and the "Star Charts" use the principle of 

projecting or printing the actual path of the Sub Point on 

a chart and plotting the H0 directly on tbs c~art a measured 

dista~ce along these Sub Point lines. Of course, the first 

method used for solving the Celestial Triangle was by straig~t 

spherical trigonometric means. Thi.s method was very accurate 

but was unduly complj.cated and took considerable time to 

accomplish. At first the time involved was of little con

sequence since man was only traveling at about fifteen knots, 

but when the navigator "sprouted w:i.ngs", time became a prime 

factor. The 11 Ageton 11 method of solution 1Nas a step in the 

right direction. This method consisted mainly of a printed 

format ·which labeled each step of the mathematical soluti.on 

so all that was necessary was to follow the format, putting 

in the required information, adding or subtracting when it 

so indicated. In about twenty minutes an answer could be 

obtained. The first a~a, as will be seen, the last giant 

step for·ward was the "HO" publications. The Hydrographic 



Office of the Navy produced thousands of solutions of Celestial 

Triangles and compiled them in tabular form ~nto books. Usi 

these publications, a person needs on]y to know the Dec. 

and LHA of t~e star and to assume a position. With this in

formation he can ~o to the tahles and extract the He and Z. 

Each of the three major nHO" pub1jcat·ions, H021L1., H021S, 

and H0249, are slightly different but are all based on the 

same princjple of tabular information for major celestial 

bodies which can be used for any assumed position. These "Hon 

pub1ications, a1ong with "The Air Almanac", have been the 

corner stone of aeria1 navigation since before World War II 

and have remained so until today. From time to time dif

ferent computers or devices have been presented to lighten 

the load of the navigator, but one by one they have been 

discarded for various reasons. One interesting device was 

the "Astrotine", with which two stars ·were si 1,hted at the 

same time, resulting in a marked plug which was placed in 

a reader device, which in turn gave a distance and Z from 

the assumed position. The "Astrobine" proved to be auite 

satisfactory on the ground but was too rl1fficu1t and too i.n-

accurate to use 1 n an air craft. Severa 1 computers have been 

devised, but here again difficulty of use and inaccuracy 

have minim1zed their value. Of the computers conceived in 

the past, the T-1 was one of the best. The computer pre

sented in this thesis is an outgrowth of the T-1 computed. 

A thorough explanation of the T-1 will be found in Chapter 

2 . 
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As aircraft have flown faster and faster it has been 

necessary to develop techniques which save t irr1e in celestial 

computation, In the absence of anything better. the present 

day navigator still uses the HO publications, but most of 

his work is done on the ground before take off. Before 

the mission, the Navjgator lays out his intended track and 

precomputes the He for different stars and positions along 

hJs rcute. During fli?ht, he need only stick comparatj .. ve1y 

close to his preplanned route and timJ.ng, and the major por

tion of his time consuming task is already accomplished. 

The main difficulties in this plan are in its comparative 

inflexibility, and the fact that no time or labor is actual.ly 

saved but simply shifted to a more ccnveni .. ent period. The 

inflexibility of the present system becomes apparent when 

deviation from the original plan is required. If there is 

a last minute change of target, the Navj.gator is in trouble 

unless he has plotted courses to crnrer a 1 l eventualities. 

On standbv a1ert the :Navigator must be ready to take off at 

a moments notice so a constant revision of his plan must 

be accomplished. Diversion in the air due to enemy action 

or operational considerations are a constant threat to any 

precomputed plan. As it stands now, slight deviations from 

his precomputed plan are possi.ble through correction techniaues 

available. If any major change in plans occurs he must fall 

back to the old method of thumbing through endless tables. 

Under the stress of time, enemy action, adverse weather, 

and many other factors that plague the harried Navigator, 



it is easy to make simple mistakes like adding two and two 

and getting five, or skipping down one line as information 

is extracted from a table. The ultimate objective of the 

computer designed and presented in this -thesis is to give 

the navigator an accurate He and Zin less than thirty 

seconds, to be simple to use, either on the ground or in 

the air, to greatly red.ucethe ove:rall work load of the 

navigator, to drastically reduce simp1e addition and sub

traction errors, to be independent of changes in flight 

plan, and to rreatly reduce the amount of bulky equipment 

that t~e navigator generally must carry with him. 

11 



CH.APTER II 

THE T-1 COMPUTER 

At the end of World War II, representatives from the 

Wright Patterson Air Force Ba.se, Ohio, entered Germany in 

search of Luft1Naffe equipment which could be used i.n the 

further development of the United States Air Force. Among 

the equipment brought back was two models of what was later 

called 11 The T-1 Celestial Navigation Computer''. This equip

ment was a German de"lrelopment of a French idea, and was a 

devise for obtaining the He and Z of a star when the LHA, 

Dec., and assumed position were set into its mechanism. A 

photo of the T-1 is s~own in Plate I. 

The devise consists of a round glass plate on which 

a series of vertical and horizontal curved lines are printed. 

This glass is mounted in a metal ring which can be rotated 

by a knob at the top of the computer. Above the plate is 

mounted a flexible arm, on the end of which is a twelve 

power magnifying lens with adjustable cross hairs. The 

intersections of the inscribed lines are numbered as 

illustrated in Plate II. The verti.cal lines are drawn so 

that the curvature of the outermost line has a radi~s equal 

to the radius of the plate. Lines closer to the center 

have greater radti, and the line at the center has an infinite 

12 
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PIATE I 

The T-1 Computer 
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PIATE II 

T-1 Computer Plate 
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radius or in other words the center line is a straight line. 

The horizontal lines are constructed so that the outermost 

curve has a radi.us of zerc. This radius increases for lines 

closer to the center until at the center there is another 

straight line. A drawing of the lines as they appear on the 

plate is included as Plate III. A very non-technical ex-

planation of why this configuration of curved lines is used 

is that this is the way the latitude and longitude lines would 

appear to an observer stationed. in space. If this space 

observer were to start at a point directly above the eauator 

and trave1 to a point over the po1e 1::1.lways observing the 

latitude and longitude line immediately surrounding his Sub 

Point, they would appear as they do on the comp1Jter. 

To solve the Celestial Tria le problem on the computer 
0 

the knob at the top of the computer is first set so that 90 

is read on the assumed latitude scale which is etched along 

the side of the mounting rim (the index rotates with the glass 

plate). With the assumed latitude at 90° the flexible arm 

in moved so that the LHA of the sub,iect 1 s star is read on 

the vertical curved lines, and the Dec. is read on the hori-

zontal curved li.nes. The movable cross hairs in the eye-

piece make possible comparatively accurate settings. The 

plate is then rotated so that the actual assumed 1atitude is 

read on the outer rim scale. The cross hairs are then 

cent 0 red on the He and Z of the star. The He is read from 

the horizontal curved lines, and the Z from the vertical 

curved lines. Again, a very non-techn.ical explanation of 



PIATE III 

~,-~-+--~ 
0 0 

-w 
0 
0 

Arrangement of Lines on Computer Plate 
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why this system works, 1.s that 1f the pos i ti.on j_n question 

was actua)ly at the north pole, tri e He would be the same as 

the GHA of the star, thus establi.shing a Sub Point. If it 

is then imagined that the earth is rotatPd and tilted an 

amount eaual to the assumed position with the celestial 

sphere held stationary, a new Sub Point is established. 

The Dec. of this new Sub Point now becomes the actual He, 
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and its new GHA becomes the actual z. 1 Figure 2 demonstrates 

this idea. 

Once again, as has been true with most computers, the 

T-1 proves to be quite good on the ground, but in the air 

the flexible arm is hard to adjust, the cross hairs are hard 

tc set accurately ~nd have a tendency to jam. Also the T-1 

is difficult to read. Mass manufacture of the computer has 

been difficult due to the precision reauired, difficulties 

with the ~hoto etc~ings on the plate, and the complexity 

of the magnifying eyepiece with its a~sociate cross hairs. 

The computer has never been accepted as a standard Air Force 

item. 

So it is seen that the idea behin~ the T-J is good, 

but practical problems of manufacture, cost, and use, greatly 

limit its application. 

The first attempt to resolve the djfficulties of the 

T-1 was attempted by this author in Febr 1_:rnry 1948. At that 

1It could also be a~ easily visualized that the Celestial 
Sphete was rotated and tilted while the earth remained station
ary. 
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ACTUAL POLE STAR 

TILTED POLE 
.STAR 

Figure 2. Correction for Assumed Latitude 



time an attempt was madP to slmulate the movement of the eye-

piece by means of a series of ball, disk, and roller devices. 

This work was not carried to a point of eval1Jat1 on due to the-. 

discharge of the author from the service. 2 The problems of 

the T-1 arP here again approached, this time with the ap

plication of electronic principles in mind. 

?A more complete outline of previous work is included 
as Append i.x A. 



CHAPTER. III 

A NEW APPROACH 

The first step in the sol11tion of the subject problem 

was to obtain the eouations for the vertical and horizontal 

curved lines on the T-1. A complete mathematical develop~ 

ment of these esuations is found in Appendix ·As may be 

seen fr om the development in App end ix B, the eo 11 a tion .f'or 

t11e vertical lines js x? - (a? - r2)/a + y2 - r? = o, and 

for the horizontal lines is x? - (b2 + r?)/b + y2 + r? = O. 

Assuming that r is always unity, (a2 - r2)/a is equal to A, 

and (b2 + r2)/b :i.s equal to B. The eouations then become 

2 2 2 ? O X- - AX+ Y- - 1: o, and X- - BY+ y~ + l: . F'j ... gur e 3 

shows where these values are measu.red, and that simultaneous 

solution of the eauations results in a specific X and Y for 

k ·,1 1 II "(LJ:JA) d ''b"(D ) any nc r"n a , .1.. an. , ec. • Several different methods 

of solvLng these s1mu1taneous eour:i.tions were attempted ustng 

analog computer techniaues. Straight algebraic srlution of 

the reduced eouation reouired mere operational amplifiers 

than were available. Reduction of the eauations by subtrac-

tion resulte~ in an eauaticn which was sat5sfied by an 1n-

fjnite number of X and Y comb5nations. Attempts to differe!1tj-

ate and t~en integrate, or integrate and then dj ferentiate, 

res" 1ted :in 10~,jne: vital parameters. T11e fjna1 solution, 

20 
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a. 

Figure 3. Nomenclature of ilasic Equations 
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, . h .... d wn1c .. was accc,p 1,.e. ' incorporated a system of servo-

mult:1pliers c011p1ed vdt1r voltage divjder networks and 

operational amplifters. It may be 1~1ell to ncte 11ere that ,..._ .. , 

although no straj~htforward analog computer solution was 

found, it is belie~red that fvrt 11.er st:Jdy in t'1 is area is 

warranted. 

After establis~ing t~e basic eauations, their 

solution and the complete sol~tion of the T-1 problem may 

be divided into five major steps: 

1. Setting up the eauations and determining 
X and Y, 

2. Vectorizing, or turning the X and Y position 
into a vector of length Rand angle~, 

3. Rotating the vecto~ 

4. Quadrant selection, 

i::: Final ansv'Pr. 

Figure 4 depicts a diagramatic explanation of these five 

steps. 

To solve the origjnal equations, a voltage proporttonal 

to eacl"'. of the eoqa t·:. on parameters is applied into a summing 

amplifier. If t~e voltagPs are all correct, the output of 

the s 11mming amplj_fier will. be zero. If the voltages are not 

correct, the summing amp] if ier will have an output propor

tional to the error involved. This error signal causes a 

servo motor to turn. The servo motor positions potentio-

meters vvh ich affect the input vol tag es. The motor ·will 

continue to turn until the sum of the input voltages result 

in a zero error output. If the error is positive, the motor 
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STtP .1 $Tf P 2. 

.STf P 3 STEP 4 . 

STEPS 

Figure 4. Five Ste~s of Solution 



turns in one direction, and if nepative, the motor turns in 

the opposite direction. Since two eouations are involved, 

two complete systems as described above are needed; one for 

X and one for Y. X and Y occur in both eauations so inner 

connection between the two is necessary. This i.nner con

nection introduces a brief oscillation. Since it is only a 

few seconds duration. and is an indication of the proper 

operation of the instrument, this oscillatory period is 

considered an advantage rather than a disad·vantage.· Fur

thermore, it is an indication of low drag in the system. 

When the motors have come to rest, the potentiometers are 
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in a nosition relative to the intersection of the lines 

established by the known .A and B, and their output represents 

X and Y. Voltages representing X, Y, x2, y2, AX, and BY 

are then available. Figure 5 is a·schematic of this portion 

of the computer. 

x2 + y2 = R2, so by adding the x2 and y2 vol tag es and 

applying the resultant to a servomultiplier system, as shown 

in Figure 6, R is obtained. This is the first step in 

turning the X and Y position into a vector, however, the 

angle must still be established. The voltage R is applied 

to a sine-cosine pctentiometer (sometimes called a sauare 

card potentiometer). From the cosine output of the potenti.o

meter R cosine oc is obtained, and from trigonometry it is known 

that R cosine oe is eaual to X. R cosine·oc:. and -X are then 

used as inputs to a summing amplifier. When the output of 

this summjng ampljfier is anything but zero a motor is caused 
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to turn. Th is motor rot.-::i. te s the sine-cosine potentiometer 

until the correct ex::. is establ:tshed to make R cosine cc equal 

to X. The vector is now established with a 1ength represented 

as R at an angle ofoC. Figure 6 shows a complete schematic 

of the vectorizing operation. If the progress of the electri-

cal solution is referred to the T-1 computer, a point has 

been reached where the eyepiece has been centered on the 

LHA and Dec. The next step is to apply the assumed latitude. 

On the T-1, the assumed latitude is taken into account 

by rotating the plate under the eye-piece. In the electrical 

solution, the vector is rotated an amount eaual to the assumed 

latitu~e. To si~1late the rotation of t~e vector around the 

origi.n, the length, R, must remain the same with only oC 

changing. The drive of the sine-cosine potentiometer is 

arranged so that the pointer on its indicating dial does not 

rotate during t1'1e vectorjz,jng operation above. When the 

assumed latitude is set, the geared pointer shaft and the 

gear on the s:i.ne-costne potentiometer dri'11e are engaged. 

Engagement of these gears activates a relay. The relay dis-

connects the motor drive on the R servo multiplier forcing 

R to remain the same. The abo~re relay also releases the 

sine-cosine potentiometer from its motor drive allowing free 
i, {-. movement of the pointer; ~igure ~) The vector has now been 

~A holding relay is provided so that as long as a spring 
loaded reset button is in the normal position, the relay will 
remain activated. After the problem is completed, the button 
is depressed, the relay releases, and the computer is ready 
for a new problem. 
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rotated, but R cosineoc is no longer equal to the X that is 

set on the computer. 

When the vector is rotated, a new problem presents it

self. It is auite possible that the new X and Y lie in a 

different ouadrant than the original X and Y. This problem 

is solved by providing the LHA ann Dec. indicator with dual 

sca1es with a movable flag covering one of the scales. When 

R cosine oc goes to zero, the flag on the LHA scale changes 

posi tioh. vi'hen R sine'ot goes to z,ero the flag on the Dec. 

scale changes position, thereby providing four quadrant 

~--5 coverage. 

Now that the vector has bePn rotated and its correct 

quadrant established~ the new X and Y must be found, and 

i.n turn, the new A and B. R cos1.ne oe. now becomes the k.nown 

value '!Nith X the unknovm. The relay that disconnected the 

error signal from the sine-cosine potentiometer motor, con

nects this s:i.gnal with the X ser~romul t1pl:i.er dri.ve. Thi.s X 

drive now positions the X potentiometer so that Xis once 

more eaual to R cosine~. By changing X the original equation 

is unbalanced so that an error signal is obtained from the 

e0ua t ton summine amplifier. The versa tile lit t1e relay once 

again comes to the rescue. When the relay was activated, it 

4 '• . . It was felt that the added lines and relays for this 
operation would cause more confusion than they wonld do good, 
so this portion of the network is not included on any of the 
schematic diagrams. 

?An a1ternate design for taking quadrant change into 
consideration was tried but found difficult to construct. A 
full discussion of this design is included as Appendix C. 
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disconnected the eauation error from the X drive and connected 

it to a motor that controls the A input. The A input is changed 

until the equation is once more balanced, and the eauation error 

output is zero.· Meanwhile, the Y section of the computer has 

been underr.-oing the same type of ·changes as those outlined for 

X, except that Y is matched with R sine oe, and ·the B input i.s 

adjusted to balance the equati.on. The problem is now completely 

solved. The reading now on the Dec. scale is the He of the 

star, and the reading on the LHA scale is the Z. 

To aid the reader to better understand the many steps 

above, a block di.agram of the entire computer is included as 

Figure 7, and a complete schernatic of the computer is included 

as Figure 8. 

In order to test the validity of the above design, a 

model of the computer was constructed. As construction of the 

model progres~ed, changes were made in the design to accommo

date unforseen difficulties. The design presented above in

corporates all of these changes. In some cases, availability 

of parts restricted refinement of the model, but it was not 

intended that the constructed model shbuld physically resemble 

the fin:tshed product. The model was constructed only to prove 

or disprove the feasibility of the proposed design. Chapter 

IV outlines the experimental results obtained from the model 

and compares them to those obtained from the T-1 computer. 

The number cf operational amplifiers reouired by the design 

presented in this study, exceeded the supply of Philbrick plug 

in type amplifiers on hand, making it necessary to use some 
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of the amplifiers available on the Donner Analog Computer. 

A photograph of the complete model as it was used during 

tests is shown in Plate IV. 

Although the model as pictured in Plate IV is large 

in size, miniaturization techniaues and proper selection of 

cornpcnents wou1d result in a much sma11er a.nd compEi.Ct in

strument. The amplifiers would all be transistorized. 

Power supplies already avai1able on the aircraft would be 

used, and proper mounting and gearing of motors and po

tentiomPter would be a must. The final manufacturPd item is 

visua1ized as being approximately the size of a cigar box 

and weighing between five and ten pounds. A refinement 

which would be of value would be a specific star input. 

The navigator normally uses only twenty-two of the major 

stars. The names of these stars would be printed on a 

setting dial with Dec. and SHA inputs available for which

ever star was selected. It would then only be necessary to 

set in the GHA of Aries obtained frrm the Air Almanac, the 

assumed longitude, and the assumed latitude. This system 

would eliminate pencil computation of the LHA and reduce 

the navigators chance for error. A further refinement could 

be made so that a siderial clock mechanism would drive the 

GHA input. The navigator would set tl-ie GHA of Aries at 

the first of the flight and frcm that time wculd only need 

to set in the star he was using and his assumed latitude and 

longitude. A di.sadvantage of the siderial drii,e would be 

that precomputation wculd be limited without the use of a 
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correction fartor. W4th the star input incorporated, the 

navigator won1d be limitPd to the use of the twenty-tvrn 

navjp:ation stars and co,11d not use the sun, moon, or any of 

the planets. Either or both of these refinements could be 

incorporated as an additional section of the corn~uter at 

the cost of added size and weight. 

One of the main advantages of this computer is its 

simp1ici.ty of use. To operate the computer wit! its refine-

ments installed, the navigator would: 

1. Push the reset button. 

2. Set in the selected star. 

3. 

4. 

Set in the assumed longjtude 

Set 1n the assumed latjtude . 
. 

The He and Z wrn11d be reaa frrm counter 
type indicators. 



CHAPTER IV 

EXPERIMENT RESULTS 

After the· model 1Nas completed, general opera t:i .. on 

throughout its entire ra.m1e w,:1s accomplished. After minor 

adjustments were ma0e, performance proved to be satisfactory. 

Experimentation was limited to setting in various LHA, Dec. 

and latitude inputs, and comparing the solutions to those 

obtained from the T-1. No Ageton or H.O. publication so

lutions were accomplished. Interpretation of the results 

was hamperred somewhat by the fact that the model output 

was on a straight numerical scale which had to be translated 

to degrees and minutes. It can be seen from the quantitative 

results, whi~h are included as Appendix D, that some solutions 

are very close to the T-1, while some are not as close. The 

general trend of solutions, as shown on the graphs included 

in Appendix D, are sufficient]y close to the T-1 solutions to 

he considered within experimental limitation. It must be 

kept in mind that the model was hand-built from available 

parts. Gears harl excessive drag. Potentiometers ,vere not 

matched, and in some cases were of too low a resistance for 

best results. Standard resistors were used, and-, although 

tr tm pots were used, could not be matched perfectJ.y. It is 
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strong1y fe1t that the experimental resu1ts indicate t t there 

is no major f1aw in the design. 

Results of exper4mentation with the model indicate several 

critica1 areas which should be taken into account in further 

construction or design refinement. First and foremost, the 

compt1ter wiJ.1 be only as accurate as the parts used 1n its con

structlon. Stab1e operat:i.onal amplifiers and po1J1.rer supplj_es 

must be used. It is suggested that trim pots be used to match 

resistors. Gearlng ratios shou1d be selected to increase ac

curacy to its limit, but care must be taken to eliminate gear 

drag and backlash to a minimum. Input voltages shou1d be ac

curately controlled. Special attention should be paid to the 

sine-cosine potentiometer to insure that rotationa1 accuracy 

is 2ufficient1y high. It was found that operation near the X 

and Y axes v,1as diffj_cu1t. Furtr1er study of Ulis area sl1ould 

be made in order to j.mpr ove opera t j_on as X or Y a ppr oa ch zero. 

If desjgn for manufacture is undertaken, several recom

mendations for design changes are made. Potentiometers should 

be of as hjgb a resiPtance as possible in order to minimize 

loading ef~ects. Input voltages and po~er supplies shculd be 

se1ected so as to minimize drift and other sma11 variations of 

DC inputs. Although it is, essential that the isolation amplj.fier 

input and feedback resistors be matched, it is also desira e 

that they be of a high resjs nee so th2t the isolating prcp

erties cf the amplifier wilJ be the best possible. The pos

sibility of using rp,versjlJ1e DC motors should be investigated. 

In order to get the highP-st toroue possib1e from the servo 
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motors when the error signal is small, a dPsign should be 

incorporated which would keep the driving voltage at a high 

level as long as an.error voltage is present with a sharp 

drop to zero voltage when the error voltage reaches zero. 

As a suggestion, it may be found that cathode-follower type 

voltage dividers will prove more satisfactory than those 

used in the present design. 



CRAFTER V 

FUTURE DEVELOPMENT 

The computer design presentPd in this stu1y presents 

several cpport,1 nities for furtl:er development a:1d future use. 

The basic computer as presented here is intended for use by 

the individual aerial navigator. It is not known whether 

the high degree of accuracy reauired in sea navigation would 

limit its use for the sea navigator er not. but this is 

surely an arAa that should be investigated. In short, ,~er

ever men use the stars as their guide, t~~s c0mputer should 

hP a valuable aid if not their prime instrument. 

Other possibilities for future use prPse~t themselves. 

Air-borne st2r follo~ers exist w~ic~ unarr1n~ly follow a 

sta:r th.1'ot1r·h the heHV1!rns. F:rom the sta.r fol1ow~:r an t1p-tc

da+e1 H0 is :rerAJvea at t11.1 t1 .. mr::-s. It woulrJ thf'lin l'.le lorjcal 

to construct a computer that would cont.1nuously present 

desired position 1nformatjon for a preccmputra trsr~. A 

contim1ous He could be attained hy ue1ng t~1s desired 

positjc,n as tie ;urnumed .posit:ion input for the r;;J0ctrjc1:d 

analog of the T-1. By comparin~ the H0 from two of the 

electrical T-l's to the Ho of two star followers, a vActor1a1 

position errc1r co11ld be obtained. This error signal could 

then be made to control an automatic pilot system in such 
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a manner as to correct this error. V'Jhen this is none, a 

completely automatic guidance system is obtained. 

The author is not familiar with the special problems 

of interplanetary navigation, but it seems guite plausable 

that the principles used in the design of this computer 

would be adaptable to space travel. Different basic 

equations wrnJld probably be necessary. Possibly a third 

eauation with a third unknown would also he necessary. 

The basic function of t~e computer is the solution of 

simultaneous algebraic equations, so it does not matter if 

the eauations are the same or whether a third eauation is 

added. 
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The last statement suggests that the methods used for 

this computer could also be used for any problem that in

volves simultaneous algebraic eauations. It may also be 

noted that .the vectbr forming and vector rotation sections 

of the computer may have a w1de field of application outside 

of the specific navigation problem discussed in this study. 



CHAPTER VI 

SUMMAHY AND CONCLUSIONS 

As the history of navj_gation i.s traced throurd, the 

ages it can be seen that there i.s a never ending demand for 

more modern F>f'lu:ipment. Equipment which vrnr1's more m.1ickly 

and efficiently. One of the primary needs of the present 

day navigator, is some device to lighten the work load and 

reduce the margin of error when celestial computations are 

made. One such device is the T-1 celF>stial computer ~~ich 

relies on a rotatable etched glass plate and optical reading 

device for presentation of the desired information. The T-1 

has proved to be imprc1ctical for use 1.n the 1:d ... r due to in

herent mechanical and optical limitations. In this study 

an attempt was made to eliminate these limitations by putting 

the basic principles of the T-1 into mathematical form, then 

solving the resultant equations by electrical analog methods. 

The computer design used the principle of the servo

multiplier which combines the position of a motor driven 

potentiometer arm with an input voltage to result in a vari

able multiplication. Algebraic addition of the signals from 

several of these servo-multipliers is then accomplished through 

use of operational type high gain D.C. summing amplifiers. 

This algebraic addition results in an error signal, which in 
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turn, causes the servo-multipliers to be repositioned until 

the error signal is zero~ By using this system of multipliers 

and adders, the mathematicsassociated with the T-1 are solved, 

and final results are presented on counter type indicators. 

In order to test the validity of the basic design pre

sented in this study, a working model was constructed. A 

number of sample problems were 1.nrorked on this model and ex

perimental data tabulated. This experj_mental data indicated 

that the basic design was sound, but that further refinement 

is needed to obtain the four or five place accuracy needed 

for celestial navigation. In future study toward this re

finement, particular attention should be paid to reduction 

of mechanical drag, accuracy of components, and stability of 

amplifiers. In order to obtain the desired accuracy it may 

be necessary to include some digital type storage units for 

pr€sentaticn of the higher order numbers with the analog 

section responsible only for the lower two or three orders. 

As an example, if it were desired to present 1.48° 5'3', the 

5'3 1 could be repro~uced effectively by the analog component 

while the 148° could be made to change in discreet 1° ste·ps 

every time the lower register passed through 60 1 • 

Looking toward future design, several suggestions have 

been presented. It is felt that for certain specialized 

cases it may be desirable to include a siderial clock drive 

and specific star input. The following is quoted from the 

magazine, Aviation Week, published 6 April 1959, under the 

heading "Future Guidance Systems''; 



42 

Inertial systems in combination with automatic 
star trackers, appear likely to play the dominant 
role in interplanetary space navigation. Here, 
however, the inertial system's primary role will 
be to provide spatial stabilization for the star 
trackers to keep them approximately aligned on 
the star. 

The computer design presented in this study is highly adapt-

able to combination with the star tracker. The information 

obtained from the star tracker must be combined with infer-

mation about the desired track which is the information 

available from this design. It appears likely that there 

will be a growing demand for a device srich as the one pre-

sented in this study. 

Conclusions to be drawn from study of the basic design 

and model of t~is computer are that: 

1. The basic design is sound. 

? F~rther study and refinement are needed 
to increase accuracy. 

3, The methods used have a wide range of 
application in problems j_nvolving solut.i.on 
of simultaneous algebraic equations, vector 
for ming , or vector rota ting. 
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APPENDIX A 

PREVIOUS WORK 

During a tour of duty as a project engineer in the 

Equipment Laboratory at Wright-Patterson Air Force Base, 

Dayton, Ohio, the author worked on the problem of making 

the T-J. computer more practical. At that time an attempt 
,, 

was made to solve the problem by mechanical means. The 

following is a direct abstract of this work which was ac

complished in February, 1948. The problem was never com

pletely solved due to the transfer of the author to other 

duties. No attempt at further investigation along mechani

cal lines has been made i.n th is study. The inf or ma ti.on 

below is included ,as another posstble approach to the 

solution of the problem. 

MECHANICAL T-1 COMPUTER 

This is a mechanical celestial computing device. By 

turning three control cranks, the computed Altitude and 

Azimuth for any star or planet can be read for any assumed 

posi.tion. 

Operation for this device is as follows: 

1. Turn LHA crank until correct LHA is read 
on LHA counter. 
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.? • T1.1.rn Dec. cra.nk. lJ.nti.l correct Dec, ts read 
on Dec. counter. 

3. Press engage button. 

4. Turn latitude crank until correct latitude 
is read on latitude counter. 

5. Read He on Dec. counter. 

t. Read Az imu.th on LHA counter. 

~ ... 5 

This devise is essentially the same as the T-1 computer 

except that no visual aligning is necessary. The problem 

encountered is to make a pointer travel over a flat plate 

to a certain point locate~ on a curved line. To accomplish 

this, three integrating devices are used. These integrating 

devices are of the ball, disk, roller type. Positioning 

of the pointer (equivalent to the eiepiece on the T-1) is 

accomplished as fol.lows: 

When the IHA crank is turned it positions the ball on 

the base of three disks. (Two of these disks are in reali.ty 

a single plate with two surfaces and a ball ro1ler on each 

side.) These three ball roller devi.ces wi.11 be named as 

fol.lows: 

1. LHA drive. 

~ Dec. integrator . 

. 1, Dec. drj_ve~ 

Turning the LHA crank wiJ.l not on1y position the three 

ba11s but will also dri,1e the potnter across trie eouatoria1 

axis of the master plate a distance proportional to the LHA 

and will turn the LHA counter. 

Turning of the Dec. crank will cause rotation of the dtsks. 
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Motion of the Dec. integrator will be transmitted to 

the ball of the Dec. drive causing it to move toward or away 

from the center of its disk. The ball of the Dec. drive is 

made to roll by its disk and transmits this motion through 

its roller to the Dec. counter and the pointer. Turning of 

the Dec. crank causes the disk of the LHA drive to rotate. 

The movement is transmitted through the roller of the LHA 

drive to the pointer but does not change the LHA counter 

reading. 

Upon completion of setting LHA and Dec., the engaging 

button is pushed. This fastened the pointer to the master 

plate by means of electromagnetism or some other method that 

might be thought of later. The engaging button also discon

nects the LHA and Dec. cranks. The master plate is the same 

as the master plate of the present T-1 computer except that 

it is made of metal and has no numerals. 

Next, the latitude crank is turned which causes the mas

ter plate to rotate in the opposite direction but in the same 

amount as the master plate of the T-1. This turning of the 

master plate carries the pointer along with it causing the LHA 

and Dec. indicators to change. Final reading is He and Azimuth. 

Investigatjon should be made as to the feasibillty· of 

using a ball as the pointer. This ball would have two roller 

pick- offs, one for LEA change and the other for Dec. change. 

This would be used instead of the electromagnet mentioned above. 

In order to get the correct movement it may be necessary 

to have the rollers, cone shaped. 
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APPENDIX B 

DEVELOPMENT OF EQUATIONS 

Figure 10. Vertical Curved Lines 

To write the eauation of a circle through the three 

points (O,a), and (O,-r) and (+a,O) 

( x-h) 2 + ( y-k) 2 = R2 Vl.rhere R is the rao ius and (h, k) is the 

center of the circle. 

h?+(r-k) 2 = R2 = h 2 + r 2-2rk + k2 

h2 + (-r-k) 2 = R2 = 42 + r2 + 2rk + k2 

(a-h)2 + k2 : R2 : a 2-2Sb + h 2 + k2 
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4rk - 0 

k : 0 

h 2-,..r;::i = R2 

a2 -.2ah-+- h2 - R2 

a? - .? ah + h 2 - h 2+ r 2 

a2-.2ah-r2 = O 

2ah = a 2-r2 

h = -a£.-~ .. ig_ .. 
2a 

(a2-r2)2+ r2 = R2 
2a 

R 

( 2 P ? .a +r.·'· ···· 
-i+a--

,..., ') 

- ac+r''· 
2a 

( ,..., ? )? ,., ') ( ? ')) ? .x-a(·-r· 0-- + Y' : . a'+ r,,. ·· 
2a 2a 

Y. 2 = (a2 +r2)2 ___ ,.,.,.._ ? ? ') x - a -r'----- ( ') ?)? X + , .§l.'.::.=.I..:.. ........ , + 
a 4a 2'.~ 

Li-a 2x2-l+a<a2-r2)x.,. (a2-r2)2 + 4a2y2 

4a2x2 -4a(a2-r2)x + 4a2~f = 4a2r2 

x2 - _g_ 2-r.::_ x + y 2-r 2 = 0 
a 

4ac 

= (a2+ r2)2 
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Fip:ure 11. Horizontal Curved Line 

., < e)., x· + . y- r sec '· : (r tan 9) 2 

b = r ( sec e -tan e ) : r ( sec B - Sec2e -1) 

(b-T' sec I) ) 2 : r 2 (sec2e -1) - b2-2br sece+r2 sec2e 

r sec f) = (h2+ r2)/2b 

x2-b:?+r2 Yt-Y2+r2 = 0 
-b ····-



APPENDIX C 

ALTERNATE DESIGN 

The design presented in this Appendix, and shown in 

schiomat:ic form in Figure 12, was the design which was used 

throughout most of the constru~tion of the model. A great 

deal of difficulty was encountered in attempting to impres~ 

a p os j_ tive and negative vol tape fr om the same source on the 

end terminals of a potentiometer. To prevent excessive 

loading protlems, it was found necessary to use two isolation 

ampl.j_fiers for each potentiometer. This was in addition to 

the previously required amplifier. There were too few opera

tional amplifiers available to continue with this design, so 

the design presented in the main body of this study was de

vised. 

It is believed that the design presented in this 

Appendix has certain advantages, especially in auafrant 

selection, and warrants further study. 
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APPENDIX D 

EXPERIMENTAL RESULTS 

After the model was completed, a number of sample 

problems were solved in order to check the operation and 

accuracy of the device. The numerical results of these 

test problems are presented in this appendix. 

In order to obtain the best results, all voltage~ were 

checked as accurately as possible with the available Heathkit 

and Hickock voltmeters. All bias networks were checked and 

carefully set.6 All resistors were carefully set, and all 

counters were calibrated. 

After gPneral operation of the model was checked, four 

major sets of information were obtained. Each set of infer-

mation consisted of one input LHA and Dec. The assumed 

latitude was then varied, in ten degree steps, between 0 

and 50 degrees. The following data was obtained from the 

computer. In this data tl1e A of the Model is analogous to 

the LHA set on the vertical curved lines of the T-1. The 

B of the model is analogous to the Dec. set on the horizontal 

E'It proved j_mpossible to e1iminate all drift in the bi.as 
of the Philbrick operational amplJfiers. The bias netvrnrk used 
for these amplifiers was substantia1ly affected by slight 
changes in input or feedback resistance. Future model destgn 
should incorporate bias networks which are not affected by 
input and feedback resistance changes. 



curved lines of the T-1. The Lat. is the assumed latitude 

and represents the number of degrees which the vector was 

rotated. 

Lat. 0 10 20 30 40 50 

A 154 162 165 166 169 170 
B 57 52 42 37 20 10 

A 134 140 143 145 149 149 
B 34 31 26 18 10 X 

A 122 125 125 132 134 132 
B 30 26 23 15 X X 

A 117 120 123 125 125 125 
B 27 23 17 10 X X 

In the above data, Lat. is in degrees north, A is in 

degrees LHA, and Bis in degrees Dec. Due to the limitation 

of 10 volts to B, it was not possible to take Dec. readings 

of l.ess than 10 degree~. 

It was found that B did not vary ljnearly with changes 

of LHA, and A did not vary linearly with changes of Dec. This 

non-linear relationship was obtained by measurements from Plate 

III. The existing variation of A with changes of LHA, and 

'variation of B with changes of Dec. are included as Curve Sheet 

1 • 

In order to eliminate as much random error as possible, 

the rough data above was plotted on Curve Sheets 2 and 3. A 

smooth curve was drawn for each set of information. 

The same sets of information used for computation on the 
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7 model V11ere then used for computation on the T-1. The com-

_parison between the data obtained from the T-1 and that 

obtainea from the model is included in Tables I through IV. 

Analysis of the Tables indicates that an accuracy of 

wi.thin approximately two degrees can be expected from the 

present model. Final desj.gn should have an accuracy of at 

least ± 1 minute, 1-:,ut with the components used in con

struction of this model the two degrPe error is considered 

to be well wi .. thin experimental limits. 

7It was assumed that the T-1 was accurate, although 
it had not been used for several years. 
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LAT 

10 
20 
?10 
40 
50 

LAT 

10 
20 
30 
40 
50 

TABLE I 

COMPARISON OF T-1 AND MODEL DATA 
INPUT IHA 15( DEC. 6 2 

T-1 

LHA DEC LHA 
161 52.6 16? 
165 42.0 165 
167 30.0 ] {.J7 .. , .. I 

168 20.0 168 
160 12 .0 169 

TABLE II 

COMPAJ:HSON OF' T-1 AND MODEL DATA 
INPUT LHA 13 5 DEC. 36 

T-1 

LHA DEC LHA 
140 31.0 140 
143 25.5 lY-3 
lY-5 19.0 146 
146 10.0 148, 
147· 00.0 149 

Mode1 

DEC 
51. 0 
41.0 
30.0 
19.5 
07.0 

Model 

DEC. 
31,5 
.26 .o 
20.0 
10,0 
00.0 



LAT 

10 
20 
30 
40 
50 

I.AT 

10 
20 
30 
40 
50 

TABLE III 

COMPARISON OF T ... l. AND MODEL DATA 
INPUT LHA 120·· DEC. .31 

T-1 Computer 

LHA DEC LHA 
1?5 2~ 6 ~ . 124 
127 21.0 1?8 
130 15. 0 131 
131.5 08 .o 133 
132 01.5 1.33 

T.ABLE IV 

COMPARISON OF T-1 AND MODEL DATA 
INPUT LHA 116 DEC. 27 

DEC 
26.5 
21.5 
15.5 
08. 0 
oo.o 

T-1 Computer 

LHA DEC LHA DEC 
l?O ??.O 120 23.0 
123 17.0 1?2 17.0 
125 11.0 124 10.0 
126 05 .o 125 03.0 
126 -2 125 00.0 

60 



VITA 

Earle Edsell Tyson 

Candidate for the Degree of 

Master of Science 

Thesis: AN ELECTRICAL NAVIGATION CCMPUTER 

Major Field: Electrical Engineering 

Biographical: 

Personal Data: Born near Bartow, Florida, April 17, 
1922, the son of Troy D. and Willie C. Tyson. 

Education: Attended grade school in West Allis, 
Wisconsin, Bartow, Florida, and Miami, Florida; 
Graduated from Edison High School, Miami, Florida 
in 1940. Attended University of Florida in 1940-
42. Received the Bachelor of Science degree from 
Oklahoma A & M, with a major in Military Science, 
in August, 1953; completed reauj.rements for the 
Bachelor of Science degree from Oklahoma State 
University, with a major in Electrical Engineering, 
in January, 1959, and Master of Science in May, 
1959. 

Professional experience: Entered the United States Air 
Force in 1942, and now hold the rank of Major. 
Flew as a lead navigator in the European Theater 
of War duri.ng World War II. Instructed navigation 
for a short period then was assigned as a project 
engineer for celestial and dead reckoning navi
gation eouipment at Wright Fi.eld Dayton, Ohio in 
1945 and remained there, except for an eight month 
period out of the service, until 1948. Graduated 
from Pilot School in 1949 and instructed student 
pilots until 1953. Attended Oklahoma A & M College 
in 1953, spent a three year tour of duty as Electronic 
Synthetic Instrument Trainer Officer at Furstenfeld
bruck, Germany, then returned to Oklahoma State 
University in January, 1957. 


