By
RHETT FEN-SHENG TSAO
Master of Science
Oklahoma State University
Stillwater, Oklahoma

1957

Submitted to the faculty of the Graduate School of the Oklahoma State University in partial
fulfillment of the requirements for
the degree of
MASTER OF SCIENCE
1959

MULTIVARIATE ANALYSIS OF VARIANCE FOR TWO WAY CLASSIFICATION

Thesis Approved:

ACKNOWLEDGEMENT

The writer expresses his sincere appreciation to Dr. Robert D. Morrison and Dr. Franklin A. Graybill for their assistance in the preparation of this thesis and also for suggesting the problem.

Acknowledgements are alfo due to Dr. Wayne W. Huffine, Agronomy Department, Oklahoma State University, for making available the experimental data used in Table V.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. MODEL AND NOTATION 3
III. MAXIMUM LIKELIHOOD ESTIMATES 6
IV. TESTING HYPOTHESIS 16
V. APPLICATION OF TECHNIQUES AND
ILLUSTRATIONS 24
BIBLIOGRAPHY 33

LIST OF TABLES

Table Page
I. Statistical Layout 24
II. A. O. V. for Statistical Layout in Table I 27
III. Statistical Layout II 28
IV. A. O. V. for Statistical Layout in Table III 30V. Probability Region, R, of the Computed F. Values UnderNull Hypothesis for Six Experiments 32

CHAPTER I

INTRODUCTION

The objective of this thesis is to study the multivariate analysis of variance by introducing some conventional matrix notation and to show the computation technique by using illustrations which a researcher without special mathematical training can easily follow. Most of the theory presented in this thesis has been developed, but it is hoped that this paper will make the theory easier to read and apply.

As opposed to the univariate analysis, this study is concerned with the value of n individuals each of which bears the value of p components which should be considered simultaneously. Thus, vectors are used instead of scalars. It is astumed that the errors associated with observation are independent in univariate case. In the multivariate case, the errors within a given component are assumed to be independent while the errors between components may be correlated.

This thesis will be restricted to the two way classification design having fixed effects. First, the maximum likelihood estimates of the parameters are found, then the likelihood ratio test is derived. An oversimplified illustrated example is given in order that one may
follow the computing procedures with ease. A few multivariate analyses of variance on data from the Department of Agronomy, Oklahoma State University, are given and the results are compared with results when the data were handled as in univariate cases.

CHAPTER II

MODEL AND NOTATION

Consider the two way classification model with p components having fixed effects:

$$
\begin{align*}
y_{i j k} & =\mu_{i}+\beta_{i j}+a_{i k}+e_{i j k} \\
i & =1,2, \ldots, p \\
j & =1,2, \ldots ., b \\
k & =1,2, \ldots, t
\end{align*}
$$

where
$y_{i j k}=$ observation of $i^{\text {th }}$ component in $j^{\text {th }}$ block $k^{\text {th }}$ treatment
$\mu_{i}=$ general mean of all observations in $i^{\text {th }}$ component
$\beta_{i j}=$ effect of $j^{\text {th }}$ block in $i^{\text {th }}$ component
$a_{i k}=$ effect of $k^{\text {th }}$ treatment in $i^{\text {th }}$ component
$e_{i j k}=$ random error associated with the observation $y_{i j k} \cdot$
We shall assume for every $i, i^{\prime}\left(i, i^{\prime}=1,2, \ldots, p\right) e_{i j k}$ is correlated with $e_{i!j k}$ and the covariance of $e_{i j k}$ and $e_{i!j k}$ is $\sigma_{i i} ; e_{i j k} \sim \operatorname{NID}\left(0, \sigma_{i i}\right)$ for every fixedi.

Let us introduce the following matrix notation:

$$
Y_{j k}=\left[\begin{array}{c}
y_{1 j k} \\
\vdots \\
y_{i j k} \\
\vdots \\
y_{p j k}
\end{array}\right]
$$

is a pxl vector.

is an $n \times$ matrix where $n=b t$.
Z is an $\mathrm{n} \times \mathrm{c}$ design matrix with elements either 0 or 1 where $c=1+b+t$.

$$
B=\left[\begin{array}{lllll}
\mu_{1} & \cdots & \mu_{i} & \cdots & \mu_{p} \\
\beta_{11} & \cdots & \beta_{i 1} & \cdots & \beta_{p 1} \\
\vdots & & \vdots & & \vdots \\
\beta_{1 b} & \cdots & \beta_{i b} & \cdots & \beta_{\mathrm{pb}} \\
a_{11} & \cdots & a_{i 1} & \cdots & a_{\mathrm{pl}} \\
\vdots & & \vdots & & \vdots \\
a_{1 t} & \cdots & a_{i t} & \cdots & a_{\mathrm{pt}}
\end{array}\right]
$$

is a $c \times p$ matrix.

$$
e_{j k}=\left[\begin{array}{c}
e_{1 j k} \\
\vdots \\
e_{i j k} \\
\vdots \\
e^{p j k}
\end{array}\right]
$$

is a $\mathrm{p} \times 1$ vector.

$$
e=\left[\begin{array}{c}
e_{11}^{\prime} \\
\vdots \\
e_{j k}^{\prime} \\
\vdots \\
e_{b t}^{\prime}
\end{array}\right]=\left[\begin{array}{lllll}
e_{111} & \cdots & e_{i 11} & \cdots & e_{p 11} \\
\vdots & & \vdots & & \vdots \\
e_{1 j k} & \cdots & e_{i j k} & \cdots & e_{p j k} \\
\vdots & & \vdots & & \vdots \\
e_{l b t} & \cdots & e_{i b t} & \cdots & e_{p b t}
\end{array}\right]
$$

is an $n \times p$ matrix.
Then (2.1) can be written in matrix notation as

$$
\begin{equation*}
Y=Z B+e \tag{2.2}
\end{equation*}
$$

The assumption can be rewritten as

$$
e_{j k} \sim N(\phi, V)
$$

where ϕ is a vector (or matrix) with every element equal to zero and

$$
\begin{aligned}
& \mathrm{V}=\left[\begin{array}{cccc}
\sigma_{11} & \sigma_{12} & \cdots & \sigma_{1 p} \\
\sigma_{21} & \sigma_{22} & \cdots & \sigma_{2 p} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\sigma_{p 1} & \sigma_{p 2} & \cdots & \sigma_{p p}
\end{array}\right] \\
& \operatorname{Cov}\left(e_{j k^{\prime}} e_{j^{\prime} k^{\prime}}\right)=\phi
\end{aligned}
$$

where $\mathrm{j} \neq \mathrm{j}^{\prime}$ and/or $\mathrm{k} \neq \mathrm{k}^{\prime}$.

$$
\mathrm{e} \sim \mathrm{~N}(\phi, \mathrm{~V} \otimes \mathrm{I})
$$

where $V \otimes I$ is the Kronecker product (or direct product)of $p \times p$ matrix V and $\mathrm{n} \times \mathrm{n}$ matrix I

$$
\mathrm{V} \otimes \mathrm{I}=\underset{\mathrm{pxp}}{\mathrm{~V}} \otimes\left[\begin{array}{llll}
1 & & & \\
& 1 & & \phi \\
& & \ddots & \ddots \\
& & & 1
\end{array}\right]=\left[\begin{array}{llll}
\mathrm{V} & & & \\
& \mathrm{~V} & & \phi \\
& & \ddots & \\
& \phi & & \mathrm{~V}
\end{array}\right]
$$

CHAPTER III

MAXIMUM LIKELIHOOD ESTIMATES

In model $Y=Z B+e$ we shall estimate B and V by the method of maximum likelinood.

Since

$$
f\left(e_{j k}\right)=\frac{1}{(2 \pi)^{\frac{p}{2}}|v|^{\frac{1}{2}}} \exp \cdot\left(-\frac{1}{2} e_{j k}^{\prime} v^{-1} e_{j k}\right)
$$

the likelihood function is

$$
\begin{equation*}
L=\prod_{j k}^{n} f\left(e_{j k}\right)=\frac{1}{(2 \pi)^{\frac{n p}{2}}|v|^{\frac{n}{2}}} \exp \cdot\left(-\frac{1}{2} \sum_{j k}^{n} e_{j k}^{\prime} v^{-1} e_{j k}\right) \tag{3.1}
\end{equation*}
$$

Since the exponent is scalar and a scalar is equal to its trace, we may rewrite the exponent as follows: (tr. denotes trace)

$$
\begin{aligned}
\exp . & =-\frac{1}{2} \sum_{j k}^{n} e_{j k}^{\prime} V^{-1} e_{j k} \\
& =\operatorname{tr}\left[-\frac{1}{2} \sum_{j k} e_{j k}^{\prime} V^{-1} e_{j k}\right] \\
& =-\frac{1}{2} \sum_{j k} \operatorname{tr}\left[e_{j k}^{\prime} V^{-1} e_{j k}\right] \\
& =-\frac{1}{2} \sum_{j k} \operatorname{tr}\left[e_{j k} e_{j k}^{\prime} V^{-1}\right] \\
& =-\frac{1}{2} \operatorname{tr}\left[V^{-1} \sum_{j k} e_{j k} e_{j k}^{\prime}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{2} \operatorname{tr} \mathrm{~V}^{-1} \mathrm{e}^{\prime} \mathrm{e} \\
& =-\frac{1}{2} \operatorname{tr} \mathrm{~V}^{-1}(\mathrm{Y}-\mathrm{ZB})^{\prime}(\mathrm{Y}-\mathrm{ZB}) .
\end{aligned}
$$

Therefore (3.1) may be written as

$$
\begin{equation*}
L=\frac{1}{(2 \pi)^{\frac{n p}{2}}|V|^{\frac{n}{2}}} \exp \cdot\left[-\frac{1}{2} \operatorname{tr} V^{-1}(Y-Z B)^{\prime}(Y-Z B)\right] . \tag{3.2}
\end{equation*}
$$

Using logarithms we get
(3.3) $\ln L=-\frac{n p}{2} \ln (2 \pi)+\frac{n}{2} \ln \left|V^{-1}\right|-\frac{1}{2} \operatorname{tr} V^{-1}(Y-Z B)^{\prime}(Y-Z B)$.

To find the maximum of $\ln \mathrm{L}$ we state the following definitions and lemmas.

Definition 3.1. Let X be a $p \times q$ matrix with elements $x_{i j}(i=1,2$, $\therefore \mathrm{p} ; j=1,2, \ldots, q$. The derivative of a scalar f with respect to the matrix X, which will be written as D. X will mean the $\underline{p x q \operatorname{matrix}}\left(\frac{\partial f}{\partial x_{i j}}\right)$ with $\mathrm{ij}^{\text {th }}$ element $\frac{\partial f}{\partial x_{i j}}$.

Definition 3.2. Two matrices A and B are independent if every element
in A is independent of every element in B.
Lemma 3.1. Let

$$
f=\operatorname{tr} \mathrm{AXB}
$$

where
A is n xpmatrix
X is pxqmatrix
B is qx n matrix
A and B are both independent of X, and the elements of X are independent. Then

$$
D_{X} f=D_{X}(\operatorname{tr} A X B)=(B A)^{\prime}=A^{\prime} B^{\prime}
$$

Proof: Since

$$
\begin{gathered}
\operatorname{tr} A X B=\sum_{h=1}^{n} \sum_{i=1}^{p} \sum_{j=1}^{q} a_{h i} x_{i j} b_{j h} \\
D_{X} f=\frac{\partial \operatorname{tr} A X B}{\partial x_{i j}}
\end{gathered}
$$

where

$$
\begin{aligned}
& i=1,2, \ldots, p \\
& j=1,2, \ldots, q
\end{aligned}
$$

the typical element of $\mathrm{D}_{\mathrm{X}} \mathrm{f}$ can be written as

$$
\begin{aligned}
\left\langle D_{X} f\right\rangle_{s t} & =\frac{\partial \operatorname{tr} A X B}{\partial x_{s t}}=\frac{\partial}{\partial x_{s t}} \sum_{h=1}^{n} \sum_{i=1}^{p} \sum_{j=1}^{q} a_{h i} x_{i j} b_{j h} \\
& =\sum_{h=1}^{n} a_{h s} b_{t h}=\sum_{h=1}^{n} b_{t h} a_{h s}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{s}=1,2, \ldots, \mathrm{p} \\
& \mathrm{t}=1,2, \ldots, \mathrm{q}
\end{aligned}
$$

Therefore,

$$
D_{X^{f}}=(B A)^{\prime}=A^{\prime} B^{\prime}
$$

Lemma 3.2. Let

$$
f=\operatorname{tr} A X B X^{\prime}
$$

where

A is a $\mathrm{p} x \mathrm{p}$ symmetric matrix
 X is a $p \mathrm{xq}$ matrix

Bis a qx q symmetric matrix
A and B are both independent of X and the elements in X are independent. Then

$$
D_{X} f=D_{X}(\operatorname{tr} A X B X)=2 A X B
$$

Proof:

$$
\operatorname{tr} A^{\prime} B X^{\prime}=\sum_{i=1}^{p} \sum_{j=1}^{p} \sum_{k=1}^{q} \sum_{\ell=1}^{q} a_{i j} x_{j k^{b}} b_{k l^{x}}{ }_{i \ell}
$$

The typical element of D_{X} can be written as

$$
\left(D_{X X}\right)_{s t}=\frac{\partial \operatorname{tr} A X B X^{\prime}}{\partial x_{s t}}=\frac{\partial}{\partial x_{s t}} \sum_{i}^{p} \sum_{j}^{p} \sum_{k}^{q} \sum_{l}^{q} a_{i j} x_{j k} b_{k l^{\prime}} x_{i l}
$$

where

$$
\begin{aligned}
& \mathrm{s}=1,2, \ldots, \mathrm{p} \\
& \mathrm{t}=1,2, \ldots, \mathrm{q}
\end{aligned}
$$

When we take the partial derivative of f with respect to $x_{s t}$, the terms that do not involve $x_{s t}$ will vanish. We shall find only the terms which
involve $\mathrm{x}_{\text {st }}$. That is

$$
\begin{aligned}
& \left(D_{X} f\right)_{s t}=2 a_{s s} x_{s t} b_{t t}+\sum_{i=1}^{\sum} \sum_{i \ell \neq s t} a_{i s} b_{t \ell} x_{i \ell}+\underset{j k}{\sum_{j}} \sum_{k} \sum_{s j} a_{s k} x_{j k} b_{k t} \\
& =2 a_{s s} x_{s t} b_{t t}+\sum_{i}^{\sum} \sum_{l} \sum_{l} a_{s i} x_{i \ell} b_{l t}+\underset{j}{\sum} \underset{j k \neq s t}{\sum_{k}} a_{s j} x_{j k} b_{k t} \\
& =2 a_{s s} x_{s t} b_{t t}+2 \sum_{j}^{\sum k \neq s t} \underset{k j}{\sum a_{s j}} x_{j k} b_{k t} \\
& =\underset{j}{2 \sum} \sum_{k} a_{s j} x_{j k} b_{k t}
\end{aligned}
$$

Therefore,

$$
D_{X} f=2 A X B
$$

Lemma 3. 3. Let

$$
f=\frac{n}{2} \ln |R|-\frac{1}{2} \operatorname{tr} A R A^{\prime}
$$

where
R is a $p \times p$ nonsingular symmetric matrix
A is ann n pmatrix
nis a scalar constant
A is independent of R

$$
\text { then } D_{R^{f}}=\phi \text { implies } R^{-1}=\frac{1}{n} A^{\prime} A \text {. }
$$

Proof: : Let r_{ss} be the $\mathrm{s}^{\text {th }}$ diagonal element in R.

$$
\begin{aligned}
\frac{\partial f}{\partial r_{s s}} & =\frac{n}{2} \frac{1}{|R|} \frac{\partial}{\partial r_{s s}}|R|-\frac{1}{2} \frac{\partial}{\partial r_{s s}} \sum_{h i}^{n} \sum_{j}^{n} \sum_{h i} r_{i j} a_{h i} \\
& =\frac{n}{2} \frac{1}{|R|} R_{s s}-\frac{1}{2} \cdot \sum_{h=1}^{n} a_{h s}^{2}
\end{aligned}
$$

where $R_{i j}$ is the cofactor of $r_{i j}$ in R.
Let $r_{\text {st }}$ be the $s t^{\text {th }}$ element in R and $s \neq t$. By symmetry,

$$
\begin{aligned}
& \frac{\partial f}{\partial r_{s t}}=\frac{n}{2} \frac{1}{|R|} 2 R_{s t}-\frac{1}{2} 2 \sum_{h=1}^{n} a_{h s} a_{h t} \\
& \frac{\partial f}{\partial r_{s s}}=0 \text { implies } \frac{\partial f}{\partial r_{s s}}=n \frac{1}{|R|} R_{s s}-\sum_{h=1}^{n} a_{h s}^{2} \\
& \frac{\partial f}{\partial r_{s t}}=0 \text { implies } \frac{\partial f}{\partial r_{s t}}=n \frac{1}{|R|} R_{s t}-\sum_{h=1}^{n} a_{h s} a_{h t}
\end{aligned}
$$

These two partials when set equal to zero may be written in. matrix form as

$$
D_{R} f=n \frac{1}{|R|} \text { Adjoint } R-A^{\prime} A=\phi
$$

Therefore

$$
\begin{aligned}
& n R^{-1}=A^{\prime} A \\
& R^{-1}=\frac{1}{n} A^{\prime} A
\end{aligned}
$$

The maximum likelihood estimates of B and V are the solutions to the following equations:

$$
\begin{equation*}
\frac{\partial \ln L}{\partial b_{i, j}}=0 \tag{3.4}
\end{equation*}
$$

where $b_{i j}$ is $i j^{\text {th }}$ element of B and $i=1,2, \ldots, c ; j=1,2, \ldots, \ldots$;

$$
\begin{equation*}
\frac{\partial \ln \mathrm{L}}{\partial \sigma_{\mathrm{hk}}}=0 \tag{3.5}
\end{equation*}
$$

where $\dot{\sigma}_{h k}$ is $h k^{\text {th }}$ element of V and $h, k=1,2, \ldots$,
(3.4) and (3.5) can be summarized in matrix form as:

$$
\begin{equation*}
D_{B}(\ln L)=\phi \tag{3.6}
\end{equation*}
$$

$$
\begin{equation*}
D_{V}(\ln L)=\phi \tag{3.7}
\end{equation*}
$$

and denote B in (3.6) by $\widetilde{\mathrm{B}}$.

$$
\begin{aligned}
& \text { From (3. 3) } \\
& \begin{aligned}
D_{B}(\ln L) & =-D_{B}\left[\frac{1}{2} \operatorname{tr} V^{-1}(Y-Z B)^{\prime}(Y-Z B)\right] \\
& =-\frac{1}{2} D_{B}\left[\operatorname{tr} V^{-1} Y^{\prime} Y-2 \operatorname{tr} V^{-1} Y^{\prime} Z B+\operatorname{tr} V^{-1} B^{\prime} Z^{\prime} Z B\right] \\
& =D_{B}\left(\operatorname{tr} V^{-1} Y^{\prime} Z B\right)-\frac{1}{2} D_{B}\left(\operatorname{tr} V^{-1} B^{\prime} Z^{\prime} Z B\right) \\
& =D_{B}\left(\operatorname{tr} Y^{\prime} Z B V^{-1}\right)-\frac{1}{2} D_{B}\left(Z^{\prime} Z B V^{-1} B^{\prime}\right)
\end{aligned}
\end{aligned}
$$

Applying the lemmas (2.1) and (2.2) we have

$$
D_{B}(\ln L)=Z^{\prime} Y V^{-1}-Z^{t} Z \widetilde{B V}^{-1}=\phi
$$

$$
\left(Z^{\prime} Y-Z^{\prime} Z \widetilde{B}\right) V^{-1}=\phi
$$

since V^{-1} is positive definite

$$
Z^{\prime} Y-Z^{\prime} Z \widetilde{B}=\phi .
$$

Therefore,

$$
\begin{equation*}
Z^{\prime} Z \widetilde{B}=Z^{\prime} Y \tag{3.8}
\end{equation*}
$$

From the structure of the Z matrix we find that $Z^{\prime} Z$ is $c \times c$ matrix of rank c - 2 , i.e., there are exactly c - 2 linearly independent rows in $Z^{\prime} Z$. Since the rank of $Z^{\prime} Z$ is equal to the rank of $Z^{\prime} Z$ augumented by, $Z^{\prime} \mathrm{Y}$, there are infinitely many $\widetilde{\mathrm{B}}$ which will satisfy (3.8).

Now we shall make the restrictions:

$$
\underset{j=1}{\mathrm{~b}} \beta_{j}=\left[\begin{array}{l}
\beta_{11} \\
\vdots \\
\beta_{i 1} \\
\vdots \\
\beta_{p 1}
\end{array}\right]+\left[\begin{array}{l}
\beta_{12} \\
\vdots \\
\beta_{i 2} \\
\vdots \\
\beta_{p 2}
\end{array}\right]+\ldots+\left[\begin{array}{l}
\beta_{1 b} \\
\vdots \\
\beta_{i b} \\
\vdots \\
\beta_{p b}
\end{array}\right]=\phi
$$

and

$$
\underset{k=1}{t} a_{k}\left[\begin{array}{l}
a_{11} \\
\vdots \\
a_{i 1} \\
\vdots \\
a_{p 1}
\end{array}\right]+\left[\begin{array}{l}
a_{12} \\
\vdots \\
a_{i 2} \\
\vdots \\
a_{p 2}
\end{array}\right]+\ldots+\left[\begin{array}{l}
a_{1 t} \\
\vdots \\
a_{i t} \\
\vdots \\
a_{p t}
\end{array}\right]=\phi
$$

These two sets of restrictions require the sum of block effects
and the sum of treatment effects within each component to be equal to 0 . If we let
and B be the parameter matrix as defined in Chapter $I I$, the set of restrictions in $\alpha_{i}{ }^{\prime} s$ and $\beta_{i}{ }^{\prime}$ s can be written in matrix form as

$$
\begin{equation*}
W B=\phi \tag{3.9}
\end{equation*}
$$

Combining (3.8) and (3.9), we can find the matrix \hat{B}, which will satisfy the following matrix equation

$$
\left[\begin{array}{c}
Z^{\prime} Z \\
W
\end{array}\right] \hat{B}=\left[\begin{array}{c}
Z^{\prime} Y \\
\phi
\end{array}\right]
$$

Therefore, \widehat{B} is then the maximum likelihood estimate of B under the restriction $W B=\phi . \quad \hat{B}$ is uniquely determined since $\left[\begin{array}{c}Z^{\prime} Z \\ W\end{array}\right]$ is full rank.

Now let us find the maximum likelihood estimate of V. Due to the invariant properties of maximum likelihood estimates, the maximum of $\ln \mathrm{L}$ in (3.1) with respect to V is equal to the maximum of $\ln L$ with respect to V^{-1} and the maximizing value of V is the inverse of the maxi. mizing value of V^{-1}. We shall first find $D_{V}-1(\ln L)$. From (3.3)

$$
\begin{aligned}
\mathrm{D}_{\mathrm{V}^{-1}}(\ln \mathrm{~L}) & =\mathrm{D}_{\mathrm{V}^{-1}}\left[\frac{\mathrm{n}}{2} \ln \left|\mathrm{~V}^{-1}\right|-\frac{1}{2} \operatorname{tr} \mathrm{~V}^{-1}(\mathrm{Y}-\mathrm{ZB})^{\prime}(\mathrm{Y}-\mathrm{ZB})\right] \\
& =\mathrm{D}_{\mathrm{V}^{-1}}\left[\frac{\mathrm{n}}{2} \ln \left|\mathrm{~V}^{-1}\right|-\frac{1}{2} \operatorname{tr}(\mathrm{Y}-\mathrm{ZB}) \mathrm{V}^{-1}(\mathrm{Y}-\mathrm{ZB})^{\prime}\right] .
\end{aligned}
$$

By applying lemma (3, 3) we have

$$
\begin{gathered}
D_{V^{-1}}(\ln L)=\frac{n}{2}\left(\hat{Y}^{-1}\right)^{-1}-\frac{1}{2}(Y-Z B)^{\prime}(Y-Z B)=\phi \\
\hat{V}^{-1}=n\left[(Y-Z B)^{\prime}(Y-Z B)\right]^{-1}
\end{gathered}
$$

where $\hat{\mathrm{V}}^{-1}$ is the maximum likelihood of V^{-1}. Therefore, the maximum likelihood of V is

$$
\hat{V}=\frac{1}{n}(Y-Z B)^{\prime}(Y-Z B)
$$

By the invariant property of maximum likelihood estimates

$$
\begin{equation*}
\hat{V}=\frac{1}{n}(Y-Z \hat{B})^{\prime}(Y-Z \hat{B}) \tag{3.10}
\end{equation*}
$$

CHAPTER IV

TESTING HYPOTHESIS

To test the hypothesis that treatment effects are equal we shall partition matrices B and Z in the following manner:

$$
B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]
$$

where

$$
\begin{aligned}
\mathrm{B}_{1} \\
(\mathrm{~b}+1) \times \mathrm{p}
\end{aligned}=\left[\begin{array}{lll}
\mu_{1} & \cdots & \mu_{p} \\
\beta_{11} & \cdots & \beta_{\mathrm{p} 1} \\
\cdot & & \cdot \\
\cdot & & \ddots \\
\cdot & & \cdot \\
\beta_{1 b} & \cdots & \beta_{\mathrm{pb}}
\end{array}\right]
$$

and $Z=\left(Z_{1} Z_{2}\right)$ such that the multiplications of $Z_{1} B_{1}$ and $Z_{2} B_{2}$ are
defined.

Then the model $Y=X B *$ e can be written as

$$
\begin{aligned}
Y & =\left(Z_{1}, Z_{2}\right)\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]+e \\
& =Z_{1} B_{1}+Z_{2} B_{2}+e
\end{aligned}
$$

In order to test that the treatment effects are equal, one may make an equivalent test, $H_{0}: B_{2}=\phi$. This test is set up as follows. Let the parameter space be Ω and the parameter space under the null hypothesis be ω; and where $\dot{\Omega}$ is defined on $p(2 c+p+1) / 2$ dimensional space $E_{p(2 c+p+1) / 2, ~ a n d ~}$
i) V is positive definite,
ii) the elements in B_{1} and B_{2} range from $-\infty$ to ∞,
iii) $\sum_{j=1}^{\Sigma} \beta_{j}=\phi$ and $\sum_{k=1} a_{k}=\phi$.
ω is defined on $p(2 b+p+3) / 2$ dimensional space, $E_{p(2 b+p+3) / 2,}$ where
i) $\quad V$ is positive definite
ii) the elements in B_{1} range from $-\infty$ to ∞,
iii) $\mathrm{B}_{2}=\phi$,
iv) $\sum_{j=1} \beta_{j}=\phi$.

Let $\hat{\Omega}$ be the point in $E_{p(2 c+p+1) / 2}$ (i.e., the particular set of values of V_{1}, B_{1}, B_{2} in Ω) such that $L(\Omega)$ will be maximum and denote
this maximum value by $L(\hat{\Omega})$.
Let $\hat{\omega}$ be the point in $E_{p(2 b+p+3) / 2}$ (i. e., the particular set of values of V_{1} and B_{1} in ω) such that $L(\omega)$ will be the maximum and denote this maximum value by $L(\hat{\omega})$. The test criterion is

$$
\begin{equation*}
L=\frac{L(\hat{\omega})}{L(\widehat{\Omega})} . \tag{4.2}
\end{equation*}
$$

Now we have to find $L(\hat{\Omega})$ and $L(\hat{\omega})$. From (3.2) and the invariant property of maximum, likelihood estimates, we have

From (3.10)

$$
L(\hat{\Omega})=\frac{1}{(2 \pi)^{\frac{n p}{2}}|\hat{V}|^{\frac{n}{2}}} \exp \left[-\frac{1}{2} \operatorname{tr} \hat{V}^{-1}(Y-Z \hat{B})^{\prime}(Y-Z \hat{B})\right]
$$

$$
\hat{\mathrm{V}}=\frac{1}{\mathrm{n}}(\mathrm{Y}-\mathrm{Z} \hat{\mathrm{~B}})^{\prime}(\mathrm{Y}-\mathrm{Z} \hat{\mathrm{~B}}) .
$$

We have

$$
\begin{aligned}
L(\hat{\Omega}) & =\frac{\exp \cdot\left[-\frac{1}{2} \operatorname{tr}\left\{n\left[(Y-Z \hat{B})^{\prime}(Y-Z \hat{B})\right]^{-1}\left[(Y-Z \hat{B})^{\prime}(Y-Z \hat{B})\right]\right\}\right]}{(2 \pi)^{\frac{n p}{2}}-\left[\left.\frac{1}{n}\left|(Y-Z \hat{B})^{\prime}(Y-Z \hat{B})\right|\right|^{\frac{n}{2}}\right.} \\
& =(2 \pi)^{-\frac{n p}{2}} \frac{1}{n}\left|(Y-Z \hat{B})^{\prime}(Y-Z \hat{B})\right|^{-\frac{n}{2}} \exp \cdot\left[-\frac{1}{2} \operatorname{tr}(n I)\right] .
\end{aligned}
$$

Since I is $p \times p$ identity matrix, then
(4. 3)

$$
L(\hat{\Omega})=(2 \pi)^{-\frac{n p}{2}}-\left[\frac{1}{n}\left|(Y-\hat{Z} \hat{B})^{\prime}(Y-Z \hat{B})\right|\right]^{-\frac{n}{2}} \exp \cdot-\frac{1}{2} n p .
$$

When $B_{2}=\phi$ in parameter space ω, the model in (4.1) can be reduced to

$$
\begin{equation*}
Y=Z_{1} B_{1}+e . \tag{4.4}
\end{equation*}
$$

The likelihood function of reduced model is
(4.5)

$$
L(\omega)=\frac{1}{(2 \pi)^{\frac{n p}{2}}\left|V_{\omega}\right|^{\frac{n}{2}}} \exp \cdot\left[-\frac{1}{2} \operatorname{tr} V_{\omega}^{-1}\left(Y-Z_{1} B_{1}\right)^{\prime}\left(Y-Z_{1} B_{1}\right)\right] .
$$

By the same token we used to find \widehat{B} and \hat{V} in $L(\hat{\Omega})$, we obtain

$$
\begin{equation*}
Z_{1}^{\prime} Z_{1} \hat{B}_{\omega}^{\prime}=Z_{1}^{\prime Y} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mathrm{v}}_{\omega}=\frac{1}{n}\left(\mathrm{Y}-\mathrm{Z}_{1} \hat{B}_{\omega}\right)^{\prime}\left(\mathrm{Y}-\mathrm{Z}_{1} \hat{B}_{\omega}\right) \tag{4.7}
\end{equation*}
$$

where \widehat{B}_{ω} and \widehat{V}_{ω} are the maximum Iikelihood estimates of B_{1} and V_{ω} respectively, under the restriction

$$
\sum_{j=1}^{t} \beta_{j}=\phi .
$$

Therefore,

$$
L(\hat{\omega})=\frac{1}{(2 \pi)^{\frac{n p}{2}}\left|\hat{\mathrm{~V}}_{\omega}\right|^{\frac{n}{2}}} \text { exp. }\left[-\frac{1}{2} \operatorname{tr} \hat{\mathrm{~V}}_{\omega}^{-1}\left(\mathrm{Y}-\mathrm{Z}_{1} \hat{B}_{\omega}\right)^{\prime}\left(\mathrm{Y}-\mathrm{Z}_{1} \hat{B}_{\omega}\right)\right]
$$

$$
\begin{align*}
& =\frac{\exp \cdot\left[-\frac{1}{2} \operatorname{tr}\left\{n \cdot\left[\left(Y-Z_{1} \hat{B}_{\omega}\right)^{\prime}\left(Y-Z_{1} \hat{B}_{\omega}\right)\right]^{-1}\left[\left(Y-Z_{1} \hat{B}_{\omega}\right)^{\prime}\left(Y-Z_{1} \hat{B}_{\omega}\right)\right]\right\}-\right.}{(2 \pi)^{\frac{n p}{2}}\left[\frac{1}{n}\left|\left(Y-Z_{1} \hat{B}_{\omega}\right)^{\prime}\left(Y-Z_{1} \hat{B}_{\omega}\right)\right|\right]^{\frac{n}{2}}} \\
& \text { i) } L(\omega)=(2 \pi)^{-\frac{n p}{2}}\left[\left.-\frac{1}{n} \right\rvert\,\left(Y-Z_{1} \hat{B}_{\omega}\right)^{\prime}\left(Y-Z_{1} \hat{B}_{\omega}\right)\right]^{-\frac{n}{2}} \exp \cdot-\frac{1}{2} n p \cdot \tag{4.8}
\end{align*}
$$

By substituting (4.3) and (4.8) in (4.2) we obtain the likelihood ratio test criterion
(4.9)

$$
\begin{gathered}
L=\frac{(2 \pi)^{-\frac{n p}{2}}-\left[\frac{1}{n}\left|\left(Y-Z_{1} \hat{B}_{\omega}\right)^{\prime}\left(Y-Z_{1} \hat{B}_{\omega}\right)\right|\right]^{-\frac{n}{2}} \exp \cdot-\frac{n p}{2}}{(2 \pi)^{-\frac{n p}{2}}\left[\left.\frac{1}{n} \right\rvert\,(Y-Z \hat{B})^{\prime}(Y-Z \hat{B})\right]^{-\frac{n}{2}} \exp \cdot-\frac{n p}{2}} \\
L=\left[\frac{\left|(Y-Z \hat{B})^{\prime}(Y-Z \hat{B})\right|}{\mid\left(Y-Z_{1} \hat{B}_{\omega}\right)^{\prime}\left(Y-Z_{1} \hat{B}_{\omega}\right)}\right]^{\frac{n}{2}}=\lambda^{\frac{n}{2}}
\end{gathered}
$$

where

$$
\lambda=\frac{\left|(Y-Z \hat{B})^{\prime}(Y-Z \hat{B})\right|}{\left|\left(Y-Z_{1} \hat{B}_{\omega}\right)^{\prime}\left(Y-Z_{1} \hat{B}_{\omega}\right)\right|}
$$

Remembering $Z^{\prime} Z \hat{B}=Z^{\prime} Y$, let us evaluate the quantities inside these two determinants of λ :

$$
\begin{aligned}
\left(Y^{\prime}-Z \hat{B}\right)^{\prime}(Y-Z \hat{B}) & =Y^{\prime} Y-\hat{B^{\prime}} Z^{\prime} Y-Y^{\prime} Z \hat{B}+\hat{B}^{\prime} Z^{\prime} Z \hat{B} \\
& =Y^{\prime} Y-\hat{B}^{\prime} Z^{\prime} Y \\
& =Q_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(Y-Z_{1} \hat{B}_{\omega}\right)^{\prime}\left(Y-Z_{1} \hat{B}_{\omega}\right)= & {\left[(Y-Z \hat{B})+\left(Z \hat{B}-Z_{1} \hat{B}_{\omega}\right)\right]^{\prime}\left[(Y-Z \hat{B})+\left(Z \widehat{B}-Z_{1} \widehat{B}_{\omega}\right)\right] } \\
= & (Y-Z \hat{B})^{\prime}(Y-Z \hat{B})+\left(Z \hat{B}-Z_{1} \hat{B}_{\omega}\right)^{\prime}(Y-Z \hat{B}) \\
& +(Y-Z \hat{B})^{\prime}\left(Z \hat{B}-Z_{1} \hat{B}_{\omega}\right)+\left(Z \hat{B}-Z_{1} \hat{B}_{\omega}\right)^{\prime}\left(Z \hat{B}-Z_{1} \hat{B}_{\omega}\right)
\end{aligned}
$$

Applying (3.8) and (4.6) we evaluate the above equation term by term:
(a)

$$
(Y-Z \hat{B})^{\prime}(Y-Z \hat{B})=Q_{I}
$$

(b)

$$
\begin{aligned}
\left(Z \hat{B}-Z_{1} \hat{B}_{-}\right)^{\prime}(Y-Z \hat{B}) & =\hat{B}^{\prime \prime} Z(Y-Z \hat{B})-\hat{B}_{\omega}^{\prime} Z_{1}^{\prime} Y+\hat{B}_{\omega}^{\prime} Z_{1}^{\prime} Z \hat{B} \\
& =\hat{B}^{\prime} Z^{\prime} Y-\hat{B}^{\prime} Z^{\prime} Z \hat{B}-\hat{B}_{\omega}^{\prime} Z_{1}^{\prime} Y+\hat{B}_{\omega}^{\prime} Z_{I}^{\prime} Z \hat{B} \\
& =\hat{B}_{\omega}^{\prime} Z_{1}^{\prime} Z \hat{B}-\hat{B}_{\omega}^{\prime} Z_{1}^{\prime Y}
\end{aligned}
$$

(c)

$$
\begin{aligned}
(Y-Z \hat{B})^{\prime}\left(Z \hat{B}-Z_{1} \hat{B}_{\omega}\right) & =(Y-Z \hat{B})^{\prime} Z \hat{B}-Y^{\prime} Z_{1} \hat{B}_{\omega}+\hat{B}^{\prime} Z^{\prime} Z_{1} \hat{B}_{\omega} \\
& =\hat{B}^{\prime} Z^{\prime} Z_{1} \hat{B}_{\omega}-Y^{\prime} Z_{1} \hat{B}_{\omega}
\end{aligned}
$$

$$
\begin{align*}
\left(Z \hat{B}-Z_{1} \hat{B}_{\omega}\right)^{\prime}\left(Z \hat{B}-Z_{1} \hat{B}_{\omega}\right) & =\hat{B}^{\prime} Z^{\prime} Z B-\hat{B}_{\omega}^{\prime} Z_{1}^{\prime} Z \hat{B}-\hat{B}^{\prime} Z^{\prime} Z_{1} \hat{B}_{\omega}+\hat{B}_{\omega}^{\prime} Z_{1}^{\prime} Z_{1} \hat{B}_{\omega} \tag{d}\\
& =\hat{B}^{\prime} Z^{\prime} Y-\hat{B}_{\omega}^{\prime} Z_{1}^{\prime} Z \hat{B}-\hat{B}^{\prime} Z^{\prime} Z_{1} \hat{B}_{\omega}+Y^{\prime} Z_{1} \hat{B}_{\omega}
\end{align*}
$$

Combining the results of (a), (b), (c), and (d), we have

$$
\begin{aligned}
\left(Y-Z_{1} \hat{B}_{\omega}\right)^{\prime}\left(Y-Z_{1} \hat{B}_{\omega}\right) & =Q_{1}+\hat{B}^{\prime} Z^{\prime} Y-\hat{B}_{\omega}^{\prime} Z_{1}^{\prime} Y \\
& =Q_{1}+Q_{2}
\end{aligned}
$$

where

$$
Q_{2}=\widehat{B}^{t} Z^{I} Y-\widehat{B}_{\omega}^{r} Z_{I}^{\prime} Y
$$

Thus

$$
\begin{equation*}
\lambda=\frac{\left|Q_{1}\right|}{\left|Q_{1}+Q_{2}\right|} \tag{4.10}
\end{equation*}
$$

We observe from (4.9) that L is a monotonic function of λ. From this fact, we see that λ can be used as a test function to test the hypothesis. $\mathrm{H}_{0}: \mathrm{B}_{2}=\phi$.

Under the null hypothesis, λ is distributed as $U\left(p, f_{1}, f_{2}\right)$ where f_{1} is the degrees of freedom of treatments, $(t-1)$; and f_{2} is the degrees of freedom of error, $(t-1)(b-1) .{ }^{1}$

To test H_{o}, one rejects the null hypothesis at a probability level if $\lambda>\lambda_{0}$ where λ_{0} is a number such that

$$
\begin{equation*}
\int_{\lambda_{0}}^{\infty} f\left(U ; p, f_{1}, f_{2}\right) d U=a \tag{4.11}
\end{equation*}
$$

Thus, it is desirable to know the distribution of U in order to evaluate the integral in (4.11). In general, this distribution can only be indicated as integrals. However, when $p=1$ and $p=2$, the distribution of U can be transformed to the Snedecor F as follows:

$$
\begin{equation*}
\frac{f_{2}}{f_{1}} \cdot \frac{1-U_{1}, f_{1}, f_{2}}{U_{1, f_{1}}, f_{2}}=F_{f_{1}, f_{2}} \tag{4.12}
\end{equation*}
$$

${ }^{\text {I }}$ See Bibliography [1] and [3].
(4.13) $\quad \frac{f_{2}-1}{f_{1}} \cdot \frac{1-\sqrt{U_{2, f}, f_{2}}}{\sqrt{U_{2, f_{1}}, f_{2}}}=F_{2 f_{1}, 2\left(f_{2}-1\right)}$.

In these cases tabulated F can be used.

CHAPTER V

APPLICATION OF TECHNIQUES AND ILLUSTRATIONS

We shall now consider the technique of analysis which may be used to the best advantage when the model in (1.1) is assumed for the design.

Consider the statistical layout shown in Table I for a two way classification design with b blocks, t treatments, and p components.

TABLE I

STATISTICAL LAYOUT I

$$
\begin{aligned}
& \text { Treatment }
\end{aligned}
$$

where

$$
\begin{aligned}
& \underset{p x 1}{ }{ }_{j k}=\left[\begin{array}{c}
Y_{1 j k} \\
\vdots \\
Y_{i j k} \\
\vdots \\
Y_{p j k}
\end{array}\right] \\
& Y_{j \bullet}=\sum_{k=1}^{t} Y_{j k} \\
& Y_{\cdot k}=\sum_{j=1}^{b} Y_{j k} \\
& Y^{\ldots}=\sum_{j=1}^{b} \sum_{k=1}^{t} Y_{j k}
\end{aligned}
$$

or

$$
=\sum_{j=1}^{b} Y_{j} .
$$

or

$$
=\sum_{k=1}^{t} Y \cdot k
$$

Let

$$
\begin{aligned}
& Y_{n \times p}=\left(Y_{11} \cdot \ldots Y_{j k} \ldots \cdot Y_{b t}\right)^{\prime} \\
& Y_{a}=\left(Y_{\cdot 1} \cdot Y_{\cdot k} \cdot Y_{\cdot t}\right)^{\prime} \\
& Y_{\beta}=\left(Y_{1} \cdot \ldots \cdot Y_{j} \cdot \cdots \cdot Y_{b}\right)^{\prime} \\
& n X_{p}
\end{aligned}
$$

Compute the following quantities

$$
\begin{aligned}
& \text { t } \\
& \underset{\mathrm{p}}{\mathrm{Y} \times \mathrm{p}} \mathrm{Y}_{\mathrm{a}}=\mathrm{K}_{\mathrm{k}}^{\mathrm{Y}} \cdot \mathrm{k} \mathrm{Y}^{\mathbf{\prime}} \cdot \mathrm{k} \\
& \text { b } \\
& \underset{\operatorname{pxp}}{Y_{\beta}^{\prime} Y_{\beta}}=\underset{j}{\Sigma} Y_{j} \cdot Y_{j}^{\prime} .
\end{aligned}
$$

Reduction due to mean is

$$
\frac{1}{b t}(Y \ldots)^{\prime}(Y \ldots)^{\prime}
$$

Reduction due to blocks is

$$
\frac{1}{t}\left(Y_{\beta}^{\prime} Y_{\beta}\right)-\frac{1}{b t}(Y \ldots)(Y \ldots)^{\prime}
$$

Reduction due to treatments (adjusted) is

$$
Q_{2}=\frac{1}{b}\left(Y_{a}^{\prime} Y_{a}\right)-\frac{1}{b t}(Y \ldots)^{\prime}(Y \ldots)^{\prime}
$$

The error sum of squares is

$$
Q_{1}=Y^{\prime} Y-\frac{I}{t}\left(Y_{\beta}^{\prime} Y_{\beta}\right)-\frac{1}{b}\left(Y_{a}^{\prime} Y_{a}\right)+\frac{1}{b t}(Y \ldots)^{\prime}(Y \ldots)^{\prime}
$$

These quantities can be put into an analysis of variance (A. O. V.) table.

TABLE II

A.O.V. FOR STATISTICAL LAYOUT IN TABLE I

Source	d.f.	S.S.	Test
Total	$\mathrm{n}=\mathrm{bt}$	$Y^{\prime} Y$	
Mean	1	$\frac{1}{b t}(Y \ldots)^{\prime}(Y \ldots)^{\prime}$	
Blocks	b-1	$\frac{1}{t}\left(Y_{\beta}^{\prime} Y_{\beta}\right)-\frac{1}{b t}\left(Y_{\ldots}\right)\left(Y_{\ldots}\right)$	
Treatments (adj)	$t-1$	Q_{2}	$U=\frac{\left\|Q_{1}\right\|}{\left\|Q_{1}+Q_{2}\right\|}$
Error	$(\mathrm{b}-1)(\mathrm{t}-1)$	Q_{1}	

For an artificial numerical example, $\operatorname{let} p=2, b=2, t=3$, consider the following statistical layout:

TABLE III
STATISTICAL LAYOUT II
Treatment

	1	2	3	Sum	
	1	1	2	3	6
	2	1	1	2	5
		4	2	1	4
		2	3	9	

H_{o} :

$$
B_{2}=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right]=\phi
$$

We shall compute the following quantities::

$$
Y^{\prime} Y=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 2 & 1 \\
2 & 1 & 2 & 4 & 2 & 3
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 2 \\
1 & 4 \\
2 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{ll}
20 & 21 \\
21 & 38
\end{array}\right]
$$

$$
\left.\begin{array}{c}
Y_{a}^{\prime} Y_{a}=\left[\begin{array}{lll}
2 & 4 & 4 \\
6 & 3 & 5
\end{array}\right]\left[\begin{array}{ll}
2 & 6 \\
4 & 3 \\
4 & 5
\end{array}\right]=\left[\begin{array}{ll}
36 & 44 \\
44 & 70
\end{array}\right] \\
Y_{\beta}^{\prime} Y_{\beta}=\left[\begin{array}{ll}
6 & 4 \\
5 & 9
\end{array}\right]\left[\begin{array}{ll}
6 & 5 \\
4 & 9
\end{array}\right]=\left[\begin{array}{ll}
52 & 66 \\
66 & 106
\end{array}\right] \\
\left(Y_{\ldots}, Y^{\prime} . Y^{\prime}=\left[\begin{array}{l}
10 \\
14
\end{array}\right] \quad[10\right.
\end{array}\right]=\left[\begin{array}{ll}
100 & 140 \\
140 & 196
\end{array}\right]
$$

Reduction due to mean is

$$
\frac{1}{6}\left[\begin{array}{ll}
100 & 140 \\
140 & 196
\end{array}\right]
$$

Reduction due to blocks is

$$
\frac{1}{3}\left[\begin{array}{cc}
52 & 66 \\
66 & 106
\end{array}\right]-\frac{1}{6}\left[\begin{array}{cc}
100 & 140 \\
140 & 196
\end{array}\right]=\frac{1}{6}\left[\begin{array}{cc}
4 & -8 \\
-8 & 16
\end{array}\right]
$$

Reduction due to treatments (adjusted) is

$$
\frac{1}{2}\left[\begin{array}{cc}
36 & 44 \\
44 & 70
\end{array}\right]-\frac{1}{6}\left[\begin{array}{cc}
100 & 140 \\
140 & 196
\end{array}\right]=\frac{1}{6}\left[\begin{array}{cc}
8 & -8 \\
-8 & 14
\end{array}\right]
$$

The error sum of squares is

$$
\left[\begin{array}{ll}
20 & 21 \\
21 & 38
\end{array}\right]-\frac{1}{3}\left[\begin{array}{ll}
52 & 66 \\
66 & 106
\end{array}\right]-\frac{1}{2}\left[\begin{array}{ll}
36 & 44 \\
44 & 70
\end{array}\right]+\frac{1}{6}\left[\begin{array}{cc}
100 & 140 \\
140 & 196
\end{array}\right]=\frac{1}{6}\left[\begin{array}{ll}
8 & 2 \\
2 & 2
\end{array}\right]
$$

The results of this particular layout are summarized in Table IV as below:

TABLE IV
A.O.V. FOR STATISTICAL LAYOUT IN TABLE III

Source	d.f.	S.S.	Test
Total	6	$\left[\begin{array}{ll}20 & 21 \\ 21 & 38\end{array}\right]$	
Mean	1	$\frac{1}{6}\left[\begin{array}{ll}100 & 140 \\ 140 & 196\end{array}\right]$	
Blocks	1	$\frac{1}{6}\left[\begin{array}{cc}\because 4 & -8 \\ -8 & 16\end{array}\right]$	
Treatments (adj)	2	$\frac{1}{6}\left[\begin{array}{cc}8 & -8 \\ -8 & 14\end{array}\right]$	$\mathrm{U}=.0545$
Error	2	$\frac{1}{6}\left[\begin{array}{ll}8 & 2 \\ 2 & 2\end{array}\right]$	

$$
U=\frac{\frac{1}{6}\left|\begin{array}{ll}
8 & 2 \\
2 & 2
\end{array}\right|}{\left\lvert\, \frac{1}{6}\left[\begin{array}{ll}
8 & 2 \\
2 & 2
\end{array}\right]+\frac{1}{6}\left[\begin{array}{cc}
8 & -8 \\
-8 & 14
\end{array}| |\right.\right.}=\frac{\left|\begin{array}{cc}
8 & 2 \\
2 & 2
\end{array}\right|}{\left|\begin{array}{cc}
16 & -6 \\
-6 & 16
\end{array}\right|}=\frac{12}{220}=.0545
$$

This result is to be compared with the significance point for $U_{2,2,} 2^{\text {. }}$ Using (4.13), we can transform it into F, i. e.,

$$
\frac{2-1}{2} \cdot \frac{1-\sqrt{.0545}}{\sqrt{.0545}}=1.6413
$$

is to be compared with the significance point of $.05{ }^{F_{4,2}}=19.25$. This is not significant at the 5% level. We do not reject the $H_{0}: B_{2}=\phi$. Data from six experiments were obtained from the Department of Agronomy, Oklahoma State University, and the analyses of variance were computed for each year separately as a univariate case. Each experiment was then combined over two years and analyzed as the multivariate case in which the two components were years. Table V below shows the comparison among the probability levels of computed F values under the null hypothesis for each of the analyses.

TABLE V
PROBABILITY REGION, R, OF THE COMPUTED F VALUES UNDER THE NULL HYPOTHESIS FOR SIX EXPERIMENTS

BIBLIOGRAPHY

[1] Anderson, T. W. An Introduction to Multivariate Statistical Analysis. New York: John Wiley and Sons, Inc., 1957
[2] Graybill, Franklin A. General Linear Hypothesis Theory. Unpublished Notes, 1959.
[3] Wilks, S. S. Mathematical Statistics. Princeton University Press, Princeton, New Jersey, 1944.

VITA

Rhett Fen - sheng Tsao candidate for the degree of Master of Science

Thesis: MULTIVARIATE ANALYSIS OF VARIANCE FOR TWO WAY CLASSIFICATION

Major: Mathematice
Minor: Statistics

Biographical and Other Items:
Bown: May 9, 1933 at Foochow, China
Undergraduate Study: Received the degree of Bachelor of Arte in Economics from National Taiwan University, Tapei, Taiwan, China, 1954.

Graduate Study: Recelved the degree of Masters in Eeono mice from Oklahome State University, Stalwater, Oklahome, 1957. Oldahomi State Univeraty, Stillwater,

Experiences: Graduate Asfintant In Mathematics Department, Oklahoma State University, 1957-59.

Member of the American Statistical Assoclation and Pi Mu Epsilion
Date of Degree: May 24, 1959

