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NOMENCLATURE

0 Initial temperature

Final temperature at top

9 Final temperature at bottom
Change in temperature at top
Change in temperature at bottom
Linear temperature strain at top -
Linear temperature strain at bottom

a Coefficient of thermal expansion

d}é Angular temperature strain

RAY’ RBY" RCY Vertical reactions at the respective joint
Rax> RBX’ RCX Horizontal reaction at the respective end.

H Function of the horizontal:reaction

MAB’ MBA" MBC Bendirig moment at the respective end

AA,X’ ABX’ ACX Horizontal diSplacenient at the respective joiht
AAY’ Apvys Any Vertical displacement at the respective joint
Nx Normal forqe at x

V. Shearing force at x

Mx Bending moment at x

Upxr External work due to loads and reactions

U1 External work due to loads

U2 : External work due to reactions

UINT Internal work due to loads, reactions, temperature changes, and

moisture changes.
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NOMENCLATURE (CONTINUED)

Internal work due to loads and reactions

Internal work due to temperature and moisture changes
Liength

Variable area of the cross-section of the beam

Variable moment of inertia of the cross-section of the beam
Modulus of elagticity of the material

Modulus of rigidity of the material

Variable shear coefficient of the cross~section of the beam

a,b,c,d,e,f,g,h,j  Distribution factors

s
X, Y

e

K

Kam ¥par ¥ge

Function of the distribution factors
Denominators of convergency

Stiffness factors of the respective member:

TeFy Y : . . . '
KAB" K_BA’ KBC Modified stiffness factors of the respective member

Cl"’ Cz, C3, C4, N, . Equivalents
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PART I

INTRODUCTION

The stresses and deformations developed in rigid frame bridges
are of two types:

1. Primary stresses and deformations (due to loads).

2. Secdndary stresses and deformations (due to change in
temperature, change in moisture content and displace-
ment of supports).

In many cases, the secondary effects reach large magnitudes and
are‘ no longer secondary. This is particularly true in the case of a
rigid frame bridge of which the topside is eXp.osed to the sun radiation
and the underside remains in the shade. The temperature méments
become third power functions of the depth of the main girder and a
first power function of the temperature differential.

The pufpose of this thesis is the mathematical investigation of
these moments in three and four span rigid frame bridges by means
of infinite, geometric geries. The results are summarized in two
tables (VI and VII) and the suggested procedure is illustrated by two

typical examples.



PART II
DERIVATION OF DEFORMATION EQUATIONS

A fixed end unsymmetrical beam of variable cross-section is con-

sidered (Fig. 1).

M AB/El—\ !

| - MpBa
Rax — = ~——— R
A Tz ~\E B
X dx A
Ray Rpy
L
Fig. 1
Fixed End Beam
The change‘ in.temperature above the beam
Tp = T, - Ty (1)
and the change in temperature below the beam
TB =Ty~ Ty - (2)



Where

T, = Initial temperature

0

T, = Final temperature top

1
T2 = Final temperature bottom.

The linear temperature strain

& 1 = ol and By, = Ty (3) and (4)
The angular temperature strain (if T, < Tg) (Fig. 2).
T, - T -
B T '
o TTdX | o Tde
2 T. 2
‘. dfTB% | dfrg
2 /[ ! A
Tt ax PTaf*
T2 1 71
Fig. 2

Temperature Deformation of Element dx

The reactive forceg in terms of end moments M AB’ MB A and the

i

axial thrust H are:

M + M

__""AB” BA - ,
Ray = I | (8)
M + M .
_TAB BA ‘ :
Rpy = T (7)
R,y = - Rpgx = H. (8)



The normal force at x

A)
NX = 01,

= -H. (9)
The shearing force at x

VA
X

h—
i
I

01, T : (10)
The bending moment at x in terms of x = x and x' = L-x,

1
i = My, = - M

X
x = 0-»L, AB T BA L (11)
From the principle of minimum energy
Ut . Pmxr (12)
My Mpp |
UinT = ¥UrxT (13)
9Mp A oMy 5
Ut _ VexT | (14)
oH oH .
Where U1 = Extefnal work due to loads
UpxT ~

U2 = External work due to reactions

(U3 = Internal work due to loads and reactions

Unt =

Uy = Internal work due to temperature and moisture

change.
If only the change in temperature is considered

U, =0 U, =0 (15)



B , B 2 B o
oo [e fade [He
A A X A %

é’ . |
£ ) N+ ) M _dP g (17)

The symbols in Equations (16) and (17) are
AX = Variable area of the cross-section of the beam
IX = Variable moment of inertia of the cross-section of the beam
E = Modulus of elasticity of the material
G = Modulus of rigidity of the material

J‘P < = Variable shear coefficient of the cross-section of the beam.

The minimum energyEquations (12, 13, 14) in terms of Equations

(15, 16, 17) are:

B B B ,2 B '
0. a")oxMAde . ' exMBAdx .\ MABX dx _ MBAX x dx
B/ Z A A 1.2 A 2

AXGL AXGL EIXL EIXL
B ‘
x7t y
+ j}; = dPmg (18)
0= J’)p X AB + XMBAdx / MABX x dx

A J_'ﬂ_z__ A
A A GL A AXGL A EIXL

B M XZ dx B ‘

A EIXL2 A L TB

B B
& & o
0=fA Ha o) (2512 T)dx . (20)



With new equivalents:

B B
C = OLFXdX +f XZdX
A

1 2 2
A A GL EI_L
B B
c. = cbpxdX _ xx1 dx
2 Jaacgr?: /A mrL?
X X
B B
c di—-zxdx +j ——thzdx
3 Ja A GL A EIL
B
dx
C =
4y AE
B 5 +g
. Bt er
oo - [(E)a
A
B
L=
Ce ‘XA - 4T

the deformation Equations (18, 19, 20) become:

Q = CgMyp + CyMpy +Cq
0 = CoMpp*t CMpp ~Cq
0 =

C4H - C5
Liet

01C3 - CZCZ =N

(21)

(22)
(23)
(24)

(25)



After solving Equations (22) and (23) simultaneously:

v o1 * CoC 2
AB N (26)
N i} C4Cq + CyCy o7
BA N (27)
and from Equation (24)
Cy
H = @; (28)
If the crogs-section of the beam is constant
;
A = A I =1 dé{=g‘+ h, = h
and the equivalents (21) become:
4 L L
C, = tac " sET
_ _ L
Cy = ‘diﬁL G = BEID
_ 4f L
Cs = tag * 3mEI
L
C =
o . a(B*Tr
5 2
o - eL(’B”Tr)
6 oh
o - L (*B"Try
7 Jh
N = L .StP_ + Lz )
ET G 12Kl



If the crogs~gection of the bea.m is constant and the shearing deformation

is neglected

. L
Cy = C3 = 3my

i}

L

AR | (0

6
I“"2

N = =5

12E1

and the final form of the redundant Equations (26, 27, 28) in terms of the

simplified Equations (30) become:

o, T_~T EI
B T
Mpg = ~ ( n L) (31)
2, T =T EI -
- %t'B T) |
Mpa T (32)

a T, + TL.AE




- PART III

DERIVATION OF NEW DISTRIBUTION FACTORS
S .
FOR A THREE SPAN BRIDGE FRAME

A typical three span cyclosymmetipical  bridge frame with members
- of constant cross~section is considered (Fig. 3). The deck is freely
supported at the abutments, restrained against translation at D and

intergal with piers hinged at the bottom.

Flg 3

Three Span Bridge Frame

A. Equal Temperature Deformations

The uniform temperature change TT = TB =T is assumed

for each member.
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The fixed end moments due to the uniform temperature change

Tn=T, =T, (Fig. 4):

=Ty
. 3ET
(0) _ 1
EMpa = —g— oTL,
3ET
0 4
em(®) = oTL,
BE LZ 7
| 3EI
) . Bl
EME) — oTLi
12
3EI
(0) _ 5
EM{) = —u> oTLg
Ly >
. GEI
(0) (0) . 2
FEMG) = FEMS) - oTLg .
_ _ 2
A A
| BX CcxX
AX B c!
A X B H—— H—
BY /——lr
T Al - _
U‘O@b A B C 77%-

: ) Fig. 4 '
Elastic Curve Due to Change in Temperature

and Rotationil Restrain-at B apd C..

The distribution factors are designated as:

(34)

!




11

BA =2 Deg =2
Dpe = 2P | ~ Dep=d o (3D)
Dy = e Doy = !

After recording the fixed end moments, all joints are successively
unlocked and allowed to rotate gradually into their equilibrium position.

The unbalance at joiht B

(0) /3EL 6EL, 3EI,
MB = oT k———z—L‘l + —a Lg TL7 . (36)
L L L
1 2 4
The unbalance at joint C
2 . 3 "5 '

The balancing procedure in the algebraic form of a series is expahded
for each ‘:r/noment‘ in Table I and Table II. |

The final moments due to the uniform temperature change at joint
B are:

M. . = BMY) —aM](??)4abcM 0 . ...

BA BA B
- (0) 2,:(0) ,
+acMC +abcMC +. ..

0 0 0
- M) - §mE) + Fmb) (38)

= EMW®) L oeyl®) (0) _
Mg = EM{) - emE) - ebem{) - . ..
+ ecMgJ) + ebczMg)) ol

= (0) _en(0) . ec..(0)
EMpr -xMp” + Mg
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and
Mpe = Mgy - Mpg- » (38)
The final moments due to the uniform temperature change at joint C
are:
= (0) (0) 2.21(9)
Mnp = EMgep + dbMp’ + db eMp™/ + . . .
- anmtO) . (0) .
dMC dbcMc
= (0) . db 4, (0) . d ;(0)
EMep * xMp" - xMe™ -
- (0) (0) 2.t9) .
MCF = EMCF + fbMB + fb cMB + ... (39)
~ o) o (0) .
flVIC fbcMc .« oo
- (0) | by (0) _ £ 4,(0)
= EMep *t xMp' - x M¢
and
Meg = = Mep ™ Mer
where
X =1~ be.

The horizontal reaction at D

, M + M
2 TBE CF
Heg, 1, (20)



TABLE I

ALGEBRAIC DISTRIBUTION OF UNIT MOMENT AT B

Joints

Members

BA

BE

BC

CB

CF

CDh

Distribution
. Factors

2b

2¢

First
Distribution

-8

Carry
Over

Second
Digtribution

+2be

+bf

+bd

Carry
Over

Third
Distribution

~abc

~ebec

Carry
Over

Fourth
Distribution

+2b2c

2

+b2c:f

+b2cd

. Carry
Over

+b202

Fifth
Digtribution

~ab202

»'—.ebz.‘c:'

2

3

-2b ¢

Carry
Over

3 2

STXTh
Distribution

+2b3e

3

+b3c2f

+b3c24

Infinite
Distribution




TABLE II

ALGEBRAIC DISTRIBUTION OF UNIT MOMENT AT C

Jointg

Members

BA

BC

CB

CF

CD

Distribution _

Factors

2b

2¢

Firgt
Digtribution

Carry
Over

~C

Second
Digtribution

+ac

+2be .

Carry
Over

+be

Third
Digtribution

~2bc

-dbc

Carry
Over

Fourth
Disgtribution

+abc2

+2b

2 2
e

Carry
Over

2 2

+b"e

Fifth
Distribution

-2p2e3

2
c

—dbzc2

Carry
Over

23
c

Sixth
Distribution

+ab2c3

+.2b3c 3

Infinite
Distribution
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B. Unequal Temperature Deformations

If the nonuniform temperature change Equations (1) and (2) is

congidered, the fixed end maments due to this change (assuming Tg> TT)
become: | |
3EI, 3 EI, ‘
EMpp = 77 9Tgly * 3 5 AT~ Tp)
6EI, EL,
a5
6EL,, El, _
FEMap = T dTpLe + T ° (Tg = Top) (41)
2
3EI4 3 Elg
EMep = =7z 9Tgls ~ 3 T ¢ (T~ T
i ) 3EI, Tg + TT)L
BE = L2 \T Z /71
Ly
+ T
_ } SEI; a(‘TB TT) .
cr =7z A\ /s
s .

The temperature change below the girder is Ty and the columns undergo
uniform éhang‘e due to T‘B only. Hereafter, ‘the procedure of analysis is

the same as in the previous case.



PART IV
DERIVATION FOR A FOUR SPAN BRIDGE FRAME

A typical four span cyclosymmetrical’ bridge frame with members
of constant cross-section ig considered (Fig. 5). The deck is freely
supported at-the abutments, restrained against translation at E and

intergal with piers hinged at bottom.

Fig. 5

Four Span Bridge Frame

A. Equal Temperature Deformations

The uniform temperature change TT = TB =T is assumed

for each member.

16
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The fixed -end moments due to this temperature change (Fig. 5) are:

envi0) = ! a/rL
BA T 77 5
1
| 3ET
(0) _ 6
EMag = —7— oTLyg
Lg
3ET
(0) _ 5
EMpp = Ty Tl
a5
(42)
evi(0) = 2y oTL
DH T 7T 14
7
6EI
(0) (0) _ 2
FEMpl = FEMg) = — oTL,
2
6EI
(0) _ (0) _ 3
| 43
SET
(9) _ _ 4
: 4A_ ACX o AD_}_{
l |AAX B! BX C" | T Apy
' /T—:—R 9 j
mr A B [A c 2 D T &
F BY Aoy
G
H
. Fig. 6

Elastic Curve Due to Change in Temperature
and Rotational Restrain at B, C, and D.
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The distribution factors are designated as:

DBA =3 7 DCB = 2¢ DDC = 2e
D = 2P Dop = 24 Dpp =f  (43)
PBF "8 Peg ™ Dpg =

After recording the fixed end moments, all joints are successively

unlocked and allowed to‘r'o—ta’ce gradually into their equilibrium position.

The unbalance at joint B

(0) 3E11 ‘ - 3EI5 ‘ GEIZ
Mp® = o {—g=Lg + —5= Ly + —5~ Lg | | (44)
LT . L L
1 5 2
The unbalance at joint C
(0) 3E16 6E12 G'EI3
L L L
6 2 3
The unbalance at joint D
(0) 3'EI7 6EI3 3EI4
T 3 4

The balancing procedure in the algebraic form of series is expan~

ded for each moment (Table III, IV, V).

The final moments due to the uniform temperature change at joint

B in terms of Y = 1 =~ be - de are:

_ (0) _ _.r(0)_abc. (0)  ac. (0) _ ace. (0)
Mpp = EMpj —aMp’ - =5=Mp’+ = Me® = 5= Mp (47)
= mv0) _ opp0) L gbe 31(0) | geqr(0) | gee 4,40)
Mpp = EMpg - eMp’ - &5 Mp?+ & Mp - 52 My (48)
and
(49)

Mge == Mpp = Mpg



TABLE II1

ALGEBRAIC DISTRIBUTION OF UNIT MOMENT AT B

Joints B C D
Members BA BF BC CB CG CD DC DH DE
| Distribution Factors a g 2b 2c h 2d 2e i} f .
| First Distribution -a -g -2b :
| Carry Over -b
| Secand Distribution +2be +hb +2bd
| Carry Over +be +bd
b ophivd Dintetbutlon | =abe | ~gbe | -2b%e -2¢bd | ~jbd | -
Carry Over —bzc -ebd
Fourth Distribution +2bcs* | +hbs* | +2bds*
| Carry Over +bes +bds
| Fifth Distribution  |-abe -ghes -2b%cs -2ebds | -jbds | -fbds
Carry Over -bzcs -bds
| Sixth Distribution +2cbs? | +hbs? | +2bds’
Infinite Distribution 0 0 0 0 0 0 0 0 0

* s = be + de

61



TABLE IV

ALGEBRAIC DISTRIBUTION OF UNIT MOMENT AT C

Joints B Cc D
| Members BA BF BC CB CG CD DC DH DE
| Distribution Faciors a g 2b 2¢c h 2d 2e j f
First Distribution -2¢ -h -2d
Carry Over -C ~-d
Second Distribution +ac +ge +2be +2ed +id +fd
Carry Over +be +ed
| Third Distribution ~2cs* ~hg* =2ds*
| Carry Over -cS -ds
Fourth Distribution +acs +ges +2bes +2eds +ids | +fds
Carry Over +bes +eds
Fifth Distribution -2¢s® | -ns? | -2ds?
Carry Over -CcS -—d:s2
istribution +a.cs2 +gg_§2 +2bes +.'Zeds2 +]'d82 +fds
Infinite Distribution 0 0 0 0 0 0 0 0 0

* g =be + de

0e



TABLE V

ALGEBRAIC DISTRIBUTION OF UNIT MOMENT AT D

Joints B C D
Members BA BF BC CB CG CD DC DH DE
Distribution a g 2b 2c h 2d 2e j :
First Distribution -2e -j ~f

| Carry Over -e

| Second Distribution +2¢ce +he +2de

| Carry Over +ce +de

Third Distribution ~ace | -gce | -2bce -2de? | -jde | -fde
Carry Over ~bece -de2

Fourth Distribution $2ceg*| +hes* | +2des*

Carry Over +ces +des

Fifth Distribution -aces | -geces ~-2bces -2dezs -jdes -fdes
Carry Over ~bces ~des

Sixth Distribution +20e:32 -l-hes2 +2de~s2

Infinite Distribution 0 0 0 0 0 0 0 0 0

* g =be + de

1¢
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The final moments due to the uniform temperature change at joint

C are:
TN ) - ) Bon) 5
+ Beml)) 4 2Zee (D) hee 3 (0) (50)
Mg = EMG + 2 M) - 2p{) 4 Bey(0) (51)
and
Mep = Mg ™ Meg (52)

The final moments due to the uniform temperature change at joint

D are:
- p(® _ fdb (0) | 24.(0) . (0) fde. (0)
Mpg = EMpgp -5 Mp’ * ¥ Mg' - Mp -5 Mp (53)
T (0) _ jdb .(0) dd 40(0) _ f(0) _ Jjde ..(0) \
Mpy = EMp) - 12 my) + 8 mb) - p: S M (54)
and
Mpe = ~Mpg = Mpy,

The horizontal reaction at E:

a - er . Mcg, Mpm | (55)
Lg 6 Ly

B. Unequal Temperature Deformations

If the  nonuniform temperature change Equations (1) and (2)
is consi.dered, the fixed end moments due to this change (assuming

TB > TT) become:
3EI 3EI-

! v 1 _
EMBA—TrﬂBL5+2HTa(TB Trp) (56)



6EL, EI,
FEMpg = —g— odTglg =5~ «(Tg = Tp)
Lo 2
3
EM - EI5 o TB + TT L
BF - 72 —3 )L
5 .
6EL, EI,
.22 |
6EI, EI,
FEMp, @TpLg - 4= a(Tg - To)
L2 3
3EI T, +T
, _ sElg B'Tr
Mea =72 “( 3 )L 10
6
| 6EL, EI,
S T 3
3EI, 3EI,
EMpg = =7z ‘g™ "2, * (T~ Tp)
4
3EI T, + T
_ B (It Tp
EMpy = —3 @ < - )L .
7

23

(56)

Hereafter the procedure of analysis is the same as in the uniform

case.



PART YV

TABLES

A. General Notes

Two general tables of end moments due to temperature change are
presented in this part of the thesis.
Table VI - End Moments in Tﬁr’ee Span Unsymmetrical Bridge
Frame _ "
Table VII - End Moments in Four Span Unsymmetrical Bridge
Frarhe. |
Each table is composed of the following major parts:

1. Description of Frame - Definition and structural identities.

2. Ilustration of Frame -~ Figure containing symbols for all
gtructural elements. |

3. Algebraic Equivalents - Stiffness factors and distribution -

factors.

4, Final Moments - Algebraic moment coefficients known as

new distribution factors.
B. Procedure
The procedure of analysis may be summarized in the following
steps:
| 1. Select the table for the case to be investigated and adjust
the symbols to those shown in table.
2. Compute all stiffness féctorS', distribution factors, and

equivalents.

24



3.

25

Compute the fixed and prbpped end moments‘ due to the
uniform and nonuniform change in "temperature.
Substitute the equivalents, the fixed and propped end
moments in the moment part of the respective table and

compute the final end moments.

Check the final answers by means of moment equilibrium

at the joint.



TABLE VI - END MOMENTS IN THREE SPAN UNSYMMETRICAL BRIDGE FRAME

Three span frame freely supported at abutments, A B C D
. . . i N R
restrained against translation at D, with piers L4 1 Iz 2 3
ot L, | |y
hinged at bottom. Y 8 s
Constant Moment of Inertia. Ll I"2 1 L3
Ly
STIFFNESS FACTORS DISTRIBUTION FACTORS
1 L]
K! = 311 K! = ._.__314 K =.I_2 a= KBA e= KBE b = KBC
BA 321..1 BE 4L4 BC L2 = KB P KB EKB
Z Ry =Kp, +Khp + Koo
| |
Tt b 73;_5_ L C L es PR~ ju CD
CB L2 CF L5 CD 4L3 ZEKC aKC ZKC
X =1=-bc

9¢



TABLE VI - (CONTINUED)

FINAL MOMENTS

Moment S FMpa * EMpy + FENp e FEMep + EMay + EMay,
Mg o EMp o - % + %

YBE #Mpg g +

Mpc FEMp, - (232-_0_1;) - (c ;(Zbc)

Mg FEMp 5 ( b -XZcb ) ; (2CX- be )

Mep EMcp + 3 g ;zf

Mep EMap + - g

LZ



TABLE VII - END MOMENTS IN FOUR SPAN UNSYMMETRICAL BRIDGE FRAME

A B &4 D E
Four span frame freely supported at abutments, Ly 1, I_I_ & r "y _:_I4_ 72
L = 5 I
restrained against translation at E, with piers L __5'* 8 F G |! 6 lI.ir |
¥
: 9 |
hinged at bottom. — H
g ba ] 757 Ly
Constant Moment of Inertia. = L?tl_"_
Bt
STIFFNESS FACTORS DISTRIBUTION FACTORS
’ i
K’ = 311 K. = 315 KB nlz a= I(BA g o KBF b = KBC
BA ~ 7L, BF 7L, ' 7 5 = 5K,
= . / }
& Kp = Kpp * Kpc * Kpp e oo S S
ZK 2K 23K
Iy 31 I C C c
K = (] 6 3
CB L, By ™ - ) i
2 CG " IL; g L Kris A Kl . KL
L ) K zZK ZK
ZK¢ = Kop * Keg * Kep D D D
I 31 31
ik 3 ! = 1 ! = 4 " -
" Kpu “4r, ¥pE ~ 7L, T 1 by
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ABLE VII-(CONTINUED)

FINAL MOMENTS

End

Moment Moment EMp p"EMp o FEMp o FEMCB_+EIMC G+ FEN FEMp, o+ EMpy +EM
Mp FEMp - (% - EY§> _(c_ ;.Zbc) | +(c§§ Ihee

Mep FEMp -<§E§ __2%9> ) (ZCY— bc.) +(2c:e{[- b‘ce)
Mg EMGG + %3 5 % N %S

Mep FEMC_D +(?.db; db-«e) | _ (ng de> (% ) %13 )
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TABLE VII - (CONTINUED)

FINAL MOMENTS

Moment Moment EMp  *EMp o FEMp o [FEM g +EM o +FEM | FEMp +EMp +EM -
M FEM__ . (db ;{2dbe) _(d{{ 2de) ~<}g§§,_ _ ng)

Mpy EMpy - 4P + 4 (3 2

MpE EMpg - + T - (f -
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PART VI

EXAMPLES

Two typical examples are introduced to demonstrate the appli-
cation of moment coefficients recorded in Table VI. The reinforced
concrete bridge considered in both cases is composed of prismatic

members. The modulus of concrete
E=3x 103 kip per in.2

and the coefficient of thermal expansion of concrete

6

@=6.5x%x 10" _per degree of Fahrenheit.

The bridge deck integral with piers is supported by an expansion
roller at A and by a hinge at D . The piers are hinged at bottoms.

All values are given in inches, kips, or kip-inches.
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Example 1: The effect of uniform change in temperature from

T,=170° to T, =T, = 120°
in the bridge frame shown in Fig. 7 ig investigated.

18 in.
Q

b
18 in.
e
us|
|
|
]
iny” ¢
,[

X
i
o
|
—
')
|—l-
B
240 in

ﬁ'/‘/S}? ‘
600 in, 480 in.

Fig. 5

Three Span Symmetrical Reinforced
Concrete Bridge Frame

The procedure of analysis is outlined in Part V of this thesis. The

moment coefficients are computed by means of Table VI.

1f Stiffness Faetors:
1 = 1 = =
KBA 109. 4 KBE 64.8 KBC 116.6
ZKB ZZKC = 290,8
= 1 = 1 =
. KCB 116.6 KCF 64.8 | KCD 109. 4
a= 0,378 e=0,222 b =0.200
c = 0.200 f=0,222 d=0,378

X =0.96



3. Moments (Equation 34)

33

EMy, , = +17.75 k-in. EMgp = -17.75 k-in.
EMp, = +94. 80 k-in. EMgp = +42. 10 kein
FEMp = 0 FEMgp = 0
EMBA + EMBE + FEMBC =+4+112, 55 k-in,
FEMqp + EMgp + EMp = +24. 30 kein. .
4. Final Moments (Table VI)
My, = +17.75 -g=578 (+112.55) + 20036 (4 24 30) * = - 24,65 k-in
My = +94.80 - 55222 (+112.55) + 20222 (+ 24.30) = +69. 90 k-in.
Mpg = 0 - 0oog (+ 112.55) - §25= (+24.30) = ~45. 25 k-in.
Mg = 0 - 9oga-(+ 112.55) = 9250 (+24. 30) = -23. 20 k~in.
Mg = +42.10 + 29832 (1 119, 55) - 0222 (194, 35) = +41. 67 k-in.
Mg = -17.75 + %0088 (1 112, 55) - 2378 (124, 35) = -18. 47 k-in.

Example 2: The effect of nonuniform change in temperature from

T, = 70°

0 70" to

Ty

= 120°,

T, = 70°

270

in the bridge frame shown in Fig. 7 is investigated. The numerical con-

stants computed in the Example 1 may be used, but new fixed and propped

end moments must be calculated.

1. Moments (Equation 41)

EM = -474,00 k~in,

BA

EMBE

FEMBC= +316. 00 k=in.

= +47, 40 k~in,

EM + EM

BE + FEM

BA BC

FEMCB + EMCF + EMCD

FEM = -316. 00 k-in.

CB

EM =+21,00 k~-in.

CF

EM = +474,00 k-in,

CD
= -110.60 k-in.

=+179,00 k-in,
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2. Final Moments (Table VI)

My, = -474.00 - 2378 (2110, 60) + 20058 (1179, 00) = 416. 30 k-in.
My = +47.40 - 5222 (-110.60) + 52522 (4179, 00) = +81. 30 k~in.
My = +316.00 = 2222 (-110. 60) - 8:;2 (+179. 00) = +335. 00 k-in.
Mg = =316.00 - =42 (-110.60) - 0250 (+179. 00) = ~369. 60 k~in.
Mg = +21. 00 + 0_—“6.051(;14 (-110.60) - %‘__29_2.63(+179. 00) = -25. 40 k-in.
Mg, = +474.00 + 9028 (=110, 60) - 55378 (+179.00) = +395. 00 k~in.



PART VII
SUMMARY AND CONCLUSIONS

AThe moments due to the effect of temperature in rigid frame
bridges were investigated by the algebraic moment distribution.
It was shown, that each moment is being formed by a series which
is:
a. ) Infinite
b. ) Convergent
c. ) Geometric
The sum of each series is a finite number and is being called
‘the new distribution factor. The new distribution factor is a specific
function of each member and is independent of loads or volume change.
The investigation is limited to three and four span bridge frames.

The final results are general and precise.
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