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moisture changes. 
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PART I 

INTRODUCTION 

The stresses and deformations developed in rigid frame bridges 

are of two types: 

1. Primary stresses and deformations (due to loads). 

2. Secondary stresses and deformations (due to change in 

temperature, change in moisture content and displace­

ment of supports). 

In many cases, the secondary effects reach large magnitudes and 

are no longer secondary. This is particularly true in the case of a 

rigid frame bridge of which the topside is exposed to the sun radiation 

and the underside remains in the shade. The temperature moments 

become third power functions of the depth of the main girder and a 

first power function of the temperature differential. 

The purpose of this thesis is the mathematical investigation of 

these moments in three and four span rigid frame bridges by means 

of infinite, geometric series. The results are summarized in two 

tables {VI and VII) and the suggested procedure is illustrated by two 

typical examples. 

1 



PART II 

DERIVATION OF DEFORMATION EQUATIONS 

A fixed end unsymmetricaL beam of variable· cross-section is con-

sidered (Fig. 1 ). 

RAX 

Fig. 1 . 

Fixed End Beam 

The change in .. temperature above the beam 

(1) 

and the change in temperature below the beam 

(2) 

.2 



Where 

T O = Initial temp era ture 

T 1 :1: Final temperature top 

T 2 = Final temperature bottom. 

The linear temperature strain 

The angula:i;: temperature strain (if TT < TB) (Fig. 2 ). 

TB -TT 
df TB = QI h d.x 

X 

QI TTdx 

2 

dfT 
2 

Fig. 2 

Temperature Deformation of Element dx 

(3) and (4) 

The reactive forces in term.s of end moments MAB' MBA' and the 

axial thrust H are: 

RAX = - RBX = H. 

3 

(5) 

(6) 

(7) 

(8) 



,: 

The normal force at x 

(A) 
N = -H. 

x = o-L 

The shearing force at x 

(A) MAB+ MBA 
V X = O-..L ::t ·- --~L~.--

The bending moment at x. in terms of x i:: x and X'' = L-x, 

(A) _ xt . x 
Mx i:: 0-P-L - ·MAB L - MBA L 

From the principle of minimum energy 

Where 

au INT 
= 

au EXT 

BMAB BM AB 

au INT = au EXT 

8MBA a MBA 

au INT 
= 

au EXT 
BH 8H 

[
U 1 ::, External work due to loads 

UEXT = 
U 2 = External work due to reactions 

(U 3 = Internal work due to loads and reactions 

UINT = (
1 

· U 4 = Internal work due to temperature and moisture 
change. 

If only the change in temperature is considered 

U =O 1 U = 0 ·2 

4 

(9) 

( 10) 

( 11) 

(12) 

(13) 

(14) 

(15) 
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u· ::rjBN·.;dx jBJfxv!dx 
3 2A E + 2A G 

2\. X A X 

(16) 

(17) 

The .symbols in Equations ( 16) and ( 1 7) are 

A ::r Variable area of the cross-section of the beam 
X 

Ix ::r Variable moment of inertia of the cross-section of the beam 

E = Modulus of elasticity of the material 

G i:: Modulus of rigidity of the material 

df x ::r Variable shear coefficient of the cross-section of the beam .. 

The .minimum energyE}quations(12, 13, 14) in term.s of Equations 

(15,. 16, 17) are: 

B r X"J __[} 

+)A Ld·1 TB (18) 

0 :::tjBJfxMABdx + (jpxMBAdx -lB MABxfx dx 

'A A GL2 )A A GL2 A EI L 2 
X X X 

IB 2 lB M.BAX dx . X _J) + · - - d7_ 
'A EI L2 A L TB 

X 

(19) 

(20) 



With new equivalents: 

(~xdx + (B x2dx 

Cl = )A AxGL2 )A EixL 2 

C (~xdx 1B xxr dx 
2 r:1.) A A GL2 .., A EI L 2 

X X 

J.BJfxdx lB t2dx C3 = + _x ___ 

A A GL2 A EI L 2 
X X 

c5 "LB (&B : gT ) ax 

CB •.,[B ~ df'TB 

the deformation Equations (18, 19~ 20) become: 

Let 

D. = C3M AB + C2MBA + C7 

o ;::l C2MAB + ClMBA - C6 

O = C 4H - C 5 

(21) 

(22) 

(23) 

(24) 

(25) 



After solving Equations. {22) and (23) simultaneously: 

MAB 

and from Equation (24) 
/ 

C 5 
H = <;. 

4 

If the cross-.s:ection of the beam is constant 

I = I 
X 

an,d the equivalents (21) become: 

c2 = 

C3 = 

= 

C5 z 

tfa ... r.; 
6EI 

of 
+ L 

LAG 3EI 

L 
'"XE 

aL (TB + TT) 
2 

aL {TB ... TT) 
2h 

c·· . = a:L (TB ... TT) 
7 2h 

7 

(26) 

(27) 

(28) 

(29) 
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If the cro'Ssi..s:ec:tion of the be~ is :constap.t and the .shearing., deformation 

is neglected 

(30) 

a,nd the final form of the redqndant Equations (26" 27 ~· 28) in terms of the 

simplified Equatipns (30) become: 

M C BA 
,a(TB ... TT) EI 

h 

H = a {TB+ TT}AE 
2 

(31) 

(32) 

(33) 



PART III 

DERIV4TION OF NEW DISTRIBUTION FACTORS 
'-.,. 

FOR A THREE SPAN Bl;UDGE FRAME 

A typical three span cyclosyrr:i,met;1;ical bridge frame with members 

of constant cross-section is considered· (Fig. 3 ). · The deck is freely 

supported at the abutments, restrained aga}nst translation at b and 

intergal with piers hinged at the bottom. 

A B C -------- ------ -- - --- - --
1 I I I · 
I 2 3 
I 14 I 
I I 15 

l 
I 
I 

Fig. 3 

Three Span Bridge Frame 

A. Equal Temperature Deformations 

The uniform temperature change TT = TB = T is as'SumE;d 

for each member. 

9 
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The fixed end mpm.ents due to the uniform. te~perature change 

TT = TB = T; (Fig •. 4): 

(O) 3El1 
EMBA = :y- aTL4 

L1 

3EI 
EM(O) = ~ aTL7 

BE L 4 _ 

EM(O) ~- ~;E:3 a!I'L 
CD L 3 5 

3EI 
EM(O) = 5 dI'L 

CF :;y- 3 
µ.f$ ; (, •, ~ 

E 

Fig-: ·.4 

F 

Elastic Curve Due to Change in Temperature 

and Rotational Restrain:at .B and C •. ·. 
' 

The. distribution f~ctor:s are designated ,~s: 

. ~ 

(34) 



DBA =a 

D:ac = 2b 

DBE= e 

DCB= 2c 

Dcn::ii d 

DCF ~. f 

11 

(35) 

After recording. the fixed end moments, all joints are successively 

unlocked and allowed to rotate gradually into their equilibrium position. 

The unbalance at j oiht B 

(36) 

The unbalance at joint C 

(O) (6EI2 · . :: 3EI3 3EI5 ) 
Mc· = dl' --rr--,-- L · · -:- · --,, L 5 + ~ L 3 • 

_L.::; · 6 ··.·L -~ -L~ 
2 · · 3 5 

(37) 

The balamcing procedure in the algebraic form of a series is expanded 

for eachmoment in Table I and Table II. 

The final moments due to the uniform temperature. change at joint 

Bare: 

MBA= EM£>l ... aM~).;. abcM~O) ......... 

· . (0) 2 (0) + acM + abc M · · + C · C • 

= EM(O) ... aM(O) + acM(O) 
BA X B X C . (38) 

M JC EM. (~). .... el\/1',i(.O) ... ebcM(.O) ... 
BE · ~E · -m · C . . . 
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and 

(38) 

The final moments· due to the uniform temperature change .at joint C 

are: 

and 

where 

- dM~) - dbcMg>) - • 

C EM(O) + db M(O) ... d M(O) 
CD X ·B X C 

MCF c EM~fr + fbM~) + fb2cM~) + .•• 

,.. flVlg>) .. fbcMg>) - .... 

= EM(O) + fb M(O) - l M (O) 
CF XB X C 

X ::; 1 - be .. 

The horizontal re.action at D 

' •• MBE + MCJF 
H = . . L4 ~. 

(:39) 

(40) 
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TABLE. I 

ALGEBRAIC DISTRIBUTION OF UNIT MOMENT AT B 

Joints B C 

Members BA BE BC CB CF CD 

Distribution 
Factors a e 2b 2e f d 

Fir~· 
Distribution ,.,a ·-e -2.b 

Carry 
Over .... b 

Second 
Distribution +2bc +bf +bd 

carry 
Over +be 

Third 
... 2b2c Distribution -abc ""'ehc 

c:arry 
2 Over -be 

Fourth 2 2 +b2c:f +b2c:d Distribution +2b C 

·1 Carry 2 2 
Over +b C 

Fifth . b2 2. . 2 2 3 2 
Distribution ""a. Ci ,..eb· .c ... 2b· C. 

Carry 
b3 2 Over - C 

I 

~lXth 
3 3 +b3c2f +b 3c2d Distribution .·~ +2b C 

"- .,. 

.. . • •· . • 
• • . • .. . 

Infinite 
Distribution ··o 0 0 0 0 0 
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TABLE II 

ALGEBRAIC DISTRIBUTION OF UNIT MOMENT AT C 

Joints B C 

Members- BA BE BC CB CF CD 

Distribution 
Factors a .e 2b 2.c f d 

Firat 
Diatribution ... 2c .:.f ... d 

I 

Carry 
Over ""C 

Second 
Distribution +ac +ec +2bc 

Carry 
Over +be 

Third 2 
Distribution -2bc .... fbc -cibc 

Carry 2 
Over -be I 

Fou:Mh 2 2. +2h2e 
2 

Diatribution +abc +ebc 

Carry 
+b 2c 2 

Over 

Fifth 2 3 2 2 2 2 
Dis:tributi6n , ... 2.b e -fb C -db a 

Carry 2 3 
Over -be 

Sixth 2 .3 2 3 +2b3c 3 Distribution +ab e +eb C' 

• • • • • ._ . 

.. • .. ... .. • 

Infinite 
Diatribution 0 0 0 0 0 0 
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B. Unequal Temperature Deformations 

If the nonuniform temperature change Equations ( 1) ancl (2) is 

con$idered'*' th.e fixed end moments: due· to this change ( assuming TB> TT) 

become! 
3EI1- 3 EI1 . . . . 

EMBA = ~ a!rBL4 + 2 1i:- a(TB - TT) 
L 1 1 

6EI2 EI.2 
FEMBC = L~ aTBLB ..., ~ .a (TB ... TT) 

6EI2 EI 
FEMCB = ~ aTBL.6 + h .2 a (TB ... TT). 

L2 2 
(41) · 

3EI3 3 EI3 
EMCD = .. ~ aTBL5 - 2 n:- a (TB .. TT) 

Lg 3 

The temperature change below the girder is TB and the columns undergo 

uniform change due to TB only. Here.aft.er, the procedure of analysis is 

the s.ame as in the previous case. 



PART IV 

DERIVATION FOR A FOUR SPAN BRIDGE FRAME 

A typical four span cyclosymmetricaL bridge frame with members 

of constant crQss-section is considered (Fig. 5 ). The deck is freely 

supported at,the abutments., restna:j.ned against translation at E and 

intergal with piers hinged at bottom.; 

A B C D E --fj_ ___ c ,-- - I - ---- ,-I I3 I4 5 I 15 2 I I I 

L6 F II6 I 
LS I I I7 L 

G I 
Lg 

Ll L2 L3 
H 

L4 

411 

Fig. 5 

Four Span Bridge Frame 

A.· Equal Temperature Deformations 

The uniform temperature change TT "' TB O T is assumed 

for each member. 

16 
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The fixed,endmoments dµeto this temperature change (.Fiq;. 5) are: 

(O) 3EI 1 
EMBA = -:-T° aTL5 

L1 

(O) 3EI6 . 
ElVCca = -:-r aTLlO 

L6 

(0) 3E+5 
El\llBF = --;r- aTL 11 

L5 

FEM(O) = FEM(O). = 6El3 aTT·;. 
CD · · +v+DC ~ . .u9 

3 

ABY 

G 

Fig .. 6 

.8DX 

H 

Elastic Curve Due to Change in Temperature 
and .Rotational Restrain at. B* C,, and D •. 

(42) 

E 
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The distribution factors are designated as: 

D =- a BA DCB= 2c . DDC = 2e 

DBC = 2b Den= 2.d DDE i: f (43) 

DBF t:t g DCG =h DDH =j 

After recording the fixed end moments,. all joints are succe.ssively 

unlocked and allowed to. rotate gradu~lly into their equilibrium position. 

The unbalance at joint B 

(44) 

The unbalance at. joint C 

(45) 

The unbalance at joint. D 

(46) 

The balancing procedure in the algebraic form of s.eries is expan-

ded for each moment (Tab:J;.e III# IV,, V ). 

The final moments due to the uniform temperature change at joint· 

B in terms of Y O 1 '"' be ...;... de .are: 

M. :: EM(O) _ ·M(O) .... abc M(O) + ~M{O) ... ~M(O) 
BA BA a B . y B y C y ·n (47) 

M = EM(O) .. M(O) ... gbc M(O) + ga M(O) ~ M(O) 
BF . · :]3F g . ~ Y B Y · C "" . --Y- D (48) 

and 

(49) 



TABLE III 

ALGEBRAIC DISTRIBUTION OF UNIT MOMENT AT 'B 

.. -
Joints B C 

Members BA BF BC CB CG CD DC 

ni ~trihnti on li'~ ,...+r"lr ~ a rt 2b 2c h 2d 2e 

First Distribution -a -g -2b 

r.arrv Over -b 

. - - - ,rl nii::ttril-.,,+in1'1 +2bc +hb +2bd 

·carrv Over +be +bd 

'T'hird Distribution -abc -!:l'bc 2 -2b C -2ebd 

Carry Over 
2 -ebd -b C 

Fourth Distribution +2bcs* +hbs* +2bds* 

Carrv Over +bes +bds 

I 

~abc.s 
2 H'ifth Dii::ttrih11tinn -!:l'bes -2b cs -2ebds 

Carrv Over 
2 -bds .. b cs 

~irlh Distribution 
2 +hbs2 +2bds2 +2cbs . . . . . . . 

... . . . .. . . 
Infinite Distribution 0 0 0 0 0 0 0 

* s • be. + de 

D 

DH 

j 

-jbd 

-jbds 

. . 
0 

DE 

f . 

-fbd 

-fbds 

. . 
0 

I-' 
CD 



TABLE IV 

ALGEBRAIC DISTRIBUTION OF UNIT MOMENT AT C 

Joints B C 

Members BA BF BC CB CG CD DC 

nii:::trih,,tinn H'!=ll"'tnri::: a it 2h 2c h 2cl 2P. 

First Distribution -2c -h -2d 

Carry Over -c -d 

Second Distribution +ac +e-c +2bc +2ed 

Carrv Over +be +ed 

'T'hirn n; i::trih11tinn -2ci::* -hi::* ~2ds* 

Carrv Over -cs -ds 

Ti'm,-r+h Distribution +acs +2"CS +2bc_s +2eds 

Carrv Over +bes +eds 

Fifth Distribution -2c.s 2 -hs 2 -2ds 2 

Carry Over 
2 2 

-cs -ds 

Sixth Distribution 
2 

+acs +2"CS 2 +2bcs 
2 +2eds 2 

. . . . . . . . . . ~ . . . 
Infinite Distribution 0 0 0 0 0 0 0 

* s =be+ de 

D 

DH 

; 

+id 

+ids 

+ids2 
. . 
0 

DE 

f 

+fd 

+fds-

+fds2 . . 
0 

t'-' 
0 



TABLE V 

ALGEBRAIC DISTRIBUTION OF UNIT MOMENT AT D 

Joints B C 

Members BA BF BC CB CG CD DC 

Distribution a g 2b 2c h 2d 2e 

First Distribution -2e 

Carrv Over -e 

SPcnnn nistribution +2no +ho +2dP-

t:arrv Over +ce +de 

Third Distribution -ace -gee -2bce -2de 2 

Carry Over -bee -de 
2 

Fourth Distribution + 2(' p C!" *- +hes* +2des* 

Carry Over :+-ces +des 

Fifth Distribution · .. 2bce.s 2 ,..aces -gees -2de s 

Carry Over -bees -des 

Sixth Dis.tribution +2ce_s 2 +hes 
2 

+2des 
2 

., . . . . . . .. . . . . . . 
Infinite Distribution 0 0 0 0 0 0 0 

* s: be+ de 

D 

DH 

j 

-j 

-jde 

-jdes 

• . 
0 

DE 

f 

-f 

- fde 

-fdes 

. . 
0 

' 

N) 

t-' 
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The final :q:io:rhents due to the uniform temperature change at joint 

Care: 

M . =' FEM(O) ... bM. (0) _ b2c M(O) + 2bc M(O) ... 2q ·M(O) 
CB · · CB ·. B Y-- B Y . B ·y C 

+ ~· M~) + ~ M£>) - b;e M£>) . (50) 

M = EM(O) + hb M(O) ... hM(O) + he M(O) 
CG CG Y B Y C Y D (51) 

and 

(52) 

The final momen~ due to the· uniform temperature change at joint 

Dare: 

MDE = EM(P) . ... fdb M(O) + fd -rJO) _ fM(O) _ fde M(O) 
DE Y B Y C D ·y D (53) 

(54} 

and 

The horizontal reaction at E: 

(55) 

B. UnFqual Temp~rature Deformations 

If the ... nonuniform temperature change Equations (1) and (2) 

is considered• the fixed end moments due to this change (as:suming 

TB> TT) become: 

3EI1 · 3EI1 . 
EMBA = ,::-1 drBL5 + ~a (TB .. TT) 

1. 
(56) 
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(56) 

Hereafter the procedure of analysis is the .same as in the uniform 

case. 



PARTV 

TABLES 

A.. General Notes 

Two general tables of end moments due to temperature change are 

presented in this part of the thesis. 

Table VI ... End Moments in Three Span Unsymmetrical Bridge 

Frame 

Table VII ... End Moments in Four Span Unsymmetrical Bridge 

Frain.e. 

Each table is composed of the following major parts:. 

1. De:scription of Frame '"' Definition and structural identities. 

2. Illustration of Frame ,.. Figure containing symbols for all 

structural elements. 

3. Alsebraic Equivalents .. Stiffness factors and distribution 

factors. 

4. Final Moments .... Algebraic moment coefficients known as 

new distribution factors. 

B. Procedure 

The procedure of analysis. may be summarized in the following 

steps: 

1. Select the table for the case to be investigated and a<ljust 

the .symbols to those .shown in table. 

2. Compute all stiffness factors·~ distribution factors. and 

equiv.alents. 

24 



3~ Compute the fixed and prbpped end moments due to the 

uniform and nonuniform change in temperature. 

4. Substitute the equivalents, the fixed and propped end 

moments in the moment part of the respective table and 

compute the final end moments. 

25 

5. .Check th~ final answers by means of moment equilibrium 

at the joint. 



TABLE VI - END MOMENTS IN THREE SPAN UNSYMMETRICAL BRIDGE FRAME 

Three span frame freely supported at abutm«:mts, 

restrained against translation at D, with piers 

hinged at bottom. 

Constant Moment of Inertia. 

STIFFNESS FACTORS 

311 
KBA:: 4Ll 

314 
K'BE = 4L4 

z KB = KBA + KBE + KBC 

12 
KCB =L2 

315 
KCF::: 4L5 

6 Kc = KcB + KcF + KcD 

12 
KBC =L2 

313 
t ::, --

KCD 4L3 

A .B C 
----- ----- I 

Il I I 12 I 
L5 IL4 

I 4 I I . 
I I5 1E 

L5 I IF 

I3 

Ll I L2 
rt 7 

L3 

DISTRIBUTION FACTORS 

KBA 
a =Z,KB 

KCB 
c ::2lKC 

KBE 
e = tEKB 

I 
KCF 

f = e'Kc 

X = 1 - be 

KBC 
b =~KB 

t 
KCD 

d = ~KC 

D 
--!rt, 

I:\:> 
en 



' End 
Moment Moment 

MBA EMBA 

MB~ EMBE 

MBC FEMBC 

MCB FEM CB 

MC:F EMCF 

Men EMCD 

TABLE VI - (CONTINUED) 

FINAL MOMENTS 

EMBA + EMBE + FEMBC 

a 
- X 

e - -X 

_ (2b ~ cb) 

-{b -x2cb ) 

fb 
+y 

+ db 
X 

' 

F EMCB + E MCF. + EMCD 

+ ac 
X 

t ec 
X 

_ ( C ~ 2bc) 

~ ( 2ci be) 

f 
-x 

d - -
X 

t-.:1 
-J 



TABLE VII - END MOMENTS IN FOUR SPAN UNSYMMETRICAL BRIDGE F-RAME 

Four span frame freely supported at abutments, 

restrained against translation at E, with piers 

hinged at bottom. 

Constant Moment of Inertia. 

311 
K~A = 4L 1 

STIFFNESS FACTORS 

315 
K~F 4L5 

I I 
E,KB = KBA +KBC+ KBF 

12 
KCB =L2 

316 
I :: ~ 

Kea 4L6 

I 
~KC= KCB + KCG + KCD 

! 3 317 
K = K' -DC L DH - 4L. 

3 7 

I I 
'2:. KD "" KDC + KDH + KDE 

12 
~C =L2 

I3 
KCD =L3 

3!4 
I -~ 

KDE - 4L4 

A B C D E 
+ ~ ~ - - - - -· 

L I I 4 / 

L r:tLa :I7 
7 9 I l G l 

Ll L 2 t~~ :,t L ~ 

Lli' 

DISTRIBUTION FACTORS 
I 

KBA 
a =z KB 

KCB 
c =~KC 

KDC 
e i:: 2!KD 

I 
KBF 

g=2~ 

I 
KCG 

h =~Kc 

I 
KDH 

j,.. !KD 

X = 1 - be 

Y = 1 - be - de 

KBC 
b =.,.,l< B 

KCD 
d = 2~KC 

I 
KDH 

f =~ ~D 

ts:> 
o:> 



End 
Moment Moment 

MBA EMBA 

M BF· EMBF 

MBC FEMBC 

MCB FEM CB 

MCG EMqG 

MCD FEM en 

, TAJ3LE Vll-(CONTINUED) 
,' 

FINAL MOMENTS 

EMBA+EMBF+FEMBC FEMCH+EMcG+ FEIV&r 

-fa+ '*e) +ac 
y 

-(g + g}c) +gc 
y 

-(~-~) -(c; 2bC) .· 

(b 2bc) - x -----y _ (2"; be) 

+ hb h 
y -y 

+ (2db.; dbe) -(2d; de) 

FEMnc+EMDH+EMDE 

ace --y 

gee --y 

+{ce; 2b:J 

fee; bC~ 

he 
+y 

~(~ -~eJ 
l\ 
a 



.1::!,;n<1 
Moment Moment 

MDC FE MDC 

MDH EMDH 

MDE EMDE 

TABLE VII - {CONTINUED) 

FINAL MOMENTS 

EMBA + EMBF + FEMBC FEMCB+EMCG+ FE1VbD 

+ (db ;2dbe) -( d.; 2de) 

"db "d - _J_ + .E y y 

fdb + fd - -v- y 

FEMnc+ElVIDH+EMDE 

~(ie -~) 
-(j + j~e) 

• (f + f~e) 

C..:> 
0 



PART VI 

EXAMPLES 

Two typical examples are introduced to demonstrate the appli-

cation of moment coefficients recorded in Table VI. The reinforced 

concrete qridge considered in both cases is composed of prismatic 

members. The modulus of concrete 

3 E = 3 x 10 k . . 2 1p per m. 

and the coefficient of thermal expansion of concrete 

• ~6 
a= 6. 5 X 10 per degree of Fahrenheit. 

The bridge deck integral with piers is supported by an expansion 

roller at A and by a hinge at D • The piers are hinged at bottoms. 

All values are given in inches, kips, or kip-inches. 
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Example 1: The effect of uniform change in temperature from 

T = 70° to 0 
0 

T = T = 120 1 2 
in the bridge frame shown i:q. Fig. 7 is investigated . 

• 
i::: 

•.-i 

A 
co 
.-I 

480 in. 

• . 
i::: i::: 

•.-i •.-i 

B 
co co 
.-I C .-I 

-==w==-
in. 

600 in. 480 in. 

Fig. 5 

Three Span Symmetrical Reinforced 
Concrete Bridge Frame ' 

0 
I s::fi 

(N 

The procedure of analysis is outlined in Part V of this thesis. The 

moment coefficients are .computed l?Y means of Table VI. 

1. Stiffness Factors.: 

KEA= 109. 4 

2. Distribution Factors: 

a = O. 378 

C = 0. 200 

X = O. 96 

KCF = 64. 8 

e = 0. 222 

f = 0.222 

KBC= 116. 6 

KCD = 109. 4 

b=0.200 

d = o. 378 
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3. Moments (Equation 34) 

EMBA = +17. 75 k-in. 

EMBE = +94. 80 k-in. 

FEMBC = 0 

EMCD = -17~ 75 k-in. 

EMCF c: +42. 10 k-in. 

FEMCB = 0 

EMBA + EMBE + FEMBC = +112. 55 k-in. 

FEMCB + EMCF + EMCD = +24. 30 k-in .. .. 

4. Final Moments (Table VI} 

33 

MBA= +17. 75 - ~: ~~ 8 (+112. 55) + 00~~~6 (+ 24.. 30) : t: - 24. 65 k--in. 

MBE c +94. 80 - 0o:~: (+112.55) + 0·o~i~4 (+ 24. 30) = +69 •. 90 k-in. 

MBC = 0 - ~: ~~ (+ 112. 55) - ~: ~~ (+24. 30) = -45. 25 k-in. 

MCB = 0 - ~: ~~ ·(+ 112. 55) - ~: ~~ (+24. 30) = -23. 20 k-in. 

MCF = +42. 10 + 0-~~~~ (+ 112. 55) - 0 0 ~~~ (+24. 35) c +41. 67 k-in. 

MCD = -17. 75 + 00~~~ 6 (+ 112. 55) - 00 ~~~ (+24. 3p) = -18. 47 k-in. 

Example 2: The effect of nonuniform change in temperature from 

in the bridge frame shown in Fig. 7 is investigated. The numerical con-

stants computed in the Example 1 may be used, but new fixed and propped 

end moments must be calculated. 

1. Moments (Equation 41) 

EMBA = -474. 00 k-in. FEMCB = -316. 00 k-in. 

EMBE = +47. 40 k-in. EMCF c: +21. 00 k-in. 

FEMi3c +316. 00 k-in. EMCD "'+474. 00 k-in. 

EMBA + EMBE + FEMBC = -110. 60 k-in. 

FEMCB + EMCF + EMCD = +179. 00 k-in. 
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2.. Final Moments (Table VI) 

MBA= -.474. 00 ... 00•3J: ("'110. 60) + 00~~~ 6 (+179. 00) ~ 416 .• 30 k-in. 

MBE = +47 .. 40 - 00.2:: (-110 .• 60) + 00•0::4 (+179. 00) "'+81. 30 k""in. 

MBC "'+316. 00 '"'i::: (.-110,. 60) - ~: ~~ (+179. 00) = +335. 00 k-in. 

MCB O -316. 00 - ~: ~~ (-110. 60) - ~: ~~ (+179. 00) = -369. 60 k-in. 

MCF = +21.. 00 + Oo.Oief4 (-110. 60) - i: ~262 (+179. 00) = '"'25. 40 k-in. 

o. 0756 o. 378 . 
MCD O +474. 00 + O. 96 (-110. 60) - o. 96 (+179. 00) = +395. 00 k-m. 



PART VII 

SUMMARY AND CONCLUSIONS. 

The moments due to the effect of temperature in rigid fr~e 

bridges were investigated by the algebraic moment distribution •. 

· It was· shown, that each moment is being formed by a serie~ which 

i-S: 

a .. ) Infin1te · 

b.) Convergent 

c. ) Geometric 

The sum of each series is a finite number and is being called 

the new distribution factor. The new distribution factor is a specific 

function ·or each member and is independent of loads or volume change. 

The investigation is limited to three and four .span bridge fram~s. 

The final re.sults are general and precise. 
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