## BEAM CONSTANTS BY HIGH SPEED COMPUTER

By

THERMAN IVEAL LASSLEY Bachelor of Science Oklahoma State University Stillwater, Oklahoma

1954

Submitted to the Faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August, 1959

OKLAHOMA STATE UNIVERSITY LIBRARY

FEB 29 1960

4.18

## BEAM CONSTANTS BY HIGH SPEED COMPUTER

un Thesis Adviser 110 de , aur / Mar O 10

Dean of the Graduate School

# 438663

#### PREFACE

The analysis of continuous structures of variable moment of inertia by moment distribution or slope deflection equations is a laborious process. The carry-over moment procedure (1) has certain advantages over these two methods in that no solutions of simultaneous equations are required and no distribution of moments is necessary. Analysis by this method, however, requires the evaluation of certain constants that are not readily available in existing tables.

In this thesis mathematical expressions and a computer program are developed to evaluate constants for beams with parabolic haunches.

The author wishes to express his indebtedness to Professor J. J. Tuma for his valuable guidance and assistance in the preparation of this thesis and for acting as the writer's major adviser. Acknowledgment is also due Professor William Granet for making the facilities of the Oklahoma State University Computing Center available; the staff of the School of Civil Engineering for their aid and instruction during the writer's years of graduate study.

The author wishes to thank Mr. J. D. Cobb, Mr. C. O. Heller, and Mrs. Willia Bernardi for their assistance in preparing the original manuscript.

iỉỉ

# TABLE OF CONTENTS

| Chapter                                           | age                              |
|---------------------------------------------------|----------------------------------|
| PREFACE                                           | 111                              |
| NOMENCLATURE                                      | vii                              |
| I. DEFINITION OF BEAM CONSTANTS                   | 1                                |
| l. General                                        | 1<br>1                           |
| II. INTEGRAL FUNCTIONS                            | 7                                |
| <ol> <li>General</li></ol>                        | 7<br>7<br>9<br>13                |
| III. ANGULAR COEFFICIENTS - BEAMS WITH ONE HAUNCH | 14                               |
| 1. General                                        | 14<br>14<br>16<br>18             |
| IV. ANGULAR COEFFICIENTS - SYMMETRICAL BEAMS      | 22                               |
| 1. General                                        | 22<br>22<br>24<br>26<br>27       |
| V. PROGRAM FOR THE IBM 650 ELECTRONIC COMPUTER    | 29                               |
| <pre>1. General</pre>                             | 29<br>29<br>31<br>34<br>36<br>44 |
| VI. SUMMARY AND CONCLUSIONS                       | 57                               |
| A SELECTED BIBLIOGRAPHY                           | 60                               |

# LIST OF ILLUSTRATIONS

| Figure       |                                                                                                         | Page |
|--------------|---------------------------------------------------------------------------------------------------------|------|
| 1-1.         | Isolated Span of Continuous Beam                                                                        | l    |
| 1-2.         | Angular Beam Functions                                                                                  | 2    |
| 1-3.         | Angular Live Load Functions                                                                             | 3    |
| 1-4.         | Angular Uniform Load Functions                                                                          | 4    |
| <b>1-</b> 5. | Angular Haunch Load Functions                                                                           | 5    |
| 2-1。         | Typical Haunched Beam                                                                                   | 8    |
| 2=2.         | Typical Haunched Beam                                                                                   | 10   |
| 3-1.         | Beam With One Haunch                                                                                    | 14   |
| 3-2.         | Beam With One Haunch For $x = 0 \rightarrow L\alpha$                                                    | 15   |
| 3-3.         | Beam With One Haunch For $\mathbf{x} = \mathbf{L} \boldsymbol{\alpha} \rightarrow \mathbf{L}$           | 16   |
| 4-1.         | Symmetrical Beam                                                                                        | 22   |
| 4-2.         | Symmetrical Beam For $\mathbf{x} = 0 \rightarrow \mathbf{L}\boldsymbol{\beta}$                          | 23   |
| 4-3.         | Symmetrical Beam For $x = L\beta \rightarrow L(\beta + \gamma)$                                         | 24   |
| 4-40         | Symmetrical Beam For $\mathbf{x} = \mathbf{L}(\mathbf{\beta} + \mathbf{\gamma}) \rightarrow \mathbf{L}$ | 26   |
| 4-5.         | Symmetrical Beam For Uniform Load                                                                       | 27   |
| 5-1.         | Input Card Data                                                                                         | 31   |
| 5-2.         | Examples of Floating Decimals                                                                           | 32   |
| 5-3.         | Symmetrical Beam                                                                                        | 33   |
| 5-4.         | Input Card For One Symmetrical Beam                                                                     | 33   |
| 5-5.         | Unsymmetrical Beam                                                                                      | 34   |
| 5-6.         | Input Card For Series of Unsymmetrical Beams                                                            | 34   |
| 5-7。         | First Output Card                                                                                       | 35   |

v

,

| 5-8.  | Output Card For Live        | Load | d Function      | Coefficients    | o | o | o | 0 | 0 | ٥ | 36 |
|-------|-----------------------------|------|-----------------|-----------------|---|---|---|---|---|---|----|
| 5-9.  | Flow Chart                  | 0 O  | • • • • •       | 0 0 0 0 0 0     | o | o | 0 | o | o | o | 36 |
| 5-10. | IBM 650 Program             | 0 0  | 0 0 0 0 0       | 0 0 0 0 0 0 U   | o | ٥ | ø | ۰ | υ | ¢ | 44 |
| 6-1.  | Beam Constants For $\omega$ | = 1, | $, \beta = 0.3$ | • • • • • • • • | o | 0 | o | 0 | 0 | 0 | 59 |

# NOMENCLATURE

| a,a Length Coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b Width of Beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| f Angular Flexibility Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| hoose and the main set of the seam of the |
| h Depth of Haunch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $h_{x}, h_{z}$ Depth of Beam at x and z, Respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| n Moving Load Position Coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| p Maximum Intensity of Haunch Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| q Specific Weight of Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $t_{AB}, t_{BA}$ Angular Function Coefficients                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $t_x, t_z$ Ratio of $\frac{x}{L\alpha}$ and $\frac{z}{L\beta}$ , Respectively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| W Intensity of Uniform Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $x, x^1, z, z^1$ Coordinates of the Cross-Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A,B,C,D,E Letters Designating Cross-Sections of Beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (DL) Due to Dead Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| E Modulus of Elasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $F_{AB}, F_{BA}$ Angular Flexibilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| G,G,G, G,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (HL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| I <sub>O</sub> °°°°°°° Inertia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| I,I,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| L Length of Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

vii

| (LL) Due to Live Load                                                    |
|--------------------------------------------------------------------------|
| P                                                                        |
| $Q_{k}, R_{k}$ Integral Functions                                        |
| T Parabolic Function of Haunch                                           |
| (UL) Due to Uniformly Distributed Load                                   |
| $X_{k}$ Sum of Integral Functions For Beam                               |
| X Sum of Integral Functions to n kn                                      |
| $X_{kq}, X_{kq}^{i}, X_{kq}^{i}$ Integral Functions for Parabolic Haunch |
| $X_{kr}, X_{kr}^{i}, X_{kr}^{i}$ Integral Functions For Constant Depth   |
| $X_{kn}^{i},X_{kn}^{i}$ Integral Functions to n for Constant Depth       |
| X <sup>11</sup> Integral Functions to n for Parabolic Haunch<br>kn       |
| $lpha,\gamma$ Coefficients of Length of Constant Depth                   |
| eta Coefficient of Length of Haunch                                      |
| $\omega$ Coefficient of Depth of Haunch                                  |
| $\mu$ or $\frac{n-a}{\gamma}$                                            |
| $\mu_1$ · · · · · · · · · · · · · · · · · · ·                            |
| $\mathcal{T}_{AB}, \mathcal{T}_{BA}$ Angular Load Functions              |

.

#### CHAPTER I

#### DEFINITION OF BEAM CONSTANTS

### 1. <u>General</u>.

The analysis of continuous beams by carry-over moments requires the evaluation of certain constants which are defined as either angular functions or moment functions of a simple beam. An isolated span of a continuous beam of variable cross-section is considered. The location of the cross-section is given by the ordinates x and  $x^{\dagger}$  (Fig. 1-1).

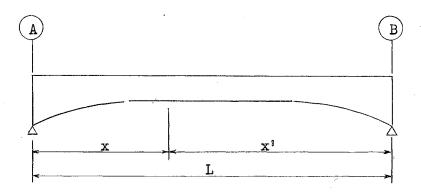
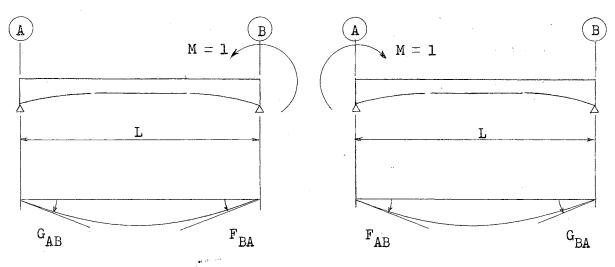
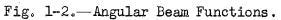



Fig. 1-1.-Isolated Span of Continuous Beam.

### 2. Angular Functions.

(a) <u>Angular Flexibilities</u>. The angular flexibility is the end slope of a simple beam due to a unit couple applied at that end. For the given beam (Fig. 1-2)


$$\mathbf{F}_{BA} = \frac{1}{L^2} \int_0^L \frac{\mathbf{x}^2 d\mathbf{x}}{\mathbf{EI}_{\mathbf{x}}}$$
(1-1a)


1

$$F_{AB} = \frac{1}{L^2} \int_0^L \frac{x^{i^2} dx}{EI_x} \qquad (1-1b)$$

(b) <u>Carry-Over Values</u>. The carry-over value is the end slope of a simple beam due to a unit couple applied at the far end (Fig. 1-2).

$$G = G_{AB} = G_{BA} = \frac{1}{L^2} \int_0^L \frac{xx^{i} dx}{EI_x} \quad . \quad (1-2)$$





Substituting the identity

 $\mathbf{x}^{1} \equiv \mathbf{L} - \mathbf{x}$ 

and rearranging Eqs. (1-1b, 2) gives

$$G = \frac{1}{L} \int_{0}^{L} \frac{x dx}{E I_{x}} - F_{BA}$$
(1-3)

$$F_{AB} = \int_{0}^{L} \frac{dx}{EI_{x}} - 2G - F_{BA} \qquad (1-4)$$

(c) <u>Angular Load Functions</u>. The angular load functions are the end slopes of a simple beam due to applied transverse loads.

<u>Live Load</u>. If a unit load is applied to the beam (Fig. 1-3), the angular load functions are

$$\mathcal{T}_{BA}^{(LL)} = nLG + \frac{1}{L} \int_{0}^{Ln} \frac{x^2 dx}{EI_x} - n \int_{0}^{Ln} \frac{x dx}{EI_x}$$
(1-5)

$$\tau_{AB}^{(LL)} = nL \left[ G + F_{AB} - \int_{0}^{Ln} \frac{dx}{EI_{x}} \right] + \int_{0}^{Ln} \frac{xdx}{EI_{x}} - \tau_{BA}^{(LL)} \quad . \quad (1-6)$$

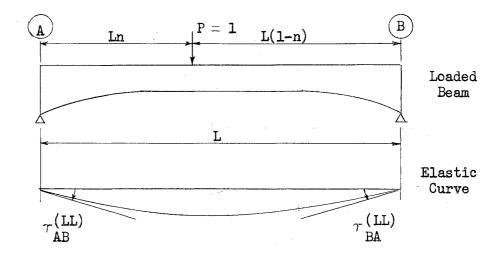



Fig. 1-3.-Angular Live Load Functions.

<u>Uniform Load</u>. If a uniform load of intensity w is applied to the beam (Fig. 1-4), the angular load functions are

$$\tau_{BA}^{(UL)} = \frac{\mathbf{w}}{2} \int_{0}^{L} \frac{\mathbf{x}^{2} d\mathbf{x}}{\mathbf{EI}_{\mathbf{x}}} - \frac{\mathbf{w}}{2\mathbf{L}} \int_{0}^{L} \frac{\mathbf{x}^{3} d\mathbf{x}}{\mathbf{EI}_{\mathbf{x}}}$$
(1-7a)  
$$\tau_{AB}^{(UL)} = \frac{\mathbf{w}_{L}}{2} \int_{0}^{L} \frac{\mathbf{x} d\mathbf{x}}{\mathbf{EI}_{\mathbf{x}}} - \frac{\mathbf{w}}{2} \int_{0}^{L} \frac{\mathbf{x}^{2} d\mathbf{x}}{\mathbf{EI}_{\mathbf{x}}} - \tau_{BA}^{(UL)} .$$
(1-7b)

3

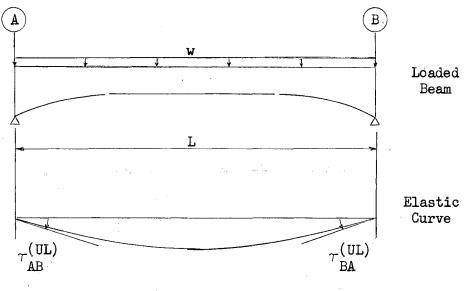



Fig. 1-4.-Angular Uniform Load Functions.

In terms of Eqs. (1-1a,2) Eqs. (1-7a,7b) become

$$\tau_{BA}^{(UL)} = \frac{wL^2}{2} F_{BA} - \frac{w}{2L} \int_{0}^{L} \frac{x^3 dx}{EI_x}$$
(1-8)

$$\tau_{AB}^{(UL)} = \frac{wL^2}{2} G - \tau_{BA}^{(UL)} . \qquad (1-9)$$

<u>Haunch Loads</u>. The angular load functions due to the dead load of the right haunch (Fig. 1-5) are

$$\tau_{BA}^{(HL)} = \frac{p\beta^2}{12} \int_0^L \frac{x^2 dx}{EI_x} - \frac{p}{12\beta^2 L^3} \int_L^L \frac{\left[\underline{x} - L(1-\beta)\right]^4 x dx}{EI_x}$$
(1-10a)

$$\tau_{AB}^{(HL)} = \frac{p\beta^2 L}{12} \int_0^L \frac{x dx}{EI_x} - \frac{p}{12(\beta L)^2} \int_L^L \frac{[x-L(1-\beta)]^4 x dx}{EI_x} - \tau_{BA}^{(HL)}.$$
 (1-10b)

where

p = The maximum intensity of the haunch load as shown in Fig. (1-5).

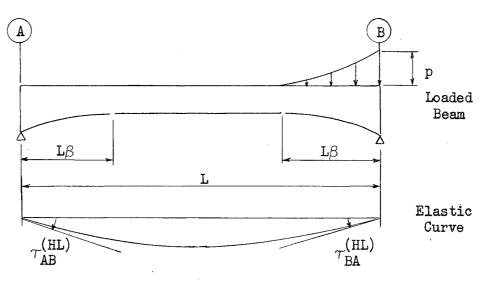



Fig. 1-5.-Angular Haunch Load Functions.

In terms of Eqs. (1-1a,3), Eqs. (1-10a,b) become

$$\tau_{BA}^{(HL)} = \frac{p\beta^2 L^2}{12} F_{BA} - \frac{p}{12\beta^2 L^3} \int_{L(1-\beta)}^{L} \frac{\left[\frac{x-L(1-\beta)}{EI}\right]^4 x dx}{L(1-\beta)}$$
(1-11)

$$\tau_{AB}^{(HL)} = \frac{p_{\beta}^{2}L^{2}}{12} (G + F_{BA}) - \frac{p}{12\beta^{2}L^{2}} \int_{L(1-\beta)}^{L} \frac{\left[\underline{x} - (L-\beta)\right]^{4} x dx}{EI_{x}} - \tau_{BA}^{(HL)} \quad .(1-12)$$

If the beam is symmetrical with two haunches of length L $\beta$ , Eqs. (1-11,12) become

$$\tau_{BA}^{(HL)} = \tau_{AB}^{(HL)} = \frac{p\beta^{2}L^{2}}{24} \int_{0}^{L} \frac{dx}{EI_{x}} - \frac{p}{12\beta^{2}L^{2}} \int_{L(1-\beta)}^{L} \frac{[x-L(1-\beta)]^{4}dx}{EI_{x}} .$$
 (1-13)

Noting that for the symmetrical beam

$$\mathbf{F}_{AB} = \mathbf{F}_{BA}$$

and writing Eq. (1-13) in terms of Eq. (1-4)

$$\tau_{BA}^{(HL)} = \tau_{AB}^{(HL)} = \frac{p\beta^2 L^2}{12} (F_{AB} + G) - \frac{p}{12\beta^2 L^2} \int_{L(1-\beta)}^{L} \frac{\left[\frac{x-L(1-\beta)}{EL}\right]^4 dx}{L(1-\beta)} .(1-14)$$

More complete derivations of Eqs. (1-1) to (1-14) may be found in (2). The apparent difference in the limits of integration for Eqs. (1-10a) to (1-14) in this work and the reference work is due to the selection of different reference axes.

#### CHAPTER II

#### INTEGRAL FUNCTIONS

#### 1. General.

The expressions for angular functions in Chapter 1 contain the recurring integrals

$$\int_{0}^{L} \frac{x^{k} dx}{I_{x}}$$
(2-1)
$$\int_{0}^{Ln} \frac{x^{k} dx}{I_{x}}$$
(2-2)

The solutions of integrals (2-1,2) may be greatly facilitated by relocating the reference axis and expressing the integrals in terms of integral functions R, Q, X<sub>kr</sub>, and X<sub>kq</sub>. The angular functions may then be expressed in terms of the integral functions as coefficients.

2. Integral Functions - Constant Depth.

A typical haunched beam is considered Fig. (2-1). The cross-section of the beam is constant over the length  $L\gamma$ . The moment of inertia

$$I_x = I_0 = \frac{1}{12} bh_0^3$$
 (2-3)

where

b = constant width $h_0 = reference depth$  .

7

The location of the cross-section is given by

$$\mathbf{x} = \mathbf{L}\mathbf{a} + \mathbf{t}_{\mathbf{x}}\mathbf{L}\boldsymbol{\gamma} \tag{2-4}$$

in which  $t_x$  varies between the limits

$$t_x = 0, t_x = 1$$

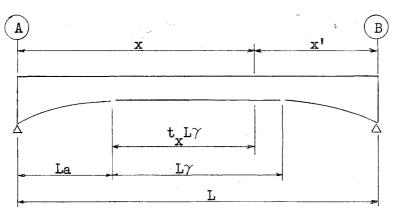



Fig. 2-1.-Typical Haunched Beam.

In terms of Eqs. (2-3,4) the integral (2-1) for constant crosssection becomes

$$\int_{La}^{L(a+\gamma)} \frac{\mathbf{x}^{k} d\mathbf{x}}{\mathbf{I}_{\mathbf{x}}} = \frac{\mathbf{L}^{k+1}}{\mathbf{I}_{0}} \int_{0}^{1} (a+\mathbf{t}_{\mathbf{x}}\gamma)^{k} \gamma d\mathbf{t}_{\mathbf{x}}$$

$$= \frac{\mathbf{L}^{k+1}}{\mathbf{I}_{0}} \mathbf{X}_{kr} \quad .$$
(2-5)

If the upper limit is x = Ln such that the corresponding upper limit

$$\mathbf{t}_{\mathbf{X}} = \boldsymbol{\mu} = \frac{\mathbf{n} - \mathbf{a}}{\gamma} , \qquad (2-6)$$

integral (2-2) becomes in terms of Eqs. (2-3,4,6)

$$\int_{La}^{Ln} \frac{\mathbf{x}^{\mathbf{k}} d\mathbf{x}}{\mathbf{I}_{\mathbf{x}}} = \frac{\mathbf{L}^{\mathbf{k}+\mathbf{l}}}{\mathbf{I}_{0}} \int_{0}^{\mu} (\mathbf{a} + \mathbf{t}_{\mathbf{x}} \gamma)^{\mathbf{k}} \gamma d\mathbf{t}_{\mathbf{x}}$$

$$= \frac{\mathbf{L}^{\mathbf{k}+\mathbf{l}}}{\mathbf{I}_{0}} \mathbf{X}^{*}_{\mathbf{kn}} \quad .$$

$$(2-7)$$

k=0, 1, 2, 3

in terms of the following integral functions and their equivalents.

$$R_{0} = \int_{0}^{1} dt_{x} = 1$$

$$R_{1} = \int_{0}^{1} t_{x} dt_{x} = \frac{1}{2}$$

$$R_{2} = \int_{0}^{1} t_{x}^{2} dt_{x} = \frac{1}{3}$$

$$R_{3} = \int_{0}^{1} t_{x}^{3} dt_{x} = \frac{1}{4}$$

$$R_{0n} = \int_{0}^{\mu} dt_{x} = \mu$$

$$R_{1n} = \int_{0}^{\mu} t_{x} dt_{x} = \frac{\mu^{2}}{2}$$

$$R_{2n} = \int_{0}^{\mu} t_{x}^{2} dt_{x} \frac{\mu^{3}}{3}$$

## 3. Integral Functions - Parabolic Haunch.

A typical haunch of length L $\beta$  is considered (Fig. 2-2). The depth of haunch varies as a parabola of second degree and its depth at support B is

$$h_h = \omega h_0$$

The location of the cross-section is given by

$$\mathbf{x} = \mathbf{L}\mathbf{a}_{1} + \mathbf{z} = \mathbf{L}\mathbf{a}_{1} + \mathbf{t}_{\mathbf{z}}\mathbf{L}\boldsymbol{\beta} \qquad (2-9)$$

. . . . . . .

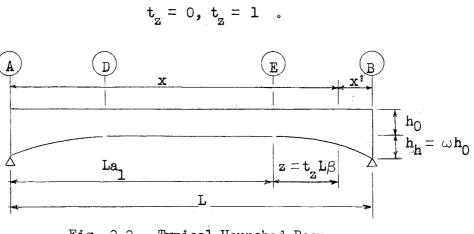



Fig. 2-2.-Typical Haunched Beam.

The depth of the cross-section at x is

$$h_{x} = h_{z} = h_{0}T_{z}$$
 (2-10)

where  ${\rm T}_{_{\rm Z}}$  is the parabolic function

$$T_z = 1 + \omega t_z^2 \quad . \tag{2-11}$$

From Eq. (2-10) the moment of inertia at x is

$$I_x = I_z = I_0 T_z^3$$
 (2-12)

In terms of Eqs. (2-9,12) the integral (2-1) for the parabolic haunch

is

$$\int_{La_{1}}^{L(a_{1}+\beta)} \frac{x^{k} dx}{I_{x}} = \frac{L^{k+1}}{I_{0}} \int_{0}^{1} \frac{(a_{1}+t_{z}\beta)^{k} \beta dt_{z}}{T_{z}^{3}}$$
$$= \frac{L^{k+1}}{I_{0}} X_{kq} \quad .$$
(2-13)

If the upper limit x = Ln is such that the corresponding upper limit

$$t_z = \mu_1 = \frac{n-a_1}{\beta}$$
, (2-14)

integral (2-2) becomes in terms of Eqs. (2-9,12,14)

$$\int_{La}^{Ln} \frac{\mathbf{x}^{k} d\mathbf{x}}{\mathbf{I}_{\mathbf{x}}} = \frac{\mathbf{L}^{k+1}}{\mathbf{I}_{0}} \int_{0}^{\mu} \frac{(\mathbf{a}_{1} + \mathbf{t}_{z}\beta)^{k}\beta d\mathbf{t}_{z}}{\mathbf{T}_{z}^{3}}$$

$$= \frac{\mathbf{L}^{k+1}}{\mathbf{I}_{0}} \mathbf{x}^{**} \mathbf{k}_{n} \quad .$$

$$(2-15)$$

The following algebraic equivalents are introduced for the solution of Eqs. (2-13,15).

$$B = \frac{1}{4(1+\omega)^2}$$

$$B_n = \frac{\mu_1}{4(1+\omega\mu_1^2)^2}$$

$$C = \frac{1}{8(1+\omega)}$$

$$C_n = \frac{\mu_1}{8(1+\omega\mu_1^2)}$$

$$D = \frac{1}{8\sqrt{\omega}} \operatorname{Tan}^{-1} \sqrt{\omega}$$

$$D_n = \frac{1}{8\sqrt{\omega}} \operatorname{Tan}^{-1} \mu_1 \sqrt{\omega}$$

$$Lg = \frac{1}{2} \log (1+\omega)$$

$$(2-16a)$$

With notations (2-16a) Eqs. (2-13,15) will be evaluated in Chapters 3, 4, and 5 in terms of the following integral functions and their equivalents.

$$Q_{0} = \int_{0}^{1} \frac{dt_{z}}{T_{z}^{3}} = B + 3C + 3D$$

$$Q_{1} = \int_{0}^{1} \frac{t_{z}dt_{z}}{T_{z}^{3}} = B + 2C$$

$$Q_{2} = \int_{0}^{1} \frac{t_{z}^{2}dt_{z}}{T_{z}^{3}} = \frac{1}{\omega}(-B + C + D)$$

$$Q_{3} = \int_{0}^{1} \frac{t_{z}^{3}dt_{z}}{T_{z}^{3}} = B$$

(2**-**16b)

$$Q_{0n} = \int_{0}^{\mu} \frac{dt_{z}}{T_{z}^{3}} = B_{n} + 3C_{n} + 3D_{n}$$

$$Q_{1n} = \int_{0}^{\mu} \frac{t_{z}dt_{z}}{T_{z}^{3}} = \mu_{1}(B_{n} + 2C_{n}) \qquad (2-16b)$$
(Cont.)

$$Q_{2n} = \int_{0}^{\mu_{1}} \frac{t_{z}^{2} dt_{z}}{T_{z}^{3}} = \frac{1}{\omega} (-B_{n} + C_{n} + D_{n})$$
.

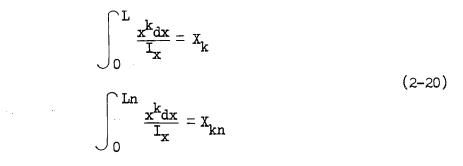
Expressed in terms of  $t_z$  and  $T_z$ , the integrals contained in the expressions for haunch load angular functions (Eqs. 1-11,12,13,14) are

$$\int_{0}^{L\beta} \frac{z^{4}dz}{I_{z}} = \frac{L}{I_{0}}^{5} \int_{0}^{1} \frac{\beta^{5}t_{z}^{4}dt_{z}}{T_{z}^{3}}$$
(2-17)  
$$= \frac{L}{I_{0}}^{5} X_{4q} .$$
$$\int_{0}^{L\beta} \frac{z^{4}(La_{1}+z)dz}{I_{z}} = \frac{L}{I_{0}}^{6} \int_{0}^{1} \frac{\beta^{5}t_{z}^{4}(a_{1}+t_{z}\beta)dt_{z}}{T_{z}^{3}}$$
(2-18)  
$$= \frac{L}{I_{0}}^{6} X_{5q} .$$

With notations (2-16a,b) Eqs. (2-17,19) will be evaluated in Chapters 3, 4, and 5 in terms of the following integral functions and algebraic equivalents.

$$Q_{4} = \int_{0}^{1} \frac{t_{z}^{4} dt_{z}}{T_{z}^{3}} = \frac{1}{\omega^{2}} (Q_{0} - 8C)$$

$$Q_{5} = \int_{0}^{1} \frac{t_{z}^{5} dt_{z}}{T_{z}^{3}} = \frac{1}{\omega^{3}} (Lg - 2\omega^{2}Q_{3} - Q_{1})$$
(2-19)


#### 4. Integral Substitution And Numerical Evaluation.

Substituting the lower limits

$$t_{x,z} = 0$$

into Eqs. (2-8,16a) reduces all expressions to zero. Hence, Eqs. (2-8, 16b,19) need be evaluated only at the upper limit to obtain the desired solutions.

The integrals (2-1,2) will be replaced by the integral functions

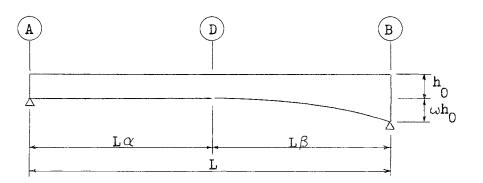


and the second second

in which the symbols  $X_k$ ,  $X_{kn}$  are the sum of the X-functions as indicated by the limits.

The algebraic expressions for R-functions (Eqs. 2-8) and Q-functions (Eqs. 2-16b) will be evaluated numerically on the IBM 650 Electronic Computer. From these values, the numerical solutions for the X-functions (Eqs. 2-20) and finally the angular function coefficients to be derived in Chapters 4 and 5 will be obtained.

## CHAPTER III


#### ANGULAR COEFFICIENTS - BEAMS WITH ONE HAUNCH

#### 1. <u>General</u>.

A beam of length L with one parabolic haunch is considered Fig. (3-1). The beam is of constant depth over the length L $\alpha$  and the reference moment of inertia is Eq. (2-3)

$$I_0 = \frac{1}{12}bh_0^3$$
 (3-1)

The length of the haunch is  $L\beta$  and the moment of inertia at any crosssection within the haunch is Eq. (2-11)



 $I_x = I_0 T_z^3$  (3-2)

Fig. 3-1. - Beam With One Haunch.

# 2. Integral Functions $X_{kr}$ $(x = 0 \rightarrow L\alpha)$ .

The location of the cross-section is given by (Fig. 3-2)

$$\mathbf{x} = \mathbf{t}_{\mathbf{x}} \mathbf{L} \boldsymbol{\alpha}$$
.

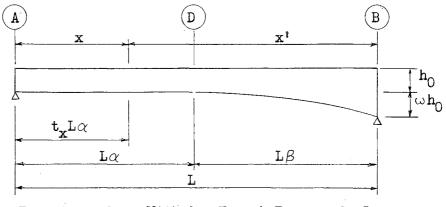



Fig. 3-2.—Beam With One Haunch For  $x = 0 \rightarrow L\alpha$ .

Substituting

into Eqs. (2-5,7) gives

$$\mathbf{X}_{\mathbf{kr}} = \alpha^{\mathbf{k}+\mathbf{l}} \int_{0}^{\mathbf{l}} \mathbf{t}_{\mathbf{x}}^{\mathbf{k}} d\mathbf{t}_{\mathbf{x}}$$
(3-4)

$$X_{kn}^{*} = \alpha^{k+1} \int_{0}^{\mu} t_{x}^{k} dt_{x} . \qquad (3-5)$$

In terms of functions  $R_k$ , Eqs. (2-7; 3-4,5) are

$$X_{0r} = \alpha \int_{0}^{1} dt_{x} = \alpha R_{0}$$

$$X_{1r} = \alpha^{2} \int_{0}^{1} t_{x} dt_{x} = \alpha^{2} R_{1}$$

$$X_{1r} = \alpha^{2} \int_{0}^{1} t_{x} dt_{x} = \alpha^{2} R_{1}$$

$$X_{1r} = \alpha^{2} \int_{0}^{\mu} t_{x} dt_{x} = \alpha^{2} R_{1n}$$

$$X_{2r} = \alpha^{3} \int_{0}^{1} t_{x}^{2} dt_{x} = \alpha^{3} R_{2}$$

$$X_{2r} = \alpha^{3} \int_{0}^{\mu} t_{x}^{2} dt_{x} = \alpha^{3} R_{2n}$$

$$X_{2r} = \alpha^{3} \int_{0}^{\mu} t_{x}^{2} dt_{x} = \alpha^{3} R_{2n}$$

$$\mathbf{x}_{3r} = \alpha^{4} \int_{0}^{1} \mathbf{t}_{\mathbf{x}}^{3} d\mathbf{t}_{\mathbf{x}} = \alpha^{4} \mathbf{R}_{3} \quad . \tag{3-6}$$
(Cont.)

If the upper limit x = Ln (Eqs. 2-6,7) is such that

 $0 \leq n \leq \alpha$ ,

with notation (2-20)

$$X_{kn} = X^{*}_{kn}$$
 (3-7)

3. Integral Functions  $\underline{X}_{kq}$  (x = L $\alpha \rightarrow L$ ).

The location of the cross-section is given by (Fig. 3-3)

$$\mathbf{x} = \mathbf{L}\alpha + \mathbf{t}_{\mathbf{z}}\mathbf{L}\beta . \tag{3-8}$$

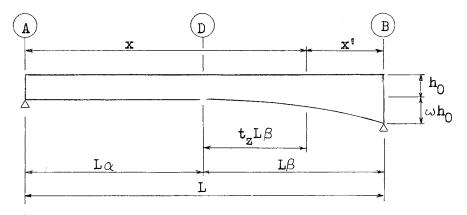



Fig. 3-3.—Beam With One Haunch For  $\mathbf{x} = \mathbf{L}\alpha \rightarrow \mathbf{L}$ .

Substituting

$$\mathbf{a} = \boldsymbol{\alpha} = \mathbf{1} - \boldsymbol{\beta} \tag{3-9}$$

into Eqs. (2-12,13) yields

$$X_{kq} = \int_{0}^{1} \frac{\left[1 - \beta(1 - t_z)\right]^k \beta dt_z}{T_z^3}$$
(3-10)

$$X^{**}_{kn} = \int_{0}^{\mathcal{H}_{1}} \frac{\left[1-\beta(1-t_{z})\right]^{k}\beta dt_{z}}{T_{z}^{3}} \quad . \tag{3-11}$$

The bracketed terms in Eqs. (3-10,11) may be replaced by the identities

$$Z = 1 - \beta(1 - t_z)$$
  

$$Z^0 = 1$$
  

$$Z^1 = Z$$
  

$$Z^2 = \beta^2 (1 - t_z)^2 + 2Z - 1$$
  

$$Z^3 = \beta^3 (1 - t_z)^3 + 3Z^2 - 3Z + 1$$
.  
(3-12)

Thus, each succeeding power of Z is written in terms of preceeding powers.

Expressed in terms of  $Q_k$  functions (Eqs. 2-18) and with notations (3-12) Eqs. (3-10,11) are

$$\begin{split} \mathbf{X}_{0q} &= \int_{0}^{1} \frac{\mathbf{Z}_{\beta}^{0} d\mathbf{t}_{z}}{\mathbf{T}_{z}^{3}} = \beta \mathbf{Q}_{0} \\ \mathbf{X}_{1q} &= \int_{0}^{1} \frac{\mathbf{Z}_{\beta}^{1} d\mathbf{t}_{z}}{\mathbf{T}_{z}^{3}} = -\beta^{2}(\mathbf{Q}_{0} - \mathbf{Q}_{1}) + \mathbf{X}_{0q} \\ \mathbf{X}_{2q} &= \int_{0}^{1} \frac{\mathbf{Z}_{\beta}^{2} d\mathbf{t}_{z}}{\mathbf{T}_{z}^{3}} = \beta^{3}(\mathbf{Q}_{0} - 2\mathbf{Q}_{1} + \mathbf{Q}_{2}) + 2\mathbf{X}_{1q} - \mathbf{X}_{0q} \\ \mathbf{X}_{3q} &= \int_{0}^{1} \frac{\mathbf{Z}_{\beta}^{3} d\mathbf{t}_{z}}{\mathbf{T}_{z}^{3}} = \beta^{4}(-\mathbf{Q}_{0} + 3\mathbf{Q}_{1} - 3\mathbf{Q}_{2} + \mathbf{Q}_{3}) + 3\mathbf{X}_{2q} - 3\mathbf{X}_{1q} + \mathbf{X}_{0q} \quad . \end{split}$$

The X functions for uniform and dead loads (Eqs. 2-17,18) expressed in terms of notations (2-19; 3-8) are

$$x_{4q} = \int_{0}^{1} \frac{\beta^{5} t_{z}^{4} dt_{z}}{T_{z}^{3}} = \beta^{5} Q_{4}$$

$$x_{5q} = \int_{0}^{1} \frac{\beta^{5} t_{z}^{4} Z dt_{z}}{T_{z}^{3}} = x_{4q} + \beta^{6} (Q_{5} - Q_{4}) \quad .$$
(3-14)

Similarly as for functions X

$$\begin{split} \mathbf{X}_{0n}^{iii} &= \int_{0}^{\mu_{1}} \frac{\mathbf{Z}_{\beta}^{0} d\mathbf{t}_{z}}{\mathbf{T}_{z}^{3}} = \beta \mathbf{Q}_{0n} \\ \mathbf{X}_{1n}^{iii} &= \int_{0}^{\mu_{1}} \frac{\mathbf{Z}_{\beta}^{1} d\mathbf{t}_{z}}{\mathbf{T}_{z}^{3}} = -\beta^{2} (\mathbf{Q}_{0} - \mathbf{Q}_{1}) + \mathbf{X}_{0n}^{iii} \\ \mathbf{X}_{2n}^{iii} &= \int_{0}^{\mu_{1}} \frac{\mathbf{Z}_{\beta}^{2} d\mathbf{t}_{z}}{\mathbf{T}_{z}^{3}} = \beta^{3} (\mathbf{Q}_{0n} - \mathbf{Q}_{1n} + \mathbf{Q}_{2n}) + 2\mathbf{X}_{1n}^{ii} - \mathbf{X}_{0n}^{iii} \end{split}$$
(3-15)

If the upper limit x = Ln (Eqs. 2-14,15) is such that

$$\alpha \leq n \leq 1,$$

$$X_{kn} = X_{kr} + X_{kn}^{**} \quad . \tag{3-16}$$

## 4. Angular Functions - Coefficients.

The angular function coefficients are introduced as noted. With notations (2-5,7,13,15) the angular beam functions become:

(a) <u>Angular Flexibility</u>,  $\underline{F}_{BA}(\underline{Eq. 1-la})$ .  $F_{BA} = \frac{1}{L^2} \int_{0}^{L} \frac{x^2 dx}{\underline{EI}_x} = \frac{L}{\underline{EI}_0} X_2$   $= \frac{L}{\underline{EI}_0} f_{BA}$ (3-17)

hence,

$$f_{BA} = X_{2r} + X_{2q}$$
 (3-18)

(b) Angular Carry Over Value, G (Eq. 1-3).

~ 7

$$G = \frac{1}{L} \int_{0}^{L} \frac{x dx}{E I_{x}} - F_{BA} = \frac{L}{E I_{0}} (X_{1} - f_{BA})$$

$$= \frac{L}{E I_{0}} g$$
(3-19)

18

in which

$$g = X_{lr} + X_{lq} - f_{BA} \quad . \tag{3-20}$$

(c) <u>Angular Flexibility</u>,  $\underline{F}_{AB}$  (Eq. 1-4).  $F_{AB} = \int_{0}^{L} \frac{dx}{EI_{x}} - 2G - F_{BA} = \frac{L}{EI_{0}} (X_{0} - 2g - f_{BA})$   $= \frac{L}{EI_{0}} f_{AB}$ (3-21)

and

$$f_{AB} = X_{0r} + X_{0q} - 2g - f_{BA}$$
 (3-22)

Expressed in terms of  $X_{kq}$  functions (Eqs. 2-5,13) and angular beam function coefficients (Eqs. 3-18,20,22), the uniform load angular coefficients are:

(a) Angular Load Function 
$$T_{BA}^{(UL)}$$
 (Eq. 1-8) .  

$$\tau_{BA}^{(UL)} = \frac{wL^2}{2} F_{BA} - \frac{w}{2L} \int_0^L \frac{x^3 dx}{EI_x} = \frac{wL^3}{EI_0} \frac{1}{2} (f_{BA} - X_3)$$

$$= \frac{wL^3}{EI_0} t_{BA}^{(UL)}$$
(3-23)

in which

$$t_{BA}^{(UL)} = \frac{1}{2} (f_{BA} - X_{3r} - X_{3q}) . \qquad (3-24)$$
(b) Angular Load Function  $T_{AB}^{(UL)} (Eq. 1-9) .$ 

$$\tau_{AB}^{(UL)} = \frac{wL^{2}}{2} G - \tau_{BA}^{(UL)} = \frac{wL^{3}}{EI_{0}} (\frac{1}{2} g - t_{BA}^{(UL)}) \qquad (3-25)$$

$$= \frac{wL^{3}}{EI_{0}} t_{AB}^{(UL)}$$

in which

$$t_{AB}^{(UL)} = \frac{1}{2} g - t_{BA}^{(UL)}$$
 (3-26)

The haunch dead load angular coefficients expressed in terms of  $X_{kq}$  functions (Eqs. 2-17,18; 3-14) and angular beam function coefficients (Eqs. 3-18,20,22) are

(a) <u>Angular Load Function</u>  $T_{BA}^{(HL)}$  (Eq. 1-11).

$$\tau_{BA}^{(HL)} = \frac{p_{\beta}^{2}L^{2}}{L^{2}} F_{BA} - \frac{p}{12\beta^{2}L^{3}} \int_{0}^{L} \frac{z^{4}(La_{1}+z)dz}{EI_{z}}$$
$$= \frac{pL^{3}}{EI_{0}} \left(\frac{\beta^{2}}{12} f_{BA} - \frac{1}{12\beta^{2}} X_{5q}\right)$$
$$= \frac{pL^{3}}{EI_{0}} t_{BA}^{(HL)}$$
(3-27)

since

$$\mathbf{p} = \mathbf{q}\mathbf{h}_0\omega$$

$$\mathbf{t}_{\mathrm{BA}}^{(\mathrm{HL})} = \frac{\omega\beta^2}{12} \mathbf{f}_{\mathrm{BA}} - \frac{\omega}{12}\beta^2 \mathbf{X}_{5q} \quad . \tag{3-28}$$

(b) <u>Angular Load Function</u>  $T_{AB}^{(HL)}$  (Eq. 1-12).

$$\tau_{AB}^{(HL)} = \frac{p\beta^{2}L^{2}}{12} (F_{BA} + G) - \frac{p}{12E\beta^{2}L^{2}} \int_{0}^{L\beta} \frac{z^{4}dz}{I_{z}}$$
$$= \frac{pL^{3}}{EI_{0}} (\frac{\beta^{2}}{12} f_{BA} + \frac{\beta^{2}}{12} g - \frac{1}{12\beta^{2}} X_{4q})$$
$$= \frac{pL^{3}}{EI_{0}} t_{AB}^{(HL)}$$
(3-29)

in which

$$t_{AB}^{(HL)} = \frac{\beta^2}{12} (f_{BA} + g) - \frac{\omega}{12\beta^2} X_{4q}$$
 (3-30)

The live load angular coefficients expressed in terms of X functions (Eqs. 3-6,12) and angular beam function coefficients (Eqs. 3-18, 20,22) are

(a) Angular Load Function 
$$\underline{\tau}_{BA}^{(LL)}$$
 (Eq. 1-5).  
 $\tau_{BA}^{(LL)} = nLG + \frac{1}{L} \int_{0}^{Ln} \frac{\mathbf{x}^2 d\mathbf{x}}{\mathbf{EI}_{\mathbf{x}}} - n \int_{0}^{Ln} \frac{\mathbf{x} d\mathbf{x}}{\mathbf{EI}_{\mathbf{x}}}$   
 $= \frac{L^2}{\mathbf{EI}_0} (ng - nX_{1n} + X_{2n})$  (3-31)  
 $= \frac{L^2}{\mathbf{EI}_0} t_{BA}^{(LL)}$ 

where

$$t_{BA}^{(LL)} = n(g - X_{ln}) + X_{2n} \qquad (3-32)$$
(b) Angular Load Function  $T_{AB}^{(LL)}$  (Eq. 1-6).
$$\tau_{AB}^{(LL)} = nL(G + F_{AB} - \frac{1}{R} \int_{-\infty}^{-1} \frac{dx}{T} + \frac{1}{R} \int_{-\infty}^{-1} \frac{xdx}{T} - \tau_{BA}^{(LL)}$$

$$\begin{array}{l} \mathcal{A}_{AB} = \operatorname{HI}(\mathbf{G} + \mathbf{I}_{AB} - \mathbf{E}_{B}) \\ = \frac{\mathbf{L}^{2}}{\mathbf{E}\mathbf{I}_{0}} \left( \operatorname{ng} + \operatorname{nf}_{AB} - \operatorname{nX}_{0n} + \mathbf{X}_{1n} - \mathbf{t}_{BA}^{(\mathrm{LL})} \right) \\ = \frac{\mathbf{L}^{2}}{\mathbf{E}\mathbf{I}_{0}} \mathbf{t}_{AB}^{(\mathrm{LL})} \end{array}$$
(3-33)

and

$$\mathbf{t}_{AB}^{(LL)} = \mathbf{n}(\mathbf{g} + \mathbf{f}_{AB} - \mathbf{X}_{On}) + \mathbf{X}_{ln} - \mathbf{t}_{BA}^{(LL)} . \qquad (3-34)$$

#### CHAPTER IV

#### ANGULAR COEFFICIENTS - SYMMETRICAL BEAMS

## 1. <u>General</u>.

A beam of length L with two symmetrical parabolic haunches is considered (Fig. 4-1). The beam is of constant depth over the length  $L\gamma$ and from Eq. (2-3)

$$I_x = I_0 = \frac{1}{12} bh_0^3$$
. (4-1)

The length of each haunch is  $L\beta$  and for any cross-section within either haunch from Eqs. (2-11,12)

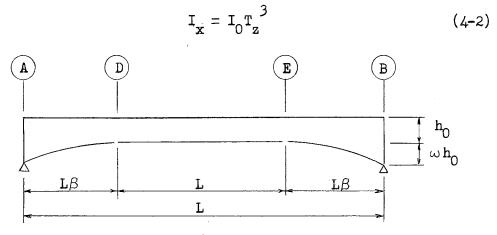



Fig. 4-1.—Symmetrical Beam.

2. Integral Functions  $X_{kq}$  (x = 0 -> L $\beta$ ).

The location of the cross-section is given by (Fig. 4-2)

$$\mathbf{x} = \mathbf{L}\boldsymbol{\beta} - \mathbf{t}_{\mathbf{z}}\mathbf{L}\boldsymbol{\beta}$$
 .

For

$$a_1 = \beta$$

and, noting the change in sign, from Eq. (2-13)

$$\mathbf{X}_{\mathbf{kq}}^{*} = \frac{\mathbf{L}^{\mathbf{k}+1}}{\mathbf{I}_{0}} \int_{0}^{1} \frac{\beta^{\mathbf{k}}(1-\mathbf{t}_{\mathbf{z}})^{\mathbf{k}}\beta d\mathbf{t}_{\mathbf{z}}}{\frac{\mathbf{T}_{\mathbf{z}}^{3}}{\mathbf{T}_{\mathbf{z}}}} \quad .$$
(4-3)

With notations (3-9,10) the integral functions  $X_{kq}^i$  may be expressed in terms of integral functions  $X_{kq}^i$ . Thus,

$$X_{kq}^{*} = \frac{\underline{L}^{k+1}}{I_{0}} \int_{0}^{1} \frac{\left[1 - \{1 - \beta(1 - t_{z})\}\right]^{k} \beta dt_{z}}{T_{z}^{3}}$$

$$= \frac{\underline{L}^{k+1}}{I_{0}} \int_{0}^{1} \frac{(1 - Z)^{k} \beta dt_{z}}{T_{z}^{3}} .$$
(4-4)

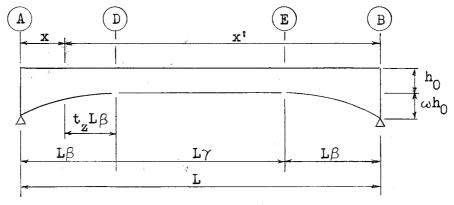
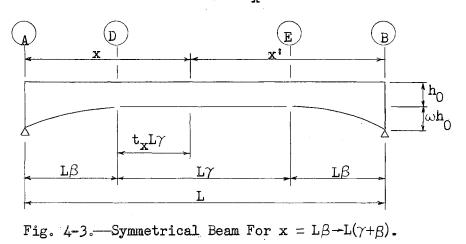



Fig. 4-2.—Symmetrical Beam For  $x = 0 \rightarrow L\beta$ .

For values

$$k = 0, 1, 2$$

$$x_{0q} = \int_{0}^{1} \frac{(1-Z)^{0} \beta dt_{z}}{T_{z}^{3}} = x_{0q}$$
 (4-5)


$$X_{lq}^{i} = \int_{0}^{1} \frac{(1-Z)^{l}\beta dt_{z}}{T_{z}^{3}} = X_{0q} - X_{lq}$$

$$X_{2q}^{i} = \int_{0}^{1} \frac{(1-Z)^{2}\beta dt_{z}}{T_{z}^{3}} = X_{0q} - 2X_{lq} + X_{2q} .$$
(4-5)  
(Cont.)

Since the beam is symmetrical the angular live load coefficients need not be computed for the unit load in positions that require the computation of  $X_{kn}$  functions for the left haunch.

3. Integral Functions  $\underline{X}_{kr} (\underline{x} = \underline{L}\beta \rightarrow \underline{L}(\beta + \gamma))_{\bullet}$ 

The location of the cross-section is given by (Fig. 4-3)



$$\mathbf{x} = \mathbf{L}\boldsymbol{\beta} + \mathbf{t}_{\mathbf{v}}\mathbf{L}\boldsymbol{\alpha}$$

Substituting into Eq. (2-4)

 $\mathbf{a} = \beta$ 

gives for functions  $X_{kr}^{\dagger}$  (Eq. 2-5)

$$\mathbf{X}_{\mathbf{kr}}^{*} = \int_{0}^{1} \left(\beta + \mathbf{t}_{\mathbf{x}}^{\gamma}\right)^{\mathbf{k}} \gamma d\mathbf{t}_{\mathbf{x}} \quad . \tag{4-6}$$

Expressed in terms of notations (3-6), Eq. (4-6) for values

k = 0, 1

$$\begin{aligned} \mathbf{x}_{0\mathbf{r}}^{i} &= \int_{0}^{1} (\beta + \gamma \mathbf{t}_{\mathbf{x}})^{0} \gamma d\mathbf{t}_{\mathbf{x}} = \mathbf{x}_{0\mathbf{r}} \\ \mathbf{x}_{\mathbf{l}\mathbf{r}}^{i} &= \int_{0}^{1} (\beta + \gamma \mathbf{t}_{\mathbf{x}})^{1} \gamma d\mathbf{t}_{\mathbf{x}} = \beta \mathbf{x}_{0\mathbf{r}} + \mathbf{x}_{\mathbf{l}\mathbf{r}} \end{aligned}$$
(4-7)

Evaluating Eq. (4-6) in terms of Eqs. (4-7) and with notations (3-6) for k = 2 gives

$$\mathbf{X}_{2\mathbf{r}}^{i} = \int_{0}^{1} (\beta + \gamma \mathbf{t}_{\mathbf{x}})^{2} \gamma d\mathbf{t}_{\mathbf{x}} = -\beta^{2} \mathbf{X}_{0\mathbf{r}}^{i} + 2\beta \mathbf{X}_{1\mathbf{r}}^{i} + \mathbf{X}_{2\mathbf{r}} \quad .$$
 (4-8)

Thus, each function  $X_{kr}^{i}$  is written in terms of previously evaluated functions  $X_{kr}^{i}$  and notations (3-6).

For uniform load angular functions (Eqs. 1-7a,b) the integral (2-1) must be evaluated for

$$\alpha^{1} = \frac{\gamma}{2}$$

Substituting this value into notations (3-6) gives for uniform load

$$\begin{aligned} \mathbf{x}_{0\mathbf{r}}^{\text{ii}} &= \frac{\gamma}{2} \int_{0}^{1} d\mathbf{t}_{\mathbf{x}} = \frac{\gamma}{2} \mathbf{R}_{0} \\ \mathbf{x}_{2\mathbf{r}}^{\text{ii}} &= (\frac{\gamma}{2})^{3} \int_{0}^{1} \mathbf{t}_{\mathbf{x}}^{2} d\mathbf{t}_{\mathbf{x}} = (\frac{\gamma}{2})^{3} \mathbf{R}_{2} \quad . \end{aligned}$$
(4-9)

No other  $X_{kr}^{ii}$  functions are necessary.

Similarly as for functions  $X_{kr}^{i}$ 

$$X_{0n}^{iii} = \int_{0}^{\mu} (\beta + \gamma t_{x})^{0} \gamma dt_{x} = X_{0n}^{i}$$

$$X_{ln}^{iii} = \int_{0}^{\mu} (\beta + \gamma t_{x})^{1} \gamma dt_{x} = X_{0n}^{i} + X_{ln}^{i}$$
(4-10)

$$\mathbf{X}_{2n}^{\mathbf{i}\mathbf{i}\mathbf{i}} = \int_{0}^{\mu} (\beta + \gamma \mathbf{t}_{\mathbf{x}})^{2} \gamma d\mathbf{t}_{\mathbf{x}} = -\beta^{2} \mathbf{X}_{0n}^{\mathbf{i}} + 2 \mathbf{X}_{1n}^{\mathbf{i}\mathbf{i}\mathbf{i}} + \mathbf{X}_{2n}^{\mathbf{i}} . \quad (4-10)$$
(Cont.)

If the upper limit x = Ln (Eqs. 2-6,7) is such that

$$\beta \leq n \leq \beta + \gamma$$

$$X_{kn} = X_{kq}^{i} + X_{kn}^{i+i} . \qquad (4-11)$$

4. Integral Functions  $\underline{X}_{kq} \xrightarrow{(\mathbf{x} = \mathbf{L}(\beta + \gamma) \rightarrow \mathbf{L})}$ .

The location of the cross-section is given by (Fig. 4-4)

$$\mathbf{x} = \mathbf{L}(\boldsymbol{\beta} + \boldsymbol{\gamma}) + \mathbf{t}_{\mathbf{z}}\mathbf{L}\boldsymbol{\beta}$$

and

$$\mathbf{a_1} = \beta + \gamma = \mathbf{1} - \beta$$

which is identical to the value for  $a_1$  in Eq. (3-8), therefore with the exception of uniform load (Eqs. 1-7a,b), the solutions for functions  $X_{kq}$  and  $X_{kn}$  are given by Eqs. (3-10,11,12,13,15,16).

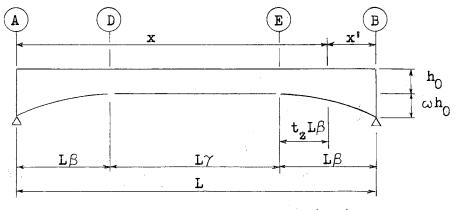



Fig. 4-4.—Symmetrical Beam For  $x = L(\beta + \gamma) \rightarrow L$ .

For uniform load the cross-section is measured from the center of the beam (Fig. 4-5)

$$\mathbf{x} = \mathbf{L} \frac{\gamma}{2} + \mathbf{t_z} \mathbf{L} \boldsymbol{\beta}$$
 .

Substituting

$$a_1 = \frac{\gamma}{2} = \frac{1}{2} (1 - 2\beta)$$

into Eq. (2-12) and considering notation (3-9) gives for k = 2

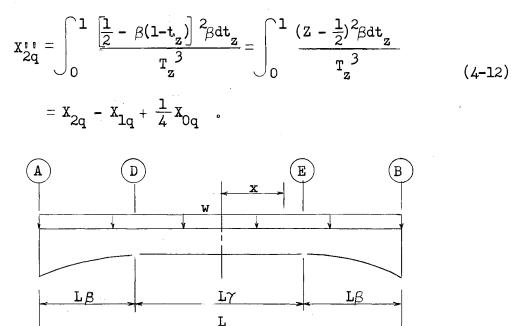



Fig. 4-5.-Symmetrical Beam For Uniform Load.

#### 5. Angular Functions - Coefficients.

Similarly as for the unsymmetrical beam, the angular functions will be expressed in terms of coefficients as follows:

(a) <u>Angular Flexibility Coefficient</u>,  $f_{BA}$  (Eq. 3-17).

$$f_{BA} = X_2 = X_{2q}^{i} + X_{2r}^{i} + X_{2q}^{i}$$
 (4-13)

(b) <u>Angular Carry-Over Value Coefficient</u>, g (Eq. 3-19).

$$g = X_1 - f_{BA} = X_{1q}^{i} + X_{1r}^{i} + X_{1q}$$
 (4-14)

(c) Angular Flexibility Coefficient, 
$$f_{AB} \xrightarrow{(Eq. 3-21)}$$
.  
 $f_{AB} = X_0 - 2g - f_{BA} = X_{0q}^{!} + X_{0r}^{!} + X_{0q} - 2g - f_{BA}$ . (4-15)

For symmetrical beams the uniform load angular functions may be written (3)

$$\tau_{BA}^{(UL)} = \tau_{AB}^{(UL)} = \frac{wL^2}{8E} \int_0^{\frac{L}{2}} \frac{dx}{I_x} - \frac{w}{2E} \int_0^{\frac{L}{2}} \frac{x^2 dx}{I_x} . \qquad (4-16)$$

Proceeding as in Eqs. (3-23,24) and with notations (3-13; 4-9)

$$t_{BA_{c}}^{(UL)} = \frac{1}{8} \left( X_{0r}^{ii} + X_{0q}^{i} \right) - \frac{1}{2} \left( X_{2r}^{ii} + X_{2q}^{ii} \right) \quad . \tag{4-17}$$

The haunch load angular functions are (Eq. 1-13)

$$\tau_{BA}^{(HL)} = \tau_{AB}^{(HL)} = \frac{p\beta^2}{12E} \int_0^{\frac{L}{2}} \frac{dx}{I_x} - \frac{p}{12\beta^2 L^2 E} \int_0^{L\beta} \frac{z \, dz}{I_z} \, . \quad (4-18)$$

Proceeding as in Eqs. (3-27,28) and with notations (3-13,14; 4-9)

$$t_{BA}^{(HL)} = \frac{\beta^2 \omega}{12} (X_{0r}^{**} + X_{0q}) - \frac{\omega}{12\beta^2} X_{4q} \quad .$$
 (4-19)

The coefficients for the angular live load functions are given by Eqs. (3-32,34).

#### CHAPTER V

#### PROGRAM FOR THE IBM 650 ELECTRONIC COMPUTER

#### 1. <u>General</u>

Programming for the solution of any problem on a digital computer is usually accomplished in two steps. First, a drawing showing each phase of the problem and the sequence of operations is made. Second, from the schematic drawing, or flow chart, a series of instructions for the computer is established.

The program in this chapter was prepared in floating decimal arithmetic for the IEM 650 Electronic Computer at Oklahoma State University's Computing Center. The coding form used is that of IEM's Symbolic Optimum Assembly Programming, Type II. Storage locations have been re-used as soon as possible in order to take advantage of the available sixty high-speed storage locations.

#### 2. Functional Evaluation.

The subroutines for the evaluation of the square roots, arc-tangents, and logarithms required for the solution of Eqs. (2-16a) are an integral part of the program, therefore no library subroutines are necessary.

The square roots are obtained by Newton's method which is as follows:

$$R_{i} = \frac{1}{2} (R_{i-1} + \frac{\omega}{R_{i+1}})$$
 (5-1)

in which

 $\omega$  = number for which the square root is desired,

 $R_{i-1} =$  preceding approximation of the square root.

ر مد د م د د د د د

For all values of  $\omega$  the initial approximation is one and fifteen successive approximations are made.

With notation (2-10) the arc-tangents are evaluated by the infinite series

$$\operatorname{Tan}^{-1} \mathbf{t}_{\mathbf{z}} / \overline{\omega} = \mathbf{V} = \frac{\mathbf{R}_{\mathbf{t}}}{\mathbf{t}_{\mathbf{z}} / \overline{\omega}} (1 + \frac{2}{3} \mathbf{R}_{\mathbf{t}} + \frac{2 \cdot 4}{3 \cdot 5} \mathbf{R}_{\mathbf{t}}^{2} + \frac{2 \cdot 4 \cdot 6}{3 \cdot 5 \cdot 7} \mathbf{R}_{\mathbf{t}}^{3} \cdots (5 - 2)$$

in which

$$R_{t} = \frac{\omega t_{z}^{2}}{1 + \omega t_{z}^{2}} = \frac{T_{z} - 1}{T_{z}}$$

The series converges for all values of

$$\omega t_z^2 < \infty$$
 .

For values

$$\omega t_z^2 \leq 0.1$$

computations are limited to eleven terms to avoid overflow in the computer. For larger values twenty-five terms are evaluated to obtain the desired accuracy.

With notation (2-10) the logarithms are evaluated by the infinite series

$$L_{g} = \frac{1}{2} L_{0} g_{e} T_{z} = R_{f} + \frac{1}{3} R_{f}^{3} + \frac{1}{5} R_{f}^{5} + \frac{1}{7} R_{f}^{7} \dots$$
(5-3)

in which

$$R_{l} = \frac{T_{z}-1}{T_{z}+1}$$

The above series converges for all values

and nineteen terms are used.

The accuracy of Eqs. (5-1,2,3) depends upon the magnitude of the value for which the function is required. Using the number of terms indicated and rounding off the angular function coefficients to four decimal places gives results that agree with those published in other works for

 $\omega_{\max} \leq 2$  .

#### 3. Input Card Format.

The description of the beam for which constants are desired is introduced into the computer with seven words. Fig. (5-1) shows the arrangement of input data.

| Word | Card Columns<br>Inclusive | Data          |
|------|---------------------------|---------------|
| 1    | 1 - 10                    | . W           |
| 2    | 11 - 20                   | β             |
| 3    | 21 - 30                   | Δω            |
| 4    | 31 - 40                   | Δβ            |
| 5    | 41 - 50                   |               |
| 6    | 51 - 60                   | $\beta_{max}$ |
| 7    | 61 - 70                   | Beam Type     |
| 8    | 71 - 80                   | zeros         |

Fig. 5-1.-Input Card Data.

The meanings of  $\omega$  and  $\beta$  have already been established. The symbols

 $\Delta \omega$  and  $\Delta \beta$  are the increments by which the dimension coefficients are to be increased. These two words must have some positive value even though computations may be required for only one beam. The fifth and sixth words are the maximum values the dimension coefficients may attain. The beam type number is zero for unsymmetrical beams and one for symmetrical.

The first six words of the input card must be in floating decimal form. The position of the decimal is obtained by subtracting 50 from the last two digits. If the result is zero the decimal immediately precedes the first digit. If the result is negative or positive the decimal is shifted to the left or right the indicated number of places. (Fig. 5-2).

The beam type number must be entered as a fixed point number, either ten zeros for unsymmetrical beams or one preceeded by nine zeros for symmetrical beams.

| Number  | Floating Decimal Form |
|---------|-----------------------|
| 345.6   | 3456000053            |
| 0.3456  | 3456000050            |
| 0.03456 | 3456000049            |

Fig. 5-2.—Examples of Floating Decimals,

#### Example 1.

Beam constants are to be computed for the symmetrical beam in Fig. (5-3).

Since computations are required for only one beam the maximum values of dimension coefficients are equal to the initial values and the incre-

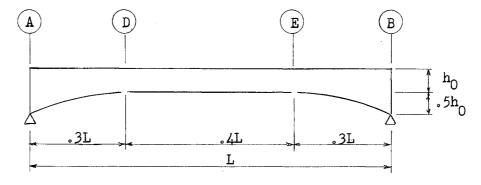



Fig. 5-3.—Symmetrical Beam.

The beam type number is one and the data is entered as in Fig. (5-4).

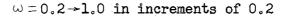
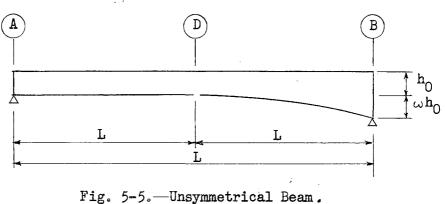

| Word | Data Entered |
|------|--------------|
| 1    | 500000050    |
| 2    | 300000050    |
| 3    | 100000050    |
| 4    | 100000050    |
| 5    | 500000050    |
| 6    | 300000050    |
| 7    | 00000001     |
| 8    | Not Used     |

Fig. 5-4.-Input Card For One Symmetrical Beam.


### Example 2.

Beam constants are required for the beam shown in Fig. (5-5) for all combinations of

ments will be unimportant as long as they have some positive value.



 $\beta=0.1\!\rightarrow\!1.0$  in increments of 0.1 .



The input data is entered as in Fig. (5-6) and the computer will calculate the constants for the required 50 beams.

| Word | Data Entered |
|------|--------------|
| 1    | 200000050    |
| 2    | 100000050    |
| 3    | 200000050    |
| 4    | 100000050    |
| 5    | 100000051    |
| 6    | 100000051    |
| 7    | 00000000     |
| 8    | (Not Used)   |

Fig. 5-6.—Input Card For Series of Unsymmetrical Beams.

#### 4. Output Card Format.

The angular function coefficients will be in floating decimal form

on either three or four cards depending on the type of beam. The first word of each card will be an identification number. The first two digits are ten times the value  $\omega$ , the fourth and fifth digits are ten times the value  $\beta_{g}$  and the last digit is the beam type number. The identification number for angular live load functions will have, in addition, ten times the last computed value of n as the seventh digit. Thus, the identification number

#### 05 003 00 001

will appear on the first output card for the symmetrical beam for which

# $\omega = 0.5$ $\beta = 0.3,$

and the number

#### 05 003 09 001.

will appear on the card containing influence coefficients for

$$n = 0.7, 0.8, 0.9$$
.

The first output card for each beam will be arranged as follows:

| Word | Information                                |
|------|--------------------------------------------|
| 1    | Identification                             |
| 2    | f <sub>BA</sub>                            |
| 3    | g                                          |
| 4    | $\mathtt{f}_{\mathtt{A}\mathtt{B}}$        |
| 5    | $\mathtt{t}_{\mathtt{BA}}^{(\mathtt{UL})}$ |
| 6    | t <sup>(UL)</sup><br>AB                    |
| 7    | $t_{BA}^{(DL)}$                            |
| 8    | $t_{AB}^{(DL)}$                            |

Fig. 5-7.-First Output Card.

The angular live load coefficients will appear as in Fig. (5-8). In the case of symmetrical beams the second and third words are not used for cards bearing identification numbers of the form.

xx 0xx 06 001 .

| Word | Information              | Position<br>Of Load |
|------|--------------------------|---------------------|
| 1    | Identification           |                     |
| 2    | t <sup>(LL)</sup><br>BA  | n – 2               |
| 3    | $t_{AB}^{(LL)}$          | n - 2               |
| 4    | $t_{BA}^{(LL)}$          | n - 1               |
| 5    | $t_{AB}^{(LL)}$          | n – 1               |
| 6    | $t_{\rm BA}^{({ m LL})}$ | n                   |
| 7    | $t_{AB}^{(LL)}$          | n                   |
| 8    | (Not Used)               | 1                   |

Fig. 5-8.—Output Card For Live Load Function Coefficients.

#### 5. Flow Chart.

The flow chart in Fig. (5-9) was prepared as an aid to programming the solutions for angular function coefficients for beams with one haunch and symmetrical beams.

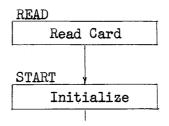



Fig. 5-9.—Flow Chart.

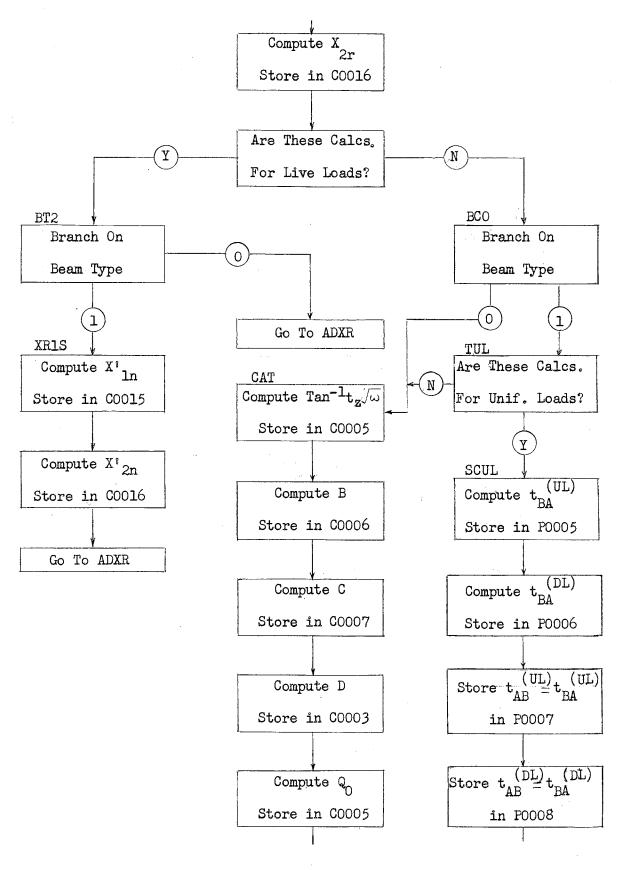
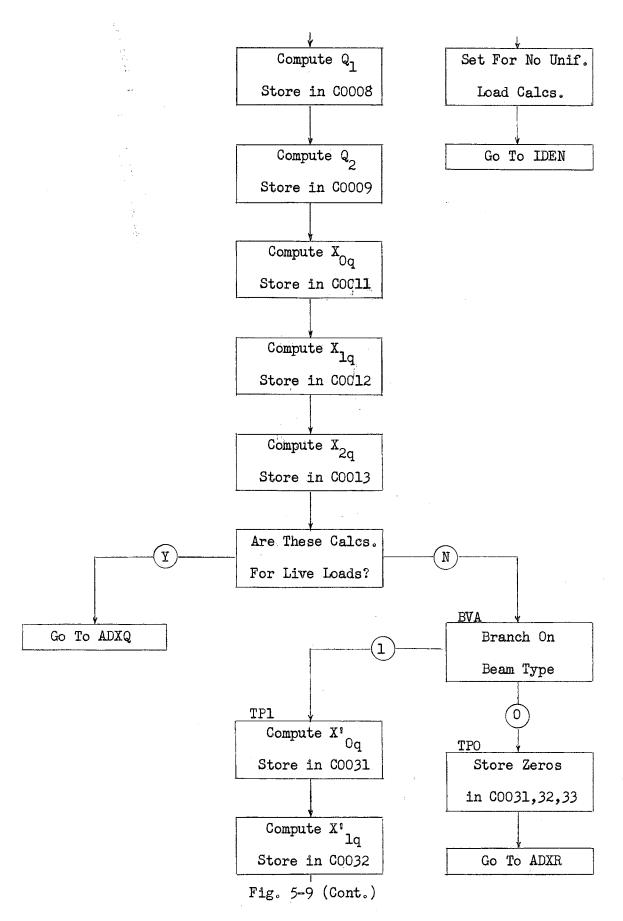
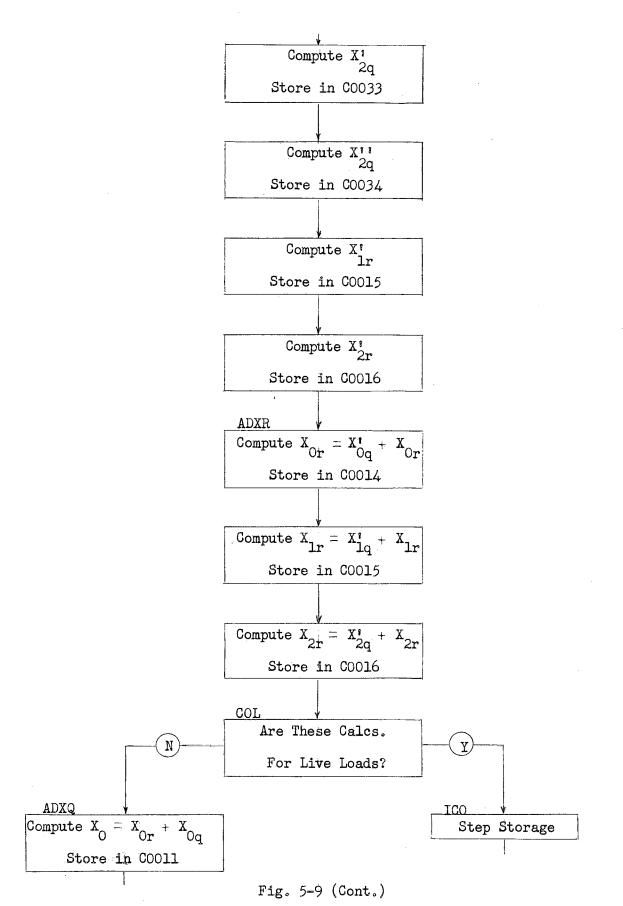






Fig. 5-9 (Cont.)







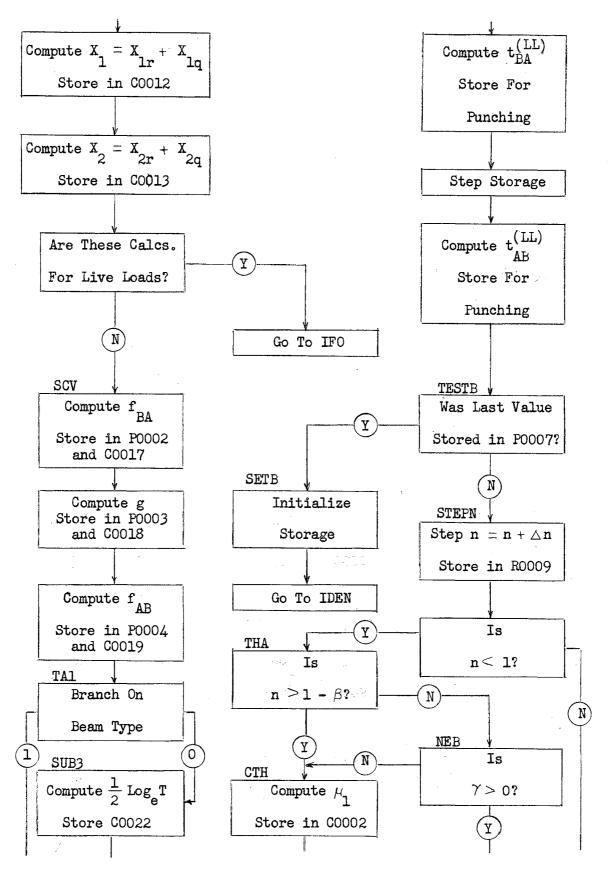
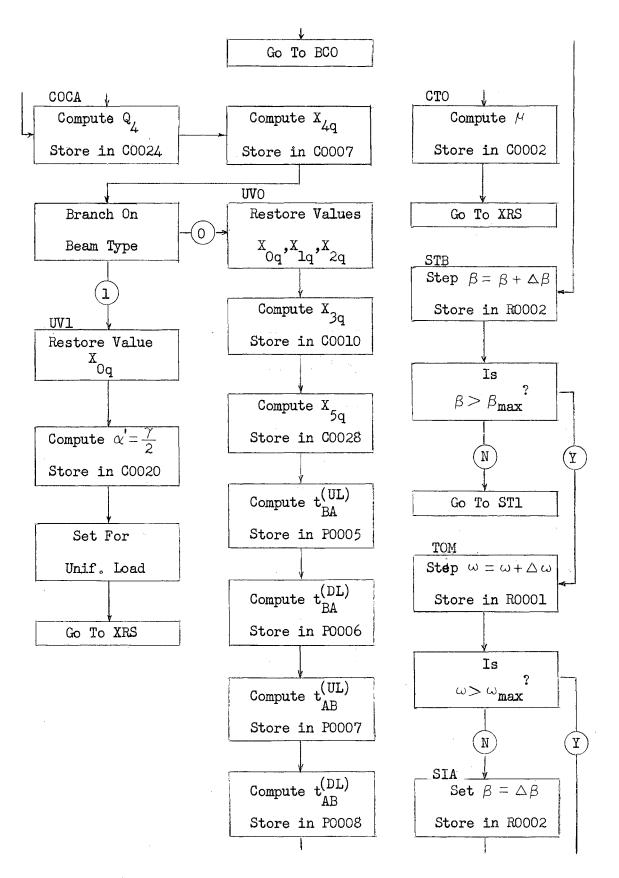
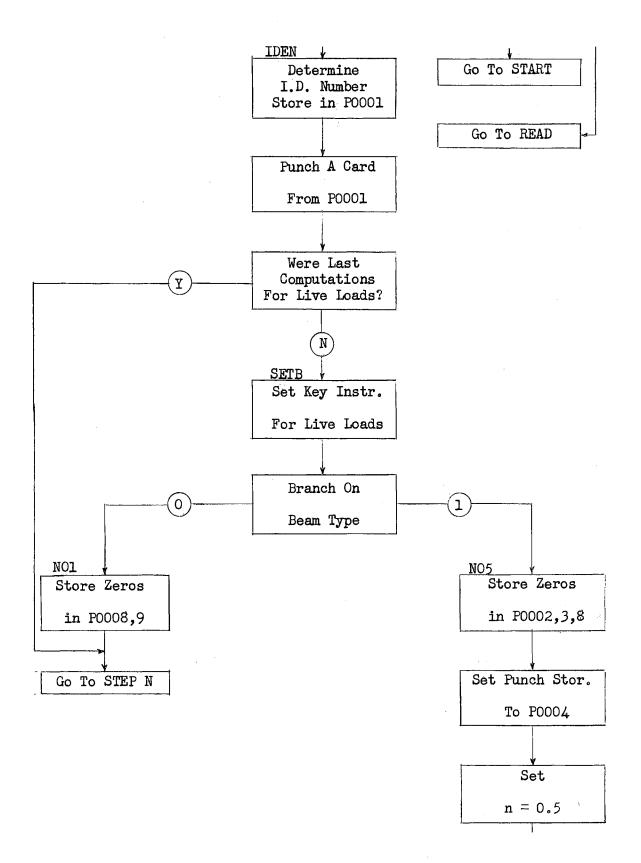
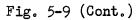






Fig. 5-9 (Cont.)







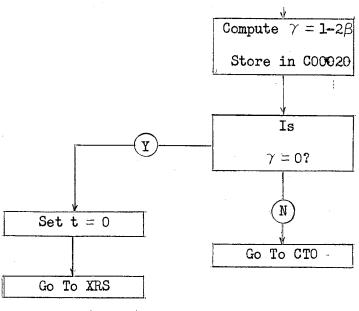



Fig. 5-9 (Cont.)

#### 6. IBM 650 Program.

With the program in Fig. (5-10) the computer will calculate beam constants including 10-point influence coefficients for beams of either type for which is expressed as a multiple of one-tenth. Beam constants are available for beams with constant moment of inertia (2). No provision is made for them in this program and entry of  $\omega$  or  $\beta$  equal to zero will result in an attempt to divide by zero. The computer will stop with ten nines in the distributor if  $\alpha$  or  $\gamma$  become negative as would be the case if for a symmetrical beam  $\beta$  would be entered as 0.6. No other programmed stops are incorporated.

| T<br>P | S<br>N | Location | Oper.<br>Code | Data<br>Address | T<br>A<br>G | Instr.<br>Address | T<br>A<br>G | Remarks   |
|--------|--------|----------|---------------|-----------------|-------------|-------------------|-------------|-----------|
| 1      |        |          | BE            | AM CO           | N           | STANT             | S           |           |
| -      |        |          | REG           | R9000           |             | 9009              |             | READ AREA |

#### Fig. 5-10.-IBM 650 Program.

|        |               |                   |                                                      |                                                                    | T |                      | Т      |                                                                  |
|--------|---------------|-------------------|------------------------------------------------------|--------------------------------------------------------------------|---|----------------------|--------|------------------------------------------------------------------|
| Ţ<br>₽ | <u>s</u><br>N | Location          | Oper.<br>Code                                        | Data<br>Address                                                    | A | Instr.<br>Address    | A<br>G | Remarks                                                          |
| ı      |               |                   | REG<br>REG<br>SYN                                    | C9010<br>P9050<br>READ                                             |   | 9049<br>9059<br>0000 |        | CALC AREA<br>PCH AREA<br>BEGIN 0000                              |
|        |               | READ<br>START     | RD1<br>LDD<br>STD<br>STD<br>RAA<br>RAB               | R0001<br>ZER0<br>R0009<br>P0009<br>R0007<br>0000                   |   | START                |        | READ CARD<br>INITIALIZE<br>N<br>NO DL OP<br>BM TYPE<br>NO LL OP  |
| 1      |               |                   | RAC<br>RAU<br>FAD<br>FMP<br>STU                      | 0015<br>R0001<br>ONE<br>HALF<br>C0001                              |   | SUB1                 |        | TRMS SQ RT<br>STORE<br>INITIAL<br>APPROX<br>SQ RT                |
|        |               | SUBL              | RAU<br>FDV<br>FAD<br>FMP<br>STU<br>SXC<br>BMC        | R0001<br>C0001<br>HALF<br>C0001<br>0001<br>ST1                     |   | SUB1                 |        | COMPUTE<br>AND<br>STORE<br>SQ RT                                 |
| 1      |               | ST1<br>CA1<br>SAO | RAU<br>STU<br>FSB<br>NZA<br>FSB<br>STU               | ONE<br>C0002<br>R0002<br>CA1<br>R0002<br>C0020                     |   | SAO<br>SAO           |        | SET T TO<br>ONE AND<br>COMPUTE<br>ALPHA OR<br>GAMMA<br>AND STORE |
| 1      |               | HAN               | BMI<br>LDD<br>HLT                                    | HAN<br>NINES                                                       |   | XRS                  |        | IF NEG<br>STOP                                                   |
|        |               | XRS               | RAU<br>FMP<br>STU<br>FMP<br>STU<br>FMP<br>FMP<br>FMP | C0020<br>C0012<br>C0014<br>C0014<br>HALF<br>C0015<br>C0014<br>FRAC |   |                      |        | COMPUTE<br>AND STORE<br>XOR<br>XIR<br>AND                        |
| 1      |               |                   | STU<br>NZB                                           | COO16<br>BT2                                                       |   | BCO                  |        | X2R                                                              |

| T<br>P | <u>s</u><br>N | Location           | Oper.<br>Code                                                                                  | Data<br>Address                                                                                               | T<br>A<br>G | Instr.<br>Address | T<br>A<br>G | Remarks                                                                           |
|--------|---------------|--------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------|-------------------|-------------|-----------------------------------------------------------------------------------|
|        |               | BCO<br>TP9         | NZA<br>RAU<br>NZU                                                                              | TP9<br>P0009<br>SCUL                                                                                          |             | CAT<br>CAT        |             | IS ARC<br>TANGENT<br>REQD?                                                        |
| 1      |               | CAT<br>ATSV<br>NAT | RAU<br>FMP<br>STU<br>FMP<br>FAD<br>STU<br>FSB<br>FSB<br>BMI<br>RAC<br>RAC                      | C0001<br>C0002<br>C0003<br>ONE<br>C0004<br>ONE<br>DELTN<br>ATSV<br>0010<br>0024                               |             | NAT<br>ATC<br>ATC |             | COMP AND<br>STORE<br>TANGENT<br>SQUARE<br>AND SET<br>NUMBER OF<br>TERMS<br>BY MAG |
| 1      |               | ATC                | LDD<br>STD<br>STD<br>STD<br>STD                                                                | ONE<br>C0022<br>C0023<br>C0024<br>C0025                                                                       |             | SUM               |             | INITIALIZE<br>FOR SERIES                                                          |
| -      |               | SUM                | RAU<br>FAD<br>FAD<br>STU<br>FSB<br>FMP<br>FDV<br>STU<br>RAU<br>FSB<br>FMP<br>FDV<br>STU<br>FMP | C0022<br>C0022<br>ONE<br>C0026<br>ONE<br>C0024<br>C0024<br>C0024<br>C0024<br>C0023<br>C0004<br>C0023<br>C0004 |             |                   |             | COMPUTE<br>SERIES<br>TERMS                                                        |
| 1      |               |                    | FAD<br>STU<br>BMC                                                                              | C0025<br>C0025<br>ARTAN                                                                                       |             | STEP              |             | SUM AND<br>STORE                                                                  |
| -      |               | STEP               | SXC<br>RAU<br>FAD<br>STU                                                                       | 0001<br>C0002<br>ONE<br>C0022                                                                                 |             | SUM               |             | STEP FOR<br>NEXT<br>TERM AND<br>REPEAT                                            |
| 1      |               | ARTAN              | RAU                                                                                            | C0025                                                                                                         |             |                   |             | COMPUTE                                                                           |

Fig. 5-10 (Cont.)

|     | T<br>P | <u>S</u><br>N | Location | Oper.<br>Code     | Data<br>Address                                                             | T<br>A<br>G | Intr.<br>Address | T<br>A<br>G | Remarks                     |
|-----|--------|---------------|----------|-------------------|-----------------------------------------------------------------------------|-------------|------------------|-------------|-----------------------------|
|     |        |               | Docation | FMP<br>FDV        | C0003<br>C0004                                                              |             | AUUI 655         |             | ARC TAN<br>AND              |
|     | l      |               |          | STU               | C0005                                                                       |             |                  |             | STORE                       |
|     |        |               |          | FDV<br>FDV<br>FDV | FOUR<br>C0004<br>C0004                                                      |             |                  |             | AND STORE                   |
|     |        |               |          | STU<br>FMP<br>FMP | C0004<br>C0004<br>HALF                                                      |             |                  |             | В                           |
|     |        |               |          | STU<br>RAU<br>FMP | C0007<br>C0002<br>C0005                                                     |             |                  |             | C                           |
| •,* |        | -             |          | FDV<br>FDV<br>STU | 000<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |             |                  |             | AND<br>D                    |
|     | 1      |               |          | FAD<br>FMP        | COOO7<br>THREE                                                              |             |                  |             | COMPUTE<br>AND STORE        |
|     |        |               |          | FAD<br>STU<br>RAU | COOO6<br>COO05<br>COO07                                                     |             |                  |             | ଭୁଠ                         |
|     |        |               |          | FMP<br>FAD<br>FMP | TWO<br>COOO6<br>COOO2                                                       |             |                  |             |                             |
|     |        |               |          | STU<br>RAU<br>FAD | C0008<br>C0007<br>C000 <u>3</u>                                             |             |                  |             | Ql                          |
|     | _      |               |          | FSB<br>FDV<br>STU | COOO6<br>ROOO1<br>COOO9                                                     |             |                  |             | AND<br>Q2                   |
|     | 1      |               |          | RAU<br>FMP        | C0005<br>R0002                                                              |             |                  |             | COMPUTE<br>AND STORE        |
|     |        |               |          | STU<br>RAU<br>FSB | C0011<br>C0008<br>C0005                                                     |             |                  |             | XQQ                         |
|     |        |               |          | FMP<br>FMP<br>FAD | R0002<br>R0002<br>C0011                                                     |             |                  |             | AND                         |
|     |        |               |          | STU<br>RAU<br>FMP | C0012<br>R0002<br>R0002                                                     |             |                  |             | X1Q<br>COMPUTE<br>AND STORE |
|     |        |               |          | FMP<br>STU        | R0002<br>P0010                                                              |             | -<br>-           |             | 3 POWRS<br>OMEGA            |

| m      | q             | · · · · · · · · · · · · · · · · · · · | 0                                                                         | Data                                                                                   | T      | Tueta             | T      |                                                         |
|--------|---------------|---------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------|-------------------|--------|---------------------------------------------------------|
| T<br>P | <u>s</u><br>N | Location                              | Oper.<br>Code                                                             | Data<br>Address                                                                        | A<br>G | Instr.<br>Address | A<br>G | Remarks                                                 |
|        |               |                                       | RAU<br>FAD<br>FSB<br>FSB<br>FMP<br>FAD<br>FAD<br>FSB<br>STU               | C0005<br>C0009<br>C0008<br>C0008<br>P0010<br>C0012<br>C0012<br>C0012<br>C0011<br>C0013 |        |                   |        | COMPUTE<br>AND STORE<br>X2Q                             |
| 1      |               |                                       | NZB                                                                       | ADXQ                                                                                   |        | BVA               |        | BRN LL OP                                               |
| 1      |               | BVA                                   | NZA                                                                       | TPl                                                                                    |        | TPO               |        | BRN BM TP                                               |
|        |               | TPO                                   | LDD<br>STD<br>STD<br>STD                                                  | ZERO<br>COO31<br>COO32<br>COO33                                                        |        | ADXR              |        | LT HAUNCH<br>XOQ<br>X1Q AND<br>X2Q                      |
| 1      |               | TPl                                   | LDD<br>STD<br>RAU<br>FSB<br>STU                                           | C0011<br>C0031<br>C0011<br>C0012<br>C0032                                              |        |                   |        | LT HAUNCH<br>XOQ<br>XIQ                                 |
|        |               |                                       | RAU<br>FAD<br>FSB<br>STU<br>RAU<br>FDV<br>FAD<br>FSB<br>STU               | C0013<br>C0011<br>C0012<br>C0012<br>C0033<br>C0011<br>FOUR<br>C0013<br>C0012<br>C0034  |        | XRIS              |        | X2Q<br>AND MOD<br>X2Q                                   |
| 1      |               | XRIS                                  | RAU<br>FMP<br>FAD<br>STU<br>FAD<br>FDV<br>FSB<br>FMP<br>FMP<br>FAD<br>STU | R0002<br>C0014<br>C0015<br>C0015<br>R0002<br>C0014<br>R0002<br>R0002<br>C0016<br>C0016 |        | ADXR              |        | COMPUTE<br>AND STORE<br>FOR TYPE 1<br>X1R<br>AND<br>X2R |
| 1      |               | ADXR                                  | RAU                                                                       | C0031                                                                                  |        |                   | <br>   | SUM LT XKQ                                              |

| T<br>P | s<br>N | Location | Oper.<br>Code                   | Data<br>Address                           | T<br>A<br>G                               | Instr.<br>Address | T<br>A<br>G | Remarks                                     |                             |     |  |     |  |           |
|--------|--------|----------|---------------------------------|-------------------------------------------|-------------------------------------------|-------------------|-------------|---------------------------------------------|-----------------------------|-----|--|-----|--|-----------|
|        |        |          | FAD<br>STU<br>RAU<br>FAD        | C0014<br>C0014<br>C0032<br>C0015          |                                           |                   |             | AND XKR<br>XOR                              |                             |     |  |     |  |           |
|        |        |          | STU<br>RAU                      | C0015<br>C0033                            |                                           |                   |             | Xlr                                         |                             |     |  |     |  |           |
| -      |        |          | FAD<br>STU                      | C0016<br>C0016                            |                                           | COL               |             | AND<br>X2R                                  |                             |     |  |     |  |           |
| 1      |        | COL      | NZB                             | ICO                                       |                                           | ADXQ              |             | BRN LL OP                                   |                             |     |  |     |  |           |
|        |        | ADXQ     | RAU<br>FAD<br>STU<br>RAU        | C0011<br>C0014<br>C0011<br>C0012          |                                           |                   |             | SUM XKR<br>AND XKQ<br>XOQ                   |                             |     |  |     |  |           |
|        |        |          | FAD<br>STU<br>RAU               | COO15<br>COO12<br>COO13                   |                                           |                   |             | XlQ                                         |                             |     |  |     |  |           |
| _      |        |          | FAD<br>STU                      | C0016<br>C0013                            |                                           |                   |             | AND<br>X2Q                                  |                             |     |  |     |  |           |
|        | 1      | 1        |                                 |                                           |                                           |                   |             |                                             | NZB                         | IFO |  | SCV |  | BRN LL OP |
| -      |        |          |                                 | LDD<br>STD<br>STD<br>RAU<br>FSB           | C0013<br>P0002<br>C0017<br>C0012<br>C0017 |                   |             |                                             | COMPUTE<br>AND STORE<br>FBA |     |  |     |  |           |
|        |        |          | STU<br>STU<br>RAU<br>FSB<br>FSB | P0003<br>C0018<br>C0011<br>C0018<br>C0018 |                                           |                   | 4           | G                                           |                             |     |  |     |  |           |
| 1      |        |          | FSB<br>STU<br>STU               | C0017<br>P0004<br>C0019                   |                                           | TAl               |             | AND<br>FAB                                  |                             |     |  |     |  |           |
| 1      |        | TAL      | NZA                             | COCA                                      |                                           | SUB3              |             | BRN BM TP                                   |                             |     |  |     |  |           |
| -      |        | SUB3     | RAC<br>LDD<br>STD<br>LDD<br>STD | 0018<br>ZERO<br>C0022<br>ONE<br>C0023     |                                           |                   |             | SET TERMS<br>INITALIZE<br>FOR LOG<br>SERIES |                             |     |  |     |  |           |
|        |        |          | STD<br>RAU                      | C0024<br>C0004                            |                                           |                   |             | COMPUTE                                     |                             |     |  |     |  |           |

| T<br>P | <u>S</u><br>N | Tassta   | Oper.                                                                            | Data                                                                                                         | T<br>A | Instr.  | T<br>A |                                                |
|--------|---------------|----------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------|---------|--------|------------------------------------------------|
| P      | N             | Location | Code<br>FAD<br>STU                                                               | Address<br>ONE<br>C0025                                                                                      | G      | Address | G      | Remarks<br>RATIO FOR<br>SERIES                 |
| l      |               |          | FSB<br>FDV<br>STU<br>FMP<br>STU                                                  | TW0<br>C0025<br>C0026<br>C0026<br>C0028                                                                      |        | LOOP    |        |                                                |
| 1      |               | LOOP     | RAU<br>FMP<br>FAD<br>STU<br>BMC                                                  | C0024<br>C0026<br>C0022<br>C0022<br>C0CA                                                                     |        | STA     |        | COMPUTE<br>SUM OF<br>TERMS<br>STORE LOG        |
|        |               | STA      | RAU<br>FAD<br>STU<br>RAU<br>FMP<br>FDV<br>STU<br>LDD<br>STD<br>SXC               | C0023<br>TW0<br>C0027<br>C0023<br>C0024<br>C0028<br>C0027<br>C0024<br>C0027<br>C0023<br>0001                 |        | LOOP    |        | STEP FOR<br>NEXT TERM<br>AND<br>REPEAT         |
|        |               | COCA     | RAU<br>FMP<br>STU<br>RAU<br>FDV<br>FSB<br>FMP<br>FDV<br>STU<br>RAU<br>FMP<br>FMP | R0001<br>R0001<br>C0023<br><b>Q</b> D005<br>OCT<br>C0007<br>OCT<br>C0023<br>C0024<br>P0010<br>R0002<br>R0002 |        | Ð       |        | COMPUTE<br>AND<br>STORE<br>Q4<br>5<br>POWRS OF |
| 1      |               |          | STU<br>FMP<br>STU<br>NZA                                                         | P0010<br>C0024<br>C0007<br>UV1                                                                               |        | υvo     |        | BETA<br>AND<br>X4Q<br>BRN BM TP                |
|        |               | UVO      | RAU<br>FSB<br>STU                                                                | C0011<br>C0014<br>C0011                                                                                      |        |         |        | RESTORE<br>XOQ                                 |

| T<br>P | S<br>N | Location | Oper.<br>Code                                                                                                | Data<br>Address                                                                                                                            | T<br>A<br>G | Instr.<br>Address | T<br>A<br>G | Remarks                                |
|--------|--------|----------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|-------------|----------------------------------------|
|        |        |          | RAU<br>FSB<br>STU<br>RAU                                                                                     | C0012<br>C0015<br>C0012<br>C0013                                                                                                           |             |                   |             | XIQ                                    |
|        |        |          | FSB<br>STU<br>RAU<br>FSB<br>FMP<br>FAD                                                                       | C0016<br>C0013<br>C0008<br>C0009<br>THREE<br>C0006                                                                                         |             |                   |             | X2Q<br>COMPUTE<br>AND<br>STORE         |
|        |        |          | FSB<br>FMP<br>FDV<br>STU<br>RAU<br>FSB<br>FMP<br>FAD<br>FAD<br>FAD<br>FMP<br>FMP<br>FAD<br>FMP<br>FMP<br>FAD | C0005<br>P0010<br>R0002<br>C0010<br>C0013<br>C0012<br>THREE<br>C0010<br>C0010<br>C0010<br>C0006<br>R0001<br>TW0<br>C0008<br>R0001<br>C0025 |             |                   |             | X3Q                                    |
|        |        |          | RAU<br>FSB<br>FDV<br>FSB<br>FMP<br>FMP<br>FAD<br>STU                                                         | C0022<br>C0025<br>C0023<br>R0001<br>C0024<br>P0010<br>R0002<br>C0007<br>C0028                                                              |             |                   |             | Q5<br>AND<br>X5Q                       |
| 1      |        |          | RAU<br>NZU                                                                                                   | COO2O<br>ANO                                                                                                                               |             | AEQO              |             | BRN IF<br>ALPH EQ O                    |
| 1      |        | AEQO     | RAU                                                                                                          | C0017                                                                                                                                      |             | SX4R              |             | do not                                 |
|        |        | ANO      | RAU<br>FDV<br>FDV<br>FSB<br>FMP                                                                              | C0017<br>C0014<br>DEC<br>C0016<br>C0014                                                                                                    |             |                   |             | DIVIDE<br>BY ZERO<br>IN THESE<br>CALCS |

| T          | S             |          | Oper.                                                                     | Data                                                                                            | T<br>A | Instr.  | T<br>A |                                     |
|------------|---------------|----------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------|---------|--------|-------------------------------------|
| T<br>P     | <u>S</u><br>N | Location | Code                                                                      | Address                                                                                         | 1      | Address | G      | Remarks                             |
| 1          |               |          | FMP                                                                       | DEC                                                                                             |        | SX4R    | r<br>r |                                     |
| _ <b>_</b> |               | SX4R     | FSB<br>FMP<br>STU<br>RAU                                                  | C0010<br>HALF<br>P0005<br>P0010                                                                 |        |         |        | COMPUTE<br>AND STORE<br>UL TBA      |
|            |               |          | FDV<br>STU<br>FMP<br>FSB<br>FMP<br>FDV<br>FDV                             | R0002<br>P0010<br>C0017<br>C0028<br>R0001<br>TWELV<br>R0002                                     |        |         |        | FOUR POWRS<br>OF BETA               |
|            |               |          | FDV<br>FAD<br>STU<br>RAU<br>FMP<br>FSB                                    | R0002<br>P0005<br>P0006<br>C0018<br>HALF<br>P0005                                               |        |         |        | DL TBA                              |
|            |               |          | STU<br>RAU<br>FAD<br>FMP<br>FSB<br>FMP<br>FDV<br>FDV<br>FDV<br>FSB<br>FAD | P0007<br>C0017<br>C0018<br>P0010<br>C0007<br>R0002<br>TWELV<br>R0002<br>R0002<br>P0006<br>P0007 |        |         |        | UL TAB                              |
| l          |               | UVI      | STU<br>RAU<br>FSB<br>STU<br>RAU                                           | P0008<br>C0011<br>C0014<br>C0011<br>C0020                                                       |        | IDEN    |        | DL TAB<br>RESTORE<br>XOQ<br>COMPUTE |
| 1          |               |          | FMP<br>STU<br>RAU<br>STU                                                  | HALF<br>COO2O<br>ONE<br>POOO9                                                                   |        | XRS     |        | GAMMA AND<br>SET FOR<br>DL OP       |
| -          |               | SCUL     | RAU<br>FAD<br>FDV<br>FSB<br>FSB                                           | C0014<br>C0011<br>FOUR<br>C0016<br>C0034                                                        |        |         |        | COMPUTE<br>AND STORE                |

| T<br>P | <u>S</u><br>N | Location | Oper.<br>Code                    | Data<br>Address | T<br>A<br>G | Instr.<br>Address | T<br>A<br>G | Remarks  |
|--------|---------------|----------|----------------------------------|-----------------|-------------|-------------------|-------------|----------|
|        |               |          |                                  | 1               | ļ.,         |                   | -           |          |
|        |               |          | FMP<br>STU                       | HALF<br>POOO5   |             |                   |             | UL TBA   |
|        |               |          | RAU                              | P0010           |             |                   |             | UI IDA   |
|        |               |          | FDV                              | R0002           |             |                   |             |          |
|        |               |          | STU                              | P0010           |             |                   |             |          |
|        |               |          | RAU                              | C0014           |             |                   |             |          |
|        |               |          | FAD                              | C0011           |             |                   |             |          |
|        |               |          | FMP                              | P0010           |             |                   |             |          |
|        |               |          | FSB                              | C0007           |             |                   |             |          |
|        |               |          | $\mathbf{F}\mathbf{M}\mathbf{P}$ | ROOOl           |             |                   |             |          |
|        |               |          | FDV                              | TWELV           |             |                   |             |          |
|        |               |          | FDV                              | R0002           |             |                   |             |          |
|        |               |          | FDV                              | R0002           |             |                   |             |          |
| 1      |               |          | FAD                              | P0005           |             |                   |             |          |
|        |               |          | STU                              | P0006           |             |                   |             | DL TBA   |
|        |               |          | LDD<br>STD                       | P0005<br>P0007  |             |                   |             | UL TAB   |
|        |               |          | LDD                              | P0007           |             |                   |             | UL IND   |
|        |               |          | STD                              | P0008           |             |                   |             | DL TAB   |
|        |               |          | LDD                              | ZERO            |             |                   |             | SET FOR  |
|        |               |          | STD                              | P0009           |             | IDEN              |             | NO DL OP |
| 1      |               | IDEN     | RAU                              | ROOOL           |             |                   |             | STORE    |
|        |               | 102314   | FSB                              | ONE             |             |                   |             | FOR      |
|        |               |          | BMI                              | SFT1            |             | SFT2              |             | IDENTIF  |
| -      |               | SFT1     | RAL                              | ROOOL           |             |                   |             |          |
|        |               |          | SRT                              | 0003            |             |                   |             |          |
|        |               |          | $\operatorname{SLT}$             | 0002            |             |                   |             |          |
|        |               |          | $\operatorname{STL}$             | C0035           |             | IDB               |             | OMEGA    |
| 1      |               | SFT2     | RAL                              | R0001           |             |                   |             |          |
|        |               |          | SRT                              | 0002            | -           |                   |             | 0.7      |
|        |               |          | SLT                              | .0002           |             | TDD               |             | OR       |
|        |               | מתד      | STL                              | C0035           |             | IDB               |             | OMEGA    |
|        |               | IDB      | RAU<br>FSB                       | ROOO2<br>ONE    |             |                   |             |          |
|        |               |          | BMI                              | SFT3            |             | SFT4              |             |          |
|        |               | SFT3     | RAL                              | R0002           |             | ₩± ± 4            |             |          |
|        |               |          | SRT                              | 0008            |             |                   |             |          |
|        |               |          | SLT                              | 0004            |             |                   |             |          |
|        |               |          | STL                              | C0036           |             | IDN               |             | BETA     |
|        |               | SFT4     | RAL                              | R0002           |             |                   |             |          |
|        |               |          | SRT                              | 8000            |             |                   |             |          |
|        |               |          | SLT                              | 0005            |             |                   |             | OR       |
| -      |               |          | STL                              | <b>C</b> 0036   |             | IDN               |             | BETA     |
| 1      |               | IDN'     | RAL                              | R0009           |             |                   |             | COMPOSE  |
|        |               | 11/12    |                                  | 10009           |             |                   |             |          |

|   |        |                    |                                                                           |                                                                                                            | T |                     | Т      |                                                                                                            |
|---|--------|--------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---|---------------------|--------|------------------------------------------------------------------------------------------------------------|
| Ţ | S<br>N | Location           | Oper.<br>Code                                                             | Data<br>Address                                                                                            | A | Instr.<br>Address   | A<br>G | Remarks                                                                                                    |
|   |        |                    | SRT<br>ALO<br>ALO<br>ALO<br>STL<br>WR1<br>NZB                             | 0006<br>8005<br>C0035<br>C0036<br>P0001<br>P0001<br>STEPN                                                  |   | SETB                |        | AND STORE<br>ID NUMBER<br>BRN LL OP                                                                        |
| 1 |        | SETB               | RAB<br>NZA                                                                | 0001<br>N05                                                                                                |   | NOL                 |        | INIT LL OP<br>BRN BM TP                                                                                    |
| 1 |        | NOL                | LDD<br>STD<br>STD                                                         | ZERO<br>P0008<br>R0009                                                                                     |   | STEPN               |        | TYPE O LL<br>N TO ZERO                                                                                     |
| 1 |        | NO5<br>GAO         | LDD<br>STD<br>STD<br>AXB<br>LDD<br>STD<br>RAU<br>FSB<br>STU<br>NZU<br>STU | ZER0<br>P0002<br>P0003<br>P0008<br>0002<br>HALF<br>R0009<br>ONE<br>R0002<br>R0002<br>C0020<br>CT0<br>C0002 |   | GAO<br>XRS          |        | TYPE 1 LL<br>INITIAL<br>VALUES<br>STORAGE<br>AND<br>N IS HALF<br>COMPUTE<br>GAMMA<br>IF ZERO<br>LIM IS ZER |
|   |        | CTO<br>SR2<br>CTAL | RAU<br>NZA<br>FSB<br>FDV<br>STU                                           | R0009<br>SR2<br>R0002<br>C0020<br>C0020                                                                    |   | CTAL<br>CTAL<br>XRS |        | COMPUTE<br>AND STORE<br>UPPER LIM<br>FOR CONST<br>I                                                        |
| 1 |        | STEPN              | RAU<br>FAD<br>STU<br>FSB<br>BMI                                           | ROOO9<br>DELTN<br>ROOO9<br>ONE<br>THA                                                                      |   | TAL                 |        | STEP N<br>AND TEST<br>IF LESS<br>THAN ONE                                                                  |
| 1 |        | THA                | RAU<br>FSB<br>FSB<br>BMI                                                  | ONE<br>ROOO2<br>ROOO9<br>CTH                                                                               |   | NEB                 |        | AND GRTR<br>THAN ONE<br>MIN BETA                                                                           |

54 °,

| <u> </u> |               |          |                                               | t                                                          | <u> </u>    | <u> </u>          |             | ·                                                 |
|----------|---------------|----------|-----------------------------------------------|------------------------------------------------------------|-------------|-------------------|-------------|---------------------------------------------------|
| Ţ<br>P   | <u>s</u><br>N | Location | Oper.<br>Code                                 | Data<br>Address                                            | T<br>A<br>G | Instr.<br>Address | T<br>A<br>G | Remarks                                           |
| -        |               | NEB      | RAU<br>NZU                                    | COO 20<br>CTO                                              |             | СТН               |             |                                                   |
| 1        |               | CTH      | RAU<br>FSB<br>FSB<br>FDV<br>STU               | R0002<br>ONE<br>R0009<br>R0002<br>C0002                    |             | BCO               |             | COMPUTE<br>AND STORE<br>UPPER LIM<br>FOR VAR<br>I |
| 1        |               | ICO      | AXB<br>RAU                                    | 0001<br>C0018                                              |             |                   |             | COMPUTE<br>AND                                    |
|          |               |          | FSB<br>FMP<br>FAD                             | COO15<br>ROOO9<br>COO16                                    |             |                   |             | STORE                                             |
|          |               |          | STU<br>RAU<br>FAD<br>FSB<br>FMP               | P0000<br>C0018<br>C0019<br>C0014<br>R0009                  | В           |                   |             | LL TBA                                            |
| 1        |               |          | FAD<br>FSB<br>AXB<br>STU                      | C0015<br>P0000<br>0001<br>P0000                            | B<br>B      | TESTB             |             | AND<br>LL TAB                                     |
| 1        |               | TESTB    | RAU<br>SUP<br>BMI                             | 8006<br>SVEN<br>STEPN                                      |             | ADI               |             | IF LAST<br>VALUE IN<br>POOO7                      |
| 1        |               | AD1      | RAB                                           | 0001                                                       |             | IDEN              |             | INIT B PCH                                        |
| L        |               | IFO      | AXB<br>RAU<br>FSB<br>FMP<br>FAD<br>STU<br>RAU | 0001<br>C0018<br>C0012<br>R0009<br>C0013<br>P0000<br>C0018 | В           |                   |             | COMPUTE<br>FOR VAR I<br>AND STORE<br>LL TBA       |
|          |               |          | FAD<br>FSB<br>FMP<br>FAD<br>FSB               | C0019<br>C0011<br>R0009<br>C0012<br>P0000                  | В           |                   |             |                                                   |
|          |               |          | AXB<br>STU                                    | 0001<br>P0000                                              | В           | TESTB             |             | AND<br>LL TAB                                     |
| 1        |               | TAL      | RAU                                           | R0002                                                      |             |                   |             | TEST IF                                           |

| TI P | S<br>N | Location                                                                    | Oper.<br>Code                                                   | Data<br>Address                                                     | T<br>A<br>G | Instr.<br>Address                                            | T<br>A<br>G | Remarks                                   |
|------|--------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|-------------|--------------------------------------------------------------|-------------|-------------------------------------------|
|      |        |                                                                             | FAD<br>STU<br>RAU<br>FSB<br>BMI                                 | R0004<br>R0002<br>R0006<br>R0002<br>TOM                             |             | ST1                                                          |             | BETA IS<br>MAX IF NO<br>STEP IF<br>YES    |
| 1    |        | том                                                                         | RAU<br>FAD<br>STU<br>RAU<br>FSB<br>BMI                          | R0001<br>R0003<br>R0001<br>R0005<br>R0001<br>READ                   |             | SIA                                                          |             | TEST IF<br>OMEGA IS<br>MAX AND<br>READ OR |
| 1    |        | SIA                                                                         | RAU<br>STU                                                      | R0004<br>R0002                                                      |             | START                                                        |             | STEP BETA                                 |
| 1    |        | ZERO<br>ONE<br>HALF<br>NINES<br>FOUR<br>THREE<br>TWO<br>OCT<br>DEC<br>TWELV | CON<br>00<br>10<br>50<br>99<br>40<br>30<br>20<br>80<br>75<br>12 | STANT<br>0000<br>0000<br>9999<br>0000<br>0000<br>0000<br>0000<br>00 | S           | 0000<br>0051<br>0050<br>9999<br>0051<br>0051<br>0051<br>0051 |             |                                           |
|      |        | DELTN<br>SVEN<br>FRAC                                                       | 10<br>00<br>66                                                  | 0000<br>0000<br>6666                                                |             | 0050<br>0007<br>6750                                         |             |                                           |

#### CHAPTER VI

#### SUMMARY AND CONCLUSIONS

The development of a high speed computer program to evaluate beam constants for use in the carry-over moment procedure has been the purpose of this study.

The number of instructions in the program has been held to a minimum by expressing the beam constants in terms of recurring integrals which could be evaluated by supplying appropriate upper limits in equivalent algebraic expressions and by expressing succeeding beam constants in terms previously defined.

Using the program presented the computer will evaluate constants for beams with either one parabolic haunch or two symmetrical parabolic haunches for which  $\beta$  is expressed as a multiple of one-tenth and  $\omega$  does not exceed two. If beam constants are desired for  $\omega$  greater than two the number of terms in the subroutines for functional evaluation should be checked for accuracy.

The output from the computer may be listed on the IBM 402 Tabulator. Plate I shows typical results of such tabulations for a symmetrical beam for which

 $\omega = 1.0,$  $\beta = 0.1 \rightarrow 0.5$ 

From Chapter 5 and plate I the beam for which

$$\omega = 1.0,$$

β = 0.3

## PLATE I

# Tabulated Constants $\omega = 1.0, \beta = 0.1+0.5$

|            | and the second s |             |            |                     |            |            |            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|---------------------|------------|------------|------------|
| 1000100001 | 2905140250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1639384150  | 2905140250 | 4098460949          | 4135960949 | 4098460949 | 4135960949 |
| 1000106001 | 0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000000000  | 6178512349 | 617851 <b>2</b> 049 | 6315527449 | 5541497049 |            |
| 1000109001 | 585 <b>2</b> 543049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4504481049  | 4689558049 | 3167466049          | 2726573049 | 1630451049 |            |
| 1000200001 | 2526261050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1562787650  | 2526261050 | 3906969049          | 4040302349 | 3906969049 | 4040302349 |
| 1000206001 | 00000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000000000  | 5964048549 | 5964049049          | 6067359749 | 5360737049 |            |
| 1000209001 | 5570671049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4357426049  | 4373982049 | 3054115049          | 2422136049 | 1558226049 | •          |
| 1000300001 | <b>2</b> 188819950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1444752950  | 2188819950 | 3611882249          | 3874382249 | 3611882249 | 3874382249 |
| 1000306001 | 0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000000000  | 5606609249 | 5606609049          | 5663373649 | 5049844049 |            |
| 1000309001 | 5120138049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4093080049  | 3896282049 | 2842467049          | 2102808049 | 1441250049 |            |
| 1000400001 | 1884941050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1293156150  | 1884941050 | 3232890349          | 3632890349 | 3232890349 | 3632890349 |
| 1000406001 | 00000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0000000000  | 5106193849 | 5106194049          | 5111444549 | 4600943549 |            |
| 1000409001 | 4526512049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3700761049  | 3371631049 | 2549814049          | 1806545049 | 1290088049 |            |
| 1000500001 | 1606747650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1115873850  | 1606747650 | 2789684349          | 3310517649 | 2789684349 | 3310517649 |
| 1000506001 | 0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00000000000 | 4462803549 | 4462803549          | 4424874449 | 4010423649 |            |
| 1000509001 | 3863797249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3203876849  | 2857954049 | 2200587049          | 1532499049 | 1113038049 |            |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |            |                     |            |            |            |

is given by lines 7,8, and 9 where the identification numbers are of the form

#### 100030n001,

and the coefficients (Fig. 6-1) are used with Eqs. (4-13) to (4-19) inclusive and related equations in chapter 3 to obtain the desired constants. The angular live load functions for

are obtained from symmetry.

Beam constants have been computed for all combinations of

$$\omega = 0.1 \rightarrow 2.0$$
$$\beta = 0.1 \rightarrow 1.0$$

for unsymmetrical beams and

$$\beta = 0.1 \rightarrow 0.5$$

for symmetrical beams. Comparisons were made with values presented in (2) and the results published in (3).

| f <sub>BA</sub> | g     | f <sub>AB</sub> | $t_{\rm BA}^{(\rm UL)}$ | $t_{\rm BA}^{({ m DL})}$ | $t_{AB}^{(UL)}$ | $t_{AB}^{(DL)}$ |
|-----------------|-------|-----------------|-------------------------|--------------------------|-----------------|-----------------|
| .2189           | .1445 | .2189           | .0361                   | .0387                    | .0361           | .0387           |

| 1 | <u>۱</u> |  |
|---|----------|--|
| Ł | 01       |  |
| L | aı       |  |
|   |          |  |

| n                        | 0.1   | 0.2   | 0.3   | 0.4   | 0.5   | 0.6   | 0.7   | 0.8   | 0.9   |
|--------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $t_{\rm BA}^{({ m LL})}$ | .0144 | .0284 | .0409 | ₀0505 | .0561 | .0566 | .0512 | .0390 | .0210 |
| $t_{AB}^{(LL)}$          | .0210 | .0390 | .0512 | .0566 | .0561 | ₀0505 | .0409 | .0284 | .0144 |

(Ъ)

Fig. 6-1.—Beam Constants For  $\omega = 1.0$ ,  $\beta = 0.3$ .

Computations requiring the use of these constants are normally such that four place accuracy is sufficient.

#### A SELECTED BIBLIOGRAPHY

getter i state and the

- 1. Tuma, J. J. "Analysis of Continuous Beams by Carry-Over Moments." <u>Proceedings of the American Society of Civil Engineers</u>, Vol. 84, 1958.
- 2. Guldan, R. <u>Die Cross Methode</u>, Wien, 1955.
- 3. Tuma, J. J., French, S. E., Lassley, T. I., "Analysis of Continuous Beam Bridges, Volume I, Carry-Over Moment Procedure." <u>Research Pub-</u> <u>lication No. 3</u>, School of Civil Engineering, Oklahoma State University, Stillwater, Oklahoma, 1959.
- 4. <u>SOAP II</u>, International Business Machines Corporation, 1957.

#### VITA

#### Therman Iveal Lassley

#### Candidate for the Degree of

Master of Science

Title: BEAM CONSTANTS BY HIGH SPEED COMPUTER

Major Field: Civil Engineering

Biographical:

- Personal Data: Born in Cleveland, Oklahoma, March 25, 1927, the son of A. A. and Roxie Lassley.
- Education: Attended grade school in Cleveland, Oklahoma; graduated from Wildhorse High School, Hominy, Oklahoma, in 1944; received the Bachelor of Science Degree from the Oklahoma State University with a major in Civil Engineering in May, 1954; completed requirements for the Master of Science Degree in August, 1959. Now a Junior Member of A. S. C. E.

Professional Experience: Bridge Designer for the Oklahoma State Highway Department.