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PREFACE

A numerical procedure of successive approximations for the
analysis of flat elastic plates, simply supported, is presented in thisg
thesis. The plate equations are expressed in finite differences; the
solution ig achieved by iteration. The accuracy of the solution is de-~
pendent upon the number of cycles of iteration.

The first part of the thesis is a gketch of the development of the
general theory, which may be found in standard texts on flat plates.

The second part is a numerical analogy to the algebraic solution
of thin plates prepared for the McDonnell Aircraft Corporation. L The
numerical approach involves the use of the algebraic basic series only;
the carry-over and circulatory series are solved numerically.

The writer wishes to acknowledge his indebtedness to his faculty
and thegis advisor, Profes.sbr Jan J. Tuma, whose inva],u.able persongl
and profesgional couns.é]. during the course of the writers graduate

work supplied much incentive for further study.

‘1Tuma»i Jan J, et al, McDonnell Aircraft Corporation
Research Project No. 1, Oklahoma State University Library
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CHAPTER I BASIC EQUATIONS

1. INTRODUCTION

The object of this study is to present a procedure for the sol-
ution of the differential equations of second order for flat elastic plates.
The equations are expressed in the form of finite differences equatipns;
the solution is acpomplished by iteration. Convergency of the iterat-
ion series is imf)roved by a preliminary algebraic series solution of a
basic set of b points.

The application of finite dlfferences to ﬂat plates was 1ntrod~
uced by Dr. H. Marcus.( ) The solutlon was achleved by Gauss's
elimination or iteration. These methods are treated in standard texis
in college algebra.

In order to reduce the error in the finite differeﬁce,s approxi-
mation to the elastic surface of ﬂat plates to less than one percent,
at Iéas’c an eight strip division rﬁust be used. The resulting matrix
yields 49 variables with their resulting 49 equations, the iteration
solution of which becomes quite laboriogs. »

The process of algebraic iteration developed by Tu]fna,(zj‘(s)(Ll
affords a means to improve the rate of convergency of the iteration

series. The improved rate of convergency considerably reduces the

* Numbers in parenthesis refer to bibliography at end of thesis.



time and labor required to solve the matrix of equations. At the same
time, the purely mechanical procedure of iter.atibn is preserved.

Of the three 'Seriésiinfréduced by Tuma, the basic, circulatory
and carry-over series, ti)nly the basic series is used herein as an
algebraic series. The other series must exist, but are treated numer-
ically rathexl“l than algebraically.

The writer's interest in this subject stems from the formal
course in flat plates taught by Professor Tuma at Oklahoma State
‘University. The application of the algebraic series to accelerate the
numerical procedure is an oﬁigrowth of the flat plates research project
at Oklahoma State University.sponsored by the McDonnell Aircraft
Corporation. The project was directed by Professor Tuma; the writer
was a member of the research group.

| The pr’oject. report(s) contains the fuIl development and applicat-
bion of the algebraic series to ﬂd.t rectangular ﬁlatés having simply

supported edges.



2. THE PLATE EQUATIONS

In the general derivation of the plate equation, the following
assumptions were made:

a.) The material ig homogeneous and isotropic.

b. ) Deflections are so small in comparison to the dimen-
sions of the plate that they db:nnt affect the geometry
of the plate. |

c.) The material follow Hooke's Law, and all deformations
are within the range of Hooke's Law for the material.

d.) The edges are free to move in the plane of the plate,
hence the edge reactiong act nofmal to the plate.

The coordinate axes are Shown;in’-]?ig. ‘1.3 'the arrows indicate:.

positive sense.

e o oot e o=

N

Fig. 1

Coordinate Axes For
The Plate Equation



The development of the general plate equations may be found in

standard texts on flat plates.

The general plate equation is :

4 ! 4
oW + 9 ow + 0w - q SRt
—z v 2 - — (1-1)
ox x"~ 9y oy’ Df
where w is the deflection of the plate, the positive sense

taken downward,

is the intensity of ldad per dnit area.

bf is the flexure rigidity of the plate:
D = —-—-—Z—Ehg — |
12(1-p)
where E is Hooke's Modulus for the material,
is the plate thickness,
and pois Bbissdn's ratio for the material.

The shears and mobments on a particle are shown inFig. 2.

They are shown in positive gense.

- Fig. 2

Shears and Moments on a Particle.



Shears and moment are given - by the following equations:

2 ;a2

_ ) . R ‘ k
MX = - Df ( _.__ZW__+ 7 ———%N-— ). (I-@)
ax oy
My:wa(_g_‘éV_+p—§€-§‘,’4—) (I-3)
ay ox ‘
MX = _M = Df(l_‘u) azw (1”4)
y yx 9x 0y
2 2
N ? ] 9
Q = "Dy g (—x *t %) (1-5)
: ox oy
2 2 ‘ ’
] 9w g w
Q = D ...~___( d + : ) (I‘-G)
y £ 9 ax2 ayz

The reaction at a corner of a simply supported plate is given by:

’ Bzw
R = 2Dy (1-4)= (1-7)
ox 9y

where R is-the vertical reaction, positive sense taken upward.

“Eq. (141 ) canbe expressed as two second-order equations.

Surhming equations (I~ 2 Jand (I~ 3 ),

M, b Moo= - Dy (1) (I + 2
; ay
whence
M_+M 2 2
X - 'yz_D(,Bw_i_aw) .

(1+p) £ o ay”



. Qalling

M_+M
M = X Y
D( 1+u )
then 9 9
-]1;/1._.:("3W+a‘2” ) (1-8 )
£ ox 9y
In operator form, the general plate equation is
2 2 2 2
9 ) ] 9
4 = D —5 + =) (=g + —7)
, ‘ 9% dy ax oy
Substituting,
2 2
, 9 I
g = P + P ) (-M ),
ox ay
hence,
o G@M BZM L9
ol q = ——T + ‘—‘“——‘2—' © (I: £l )

9xX a9y

The solution of Eq. (I-8 ) and Eq. ( I-9 ) will be presented in

this study.
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3, The Plate Equation§ In Finite Differences

\
The Laplacian equations ( I-8j) and ( 1-9 ) may be expressed by
finite differences. The plate is divided into strips as shown in

Fig"\.,\& \ -

Tl
LT s

Fig. 3
General Point Numbers

In finite differences, for Eq. ( I-9 ) at point (x,¥) ,

ey

M - 2M + M :
=y - (x-Ly)  TTGOy)  TxtLy)
ax” Ax

and
2

iy = 2M, o+ M,
9y Ay

' @
<
i



~q Ax- Ay <

Sginming, and denoting %’“ = n,
+ E M +n M
n (x-1,y) = T(x,y-1) .
— 2+ 2n2 M' B
o Ty
Lo +nM,.
| B oxrLy) (x, y+1)

In final form, Eq. (I-9 }is :

+ a M b M,
* Px-1,y) (x, y#1)
- M
9 (x,¥)

where the symbols are :

Similarily, Eq, (I8 )in finite differences :

_N{(X:.Y) -
Y.

2
A By |N = 2t2n

|+ aw . +‘bw
e1y) T P Ve )

A Viny) T P Wi, y1)

(xy) [

P L= g .
(%, 7) Ux,yy < n
qll o 1 | : n nz.
a = L=l = -—-;———h—-é—-sn b b = - =
N 2 + 2n’ ' N 2+ 2n

(1-10 )



D, N

where ¢ = £

In finite differences, the cross-sectional elements of

Eg's (1-2,3,4 ) ar

e = - <
MX(X-,..Y) v

My, y) ™™

and

RN
My, )™

Ax Ay

L

I

e :

I -

+ aw + bw
‘x-1,y) T ¥V, y-1)

- 2 (atpb) W(X,y)

Taw Yix, y+1)

(x+1,y)

- —_—

" 1

THAWL L,y PV, g1

- 2(pa+b)w(x,y)

+paw + bw,

(x+1,vy)‘

(x,y-1)

+ W(xw],v,f:y-l) - W(};+1, yr1)

T Wikl y+1) - Vix- 1, y+1)

(I-12 )

(I-13)

(I-14 )

Substifuting Eq. ( I~8 ) into Eq's (I~5,6 ), and expressing in

finite differences,

My gy

x(x,y) T o

and

gy

1 ‘é _ : 5

T M, .- M | (1-16 )
Vey) T 2 ax | Gy-l) - TxyEly '



The corner reaction given by Eq. ( I=7 )is :

R = 2M ’
Xy

where Mxy is eyaluated at the corner point.
Eq's {I=10andI~11). are applied in the following numerical

example.

LU
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CHAPTER II

THE SOLUTION OF THE FINITE DIFFERENCES EQUATIONS

1, _NUMERICAL ITERATION

The diagonai system of finite differences.eciuations stated in terms
of Eq¥s (I~10 )or ( I~11 ) may be solved by methods of ‘successivev
approximations, among which the most popular are :

a.) Gauss-Seidel Iteration
b.) ‘Southwell Relaxation

The application of the GauﬁSi”Seidel&num"ericzal iteration to the
dnalysis of a plate brbblem follows.

A flat rectangular plate of constant thic}':ness, loaded by é single

' transverSe force P applied at its center is considered. The plate is
,gimply Supported ‘along all edges on a rigid foundation, and d1v1ded

into 36 re.ctangulat‘ finite strips as ,Shown ( Fig. 4)-

|

- < .
L2 3 4 "5 Zaw N
"6~ 18 -9 10 1N
1112, 13,14 15, ay”
171819 20
/21/§ 23 _-94 25 Ay
;AX,/‘&:/AX _Ax Ax Ax | Simply Supported Edges
Fig. 4

Point Numbers for
Finite Differences Equations

11
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The numerical constants of Eq's ( I-10, 11 ) are :

= Ax
S
a = —4—'1
= ,

In terms of these valugs, Eq's ( 110,11 ) become:

1 1
T M1,y 7T Mg,y
- A = - M 1I-1
©y) - = y) > (H-1)
+ Loy + Loy
& (x+1,y) 4 (x,y+1)
L _
+ ——lc—w + L w
4 "(=x-1,y) 4 T(x,y-1)
Lo xy) . - . T
Y S Y(x,y) 1 (1-2)
+ 1 w + 1 w
B T V(x+1,y) 4 V(x,y-1) ’
where A = ——I—)— and ‘all other A'Ts = 0
13 N .

Eq. (II~1 ) is stated for each point of the plate ( Fig.4 ). The
system of these equations is shown in Table la , and the solution of
this system by numerical iteration follows in Table 1b. The resulis
of table 1b are in terms <of.the M=coefficient k(x, 9) at the point divid-

ed by N :

k
(x,¥)

N

1]

M(X»y)

A typical equation in:Table la is the equation for point 13. It reads:
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1 1 :': 1 ! o
o Mg + Mg = Mg+ My, + 7 Mg = - 12;

The constant is to the right of the equality sign.

It is noted here that as far as any gingle: iteration is concern~
ed, the only points involved are those immediateiy to the left, right
top, and bottom of the point being iterated, as indicated in Fig. ‘,;5,2'..?‘.

Thig ob.s'erVation is put to use later, in the aigebraic iteration.

5 Assumed Temporary

‘Simple Support
(x,yt+1) ,
/ (x-1.y)  lx.y)  fxrly)
\ (XQV‘QI) /
- Fig. 5

Assumed Edge Conditions
for Single Iteration Step
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M, { M M, [m, [m, T, [m
1] M 3] Vs My | Mg (Mg [ My [ Mg [ Mg M) [ MMM [Myg | Mg {Mg{Mg I Myg] My My, [ My [Myg I My IMye| 2
- 4 1
b S i =y
LI L i
I e il N o
L 1 i
: o el I +
1 1 i
4 LN B BN 1
3 N e 7
5 1 1 1
° 7| ! T
¢ A a4 1
4 T 4 4
7 L T I I
4 ol R B T
T i i T
s 1 NN A L
. 3 q ! 4 4
1 1 1 1
9 JrIs o). A 1
I 3 L ) I
T T T
10 I 7™ T
S ] t [
1 i 1
1t —_— - — =
- 4 i 1 q
Ao 1] . 1 1
12 v 3 1 T T -
13 L BN BV R 1
7 7 3 1
14 A RO L 1
i 3 1 3
15 L A A
1 7y il
16 A g X b ”
4 4 4
17 L R L 1
I ) ‘13 1
1o BN 1 1 1
4 il B i 3
1 t 1 i
19 L L] L L
7 [ L 3
20 I R 1
i I
P ’ 3 ) 1
21 4 I
22 1 JUTE RO
) ! i
" T
23 - 1 1
T R e
; 1 i i
2 L AL
? 1 cl I i
25 . + 1
Table la
SYSTEM OF MOMENT EQUATIONS, 25 POIN[T PLATE
i 1
3 250 .250 260 250
3 .063 125 125 .063 250 063 125 125 063
4 047 L0417 047 141 047 .141 141 047 141 047 .047 .047
5 [ 024 050 024 . 094 .084 050 141 059 .084 . 004 .024 059 L024
6 . 044 .044 044 L0871 044 0BT 007 044 097 ,044 .044 044
7 il 022 046 L022 L071 o7y . 046 , 087 . 046 o011 071 022 046 L022
8 038 035 035 o011 045 o011 071 035 L0171 035 L 035 035
: :
o [.o18 035 018 053 053 035 Lo011 L 035 L0534 053 .010 .03s5 [0
10 L0217 L027 021 054 021 054 .05 L0271 054 L0217 ,027 027
1 |f.o14 1oz 014 041 L041 L0271 054 L0217 041 L 041 014, L027 014
12 L 020 . 020 L 020 040 .020 040 040 020 040 020 .020 020
13 [[.oro] . o020 .010 ,030 . 030 ,020 . 040 ,020 ,030 . 030 .010 020 ,010
E ogn |, 173}.250 ). 193], 08s |. 178].414] 653 [. 414 |. 1w ]. 250 . 659 |1, 659]. 653 . u50}. 179 . ara [. 653 |. 414 | 173 . 088 |.173]. 260 ]. 173, 088

Table 1b

NUMERICAL MOMENT ITERATION, 25 POINT PLATE
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Final moments are :

M1 = .088 )t13 M6 = .173 )t13 M11 = ,250 )t13
M2 = 173 A13 M7 = .414 A13 M12 = .653 A13
M3 = .250 A13 M8 = ,603 A13 M13 = 1.653 ?&13

These results may be checked by substitution into Eq. ( II-1 ).

For example :

At point 13
- (1653 A5 )+ (6530 5) = g
- 1.653 + .653 = 1
Error = 0%
At point 3 4
- (.2500,) + 12_(.173 rg) * (.653)= 0
- .250 + .865 + .163 = 0
Error = 07"

At point 1

. 2 .
~ (088X 5) + (. 173X 5) = O

- .088 + .0865 = 0

Error = 5%

This error was incurred due to alimitednumber of cycles of
iteration.

The results of table 1b are then used as starting values for the
second iteration operation. Eq. ( II-2 ) is stated for each point of the

plate.
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The system of Eq.'s ( II-2 ) is recorded in Table 2a and solved
in Table 2b. The results of Table 2b are in terms of the deflection

coefficient j(x ) at the point muiltiplied by 1 . In general form,
2 N ,(Z/

- . Jey)
(x,¥) N



W, W, w W W W, W, '
1 2 3l v 5 ¥ 7| Yo | Yo [ W10} ¥ [ M2 Yis [ ¥ Yig ¥1o] Y19 %o | Y21 | Yoz | W23 | W24 ) Vo5
- A1 1
R T
I 1 T
i T I I T
) 1
3 LN 1 1
3 113 3
1 1 1
4 R I A
3 o i
1 1
5 — -
ol T
1 1 i
6 | L. | L i
1 13 i
1 1 L 1
7 L A R 1
4 4 1 4 4 .
K N I I ;
¢ p a4 T
1 ) 1 1
9 R -1 - 1 L
3 T3 3
. T N
1 3 + i
11 L a L 1
4 4 4
) 1 1 1
12 h Ao L
1 % il
13 3 N R 1
L ] R 3
) 1 )
4 A RN iy
1 'yl 3 ! 4
1 X T
15 1 ] T
[ 1 - AL
1 i 1 I
17 d L A L
7 3 g 3
T T
18 T BN -+
19 L JRIN R A
4 1 4 1
20 N 1
7 ! i
i : i
21 1 11| A
i Lhg
1 i
22 A AL
q 13
BN LT a1 L
23 7 3 3
1 T 1
2 1 s ks
25 L JUN
3 g L
=
Table 2a
SYSTEM OF DEFLECTION EQUATIONS, 25 POINT PLATE
1 loso | 173 |.250 | 373 |, 0ms |, 178 [ 414 [.653 |, 414 [ 173 | 250 [. 653 |1, 653} 653 L 173 L 653 1,414 | 173 [, 088 [, 173 [.250 | 173 | 088
2 [ oss |.180 |.250 |. 180 | 086 |, 180 |, 412 | 684 | 412 |, 180 | 350 [, 6as { 666 [ o84 188 L6084 |, 412 {180 . 086 {, 180 | 250 [. 180 [ 086
3 [loea ). 108 |.265 | 184 |. 004 |, 188 |. 436 . 433 |, 436 | 180 [. 265 {.433 . 604 | 433 . 188 433 |, 436 [ 168 |. 004 |. 188 [ 265 |. 108 | 084
4 [l.op4 |, 109 |.202 |, 100 |, 094 |, 180 |. 216 |, 455 | 316 |, 180 | 202 |, 455 |. 433 | 455 , 106 455 |.316 |. 100 [. 084 | 100 {202 | 100 | 084
5 [l 100 . 153 | 214 [ 153 |, 100 |, 153 {. 328 |. 316 | 328 | 153 | 214 |.316 |. 456 [ 316 163 ,316 [, 228 | 153 {100 {153 [ 214 {163 |, 100
o |.o76 |. 161 | 150 |. 161 |, 076 |, 161 | 224 |.332 |.224 | 161 | 150 |. 332 |. 316 [ 332 . 161 332 |, 224 |, 161 |.076 [.161 ], 150 | 161 |. 076
7 [l ogo {113 |, 183 |, 113 |, 080 |. 113 [, 241 . 224 {241 ], 113 | 163 [, 224 |, 332 [ 224 L 113 224 [,241 },113 |.080 [, 113 {163 | 113 [, 080
g [l.ose [ 121 [1r2 121 [Los6 |, 120 [ 168 ] 244 | 168 121 | 112 | 244 224 [ 244 L121 244 |, 168 |.121 | 086 {121 [ 112 | 121 | 056
o [|.0s0 |.084 |. 121 | 04 |, 060 |, 004 |.182 |, 168 |, 182 [, 084 [, 121 |, 168 |, 244 | 168 . 084 . 166 {. 182 |. 004 |, 060 |. 084 ], 121 |.084 |, 060
10 [ 042 {091 | 04 |, 001 |.042 { 001 [, 126 |. 182 [ 120 [.081 | 084 {182 |. 108 } 182 , 081 182 |, 126 [ 001 | 042 {001 | 084 [.081 | 042
11 [l.o4s |.073 {091 {,073 |.046 |, 073 [, 137 |. 125 |, 137 |.073 | oor |, 126 |. 182 }125 L0738 125 |, 137 |. 073 |, 046 |, 073 | 001 |.073 | 046
12 ||.036 |. 068 |. 067 |. 068 [, 036 |, 06e | 09a |, 167 [. 008 | 060 ). 087 |, 167 |.125 | 167 . 068 . 157 |, 008 |. 068 |, 036 |, 008 | 067 |. 068 |. 036
13 Jl.oas | os1 073 {051 |.0aa |, 061 |. 112 |, 008 |, 112 |, 061 {073 |, 008 |. 1567 | 088 L 061 Looe [.112 1051 {034 [.051 [.073 | 051 | 034
Z 892 J1.6630. 042{1, 663, 802 |1, 663]3. 104k, 071 {3, 104f1, 6632, 0424, 071)5. 626 [4. 07 1. 664 4,071}3, 104]1, 664 862 )1, 663]2, 0421, 663, 802

Table 2b

NUMERICAL DEFLECTION ITERATION, 25 POINT PLATE




The resuits may again be checked by Eq. ( II-2 ). For

example :
At point 1:3
- (5.626 )+ ( 4.071 ) & - 1.653
1.555 & 1.653
Error = 5.9%
At point 3
- (2.042 ) + %( 1.663 ) + _}l_( 4.071) 5 -.250
.192 = .250
vE(féror, = 23.2%
At point 1 '
- (.892) + 2(1.663) = .088
..050 = ,088

Error = 43,2%

18



2, ALGEBRAIC ITERATION

19

The analygis of a flat plate by numerical iteration is a laborious

and time-consuming procedure. The convergency of the procedure can

be considerably improved by means of special equations based on study

presented in Ref. (5).

The derivation of these equations follows.

In order to simplify the symbols, an arbitrary point numbering

system ig used; the lattice and point numbers are shown in Fig. 6.

L6 17 418 19~ 20 21 22 23 24
26 27 28 v 29 30V 31 32 33 34
36 37 v 38 39 40 41v 42 43 44
46 47 48" 49 50 ¥ 51 52 53 54
56 57 58 59 ¥ |60 61 62 63 64
66 67 68 69 70 71 72 73 74
76 77 78 79 180 81 82 83 84
Fig. 6
Point Numbers for General Algebraic Equationsg
The mairix of equations Eq. (I~10 ) follows in Table 3. A
load Ao, = 1 is taken at point 50. All other loads are zero.

50



Equation for Point

i

Myq My | My Myg Myg |Mgg Mg, | Mgy Mgg | Mgg | Mgy C
40 ~1 | a | 7 . b
41 a | =1 | a ] b
42 a -1 | = b
48 . -1 | a b '
49 . a | 1| a b -
50 b . a | -1 | a b -1
51 b . a -1 a
52 b . a | =17
58 . b . -1 a
59 . b a -1 a
60 . b a | -1

 GENERAL ALGEBRAIC SYSTEM OF EQUATIONS

R

0¢
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A five point set ( 40, 41, 50, 51 and 60 ) is isolated by

assuming

30

M My = Mgy = Mgy = Mgy = Mgy = My, = Mg

Then the algebraic iteration is performed in n- cycles.

From the first cycle :

(1) (1)

0.

Myg = Mgg = 2
(1) (1)
Myg = Mg, B
(1)
80 = 1 .
From the second cycle
(2) (2 5 g
My, = Mgy = 2(a”+b”)a
(2) (2) 9 9 _
Myq = M, = 2(a”+b" )b
(2) 9 9
M., = 2(a"+Db°)
From the n-th cycle :
(n) (n) 9 2 n-1
Myg = Mgy = 2(a” +b ) a
(n) (n) 2 .2 n-1
Myq = Mg, = 2(a”+b" """ b
(n) 2. .2 n-1
. Mg, = 2(a” +b" )

If this procedure is repeated an infinite number of times, the
values developed at each point ( 40, 60, 49, 51 and 50 ) form a sveries

which is :
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a, - Infinite
b. Convergent

c. Geometric

The sum of such a series is easilycomputed and for this part-

icular case

(1+2+. . . +oo ) (12 ..t ) 2
M4O M60 ) X ’
22
M4(91+2+.. .t ) - M5§_ 142+ -+ 0 ) - ‘ b (1I-3)
¥ %22
M5(§ L+2+4 -t o0 ) LS
A #22
where
< = 1 b 2 az - 2 b2 e

22 |

It may be observed from Flg T that ..miie;;-"same result is ob-
tained by the relaxation of unit value at 50 and by carrying-over the
relaxed value to the adjacent points by means of a and b respectively.

This two s’ﬁep procedure forms the basig of the proposed procedure.
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Fig. 7

Relaxation and Carry-over
Diagram

" Fig.7 represents not only a complete solution of the five
point set ( 30, 49 50, 51, 60, ), but of any five point set i;srolai_:ed by
a similar assumption. |

If now a new five point set is assuméd in the upper left corner
' a0
(29 38, 39 40 and 49 ), the involved starting value at 29 (derived

from the assumption of zero moments at 19, 30 41, 50, 59, 48, 37,
S /. '
and 28 ) is

(Ii~4)
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and similarly at the other corner points the involved starting values - _

are
(1)
M - 2ab
41 X99
(1) g
- 2ab ,
Mgy =, Ty ( 11-4)
(1)
M61 = 2ab
%22

Finally, four more five point sets may be isolated adjacent to
point 50. The left side five point set with the center at 48, thé right .
side five point .éet with the center at 52, the upper side five point set
at 30 and the lower side five point set at 70, The starting values at

these points then are :

o2
Mgg = PP
> ( II-5 )
(1) 2
M70 = Xa
22 |
(1) 2
‘M48 = Xb
22
». ( I1-6 )
1V 2
Mgy = %y

Thus it becomes apparent that the carry-over set values from -
the center of the inital five point set ( 50 ) to the centers of adjacent

sets are of three types

g.) Vertical = az = A
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b.) Horizonta}l = b2 = B

c.) Diagonal = 2ab = D
 The graphical interpretation of these carry-over set values is-

shown in Fig. 8% .

Fig. 8

- Carry-Over Set
Diagram

'Wiith these new startiné va:illies' the algebraic i’ceratiéri: may'be‘
- repeated arid t‘he same results as in the case of set (50) must be ob~-
tained. The Eq‘s (1I-4, 5 and‘gﬁ ) are completely gener’al and. apply for

any flve p01n’t set in the plate. |
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3. BOUNDARY CONDITIONS - DIRECT

Three 'spe.ci:ﬂ conditions occur in the application of Eq's
(II-4, 5, and 6 ) which necessitate modifying the equations.

| The conditions are :

a.) Left edge and right edge

b.) TUpper edgé and lower edge

c.) Corners.

If the center of the };oint set is placefl adjacent to the left edge

‘or right edge as shown in Fig. Qa‘and b, the edge point always produces
a zero m?ment3 and thus does not contribute any values to the iterat-

ion.

Fig. 9a . Fig. 9b

Point Set at Left Edge | Point Set at Right Edge



For the left edge (",\J?‘ig. 9a), Eq. (II-5) reduces to:

b

M ' M —_—
(x,y~1) (x,y+1) X19

Mix-1,v) » Mi1,y) T E ¢

1

12 | J :

M‘ C =
x,y) X

| Wher‘e
v 2 2b2

0

X 1 -a

12

217

(II-7a)

The carry-over factors then become ( from a point adjacent to

a left edge ) :

(L) B (R) ' 9

Arterry = 0 Atetty = 2

w D)

Bllesty = | Bllesty = P

© | B

Dijerty = 0 Desry = 230
(D) :

where, for example, B(left) reads:

Carry-over factor downward from a

- point adjacent to the left edge.

L (II-8a)

The set of values obtained by Eq's ( II-7 ) will hereafter be

referred to as the 'telaxation set''; the values obtained by Eq's ( II-8 )

1

will be referred to as the "capry-over set' .

For the right edge ( Fig. 9b ), Eq ( II~5 ) is cyclosymmetrical.

M, = M,
(x,y~1} (x, y+1)

b ' -
N ( II~7b )
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M. =0 . M, _ .a
(X+1$Y) i (X”‘1£Y) X12
(II-Tb )
M 1
(x,y) =
X129

The carry-over factors are also cyclosymmetrical.

(1) 9 (R) _
Arighyy = @ Arpignty = °
Bm)., = b2 B(D), = p?
(right) (right)

(L) (R)

Dirignty = 28b Dirighty = 9

The diagrams of Eq's ( II-7a and b ) and Eq's (8a and'b) are
shown in Figlts 10 a and b, and Fig's 1la and b, respectively.

- Lefi Edge

PSIEN

Fig. 10a ‘ Fig. 10b

Relaxation Set Diagram — ' Relaxation Set Diagram—
Left Edge j - Right Edge



Right Edge

Fig. 1la I  Figl 11b

Diagram of Left ' . Diagram of Right

- Carry-over Set Carry-over Set

Similar re;lé,tiénghips: can be derived for the upper and vlower
edges, and for a corner. The‘ final results for upper and lower edges
are shown without derivation in Fi.gfs? 12a é.nd b ; the final results for
 any corner is S’hoﬁn in Fig. 13. For Fig'ﬂs 12a and b én:d for Flg 13,
and all-gimilar gucceeding charts, the values in th.e smaller rings are
the relaxation set and those in the ];arger ring are the carr*y—ov.er{slét.

The double ring indicates the point where the starting value was

iterated.
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& Upper' edge

Fig l;’a

Diagram of Upper Edge Relaxation
and Carry-over Seis

Fig. 12b

Diagram of Lower Edge Requatlon B

and Carry~over Sets '
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Right or Left Edge

Z1 Upper or Lower Edger

Fig. 13

Diagram of Corner Relaxation
and Carry-Over Sets
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4, BOUNDARY CONDITIONS -~ INDIRECT
\

The foregoing derivations for boundary conditions yield direct
results, but when Ax % Ay, they require the use of three additional
convergéney/fav.,ctor_s, three additi(;nal vertical carfyv-over factors,

‘three additional horizontal carry-over factoris, and three additional
diagonal carry-over factors. Their usé in a numerical application is
quite cumbersome and creates a high probability of error.

‘An alternate, though indirect, method has been found to yield
the same results with a much more mechanical bperation, Only one
extra factor (which is -1) is required, which greatly s*irnplifiei‘s’f’the
application. The derivation follows. | |

At any edge, simply supported on a rigid foundation,

M = 0, or M =0
X y
and ’
w = 0
From Eg. (I-2)
X 9w + o 2’w
D ,8X2 oy
2

Along a y-y boundary, the curvature ( EJZN——) ig also equal to
. Ay

zero, hence :

In fini“té differences,

2W(

- T+ w
Yix-1,7) X,y) (x+1,5)
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Since w ) = 0 at a rigid support,

(x,¥

- W (II-9a )

W(X‘=='lyy) = x+1,¥) .

Similarly, along an x-x boundary,

,y-1) T 7 Vi, 1) . (11;-9’13)

Eq. (II-9a ) is shown graphically in Fig. 14.

@ginary Plate

T e . Undeflected Position
w

x=1, ™~

( y) ~ ; )

W
Real Pl;b\i (xt+1.y)

Fig. 14

Edge Coﬁditions Along y-y Boundary.

Fig. 14 implies that an inflection point along a line of zerp
 deflection is developed at a simple support. This can be accomplished
physically by i)lacing an imaginary plate at each of the four sides; each
imaginary plate is identical to the real p]_ate;, but is anti symmetrieally
loaded. A skietch of the real and imaginary plates for a concentrated

load is shown in Fig. 15.
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Imaginary Plates —

<

| 4&1 Plate

=77 U Simple Supports -

Fig. 15

Deflections of Real and Imaginary Plates

Consider a continuous plate over a simple support. A load
A = 1 is released ata‘,poin‘t adjacent to the support. Sumultaneously
aload X = -1 is released from a point adjacent to the support but on
the other side of the support, as indicated in Fig. 16. |

From Fig. | l‘G}, the total value at the support is zero, At
(x+1,y ), there is a‘\final value of 351”" plus a value - Eé- which

. 22 : 22

must be iterated. ‘
To achieve this result mechanically, when the point (x+1,y) is

iterated, the A iz multiplied by , which yields a fully iterated value

X
22
for that load. the value -;;-- ig carried over to the imaginary point
: ) 22 ' ' ‘
(x=1,y) by the regular carry-over factor A in the regular carry-over

procedure. When deé:ired.p the point (x~1,y) can be iterated, but it

carries onjl;y into (x+1,y), and by a carry-over factor -1 .
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y~

A=-1
R
%92
- a \_\ a
}///Xzz £99
. _A \A
%99 X929
A= 1
1
//// > \\\\
a a
%22 *22 \\\\\
zx///// A
*22 X99
Fig, 16

‘Basic Series at an Inflection Point

Thus the final result is the same as indicated in Fig. 16,

i.e., the sum of values at (x+1,y) is 3—;—— which is fully iterated, plus
"22 :
- A , which musi be iterated.
X99 ; ,,
The probf will now be given that the resulting totally iterated

values obtained by this procedure are the same as those given by

Eq's (I-7a ).

Fig.17 shows a starting value - === . If is then iterated
22



‘ 2
through the bagic geries which yjelds a new starting value + _‘%_

X99

This value ig iterated through the basic series and the next starting

36

-

S A3
Valug - is obtained.
Xoo ,
”-\ o - — f w —a - - =
_ A
X922
o A
, xz \
22
/ _aA
A2 | X
- — 22 \ 2
X A
22 \ - g
X
9 22
+ A
N 22
X3
/ 22 \ 2
’_l._ aA
A3 | ‘ X
X A
22 \ N
x
22
Pe
22
‘\, Fig. 17

Indirect Algebraic Edge Series
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The iteration is repeated an infinite number of times. The

resulting series at (x+1,y )is :

| _ 1. A A A
Marny) 7 7 S s S .
22 22 X929 %92

Asg before, the series ig an infinite convergent geometric :

geries, It® sum is :

1 1
Mexi1,y) x K ’
22 1- =
22
e o2 2 .2
Simplifying, where A = a” , and X99 = 1-2a"-2b"
X
Migi1,yy 7 - | = —
AETL Y 22 | xyta 1-a“~2b

The result is then equal to - as it was defined. “Sﬁnﬂ’.arw

X
12 ,
ly, the relaxation set values and carry-over set values can be shown to

be equal to those of Eq's ( II-Ta ) .

The entire procedure can also be shown to be true by cyclé~
symmetry for an upper or lower edge, ( simply substitute B for A and
b for a in the derivafion and the succeeding proof . }

At a corner, the series is developed in Fig. 18. .
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Fig. 18

Indirect Algebraic Corner Series

The series at the corner point ig :




The sum is, where S = A+ B

M(x | = Xl 1
» Y 22 | | __-S
X992

1 - a2 - b2

which ig the result from Fig., 13.

22

+ S

39
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2.  PROPOSED PROCEDURE

Before the tools previou;sly developed are applied, 1’@ must be

noted that the series yields two types of values :

a.) The fully iterated values of the relaxation set,
which will hereafter be cafled balanded values, and
b.} The carry-over set values which must be iterated,

which will be hereafter called unbalanced values .

Fig. 19 iz a combination of Figs.7 and 8. A vafie « is fo be

iterated at the center point. When multiplied by the balance factor

™~

—i— , 1t becomes f, «, where
X ) b

22 ‘

£ om L

b X99

and iz called the balance factor. This balari_cved value is then carried

J

into the relaxation set by a or b, and into the carry~over set by

A, B, or D.

Fig. 19

Digtribution of Unbalanced Value:
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In Fig. 19, those values in the smaller rings ( the relaxation
- set ) are fully iterated, and those in the larger rings ( the carry-over
set ) become.'ithe new unbalances @y, ay, ag, etc. Each (Sf theée a's
must be balanced ( multiplied by fb) and then distributed. The neva
unbalaﬁces thus formed in the new carry¥oVer sets must ther_l be .
balanced and distributed. The process is répeated untillthe ‘i_arrof is
within limits. |

The ca.rr*y—c.)ver“ factors and balance factor for an interior point
are shown in Fig. 20, for a perimeter point in Fig. 21 and for a corner
point in Fig. 22. For these figures, a‘mfbaf ; n ig equal to unity, or;

Ax=Ay.

Fig, 20

Carry-Over Values at an Interior Point = - |



I \="2 Imaginary Point

Fig. 21

Carry-over Values at a Perimeter Point

‘Simply Supported Ed% 6

3
~1 (Unbalanced)

. Fig. 22

Carry-over Valueg at a Corner Point

42
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Ilustrative Example

The moment values of the plate of Chapter II, part 2, are again
comﬁuted in Table 4, where use is made of the improved convergency
afforded by the é.lgebraic serieg. The balance f‘actor,s‘i_é.nd carry over
factors are shown in Figls. 20, 21 and 22, The procedure followed in

Table 4 ig

1. The starting loads are unbalanced values, and
unbalanced values are entered to the left of the
mesh line at the point where they occur. (For
this example, there is only one starting value,
which is 1. It is entered o the left of this mesh
line at point 13, )
2, Pick out the largest unbalance value, < Balance
the value { multiply by fb_) and enter the balanc-
ed value to the right of the megh Iﬁ%;q.opposi‘te the
unbalanced values. Cross out or underline the
starting value fo indicate it has been balanced.
{ % is entered to the right of the mesgh line at
point 13, and the starting value 1 is underlined.}
3. Carry-over to the. relaxation ée‘t by muIﬁplying- ‘
by the appropx“ia'te a or b. Thege values a’.fe. .
ba.laﬁced values, and are entered to the right of the -
mesh line. (These are the values 1. 333 X %
= , 333 to the right of the niesh line at points

8, 12, 14, and 18 ) .
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M~ITERATION WITH IMP‘ROVED CARRY~-OVER FACTORS



45

4. Carry to the carry-over set by multiplying
by the appropriate A or B. These values
are unbalanced, and are entered to the left
of the mesh line ( these are the values
1.333 x Té.-: .083 at points 3, 11, 15,
and 19 ).

5. Repeat s*tebs 2, 3, and 4 until the error ig
within limits. ( Any part, or all, of a group
of unbalanced values at a point can be usged
as a starting value. )

6. Sum the balanced values for the final value

at the point.

Particular attention ghould be paid to the imaginary points out-
Side‘the boundaries of the plate in Table 4. A value carried into one
of these imaginary points is ''stored''. When desired, it is carried
back ( without being halanced ) into iis corresponding real point by
the factor -1

Table 4 is the iteration in part. The table was completed fo
an unbalance of .03 and summed. The order in which those unbalances
shown in Table 4 were released is :

1. Point 13 - Line 1
2. Point 7 - Line 2
3. Point 9 - Line 3
4, Point 17- Line 4
5. Point 19~ Line 5

6. Point 11~ Line 6



7. Point 15 = Line 7
8. Point 3 ~ Line 8
9. Point 23 =~ Line 9
10. The values in the imaginary points opposite
the real points 3, 11, 15, and 23 were all

carried back into the real points on line 11.

The final sums are :

M, = .084 ) Mg = .1852 M, = .253 X

M, = .191 X M, = .4072 M, = -6112X

My = .253 A Mg = L6172 M,; =1.6012X
where o Y = 1

Valuesg at other points are symmetrical to these.
The resulis may be checked as before by substituting them
into Eq. ( II-1 } . For example:
At point 13
E1601 P2 (.B11) + 2y 617])\ = -2
N i . T - . . "'4— °

.987 & 1

§
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Error = 1.3 % -

At point 8
E 617 + —— (.253) + —2-(.407) + — (1 601ﬂk 0
» 4 . T - 4 -
~.617 + .667 = 0

Error = 7.5%
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At point 1

E,084+%-(.191ﬂxé 0
- .084 + .096 & 0

Error = 12,5%

These results of "Table 4 are used ag starting values for the
deflection iteration, as in the numerical example of Chapter II, part 2.
The same procedure as uged in Table 4 applies also to the deflection

table.

From Tfable 4, the following obgervations are made :

(1) The relaxation set, once calculated; served
no function until the fiﬁa][ summation.

(2) Each value ( when balanced by multiplying
by L } was carried into the carry-over
get by multiplying by the appropriate A

or B, where it wag again multiplied by £y

From (1} it iz deduced that the relaxation get need not be
entered in the iteration table. The iteration can bé completed, the
values summed, and these sums carried into the relaxation set by the
appropriate a or b. Thig is a single~step procedure, and no unbalances
are incurred.

From (2) it is deduced that the unbalance carry-over factors
A,B, and D can be modified to include the balance factor fbo Thug when
a balanced value ( such ag the value 1. 333 at point 13 in the first step

in T:éL ble 4 y is carried to the carry-over set it is balanced and ready
i

to be c:a:x:;riedﬁover again ( such as the value . 166 at point 7 of Table 4).



With these two refinements, the solution of the same problem
ia accomplishéd in Table 5. The modified carry-over factors for

Ax = Ay are :

1 1 4 . 1
A = Al = g X 3 T g
v 1 4 1
B =Bi = g5 X3~ = 3
3 1 4 1
D = Df, = —g X 3= 5

The diagrams for modified carryovers for an interior,

perimeter, and corner points are shown in Fig. 23, 24, and 25,

respectively.
1 1
12 ¢ T2
4
b =T

Fig. 23

Modified Carry-over Values at an Interior Point



Simple Support \\/
{ | -1 (Unbalanced)

Fig. 24

Modified Carry-over Values at a Perimeter Point

o
Simple Suppo:r? S~ -1 {Unbalanced)

~1 (Unbalhnced)

Fig. 25

Modified Carry-over Values at a Corner Point
!

49
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The procedure followed in Table 5 is :

1.

Enter all starting values to the left of the mesh
line. Multiply each in turn by fb and cross out
the starting value, since it has no further use.
Enter the balanced values to the right of the mesh
line. ( In Table 5, the only starting value is 1 at
point 13, which is miltiplied by 1.333 and this is

entered to the right; the 1 ig crossed out.)

Digtribute the largest value to the carry-over set

by the appropriate A BE, or D'. For the Sake
of uniformity, these valueg are entered to thé
right of the mesh line. Underline the value just
carried over, so it will not be used again. (The

value 1,333 is carried to 3, 11, 15, and 23 by the

factor -1—17 . This is the value . 111 at those points.

It is carried to 7,9, 17, and .9 by the factor —é— .
This iz the value . 222 at those points. The value
1.333 at point 13 is then underlined. )

Repeat step 2 for all values which have not been
distributed ( those which have not been under-
lined ) until the error is within limitg. If several
valueg occur at a point and have not been dis-
tributed, any part or all of them may be Summed
and digtributed ( the order in which the points

were released are successively : 13,7,9, 17,19,

11,15, 23, 3 and imaginary points )
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I le o '8 &I 2 ~°
2 018
3 018
4 .08
. OB
-1 02/
7 031
’y& 2031 .31
| =) ‘ Y
— e —— ¥/ ks 2. 25 ——— —
é ¢ !l ‘ 2‘/ 213, B3) -
3
4 { ) 037 0327
5 o 037 .037
4 015
7 oI5
S OS5 L 0!5
g |
—_ 1 — 015 ——
I I | ! g
| | | | | g
Table 5

M-ITERATION WITH MODIFIED CARRY-OVER FACTORS

Pt

N
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4, When error ig within limits, sum the value, and
carry over to the relaxation set by the appropriate
a or b. Sum all the resulting values at a point,
which is then the final value for that point. ( As
in Table 4, only the first few cycles are shown
in Table 5. Table 5 was run out to an unbalance
of .02 and summed. The sums of Table 5 are
entered into Table 6, then each of the starting
valuesg, in turn, is carried into the relaxation
set. For example in Table 6, the starting value
- 474 X at point 7 is carried into poinisg 2, 6, 8, and

12 by -zll—-; which is the value . 119 ) at those points. )

Note that in using the refinements, the need for keeping balanced
and unbalanced columng wag eliminated, thus eliminating the possibility
of entering a number in the wrong column. All values in the modified
method are distributed. Too, the need for multiplying each unbalance
by the balance factor wag ellminated, thus cutting down on the number
of arithmetic operations and hence ':rfeduc:ing the possibility of mistakes.
Also, the carryover into ’r,he‘ relaxation get at each cycle was reduced
{0 a one-gtep operation, cutting down further on the arithmetic operat-
iong.

The final valueg from Table 6 are :

1VI1 = ,104A 1\/[6 = .220 A 1\/[11 = ,2990 A
‘.1\/[2 = ,220x 1VI,z = L.474 X 1\/[12 = 747 X
1VI3 = 228 X M8 = 14T A 1VI13 = 1,737 X



MN— () =2\ (D (-
/-Z704- 2) Gl u 5//@71—
026 875"
Y= L OZ%
A 1S ‘ A 1Y
104 — L20 L2949 220 /04
() ) {5 )
T\l & & )7z
.0z¢ 078 ! Leac
‘/[ 9 L //‘9 -/ / Cj
075 . /19 075
7 -434
R.\zzo 474 747 474 220
'y 752\ {72} 2\ )
U peq N \Ef757 ¢ E)zas
(4.9 119
075 434
434 075
2] 1LY
299 |.747 737 757 - . 299
o\ 7 (. {70
075" 434 ! 075
NN .119 e
LORG 119 NoVAA
0715
220 H74 F47 i ,4/7;71 /A
{2 == (2 @3) € 25
g 2 299 ? 104
JLY 1Y
L0206 oI5
075 OLG
= 1o {220 299 | z20 7y
Table 6

CARRY-OVER TO THE RELAXATION SET

!
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The results are again checked by Eq ( I~10 ).

At point 13
[£1d737 - (.747E]A ‘-1
| .990 &£ 1
Error = 1%
At point 8

: 2 1 1 .
E.747 + ——4—(,474) + —4—(1.737) + Z—(.ZQQ)])L = 0

- 747 + ,746 = 0

i

Error

0%

= ( . O ;L 0

5. 8%

u

Error
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6. CROSS SECTIONAL ELEMENTS

The equations of Chapter I, Part 3 are expressed such that

the iteration may be run directly for the load P, where

P = qgqAxAy .
The M- values are then :
’ k
M e (%:Y)
(X: y) N L4

2>

where k(x ) is the coefficient from the M= iteration, Having the values
of k from the M- iteration, calculate shears from Eq's ( I-15 and’16 )P

Expressed in more usable form. Eq's ( I-15 and 16 ) are :

= 7

1

. — . -k III-1

Q.X((X‘,y) IN Ax "}EX“’L}”) (x+1, y‘_)J ( )
1 [, N

S S ™ - k IT-2

Qx, v N ay | K:ye1) 0 .yl ( )

The deflection iteration ig then run for Eq. ( I-8 ) using only the

values k(x v}’ yielding for deflection :

W = M Xy )

(x,y) N ¢
DN
where v o= o E
Ax Ay

and j ig the coefficient from the w- iteration.
(x,y)

When these valueg for w are substituted into Eq's'(I-12 ), .

{I-13 and(I-14, the resulting equations are :
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=

x(x,y) %‘Ej(x—1,y) oMbl goqy T atwb)g oy (II-3)

«

TPl yery aj(x+1,yﬂ
1 , _
Myx,y) = "T\T_E‘ai](x-q,y) *bj ooqy T 2math) i oy (I-4)

T bl g1y T “aj(x+1,yﬂ

TR o s .
Myytr,y) = ae? Pe-Loy-1) " e, y-1) J(x—l;y+1>+3(x+1,y+1>]

( IT1~5)
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7. TABLES OF CARRY-OVER AND BALANCE FACTORS

The carry~over factors and balance factors for various values.

of n are listed in Table 7. Expressed mathematically, the factors are:

n

= _%_;w_ a = A = az

= j&iﬁfﬂ. b = __Efén B = b2
n 242107 | 3

£,o0= ! D = 2ab
1-2a”-2h
n N a b A B D fg
.5 |5.00/.400|.100|.160 0100} 08001, 515
.6 | 4.53[.367.133|.135|.0177.0976| 1430
.7 |4.26/4.26(.165.112|0272]. 1106, 1385
.8 | 4.10/,305 .195 N0930,0§30,1190.1355
.9 | 4.02|.276.224 | 0762 0502|. 1236 1. 340
1,0 [ 4.00|.250|.250 L 0625) 0625.1250[1. 333
1.1 | 4,02].226|.274] 0511], 0751|, 1240 1338
1,2 | 4.07|.205 |.295 | 0420, 0870|. 1210|%, 348
1,3 | 4.14|.186|.314 | 0346|.0986|. 11681, 362]
1.4 | 4.23/1.69|.331]0285.1095) 11181, 381
1.5 | 4.33|.154 |.346 0237, 1198|. 10661 401
Table 7

CARRY-OVER AND BALANCE FACTORS
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The modified carry-over factors are listed with their regular
balance factor for various values of n in Table 8. Expressed math—

ematically, the factors are :

) ‘
£ = B = £B
‘ 2 .2
b - 1+2a"-2b P
AT = . 1 = f
A | fbA D £D -

§m@ﬁ&ws%mAJxDmm%amﬂmmmemh7.

n f Al B D’

.5 |11.515 |.2420 |.0152 |. 1210

.6 1.430 {. 1930 |, 0253 |, 1395

«7 |11.385 |.1550 |.0377 j1,530

«8 ||1.355|.1260 |, 0515 |, 1610

+9 ||1.340 |. 1020 |. 0673 | 1655

1.0 ||1.333 |. 0833 |.0833 | 1667

1.1 [1.338 |.0684 [.1005 |. 1660

\ 1.2 |11.348 |.05666 |, 1170 1630

1,3 [1.362 }.0471 |, 1340 . 1590

1.4 |(1.381 |.0394 |. 1512 | 1541

1.5 [|1.401 |.0332 |. 1680 | 1492

Table 8

MODIFIED CARRY-OVER FACTORS
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CHAPTER III NUMERICAL EXAMPLES

The procedure will be demongtrated in two typical problems.

The moments and shears will be calculated at specified points.

Example 1
11

A square steel plate, 10' each way and —21— thiék? is simply

s gupported at all four edges. It is Ioadefi by a concentrated load of
1250 Ibg. at itg center. Compute the maximum gtress in each direction,
the ghear at the midpoint of each gide, and the corner. reactions. Take

u = .3, and neglect dead Joad in thig computation.
Solution

A fair degree of accuracy can be obtained by a six-gtrip mesh
(25 points}. For this mesh, with unit load at the center, the M~values
are thoge previougly calculated. The final values are shown in Table 6
for unit Yoad.

For P = 1250 1bs, ,

130 593

My = 5 Mg = ——
275 934

M2 N Mg = —g
374 2171

M, 5 M3 = ~x
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The deflection iteration is run for these values of M. (M~values
at other points are symmetrical. )

~ For a square plate with six divigions,

Fids. 23, 24, and 25 show the modified carry-over factors.
The M-values are entered in Table 9 and balanced (multiplied
by f.b) The procedure outlined on page 50 is followed.

Final deflectiong, from Table 9 are :

_ 1 B “ 1 - e 1
L 1 - . 1 - 1
W, 2669 N0 W 5049—-—Nw Wi 6187_N_§//_
. agae L - a1 - ¢ 1
W3 - 3206 NU W‘s 6187 N Wig 8034_N—§//—

From ingpection, the maximum value of deflection ig geen to

occur at the center. Iis value is -

W(Max> C 8034 )
DN
ORI S
Ay = ..;I_i = 20”
6
b . ER’
f 1 2‘.\
o2



e | a2~ 27 87 | 241 2(7) [ZFs |57 13 |2=12

N?& @)

173 == || 3¢7 | 43 299 { 29 F67 143 173
Z/2 \ (04 | T3 24] 1 2GN N jod 775 212 \
2097 ) 25 3L Nl ze2)| =l o8 | 5/ 2097 )
2(-48) ({ 57 Ll By = 57 52 z-#8)l
2 451 /;) ) Ve 5 1 -57(5) ! EN @) =" WETN AW
_ ZEN\! 1B =37\ /183003 \"/]783 |[—57 130 12BN/ S/8
e ZEID J 385 || /143 205 | 2054)) 325 || 403 447 |z27=0) [ 3z5
7 7 325 y/4 447 | 2.40) 3zZ5 |2 Zos | 2lie) | 3Zzs
AR i 27 716 |l ~ 34 767 27 T 7/
57 55 zz 55 37
e /468 || -27 269 | 2(71) \ 3206 —27 2649 ! Z 2]
I75—| 43 593 |2(32) |83 12(87) [Fe3 |ro032) | 225 | 23
267 | 87 79/ 14 (1245 {2(31) | 79 14 | 3¢7 27
208 | 2| 452 58 2(zos) | 2(15) | 452 52 || zos8 EJ]
LOF" /3 2aoc) |.2019) (et | Z2Gz) | z006) | 209) | Jod | 5
I3 sZ2 2099 | == |Z2(113) 2¢. |l 20sq) | == wE; 52
7 ST (A= 9T (L _128D7N=E | 97 () ! 5700152
. =5\ S50l 2o \/ 2805 || 72 T lioie | zot NL/ZBC5 [ —57 i3]
72 2/ 20a5) § z2s Jza43)) ¢ | ZC75)] 767 | 2 7/
27 143 997 | oty |__7e7 |2lss) | 7/¢ | 2Cen) | 325 | j43 4497
-4 55 Zos || _z! 767 2G| 124z || 2y 267 || 35 Zo5
27 /23 325 43 247 | 123 EFEN Y
—27 26T 2(e) \ B04T a7 [ 2ize)loadg L =27 |2aca
Sk | 207) 334 1 43 2rd |407) o934 | 43 2L | 2(1)
499 | 29 L245 15 2894 1 4(1¢) || (245 15 459 9
241 267 | ot | 2(31) | Ziz | 4737) | 109 | 2] 241 | 237)
20202 | —J¢ | z(z08) | 2(52) | 272\ === |l2(02) | 2(52) |2¢212) | —i¢
Z(45) \%{f‘ z((5z) \24 212 (} Z?.ﬁ'?i < 2¢ | z022) \%
() -9 2 1/3)( = | 2/2 ()= 2013 N\N==_ | =97
WTERII G493) "2 o7 N dEis A2 s A Eezz 76 /iljds_
TS 2asn . 16792 447 [ 97 767 |72V /242 | 205 747
Sl 2(10) 525 [ 2(27) | 1242 | 97~ 77 N2tz | 447 (20| =25
& - 34 acs | 2(55) |~ 7/¢ |57 : 7¢7 N2yl 7l | —34 | 3zs
(15

g2 2LE7 7/& i{ 7¢7. 11 2¢(87)

N\ 3200 T\ ZI&d {(7a) | BPRE a7 ez B3zoc
29| 43 598 la(sz) |los¢ |os7) |F93 | o¢32) | 275 | 43 |
3¢7 87 | 79) 14 1245 _|2(21> 791 14 3¢7 s7
Zod | 3 482 58, l|e2ceog) | gs) || 482 | S8 2o | TF

|0 (5 l2qoe) | 2¢19) o4 1262 | z2000)| 209 04 /5
Ji3 32 llzagsp ) == |2y L _2¢ 201991 == 773 S2
Q;) EYIGN=EZ2 S (/7\ { 2(57) /cﬁ\/f ENIgAW EVAER=EY.
>/ =S\ 3n/ 1 206 \/ /285 2 3066 || 206 2565 | =57\ /30
=7 72 e | 2C75) | 325 ||.2(143) 74¢ 12075) 747 72 7/6
e 43 zo5 | 20¢7) 767 W 2(55) 6 ||2(c7) | 325 (432 2O5
, 55 447 | 2l 325 | 2@7) 447 2/ 325 55 447
+E27 L23 Zolem| 43 123 7¢ 27
—27 N\ ZeZza | 2(z¢) | 5049 a7 (Zlse I Bndd | —27 | 7669
7Fe- 12 (-1) E7 | gxd V2070 | 225 87 |+3c- |2(-1)
/13 = [ 37| 45 | dda | 29 3e7 43 /73 =
22 \ (o4 "3) z24) | 2037) || s04 =/ 212 )
2697 ] 205 (5 \z2(ziz)| —ic [ Zz28 /5 2057) 1
. Z(=45) { =7 )52 \[2/48 == 57 S2__ |2-48)1
(2 IEVAA R WYY D) TP, /75 24\—/5/ /st (z 1
NGZE 2O &8 —57NK " 301 103 N2/ 789 =57 N D150/ 23002 B]8
4&r 2=10] F25 || j43 205 | 205D 325 | /43 447 | 2(~10) ) . 325
—+o- | z=s 72 97|20 | 325 22 Z05 7/ 32>
-7 20e) | "‘5,357 —24 767 27 774 | 201¢)
, Z ‘
R 192775 W17 M V05 8 P I T P I 5 i - A = e W 75
-7 -5 — S —F
/ =, e = =7 -
Table 9

DEFLECTION ITERATION-CONCENTRATED LOAD



whence *

LZ

152 —=
Eh

Y(Max) ©

= ,583"

The maximum moment occurs at the center, and is equal in

both directiong x and y. Substituting into Eq. (II-1la ),
Moo= M= L (29(6187) + (.3 )2 )(6187)
x y - AV !
| e
-2 [—4— + (.3 )(z—g (8034)
= 300 Ib, -in. per. in.

The shears at the midpointg of each side are equal, and are

obtained by substitution into Eq. ( II-10a ).
Q = _._.__1___[374 - (»374@ = 314
(2){4)(20) 80
= 4,68 Ib. per, in.

The corner reaction is obtained from Eg. ( II-13 ) and

Eq. (II~12):

62
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R = ﬂ_l_’i%éi [+(=41468)-({r1468)m(_+1468)+(—-1468):|

4(4)

= - 1% (1468)

‘16

= = 128 Lb, per in. (downward) .

Example 2 i
1"

A rectangular steel plate 10 ff. x 15 ft., ~—%== thick, simply
supported on all gides, is loaded by a transverse unifgrm load of
100 ].bS, ' . .Compute the center deflection and the corner reactions.
Tfa.két‘ya 3 and the weight of steel at 490 %5%

v §9;1ﬁtion

For the .‘pvu:;po::ste of illugtrating the use of unequal carryn-ov‘e‘r' f;?,c’cc')rs s
the plate ig divided into 30" stripg in the X~direction and 24_“ sﬁ;rips in .
the 'Y-direction. The resultant 20~point mesh has no num'b.é.re'ﬁ point
at the center of the plate; the central deflection will have to be inter~
polated.

The starting values are the .equivjalent concentrated loads P at

each point of the mesh,
p 2

P = q, Ax Ay = 1720
ry) T Yy S T A
For the moment iteration, all starting values P are taken equal
to unity; the results must then be multiplied by 720 g for the final
values.
The plate with its mesgh of points and equivalent concentrated

loads is shown in Fig. 26.
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8

y ) ~ ~ ‘ -~ -~ X

W

Fig. 26

Point Numbers for Example 2

The carry-over factors and balance factors may be calculated

or interpolated from Tables 7 and 8.

Ax
= = = 1,25
n Ay

N = 4.100 A = .0515
?

'ﬁb = 1,3b65 B = ,1260

' 1

a = . 195 D = ,.1612

b = ., 305

The d‘ia.gram for these factors is shown in Fig. 2.
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. 0515«

Fig. 27

Carry-~over Diagram for n=1.25

Table 10 is the moment iteration for starting values of unity.
The results of Table 10 are then the starting values for Table 11.

The results of Table 11 are, (for P = 11b.):

~ 1 _ 1

= 25.758L_ = 40.995 -1 _
Wo 7 . Nv Wa 7 . NU

= 29,2451 ;= 47133 1
W3 = . N Wg T . NU
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MOMENT ITERATION~UNIFORM L.OAD
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DEFLECTION [TERATION-UNIFORM ILLOAD

=l
RS
FEE—



68

The total uniform load d; is -

a4 * ag * Gy = (450) (g ) (5 + (100)(rpp)

ib
= 836 —5—
in.

whence: ,
’ P = (.836)(720) = 602 lbs.

The final defleection coefficients for use in the equations of

Chapter II, Part 6, are :

jp = 9,749 jg = 15,325
j, = 15,506 jp = 24,679
i3 = 17,605 jg = 28,374

The corner reaction is computed from Eq. ( II-13 and -12 ) .

1~ $32 )[_w9749 - 9749 - 9749 ~- 974%]
4(4.10)° -

1bs.

= -812

‘The central deflection can be found by linear or parabolic
interpolation. The ordinates for parabolic interpolation are shown

in Fig. 28.



_5 -3 -1 >l 3 5

T\
i = -12.236 x> + 49,369

Fig. 28

Ordinates for Parabolic Interpolation

The curve is fitted to the second order parabola:

jz—12_236X2 + 49.369I .

Atx = 0,

J(MaX) 49,269
In f‘ormﬁla form,
_ 49.369 .
W(Max) R N/ (q Ax Ay )
0802 *——g—qLZ’
Eh

where LS ig the length of the shorter side.

In inches,
.836 x 1204

L0802 (
30 x 10° x (3

W(Max) )3

= 3'71H

bY
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COMPARISON OF-RESULTS

The results of Example 1 are recorded in Table 12 and compar-

ed with the results obtained from Ref. (5),

'COMPARISON(OF RESULTS

Line Point 1 3 13 || Time
1 Moment-Ref. (5) . 115 . 308 1. 769
2 | Moment~Table 1b . 088 .250 | 1.653 || .
‘ ~ 130 min.
3 Error | 23.5% 18.8% | 6.56 7%
4 Moment~Table 6 . 104 .299 1. 737
55 min.
5 Error | 9.6 % 2.97 | L.8 7~
6 Deflection-Ref. (5) 1,322 2,911 7.355
7 Deflection~Table 2b .892 2,042 5.626 -
' ' 190 min. |.
8 Error | 32.5 % 29.97% | 43.5%
9 Deflection~Table 9 1,174 2.564 6. 427
, 70 min,
10 Error | 11.2% 11.9% | 12.6.%
il (
Table 12 |

The deflection values shown ‘in.-lIine 9 . are thosge ih Table 9

divided by 1250 to reduce them to unit load for the comparisori.

The 1astbcolhimn indicates the time .t'eciuir‘ed, for the solution.

Table 12 indicates that a greater degree of gcecuracy was obtain-

"ed in less than half the time wheh compared to the straight iteration.
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