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NOMENCLATURE 

Pressure, psi 

Specific volume, cu in •. per lb 

Polytropic constant, dimensionless 

Volume, cu in. 

Total Volume of the Accumulator, cu in. 

Volume of the compressed gas after the charging operation, cu in. 

Volume of the expanded gas after the discharging operation, cu in. 

Volume of hydraulic fluid displaced from the accumulator 
during the discharging operation, cu in. 

Pressure of the compressed gas after the charging operation, psi 

:Pressu:);"e-of the expanded gas after the discharging operation, psi 

Effective load pressure on the Accumulator, psi 

Preload pressure on the gas, psi 

Flow rate, cu in. per sec 

Time of discharging operation, sec 

Orifice discharge coefficient, dimensionless 

Orifice area, sq in. 

Gravitational acceleration constant, 32.2 ft per sec per sec 

Specific Weight, lb per cu ft 

Specific Gravity, dimensionless 

Diameter., in. 

Inside diameter., in. 

LMP Log .. mean-pressure, psi 

Pf Pressure loss, psi 
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Le 

K 

R 

Friction Coefficient, dimensionless 

Velocity, ft per sec 

Equivalent length of pipe, ft 

Coefficient, dimensionless 

Reynold's number, dimensionless 

Greek Letters 

V Nu, Kinematic viscosity, centistokes 

't Gamma., Ratio of the specific heats of the gas, dimensionless 

1T Pi 

Abbreviations 

lb Pounds 

cu Cubic 

psi Pounds per square inch 

sq Square 

ft Feet 

sec Seconds 

in. Inches 

Symbols 

% Per cent 
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CHAPTER I . 

INTRODUCTION 

One of the first applications of an accumulator was made in 

the Middle Ages, when a waterfall was harnessed in such a manner 

as to fill a large container balanced on one end of a lever, the 

other end of which was connected to a heavy stone door •. When the 

container was full of water, it was heavy enough to overbalance the 

weight .of the door. 

Modern application of hydraulic power provides maxinrum effi

ciency in many hydraulic.ally operated machines by placing accunru

lators at strategic locations in the hydraulic system. The most 

well-known accumulator function is that of storing hydraulic fluid 

under pressure to alleviate intermittent peak-demand pump require

ments. The accunrulator is also employed in a charged state for 

emergency or standby service in the event of partial circuit failure 

or pump disablement. Other important functions of the hydraulic 

accunrulator are shock absorption, pulsation damping, static pressure

volume compensation, and pressure transfer between unlike fluids. 

The earliest form of accunrulator was classified as a gravity

or weight-loaded accunrulator and is still being used today. The 

basic design of this type consists of a heavy-wall steel cylinder 

with a smoothly ground bore into which is fitted a piston. A 

large container, mounted on top of the piston, holds high-density 
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material and is used for the counterweight. Thus the force of 

gravity provides the energy. 

Another type accumulator used in the hydraulic power field is 

the spring-loaded accumulator •. This type accumulator consists of a 

cylinder into which is fitted a piston and a set of compression 

springs, acting in such a manner so as to supply the dynamic load. 

One of the most popular accumulators used today is the pneu

matic accumulator in which potential energy is stored in an enclosed 

gas chamber contained within a fluid chamber. Most of the pneumatic 

accumulators are of the separator type and are further divided into 

solid piston separator and flexible separator types. Both of these 

accumulators separate the compressible gas from the incompressible 

hydraulic fluid. Urgent requirements of lightness and reliability 

have intensified the use of the pneumatic accumulator in the opera

tion of aircraft systems and in many other industrial applications. 

Today, the work-cycle motions in many machine operations are inter

mittent. Thus., in these operations a proper approach through 

application of an accumulator can result in a lower cost and a 

simpler., smaller hydraulic system. 

Although energy is usually stored in a pneumatic accumulator 

2 

by pumping fluid into it under pressure, actually it is the potential 

energy of the compressed gas that fulfills the ultimate power demand. 

Therefore, the behavior of the accumulator must be studied from the 

standpoint of gas thermodynamics. 

In the past, it has been a common practice to consider the 
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compressible preload fluid as a perfect gas. However, work under

taken at Oklahoma State University has revealed that the compression 

of the gas under high pressure and low temperature conditions should 

be taken into consideration. By employing the compressibility factor, 

the state of the gas and the available energy of the system can be 

determined at any given time. 

Although the available energy of a charged accumulator can be 

predicted, the time required for the accumulator to discharge a 

given volume of fluid has required a trial and error solution. If 

the time for discharge could not be tolerated for the chosen accumu

lator, then another one would have to be selected. The dynamics of 

the fluid system has been considered either too complicated to 

yield an adequate solution to the problem or has been completely 

avoided. In many applications, the time required for an accumulator 

t-o discharge fluid is just as important as its available energy 

consideration. No reported method presently exists for an engineer 

to make a proper selection of a pneumatic accumulator and specify 

the charging conditions to insure a given power output. It was the 

recognition of this need that prompted this investigation. 



CHAPTER II 

PREVIOUS INVESTIGATIONS 

Very little work has been published relative to the proposed 

investigation. A few papers have been published which base the 

selection of a pneumatic accumulator on an energy basis, but only 

one (9) was found which considered both the available energy and 

the time required to dissipate the stored energy of a pneumatic 

accumulator • 

. Edward M. Greer (5). presents ~f~methbd, of selecting an accumulator 

in a hydraulic press application. In his work he does not indicate 

how the precharge pressure is selected. He merely states that "if 

2000 psi pressure is the lowest pressure available after fluid has 

been withdrawn from the accumulator, then it is necessary to pre

charge the accumulator to 1500 psi to satisfy the flow requirement 

and provide extra fluid as a safety factor on the required flow." 

To determine the size of the accumulator require~, he applied Boyle's 

law for gases (PV = constant) for both charging and discharging 

processes. 

Applied Hydraulics (2) caused an interesting and valuable 

controversy with the Data Sheet appearing in the October, 1952 

issue. This sheet presented a method for selecting hydropneumatic 

accumulators using Boyle's law also. A reader, whose name was not 

given in the article, suggested that Boyle's law would not hold 

4 
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where the expansion of the gas was very rapid. His analysis was sent 

to Greer Hydraulics Company, which manufactures hydropneumatic accumu-

lators. As a result, in the June, 1953 issue of Applied Hydraulics, 

R. Hemeon (8) gave an explanation of factors which should be con-

sidered when selecting the correct accumulator size, but he gave no 

indication as to how the time could be related to his selection. 

Applied Hydraulics (1) in the February, 1958 issue suggested that 

where fluid is discharged rapidly and the pressure drop must be kept 

within close limits, a polytropic expansion should be assumed. This 

particular statement does not contribute tnQch to the solution of the 

problem. The general case where the pressure (P), specific volume (v), 

and temperature (T) all vary, is commonly called a polytropic process. 

The general equation for a polytropic process is 

Pvn = constant (2-1) 

in which n is some constant for the particular process under con-

sideration. The isothermal process might be considered as a special 

case of the polytropic process in which n = 1. 

Another process that is frequently studied is the adiabatic pro-

cess. For this case n = t, in which 

'l( = specific heat at constant pressure 
specific heat at constant volqme. 

Perhaps the author of this article in Applied Hydraulics meant to 

imply a special case of the polytropic process being used, but no 

implication was observed. 

George R. Keller (9) has presented an approach to selecting an 

accumulator in aircraft hydraulic designs that is very similar to the 
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approach made by the author in his analysis. Keller states that it 

is common practice to assume that for dry air or nitrogen., the for

mulas PV = constant, for an isothermal expansion, and Pv1 •4 = constant, 

for an isentropic expansion, hold true over the whole temperature and 

pressure range encountered. He further states that this is not strict

ly true though, and that considerable error may result from the appli

cation of these equations in some portion of these ranges. Therefore, 

he uses a plot of the actual paths of isothermal and isentropic volume 

changes of dry nitrogen to select the properties of the gas at the 

various states during the expansion process. It is very difficult 

to evaluate his work as presented in this article. He offers a 

solution to the problem by working with a volume of fluid required 

for the application which is determined by taking the product of the 

desired flow rate and time and then using his charts to select the 

size of accumulator required for the job. It would appear that any 

and every flow rate and time combination for which the product of the 

two were equal, would give the same solution to the problem. There

fore, it would be impossible to guarantee which combination of the 

two variables would be obtained from the accumulator selection 

based on the product of the flow rate and the time. 



CHAPTER III 

STATEMENT OF PROBLEM 

The purpose of this investigation was to develope and verify 

experimentally analytical expressions for pneumatic accumulator 

selection on a power basis. This basis would demand not only a 

consideration of the available energy in an accumulator, but would 

also demand that the time required for the dissipation of this 

energy be investigated. 

Although energy is usually stored in a pneumatic accumulator 

by pumping fluid into it under pressure, actually it is the fotal 

internal energy of the compressed gas that fulfills the ultimate 

power demand. Therefore, the behavior of the accumulator had to be 

studied from the standpoint of gas thermodynamics. 

After the analytical expressions were developed, the necessary 

experimental testing had .to be determined and initiated. Necessary 

processing of the collected data was then accomplished and the 

results were evaluated in order that the analyti.cal work might be 

verified or disproved. 

7 



CHAPTER IV 

ANALYTICAL DEVELOPEMENT 

.When a pneumatic accumulator is to be used as an auxiliary 

power source, the choice of the optimum size requires a detailed 

understanding of the system flow as a function of time and a know

ledge of the high pressure thermodynamics of gases. Previous investi

gations in this field have been done by considering only the avail

able energy of an accumulator and not considering the time necessary 

to dissipate this energy. Due to the fact that the time necessary 

to discharge the fluid from the accumulator is as important as the 

ava.ilable energy stored in the accumulator in modern fluid power 

systems, the following analysis was developed. 

In the analysis which follows, four basic assumptions were 

made. 

(1) Isothermal compression of the gas--This is justified 

since the time period is generally of sufficient duration during 

the c.ompression process to allow ambient temperature to prevail. 

(2) Gas expansion is reversible and adiabatic (Described as 

isentropic)--The expansion would approach an isentropic process 

because the discharge of the fluid would be very rapid. (Ideal

ization) 

(3) Discharge pressure is invariant. 

(4) The hydraulic oil is incompressible. Hydraulic fluid, as 
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normally used in industry, when raised to 5000 psi will have only 

about 1.7 per cent volume decrease. 

Figure 1 .shows the state of the system during the charging and 

discharging operation of the accumulator. The accumulator is pre-

loaded initially with some compressible gas (usually nitrogen). The 

g~s is then compressed by pumping the incompressible hydraulic oil 

into the accumulator at some higher pressure than the precharge 

pressure. This constitutes the charged state. The accumulator now 

has stored energy in the compressed gas and can be utilized as an 

auxiliary energy source. After the energy required for the appli-

cation is dissipated from the accumulator, the final state exists. 

Let VT represent the total volume of the accumulator less the 

volume of the piston; PR the gas preload pressure; v1 and P1 the 

volume and pressure, respectively, of the compressed gas after the 

9 

charging operation; V2 and P2 the volume and pressure, respectively, 

of the expanded gas after the discharging operation; and P3 the back 

pressure or load pressure on the accumulator. During the discharging 

operation, the equation for isentropic expansion is valid and states 

that 

r t " P1V1 = P2V2 = PV = constant 

where r is the ratio of the specific heat capacity of the gas at 

constant pressure to the specific heat capacity of the gas at 

constant volume. Differentiation of Equation (4-1) gives 

V '1 dP + 1( ~ - l dV = 0 

or dV = -V/1 dP/P:: 1 

(4-1) 

(4-2) 
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Substituting V =(!1) t v1 

1 
d r ·, V = -P1 V1. _, 

2( . 

from Equation (4-1) gives 

dP 
1·+·-1· p .. ·.y 

11 

(4-3) 

During the charging operation, the equation for isothermal com-

pression of the gas is valid and states that 

Therefore,. 

PV = constant 

PR VT= P1V1 

or v1 = PR VT/P1 

(4-4) 

(4-,5) 

Equating the change in volume of the gas (V2 - v1) to the volume of 

hydraulic fluid (Ve) displaced from the accunrulator during the dis

charging process and combining Equations (4--5) and (4•3) gives the 

following form 

and hence 

(4-6) 

If Ve is substituted in Equation (4-3) for V2 - Vi and set 

equal to the product of the flow rate Q and the time of discharge t, 
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then the following expression is obtained 

(4-7) 

The flow rate Q from the accumulator can be related to the equation 

which expresses the flow rate through an orifice. The actual dis-

charge rate would then be 

actual Q = CA /2g ( 4') 

whe.re C = the dimensionless discharge coefficient 

A= the orifice area in sq ft 

.6.P = the pressure drop across the orifice in lb per sq ft 

w the specific weight of the fluid flowing through the 
orifice in lb per cu ft and is equal to the specific 
weight of water (62.4) times the specific gravity of 
the oil (G) 

g the gravitational acceleration and is equal to 32.2 
ft Fer sec per sec 

(4-8) 

If Q is expressed in cu in. per sec., A in sq in • ., win lb per 

cu in • .,.Equation (4-8) becomes 

actual Q = 146.4 ?~ ~ 
Equating ~p to the average pressure upstream of the orifice, 

(P1 + P2)/2 minus the load pressure P3,and combining Equations (4-7) 

and (4-9) 

(4-10) 
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'·' Replacing v1 by PR VT/P1 as given in Equation (4-.5) yields 

r 1 .1:.1 
t = PR VT 1_!>2 ... 'l - P1°tj {G 

'1 .f'P +P 
146 .4 CA pll~? V 12 2 - P3 

1 P1+P2 
t 146 .. 4 GA Fil l-y ·-z "'. P3 

I (4-11) 

Equations (4-6) and (4al) give the expressions necessary for 

the proper selection of a pneumatic accumulator on a power basis. 

If these two equations are se.t equal to each other and simplified, 

an equa1tion for P2 would, be obtained. 
) 

,P2 = 2P3 - P1 + 9. 3s x 10·5 G [ cAc t ] 
2 

(4 .. 12) 

If Equations (4-6) and (4-12) are solved, the proper accumulator for 

a specific job can be chosen. The following example illustrates 

the selection of an accumulator using the '.Equations (4 ... 6) and (4-12). 

Example: It is necessary to select an accumulator for a hydraulic 

system which requires that 100 cu in. of fluid be discharged in 0.3 sec • 

. A pump is available to charge the accumulator .to 2000 psi pressure. 

The load pressure P3 is 1000 psi. If the accumulator orifice is an 

AN tube fitting with an lD of 0.385 in. and the coefficient of dis-

charge is assumed to be 0.80 for the flow conditions,. what would be 

the optimum size of the accumulat0r? The specific gravity of the 

hydraulic oil in the system is p.86 and the::)'of.the gas ·is 1.40. 
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Solution: 2 2 
Aorifice = 'TTD /4 = O. 785 (0.385) = 0.1165 sq in. 

P2 = 2 .P3 - P1 + 9.38 cio"5) G [c ~\ j 2 
(4•12) 

P2 = 2(1000) ,.. 2000 .+ 9.38(10.,.5)(.86)[ 100 ] 2 
L-8< .1165)(. 3~ 

P2 = 1035 psi 

(4-6) 

:::, [1035"". 714 - 2000 ... 11~· .. = 335,000 

It is connnon practice .to select PR less than P2 by 10 to 20 

per·cent. If PR is chosen to be 20 per cent less than P2 1 then 

it will be 

PR= 1035(.80) = 825 psi 

and' 

·v - p V /P - 335,000 405 . ·T - R T R - · 825 cu in. 

This is the necessary accunnilator volume or size required to 

perform the specified task. 



CHAPTER V 

EXPERIMENTAL VERIFICATION 

After the analytical ~nalysis for.the selection of a pneumatic 

accumulator was made., it was necessary to determine and conduct the 

necessary experimental testing required to support the expressions 

developed in the .analysis. It .was decided that the best way to test 

the equations for their validity was to select a cylinder (Ve= 134 

cu in.) with which to apply an effective load pressure on the accumu

lato.r., choose the PR VT conditions for each test, and then determine 

P3 and t by measurement. Figure 2 shows the graphical hydraulic 

circuit and Fig. 3 is a photograph of the test set ... up. An accumu• 

lator (VT = 410 ,cu in.) was .chosen and tests were conducted at 

preload pressures PR= 200,- 4001 6001 and 800 psi on the accumulator. 

A charge pressure P1 equal to 2000 psi was selected for all four 

tests. No load was placed.on the cylinder, but a load on the 

accumulator, P3, existed due to the friction losses in the line 

and cylinder •. This load pressure was determined by placing a 

calibrated pressure pickup in the line .immediately downstream of 

the accumulator orifice. The pressure pickup used a metal diaphragm 

which deflected into a spherical shape when pressure was applied. 

The deflection of the disc was sensed by a capacitive type element, 

which sent an electrical signal to .a pressuregraph. The pres~uregraph 

transformed the signal into a .voltage which was placed across the 

15 
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Figure 3. Test Set-up 
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vertical plates of an oscilloscope to indicate the pressure magnitude. 

The sweep of the oscilloscope was set at approximately one second by 

installing a capacitor between the sawtooth and ground connections 

on the scope. During the testing operation, a single sweep of the 

pressure beam was obtained by shifting the X-Selector on the os

cilloscope to the "Driven" position and providing a triggering 

mechanism to send the sweep across the screen. The pressure pro-

file was obtained by taking photographs of the single pass. While 

the sweep was moving across the screen, the shutter of the camera 

was held open so that the image appearing on the negative would be 

a continuous curve. The sweep of the beam across the screen was 

triggered with a limit switch as shown in Fig. 4. 

The operational time of the cylinder stroke was measured with 

an electronic timer which was started with the same triggering 

mechanism that started the sweep of the pressure beam aeross the 

screen of the oscilloscope. The timer was stopped when the piston 

rod contacted another limit switch at the end of the stroke of the 

cylinder. See Fig. 4 for the graphical electrical circuit and 

Fig. 5 for a picture of the instrument arrangement. 

The accumulator orifice was calibrated to give the discharge 

coefficients for various flow rates. (Details of the cal~bration 

can be found in Appendix C). A representative coefficient C for 

the testing conditions was determined to be 0.80. The diameter of 

the orifice was measured and the area calculated to be 0.1165 sq in. 

Tests were run for different precharge pressures and the time 

and pressure profiles were determined. Figures 6, 7, 8, and 9 show 
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Figure 5. :.rnstrumentation Set-up 
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the pressure curves for PR= 200, 400, 600, and 800 psi, respectively. 

In Fig. 6 (PR= 200 psi), the complete pressure curve was not obtained 

due to the fact that the time .set for the pressure beam to sweep 

across the screen was of a shorter duration than that req,uired to 

complete the stroke of the cylinder. The complete pressure-time 

curve was obtained when Pil !e~eeded::200 pd as evidenced by Figs. 7, 

8, and 9. The superimposed curve on the figures was caused by a new 

sweep which was started by a pulse received from the limit switch 

that was opened at the end of the stroke of the cylinder. This 

pulse st9pped J;:he initial sweep and started the second one. The 

electrical circuit was wired in such a manner that the first sweep 

would be stopped when the piston rod contacted the limit switch, 

thereby establishing a correlation between the grid coordinates on 

the screen and the measured time of the stroke. With this correla

tion, a pressure-time determination was made. 

The pressure-time determination was made from Figs. 6, 7, 8, and 

9. By counting the number of vertical grid spaces across the pressure 

sweep and correlating this number with the measured time of the stroke, 

the time scale was determined (1 division= 0.0155 sec) •. With this 

time scale, the pressure was determined for various time divisions 

on the grid coordinates. Table I gives the pressure-time values 

over the entire range of the pressure sweep for th~ different tests 

run for each value of PR. Working· Figs. 10, 11, 12, and 13 were 

plotted from this data. 

The discontinuity in each pressure-time·curve at the beginning 

of the sweep was probably due to a shock wave which originated when 
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TABLE I 

PRESS.URE-TIME DATA 

PR (psi) Time Divisions P3 (psi) 

200 4 1650 
200 6.5 940 
200 7 1000 
200 10 910 
200 20 750 
200 30"' 690 
200 40 650 
200 44.7 620 

400 4 1650 
400 6.5 1040 
400 7 1100 
400 10 1000 
400 20 825 
400 30 750 
4.00 37.5 700 

600 4 1650 
600 6 1100 
600 7 1150 
600 10 1050 
600 20 850 
600 33.7 750 

800 4 1700 
800 6 1150 
800 7 1250 
800 10 1120 
800 20 900 
800 32.2 800 
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the first pressure surge hit the piston of the cylinder and then 

bounced back. No other surges appeared on the curve. If this small 

discontinuity is neglected and the curve from t = 4 tot= 7 time 

divisions is connected with a smooth continuous curve to the rest 

of the curve, then the area under the original curve that is left 

29 

out should equal the small increment of area that is added just above 

the discontinuity without introducing an appreciable error. These 

two areas in question are shown cross-hatched in the working figures. 

':rhe pressure-time data from these curves (Table II)were then used to 

plot Pigs. 14, 15, 16, and 17. These plots showed that log t varied 

linearly with P3 for every test. Therefore, the log-mean-'pressure 

for each curve was determined and used as the average load pressure 

during the operation. 

Using the average time scale discussed earlier in this chapter 

0 division= 0.0155 sec) and the measured time to complete the stroke 

of the cyli.nder, the final time was found to be 44. 7 time divisions 

when PR was equal to 200 psi. Then from Fig. 14 (PR= 200 psi), the 

corresponding pressure at the end state was found by extending the 

c.urve upward and past the 44. 7 time division line. Tlhte log-mean

pressure was then determined by applying the following equation to 

the properties of the end states. 

LMP (5-1) 

where LMP = log-mean-pressure. The pressures for all the tests were 

determined and tabulated as the average load pressures (P3) in Table III. 
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Table II 

PRESSURE-TIME DATA 

PR (psi) 'Time Divisions P3 (psi) 

200 4 1100 
200 _ 7 1000 
200 10 910 
200 20 750 
200 30 690 
.200 40 650 
200 44.7 620 

400 4 1225 
400 7 1100 
400 10 1000 
400 20 825 
400 30 750 
400 37.5 700 

600 4 1300 
600 7 1150 
600 10 1050 
600 20 850 
600 33.7 750 

800 4 1420 
800 7 1250 
800 10 1120 
800 .20 900 
800 32.2 800 
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TABLE III 

PRE-LOAD PRESSURE-AVERAGE P3 DATA 

PR (psi) Average P3 (psi) 

200 837 

400 938 

600 998 

800 1080 

From Equation (4-6), P2 was determined for the PR= 200 psi test 

1-l 
Ve P1 y 

PR VT = r1 -1 -ll 
t_1'2 7 -Pl 1'j 

200(410) 
134(2000)· 286 

= ~t. 714 - 2000-. 714] 

260 psi 

then applying Equation (4-11) 

PR VT G -1 -i] fG P2 i? - pl 
t ·- 1-1 · (P\+P2, ... 146.4 CA P1 j 

t ::i! 200~410~ (. 0144) V.86 
146.4(.s>c.1165)(8.8) v113o-s31 

P3 

= 0.533 sec 

In a similar manner, twas determined for the PR= 400, 600, and 
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(4-6) 

800 psi tests and the results were tabulated in Table IV. The actual 

time for each test, determined with the electronic timer, and the 
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per cent error as determined by the equation 

(theoretical t - actual t)(lOO) 
% Error= theoretical t (5-2) 

are also tabulated in Table IV~ 

TABLE IV 

THEORETICAL-ACTUAL TIME AND% ERROR DATA 

p (psi) Theoretical t Actual t % Error 
(sec) (sec) 

200 0.533 0.6929 -26.30 

400 0.509 0.5257 - 3.28 

600 0.480 0.4545 5.32 

800 0.4850 0.4344 10.40 



.CHAPTER VI 

APPLICATION OF ANALYSIS 

The application of the analytical work for the selection of a 

pneumatic accumulator for a specific job would require that the 

power d'emand of the system be known (which requires that the amount. 

of oil per cycle which must be supplied to the cylinder of the machine 

and the.time allowed for the discharging process be known). Also, be

cause the oil pressure delivered from an accumulator is not a constant, 

(it varies from the charged pressure Pi to the final pressure P2), 

the work which the machine performs must be completed in this pressure 

range. Therefore, the designer must know the'minimum oil pressure 

(P2) required for his job. It is necessary to determine the specific 

gravity of the hydraulic fluid to be used in the system and the ratio 

of the specific heats at constant pressure and volume, respectively, 

( lS') of the gas used for the precharging operation. 

It is required that the type fitting used in the accumulator 

discharge line be selected and the cross-sectional area and the 

coefficient of discharge of the fitting be determined. A representative 

coefficient of discharge can be found by applying flow conditions 

through the .orifice that are required for the specific application, 

determining the flow rate by some suitable method such as weighing 

a volume of fluid in a certain length.of time, and then applying 

Equation (4-8), 

37-



V 
Q = t = C A V2g L1P/w 

An average value of AP should be taken as EP1 + P2)/~ - P3 . 

Therefore, P3 must be determined. 

38 

(4-8) 

The load pressure (P3) on the accumulator or the pressure just 

downstream of the orifice is equal to the sum of the pressure required 

to move the effective load on the cylinder and the pressure drop in 

the hydraulic lines and fittings caused by frictional losses. The 

effective load on the cylinder must include both the static and 

inertia forces, which would be known. . Therefore, the frictional 

losses must be determined if P3 is to be found. One method used 

widely today (8) is that of expressing the losses in equivalent lengths 

I 
of p~pe and applying the Darcy equation: 

0.0808 f LG u2 
D 

where Pf= pressure loss, psi 

f dimensionless friction coefficient 

D = pipe diameter, in. 

U velocity of flow, ft per sec 

G specific gravity of the fluid flowing 

(6-1) 

The equivalent length method expresses individual losses in fittings, 

etc. in equivalent lengths of straight pipe, having the same loss as 

the particular fitting. To do this, the following equation is applied: 

Le= KD/12 f (6-2) 

where Le equivalent length, ft 

K = dimensionless coefficient. See Table V for values of K. 
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TABLE V 

K VALUES (EQUIVALENT LENGTH COEFFICIENT) 

dl/d2 

4 
3 0 5, 
3.0 
2.5 
2.0 
1.5 
1.25 
1.1 
1.0 

Pipe Sections 

Valves 

K 

0.45 
0.43 
0.42 
0.40 
0.37 
0.28 
0.19 
0.10 
0 

Valve Diameter Dimension, in. coefficient K 

1 5.3 (flow against bottom 
of se~t) 

Globe 

Angle 

Gate 

,Bends and Fittings 

Pipe bends for radii between 2\ and 5 pipe dia. 

Screwed elbows up to 2 in. 

Right angle bends 

45" bends 

T's 

4.4 (flow against top 
of seat) 

2.1 (flow against bottom) 
2.6 (flow against top) 

0.3 

K = 0.3 

K = o. 72 

K = 1.20 

K = 0.263 

K = 1.500 



The friction coefficient for the corresponding straight length 

of pipe is determined by Darcy's formula 

f - 64/R for R < 2000 

f - 0.316/R· 25 for R >2000 (Blasius Law) 

where R is the Reynold's number and is obtained by applying the 

equation 

R = 774Q UD/v-

where ,r is the kinematic viscosity in centistokes. 

(6-3) 

To illustrate the computation of friction losses and substitution 

of equivalent lengths, an example of the calculation of P3 for the 

PR= 800 psi test (outlined in Chapter V) will be given and a com

parison made of the calculated P3 and the actual average P3 determined 

with the pressure pick-up during the test run • 

. Example: Pi= 2000 psi, t ·= 0.4344 sec, Ve rod end= 134 cu in., 

Ve blank end= 174 cu in., veil= 32.1 ct., D = 0.625 in., and 

G oil = 0.86 • 

. Solution: .The hydraulic circuit is divided into two sections in order 

that the pressure line losses might be determined. The first section 

to be considered is upstream of the cylinder and the second is down

stream of the cylinder. The equivalent lengths of pipe will be ex

pressed in straight lengths of pipe with D_= 0.625 in. The analysis 

of losses is made as follows: 

(a) Upstream section 

Inside diameter= 0.625 in. 

Ve= 134 cu in. 

t - 0.4344 sec 



U = Veit A= 134/.4344(.785)(.625) 2(12) = 84 ft/sec 

R = 7740 UD/"'v= 7740(84)(.625)/32.l = 12,680 

I .25 I 25 f = 0.316 R = 0.316 (12,680)" = 0.0298 

Losses: 

Straight length of pipe 

1 in. pipe Le= l(.625/.957)p 

T's (3 ea.) Le 3(1.5)(.742)/12(.0298) 

Elbows (2 ea.) Le= 2(.72)(.742)/12(.0298) 

Right Angle bends in 
Valve (4 ea.) Le= 4(1.20)(.742)/12(.0298) 

Total loss upstream of cylinder: 

0. 0808 f L G u2 
pf= 

D 

Le total 

= 5.000 

0.112 

= 9.330 

= 2.980 

= 9 .920 

=27.342 

.0.0808(.0298)(27,34)(.86)(84) 2 = 64_Q~ . 
• 625 

(b) Downstream section 

Inside diameter= 0.625 in. 

Ve= 174 cu in. 

t = 0.4344 sec 

Losses: 

U = 174/.4344(.785)(.625)2(12) = 109.2 ft/sec 

R = 7740(109.2)(.625)/32.1 = 16,480 

f = 0.316/(16,480) 025 = 0.0279 

ft 

ft 

ft 

ft 

ft 

ft 

Straight length of pipe = 2.00 ft 

Total losses downstream of cylinder 

.0808(.0279j(2)(.86)(109.2) 2 
pf = . .625 = 75 psi 

41 
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(c) Losses due to flow out of cylinder 

Assume C (cylinder)= 0,50 

D orifice = 0.625 in. 

Applying Equation (4-9) 

t. P = [ g VG J 2 = [ 114 I. 4344 V-86 ] 2 

Q46 · 4 CA . L146.4 (.50)(.785)(.625) 2 ] 
= 275 psi 

The total pressure drop in the system is equal to 

Pf (total) Pf(upstream) + Pf(downstream) + P (cylinder) 

640 + 75 + 275 = 990 psi 

Due to the fact that no external load was applied to the cylinder and 

the inertia effects of the piston, piston rod, and fluid 'were assumed 

negligible 

P3 = Pf (total)= 990 psi 

This compares very well with the measured average P3 (1080 psi) 

obtained during the test. 

After all the variables listed above (Ve, t, Pp r, Pz, v, c, A, 

G, and P3) are found, the method as outlined in Chapter IV can be 

followed to determine the size accumulator necessary to do a specific 

job. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

The object of this investigation was to develop and verify 

experimentally, analytical expressions for pneumatic accumulators 

on a power basis. The available energy of an accunrulator and the 

time required to dissipate the energy was determined by considering 

the behavior of the accunrulator from the standpoint of gas thermo-

dynamics. By making four basic assumptions 

(1) The compression of the gas is an isothermal process. 

(PV = constant) 

(2) The expansion of the gas is an isentropic process. 

(PVY = constant) 

(3) The discharge pressure is invariant. 

(4) The hydraulic oil is incompressible. 

the following equations were developed. 

(4-6) 

and 

where 

t - P3 
(4,,11) • 

PR= preload pressure, psi 

VT= accumulator size, cu in. 

Ve= volume of fluid discharged from the accumulator during 
the discharging process, cu in. 

43 



P1 = charged pressure on accumulator, psi 

P2 = fipal pressure on the accumulator after the discharging 
process, psi 

44 

¥ = ratio of the specific heats of the gas at constant pressure 
and constant volume, respectively 

C - dimensionless cPefflcient of discharge of the .orifice 

A area of orifice, sq in. 

P3 = effective load pressure on the accumulator, psi 

.t - time of discharging process, sec 

G = specific gravity of the hydraulic oil 

A simultaneous solution of Equations (4-6) and ,(4-11), gtv:es the 
·!":. 

following expression for P2. 

-5 [ Ve J 2 
P2 = 2 P3 - P1 + 9.38(10 )G CA t 

Calculating P2 from Equation (4-12) and .substituting its value in 

Equation S4-6) yields the product PR VT. Establishing the preload 

pressure(P.a)lO to 20 per cent less than P2, gives the necessary 

accumulator volume required to discharge the volume Ve in time t. 

(4-12) 

A method for calculating P3 was given in which the losse$ were 

expressed in equivalent lengths of pipe and obtained by applying 

Darci's Equation. 

Pf= 
0.0808 f L G u2 

D 

where Pf= pressure loss, psi 

f = dimensionless friction coefficient 

D = pipe diameter, in. 

U = velocity of flow, ft per sec 

(6-1) 
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The equivalent length method expresses the individual losses in fittings} 

etc. in terms of equivalent lengths of straight pipe having the same 

loss as the particular fitting. This was done by applying the equation 

Le= _!_Q (6-2) 
12 f 

where equivalent length, ft 

K = dimensionless coefficient 

The calculated value of P3 nrust be less than the average upstream 

pressure (Pl+ P2)/2 in order that the minimum pressure requirements 

on the system be met for the entire discharging process. 

It was found that the experimental results supported the analyti-

cal analysis with a reasonable degree of accuracy (as shown in Table V) 

except for the PR= 200 psi test. Here a 26.30 per cent error was 

noted between the theoretical time calculated by applying Equations (4-6) 

and (4-11) and the actual time as measured by an electronic timer. 

This indicates that assumption number two in Chapter IV, which assumes 

an isentropic discharging process, is limited to those applications 

where the value of PR is equal to at least 25 per cent of the maximum 

working pressure. For PR values nruch less than this, the gas expansion 

process is not rapid enough to support the assumption that an isen-

tropic expansion exists. The 10.40 per cent error noted in the PR= 800 psi 

test requires an explanation. Theoretically} according to the assump-

tion that an isentropic process exists when a rapid expansion takes 

placeJ the error should be less than those determined for the PR= 600 psi 

and PR= 400 psi tests. Two or three reasons might explain these results. 
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First, the time measurements are more critical for the more rapid dis

charging process and the prevailing instrument errors would be more 

noticeable for this process. The time lag in the actuation of the 

electronic timer by a pulse being received from the limit switches 

would be more critical for this process. Other errors might be more 

appreciable for this test because of the existence of a higher initial 

pressure surge or due to the fact that inertia forces would be greater 

for the case of the higher rate of flow • 

. The only solution to the problem heretofore has been a "fit and 

miss" proposUion with the actual components. Selection of hard

ware and conditions on experience alone would result in initial 

errors of several hundred per cent in many applications. 

Considering the fact that the experimental results in this 

investigation compare very favorably with the theoretical values 

obtained from the application of the analytical e~pressions developed 

herein, i't: is felt that the analysis is a sat,isfactory aolution to 

the design problem. 



CHAPTER VIII 

--- RECOMMENDATIONS FOR FUTURE _ STUDY 

It is the belief of the author that the analytical approach 

of selecting a pneumatic accumulator on a power basis is sound and 

worthy of further consideration. Perhaps the weakest part of the 

analysis lies in the determination of the effective load pressure 

on the accumulator. I would recommend that an analysis be made 

to .determine the effect of inertia forces on the effective load 

pressure. The analysis should consider the inertia forces on both 

the moving fluid and the moving piston. A study of the initial 

pressure surge and the effects that it might have on P3 might also 

prove to be valuable. 

It might also be worthwhile to.consider the gas expansion 

process .as a polytropic one and pick a value of n greater than one 

but less than ?f • Perhaps a different value of n far different 

flaw conditions should be used. _This investigation might prove to 

be difficult in that a lot of testing_would be required to deter

mine the values of n that would give the bes.t results. 
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APPENDIX A 

APPARATUS .AND EQUIPMENT 

Hydraulic Circuit 

1. Cylinder: Manufacturer., Logansport Machine Co.; model no. 

11020-3-24; size, 3 in. bore and 24 in. stroke; type,. non

cushioned; maximum operating pressure, 1500 psi; port size, 

3/4 in. 

2. Accumulator: Manufacturer, Boeing Aircraft Co.; model no. 

AOS - 522; capacity, 410 .cu in.; type, hydro-1*1-eumatic, piston; 

port size:, 3/8 in. 

3. Check Valve: Manufacturer, unknown; mo.del no. AN 6249,..10; 

maximum operating pressure,- 300.0 psi; po.rt size, ,1/2 in. male 

tube connection. 

4. Check Valve: Manufacturer, James,..Pond-Clark; model no. 247A; 

maximum.operating pressure, 3000 psi; port size:,c 3./8 in. 

female tube connection. 

5. Limi.t Switch; Manufacturer, Mic:roswitch Corp.; catalog no. 

WZE7n.Q9 TN; capacity, 10 amperes at 125 volts. 

6. Rotary Four-Way Valve: Manufacturer, Barksdale; Type, manually 

operated, block centered., detent;: maximum. operating pressure, 

3000 psi; port .s:f,.ze, 3/4 in. 

49 



50 

Instruments 

1. Oscillograph: Manufacturer, Allen B. DuMont Laboratories, Inc.; 

model., dual-beam cathode-ray; type, 322; serial no. 9X78. 

2. Pressure Pickup: · Manufacturer, Commercial Research Laboratory; 

model, Cox quartz pressure element; type 3; serial no. 1328. 

3. Dead Weight Tester: Manufacturer, Ashcroft Gauge Division of 

Manning, Maxwell and Moore, Inc.; type no. 1313A. 

4. Universal Counter and Timer: Manufacturer., Berkeley; model 

5500 .c. 

5. Electro Pressuregraph: Manufacturer, Electro Products 

Laboratories; model 3 70,0 A. 

,I 

6. Pressure Gauge; Manufacturer, Ashcroft; pressure range, 0 to 

300.0 psi. 

7. Pressure Gauge: Manufacturer., Ashc.roft; pressure range, 0 :to 

5000 psi. 



APPENDIX B 

FLUID POWER TES.T STAND FACILITIES 

A portable hydraulic power .unit Model X-003 was designed and 

fabricated in order to provide a main fluid power source at regulated 

temperature,. pressure·, and flow to :the manifold on a :circuit stand 

(Model X-004). The power unit is ,,an ele~tric00motor"'driven machine 

designed to provide a universal all-pm:pose unit incorporating in one 

housing all hydraulic, mechanical, and electrical components together 

with the instruments and controls necessary for testing many hydraulic 

circuits. Figure 18 is a graphical circuit .of the hydraulic power 

system. All compo.nents of the sys,tem are housed within the cabinet 

assembly as shown in Figure 19. 

An operator's manual providing the necessary operating and 

maintenance instructions for the power unit was written and is 

available for .use with the machine. Reference should her made·:to 

the operator's manual for a further discussion of the component parts 

of the power unit and the ,necessary calibration.curves. 

The circuit stand modified for use in .conjunction with the 

power unit was .originally designed and constructed by W. R .. Matthews 

under Research Project Number 1527 Oklahoma State University. This 

stand provided .a. support for the circuit under inves.tigation, a fluid 

manifold system for connection :with the hydraulic circuit, a drip 

pan for receiving leakage fluids, and a storage area for to.ols,, equip ... 

ment, and instruments. Figure 3 shows the modified circuit stand. 
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Figure 19. Power Unit Cabinet Assembly 



APPENDIX C 

. ACCPMULATOR ORIFICE CALIBRATION 

The coefficient of discharge was .determined by measuring the 

flow rate and the pressure drop acro_ss the orifice for various flow 

conditions., calculating the area of the orifice, and' applying the 

equation 

CA 
Q = 146.4 !G VAP 

or 

Q {G C := __ 4_.6...._4..._ __ V""2i""""'...--
l • A P 

The piston was taken out of the accumulator for the calibration tests 

and a regulated flow from the power unit was furnished to the accumu .. 

lator. The accumulator orifice was a size 8, AN tube fitting. 

The flow rate Q was determined with a Stahl-Vis Rotame.ter 

(No. B,..35625) which had been calibrated by the balanced bea,m weighing 

method. The rotamete.r was :connected in the discharge line just down-

stream of the orifi.ce. 

The pressure drop across .the orifice was obtained with a Mercury 

Manometer. One side of the manometer was .connected to .a static press-

ure tube that was inserted int:o the accumulator just ups.tream of the 

orifice. The other side was connected to a pressure tap just down.-

stream of the orifice. The flow rate was regulated to give different 

pressure drops for the various calibration runs. 

Data from the calihration runs are listed in Table VI. Figure 20 

shows the calibration curve. 
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TABLE VI 

ORIFICE CALIBRATION DATA: 

P (psi) Q (gpm) C 

2 5.00 .742 

4 7.30 .767 

6 9.27 .795 

8 11.00 .816 

10 12.47 .830 

12 13.66 .828 

14 14.70 .828 
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