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INTRODUCTION 

The purpose of the thesis is the derivation of the general 

formulas for beam constants for beams with parabolic haunches. The 

string polygon method is used for the derivation of these formulas, 

and the evaluation of the complicated integration function is made 

by means of Ritter's approximation. Tables of beam constants for 

the most iip.portant .cases are included in this thesis. 

The string polygon method mentioned above was presented by 

Professor J. J. Tuma in his course CE-620-Ph.D. Seminar in the Spring 

or 1959. 

vi 



CHAPTER I 

THE STRING POLYGON EQ:uATION 

A simple beam of variable section loaded by a general system of 

forces is considered (Fig. 1-1). 

© • ® 
L 

Fig. 1-1 

The elastic curve of this beam is shown in an exaggerated form. 

Three arbitrarily selected points of the elastic _curve are denoted as 

i, j, and k. The change in slope between the line ij and jk is des

ignated by ¢j, (the change in slope of th~ string polygon). The al

gebraic expression for this change in slope is given by the equation 

(l-1) 

¢/ = GijMi+ (Fji+Fjk)Mj +Gkj~k+-'tji+."tjk 
,. 

The notation of this equation follows: 

Mi = the bending moment of the simple beam at i. 

Mj = the bending moment of the simple beam at j. 

l 

• (1-1) 



Mk = the bending moment of the simple beam at k. 

Fji = the angular flexibility of the equivalent simple beam 

ij at j. 

Fjk = the angular flexibility of the equivalent simple beam 

jk at j. 

Gij = the angular carry over value of the equivalent simple 

beam ij at i. 

Gkj = the angular carry over value o~ the equivalent simple 

. beam jk at ko 

"C'ji = the angular load function of the equivalent simple beam 

ij at j. 

"Cjk = the angular load function of the equivalent simple beam 

jk at j. 

It may be easily proved. that the changes in slope of the string 

polygon ¢1 , ¢j, ¢k, when applied as elastic loads on the equivalent 

conjugate beam,develop shears and moments which, at given points i, 

j, k, are equal to the slopes and deflections of the real beam, re

spectively. A complete derivation of the eq~tion (1-1) and the proof 

of the statement mentioned above can be found elsewhere (1). 



CHAPTER II 

RITTER'S FORMULA 

A prismatic member of parabolic variation is considered (Fig. 2-1). 

The aepthsof the beam at the ends is denoted by h0 and hB respectively. 

The length of this member is to<. The depth of the arbitrarilyselected 

section given by position coordinate x is .. 

(2-1) 

where tx = variable parameter. 

Fig. 2•1 

.- ... - ..... -,.,,...., _ _,,. .... --··· ., , .. 



where 

The moment of inertia with respect to principal axis z-z is 

I -z - bhx3 = 
12 

(2-2) 

! 0 = the moment of inertia of the section at left end. 

tx = the variable parameter defined byEq. (2-1). 

4 

In the analysis or these members two typical integral expressions 

frequently occur: 

Lo< LO< 

xndx = .J:... x~ = 1 ( ) n+l (Lex) (2-Ja) 
Eix EI0 tx nt,o< ~ 

0 . 

.o 0 

and 

I,D(k tcxk 

xndx 1 r1dx = 1 ( ) n+l (;t'>(k) 
(2-4a) .-- ET LDlk ~ Eix EI0 tx 0 •. 

0 0 

As the evaluation of these functions is laborious and time con-

suming, many ~pproxi~te formulas for the solution of these expressions 

· have been proposed. The most powerful approach has beeri suggested ·by·---------···· 

Ritter (2). The application of the Ritter's formula to the evaluation 

of the Q's function is shown in the following part of this thesis. 

·Wlth the notation 

h13 = h0 , + ho"' = h0 er (2-5) 

as shown in Fig. (2-1); th_e general Q functions of lqa. (2-3a) and 



(2-l+a) become: 

toe L<X 

x11cix = ..l... r1(~).3dx 
EIX EIO hx 

(2-3b) 

0 0 

and 

IP<k LO<k 

xndx ..l... 
h ' 

= xn(T) 3dx 
Eix EI0 X • 

(2-4b) 

0 0 

If the ftmction · ( ho).3 is assumed to be a parabola of 2r 
hx 

degree, the following relationship can be stateds 

(2-6) 

5 

The numerical constants CB and rare unknown and must be computed from 

some special conditions. The graphical interpretation of this equation 

is shown in Fig. (2-2). 

·~)3 1-~. 
I 

X 

Fig. 2-2 



The extreme values of this function are: 

,.., 

X: 0, 
0 

1 hx = 
h - 1 X = L, ~ --~ • 

(2-7) 

(2-8) 

For the evaluation of the constants Ca and r, one additional condi• 

tion is necessary. This condition may be selected arbitrarily. 

For example: 

X = .Jt.., 
2 (2-9) 

6 

The meaning of the symbol h is explained by Fig. (2-3). The results 
C 

of Eqs. (2-7, 8, 9) are substituted in the Eq. (2-5) and the con-

stants 0i3, Cc, and rare obtained: 

...------------------------r--+~+-b 

r 

J 
L 

T 

C 
:-1.66 log~ 

hB 

Fig. 2-3 

(2-10) 

(2-11) 

(2-12) 

The relationship between Cl) and r is computed by means of the 

Eqs. (2-10, 11, 12) and recorded 1n Table I.· : , 



TABLE I- . 

THE RELATIONSHIP BETWEEN wAND r 

. <1!J3 CB 
1 Cc log Cc co 

(1 +~)3 
r 

Ca 
0.1 • 751315 .248685 .928576 .071424 ~0541800 .899910 
0.2 .578704 .421296 .863808 .136192 -.490394 .814527 
0.3 .455166 .544834 .804992 .195008 -.446214 • 741145 
0.4 .364431 .635569 .751296 .248704 -.407479 .676808 
0.5 .296296 .703704 .702336 .297664 -.373660 .620636 
o.6 .244141 • 755859 .657536 .342464 -.,343825 .571081 
o.7 .203542 .796458 .616448 .383552 -.317340 .527090 
o.8 .171468 0828532 .578688 .421312 -.293701 .487827 
0.9 .145794 .854206 .544000 .. 456000 -.,272597 .452774 

. 1.0 .125000 .875000 .512000 .,488000 '!".253592 .421207 
1.1 .107980 .892020 .482496 .517504 -.236460 .392752 
1.2 .,093914 .906086 .455168 .544832 -0220909 .366922 • 
1.3 .082190 .917810 .429888 .570112 -.206790 .343471 
1.4 .072.3.38 .927662 .406464 .59.3536 -019.3942 .3221.31 
1.5 .064000 .936000 .384704 .615296 -.182190 .302611 
1.6 .056896 .943104 .364416 .635584 -.171385 .284664 
1.7 .050805 .949195 • .345600 .654400 -.161510 .2fi8262 
1.8 .045554 .954446 .. 328000 .672000 - .. 152384 .253104 
1 .. 9 .. 041002 0958998 .311680 .688320 -.144027 .239224· 
2.0 .037037 .962963 .296320 0703680 -.136237 .226285 

-...: 



CHAPTER III 

BASIC FUNCTIONS 

The algebraic solution of the basic functions Q's defined b7 

Eqs. (2-3b,4b) for the most important cases is presented in this 

thesis. 

The general solution of the Eq. (2-3b) follows 

Q(Lo() = 
n 

1 

= 1 
(L«)n+l 

= 1 [ (Lo<)n+i . 
xn+l _ CJ3 x2r+n+l J Lo< 
n+l (L~)2r(2r+n+l) o 

= __ 1_ - ._ .... cB __ 
n+l 2r+n+l 

If the exponent n:::0,1,2, the Q(~~) £unctions become: 

Q(L«x) = 2 -
CB 

l 2r+2 

(tix) 
3 ... ~ 

Q 2 :::: 
2r+3 

g 

(3-1) 

(3-2) 



The general solution of the Eq. (2-4b) gives: 

(toc.k) 
Qn = 

= 

= 

= 

= 

1 

(Lo<k)n+l 

·l 
(Lo<k)n+l 

1 
(toc.k)n+l 

1 
(Lo<k)n+i 

1 
n+l 

~ ~k xn ( ho)3dx . hx 
0 

~ ~k 
O [ 1 - Oil <-f./~ x"dx 

[ Lot.k 
xn+l x2r+n+l J 

n+l - CB 
(Lo< ) 2r { 2r+n+l) 0 

[ (Lo(k)n+l - ~ !IA'k) 2r+n+l 

J &+n+l n+l 

~ k?.r 

2r+n+l 

(I.IX) 2r 

(3-3) 

Ir the exponent n = o, 1, 2, the Qn(Lo(k) functions becomes 

{l.,O(k) 
l -

CB k2r 
Qo = 2r+l 

(I,oek) CB k2r 
(3-4) ~ = 2 - 2r+ 2 

(Wk) CB k2r 
Q2 = 3 - 2r+3 

9 



CHAPTER I.V 

BEAM WITH ONE PARABOLIC HAUNCH 

The angular constants for a prismatic member with a parabolic 

haunch at the right end, simply supported at both ends are derived 

in a general form (Fig. 4-1). 

® 

Loi. 

L 

Fig. 4-1 

a) Angular Flexibilities and Carry Over Values. If the beam 

shown in Figo (4-1) is acted upon by a unit moment applied at A, the 

end slopes of the elastic curve at A and Bare called the angular 

flexibilityFAB and the angular carry over value Gi3A,, respectively 

(Fig. 4-2). The bending moment, the string polygon, and the conjugate 

beam are shown in the same figure. The elastic weights ¢A, ¢.o, ¢:a 

shown in Fig. (4-2) and defined by Eq. (1-l) are: 

¢A = FAD + ~°t)A 

¢n -· GAD + ~ (FDA + FnB) (4-l) 

¢B = ~ GOB • 

10 
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The angular flexibility F AB is the left reaction of the conjugate beam - --

(Fig. 4-2). From statics 

(4-2a) 

or in terms of Q's (Eqs • .3-2) 

The carry over value Gi3A is the right reaction of the conjugate beam· 

(Fig. 4-2): 

(4-.3a) 

or in terms of Q's (Eqs • .3-2) 

~= t&2 [ Ot'(Q (L') .. Q(L~) )+ ~ (Q'(~) _ Q (L~)) J 
Eio O 1 . 1 2. . • 

C4-3b) 

If the beam shown in Fig. (4-1) is acted upon by a unit moment 

applied at B, the end slopes of the elastic c'llrve at A and Bare called 

the angular carry over value GAB and the angular flexibilityFBA, 

respectively (Fig. 4-3). The elastic weights ¢A, f6o, ~ in Fig. (4 • .3) 

are: 

••· •' -~~~--. na~ -- N• ._ 

' ' 



@ 

i L °" 
L 

f A 

Lo< 
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M ... 1 

® ® 
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L 
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Fig. 4•.3 
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(4-4) 

The angular carry over value GAB is the left reaction of the con

jugate beam (Fig. 4-3). 

GAB = {6 A + '/J D ~ 

or in terms of Q's 

14 

GAB = 6i~~ (l + 2~) + ~~~ [ o<(Q (~~) - Q Ci~)) + ~(Q Ci~) - Q (~~>>] . 
(4-5b) 

The angular flexibilityFBA is the right reaction or the conjugate 

beam (Fig. 4-3) : 

F' BA 

or in terms of Q's 

~) Angular Load Functions If' the beam shown in Fig. (4.1) is 



15 

acted upon by a unit load moving gradually from A to B, the end slopes 

of the elastic curve at A and Bare called the influence values of 
i 

angular load £unction •. The general formulas of the influence values 

will depend upon the position of the unit load, that is, whether it 

is located within the haunch or in the straight part of' the member. 

Fig. (4.4) shows a beam acted upon b7 a unit load applied in the 

straight part of the member. By method of superposition, the resul- ·· · · .,_. .. · · 

tant effect can be obtained by adding toget}ler two partial effects (a). 

and (b). The angular load functions due to the bending moment of part 

(a) follow 

I 

'CAB = LnFAB 

} 'C4-7). 
I 

'C BA = LliGBA • 

The elastic weights ~, ¢~ due to the bending moment of part (b) ares 

II 

¢A = -LnFAC 

. } ¢ " = -LnGAC C 

(4-8) 

II 11 The angular load functions C , 1: are the reactions of the con-. AB BA 
jugate beam at left and right ends, respectively. 

n , , 'Ln)2. , 
'C = ¢ + ¢. n = -Ln (F + n G ) = - ~6E ( 2 + n } AB A C AC AC I0 . 

n 2n (4-9) 
"C BA = flcn = -Ln2aAC = - i¥~ . 

. ·. . 
. . ~'. -· -- .. ----· -·~--·----.,-·----, -- --~ 
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The ang1Jlar load functions t: AB, t: BA may be obtained by adding the 

Eqs. (4-7) and (4-9) 

t: AB - Ln [FAB - ~Io(2 + n 1>] 

l (4-10) 

t: BA = Ln [ ~ - ~~o J . 

If the beam shown in Fig. (4-1) is aotQd upon by a unit load 

applied at a point within the haunch (Fig. 4-5), the angular load 

functions due to the bending moment of' part (a) follow : 

' Ln'F"AB t: AB = 

} (4-11) 

' = LnGBA • 'C BA 

r1." "'' ¢" ( ) .The elastic weights ~A' ~D' 0 shown in the Fig. 4-5b are: 

¢ II 

A = -LnF AD - tkGDA 

¢ It = -LnGAD - Lk(FDA + Foe> D 
(4-12) 

~·" = -L~C • C 

J.·t 

The angular load functions ?: ~, -z: ~ are the reactions of' the con• 

jugate beam at left and right ends, respectively. 

(4-13 a) 
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.L 7 

fl II II 

"t" BA = 0<¢ D + n ¢ C 
(4-l.3a) 

___{!!!)2 
= • 6EI ( .3n - 2oC) - Lk ~o( F DC - Lk~nGDC 

0 

or in terms of Q s 

The angular load functions r:. AB, 'C BA may be obtained by adding the 

Eqs. (4-12) and (4-l.3b) : 

1: = LnF JL::i, (6n-3no<-3o<+2./2)+ (LM)2@[ ,JUkl(k+l) <£1~kl k QCL~k~l 
AB AB f Io · Eio O l 2 jj 

-Z:: BA = Ln 'flA -t~~: (3n-2o<) + 'i~~) 2 
[ ~k) + (kt-ot) JL~k) _ k J Q(L~k)JJ 

(4-14) 

The table of beam constants for the beam with one parabolic haunch 

is computed and listed in Tables II~·and~III~ ··· 

. . .. 

~ •• ,,.,•,•. •,, .. ,< •V"~.-,- ,•••,•, ,-·-' ' ' • •' ·•••••~ •••• •••<·-~-· "•<P ,-•..-¥M••,....,., ••>••••" .----·--·•••-••••• •-·• -••-•••--~---,.----•••• - • 



Angular Angular 
Flex!- Carry-

Right bilities over 
Haunch Values 

" t L ~oe .x ire Coef'.x ...I! 
E 0 

~ w FAB GAB 

1.0 .3310 .1540 
1.2 .3305 .1523 

0;3 1.4 .3301 .1507 
1.6 .3298 .1492 
1.8 .3294 .1478 
2.0 .3291 .1466 

1.0 .3278 .1455 
1.2 .3268 .1426 

0.4 
1.4 .3258 .1400 
1.6 .3249. .1376 
1.8 .3241 .1354 
2.0 .3233 .1334 

1.0 .3225 .1357 
1.2 .3205 .1316 

0.5 1.4 .3187 .1279 
1.6 .3170 .1245 
1.8 .3153 .1214 
2.0 .3138 .1186 

TABLE II 

BEAM CONSTANTS FOR BEAM WITH 
ONE PARABOLIC HAUNCH 

(END A) 

l.n p 

L 
L 

Influence Values of Angular Load Functions_; Coef .x ~: 

n 

0.1 0-.2 0.3 0.4 0.5 o.6 0.7 0.8 

-Z: AB 'CAB -Z:-AB '!:"AB "CAB rAB "C"AB 1:AB 

.0283 .0475 .0588 .0731 .0613 .0546 .0539 .0303 

.0283 .0474 .0587 .0729 .0611 .0543 .0536 .0300 

.0282 .0473 .0585 .0727 .0609 .0541 .0533 .0297 

.0282 .0473 .0584 .0726 .0607 .0539 .0531 .0295 

.0281 .0472 .0583 .0725 .,0605 .0536 .0538 .0293 

.0281 .0471 .0581 .0723 .0604 .0535 .0536 .0291 

.0280 .0469 .0578 .0718 .0597 -.0527 00418 .0287 

.0279 .0467 .0575 ,0714 .0592 .0521 .0412 .0282 

.,0278 .,0465 .0572 .0710 .0587 .051_5 .0406 .0277 

.0277 .0463 .0570 .0707 .0583 .0509 .0400 .0272 

.0276 .0461 .0567 .0703 .0579 .0505 · .0395 .0267 

.0275 .0459 .0565 .0700 .0574 .0500 .0390 .0262 

.,0275 .0458 .0563 .0697 .0571 .0496 .03Sl .0277 

.0273 .0454 .0557 .0689 .0561 .0485 .0381 .0260 

.0271 .0450 .0551 .0682 .0552 .0475 .,0372 .0253 

.0269 .0447 .0546 .0675 .0543 .0466 .0363 .0246 

.0267 .0444 .0539 .0668 .0530 .0457 .0354 .0240 

.0266 .0439 .0536 .0662 .0527 .0459 .0345 .0234 

0.9 

-CAB 

.0155 

.0152, 

.0150 

.0149 

.0148 

.0147 

.0146 
00143 
.0140 
.0137 
.0135 
.0133 

.0135 

.0131 

.0128 

.0125 

.0122 

.0119 l\: 
C 



·' ~ 

~ 
~ 

Right 
Haunch 

~ 00 

1.0 
1.2 

0.3 
1.4 
1.6 
1.8 
2.0 

1.0 
1.2 

0.4 1.4 
1.6 
1.8 
2.0 

1.0 
1.2 

0.5 1.4 
1.6 
1.s 
2.0 

Angular Angular 
Flexi- Carry-

bilities Over 
Values 

Coef.x i£ 
E 0 

Coef .x· i£ 
0 

FBA Gi3A 
.2186 .1540 
.2082 .1523 
.199.3 .1507 
.1916 .1492 
.1848 .. 1478 
.1788 .. 1466 

.1913 .1455 

.. 1789 .1426 

.1684 .1400 

.1594 .1.376 

.1515 .1354 

.1446 .. 13.34 

.. 1686 .1.357 

.1549 .1316 

.. 143.3 .. 1279 

.1.3.35 .. 1245 

.l249 .1214 

.1165 .. 1186 

TABLE III 

BEAM CONSTANTS FOR BEAM WITH 
ONE PARABOLIC HAUNCH 

. (END B) 

Ln p 

® 
~~=f~~· 

L 

. 
Influence Values of Angular Load Functions; Coef.x PL 2 

Eio 
n 

0.1 0.2 o .. 3 0.4 0.5 Oo6 0.7 o.8 0 .. 9 

TBA -Z:-BA TBA rBA !:"BA 1:"BA -Z:-BA °Li3A l:"BA 
.0152 .0295 .0417 .0509 .0562 .0564 .0506 .0382 .0207 
.0150 .0292 .. 0412 .0502 .0556 .0554 .0494 .0371 .0200 
.0149 .0288 .0407 .0496 .0546 .0545 .0483 .0361 .0193 
.0147 .0285 .040.3 .0490 .05.38 .05.35 .0472 .0351 .0186 
.0146 .028.3 .0.398 .0484 .0531 .0527 .0463 .0.341 .0180 
.0145 .0280 .0.395 .0480 .. 0525 .0520 .0454 .0.3.31 .0174 

.0144 .0278 .0392 .0475 .,0520 '0051.3 .0451 .0.3.36 .018.3 

.. 0141 .0272 .038.3 .0463 .0513 .0496 .04.31 .0.319 .. 0170 

.Ol.38 .0267 .0.375 .045.3 .0492 .0480 .0414 .0.304 .. 0161 

.0136 ~0262 .0368 .,0441 .0480 .0466 .0399 .. 0291 .0154 

.. 013.3 .0257 .0361 .. 04.35 .. 0469 .0452 .0385 .0279 .,0148 

.01.31 .0254 .0.355 .0427 .0459 .0440 .0.372 .0267 .014.3 

.0134 .0258 .0.362 .04.36 .0469 .0456 .0397 .0294 .0160 

.01.30 .. 0250 .0.350 .0419 .. 0450 .04.32 .037.3 .0276 .0148 

.0126 .024.3 .0.3.39 .. 0406 .. 04.32 .. 0411 .0.352 .0258 .01.37 

.012.3 .. 02.35 .0329 .0391 .. 0415 .0.392 .0.33.3 .0242 .0128 

.. 0119 .02.30 .0.319 .0.379 .0.399 .0375 .0.315 .0228 .0120 

.0117 .0224 .0.311 .0.364 .0.385 .0.358 .0300 .0217 .. 011.5 
" .. 



CHAPTER V 

BEAM WITH TWO SYMMETRICAL PARABOLIC HAUNCHES 

The angular constants for a prismatic member with two symmetrical 

parabolic haunches, simply supported at both ends,are derived in a 

general form (Fig. 5-1). 

® © ® ® 
~~p :::-:1-=t~o L~ ! Le< l 

f 
L~ 1 L 

Fig. 5-1 

a) Angular Flexibilities and Carry Over Values. If' the beam 

shown in Fig. (5-1) is acted upon by a unit moment applied at A, the 

end slopes of the elastic curve at A and B are called the angular 

flexibility FAB and the angular carry over value G:sA, respectively. 

Fig. 5-2 shows the bending moment, the elastic curve, the string 

polygon, and the conjugate beam. The elastic weights ¢A, ¢0, ¢o, ~ 
shown in Fig. (5-2) and defined by Eq. (1-1) are: 

¢A = FAC + (l -~) GOA 

¢c = GAO + (1-~) (FCA + FcE) + \ ~c 
(5-1) 

¢E = (1-·f) Go:s: + ~ (FEc + FEB) 
I 

¢B = ~ GEB • 
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The angula:r flexibility FAE is the left reaction of the conjugate 

beam (Fig. 5-2). 

or in terms of Q s 

(5-2b) 

24 

The carry over value GBA is the right reaction of the conjugate beam 

(Fig. 5-2). 

or in terms of Q s 

0:aA = 2L~2 [(1-~) Q(L~)- (1 - ~) Q(L~)- ~Q(L~)] 
. EI0 0 1 , 2 

+ 6i~ (1 + 2 ~ - 2@2) • 
0 

(5-.3a) 

(5-3b) 

If the beam shown in Fig. (5-1) is acted upon by a unit moment 

applied at B, the end slopes of the elastic curve at A and Bare 
'• 
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called the angular carry over value GAB and the angular flexibility 

FaA, respectively. Because the beam shown in Fig. (5-1) is symmetri• 

cal, 

(5-4) 

and 

(5-5) 

b) Angular Load Functions If the beam shown in Fige (5-1) is 

acted ,upon by a unit load moving . gradually from A to B, the end 

slopes of the elastic curve at A and Bare called the influence 

values of angular load function. The procedure for determining these 

influence values is similar to that for a beam with one haunch. The 

general formulas of the influence values will depend upon the position 

of the load. 

The beam shown in Fig. (4-3) is acted upon by a unit load applied· 

in the intervening straight part of the member. The formula will be 

derived by adding together two partial effects, (a) and (b). The 

angular ~oad functions due to the bending moment of part (a) follow: 

(5-6) 

The elastic weights ¢A, ~c, ¢p due to the bending moment of part (b). 

ares 

¢A = ... Ln F AC - Lotk GcA } 

fdc = - Ln GAc - Lotk (FcA + Fcp) 

.91, = ... Lotk Gap • 

(5 .. 7) 



Ln ll Lh' 

~M L~k' ~ 
@~ £Vt~P ~® 

Loaded Beam 

~ Bending Moment 
Diagram 

~All ~ Elastic Curve 

E. ~· . Lh(o(t 1+' L Bend~g Moment En ~G 
\:::J n~ Diagram lh~k 

--~~~---~~--~~~~ ~~~~--+-~~~~~~~-

~·· <f:l" 

~~ 
,~ String Polygon 

Elastic Curve 4~~ 
'f>A' <p • cj, ' ! u I' Lo< u I B 

t L t 

<!f A 

Conjugate Beam 

L~ 

L .. CAB (a) "CB.A 
Fig. 5-3 

" rAB (b) 1:BA 

!\ a 



~-, 

. • ti ,, 
The angular load functions -CAB, C BA are the reactions of the conju- . 

gate beam at left and right ends, respectively. 

= - Ln FAC - L(2n • ~ - nf) :oAC - LCXk (1 - e») FCA 

(Ul'k) 2 ( ) 
• 6EI 3 - 2~ - n 

0 
(5-8) 

t. ;A = ~ ¢c + n ¢p 

= - L~p o,c - L~k FcA - . (IPk) 2 (2~ + n) • 6EI . 

The angular load functions 'CAB, 'C BA may be 0btained by adding the . 

Eqs. (5-6) and(5-8) : 

t: AB = Ln F AB c { ~J o<k(l -~) Q(L~)+ (n'+ZO!.k) ~ Q(L~\~2. Q(L~)] 
, 0 1 V 2 

+ iit)2(3 - 2~ - nt 
Z: A -Ln G _J(Lf>) 2 ~kQ(L~)+ (P.-ock) Q(L~). ClQ(L~)J 

B - BA l Eio t , · o r . 1 "" 2 

+ (tt~~ 2 ( 2 @ + n ) } . 
(5-9) 

If the beam shown in Fig. (5-1) is ·aoied upon by a unit load 

applied at a point within one of the haunches (Fig. 5-4), the angular 

load functions due to the bending moment or part (a) follow: 

'CAB,' ::. Lil F AB 1 
(5-10) _ 

'C BA = L:n GBA • -· 
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The elastic. weights ¢A, ¢0, ~, ¢o due to the banding moment of part 

(b) are: 

~ = - Ln (n - ~ ) GcE .;. L~k (FEc + FEp) 

ft\,= - L~k ~p • 

(·5-11) 

II II • • The angular load functions "CAB, !:BA are the reactions of the conJugate 

beam at left and right ends, respectively! 

(5-12) 
II 

r:- BA = ~¢c + (1-~) ~ + n ¢p 

= - { LJn GAO +L e (n - ~ ) F CA + E~: -f '[Jn • 2 (l - @H 2) J 

. + L (l - ~ ) ~ k FEP + Lnllk Gm,}• 

The angular load function~ r AB, 7: BA may be obtained by adding the 

Eq. (5-10} and (5-12) together. 

l: AB = Ln F'.13 • { i~ [<n~)(Hl Q(~Q)+ ~(n+2ol) Q(r~l+ ~2Q(~~) J .. 
2 . 

+ fro -j (Jn-1-2~+2e2)+ ~ 2 ~~Q(~~k)+(~ 1·2~k)(ii~k). 

+ (~k-n, ) Q (L~k} 
.2 

(5-13) 

... - . • . - ;<'°"'"'1"''<· ,.,~ ........ ,..,. ......... ~~--•. ._,,,.~v.,.-~..,..-.,..,,.,,.,., .. ~-,..-·,·--·-- .. -·~· ,, ~--·····---·-·-····"·•~~- .... 
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.,IV. 

'l: BA = Ln GBA -

+ E~: ~ [Jn-2 (1- ~ +~2) J 

+ (L6k)2 [<1-~) Q(L~~)+ (2~-t!,1-2) Q(L~k)_(n'-~)Q(L~k)J}-
Eio O l 2 • 

(5-13) 

The va.1 ues of beam cons tan ts are computed and listed in Ta. ble IV. · 



Angular Angular 
Flexi- Carry-

Haunch bilities Over 

L 
Coef.x ETc5 

Factor5r, 
Coef'.x fio 

~ w FAB GAB 

1.0 .2503 .1547 
1.2 .2424 .1530 

0.2 1.-4 .2357 .1514 
. 1.6 .2297 .1500 

1.8 .2245 .M87 
2 ... 0 .2198 .1475 

1.0 .2163 .1412 
1.2 .2054 .1378 

0.3 1.4 .1961 .1346 
1.6 .1880 .1313 
1.8 .1809 .1289 
2.0 .1746 .1265 

.i 

' 

TABLE IV_ 

BEAM CONSTANTS FOR BEAM WITH 
~rwo SYMMETRICAL PARABOLIC 

HAUNCHE~ (END A) 

Lh . !p ® @t ~=$!!:,., 
• L@ j l U l 

t L , 

Influence Values of- Angular· Load Function, Coef' .x PL 2 
· Eio 

n 

0.1 0.2 0.3 0.4 Oo5 o.6 0.7 0.8 0.9 

rAB -z::-AB tAB rAB "CAB tAB "CAB tAB t'""AB 

.0238 .0431 .0552 · .060] .. 0592 .0539 .0437 .0302 .0154 

.0232 .0424 .0545 .0595 .0586 .0527 .0428 .0300 .0153 

.0226 .0416 .0539 .0589 .0582 .0524 .0426 .0297 .0151 

.0221 .0410 .0535 .0585 .0579 .0521 .0422 .0295 .0149 

.0217 .0408 .0529 .0581 .0575 .0518 .0420 .0292 .0148 

.0214 .0401 .0525 .0576 .0571 .0515 .0418 .0291 .0147 

.0204 .0378 .0499 .0553 .0551 .0496 .0401 
.• 

.0278 .0143 
.0196 .0365 .0485 .0543 .0540 .0486 .0392 ~0271 .0138 
.0199 .0353 .0473 .0532 .0530 .0477 .0385 .0266 .0134 
.0182 .0343 .0462 .0521 .0520 .0469 .0378 .,0260 .0131 
.0176 .0332 .0451 ,0511 .0512 .0461 .0371 .0254 .0128 
.0171 .0323 .0442 .0502 .0504 .0455 .0366 .0250 .0126 

\., 
~ 



CHAPTER VI 

CONCLUSIONS 

The general formulas for the angular flexibilities, carry over 

values and load functions for beams with parabolic haunches by means 

of string polygon are derived in this thesiso 

The influence of parabolic haunches is expressed by means of 

Ritter's approximation. The final formulas are expressed in terms 

of the most common values of parameters~ and w, and the results are 

recorded in tables. 

These tables are compared with results published elsewhere (J). 

The maximum error which occur obtained by using this approximation 

are 8 percent in the case of beams with one haunch and 7 percent in 

the case of beams with two symmetrical haunches • 

• 
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