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INTRODUCTION

The purpose of the thesis is the derivation of the general
formulas for beam constants for beams with parabolic haunches. The
string polygon method is used for the derivation of these formulas,
and the evaluvation of the complicated integfation function is made
by means of Ritter's approximation., Tables of beam constants for
the most important cases are included in this thesis,

The string pol&gon method mentioned above was preéented by

Professor J. J. Tuma in his course CE-620-Ph.D. Seminar in the Spring

of 19590

vi



CHAPTER I
THE STRING POLYGON EQUATION

A simple beam of variable section loaded by a general system of
forces is considered (Fig. 1-1).

Fig, 1-1

The elastic curve of this beam is shown in an exaggerated form,
Three arbitrarily selected poinfé of the elastic curve are denoted as
i, j, and k. The change in slope between the line iJ and jk is des-
ignated by ¢j, (the change in slope of the string polygon). The al=-
gebraic expression for this change in sloﬁe is given by the equation

(1-1)

B5 = GygMy + (Fyq + FydMy 4 Oyt +T53 + 5 . (1)
The notation of this eqpation follows:

My the bending moment of the simple beam at i.

Mj the bending moment of the simple beam at j.



M, = the bending moment of the simple beam at k.

Fji = the angular flexibility of the equivalent simple beam
ij at j.

ij = the angular flexibility of the equivalent simple beam
Jk at j.

Gij = ‘the angular carry over value of the equivalent simple
beam 1j at 1.

ij = the angular carry over value of the equivalent simple

~ beam jk at k,
Tj1 = the angular load function of the equivalent simple beam

ij at j.
Tsy = the angular load function of the equivalent simple beam
jk at j.

It may be easily proved that the changes_in slope of the string
polygon @, ¢j’ ., when applied as elastic loads on the equivalent
conjugate beam,develop shears and moments which, at given points i,

J, k, are equal to the slopes and deflections of the real beam, re-
spectively. A complets derivation of the equation (1-1) and the proof

of the statement mentionqd above can be found elsewhere (1).



CHAPTER II
RITTER'S FORMULA

A prismatic member of parabolic variation is considered (Fig. 2-1).
The depthsof the beam at the endsis denoted by h, and hp respectively.
The length of this member is LX, The depth of the arbitrarilyselected

gection given by position coordinate x is .

hx = hO + 'él:'aa;’x2=~h0(l + -(;.%-Z'xz) = hotx‘ | (2"'1)

where t, - variable parameter,

b b
by | h,
hy=ho¥
27 . 2° Parabolic Corve o
L
Fige, 2=1



The moment of inertia with respect to principal axis z-z is

. bhy3 bhy3, . 3 3
= = . = 2=2
Iz 12 12 x Totx (2-2)
where
I° = the moment of inertia of the section at left end.

ty = the varlable parameter defined by Eq. (2-1).

In the analysis of these members two typlcal integral expressions

frequently occur:

L I, X
WMax - 1| 2 = 1) M (0
EI, Bl e EIO(LO() n (2-3a)
. 0 [o]
and
Lok Lok
fdx o L8l o L™y PR o
EL, EI, § ~ t4 EI, no
(o] (o]

As the evaluation of these functions i1s laborious and time con-

suming, many approximate formulas for the solution of these expressions

-have been proposed. The most powerful approach has been suggested by ——

d

itter (2), The application of the Ritter's formula to the evaluation

I

of the Q's function is shown in the following part of this thesis,
'With the notation

by = ho .+ how = ho¥ | o (2-8)
as shown in Fig, (2-1), the general Q functions of Eqs. (2-3a) and



(2-4a) become:

L&

and

L
1 o (—2) Jix
ET_ B,

0

Ik

h ~

L ne_9y3
EI, x( B, &

0

(2-3b)

(2-4b)

If the fumction .(-§2\3 is assumed to be & parabola of 2r

X

degree, the following relationship can be stated:

27 =16 (T

The numerical constants Cg and r are unknown and must be computed from
some special conditions. The graphical interpretation of this equation

is shown in Fig. (2-2).

()

P,

/

1"C3

Ce

Fig. 2"2

(2-6)



. The extreme values of this function are:

t
x=0, o =1 (2-7)
h
x=L, -2 == . (2-8)

For the evaluation of the constants Gy and r, one additional condi-
tion 1s necessary. This condition may be selected arbitrarily.

For example:
X = -1"—, he = hy (a +-‘2‘:’-) . (2-9)

The meaning of the symbol hC is explained by Fig. (2=3). The results
of Eqs., (2-7, 8, 9) are substituted in the Eq. (2-5) and the con-

stants Cg, Oy, and r are obtained:

L ?

_1.( < b
hO ] BC /‘ hB
L L
Fl 2 71_
Fig. 2-3
g = 1- (pr=)’ (2-10)
' Cc = 1- (-]--—l—a’a (2-11)
r =-1.66 log_g.g._ 0 (2-12)-

The relationship between w and r 1s computed by means of the

Eqa, (2-10, 11, 12) and recorded in Table I,



TABLE I. .

THE RELATIONSHIP BETWEEN w AND r

143 1 ~ C
; =) c c log 2C r
(7]
e B 1+’ ¢ O
0.1 .751315 24,8685 .928576 071424 =+ 541800 .899910
0.2 ¢ 578704 421296 863808 .136192 -+.490394 814527
0.3 455166 544834 .804992 195008 - 446214 JT41L45
C.h 364431 635569 751296 « 24870/ =407479 .676808
0.5 «296296 . 703704 .702336 « 297664, -.373660 620636
0.6 « 244141 755859 657536 34246/ ~.343825 .571081
0.7 «203542 »7964,58 616448 .383552 -.317340 «527090
0.8 171468 .528532 . 578688 421312 -.293701 487827
0.9 «145794 854206 « 544000 «456000 -.272597 452717
1.0 «125000 875000 « 512000 -488000 =.253592 o 421207
1.1 .107980 «892020 482496 «517504 - 4236460 «392752
1.2 .093914 906086 455168 544832 =,220909 +366922
1.3 .0821.90 .917810 429888 570112 -.206790 343471
104 .072338 .927662 0406464 e 593536 - 0’193942 c322131
1.5 .064000 «936000 384704 615296 -.182190 .302611
1.6 .056896 « 943104 .364416 .635584 -.171385 284664,
1.7 .050805 « 949195 +345600 654400 -.161510 .2A8262
1.8 «045554 «954446 328000 .672000 -.152384 +253104
1.9 2041002 .958998 . 311680 .688320 =.144027 «239224 .
2.0 037037 .962963 «296320 .703680 -.136237 .226285




CHAPTER III
BASIC FUNCTIONS

The algebraic solution of the basic functions Q's defined by
Egs. (2-3b,4b) for the most important cases is presented in this
thesis,

The general solution of the Eq. (2-3b) follows

L
(L) P+ By
0
' 2r
= n - e
i N l:l GB(L“)A]dx
0
- 1 n+l 2r+n+1 Lot
- ntl —i= -0 %r
(L) n+l (Lx) < (2r+n41) | ¢
= 1 Y :
n+l 2r4n+l o (3-1)
If the exponent n=0,1,2, the Q(ﬁd) functions become:
- _
) L. _5B i
-0 2rql
(L) Cg
VT 233 (3-2)
5 S
2 7 2r43



The general solution of the Eq. (2-4b) gives:

h,
—2)3
x0 ( hx) dx

(Ixk) Lok
n . __ 1
n+l
(Lotk) 0
Ix
= -1
(Lok) NPT
0
- (Ip(k)n+I ' n+l
_ 1 (L) L
- (Ip<k)n+I n+l
2r
= 1 - CB .
n+l 2r+n+l .

k
[1 - Op(-%.)2T | xP4x
L

. Lok
xRr+n+l

Cp
(Lo )% (2r4n41) 0

_ Cg ' (1o/%) 2r4n+l
(L) <T  2r4ntl

|

(3-3)

If the exponent n - 0, 1, 2, the Qn(Mk) functions become:

(Lotk) Cy kX
b = T

(Ip‘k?_ . Cp kzr
@ = 2y 2

(Lotk) Cp k2
Q2 - v e———

2r43

(3-4)



CHAPTER IV
BEAM WITH ONE PARABOLIC HAUNCH

The angular constants for a prismatic member with a parabolic
haunch at the right end, simply supported at both ends are derived

in a geheral form (Fig, 4-l).

B ®
®

l \ wh, hB
L Lo

a) Angular Flexibilities and Carry Over Values. If the beam

shown in Fig. (4-1) is acted upon by a unit moment applied at A, the

end slopes of the elastlc curve at A and B are called the angular —~
flexibilitly Fpp and the angular carry over value GBA’ respectively

(Pig., 4=2). The bending moment, the string polygon, and the conjugate

beam are shown in the same figure. The elastic weights @, #p, fp

shown in Fig., (4=2) and defined by Eq. (1-1) aré:

T+ B

¢A =
p = G + 8 (py 4+ Fpp) | - (4-1)
¢p = §0pp, ]

10
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de

The angular flexibility Fyp is the left reaction of the conjugate beam

(Fig. 4-2). From statics

Fap = @y + #p8
=Fpp + 2BGpp + 6%Fpy) + <Fpp | (4-2a)

or in terms of Q's (Egs. 3-2)

Fap = 3EI (1 +6 + 8?) + ﬁ%x (Q(Le) ZQ%Q)J’ Q(Iée))- (1-20)

The carry over value Gp, is the right reaction of the conjugate beam

(Figo 4"'2) :

Gpy = Fg + P

ot (Gyp +PFpy) + §(Gpp +0Fpp) (4-3a)

or in terms of Q's (Egs. 3-2)

X 8 (L
Gpp = 6ELI§ (1+2p)+ gxi [O‘(Q b, (L%))+ Q(Q(L@) (Lg))].

(4=3b)

If the beam shown in Fig, (4=1) 1s acted upon by a unit moment
applied at B, the end slopes of the elastlc curve at A and B are called
the angular carry over value Gap and the angular flexibility Fp,,
respectively (Fig, 4-3). The elastic weights Pas Bps By in Fig. (4-3)

are:s
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¢A :O(GDA -

_Q
)
H

o(Fpy + Fps) + Gpp ; (4=4)

#p = ol Gpp + Fpp .

The angular carry over value GAB is the left reaction of the con-
jugate beam (Fig, 4-3).

G ¢ A T Ppb

n

o(Cpy + BFpy) + p (Ggp + ¢ Fpp) (4=5a)

or in terms of Q's

2 2
G = g @+ o) + BE [ Q- oY) 4+ P GP)).

(4=5b)

The angular flexibility Fp, is the right reaction of the conjugate

beam (Fig. 4=3) :

Fpa = ¥ + fp o

°(2FDA' + (FBD + ZNGBD + o DB) (4"‘63)

or in terms of Q's

Fpa = I_'B_EN_% + _%.%a(o?Q%?’h 20l Q(I{Q)+ g,zq(":‘a@)) o  (4=6b)

b) Apgular Load Functions If the beam shown in Fig, (4-1) is



15

acted upon by a unit load moving gradually from A to B, the end slopes
of the elastic curve at A and B are called the influence values of
angular load i:unction.~ The general formulas of the influence values
will depend upon the pdsition of the unit load, that is, whether it

is located within the haunch or in the straight part of the member.

Fig. (4~4) shows a beam acted upon by a unit load applied in the

straight part of the member. By method of superposition, the resul- -~ 7

tant effect can be obtained by adding together two partial effects (a)
and (b). The angular load functions due to the bending moment of part
(a) follow

(4=7)
1
T gy = LmGgy

The elastic weights QX ¢g due to the bending moment of part (b) are:
b

P o = Sfyg
(4=8)
"
¢ c - -LnGAc °

BA
Jugate beam at left and right ends, respectively.

The angular load functions I::B, T are the reactlons of the con-

2
i 1 1 !Ln) f
= + = ) + = - +
Tt AB gA ¢bn Ln(FAG n GAG) 6EIO (2 n )

e E 2 - (4=9)
u - - 2 - L
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The angular load functions T,p, T pp may be obtained by adding the

Egs. (4=7) and(4-9)

T, = Ln[FAB-—Tj@?-I-a(2+n')] ,
(4-10)
2

- L
IR (W zé%o‘]
If the beam shown in Fig., (4-1) 1is acted upon by a unit load
applied at a point within the haunch (Fig. 4-5), the angular load

functions due to the bending moment of part (a) follow

= LoF
T AB |
(4=11)
1
= LnG_ .
CTpa = "My
The elastic weights ;zf;'_, ;zfl';, ¢; shown in the Fig.(4-5b)are:
"
g g = Ty - LkGp,
"
. n
¢C - -Lch . o

L]

AB
Jugate beam at left and right ends, respectively.

The angular load functions T, ., T ;A are the reactions of the con=

ct =gl gl g

6ET

2
L2 (6n - 3nol- 3oi4 208) - Lk%zFDc - Lkgn'Gp,
0 |

(4-13
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L

n #" n

Toa Tyt nfg

(4=13a)
o _(w)?
= - a1, (3n - 2)- LkpaFp, = LkpnGp,
or in terms of Q s
1" . 2
. L« ~ ( 2 : ‘
T a5 6EIO(6nf3n°‘ “3ot+ 208) - %%)‘-Q [Q(Lgk)-(kﬂ) élf{lk &gk)}
o 2 2
T, =- élé%é (3n-20) = %Ic%l_ [ Q) (- o) (Ilaak)_ - LBK)J '
(4=13b)

The angular load functions T ,p, Tp, may be obtained by adding the
Egs. (4-12) and (4-13b) :

T g =Infyp {613%{(6n-3not-3°(+20(2’)+ .(__kgl_i[ (Lek)(k+l) gL +kQ(gek_§}

T =10, {L"L(Bn-zot) L—@— [Q‘l°k)+ (kp-o) ) xpg W]}

[ 4

(4-14)
The table of beam constants for the beam with one parabolic haunch

is computed and listed in Tables II-and-III,



TABLE II

ILn P
? |
BEAM CQNSTANTS FOR BEAM WITH A 1
ONE PARABOLIC HAUNGH K =— 11k
(END ) -] 1e :
A L
I
Angular | Angular L2
Flexi- Carry- Influence Values of Angular Load Functions; Coef.x =
Right bilitie§ Over ' Ely
- Haunch " Values L n
Coef .x E1, Coef .x Eib 0.1 0.2 | 0.3 0.4 0.5 0.6 0.7 0.8 0.9
8 w Fan Gyp TuB | TaB | Tan | Tas | Tis | TaB | Ta | Ta | Tas
1.0 .3310 | .1540 .0283 | ,0475 | .0588 | .0731 | .0613 | .0546 | .0539 | .0303 | .0155
1.2 3305 | .1523 .0283 | ,0474 | .0587 | .0729 | .0611 | .0543 | .0536 | .0300 | .0152.
0:3| Leb .3301 | .1507 .0282 | 0473 | .0585 | .0727 | .0609 | .0541 | .0533 | .0297 | .0150
. 1.6 03298 | 1492 .0282 | 0473 | .0584 | .0726 | .0607 | .0539 | .0531 | .0295 | .0149
1.8 03294 | J1478 .0281 | .0472 | .0583 | .0725 | .0605 | .0536 | .0538 | .0293 | .0148
2,0 .3291 | L1466 .0281 | 0471 | .0581 | .0723 | .0604 | .0535 | .0536 | .0291 | .0147
1.0 .3278 | 1455 0280 | 0469 | .0578 | 078 | .0597 | 0527 | 0418 | .0287 | 0146
1.2 .3268 | 1426 .0279 | .0467 | 0575 | ,0714 | .0592 | .0521 | 0412 | .0282 | 0143
1.4 .3258 | .1400 .0278 | .0465 | 0572 | L0710 | 0587 | .0515 | 0406 | .0277 | .0140
0.4 1 1,6 03249 | .1376 .0277 | 0463 | .0570 | .0707 | .0583 | .0509 | .0400 | .0272 | .0137
1.8 03241 | J1354 .0276 | 0461 | .0567 | .0703 | .0579 | .0505 | .0395 | .0267 | .0135
2.0 23233 | .1334 .0275 | .0459 | .0565 | .0700 | .0574 | .0500 | .0390 | .0262 | .0133
1.0 23225 | ,1357 ,0275 | .0458 | .0563 | .0697 | .057L | .0496 | .0361 | .0277 | .O0135
1.2 .3205 | .1316 .0273 | .0454 | .0557 | .0689 | .0561 | .0485 | .0381 | .0260 | 0131
0.5 | Led 3187 | 1279 .0271 | .0450 | .0551 | .0682 | .0552 | 0475 | .0372 | .0253 | 0128
. 1.6 3170 | 1245 (0269 | .0447 | 0546 | .0675 | 0543 | 0466 | .0363 | .0246 | .0125
1.8 3153 | 1214 (0267 | L0444 | .0539 | .0668 | .0530 | .0457 | .0354 | 0240 | 0122
2.0 23138 | .1186 ,0266 | .0439 | .0536 | .0662 | .0527 | .0459 | .0345 | .0234 | .0119

0z



TABLE III T P

L Ln
BEAM CONSTANTS FOR BEAM WITH @’L r _
ONE PARABOLIC HAUNCH oy e e
(BND B) l [T
~ L
Angular | Angular 5 ‘
. Flexi- | Carry- Influence Values of Angular Load Functions; Coef.x FL=
Right bilities| Over Ely
Haunch L Values 0 _ n '
Coef.x El, C°ef°x'ET0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
8 w Fpa Gpa Tpa | Tpa | Tea | Tma | Toa | Tea | Tma | Tea | Tma
1.0 22186 | L1540 0152 | 0295 | 0417 | .0509 | .0562 | .0564 | .0506 | .0382 | .0207
1.2 .2082 | .1523 L0150 | .0292 | .0412 | .0502 | .0556 | .0554 | 0494 | .037L | .0200
1.4 1993 | .1507 (0149 | .0288 | 0407 | .0496 | .0546 | .0545 | .0483 | .0361 | .0193
0.3 | 1.6 1916 | L1492 L0147 | .0285 | ,0403 | .0490 | ,0538 | .0535 | .0472 | .0351 | .0186
1.8 Ja848 | 1478 L0146 | .0283 | .0398 | .0484 | .0531 | .0527 | .0463 | .0341 | .0180
2.0 1788 | 1466 L0145 | .0280 | .0395 | .0480 | .0525 | .0520 | .0454 | .0331 | .0174
1.0 1913 | L1455 L0144 | 0278 | .0392 | .0475 | .0520 | -,0513 | 0451 | .0336 | .0183
1.2 1780 | 1426 L0141 | 0272 | .0383 | 0463 | .0513 | .049 | .0431 | .0319 | .0170
0 | L+ 1684 | L1400 L0138 | .0267 | .0375 | 0453 | .0492 | .0480 | 0414 | .0304 | 0161
* 1.6 1594 .1376 L0136 | 0262 | 0368 | 0443 | 0480 | 0466 | .0399 | 0291 | .0154
1.8 1515 | L1354 L0133 | .0257 | .036L | .0435 | 0469 | .0452 | .0385 | .0279 | .0148
2.0 Q446 | J1334 L0131 | ,0254 | .0355 | 0427 | 0459 | 0440 | .0372 | .0267 | .0143
1.0 1686 | 1357 L0134 | .0258 | .0362 | 0436 | 0469 | .0456 | .0397 | .0294 | .0160
1.2 JA549 | L1316 L0130 | .0250 | .0350 | 0419 | .0450 | .0432 | .0373 | .0276 | .0148
1.4 1433 | 1279 0126 | .0243 | .0339 | 0406 | .0432 | .0411 | .0352 | ,0258 | 0137
0.5 1 1.6 1335 | .1245 0123 | .0235 | .0329 | .039L | .0415| .0392 | .0333 | .0242 | .0128
1.8 1249 | .1214 .0119 | .0230 | .0319 | .0379 | .,0399 | .0375 | .0315 | ,0228 | .0120
2,0 JA165 | 1186 .0117 | .0224 | .0311 | .0364 | .0385| .0358 | .0300 | .0217 | .0115

T



CHAPTER V
BEAM WITH TWO SYMMETRICAL PARABCLIC HAUNCHES

The angular constants for a prismatic member with two symmetrical
parabolic haunches, simply supported at both ends,are derived in a

general form (Fig. 5-1).

e © ® .
whizh | Ldl?—ijmflo

L

a) Angular Flexibilities and Carry Over Values. If the beam
shown in Fig. (5-1) is acted upon by a unit moment applied at A, the

end slopes of the elastic curve at A and B are called the angular
flexibility FAB and the angular carry over value Gg,, respectively.
Fig., 5-2 shows the beﬁding moment, the elastic curve; £he string

polygon, and the conjugate beam. The elastic weights @, f,;, fy, #5

_shown in Fig. (5-2) and defined by Eq, (1-1) ares

Pp = Fpg + (1=8) Gy )

g = Gpg * (L—=B) (Fgy + Fog) + 8§ Ogg (5.1)
Pr = (1-8) Gog + @ (Pgg + Fgp)
Py=%Cp .

22
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The angular flexibility Fpp is the left reaction of the conjugatev

beam (Figo 5"'2‘)0

Fap = + (1-8) 0, + 8 g

=Fpo + 2(1-8)G, , + (1-28+287) ey + 'B'EL%(]'-$+©2) (5-2a)

or in terms of Q s

Fip zﬁ'Li% (@ -2+ 287 Q<g@>+ 281 - 2) (I, 242 QUP) |
+ 3§?o a -8+89). (5-2b)

The carry over value GBA is the right reaction of the conjugate bseam

(Fig. 5-2).

Ggy = 87 + (1 -0) & + 7

=28(1 =B) Fgu + 2BGyg + .Lé.Ez‘I; (1+26- 269) (5-3a)
or in terms of Q s

Gpy = . [(1 9) O CREY) Q{Lé). Q(LG)]

6EI (1 +28-209). (5-3b)

If the beam shown in Fig. (5-1) is acted upon by a unit moment

applied at B, the end slopes of the elastic curve at A and B are
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called the angular carry over value Gyp and the angular flexibility
Fpps respectively, Because the beam shown in Fig, (5-1) is symmetri-

cal, -

F (5=4)

Ba = Fap

and

G (5-5)

AB=G

BA .

b) Angular Load Functions If the beam shown in Fig. (5-1) isv
acted upon by a unit load moving gradually from A to B, the end '
slopes of the elastic curve at A gnd B are called the influence
values of angular load function. The procedure for determining these
influence values is similar to that for a beam with one haunch. The
general formulas of the influence values will depend upon the posifion
of the load.

The beam shown in Fig, (4-3) is acted upon by a unit load applied
in the intervening straight part of the member. The formula will be
derived by adding together two partial effects, (a) and (b)., The

angular load functions due to the bending moment of part (a) follow:

tl'lB =LnFAB
. (5-6)
Tpa =Lnlpy,
The elastic weights #,, fy, fp due to the bending moment of part (b).

ares

g, = -LnF,, - Lok Goy
#o = = Ln Gyg = Lok (Fgy + Fgp) (5=7)
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The angular load functions ZAB’C BA are the reactions of the conju=

gate beam at left and right ends, respectively.

¢A+(l-$)¢cf”n'¢p T

1
Tac

v - Ln Fyn —~L(2n -¢- n?) :GAC - Lok (1 -9®) Fau

-—'('(;E—I)-(B-2§-n) [ (5-8)

CTpy= 8F; +n

1

2
- LQn G-AC - Ledk FCA - "(%‘g—l;)— (2§+ n) .
The angular load functions T ap» Ty may be obtained by adding the
Egs. (5-6) and(5-8)
T L2 [ak(l ~8) Q(L5)+ (n'+ 20x) § Q(i@)w?- Q(L;)} ]

AB = Ln FAB - FT o
+ “%%12(3 - 2§ - n)

2
+_§L0<§_).1;O (28+ n) (. 4
| (5-9)
If the beam shown in Fig, (5-1) 1s "acted upon by a unit load

applied at a point within one of the haunches (Fig. 5-4), the angular

load functions due to the bending moment of part (a) follow:

! .
tAB = Lh FA.B .
' (5-10)
CBA =Ln GB

L]
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The elastic weights ¢A, ¢C, fns Py due to the bending moment of part

(b) ares
¢A=- LnFAC—L(n'-Q)GCA ]
¢‘=-LnG -L (n-g) (F +F)+Lk‘
o AC 8) (Foy + Fep Bk Gge b (5-11)
# == Ln (n -8) Gop - Lk (Fgg + Fgp)
o = = L8k Ggp . \ ]

The angular load functions tXB s T, are the reactions of the conjugate

t
"BA
beam at left and right ends, respectively.

'.CZB = ¢A +6¢D + n'¢c

=l Fyg 4T (20 =60 =) Gyo +T (n-§) (1 -§) R,

&

3

+ (3n = 1 - 2+ 232) + ‘L@zk FEP + ILn'k GEP]

&
\.o'!Sl

0

. | (5-12)
8c + (1-8) # + n &

fn

TBA

2
LenGc'}‘LB(n”@)FCA‘f'EI -3— [31’1 - 2 (1-@+62)]

The angular load funections T may be obtained by adding the

AB® TBA
Eq. (5-10) and (5-12) together.,

CAB =Ln?F

B " {'E'I_ng [(n—Q)(l-b) -Q(g°)+ B (n+200) Q(§§)+ BQQ(B@)J

+ IEJ";O -3‘5 (3n-1-28+282) + Q§Il [BkQ(Lek)Nn' 2¢k)Q Lek)

+(Bk-n') § L%k) |

, (5-13) -



Ln I 1n

] LBk 7 Lek’

N 9 L © 0
L

Bending Moment
Diagram

Loaded Beam

Bending Moment Diagram

Blastic Curve

String Polygon

TAR tBA
Elastic Curve A JAN
% o 4y
| Lo iI8k," 18K’

] Conjugate Beam %

! Fig. 5-4.

v



, o (5413)
2
EBA =1Ln Ggy - {%OL [(n-@) Q(g©)+ (2@-!1) Ql(.Le)- %Q(Ié@)

2
3 [3n-2 (-8 42|

‘ 2 (1.0) ofL8k), - (L8k) _(p1-8)0(LBK) |
+ %.%L [(1 8) Q Og + (284n-2) Q . (n'-)Q 2? ]}
(5-13)

The valuesof beam constantsare computed and listed in Table IV:



BEAM CONSTANTS FOR BEAM WITH

TABLE IV.

TWO SYMMETRICAL PARABOLIC

HAUNCHES (END 4) L ,[L*b\ji &
L .
Angular | Angular » - ) 5
Flexi- Carry- Influence Values of- Angular Load Function, Coef.x SL<
Haunch bilities Over ' Io
L Factor n
Coef.x ETg|Coef.x ET5l 0,1 0,2 0.3 0.4 0.5 0.6 | 0.7 0.8 0.9
8 @ FyB Gyp Tap | TaB | TaB | TaB | TaB | TaB | Tas | TaB | Tas

1.0 .R503 1547 .0238 L0431 | 0552 | 0601 0592 .0539 | L0437 .0302 | .0154

1.2 o R4L2L, 1530 .0232 0424 0545 0595 .0586 .0527 0428 .0300 0153

0.2 pReTA .2357 1514 .0226 0416 | .0539 .0589 | .0582 | 0524 | 0426 L0297 0151
. 1.6 «2297 . 1500 0221 .0410 | .0535 .0585 L0579 | 0521 | 0422 .0295 0149
1,8 e 2245 1487 .0217 0408 | .0529 | .0581 0575 | 0518 | .0420 .,0292 .0148

20 .2198 1475 .0214 L0401 | ,0525 0576 | 0571 0515 | 0418 .0291 0147

1.0 02163 1412 0204 .0378 | 0499 | .0553 .0551 0496 | 0401 .0278 L0143

1.2 2054 .1378 .0196 s0365 | 0485 0543 0540 L0486 | ,0392 | 0271 .0138

- 0.3 1.4 .1961 1346 .0199 00353 | 0473 0532 | 0530 L0477 | .0385 ,0266 0134
1.6 .1880 01313 0182 0343 | 0462 0521 .0520 0469 | 0378 .0260 0131

1.8 .1809 .1289 0176 0332 | 0451 0511 0512 | 0461 0371 0254 .0128

2.0 01746 .1265 L0171 0323 00442 0502 0504 0455 0366 .0250 .0126

TC



CHAPTER VI
CONCLUSIONS

The general formulas for the angular flexibilities, carry over
values and load functions for beams with parabolic haunches by means
\of string polygon are derived in this thesis,

The influence of parabolic haunches is expressed by means of
Ritter's approximation. The final formulas are expressed in terms
of the most common values of parameters @ and « , and the results are
recorded in tables.

These tables are compared with results published elsewhere (3).
The maximum error which occur obtained by using this approximation
are 8 percent in the case of beams with one haunch and 7 percent in

the case of beams with two symmetrical haunches,
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