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CJW>TER I 

lNTRODUCTION 

The potential well as a scattering center is fundamental to the 

quantum mechanical theory. From such a concept, using known quantities, 

the results of an idealized scattering experiment~ be predictedo 

Converse13", in the idealized problem, experimental scattering data 'IDB¥ 

be used to calculate the quantities related to the potential well. AP--· 

plication of the concept of a potential well to He4 to describe experi­

mental nucleon scattering data is the problem under investigation in 

this thesis. 

It will be shown in subsequent chapters as the ambiguities arise 

that the simplest quantum mechanical theory is inadequate to explaia 

the experimental data fromHe4. 

The potential well computed using the experimental scattering 

length and derived from the sinplest theory, as it will be shown, al­

lows a bound energy state to exist. Such an energy state inplies the 

existence of He5 and Li5, which do not appear in nature. The recon­

ciling of the experimental scattering length and the nonexistent :·. 

bound energy state will be considered in a later chapter. 

Orbital angular momentum mst be taken into account in the nucleon 

scattering an~sis. This investigation will be limited to the ease o:£ 

orbital angular momentum equal te zero, or more commolil.cy, the case o:£ 

S-wave scattering. Incident nucleon energy will be limited to a maxi­

mum of 10 Mev. Further limitatio:m.s will be noted as they appear. 

1 



CHAPI'ER II 

REVIEW OF THE LITERATURE 

The accuracy with which experimental data fits a theory is, in 

general, the criteFion for the validity of the theory. Therefore, 

many scattering experiments at all incident nucleon energies have been 

performed on the elements. He4 is no exception. The experimental in­

vestigations prior to 1955 are recorded by Adair (1) and Mather and 

Swan (2). More recently Miller and Phillips (3) have used He4 as a 

scattering agent for protons at low energies. Their data analysis 

indicates the scattering nucleus to appear as a hard sphere of radius 

2.00 x 10-l3 cm. for the S-wave case. Previous experiments and data 

analysis by Dodder and Gammel (4) for protons scattered from He4 indi­

cate, again, hard sphere scattering with a radius of 2.60xlo-l3 cm. for 

the S-wave case. The analysis of data by these experimenters is a major 

aid to the development of theory. 

The exact solution to the He4 scattering problem has been derived 

by Hochberg, Massey and Underhill (5) using known forces. Using the 

Wheeler resonating group theory, Bransden and McKee (6) have developed 

a solution for the general case of neutron scattering by He4. Others 

have approached t he problem using complex potential wells (7). Kohn 

(8) has used the method of variational calculus in solving the problem 

of neutron scattering by He4. It is readily apparent that an expla­

nation of the experimental data by a more simple theory would be 

desirable. 

2 



CHAPTER III 

NEUTRON AND PROTON SCATTERING FROM He4 

Proton Scattering 

The scattering cross sections for a given incident nucleon energy 

is the quantity determined experimentally. The phase shifts, which are 

calculated from the experimental cross sections, provide the connection 

between experiment and theory. Hence, the phase shifts must be found • 

. The cross sections for protons scattered from He4 as given by 

Dodder and Gammel (4) and Putnam, Bralley and Rosen (9) are in the dif-

ferential cross section form: 

dcr= lr(e)j 2 dc..,u. 

The f(e) comes from the assymptotic form of the wave function which for 

neutron scattering is 

t -., exp ikz + r-1 f(e) exp ikr 

Mott and Massey (10) give :f.'(8) as: 
00 

f(e) = (2ik)-l i=b (2~+l)(exp 2i 6~ -1) PSI. (cos e), 

where the P~(cos 9) are Legendre polynomials and the Si are the phase 

shifts corresponding to a certain orbital angular momentu,,J. The 

assymptotic form of. the wave function for Coulomb scattering is 

tc""'exp i ["kz + n ln k(r-z )J {"l~n2/ik(r-z)J 

+ r-1rc(9) exp i(kr - n ln 2kr), 
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where 

and 

Hence, 

fc(e) = n/(2k sin2 t e)exp i{ri ln(sin2 t e) -71' - 2~0 J 
rt o = arg i c i + in) 

n: zz•e2/bv. 

is the scattered amplitude for protons (11). Critchfield and Dodder 

(12) use a numerical method of least mean squares applied to a digital 

computer to find the value's of. the phase shifts which best fit the 

experimental crbss ·_sections. Dodder and Gammel (4) and Putnam, Brolley 

and Rosen (9) also use this method in computing the .. phase .shifts that 

they- report. Table I gives the phase shifts and oorresponding incident 

proton energy in laboratory coordinates, per cent error in phase shift 

and source { 2) • 

TABLE I 

PROTON PHASE SHIFTS 

Per cent 
error in 

5 E{Mev.) 60 So'lirce 
0 

16S.o0 0.95 23.0 Critchfield and 
Dodder 

132.6° ;.81 ;.o Dodder and Gammel 

122.os 0 7.50 3.0 Putnam, Brolley and 
Rosen 

122.5° 9.48 ;.o Dodder and Gammel 

4 



Neutron Scattering 

The cross sections for neutrons scattered from He4 as reported by 

Bashkin, Mooring and Petree (13) are in the form of the total cross 

section. 

er= 411jf(e) I 2 

the f(e) is the same expression as recorded on page 3 of this thesis. 

For small energies .Q= 0 is all that need be considered. The equation 

for the total cross section reduces to 

\f" = 4 k'i sin2 So 

where k = (2mEh-2)i is the wave number for the incident nucleon. The 

phase shifts may now be solved for directly. Huber and Baldinger (14) 

have measured differential cross sections for neutrons scattered from 

He4. Phase shifts were found using the numerical method of least mean 

squares for the best fit of experimental data. The phase shifts and 

corresponding incident neutron energies in laboratory coordinates, per 

cent error in phase shift and source are included in Table II. Per 

cent maximum probable error in phase shifts reported by Huber and 

Baldinger (14) is omitted since data was approximated from the graph. 

172.90° 
166.83° 
160.16° 
1;s.1° 
151.9° 
139.4° 
126.9° 
114.4° 

E(Mev.) 

0.05 
· 0.15 
0.30 
0.75 
1.00 
2.00 
3.00 
4.00 

TABLE II 

NEUTRON PHASE SHIFTS 

Per cent error 
in 6 9 

10.0} . 
10.0 
10.0 

~ } 

Source 

Bashkin., Mooring 
and Petree 

Huber and 
Baldinger 
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CHAPI'ER IV 

THE SHAPE INDEPENDENT APPROXIMATION 

The Theory 

The general quantum mechanical theory of nuclear scattering 

indicates some dependence of the -scattered neutr-0n distribution u~ 

on the shape of the potential well representing the nucleus. 'Within 

certain limits, any reasonable approximation to a square potential well 

may be used. The approximation requires two para.meters, 11a11 and "r0 11 , 

to describe the potential well. These conditions are known as the shape 

independent approximation and are discussed by Blatt and Weisskopf (15) 

on page 62. The shape independent approximation for neutron scattering 

is expressed in the formula: 

k coto= -a-1 + t.rok2 

carried only to the second power ink. 

As shown by Bethe and Morrison (16) on page 57, higher powers of k 

are insignificant for low incident pa?ltiole. energies. Bethe (17) has 

derived the following similar expression of the shape independent 

approximation for proton scattering: 

wheret1_= e2(hv)-1, e in e.s.u.,v is velocity of relative motion, his 

Plank's constant divided by 211', and){ is the reduced mass of the system. 

Again, terms greater than the second power of k are negligible for 

6 



energies of a .few Mev. In. both the .. 'rieutron and proton scattering 

expression the "a" represents the scattering length, defined by Bethe 

and Morrison (16) on pages 54 and 55. Similarly, the r 0 in both equa­

tions is the so-called effective range of the nuclear potential well as 

given by Bethe am.d Morrison (16) on pages 55 through 57. 

7 

While the shape independent approximation was proved for a nucleon -

nucleon collision where the potential well is known to hold, it is inter-

esting to see whether the same approximation is valid for scattering 

from He4. The scattering data is now introduced into these expressions 

to test the validity of the shape independent approximation for He4. 

Table III includes the computations for the neutron data. 

TABLE III 

SHAPE INDEPENDENT APPROXIMATION FOR NEUTRON SCATTERING 

k x1013 k 2xJ.o26 
Error in 

E(Mev.) 5 cot 6 0 k cot 6 x1013 
C C C 0 

0.05 172.90° 0.0392 0.00154 + 8 _3.2 0 -0.319±0.129 

0.15 166.83° 0.0680 0.00462 ±0.968 -0.290±0.066 

0.30 160.16° 0.0964 0.00926 ±0.435 -0.266±0.042 

0.75 158.1° 0.1524 0.0232 -0.379 -
1.00 151.9° 0.1755 0.0308 -0.330 -
2.00 139.4° 0.2486 0.0618 -0.290 -
3.00 126.9° 0.3043 0.0926 -0.229 -
4.00 114.4° 0.3513 0.1234 -0.159 -

~ . • t·,. f •• 

The phase shifts as seen in Table III are in the form1'1'-60 in 

agreement with the proton phase shifts (2). In the center of mass co-

ordinates the wave number is represented by kc, where 



kc ( cep.ter of mass) - m(reduced) 

k (laporatory) m(nucleon) 

Consequently, 

= o.8. 

k~ (center of mass) = 0.64 1c2(1aboratory). 

The "error in cot c;,0 11 as recorded in Table III was computed from the 

differential of cot 5, 

d ( cot S) = -sin.~5 d 6 . 

Hence, 

error in cot 60 = - · 1 X (% error in 00 ) 

sin2 60 

The phase shift, 60 , was assumed to include the maximum probable error 

reported for the experiment. 

The proton data was used to calctUate Table IV. Representations 

are as im Table III. 

TABLE IV 

SHAPE INDEPENDENT APPROXIMATION FOR PROTON SCATTERING 

k2x1026 
Error in 

f(rt, 6 )x1013 E(Mev;) 60 cot60 C 

0.95 168.0° 0.0293 ±5.336 -0.229±0 • .388 

5.81 132.6° 0.1793 ±0.093 -0.109±0.025 

7.50 122.05° C).2320 ±0.042 -0.0589±0.0136 

9.48 122.5° 0.2930 ±0.070 -0.0781±0.0261 

8 

For tlil.e neutron ease the ~ were plotted against the k0 cot 50 of 

Table III to determine graplrlcally the validity of the shape ind.epende:b.t 

approximation. A straight line th.rough all d.ata points is the ideal 



case for validity. The intercept at kc equal zero gives the value of 

-a-1• The reciprocal of this value gives the scattering length for 

neutrons. Since there is no Coulomb field, the zero energy cross sec­

tion can be given in terms of the scattering length as~= 4-rfa2. 

9 

From Table IV, the ~ were plotted against the f( f1_ , 6) to deter­

mine if the shape independent approximation holds for the proton scatter-

ing case. As in the neutron case, the same criterion for validity is 

effective in the proton case. Similarly, the intercept at kc equals 

zero is the reciprocal of the proton scattering length. 

The Results 

Figure 1 and Figure 2 are the graphs of the calculations for the 

neutron and proton shape independent approximations, respectively. The 

data given by Huber and Baldinger (14) was not used in computation of 

the scattering lengths since the error was not available and also since 

it was inconsistent with other data. 

The kc equal zero intercepts from the graphs yield as scattering 

lengths a= 4.00x10-13cm. and a= 3.oox10-13cm. for proton and neutron, 

respectively. At present, there is no published report of direct experi­

mental measurement of either neutron or proton scattering lengths in He4. 

Since the available data tends to agreement these scattering lengths are 

assumed correct within the range of experimental error. Within experi-

mental error, the scattering lengths are seen to be the same for both 

neutron and proton scattering. This equality of scattering lengths then 

implies that nuclear forces are independent of the Coulomb field present 

in the vicinity of the nucleus. More briefly, the scattering of nucleons 

from the He4 nucleus is charge independent. 

From the equations for the shape independent approximation, it will 
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be noted that the r 0 , twice the coefficient of the~ term, is the slope 

of the line representing the plotted data. Hence, from the graph the 

slope of .the line may be found. Twice this value gives r 0 • The data 

used in this investigation, however, is inadequate to determine r 0 and 

is left for future iri:vest.igat:i.on. 

Thus, a reasonably good fit of the experimental data to the shape 

independent appro::idmation has led to a value of t~e scattering lengths 

for both neutrons and protons scattered from He4. Also important is the 

fact that due to the validity of the shape independent approximation for 

nucleons scattered from He4, the exact shape of the potential well re­

presenting the nucleus need not be taken into account in the scattering 

problem. 

As a result, the square well potential may be used in the scatter­

ing problem of He4 as a reasonable approximation to the actual shape of 

the scattering potential. 



CHAPTER V 

THE WAVE EQUATION FOR SCATTERING USING 
A SIMPLE POTENTIAL WELL 

The Scattering Solution 

From this point the investigation, for simplicity.,. will he limited 

to the sitttatio:n c:,f neutron scattering trom He4. 

F:om quan.tummeohanieal theory the scattering center is represent,ed 

1:>y a fimite potential well. The wave equatip:n representing the imping­

ing particle must obey two restrictions (10). The wave equation must 

take on the assymptotic fcrm --

~ -.,_exp ikz + r-1 ·:r(-e) ·exp ikr 

at large distances tromthe scatterer. Also the wave equation must be 

the solution to tliie radial portion of the Schroedimger t:tme-ind.epemdent 

equatio:n (10) which is: 

4) + (k+2 - J(..Q 2i> )u = a. 
dr r 

For Q = © th.is beo.omes 

-/\. ·· ·.d2u + k• 2u = 0 

ctr2 

whereu =Y-'r and k'2 = 2mh-2(E-J) • 

.Assuming a square p0tem\ial well for scattering as in Figure 3.,. 
' . . ' 

V is set .:$q,ual _to -V0 within the well ,a.ad ZE;trs elsewhere. Tllle boundar,y 

eondition at r.= 0 is that u=- (i). }Jenee the solutien of the differ.;. 

_ent.ial equation is 

u = .A'sin k•r., 

13 



where A is an arbitrary constant. The solution outside the potential 

well fitting the boundary condition for r~ oo is then 

u = B sin (kr + 5 ) ., 

where k = (2mh-2E)'!-. At r = b the wave function and its slope, or 

first derivative, mu.st be continuous. Hence., the logarithmic deriva­

tion u t /u is continuous and 

k'A cos k•b - k B c~s (kb + 6) 
· A sin k1 b · - B sin (kb + 6) 

or k';cot·k'b = k cot (kb +6). 

V = 0 ------

V = -V ,__ ____ _. 
0 

r = O r=b 

· Fig. 3. A Potential Well. 

For E = o., the solution of the differential equation for r 1eS& 

than b again is 

u.: A sin k•r 
l. 

14 

where the subscript i indicates the solution for the interior of the po-

tential well. Hol4'$ver., the differential equation for r greater than b 

be conies 



and has the solutio~ 

u0 = D (r -a), 

.where D is an arbitrary multiplying constant (16). Again applying the 

boundary co:m.dition at r = b, that the logarithmic derivation ut/u be 

continuous, gives 

kt A cos k•b - D 
A sin k'b - D(b-a) • 

This reduces to 

k' (b-a) = tan k'b 

15 

and provides a relation between the scattering length, a, the potential. 

well width, b, and the depth of the potential well, V0 • 

Using the value of the scattering length for neutrons determined 

from experimental data by the shape independent approximation in Chapter 

IV, a relation between the potential well width, b, and depth, V0 , is 

found for ~he scattering from He4. The solutions to the boundary con-

dition equation were found numerically. Table V lists the potential 

well depth corresponding to the potential well widths suggested by 

Miller and Phillips (3) and Dodder and Ga.mm.el (4). 

TABIE V 

POTENTIAL WELL WIDTH AND DEPTH 

a• 3.00 x 10-13cm 

b(x10-13)cm. V0 (x106)ergs 

2~00 

2.60 

54,.3 

46.1 

.34 

29 
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The Bound State 

It can be shown that a bound energy state 'Will exist in the poten­

tial well of Figure 3 · (10). The outside solution is 

u0 : B exp (-kr) 

where V = -V0 and E = -Wb. ~ is the binding energy of the bound state 

or the depth 0f the bound state in.the potential well. A.a before, 

k: (2mh-2:E)"t. The interior solution is as before except that Eis no 

longer zero; 

u = A sin k•r. 
0 

Again applying the boundary condition that the logarithmic derivative 

u•/u is continuous at r = b, the edge of the potential well, gives 

k•A cos k•b - -kB exp (-kb) 
A sin k'b B exp (-kb) 

This becomes 

k• cot k'b = -k, 

or . i.tan ,k•b = -k' /k. 
Here again a numerical method alone provides the solutions. Note also 

that the mass, m, used in the scattering equation is the reduced mass 

of the system. For neutron scattering from He4 the reduced mass is 0.8 

times the mass of a neutron. 

The related values of Table V are inserted into tlae bound state 

equation. to £ind the corr~sp6nding binding energies. The values of the 

potential well width and depth a.:nd corresponding bound state depths for 

two suggested potential well widths are compil~d in Table VI. 

For the potential well widths of interest a bound energy state, as 

derived br the preceeding simple theory, is available to all incident 

nucleon. Such· an_available bound energy state would allow the existence 

of.' He; for incident neutrons and the existence of Li; for incident 



protons. As is well known., no stable system composed of five nucleons 

exists in nature. The size of the scattering length and the nonexist-

17 

ence of a bound state are thus shown to be incompatible with this simple 

theory. It is., therefore., necessary to modify the simple theory used 

thus far in the investigation. 

TABLE VI 

POTENTIAL "WELL WIDTH .AND DEP.rH AND CORRESPONDING 
BOUND STATE ENERGIES 

b(xlo13)cm. 

2.00 

2.60 

V0 Mev. 

34 

29 

8 

11 

For a potential well shallow enough to prohibit a reasonable bound 

state the scattering lengths are in excess of those calculated for He4. 

The tangent to the interior wave function at the edge of the potemtial. 

well determines the value of the scattering length. That is., the inter­

cept at u equals zero of the tangent to the interior wave function 

evaluated at r equals b gives the zero energy scattering length. Thus:., 

to vary the scattering length the curvature of the interior wave func­

tion within the potential well must be varied accordingly. To decrease 

the magnitude of the scatteri~g length., the wave function lllllSt be ad­

justed so that it has a greater curvature within the width of the poten­

tial well. Figure 4 (a) and (b) illustrate the relation between the 

curvature of .the wave functiall im the potential well and the scattering 

length. Figure 4 {b) is a picture of the wave function for neutrons 

scattered .i'roni He4 as given by the simple theory. Figure 4 (a) 
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presents the desired picture for neutron scattering from He4. In Chapter 

VI this adjustment is considered. 

r = a 

r = 0 r=b r=O r = b 

(a) (b) 

Fig. 4. The Wave Function and the Scattering Length. 



CHAPTER VI 

THE MODIFICATIONS TO THE WAVE EQUATION 

The Radial Wave Equation 

The exact solution to the problem of the scattering of nucleons by 

He4 has been developed by Hochberg, Massey and Underhill (5). The 

Schroedinger equation was revised on the basis of the Pauli Exclusion 

Principle. To the Schroedinger time-independent equation, 

d2u ... (k'2 - ~ ( ~ + l) )u = o 
dr2 r2 ' 

has been added the integral of a Kernel function. The Schroedinger time­

independent equation as used by Hochberg, Massey and Underhill (5) ap-

pears as 

:~ + k•2u = f (r,r•) u(r•) dr' 

for the case of orbital angular momentum equal zerq. This is an 

integro-differential equation, the right-hand side of which implies a 

velocity dependent potential effect. The integro-differential equation 

is valid only within the range of nuclear forces. This is exactly where 

the change in the wave function is desired. To avoid the complexity of 

the solution of such an equation and to retain relatively simple theory, 

the right-hand side is assumed to be a constant dependent only on the 

energy of the incident nucleon. Hence, the trial form is 

2 
-9..JL + kt2u = C 

dr2 

19 
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where C = 00 + C1K + C2k2 + ·•• 

reasonably well justified. 

For k sma.11 such an approximation is 

The solution to the modified wave equation :must now be found. A 

solution of the form 

u = A cos k'r + B sin ktr + J 

is assumed where J is an added constant. Substituting the assumed solu­

tion into the modified wave equation yields, 

or 

Hence 

The assumed solution becomes 

k• 2J • c. 
J: Ck•-2. 

u = A cos k'r + B sin ktr + Ck•-2. 

The boundary condition at the origin requires u equal to zero. Applying 

this boundary condition gives 

Hence 

0 : A + Gk•-2.. 

A::: -pkt-2. 

The assumed solution to the modifiec;l.wa.ve equat;l.op. now is 

u = Q~.!-2(1-cos ktr) + B sin k•r, 

containing one ~rbit:rary co:µ._sta.nt,. B •. 

Outside t~e potential well the Schroedinger time-independent- equa­

tion is unchanged, 

d2u 
cl.~ + k2u = o, 

where k:2 = 2mh-2E. The solution is of the· form-

u = Att sin(kr +6)~ 

The 8 appearing here is the phase shif:b of the scattered.wave repre­

senting the scattered neutron and corresponds to the phase shit'i,s· 



discussed in Chapter III and Chapter IV. The A•• is not arbitrary and 

is given by Sc~ff (11) on page 105 as 

A' r = exp (i cS) k-1. 

21 

Therefore, the solution to the wave equation outside the potential well 

is completely specified in terms of the phase shift and the incident 

neutron energy and has the form 

u = exp ( ib ):t<:-1 sin (kr + 6 ). 

The boundary condition at r = b, the edge of the potential well, re­

quires that the interior and exterior wave functions and their first 

derivatives be continuous, or 

Ui = uo, ~' = uo t • 

Hence for the first of the boundary conditions 

Ck•-2{1 - cos k'b) + B sin ktb = exp(i 6 )k-lsin{kr + E,) 

and £or the second of the boundary conditions 

Ck•-1sin k'b + k'B cos k•b = exp{io) cos(kb + 6 ) .. 

From the two equations, B may be eliminated. Solving for B from the se·c ... 

ond equation yields 

B = . exp(i 8 ) cos(kb + & ) - Ckt-lsin k•b 
k' cos k'b . 

Resubstituting this value of B into the first equation gives, upon sim.­

plification, 

k'2exp(ib)k-1cos k'b sin(kb + 6) - k•exp(iO)sin ktb cos(kb +8) 
C = · . cos ktb -1 

Thus is developed an expression for C in terms of k, k' and S. Such' an 

expression, however, is rather uninformative as it is··,not ea.~ily a:n&­

lyzed. It would, therefore, be instructive to transform. the expression 

to one that is more often seen and used. 
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The Shape Independent Approximation Analog 

Analysis of the He4 scattering data in Chapter IV made use of the 

shape independen.t approximation. Expressed analyi:Lcally the shape inde­

pendent approximation. for neutron scattering is 
k cot 6 = G + n.. ~ + • • • 0 -1. ., 

where G0 = -a-1 and G1 = t,r0 • The right-hand side is an even order 

power series ink. Thus, if the expression for C were expanded in a 

power series in the neighborhood of k = o., a form similar to the shape 

independent approximation may be derived. By dei'ini tion 

kt2 = 2ru12(E - V) 

Now defining 

gives 

Hen.ca k• is approximated £or k small as 

k' = (u)t (1 + ik2u-i). 
With these substitutions cos k•b and sin k•b become 

_ _J,. i...2.~-.l. • .l. ~b2 l.. k2b 
cos k'b = cos (u2 + ~-u ~)b = cos u2b (1 - ,rr) - sin u~b ('iii) 

and 

By the same approximate expansions 

k2-b2 
sin (kb + 6) = kb cos6+ {l - -,-) sinS 

and 

cos (kb + 5) = (1 - k2~2) cos 6 - kb sin 6 • 

Rearranging the expression £or C gives 
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(C/k' )(cos k•b-l)exp(-i6) 

= (k' /k) cos k'b sin(kb + 6) - sin k'b cos(kb + B). 

Upon inserting the above substitutions and expanding the product terms 

in powers of k the coefficients of sin 5 and cos 6 are found. Consider-

ing te:rms wit,h powers of k less than or equal to two gives for the coef­

ficient of cos 5 , 

L"°(C-Ub) cos x - c + ui sin x_7 
+ {'(1-bC) (4U)_.t sin x - ~ cos x.:Jk2 • 

where x = uib. Again including terms with powers of knot greater than· 

one yields for the coefficient of sin 6 , 
I 

(U cos x)k-l + iC( cos x -1) 

+ £""(1 - i{rb2 ) cos x t ·lit,Ut sin x_7k. 

Forming the quotient ud n:w..tiplyiil.gby k gives the desired form upon 

simplification; 

k cotS = ['u cos x + iO(cos x -l)k + Dk2J 

. K { 1-Kf (l-bC)(4Uftsin X -1 cos :x:_7} k2 

where 

D = (1 - ~2) cos x + -kbui sin x 

and 
l. 1 

K = L"°(c - Ub) cos x + u2 sin x - cJ - . 
The shape independent approximation, as would be expected, may thus be 

derived from the modified wave equation. 

As previously given for the case of neutron scattering the shape 

independent approximation is 

k cot 6 = -a-1 t tr 0k2• 

Equating the constant terms of the two above expressions fork cot5 

yields an expression for the scattering length in terms of c. Hence, 



l i -1 
-a- : U COS X L(G - Db) COS X + U2 sin X -OJ • 

When simplified, this becomes 

a= b - cu-1 + (C - ~ sin x)(U cos x)-1 
l 

where xis again equal to U2b. The scattering length, nau, then is 

expressed as a function of the potential well width, b, and depth par-

ameter., U and c. Note that the expression for Casa power series in 

k has been considered as a constant. Were C expanded., the expression 

for "a11 would include only the constant term of the power series ink 

and thus would be included as 00 instead of C. 

It will also be noted from the k cot 5 expression as derived from 

the modified wave equation that a complex term ink is present. It is 

significant that the complex term also contains a factor of C. Such a 

term implies that the coefficients of the expansion for C or the phase 

shifts are complex. The fact that C ll1.aiY be complex is to be expected. 

The integro-differential equation given at the first of this chapter 

included a nonconservative term on the right-hand side. It will be re­

called ·bhat the in·begral of the Kernel function represents a velocity 

dependent potential effect which may be an absorption or an emission 

phenomenon. The positive imaginary term in the k cot6 expression rep­

resents an absorption eff~ct. Since O is an approximation to the inte­

gral of the Kernel function and appears in the analogous shape inde-· 

pendent approximation expansion it is not at all unreasonable to expect 

to · find C complex~ Whe·bher or not O has complex coefficients may be 

determined by the nature of 6 . Conversely, if O is complex, a complex 

B might be required. So far in ·this investigation there has been no 

restriction on the potential well to prohibit it from being either real 

or complex. Complex potential wells have been investigated and will not 

be discussed further in this thesis (7). 



A Power Series Expansion 

Returning now to the expression for C in terms of the boundary 

conditions at the potential well edge., a different procedure will be 

followed to relate Casa function of k to the scattering length., 11 a". 
The expression for C is 

C +Ck+ C Ic2 + ••• 
0 1 2 
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_ (k• 2/k)¥XJ?{i6 )cos k'b sin{kb + 6 )-k' w{i o)sin k•b cos{kb +Sl 
- cos klb -1 

The expansions approximating cos k'b., sin k•b., cos{kb + 6 )., 

sin{kb + 8) and kt are as before. The series representing exp (i 5 ) is 

approximated by 

exp(i 6 ) • 1 + i 6 -t 6 2 + · · • • 

It is further assumed that B may be expanded a~ a power series ink of 

the form 

b=D +Dk..1.Dk2 +··· 0 1 T 2 • 

As indicated. by Blatt and Weisskopf (15) on page 61 for the scat-

tering with C equal zero., when k is small, 6 is approximately equal to 

-ka. Hence .from the above expression for 6., the zero enero- c:ro.a's 

section for scattering may be expressed in terms of -D1 as 

\Jo= 4'11D12 • 

Substituting the above expansions into the expression for C and expand­

ing product terms yields a power series ink. To determine the· rela-

tion of' the power seriesrepresenting C to its equivalent., coefficients 

of like powers of k are equated yielding., 

00 = (X - 1)-l UX(b + lJi) + uir., 



c2 = YbC0 {X -1)-l {4U)-t + i :DiD2YX{X - 1)-l 

+ CJ{i D2-D12) + {X -~Dl - tYbut){nl + b) 

+ t(uh + Xb2 - b2U§I - n12ui'Y) ... bn1ui-YJ, 

where X = cos u§b and Y = sin utb. 
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As a type of first order correction to the wave function., the con-

stant terms expression will be investigated. To test for the· range of 

the correction factor C0 , it is necessary to numerically evaluate this 

expression. Figure 5 illustrates the relation of 00 and V0 for a 

potential well width of 2.00xl0-13cm.and the zero energy scattering 

length as determined from experimental data to be 3.00x10-13cm. Note 

that for certain 00 ., three solutions for V0 are available. It is then 

apparent that further restrictions on C0 would be desirable. Such 

limitations ma;y be found in an. investigation of the bound state solu-

tion £or the modified wave equation. 

The Bound State and Normalization 

The conditions for the bound state are as in Chapter v. Again the 

wave function outside the potential well is taken as 

:u.0 = D exp (-kb). 

Applying the boundary conditions at the edge of the potential well gives 
2 Ck•- (1 - cos k1b) + B sin k•b = D exp (-kb) 

Ok•-1 sin k'b + k•B cos k'b = k D exp (-kb). 

From these two equations expressions for the coefficients Band Din 

terms of Care found as 

B = -(Ck1- 1)(sin k'b t kk•-1 cos k•b - kk•-1) 

• (k sin k'b + k' cos k'b)-1., 
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Figo 5. C0 as a Function of V0 for a= J.OOxlo-13cm. and b = 2.00xlo-13em. 
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and 

Thus the entire wave function may be expressed in terms of c. 

The wave function is as yet unnormalized. A further restriction on 

C is provided by normalization of the wave function. The condition is 

where ui and u0 are the inside and outside wave functions, respectively. 

Upon substitution the normalization equation becomes 

1 = n2(2k)-1 exp(-2kb) + c2ki-4 (..2! - 2ke-1 sin k'b 
2 

+ (2k')-1 sin k'b cos klb) + B2 £th+ (2k')-1sin k'b cos klb_7 

+ CBkt-3 (2 - 2 cos klb - sin2 ktb). 

The coefficients Band Das derived from the boundary conditions may now 

be inserted into the normalization equation. Thus another restriction 

is placed on C as the normalization equation is now in terms of c, the 

potential well depth V0 , the binding energy Wb and the potential well b. 

The complete normalization equation is 

1 = c2ki-2{ ... (_oo_s!""-k_1b_-_1_)2 ______ ""' 
2k (k sin klb + kl cos k'b)2 

+ k•-2 ["~ - 2k1-l siw. k'b + · (2k' ,-1 sin k'b cos klbJ 

['sin k'b + kk:t-l (cos k'b - l)J 2 
+ (k sin k•b + k' cos k'b)2 (th.+ trcr:J.sin k1b cos k'b) 

[" sin k'b + kkt-1 (cos k'b -l)J } 
- 2 (2 - 2 cos k'b - sin.2 k'b) • 

kl (k sin k'b + kl cos k'b) 

When both sides of the above equation are nmltiplied by k sin k'b + 

kl cos k'b it can be readily seen that for C equal to zero the equation 

reduces to the form of the bound state equation used in Chapter v. 



The values of C0 and correspOttding VO rec-ord-ed e·arlier· i:n this 

chapter were·· c·aloulat-ed from an equation as-StJl!Ii:ng k equal to zero. It 
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is, therefore, necessary- to eon,sider very- small k when investigating tb,e 

validity of the 00 values in the normalization equation. The case of k 

equal zero applied to the normalization equation is indeterminant for C 

not equal to zero. Thus for the wave function used in this chapter, 

zero binding energy has no :meaning. In order to determine the effect of 

Con the binding energy,trial values of the binding energy and potential 

well depth are substituted into the normalization equation. Using a 

binding energy of 0.44 Mev., a potential well depth of 18.5 Mev. and a 

potential well width of 2.00xl0-13cm. the value for C is -5.23xlo24cm.-1• 

From the scattering relation a potential well depth of 18.5 Mev. corre-
13 sponds to a value of -0.830X10 for C. The smaller value for C as 

computed from the scattering relation thus implies a bound state energy 

less than that used to find the C of the normalization equation. A 

bound state of sufficient depth to bind a fifth nucleon to the He4 

nucleus, therefore, is not allowed for a reasonable value of C as found 

from the scattering relation. 



CHAPI'ER VII 

SUMMARY AND CONCLUSIONS 

The Problem Summarized 

The simple quantum mechanical theory of elastic coherent scattering 

relates the zero energy scattering lengths and the depth of the bound 

energy state. The simple scattering theory is insufficient to explain 

the experimental data from nucleon scattering by He4. A bound energy 

state is allowed by the simple scattering theory when applied to He4. 

No stable five nucleon s;rstem as He' or Li' is found in nature. The 

question of reconciling the scattering lengths as derived from experi-

mental data with the nonexistent bound state on the basis of a relatively 

simple scattering theory i~raised. To determine the zero energy scat­

tering lengths the shape independent approximation must be fitted with 

the experimental phase shifts and incident nucleon energies. 

The wave equatiom. is modified in an attempt to explain the experi­

mental data. The integral of the Kernel .function from an integro-

differential equation is approximated by a power series ink. The solu-

tion is the trial wave function. A scattering equation with boundary 

conditions provides a restriction on the power series approximation, c. 
The bound energy state equations evaluated by the boundary conditions 

provide coefficients of the wave function im. terms of the coefficients 

of the power series, c. The wave function ean now be normalized to fur-
' 

ther restrict the power series approximation, C. 

30 
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The Findings a.nd Conclusions 

When the shape independent approximation equations are fitted with 

the experimental data from the scattering of neutrons a.nd protons on 

He4 the zero energy scattering lengths are found to be 3.00x10-13cm. and 

4.00x10-13cm. for neutrons and protons, respectively. These values are 

sufficiently close to consider them equal within range of experimental 

error. As a consequence of this 11 equality11 , it is reasonable to say 

that the scattering of nucleons by He4 is charge independent. The shape 

independent approximation should determine the effective range, 11r 0
11 • 

The data available, however, is inadequate to calculate an acceptable 

value of 11 r 0 11 • The satisfactory fitting of the data to the shape inde­

pendent approximation also indicates .that any potential well whose 
. ... ... 

shape is reasonably close to a square potential well may be used to re­

present the He4 nucleus in the scattering theory. Thus, a square paten-

tial well is quite acceptable in the theory developed in this investiga-

tiono 

The approximation to an integro-differential by a power series in 

k, fork small, gives as a solution an acceptable wave function. From 

the boundary conditions at the edge of the potential well an equation 

relating C, the power series ink, and the potential well depth and 

width is found. From this equation a relation of C0 and V0 is found for 

k equal to zero by an analog to the shape independent approxima·tion and 

by equating coefficients of like powers of k when both sides of the 

equation are expanded in a power series ink. This relation reconciles 

the zero energy scattering length and the zero energy binding. The wave 

equation is normalized and expressed in terms of C through the boundary 

conditions with the bound state equations. It expresses the relation of 

C with V0 , band Wb. Thus, for small binding energies corresponding 
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values of C can be calculated. Since it was found that the values of 00 

computed from the scattering relations give binding energies less than 

what is obtained from the usual well,it may be concluded that the scat­

tering lengths as derived from the experimental data can be reconciled 

with the lack of a bound state in a way that the well is not deep enough 

to be of significance. It is also of interest to note again that C :may 

be complex. 

Suggestions for Further Study 

Many curious facets have made themselves manifest during this in­

vestigation. As it is not possible to explore all interests in a single 

investigation, several interests for further study will be listed here. 

The bound state equation leaves nru.ch to be answered. What exactly 

are its trends? What happens if k is increased or if the well width is 

changed? Similarly, the effect of higher order terms of the C expansion 

is unknown. 

In the case of the scattering equations, the coefficients of higher 

order terms might be investigated. The fact that some of the coeffi­

cents are complex :may lead to informative results. 

A complex C might provide interesting exploration. Which of the 

apparent implications are valid? Does the phase shift create the imagi­

nary terms? This particular avenue of investigation would seem to be 

quite worthwhile. 

On the experimental side of the nucleon scattering from He4 is the 

lack of direct values. No published record of experimentally measured 

scattering lengths for He4 is found in the literature. This informa­

tion would be quite helpful, as is obvious, in determining the validity 

of the theory. 
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The answers to these and other questions about the relatively simple 

He4 nucleus can make a profitable addition to the understanding and 

theoretical treatment of a nucleus represented by a potential well. 
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