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CHAPTER I
INTRODUCTION

The potential well as a scattering center is fundamental to the
quantum mechanical theory. From such a concept, using known quantities,
the results of an idealized scatiering experiment may be predicted.
Conversely, in the idealized problem, experimental scattering data may
be used to calculate the quantities related to the potential well., Ap~-
plication of the concept of a potential well to He* to describe experi-
mental nucleon scattering data is the problem under investigation in
this thesis.

It will be shown in subsequent chapters as the ambiguities arise
that the simplest quantum mechanical theory is inadequate to explain
the experimental data from He%,

The potential well computed using the experimental scattering
length and derived from the simplest theory, as it will be shown, al-
lows a bound energy state to exist. Such an energy state implies the
existence of He and Li’ » which do not appear in nature. The recon-
ciling of the experimental scattering length and the nonexistent:
bound energy state will be considered in a later chapter.

Orbital angular momentum must be taken into account in the nucleon
scattering analysis. This investigation will be limited to the case of
orbital angular momentum equal to zero, or more commonly, the case of
S-wave scattering, Incident nucleon energy will be limited to a maxi-
mum of 10 Mev. Further limitations will be noted as they appear,

X



CHAPTER II
REVIEW OF THE LITERATURE

The accuracy with which experimental data fits a theory is, in
general, the criterion for the validity of the theory. Therefore,
many scattering experiments at all incident nucleon energies have been
performed on the elements. He* is no exception. The experimental in-
vestigations prior to 1955 are recorded by Adair (1) and Mather and
Swan (2). More recently Miller and Phillips (3) have used He* as a
scattering agent for protons at low energies. Their data analysis
indicates the scattering nucleus to appear as a hard sphere of radius

2.00 x 10713

cm. for the S-wave case. Previous experiments and data
analysis by Dodder and Gammel (4) for protons scattered from He” indi-
cate, again, hard sphere scattering with a radius of 2.60x 107 em. for
the S-wave case. The analysis of data by these experimentors is a major
aid to the development of theory.

The exact solution to the He’ scattering problem has been derived
by Hochberg, Massey and Underhill (5) using known forces. Using the
Wheeler resonating group theory, Bransden and McKee (6) have developed
a solution for the general case of neutron scattering by He4. Others
have approached the problem using complex potential wells (7). Kohn
(8) has used the method of variational calculus in solving the problem
of neutron scattering by He4. It is readily apparent that an expla-
nation of the experimental data by a more simple theory would be

desirable. ~



CHAPTER III
NEUTRON AND PROTON SCATTERING FROM He4
Proton Scattering

The scattering cross sections for a given incident nucleon energy
is the quantity determined experimentally. The phase shifts, which are
calculated from the experimental cross sections, provide the connection
between experiment and theory. Hence, the phase shifts must be found.

. The cross sections for protons scattered from He* as given by
Dodder and Gammel (4) and Putnam, Brolley and Rosen (9) are in the dif-
ferential cross section form:

ao= [£(e) | % aw.
The £(6) comes from the assymptotic form of the wave function which for
neutron scattering is
ﬂJ,fxaexp ikz 4 vt f(e) exp ikr
Mott and Massey (10) give f(8) as:
f(e) = (Zik)"l $O(ZQ+1)(éxp 21 52—1) Pg(cos 8),

where the Pﬂ(cos ©) are Legendre polynomiels and the SQ are the phase
shifts corresponding to a certain orbital angular momentum, Q. The

assymptotic form of the wave function for Coulomb scattering is

Lf;,\,exp i/kz +nlnk(r-z)_/ Z—l;nz/ik(r-z)_7
+ r"lfc(e) exp i(kr - n 1n 2kr),



wheré '
fc(6) = n/(2k sin? % 8)exp i/n In(sin® & 8) - 17 - ZQP-J7
Vlo arg[_1(1 + in)

and

77162 /hv.

=]
1]

Hence,

£(8) = £,(0) + ,QZ": k"l(z,Q_+ 1>exp i(2r2Q+62 )sin6’Q.P/Q (cos 8)

is the scattered amplitude for protons (11). Critchfield and Doddér
(12) use a numerical method of least mean squares applied to a digital
computer to find the values of the phase shifts which best fit the
experimental cross sections. Dodder and Gammel (4) end Putnam, Brolley
end Rosen (9) also use this method in computing the phase shifts that
they report. Table I gives the phase shifts and corresponding incident
proton energy in laboratory coordinates, per cent error in phase shift

and source (2).

TABLE T
PROTON PHASE SHIFTS

Per cent
egrror in
o) E(Mev. ) o) Source
(o] o] ‘
168.0° 0.95 23.0 Critchfield and
Dodder
132.6° , 5.81 5.0 Dodder and Gammel
122.05° 7.50 3.0 Putnam, Brolley and
Rosen

122.5° 9.8 5.0 Dodder and Garmmel




Neutron Scattering

The cross sections for neutrons scattered from He* as reported by
Bashkin, Mooring and Petree (13) are in the form of the total cross
section.

T = 4rr|£(e) |
the f£(8) is the same expression as recorded on page 3 of this thesis.
For small energies = O is all that need be considered. The equation

for the total cross section reduces to
T

qJ= —4—}:2—' sin® 80
where k = (2mEh‘2)% is the wave number for the incident nucleon. The
phase shifts may now be solved for directly. Huber and Baldinger (14)
have measured differential cross sections for neutrons scattered from
He*. Phase shifts were found using the numerical method of least mean
squares for the best fit of experimental data. The phase shifts and
corresponding incident neutron energies in laboratory coordinates, per
cent error in phase shift and source are included in Table II. Per

cent maximum probable error in phase shifts reported by Huber and
Baldinger (14) is omitted since data was approximated from the graph.

TABIE II
NEUTRON PHASE SHIFTS

Per cent error

5 E(Mev.) in 6 Source
172.90° 0.05 10.0
166.83° 0.15 10.0 Bashkin, Mooring
160.13 0.30 10.0 and Petree
158.1 0.75 -
151.90 1.00 - Huber and
139.4 2.00 - Baldinger
126.9° 3.00 -
114.4 4.00 -




CHAPTER IV
THE SHAPE INDEPENDENT APPROXIMATION
The Theory

The general quantum mechanical theory of nuclear scattering
indicates some dependence of the scattered neutron distribution up-
on the shape of the potential well representing the nucleus. Within
certain limits, any reasonable approximation to a square potential well
may be used. The approximation requires two parameters, "a" and "r,",
to describe the potential well. These conditions are known as the shape
independent approximation and are discussed by Blatt and Weisskopf (15)
on page 62. The shape independent approximation for neutron scattering
is expressed in the formula:

k cot&= -a~t 4 7 K2
carried only to the second power in k.

As shown by Bethe and Morrison (16) on page 57, higher powers of k
are insignificant for low incident particle energies. Bethe (17) has
derived the following similar expression of the shape independent
approximation for proton scattering:

-1 + dr )@ = pme®h 2Bt cot B (exp 271-1)"1-2 1nn + 2?1?;1:('03 +‘Dq2)"f7

wheref = e?(h v)~1, e in e.s.u.,v is velocity of relative motion, h is
Plank's constant divided by 277, and M is the reduced mass of the system.

Again, terms greater than the second power of k are negligible for



energies of a few Mev. .In both the neutron and proton scattering
expression the "a" represents the scattering length, defined by Bethe
and Morrison (16) on pages 54 and 55. Similarly, the r, in both equa-
tions is the so-called effective range of the nuclear potential well as
given by Bethe and Morrison (16) on pages 55 through 57.

While the shape independent approximation was proved for a nucleon -
nucleon collision where the potential well is known to hold, it is inter-
esting to see whether the same approximation is valid for scattering
from He*. The scattering data is now introduced into these expressions
to test the validity of the shape independent approximation for Hek.

Table III includes the computations for the neutron data.

TABLE III
SHAFPE INDEPENDENT APPROXIMATION FOR NEUTRON SCATTERING

Error in
13 26
E(Mev. ) 53 k x10 k cleo cot 6,  k,cot 50x1013

0.05 172.90° 0.0392  0.00154 +3.280  -0.319%0.129
0.15  166.83° 0.0680  0.00462 dg.068 Lo a00e. 060
0.30  160.16° 0.0964  0.00926 $0.435  -0.266%0.042

0.75 158.1°  0.1524  0.0232 - -0.379 -
1.00 151.9° 0.1755  0.0308 - -0.330 -
2.00 139.4°  0.248  0.0618 - -0.290 -
3.00 126.9°  0.3043  0.0926 i -0.229 -
.00 ‘134.4°7 0.3513 0.1234 - -0.159 -

The phase shifts as seen in Table III are in the formtr- &, in
agreement with the proton phase shifts (2). In the center of mass co-

ordinates the wave number is represented by k,, where



k, (center of mass) _ m(reduced) ¢
N - = o- .
k (laboratory) m(nucleon)

Consequently,
kg (center of mass) = 0.64 lcz(laboratory).

The "error in cot 60" as recorded in Table III was computed from the

differential of cot & »

d (cot 8) = L1 _
-y as.

Hence,
error in eot &, = = ........:.2.3:.... x (% error ind)
gin 50 ’
The phase shift, 60 » was agsumed to include the maximum probable error
reported for the experiment.
The proton data was used to calculate Table IV. Representations

are as in Table III.

TABLE IV
SHAFE INDEPENDENT APFROXIMATION FOR PROTON SCATTERING

ser) 6, Ba0®  “ets  e(n, B0
0.95 168.0°  0.0293 *5.336 -0.229%0.388
5,81 132.6°  0.1793 - *0.093 ~0.109%0.025
7.50 122.05°  0.2320 *0.042 -0.0589%0.0136
9.48 122.5°  0.2930 *6.070 -0.0781+0.0261

For the neutron case the k% were plotted against the k, cot 50 of
Table III to determine graphically the validity of the shape independent

spproximation. A straight line through all data points is the ideal



case for validity. The intercept at k, equal zero gives the value of
-a~1. The reciprocal of this value gives the scattering length for
neutrons. Since there is no Coulomb field, the zero energy cross sec-
tion can be given in terms of the scattering length as G = 4112,

From Table IV, the k% were plotted against the f(n , D) to deter-
mine if the shape independent approximation holds for the proton scatter-
ing case. As in the neutron case, the same criterion for validity is
effective in the proton case. Similarly, the intercept at k, equals

zero is the reciprocal of the proton scattering length.
The Results

Figure 1 and Figure 2 are the graphs of the calculations for the
neutron and proton shape independent approximations, respectively. The
data given by Huber and Baldinger (14) was not used in computation of
the scattering lengths since the error was not available and also since
it was inconsistent with other data.

The k, equal zero intercepts from the graphs yield as scattering
lengths & = 4.00x10~13cm. and & = 3.00x10~13cm. for proton and neutron,
respectively. At present, there is no published report of direct experi-
mental measurement of either neutron or proton scattering lengths in Heb.
Since the available data tends to agreement these scattering lengths are
assumed correct within the range of experimental error. Within experi-
mental error, the scattering lengths are seen to be the same for both
neutron and proton scattering. This equality of scattering lengths then
implies that nuclear forces are independent of the Coulomb field present
in the vicinity of the nucleus. More briefly, the scattering of nucleons
from the He% nucleus is charge independent.

From the equations for the shape independent approximation, it will
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be noted that the r_, twice the coefficient of the k%_term, is the slope

0?
of the line representing the plotted data. Hence, from the graph the
slope of the line may be found. Twice this value gives r,. The data
used in this investigation, however, 'is inadequate to determine T, and
is left for future investigation.

Thus, a reasonably good fit of the experimental data to the shape
indépendent approximation has led to a value of the scattefing lengths
for both neutrons and protons scattered from He%. Also important is the
fact that due to the validity of the shape independent approximation for
nucleons scattered from HeA, the exact shape of the potential well re-
presenting the nucleus need not be btaken into account in the scattering
problem.

As & result, the square well potential mey be used in the scatter~

ing problem of He* as a reasonable approximation to the actual‘shape of

the scattering potential.



CHAPTER V

THE WAVE EQUATION FOR SCATTERING USING
A SIMPLE POTENTIAL WELL

The Scattering Solution

From this point the investigation, for simplicity, will be limited
to the situation of neutron scattering from HeA.

From quantum mechanical theory the scattering center is represented
by a finite potential well. The wave equation representing the imping-
ing particle must obey two restrictions (10). The wave equation must
take on the assymptotic form

LP ~~exp ikz + r~1 £(8) exp ikr
at large distances from the scatterer. Also the wave equation must be
the solution to the radial portion of the Schroedinger time-indépendent

equation (10) which is:
2
AT (ki? - dgiélﬁll— u = 0.
dre ( rf )
For {= 0 this becomes

P ,azn
T - 5 + k'zu =0
dr

where u =L+Jr and k'? = zmh'z(E-V).
Assuming a square potential well for scattering as in Figure 3, .
V is set ‘equal to -V, within the well and zero elsewhere. The boundafy
condition at r = 0 is that u= 0. Hence the solutioﬁ of the differ-
ential equation is
u = A gin k'r,

13



vhere A is an arbitrary constant. The solution outside the potential

well fitting the boundary condition for r—e o0 is then

u =3B sin (kr +5),

where k = (2mh™2E )%. At r = b the wave function and its slope, or

firgt derivative, must be continuous. Hence, the logarithmic deriva-

tion u'/u is continuous and

or

k'A cos k'b - kB cos (kb +5)

Asink ~ B sin (kb +8) ,

k' cot ktb = k cot (kb + &).

L2
i
(&)
L2
11
o'

‘Fig. 3. A Potential Well.

For E = 0, the solution of the differential equation for r less

than b again is

us Z A sin k'r

14

where the subscript i1 indicates the solution for the interior of the po-

tential well. Howéirei-, the differential equatiori for r greater than b

beconmes



15

d2u

dr2 =0

and has the solution

U, = D (r -a),
where D is an arbitrary multiplying comstant (16). Again applying the
boundary comdition at r = b, that the logarithmic derivation u!/u be
continuous, gives

k' A cos k'b - D
A sin k'b  ~ D(b-a) .

This reduceé to

kt'(b-a) = tan k'b
and provides a relation between the scattering length, a, the potential .
well width, b, and the depth of the potential well, V,.

Using the value of the scattering length for neutrons determined
from experimental data by the shape independent approximation in Chapter
IV, a relation between the potential well width, b, and depth, V,, is
found for the scabtering from He%#. The solutions to the boundary con-
dition equation were found numerically. Table V lists the potential
well depth corresponding to the potential well widths suggested by

Miller and Phillips (3) and Dodder and Gemmel (4).

TABLE V
POTENTIAL WELL WIDTH AND DEPTH

a= 3,00 x 10-13cm

b(x10~13)em, Vo(xloé)ergs V,(Mev. )

2.00 54.3 34
2.60 46.1 29
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The Bound State

It can be shown that a bound energy state will exist in the poten-

tial well of Figure 3 (10). The outside solution is
U E B exp (-kr)
where V = -V, and E = -Wy. W, is the binding energy of the bound state
or the depth of the bound state in the potential well. As before,
1
k = (2mh'2E)2. The interior solution is as before except that E is no
longer zero;
u, = A sin kfr.

Again applying the boundary condition that the logarithmic derivative

ut/u is continuous at r = b, the edge of the potential well, gives

k'A cos k'b . -k B exp (=kb)
A sin k'b B exp (-kb) .

This becomes
k' cot k'b = -k,

or “o.ban kb

k! /k.

Here again a numerical method alone provides the solutions. Note also
that the mass, m, used in the scattering equation is the reduced mass
of the system. For neutron scattering from He# the reduced mass is 0.8
times the mass of a neutron.

The related values of Table V are inserted into the bound state
equation to find the corresponding binding energies. The values of the
potential well width and depth and corresponding bound state depths for
two suggested potential well widths are compiled in Table VI.

For the potential well widths of interest a bound energy state, as
derived by the preceeding simple theory, is available to an incident
nucleon. Such an available bound energy state would allow the existence

of He® for incident neutrons and the existence of Ii’ for incident
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protons. As is well known, no stable system composed of five nucleons
exists in nature. The size of the scattering length and the nonexist-
ence of a bound state are thus shown to be incompatible with this simple
theory. It is, therefore, necessary to modify the simple theory used

thus far in the investigation.

TABLE VI

POTENTTAL WELL WIDTH AND DEPTH AND CORRESPONDING
‘ BOUND STATE ENERGLES

b(x1013)cm. ¥, Mev. W, Mev.
2.00 34 8
2.60 29 11

For a potential well shallow enough to prohibit a reasonable bound
state the scattering lengths are in excess of those caleulated for He,
The tangent to the iﬁterior wave function at the edge of the potential
well determines the vaiue of the scattering length. That is, the inter-
cept at u equals zero of the tangent to the interior wave function
evaluated at r equals b gives the zero energy scattering length. Thus,
to vary the scattering length the curvature of the interior wave func-
tion within the potential well must be varied accordingly. To decrease
the magnitude of the scattering length, the wave function must be &ad-
justed so that it has a greater curvature within the width of the poten-~
tial well. Figure 4 (a) and (b) illustrate the relation between the
curvature of the wave function in the potential well and the scattering
length. Figure 4 (b) is a picture of the wave function for neutrons

scattered from He* as given by the simple theory. Figure 4 (a)
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presents the desired plcture for neutron scattering from He*. In Chapter

VI this adjustment is considered.

(a) (b)

Fig. 4. The Wave Function and the Scattering Length,



CHAPTER VI
THE MODIFICATIONS TO THE WAVE EQUATION
The Radial Wave Eguation

The exact solution to the problem of the scattering of mueleons by
He* has been developed by Hochberg, Massey and Underhill (5). The
Schroedinger equation was revised on the basis of the Pauli Exclusion

Principle. To the Schroedinger time-independent equation,
P a2 AU +21) ya= o,
dry T

has been added the integral of a Kernel function. The Schroedinger time-

independent equation as used by Hochberg, Massey and Underhill (5) ap~

dig + kt%u =\/[;(r,r') u(rt) dr?

pears as

d
for the case of orbital angular momentum equal zero. This is an
integro-differential equation, the right-hand side of which implies a
velocity dependent potential effect. The integro-differential equation
is valid only within the range of nuclear forces. This is exactly where
the change in the wave function is desired. To avoid ﬁhe complexity of
the solution of such an equation and to retain relatively simple theory,
the right-hand side 1s assumed to be a constant dependent only on the
energy of the incident nucleon. Hence, the trial form is

d2u
drR

+ kt?u = ¢

19
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where C = Gy + C1K + 02k2 + *** . For k small such an approximation is
reasonably well justified.
The solution to the modified wave equation must now be found. A
solution of the form
u=Acosklr 4+ B gin kir 4+ J
is assumed where J is an added‘constant. Substituting the assumed solu-

tion into the modified weve equation yields,
~k'2(A cos k'r 4+ B sin kir) + k'2(A cos kir 4 B sin kir) 4 k'27=C.

or k127 = C.
Hence J = k2,
The assumed solution becomes
u = A cos k'r + B sin kir 4 Ckt %2,
The boundary condition at the origin requires u equal to zero. Applying
this boundary condition gives

0

A+ ck1—2,

Hence ‘ A = ~Ck'-2,

The assumed solution to the modified wave equation novw is
u = gk!=2(1l-cos k'r) + B sin k'r,
containing one arbitrary constant, B. |
Outside the potential well the Schroedinger time-independent equa~

tion is unchanged,

where k° = 2rh™2E. The solution is of the form
u = A'! sin(kr +8),
The & appearing here is the phase shift of the scattered wave repre-

senting the scattered neutron and corresponds to the phase shifts
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discussed in Chapter III and Chapter IV. The A'' is not arbitrary amnd
is glven by Schiff (11) on page 105 as

At = exp (18) kL.
Therefore, the solution to the wave equation outside the potential well
is completely specified in terms of the phase shift and the incident
neutron energy and has the form

u = exp (i8)k1 sin (kr +5).

The boundary condition at r = b, the edge of the potential well, re-
quires that the interior and exterior wave functions and their first
derivatives be continuous, or |

Ui U, uy' = out.

Hence for the first of the boundary conditions
Gk'"2(1 - cos k'b) + B sin k'b = exp(i8)k~tsin(kr + &)

and for the second of the boundary conditions

Ck'~lsin ktb + k!B cos kib = exp(i85) cos(kb +6).

From the two equations, B may be eliminated. Solving for B from the sec-
ond equation ylelds

_ oxp(1i5 ) cos(kb +5) -~ Ck!=lsin k'b
- k! cos k'b .

Resubstituting this value of B into the first equation gives, upon sime
plification,

k'zexp('iS)k"lcos kb sin(kb + &) - ktexp(id)sin k'b cos(kb +S)
cos kb ~1

C =

Thus is developed an expression for ¢ in terms of k, k! and &. Such an
expression, however, is rather uninformative as it is not éasily ana-
lyzed. It would, therefore, be instructive to transform the expression

to one that 1s more often seen and used.
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The Shape Independent Approximation Analog

Anelysis of the Het scattering data in Chapter IV made use of the
shape indepehdent approximation. Expressed‘analytical‘ly the shape inde-
pendent approximation for neutron scattering is

kcot5=Go+le2+'"

>

where G, = -a~L and Gy = 3r,. The right-hand side is an even order
power series in k. Thus, if the ekpression for ¢ were expanded in a
power series in the neighborhood of k = 0, a form simiiar to the shape
independent approximation may be derived. By definition
k12 = 2mh~2(E - V)

Now defining

U = 2mh™ v,
gives

k12 = X2 4 T.
Hence k' is approximated for k small as

ko= (F @+ 3.

With these substitutions cos k!'b ‘a.nd gin k'b become

. 2 1 R
cos k'b = cos (U%' + BEE)b £ cos S (1- %—) - sin U®b (-E—:U;
and
* 1 Lo, 1 k4pR k%b
sin k'b = sin (U2 + 36U %)b 2 sin b (1 - ~g;) + cos Udb (50%).

By the same approximate expansions
2
sin (kb +8) = kb cosb+ (1 - %—) sin&

and

cos (kb +85) = (1 - k2-;2‘) cos &- kb sing5 .

Rearranging the expression for C gives
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(c/kt)(cos ktb-1)exp(-i8)

= (k'/k) cos k'b sin(kb +&) - sin k'b cos(kb +&).
Upon inserting the above substitutions and expanding the product terms
in powers of k the coefficients of sin & and cos & are found. Consider—
ing terms with powers of k less than or equal to two gives for the coef-
ficient of cos &, |

/ (C-Ub) cos x - C + UF sin x /]

+ / (1-bC) (AU)'-% sin x - % cos x Tk° |

vheres x = U%b. Again including terms with powers of k not greater than
one yields for the coefficient of sin 5,
| (U cos x)k":L + 1C(cos x -1)
+ /(1 - %‘U‘bz) cos X + %’QU%— sin x_/k.
Forming the quotient and Imzltiplyi.ﬁg by k glves the deslred form upon
simplification;
k cot& = /U cos x + iC(cos x -1)k 4+ Dk2 7
- X {l—-K[(l—-bG)(lpU)"%‘sin X —ig cos x_7} K2

where
- 2 1o F s
D= (1 - $Ub®) cos x + 2HU2 sin x
and
% -1
K=/(C-Ub)cosx+U° sinx-0/ .
The shepe independent approximation, as would be expected, may thus be
derived from the modified wave equation.
As previously given for the case of neutron scattering the shape
independent approximation is
k cot & = -a~1 4 %rokz.

Equating the constant terms of the two above expressions for k cotd

yields an expression for the scattering length in terms of C. Hence,



na”l =T cos x Z”(C - Ub) cos x U% sin x -Q;7 ‘l.
When simplified, this becomes
a=b-cUla4 (C- 1% sin x)(U cos x)'l
vhere x is again equal to U%b. The scattering length, "a", then is
expressed as a function of the potential well width, b, and depth par-
ameter, U and C. Note that the expression for C as a power series in
k has been considered as a constant. Were C expanded, the expression
for "a' would include only the constant term of the power series in k
and thus would be included as C, instead of C.
It will also be noted from the k cot © expression as derived from

lthe modified wave equation that a complex term in k is present. It is
significant that the complex term also contains a factor of C. Such a
term implies that the coefficients of the expansion for C or the phase
shifts are complex. The fact that C may be complex is to be expected.
The integro~differential equation given at the first of this chapter
included a nonconservative term on the right-hand side. It will be re-
called that the integral of the Kernel functlion represents a velocity
dependent potential effect which may be an ebsorption or an emission
phenomenon. The positive imaginery term in the k cot & expression rep-
resents an absorptlion effect. Since C is an approximation to the inte-
gral of the Kernel function and appears in the analogous shape inde-
pendent approximation expansion it is not at all unreasonsble to expect
to find C complex. Whether or not C has complex coefficients may be
determined by the ﬁature of &. Conversely, if C is complex, a complex
& might be required. 8o far in this investigation there has been no
restriction on the potential well to prohibit it from being either real
or complex. Complex potential wells have been investigated and will not

be discussed further in this thesis (7).
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A Power Series Expansion

Returning now to the expression for C in terms of the boundary
conditions at the potential well edge, a different procedure will be
followed to relate C as a funetion of k to the scattering length, M"aU.
The expression for C is

Go + Gk + Gl + +o

_ (k'%/k)exp(i 6 )eos k'b_sin(kb + & )-k' exp(i &)sin k'b cos(kb +5)
T cos ktb -1

The expansions approximating cos k'b, sin k!'b, cos(kb +8),
sin(kb + &) and k! are as before. The series representing exp (i &) is
approximated by

exp(i6)=1+16 42624 - .
It is further assumed that & may be expanded &g a power sgerles in k of
the form
E =D, + Dk # D 4 *oe,

As indicated by Blatt and Welsskopf (15) on page 61 for the scat~
tering with C equal zero, when k is small, & is approximately equal to
-ka. Hence from the above expression for o , the zero energy cross
section for scattering may be expressed in terms of -D; as

To = 4TID; .
Substituting the above expansions into the expression for C and expand-
ing product terms yields a power series in k. To determine the rela-

tion of the power series representing C to ite equivalent, coefficilents

of like powers of k are equated yielding,

(]
il

X1
(x - 1)1 ux(v + by) + U,

-1, .
(DUX)(X -~ 1) + 1 DG,

<«
=
H



26

-1 — . : -]
Cy = YO, (X -1)7" (4U)® + 1 DlDzUX(X - 1)

1
1 1 L X
+ H(U3Y 4+ XP - BRURY - D 2URY)-bD U 7,

+ Co/T4 D,-D %) + (X ~3ubD, - %Ybu%)(nl + b)
vhere X = cos U%b and ¥ = sin U%b.

As a type of first order correction to the wave function, the con-
stant terms expression will be investigated. To test for the range of
the correction factor Cys 1t is necessary to numerically evaluate this
expression. Figure 5 illustrates the relation of Co and VO for a
potential well width of 2.00x10"cm, and the zero energy scattering
length as determined from experimental data to be 3.00x10'13cm. Note
that for certain C,, three solutions for v, are available. It 1s then
apparent that further restrictions on CO would be desirable. Such
_limitations may be found in an investigation of the bound state solu-

tion for the modified wave equation.
The Bound State and Normslization

The conditions for the bound state are as in Chapter V. Again the
wave function outside the potential well is taken as
u, = D exp (-kb).
Applying the boundary conditions at the edge of the potential well gives
k'™ (1 - cos k'b) + B sin k'b = D exp (-kb)
and '
Ck!™L sin k'b 4+ k'Boos k'b = k D exp (~kb).
From these two equations expressions for the coefficients B and D in
terms of C are found as
B = -(Ck'"1)(sin k'b 4 kk'™L cos ktb - kkt™1)

+ (k sin k'b 4 k' cos k'b)'l,



Co(x10"13)cm.—l

- - : . l
0 .50 100 150 ¢ 200

V,(Mev. )

Fig. 5. €, as a Function of Vo for a = 3.00x10“130m. and b = 2.00x10'130m.
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and
D= Ck"l(cos k'b"l)(k sin k'b + k' cos l«:'b)"l exp kb.
Thus the entire wave function may be expressed in terms of C.
The wave function is as yet unnormalized. A further restriction on

C is provided by normalization of the wave function. The condition is

b : 09
\Jﬁ uiz dr +\j’ u02 dr =1
o) b

where uy and u, are the inside and outside wave functions, respectively.

Upon substitution the normalization equation becomes
1 = DP(2k)™T exp(-2kb) + C3k1—4 (.3_2 - 2k'~L sin k'b

+ (2k')"L sin k'b cos k'b) + B2 /3b + (2k')"Lsin k'b cos k'b 7
+ CBk'™ (2 - 2 cos k'b - sin® kib),
The coefficients B and D as derived from the boundary conditions msy now
be inserted into the normalizetion equation. Thus another restriction
is placed on ¢ as the normalization equation is now in terms of C, the
potential well depth V,, the binding energy W, and the potential well b.

The complete normalization equation is

(cos k'b--l)2

- 0212
1=0% 2k (k sin k'b + k' cos ktb)R

+ k1=2 Zﬁﬁ% - 2k1=1 gin ktb-+f(2kl)'1 sin k'b cos k'b;7

é—sin Kb 4+ ket~t (cos k'b - 11J72

1 Lev=Latn Kb & 1
T "(k sin k'b + k' cos k'b)2 (26 + $6¥"7sin k'b cbs kib)

/sin k'b + kkt=1 (cos k'b -1) 7
k'? (k sin k'b + k' cos k'b)

(2 - 2 cos k'b - sin® k'b)} .

When both sides of the above equation are mmltiplied by k gin k'b 4+
k! cos k'b it can be readily seen that for C equal to zero the equation

reduces to the form of the bound state equation used in Chapter V.
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The values of C, and corresponding V, recorded earlier im this
chapter were calculated from an equation assuming k eguwal to zero. It
is, therefore, necessary to consider very small k when investigating the
validity of the C, values in the normalization equation. The case of k
equal zero applied toc the normeligzation equation is indeterminamt for C
not equal to zero. Thus for the wave function used in this chapter,
zero binding energy has no meaning. In order to determine the effect of
C on the binding energy,trial values of the binding energy and potential
well depth are substituted into the normalization equation. Using a
binding energy of 0.44 Mev., a potential well depth of 18.5 Mev. and a
potential well width of 2.00x10 3cm. the value for G is -5.23x10%%em. ™.
From the scattering relation a potential well depth of 18.5 Mev. corre-
sponds to a value of —0.830x1013 for ¢. The smaller value for C as
computed from the scattering relation thus implies a bound state energy
less than that used to find the C of the normalization equation. A
bound state of sufficient depth to bind a fifth nucleon to the He
nucleus, therefore, 1s not allowed for a reasonable value of ¢ as found

from the scattering relation.



CHAPTER VII
SUMMARY AND CONGLUSIONS
The Problem Summarized

The simple quantum mechanical theory of elastic coherent scattering
relates the zero energy scattering lengths and the depth of the bound
energy state. The simple scattering theory is insufficient to explain
the experimental data from nuecleon scattering by HeA. A bound energy
state is allowed by the simple scattering theory when applied to He.

No stable five nucleon system as He’ or Li® is found in nature. The
question of reconciling the scattering lengths as derived from experi-
mental data with the nonexistent bound state on the basis of a relatively
simple scattering theory is raised. To determine the zero energy scat-
tering lengths the shape independent approximation must be fitted with
the experimental phase shifts and incident nucleon energies.

The wave eguation is modified in an attempt to explain the experi-
mental data. The integral of the Kernel function from an integro-
differential equation is approximated by a power series in k. The solu-
tion is the trial wave function. A scatiering equation with boundary
conditions provides a restriction on the power series approximation, C.
The bound energy state equations evaluated by the boundary conditions
provide coefficients of the wave function in terms of the coefficients
of the power series, C. The wave funciion can now be normalized to fur-

ther restrict the power series approximaﬁion, C.

30
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The Findings and Conclusions

When the shape independent approximation equations are fitted with
the experimental data from the scattering of neutrons and protons on

He4 the zero energy scattering lengths are found to be 3.00:{10'13

em. and
A.OOxlO'Ich. for neutrons and protons, respectively. These values are
sufficiently close to consider them equal within range of experimental
error. As a consequence of this "equality", it is reasonable to say

that the scattering of nucleons by He4

is charge independent. The shape
independent approximation should determine the effective range, "ro".
The data available, however, is inadequate to calculate an acceptable
value of "r,". The satisfactory fitting of the data to the shape inde-
pendent approximation also indicates that any pqﬁential w?ll whose
shape is reasonably close to a square potential well may be used to re-
present the He nucleus in the scattering theory. Thus, a square poten-
tial well is quite acceptable in the theorj developed in this investiga-
tion.

The approximation to an integro-differential by a power series in
k, for k small, gives as a solution an acceptable wave function. From
the boundary conditions at the edge of the potential well an equation
relating C, the power series in k, and the potential well depth and
width is found. From this equation a relation of C, and v, is found for
k equal to zero by an analog to the shape independent approximation and
by equating coefficients of like powers of k when both sides of the
equation are expanded in a power series in k. This relation reconciles
the zero energy scattering length and the zero energy binding. The wave
equation is normalized and expressed in terms of C through the boundary
conditions with the bound state equations. It expresses the relation of

C with V,, b and Wy. Thus, for small binding energies corresponding
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values of C can be calculated. Since it was found that the values of G,
computed from the scattering relations give binding energies less than
what is obtained from the usual well,it may be concluded that the scat-
tering lengths as derived from the experimental data can be reconciled
with the lack of a bound state in a way that the well is not deep enough
to be of significance. It is also of interest to note again that C may

be complex.
Suggestions for Further Study

Many curious facets have made themselves manifest during this in-
vestigation. As it is not possible to explore all interests in a single
investigation, several interests for further study will be listed here.

The bound state equation leaves much to be answered. What exactly
are its trends? What happens if k is increased or if the well width is
changed? Similarly, the effect of higher order terms of the C expansion
is unknown.

In the cage of the scattering equations, the coefficients of higher
order terms might be investigated. The fact that some of the coeffi-
cents are complex may lead to informative results.

A complex C might provide interesting exploration. Which of the
apparent implications are valid? Does the phase shift create the imagi-
nary terms? This particular avenue of investigation would seem to be
quite worthwhile.

On the experimental side of the nucleon scattering from He4 is the
lack of direct values. HNo published record of experimentally measured
scattering lengths for He’ is found in the literature. This informa-
tion would be quite helpful, as is obvious, in determining the validity

of the theory.
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The answers to these and other questions about the relatively simple
He* nucleus can make a profitable addition to the understanding and

theoretical treatment of a nucleus represented by a potential well.
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