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INTRODUCTION

The solution of heat conduction equations, when the applied heat
source is a periodically varying function, is ordinarily obtained by
one 6f two methods. The first of theée is solution by Fourier Series.
Although the acéuracy obtained by this method is limited only by the
ﬁains a person is willing to take, the method is usually quite tedious
and drawn-out, The method also requires several integrations. The
second method in common use is that of the separation of variables.

In this method a solution is usually obtained in terms of a negative
eiponential term; the possibility of a positive exponential term
being discarded. This method requires resolving for each individual
problem with its own characteristic boundary conditions and leads to
some degree of error if the body undef consideration is of the finite
class,

An attempt will be made to obtain one solution, applicable to
all systems in which the driving function is periodic, in terms of
the boundary conditions and apply the reflection type of analysis
usually associated with electrical transmission lines. The method
should have certain advantages and use could possibly be made of
"many transmission line techniques.

The nafure of this thesis is purely investigative, of which the

purpose is to see if the method is applicable and to see if it offers






CHAPTER 1

REVIEW OF THE LITERATURE AND STATE OF THE ART

1.1 Historical Notes

The transfer of heat has always been of primary concern to man
since he comes into direct contact with it every day. The transfer
of heat in our atmosphere and through our buildings affects the
physical comfort of man, and man has learned that knowledge of the
properties of bodies undergoing temperature variations can be a
powevfpl tool, whether possessed by a blacksmith or a design engineer.

The theory of heat transfer has been revised several times as
man has uncovered experimental evidence to support new theories. One
of the first theories was the superstitious belief that heat was the
evidence of the presence of an angry spirit. A more scientific theory
was proposed by Lavoisier in the 18th century. This theory held that
heat was a substance (caloric) that got between the particles of a
body and made it hot. Still later Count Rumford proposed that heat
was made manifest by the vibrations of the molecules of a body, and
this theory is presently accepted.

It is now understood that heat may flow by three distinct mecha=
nisms; radiation, convection, and conduction. The study in this thesis
will be restricted to a study of the latter of these. The mathematical

theory of heat conduction in solids is due primarily to Jean Baptiste



Joseph Fourier (1768-1830) and was set forth by him in his "Theorie
Analytique de la Chaleur." (1). It was Fourier who first brought
order out of the confusion in which the early experimental physicists
had left the subject. While Fourier treated a great number of problems,
his work was extended and applied to more complicated problems by his
contemporaries, LaPlace and Poisson, and later by others including
Lame and Thomson (2). To date, extensive work has been done, and
there have appeared many fine texts on the subject of heat conduction.
Of the recent works, one of the most elegant and authoritative is

that done by Carslaw and Jaeger (3) in 1947. Some approximate methods
are in use, and more recently the area of analogous systems has been
explored and found to be of considerable wvalue.

1.2 Basic Heat Conduction Equations

Fourier’s law for the conduction of heat states that the instan-
taneous rate of heat flow dQ/dt is equalbto the product of three
factors: 1) The area A of the section, taken at right angles to the
direction of flow; 2) The temperature gradient =-0T/dx, which is
negative due to the fact that temperature decreases in the direction
of flow and which is a partial derivative, since heat flow and tempera~
ture variation as a function of time as well as position will be con-
sidered; and 3) The thermal conductivity (k) of the solid. Expressed
mathematically this is:

q = ~kAOT/Ox (1.1)

Fourier's equation expresses the conditions that govern the

flow of heat in a body. It can be derived as follows, from the basic



laws of heat conduction.
Consider the differential element of volume dV = dx+dy-dz which
has as one end the differential element of area dA = dy-dz and a

temperature T at its center, This element is illustrated in Figure 1.
z

dx
dz

T

y

y

Figure 1. Differential Element of Volume

Considering temperature distribution in the x direction only, as will
be done throughout this thesis, the temperature difference between the
center and the twé faces would be:
T = OT/ox*dx/2
Then the temperature of the face nearest the.source would be:
T, =T+ OT/dx=dx/2
and that farthest from the source would be:
I =T~ OT/dx=dx/2
Therefore the.heat flux into the volume would be:
q; = k dA OT/0x = k dy dz O(T+dT/0x-dx/2) /Ox
The heat flux out through the other face would be:
q, = k dy dz O(T - OT/0x=dx/2)/0x
The difference in these two would then evidently give the rate of

change of thermal energy of the differential volume,



dq/dt = k dy dz dx 9°T/d%° = d(dQ/dt)/de
This change must also equal

dq/dt = c¢_ p dx dy dz OT/dt = d(dQ/dt)/dt

p
where cp is the specific heat of the material

p Is the density, and

OT/At is the temperature gradient with respect to time.

Therefore

k dx dy dz (BQT/BXQ) =cp P dx dy dz OT/ot
such that JT/dt = G (IFT/dx") (1.2)
where o = k/cp )

and is called thermal diffusivity.

If heat flow in three dimensions were being considered, it would
be simjilarly obtained that

3T/t = a@°T/3% + 3T/dy° + d°T/d32) (1.3)
Here, of course, it is assumed that k is constant over the temperature
variation and that there are no sources,nor sinks within the material.

1.3 State of the Art

Equations 1.1 and 1.3 are the two basic equations from which heat
conduction equations are derived. The usual method of solution is to
solve differential equation 1.3 in conjunction with various available
boundary and initial conditions. If the rate of heat flow is then
desired, this solution may be used in conjunction with equation 1.1
to obtain the desired equation. The common methods of solution of
equation 1.3 are limited somewhat since certain boundary conditions

must be known before a satisfactory solution can be obtained. This



limitation leads to the necessity of finding a solution for every
particular problem with its own characteristic boundary and initial
conditionsf These solutions have been treated extensiVely in the
literature, and most cases have been developed thoroughly. The most
commonly encountered methods of solution are the separation of vari-
ables method, the LaPlace transform method, and solution by Fourier
sine and cosine series expansions. Each of theymethods has its
advantages and.disadvantages. These will be discussed more fully

in a later section.

Recently a number of approximate methods for solving heat con-
duction problems have been developed. These are especially useful
when a quick evaluation is desired and accuracy is not too critical.
The accuracy with these methods usually depends upon the pains one
is willing to take, When very accurate results are desired however,
the approximate methods lose their value. The approximate methods
are useful also in that some of them help to get a better physical
picture of the situation, This is true especially with respect to
the method of isothermal surfaces and flow lines. (4). Other
approximate methods are the Schmidt (5) method, the relaxation
method (6), and the step method, to name only a few.

The similarity between certain physical phenomena in other areas
and the phenomena encountered in heat conduction leads to the concept
of ﬁathematically analogous systems. These systems are termed mathe-
matically analogous since the equations describing them have the same
form, It follows that once a solution has been found for one system,

the solution for the analogous system has the same form and can be



found by changing the terms in the solution, to the correspondﬂng
terms in the desired system.

The use of analogous systems has led to a more refiﬁed study of
heat transfer in certﬁin areas, This is due to the fact that by the
nature of other systems, it is easier to study certain phenomena than
it is in heat conduction. Thus analogous systems lead us to a better
understanding of the nature of heat conduction. When an experimental
or analytical solution is not easily obtained in the system‘inrwhichb
one is working, use can be made of this technique to convert to a“
system which has an easily obtained experimental solution,

Analog computers are a result of this work, and they have proved
themselves of great value. Several eihborate analogs have been designed
for use, solely for heat transfer studies. One of these is the Paschkis
model at Columbia University, and others were made by Gelissen in
Holland, Fisher and Muller in Germany, Miroux in France, Jackson and
Lowson in England, and McCann in the Unfted States. Probably the
first of these though was constructed in 1934 by Beuken in Holland.

Many analogous systems exist, a few of which are the fluid flow
analogy, the membrane analogy, and of course the electrical analogy.
As an example of one analogous system, the corresponding terms for
electrical and thermal systems are shown in Table I.

1.4 Definition of Steady State

More will be said about the electrical analogies later.
At this point, it might be well to make some distinguishing re-

marks as to terminology. It has been common practice in the field of



TABLE I

ANALOGOUS ELECTRICAL AND THERMAI, TERMS

Electrical Thermal

Charge = Q (coulomb) Heat = Q (Btu)

Voltage = e (volt) Temperaturebg t (°F)
Resistance = R (ohm) Resistance = R (hr~°F/Btu)
Current = i (amps.) Flow ; q (Btu/hr)

Capacitance = C (farad) Unit Capacity = C WV (Btu/°F)

heat transfer, to refer} to "steady state" as those conditions under
which temperature or heat flow does not vary with respect to time,
Departure will be made from this practice in this thesis, in that
when reference is made to the steady state solution of a differential
equation, the tekhnical meaning is wﬁat is otherwise called a particular
solution. Steady state conditions are now the conditions in the system
after all transient or decaying components have become negligible. Thus
it will be possible to encounter "periodic steady state" conditions.
In this light, there may be steady state conditions, regardless of the
form of the driving function.

With these thoughts in mind, advance can be made toward obtaining

a steady state solution of the equations.



CHAPTER II
STEADY STATE SOLUTION OF BASIC EQUATIONS

2.1 Solution

Taking the partial derivative of equation 1,1 with respect to x,
EYERIRE 20 x2
Substituting for BZT/BXZ from equation 1.2,

aqléx -kA (Cpp/k)v aT/at

ti

or

g/ k.

]

-cppAaT/fat (2.1)

Now solving equation 1,1 for O'Tx,
OTfox = -q/ kA ‘ (2.2)

As mentioned previously, the usual method of solution is to solve
equation 1.2.  Attempt will be made instead to keep equations 2.1 and
2,2 separate and obtain steady state solutions, This-method of solution
will have advantages for this method of analysis, as will become
evident later, |

Tt is evident that solutions of these equations will give equations
for q¢ and T as functions of both time (t) and distance (x) or q{(x,t) and
T(x,t). Representing these functions as products of two characteristic

functions,

10

B
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T(x,t) = T'(x) £(t) (2.3)

q(x,t) = q'(x) g(t) (2.4)

The basic underlying assumption in obtaining the form of these
two equations is that the steady state solution will be expressible
as some temperature, which varies with time (T' (x) ), plus a con-
stant temperature term (T,), about which T' (x) varies. Throughout
this thesis the assumption will be made that_T_a is zero, since this
term adds nothing to the analysis of the time variant distributions
in the bar., In applications, Ta may be some non-zero value, and in

this case, the actual temperature distribution may be found by,

T T(x,t) + T, (2.5)

actual =

This is wvalid, since with linear differential equations the principle
of superposition holds. Note that heat flow 1s not affected by the
value of Ty, since in equation 1.1, the constant term would drop out,

Then

Qactual ~ q(x,t) (2.6)

For this reason the primary concern will be only with an analysis of
T(x,t). The fact that equations 2.5 and 2.6 are solutions of equa~
tions 1,1 and 1.2, if equations 2,3 and 2.4 are, is easily seen by
substitution,

.The assumption is now made that the driving function is periodic

with angular velocity (J, and if the transient effects are neglected
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Tﬁ(x) e iwt (2a7)

T(x,t)

q' (x) e WE (2.8)

q(x,t)

since the periodic driving function would result in a periodic response.
(7). T'(x) and q’(k) represent the maximum instantaneous wvalues of
temperature.and heat flow at any point x, or the amplitude ds T(x,t)

and q(x,t) vary periodically.

It should be noted that

it

e

cos(Jt + 1 sint

and then

R100) ~

Re [T’ (%) e ] it

Real part of T'(x)e = T'(x) cos(Wt
and

Im [T"(x)élCUt] = Imaginary part of T“(x)eia)t»= T' (x)sinllt

Then if a solution was desired for T'(x) sinlJt or ﬂ’(x) cos(t,
it could be obtained merely by taking the imaginary or the real part
respectively of.the T“(x)eiu)t solution, The same is true of course
for q(x,t).

The restriction to periodic driving functions is not a very limit~
ing one since there can be obtained an approximation of any form of
driving function with Fourier series, which is merely a series composed
of sinusoidal functions. This gives the equations the desired flexi~
bility.

Substituting equations 2.7 and 2.8 into equations 2.1 and 2.2,

Lwe [ (x)/3x]

‘ . ; ! .
aq/ax = -cpPA L@(T“(x)el&)t)/&t] = -ichAUJT“(x)elCdt= e
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and
3/dx = [-q' (x)/ka] 1T = olot 31" (x) /3]

Then |

o' /Ox = =icppAT' = -YT' (2,9)
and

OT"/ox = =1/kA q' = -Zq"' (2.10)
where

Y =1 c,pAW (2.11)
and

Z = 1/kA (2.12)

In the future reference will be made to T'(x) and q‘(x)'merely as
T' and qf. The constant Z represents series impedance or a measure of
the opposition to a change in temperature due to the heat flow at a
point. Z has the form of what is commonly called thermal resistance in
the literature. Similarly, Y represents the shunt admittance, or ig- a
measure of the loss in heat flow at a point, as a result of the tempera-
ture varying with time at that point. Y has the form of thermal capacity.
The uséfulness of the concept of thermal resistance has been proven in
the steady state case in which temperature at a point does not vary with
respect to time, but little has been done with respect to an impedance
analysis in the.periodic case, It would now appear that such an analysis
might be possible., This thought will be developed in section 8.2,

IF should be noted that, due to the introduction of the time de-
pendent function, the equations now become ordinary differential equa-

tions.
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Proceeding with .the solution, by differentilating equations 2.9 and

2.10 with respect to x,

d2 q‘/dx2 = -Y 4T!/dx
and

a?rt/ax?

Z dq'/dx
Now substituting from 2.9 and 2,10

a%qt/dx>

YZ ¢ (2.13)
YZ T* (2.14)

[

a2t /ax?

Both of these equations.are of the form (D2 - YZ) T' = 0, which has

the solution

A D (2.15)
Similafly

q = C.e{Z? X0 -YZY x
But since

Q' = -1/Z[dT'/dx] = ~1/Z V2T A &VZY X 4

Rl
~Y/Z A eJZY X HY/Z B e Y x (2.16)

then

C = JQY/Z A and D = +4Y/Z B

2,2 Assumption of Boundary Conditions

There has now been obtained a general form for the solutions.

If boundary conditions are assumed, evaluation can be made of the



15

coefficients A and B :and a more workable form found that lends itself
to analysis. The assumption has already been made that the driving
function will be periodic, so if the magnitude of this variation is
indicated, there will then be sufficient boundary conditions to permit

evaluation of A and B. Call this source amplitude, TS. Then at x = 0

TV =T, =A+B
q! = qS = .'4Y/Z (<A + B)

Remember that T, is the amplitude of the periodic variation, which
takes place about gome average value Ta, taken here .as zero. For

example, if the periodic source varies from 50°F to 150°F, then

— [0}
T, = 100°F
and take TS as
T = 50°F
S
Solving for A and B,
A= -l /2 T /2\¥/2 = 5(N2/Y q  + T )
B=T-A=T~5(~E/Y q + T) = H(T HZ/Y q)

Giving

N\ZY x EN
Tt = 1/2’(133 ~Z/Y qs) e + %(TS+ ~z/Y q.)e 2% x



and

ql
Now let

Ze

Y

Yo
giving

TY
and

ql

Expressions for

I

If

I}
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b (qg- T/ Tge VT % y(qur 72 1) VT X

~Z/Y = Characteristic impedance (2.17)
+Z¥ = Propagation constant (2.18)
1/Z, = Characteristic admittance (2.19)
%,;(’I‘S-Zcqs)e,}/X + 1§(TS+ZCqS)e-’>/:x (2.20)
¥(qe-1/2, Ts)e’y%# %(qg+1/2, Ts)e'ﬁfyx (2.21)

T' and q', in terms of Ty, qf, the temperature and

heat flux at the receiving end, could be similarly obtgined if such

was desired. These would be found to be

T'
and

t

q

I

il

%(Tr+chr)eh)/x + %(Tr-Zcqr)e'?yx

%(qr+1/chr)e7/X + %(qr-l/zcwr)e‘%‘

where, in this particular case, x is measurgd from.the receiving end.

A discussion of 7V and Z will be presented in the next section.

4

An equivalent, and sometimes more useful, form for equation 2.20

and 2.21 could be

Tl

and

it

il

found by expressing them in hyperbolic notation,

T, s /* e‘y’%-chs pe )% 1

Tg cosh jyx ~Zcqg Sinh 7yi (2.:22)

s 15(9-7/x +e” 7") ~Tg/Z, %(e’yx-e' 7")

qg cosh jV% - Tg/Z. sinh 7Y; (2.23)
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These equations are the desired solution of equations 2.9 and
2.,10. It should be recalled that equations 2,22 and 2.23 are func-
tions of x only and represent the maximum amplitudes of T and q at
any point as they vary periodically with respect to time. The com-
plete solution of equations 2.1 and 2.2 may now be had merely by

CUt, as mentioned in the first part of

multiplying T' and q' by e’
section 2.1. These are then

T

i

[Ty cosh 7V% - Z.qg sinh 7y%]eia)t (2.24)

[q cosh /x = 1/2, Tg sinh Pk]etWE

i

q (2.25)

which represent a periodic steady state solution.



CHAPTER III

ANALYSIS OF SOLUTION

3.1 Tﬁe Wave Equation

In their preéent form, a casual inspection of equations 2.24
and 2.25 does not present a clear picture of the response. Therefore,
further investigation and analysis is in order,

It is interesting to note at this point, that equations 2.9 and
2.10 are of the same form as the basic electrical transmission line

equations

i

dE/dx = ZI
and

YE

dI/dx
Where; as mentioned previously in connection with analogous systems,
E is analogous to T' and I is analogous to q'. These equations do
not have the negative sign that the equations used in this study do,
because these were derived with x taken from the receiving end. Ex-
cept for this difference, the solution is found to be exactly the
same as the solution for the transmission line equations. One would
then expect an analysis of the solution to ¢losely parallel the
transmission line analysis (8), and this is found to be true., It
will also be found that the solution and analysis are very similar

to that obtained by Norton and Freeny in their sucker rod research. (9).

18



The sucker rod solutions differ from the equations in this study

due only to the effect of mass in the equations. The inclusion of

mass in these equations affects the coefficients of the solution,

however, and does not affect the form of the solution. Therefore,

the analysis remains essentially the same.

The concept of a wave analysis of the heat conduction equations

should not be hard to accept for recalling equations 2,] and 2.2,
3/
OT /Ox

i

—cppA(fal‘/fat)

-q/kA

differentiate them with respect to x,

P/l = ~c oA BrBIML)] = -c oAl ALOTAX) ]
PIRRE = -1/kA 3¢/ |
and substitute from equations 2.1 and 2,2,
3P = cpp/k dg/dit (3.1)
and
BPTRAE = cpp/k@TAL) (3.2)

These two equations are recognized as special cases of the wave
equation in its general form.

7 2p - klE@EQ/atE) + kp .M/a.t + g(x,y,2,t)
For systems in which there are no interior sources, the last term is
not present and

V28 = k17 (3%8/3t7) + kp 38/dt (3+3)
When this generai férm of the wave‘equgtion is solved by the method

of separation of variables, the space function must satisfy

7 2F =K2F
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where F is the space function or the function of & as a variable of
x only, This is identical to equations 2.13 and 2,14, and therefore
the solutions would be identical.

If the transient state were being considered, there would be
some difference in the solution to the equations and the solution
of equation 3.3, since the solution for the time functions would be
different. However, since here the consideration is only with the
steady state solution with an externally applied periodic driving
function, both time solutions would be the same; i,e., of the form
ei(JJt since the steady state response has the same time variation
as the forcing function. (10). It is seen ﬁhen that the equations
3.1 and 3.2 have steady state solutions which are identical with the
steady state solution of the general wave equation. The equations

should then lend themselves to a wave type of analysis,

3.2 Wave Analysis

In keeping with the line of thgught of the previous section, ad-
vance will be made toward an interpretation of our solution as travel-
ing waves. In order to facilitate this interpretation, rewrite equa-

tions 2.20 and 2.21 as

I = T4 TP = T 4 T e )x (3.4)
and
q' = q + q" = qs'eyx + qx+e“%‘ (3.5)
where
TS‘- = %(TS-ZCqS) = A a)
. (3.6)
rI‘s. = 1/2(Ts+chs) = B b)
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l
i

qs' —.%(qS-YcTS) -Y.A c)

(3.6)

i
1t

gst = 3(qe+¥.Tg) = Y.B d)
Realize that each term of equation 3.4 is a temperature since
their sum must be a temperature, and each term of equation 3.5 is
heat flow since their sum must éive heat flow. Recalling that at
x=20, T' = Tg, and q' = qg, then
Tg = Ts”™ + T, qs = g~ + qs
It is now evident that Tg~ and Ts+ are components of the driving

-

function temperature, and qg~ and qgt are components of the heat

flow at the source. All of these terms are complex numbers and have

associated with them magnitudes and phase angles, This is due to the
complex form of Z, and will become more apparent as progress is made,
Since these terms are independent of X, the manner in which tempera-

ture and heat flow is distributed along a bar is determined entirely

by the e¥>ﬁ and e%Xk terms.

From its definition in section 2.2,7/ will be a complex number

and can be represented by

Y=o+ 18
Then multiplying equations“ 3.4 and 3.5 by eVt
T = TleliWE_ TS-eO"x +i(g)t+5‘x) : +Ts+e“0—x+—i('wt75’,‘)_ (3.7)
and
q = q.eiCUt= e Cfg+i(0)tf§xlqste_Ckai(O)tfﬁﬁ) (3.8)
oy 1" TPy o | -Txri(WEpx) |

Since the equations for T and q are so similar, there is need to

treat only the temperature equation throughout the rest of this
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section and realize that the analysis for T will apply equally as
well to q.

Consider first the term Ts+e-(jkv+i<0)tfﬁx) or Ts+e-(jk ei(QJtnBX)‘vv
Since both (J and x are real and x increases from the sending end at
x = 0, it is seen that the term TS'*e"CTX decreases as one moves away
from the sending end or as x increases. The ei(ojt*5$) term is simply
the product of two harmonic functions, one of which varies as a func-
tion of time and the other as a function of space. The time function
is the reproduction of the source variation in the response, as pre-
viously discussed. The space function may be represented by

e'in.z cosPx-i sinBx = 1 |-Bx
which always has a magnitude of 1, but an associated angle which
decreases as x increases. Therefore, as one moves away from the
source at x = 0 and moves toward the receiving end, the TT term is
decreased in magnitude and retarded in phase,

A traveling wave is chardcterized by é retardation of phése and
usually by a decrease in magnitude in the direction of travel. There-
fore the second term of equation 3.7 may be interpreted as a tempera-
ture traveling wave, traveling toward the receiving end, and the
second term of equation 3.8 as a heat flow traveling wave, traveling
in the same direction.

This wave, as it travels along the rod, or the distribution in
the body at some instant of time t is shown in Figure 2, The periodic
response must be enclosed within the envelope formed by the Ts-lue~0--X

term.
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Figure 2., Traveling Wave

While the temperature at the source varies periodically with time
as shown in Flgure 3, the temperature at some distance .along the x

axis, x, in the body also varies periodically with a maximum ampli~-
+-

X .
tude, determined by Tg e as in Figure 4 and lagging behind the

source temperature by some angle determined by Bx.

+ ]_21'5/&)=‘-7-
TS L [~

A

+ ________ —

. "'TS

Figure 3., Temperature Variation at the Source
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Figure 4. Temperature Variation at Some Point x

-~

T
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Examination of the first term of equations 3.7 and 3.8 shows
that as x increéses, T™ is increased in magnitude by’ﬂgxz.and increased

in phase by the ein

term. However, if this term is examined as one
moves from the receiving end at x = L toward the source at x = 0, it

is seen that T~ is decreased in magnitude and decreased in phase which
is just the reverse process from moving from x = 0 to x = L, Therefore,.
it can be interpreted that the first term in these equations is a

traveling wave, ' traveling from the receiving end at x = L., This wave

has a distribution in x at any time t as shown in Figure 5. This

wave is enclosed within the envelope formed by Tr-ecr(x - L).
T » O (x-L) -
e p
BN '///\ -
, e -
e — /\
i T
\\\\
®x =0 : x = L

Figure 5. Distribution of the Reflected Wave

The waves traveling toward the receiving end are called incident
waves, and those traveling toward the source, are called reflected
waves, These waves have properties which are commonly encountered in
other types of waves, such as electromagnetic waves on a transmission
line, water waves, sound waves, and light waves. Some of these properties
are phase shift, wave length, frequency, velocity of propagation, and

reflection,
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3.3 Propagation Constant

The complex quantity iV: which determines the change in phase
and magnitude of each component wave per unit distance traveled, is
called the propagation constant. The real part of the propagation
constant ¢J7, determines the rate at which the magnitude is decreased
or attenuated as x increases.and is called the attenuation constant.
The imaginary part of the propagation constant 3, determines the
change in phase of the wave per unit distance and is called the phase

constant,
O = Rekiy
B =1In /

Since the exponent of e in the term e

i(Wt-px)

must be radians, it
follows that (J) must have units of radians per unit time, and B must
have units of radians per unit length.
To evaluate U and B, recall that
V=B =icplk
Then
VE ooy 2OFF 4 2i0B = ic pl1/k

equating real and imaginary parts

g2 - g% =0
or g =1 .
and gB =% cppﬁdl/k
substituting tBE: % cpp@Ul/k

Since O and B are real numbers by definition, take the positive sign,

and then B=QO = \Epp W/2k (3.9)
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Then

Y= -\lcppw/Ek (1 + 1) (3.10)

If a particular point is picked on a traveling wave at time t,
and distance X, and neglect attenuation for the moment, then
T o g tel(WEr- Bxp)
If a second point is picked x5, t,, such that
Cdtl - Bxy = Q)tg - Bx,
it follows that
Ts+ei(CUtl'Bxl) = Ts+ei(CUt2~BX2)
These two points represent the same wave condition, or they are equi-
phase, This means that a fixed point on the traveling wave has moved
from point x; to point X5 in time ty=tq. Therefore, the phase velocity
or velocity of propagation of our traveling wave is defined by
(Jt=Bx = constant
(Jdt-pdx = 0
dx/d£ =v = WHE= phége velocity (3.11)

This is illustrated by Figure 6.
t

t+/\t
v =A\x//\t

Figure 6. Displacement of Wave in Time At

+ i -
The traveling wave TS el(c’ut Bx) is then traveling toward the receiving

end with a velocity v. Upon investigating the reflected wave, it is
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seen that it travels from the receiving end to the source with the same
velocity v. This result proves the validity of our éssumption of two
traveling waves.

To visu#lize more completely the physical picture, it is instructive
to re-introduce the damping term (e_CTt) and sketch Figure 6 again, both.
for the incident wave and the réflected wave as shown in Figures 7 a)
and 7 b).
t+/\t

.Figure 7 a). Incident Wave

Figure 7 b)., Reflected Wave

The temperature at any point x at any time t is then the sum of these
two components.

From the definition of B, the change in phase in distance x ié
Bx radians. Since wave length is the distance required for the phase

to change a whole revolution of 2x radians, then

BA
or >\

21t

i

I

wave length = 2xn/p (3.12)
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>\ might also be referred to as the space period., Similarly, there is
a time period given by

7 = 21/ (3.13)
The time period, of course, is determined entirely by the driving
source., The time period is indicated on Figure 3 and Figure 4.

3.4 Characteristic Impedance

As previously defined,

it

Z, = /Y = 4i/kcppA210J = <4?I/kcppAgoJ

: 41/2kcppA?aJ (1-1) (3.14)

ubing the identity {ni =(1-i)~ 2. If the relationships are investi-

i

gated among the equations 3.6.a, b, ¢, and d, it is found that the
ratio of the incident temperature wave to the incidént heat flow wave
is

™/q" = Ts+e":yk/qs+e'iy%‘= T t/qg™ 4 7, (3.15)
and the ratio of the reflected temperature wave to the reflected heat
flow wave is

T°/q" = Ts‘ery%/QSmejyx = Tg /qs = -Z¢ (3.16)
This shows that the ratio of incident temperature to incident heat

flow at any point x is a constant and is independent of any terminal

conditions., This constant, as previously noted, is called the character-

istic impedance of the body. The reciprocal of characteristic impedance

is called the characteristic admittance, Y.
Since Z, is a complex number, it must have associated with it a

magnitude and a phase angle, From equation 3.14, this form is

. 2 _AE®
ZC =2 ﬂl/kcppA W l 45
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Therefore the incident temperature wave lags behind>the incident heat
‘flow wave by a phase angle of 45° or sn/4 radians. Do not mistakenly
suppbse that this is always true in:all systems, because if more com-
plicated cases are considered, such as an uninsulated bar with éurface
losses, it is definitely not true. However it is always true for the
case of the uniform, perfectly insulated body that is considered at
present, The more complicated cases are approached in a later section.
The concept of lag in heat conduction systems has some potential
value in the analysis of these systems. For exampie, one could determine
the time lag between the time that the maximum temperature outside a
buiiding was obtained and the time that the maximum heat flow into
the interior of the building was obtained. There are many similar
applications some of which will be investigated later. The time lag
is' the time required for the wave to move from the surface to a point x.
When the time lag at a point x is desired and the phase velocity is
known, - it can be expressed as
tlag = X/Vv = x B/W (3+17)
The minus sign associated with equation 3.16 is due to the fact
that the positive direction for heat flow is the same for both waves;
that is, the direction of travel of the incident wave., The minus sign
arises since the temperature is always positive and the heat flow in
the reflected cémponent is in the di;ec;ion x = L to x = 0, acting
as interference to the incident aneg'tﬁe negative sign is necessary.

3.5 Reflection Coefficient -

Traveling waves going in both directions could be produced by a
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source at both ends. However, from man's experience with sound waves
being reflected from a cliff and light rays being reflected by a
mirror, it would be reasonable that the backward waves or reflected
waves could also be a reflection of the incident wave, In the con=-
sidered case, the incident wave 18 due to the source, and the reflected
wave is a reflection of the incident wave as it is seen at the receiving
end. It follows that, if the body is infinitely long, there will be no
reflection and no reflected wave. This follows since at x =08, the
incident wave has decayed to zero, and there can be no reflection.
For this case

z, = T/q =“T_’f?/q' = TS+/qS+ = Z, (3.18)
from equation 3,15. Then for the infinite rod, tﬁe temperature is
equal to the characteristic impedance times the heat flow, or the total
impedance is equal to the characteristic impedancei

If a finite insulated rod is then perfectly connected to an

infinite insulated rod with characteristic impedance Zq.p, as in Figure 8,

., [// ([ L)L

;qs ZC ZC?

ITITI T TTT T T

Figure 8. Composite Rod

tbe temperature at x = L is

Tr = chqr = qur (3-19)

Here Z ., will be referred to as the terminating impedance or the
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receiving end impedance Z,., If the conditions at the point x = L are
examined, there can be found significant information concerning the
reflected component. At point x = L there is an incident temperature
Tr+ and a reflected temperature Tr', as discussed previously., Since
under steady state conditions there should be continuity of heat
flow at any point, it can be written at point x = L,

9y in = 9r out , (3.20)

The total temperature at x = L will be the sum of the two components

+ -
or Tr = Tr + Tr
Since in the infinite bar
qQr Zy = Ty
then dr out= Tp/Zg = (T TN/ 2p (3.21)

Then recalling equation 3,15 and 3,16,
U 1n =" + O = T2 - T.7/2, (3+22)
: Subgtituting 3.21 and 2.22 into equation 3.20,

(-1, /2, = (7,7 + T,.7) /2,

and
Te (=1/Zg = 1/Zg) = Tyt (1/Zp= 1/2;)
= Tr'(wzrmzc/zrzc)
Then
T, /Ty = Zp-Zo/ZyptZe = Lt (3.23)

[T is called the reflection coefficient and depends entirely upon
the characteristic impedance of the body and the terminating impedance.
As is shown above, the reflection coefficient is the ratio of the re~-

fletted temperature wave to the incident temperature wave,
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Co@sidering again the case of the infinite rod, which can be ob=-
tained, in this case, by saying that the infinite section is merely
"an extension of the finite bar, it is found that

Z. =7

r Cc

and T}

i

(Zg=Zg)/2Z, = 0
of {n an infinite rod, there is no reflection. This result confirms
the previous analysis of the infinite rod.

If in Figure 8 the infinite rod is not of the same material as
the finite rod but hes other parameﬁers, such that

Zop = Zyp =’%p1

and [p=0
there is again no reflection in the_finitedbar, In Fhis composite bar,
there is a simulation of the conditions for the infinite bar, although
the two do not necessg;ily propagétem&nd attenuate their traveling
waves in-the‘saﬁé manner, The point is, however, that the temperature
‘and heat flow distribution in the finite rod is identical with the
length from x = 0 to x = L in the infinite case.

There is another critical value of the reflection coefficient when
the re;eiving end is perfectly insulatéd or Z, = oo, In this case,

L= (o -2) /@ +2 = o/(o+Z)- 0 = 1/0°

and there is now perfect reflection or the case in whiéh the reflected
wave at x = L is exactly equal‘to the incident wave at x = L, Of
course, it is physically impossible to obtain perfect insulation and
thus perfect reflection, but such conditions can be approximated if

Z, is made very large with respect to Z,. This case is analogous to
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the case of an open circuit in the transmission line analysis. - Since
I} is a complex number, it may be expressed as a magnitude times a
phase angle or
R- Bl e (3.26)
The corrésponding ratio of reflected heat flow to incident heat flow
would be
4r /art = Ze/-Z¢ Ty~ /Tt = - I} = 'f}l Lﬂ%ii_ (3.25)
Thé différénce in sign between equations 3.24 and 3.25 is necessary
in order for them to be consistent with equations 3.15 and 3.16.°
For the case where the receiving end is perfectly insulated, then
Tp=1=11[0°
so that fhg reflected temperaturevwave is of the same magnitude and
phase as the incident wave at x = L. The ratio of the reflected heat
flow to the incident heat flow is
Qr-/Qr+ = -1=11[180°
so that the reflected temperature wave is of the same ‘magnitude as the
incident wave, but 180° out of phase with it. This situation is illus-

trated in Figures 2\3) and b)a

Figure 9 a). Reflected Temperature Wave for [, = 1
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Figure 9 b). Reflected Heat Wave for [, =1

In general it can be said that the reflected temperaéure wave has
a magnitude ‘I}. Tr+ and is shifted in phase from the incident wave
by 1p}. The reflected heat flow wave has a magnitude ‘I}[ q£+ and is
shifted in phase from the incident wave by Ebr + .

Now consider the other extrémg, or the case where Z,. = 0. This
case corresponds to the case of a short circuit in transmission line
analysis. This case in this problem is physically impossible, but it
can be approximated by making Z, very';mall with respect to Z,. For
this case,

lr="1
This indicates that perfect reflection is again present, except that
this time, there is phase reversal of temperature and no phase change
in the heat flow,
As a summary of the critical céses:

If Zy

1t

Zc(or L = o), then [, = 0. There is no reflected wave.

If Zy

i

oo (perfect insulation), then I} = +1, The incident wave
is totally reflected with phase reversal of heat flow, but no phase
change in temperature.

If Zy = 0, then I} = =1, The incident wave is totally reflected
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with phase reversal of temperature, but no phase change in heat flow.

This condition is illustrated in Figures 10 a) and b),

\

Figure 10 b). Reflected Heat Flow Wave for [, = -1



CHAPTER IV
INFINITE BAR EQUATIONS

4.1 Form of the Equations

There has been previously mentioned the_sfecial conditions for an
infinite insulated bar. There will be developed in this section a :-°
further analysis of the infinite bar and an investigation of the
temperature and heat flow distribution in this bar.

For completeness recall the conditions that have been associated

with the infinite insulated bar, |

2, = 2

T c
I} =0
T/q = Z,

Then equations 3.6 become

Ig =0
5 = T4
9" = 0
qs+ = Ts/zc

Substituting these values in equations 3.7 and 3.8,

T = T e“CTk+i(Q)t~Bx)

. (4.1)

1

and q = Tg/Z, o~ Txri(Wt-px) T/Z (4.2)

4.2 Interpretation of Equations

Equation 4,1 can be rewritten as

36
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-Jx - ifx eiO)t %.3)

T=Te
S .
A sketch of the Tse~CTk'iBX portion of this equation in three dimen-

sions, as a function of the complex plane and x is shown in Figure 11.

i
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Figure 11, Traveling Wave at t = Epﬁﬂg)

The form of this sketch becomes evident if it is noted that

T‘Se-o_.x iBx Tse'crk (cos Bx~i sin Bx) (4.4)
This plat is indeéendent of time, although it is the plot of T at
t = 2nx/(), where n is an integer sufficiently large to assure steady
state conditions. This could be considered as a serieé of phasors
separated by a distance Ax, It is recalled from alternating circuit
theory that a phasor is merely a vector in the complex plane that has
some magnitude and phase angle associated with it. Any two adjacent
phasors then have a difference in phase angle of BZXX. Then as x
increases, the phasors spiral around the x axis, and they are decreased
in magnitude accordgng to e'CTk, This curve has the form of the thread
of a left hand woo& screw as /\x —0.

Reintroducing the time variant portion,

T = Tse-o-x[cqs (Bx~-(t) =i sin (Bx-Wt)] (4.5)
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which corresponds to equation 4.4. Then as t increases, the curve
rotates in a counterclockwise direction about the x axis. This
motion rotates the curve in this direction with an angular velocity,
given by (W as shown in Figure 11. This may now be visualized as the
thread of a left hand wood screw rotating with an angular velocity (W
about its axié; In the right hand or counterclockwise direction.

Since the angular velocity (J is constant and the same at all
points, x, the phasors rotate about the x axis with this velocity and
thus become sinors, Again referring to alternating circuit theory, it
is recalled that a sinor is a phasor with some angular velocity about
its origin. To facilitate the study of the temperature variation at
any point x, note that it can be represented as a phasor with magnitude
Tse-CTk and initial angle of -Bx., This concept agrees with equation 4.5,

If x =20

el
il

Tglcos(~Wt) - i sin(=(Wt)]

TglcosWt + i sin Wt] =‘Tse’icut

This result agrees with the assumption of a periodic driving
function as was discussed in section 2.1, If the temperature at the
source is a sine function, Tg sin (Wt, the temperature at any point x
may be obtained by taking the imaginary part of equation 4.5.

Im[T] = Tee O% gin rv((A)t-Bx)

If the source temperature is a cosine function, Tg cos (Wt, the
temperature at any point x may be obtained by taking the real part of
equation 4.5.

Re[T] = Tsemo—-X cos ((Wt=Bx)
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This process>of taking the real or imaginary part of equation 4,5 is
the same as taking the projection of the curve in Figure 11 on to the
real or imaginary planes, resbectively, as the curve rotates about the

x axis, These projections are shown in Figure 12 and Figufe 13 for any

time t.
y
™~
TS e
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T = - X
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Figure 12. Projection“on to the Real Plane
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Figure 13. Projection on to the Complex Plane

Both of these curves are enclosed by the envelope fbrmed by e'CTk, They
represent the temperature distribution in the infinite rod at any time t.

The heat flow at any point in the bar will be of the same fofm ex=
cept that it will lead the temperature wave by an angle of © and will
have a magnitude determined by T /Z, as we discussed previously in

section 3.4.
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4.3 Comparison With Existing Equations and Simple Example

Before moving on to more complex applications of the equations, a
comparison should be made of these results against existing formulas
and apply our equations to a simple example which has been solved by
ordinary methods.

For purposes of comparison, several of the variables whithhave

been derived are rewritten.

8 Jﬁ%ﬂﬁk:{@%

li

v = W/B =2/l = ~2a W
A= 2a/8 = 2x 20/ = =\ 8/ 0

t lag = x/v = X \‘l/QaU)

These equations are identical with those found in the literatureﬁ (11),

i

it

and require no further investigation. They have been rewritten in order
to be compatible with the form in which they are usually found..

For purposes of illustration and comparison, an example will be
worked illustrating the concepts presented to this point. This example
will be concerned only wit@ the case for an infinite body.

The temperature variagion at the earth's surface at a given place
is from =10°F to 10°F over a 24 hour period., If this temperature is
assumed to vary sinusoidally, find a) the amplitude of the,temﬁérature
oscillation at a depth of 1 foot, b) the time lag of the temperatﬁrefwéve
at a depth ofl foot, and c) the temperature at a depth of 1 foot, five
hours after the surface temperature reaches the minimum temperature.

1

F™', ¢y = 0.47 Bru 1b71 F7L, and o =

Assume k = 0.3 Btu hreol gl

100 ib £t-3,
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O=8= e,pl /2k
(W= 2%/24 rad/hr = 7 2,24+ 3600 = 7.88 x 107> rad/sec
= ,262 rad/hr
O=8 = ~0.47 = 100 = ,262/2 = .3 =~20.5 = 4.53
B T = 1007453 X1 | 0c011) = 0.11°F

x B/ = 1(4.,53/.262) = 17.3 hr,

i

b). t lag
Assume
T(0,t) = Tg sin(@t + n 3x/2)
which gives the minimum at t = 0 when n and (n+1)/2 are odd, the

temperature at 1 foot is

]

T(1,t) 0.11 sin (Wt - Bx + 3nx/2)
= 0.11 sin (Wt ~ 4,53 + 3nx/2)

Five hours after the minimum is reached at the surface or at t = 5 hours,

n

c) T(1,5) 0.11 sin (4262 x 5-4.53 + 4.72)

0.11 sin (1.50) = 0,11(.997)

i

= 0,11°F
This example is identical to example IV-7 page 70, Jakob and
Hawkins (12). The results are identical with those obtained in the
reference by classical methods. This confirms the validity of the
equations derived,
Since the equations for velocity of propagation, yave length, and
time lag have already been proved to be the same as those found in the

literature, an example illustrating their use does not seem feasible,



CHAPTER V

APPLICATION OF EQUATIONS TO THE UNINSULATED CASE

5.1 Re-analysis of Solution

A commonly encountered‘situation in practice is the case of an
uninsulated body or a body which loses heat from its sides or trans-
mits heat across its boundaries, This heat loss from the sides of
a body could be due partially to the mechanism of convection and
partially tq.the mechanism of radiation. In order to retain a general
form which is applicable to most conditions, it will be assumed that
heat is lost due to béth‘these”processes.

The heat flow from a surface of area A; and temperature T; into
a surrounding environment of temperature T,, due to the combined effects
of convection and radiation, is ”

q = h, Aj(T;-T,) (5.1)
where

hy = hethy-
Here h. is the coefficient of heat transfer due to convection, h, is
the coefficient of heat transfer due to radiation, and hy is referred to
as the combined coefficient of heat transfer. Values for these constants
depend upon the surrounding conditions, the material of which the body

is composed, and the temperature difference. These constants are tabu-

lated for various conditions in many heat transfer books.
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In the derivation of equation 1.2, the heat flow through a
differential volume dx dy dz was considered, In this case then,

The rate of heat flow through the differential volume then becomes

i

dq/dt = (kdxdydz) FT/3% - h2dx(dydz) (T-T,)

1]

(kdxdydz) 3FT/3%° - 2h, (T-T,)dxdy2dz+dxdydz2/dydz
Setting this equal to c,p dxdydz (QT/3t),

cprBTﬁat) = k@éeT/agg)-[ht(T—Te)] 2(dy+dz)/dydz
or AT/t = A(PT/R) - hy @P/KA) (T-Te)
where P is the perimetér of the body to be considered and A is the
cross sectional area. The use of these pérameters is justified by the
assumption of a homogeneous body and consideration of heat flow and

temperature variation only in the x direction. It is convenient to

define
S = he(Pa/kA) = he P/cgph
giving 3T/3t = o @APT/xR)- ST4ST,
or FT/3%%= 1/a dT/dt + S/a T - S/aTe (542)

This equation may be used to obtain a solution in the same manner
as was equation 1.2, For the sake of completeness, the following will
proceed with a solution of the heat conduction equations as they have
been modified to account for surface losses,

Differentiating equation 1.1 with respect to x and substituting
equation 5.2 into it,

3q/0x

]

-kA(1/a(3T/dt) + (S/a) T - (S/a) Tp)

i

or /D% = ~Acpl1(JT/Bt +ST-ST,) _ (523)
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Solutions must be assumed of the form

T'(x)eic'ut + D (5.4)

q' (x) eiwt + E (5.5)

T(x,t)

and q(x, t)

It

since there has been added the effect of a surrounding constant
temperature to our system. Now substitute the equations 5.4 and

5.5 into equations 1,1 and 5.3, obtaining

it

aT'/ax -1/kA(q" + Ee'icut) (5.65

i}

e Wt { ae pliwelWerris (1 elWhin) 51,1

= SY[TE/ W/ 1w IV 0T )T (5.7

and Bq"/éx

Now since 5.6 and 5.7 are functions of x only by hypothesis, it is
required that

E = O‘and D= T
This result indicates, as should be expected, that the temperature
varies at all points iF the body about the environmental temperature,

Te° To represents an average value about which the periodic temperature

variation takes place.,| The temperature at the sending end then has a
| .

form as shown in Figuré 14,
T ‘ "

Figure 14, fActual Sending End Temperature

This is identically the situation discussed previously in gection 2.1



in connection with the insulated body. It would seem then, that the
uninsulated case could be treated similarly, Since the variation takes
place about T,, this value is the same asvTa thatvwas mentioned in
section 2.1. Setting T, = 0 in equations 5.4 and 5.5 and Sblving for

Wt

T(x,t) ' (%) ei

i

Wt

and | q(x,t) = q*(x) el

it

the actual temperature could be found as before, or

T T(x,t) + T,

actual =
and | 9 actual = 9(%t)
This is actually the same solution that was obtained before except the
notation has been changed to retain compatibility and to facilitate the
analysis. Then equations 5,6 and 3.7 can be‘rewritten as

dT'/dx = =1/kA qt = -Zq' (5.8)
<Y (T'+8/iCOT") (5.9)

Differentiating 5.8 and 5.9 with respect to x again

and dq'/dx

d°T' /dx® = ZY(T'+8/1W)T")

and dq' /dx® = 2Y(1+S/1W)q"

Solutions to these two equations are of tﬁe form
T! = Ae /¢ Be'yx (5.10)
q' = GF,>%+ Fe'vh}/X

or ) q' = (h/V’/Z)(Be"P'}/X - Aeiy%) (5.11)

Where'>/has gow been redefined as
Y = ZY(1+s/100) (5.12)
from equation 5.8

at x =0, T T = MB

]
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and as = qa' = (Y/2)(8-4)
thén B = TS - A

qs =(YZ)(Tg - 2A)
%((-2/) Y qg+ Tg))
5((2/ V) ag+ Tg)

or A

B

which gives

"

T'(x) = 5((-2/) )qs + Ts>e%‘+3§((z/”)/)qs + Ts)'e"}’X (5.13)
q' (x) %[qs-(ylz)(Ts)]e7X+%[qS+(7/Z)(Ts)]e“’yx- (5.14)

If Z. is redefined as

1

Ze = 2/Y = \2/Y(1+5/1W) (5.15)
the complete steady state solution is

| T(x,t) = {%[Ts'chs]ejy% + %[TS+ZCqS]e':y%>'efiCUE: (5.16)

it
e

q(x, t)= {5[qg-(1/2.) (Tg) ] e7X+%[qs+(1/zc><Ts>]e'%‘ (5.17)

Equations 5.16 and 5,17 are of the same form as equations 2411 and

i

2.12, The only requirement .in order to correct for surface losses

is to use the more general values for Z, and 7/just derived. Note*
that if hy = 0, Zt‘andjy'return to the values as defined for the in-
sulated case, 1In both cases, insulated and uninsulated, to obtain

the real temperature T, must be added to the values given by equations
5.16 and 5.17. T  will be assumed to be equal to zero unlesé otherwisg

indicated because it adds nothing to the analysis.,

5.2 Analysis of Coefficients

The coefficients in the equations, that have been ‘redefined for the
general case of an uninsulated body, and their new definitions are as

follows:
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Ze=2lY= NG/ T(148/10W) = 1/kkPepo (10+8)= ~Ci+a/kiPe o ($P+WP)  (5.18)

The impedance angle is not now as easily defined as it was for

the uninsulated case. It is now a function of the physical parameters.,

V= BR+8/iW) = (epoyk (iW+8)= wjiw/&aeh;xr/kA

With these values'it is possible to re-evaluate the attenuation and

phase constants. Remembering'that
Yeo? ;;32+2io-;3=(i/O4X'iw+s)= he (P/kA)+i() /o

Equating real and imaginary parts, this becomes

02-% = h.P/kA
and 210B = i W /a
then B =W/aT

B2 = W2/wlPo?
Then substituting equation; 5.23 into: equatiocn’5.20,
T 2-)2/470 2 = h.P/kA
O"*"f‘nht P/kAO_2~w2/4a2 =0

Solving by the quadratic formula,

h,P/2kA T {1 PPP/PA° 4P /0P

1/2kA(heP T1/c %,:215"'042 FWPEEAD

1t

g2
52

@—ﬂh/e.kA(htP + 1/a \hPPOP + (02KPAP)

S8ince (O and B are real by definition and are both positive by con-~

vention, the negative signs in front of the square root radicals can

be eliminated. . Substituting equation 5.24 into equation 5.20, there

is obtained an expression for B.

(5.19)

(5:20)
(5.21)
(5u22)

(5.23)

(5.24)
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62 =(1/2kAXheP+1/0 | he P70 + (P koA ) ~hy P/kA

~( 1/2kA(~h P+1/a |h “Poat+( P EEAD)

B ﬁ’\‘(!l%?kA)(-htP+l/d -\lhtéPgag +(WPKEAD) (5.25)
From inspection, it is seen that this expression for § gives a real
number, which agrees with the initial assumption.

| ‘The equations for the characteristics of the solution, such as
phase velocity, wave length, period, and time lag, remain the same
as previously defined in sections 3.3 and 3.4 except that the g and B
used in their evaluation must be the ones that have just been derived.

Notice that if hy = 0 , O =-(W/2a, and B =\W/2a =T
which is the same as obtained for the insulated case,

From inspection of equations 5.24 and 5.25, it is seen that the
introduction of surface losses into our equations has increased the
value of U and decreased the value of B, This means that the attenua-
tion of the traveling waves 1ls greater or that they decrease in magni-
tude faster than they did in the insulated case. A smaller value of B
means that the phase change as the traveling waves travel down the bar
will be less, thus the phase velocity is greater, the wave length is
greater, and the time lag is less. All these results are reasonable and
to be expected when there is an additionél'energy loss.,

The same effect, as f@f as the change in phase velocity, wave length,
and time lag are concerned, could be attained by decreasing Cps increas-
ing k, or both in the insulated case. These variations are not sufficient
to realize an appfoximation of the uninsulated case, however, since in

this case U decreases also, instead of increasing.



CHAPTER VI
UNINSULATED INFINITE ROD

It 1s now desirable to apply the equations for an uninsulated
body (5.16 and 5.17) to the particular case of an uninsulated in-
finite rod. If it is recalled from section 3.5 that an infinite rod
has no refiécted wave, then the coefficient of the eiyk terms in -
equations 5.16 and 5.17 must be zero.

Ty = 2,95 = 0

The equations for the infinite rod must then be

T(x, t)=} (To+Tg) e~ (T +iB) % 1Wt (6.2)
and q(x, £){1/2Z)(Tg+Tg) e (O +iP)x 10T (6.3)

Then
T(x,t)/q(x,t) = Z,

In this light it is needed only to discuss the solution for T{x,t).

T(xyt):TSe“CTXcos(CUtnﬁx)+i sin(tdt—ﬁx):Tse“CTX+i(Ojt'Bx)(6.5)
Since equation 6.5 is exactly of the same form as equation 4.1, the
analysis previously performed for the insulated infinite rod will apply
equally as well to the uninsulated infinite rod. The effect of the
T, term, if the actual temperature was desired, is merely to cause a
transformatioq in coordindtes in Figure 11 or to give the attenuated,

phase shifted sinors a non-zero temperature about which to rotate.

49
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This case is illustrated in FigurF 15,
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Figure 15, .Actual Position of Temperature Traveling Wave

Wave length, phase velocity, period, and time lag may be com=
puted using the values of ( and B given by equations 5.24 and 5.25.
The analysis of the infinite rod then is essentially the same whether

it is insulated or uninsulated.



CHAPTER VII

THE FINITE ROD

T.1 Derivation of Equations for a Finite Body

The distinction between finite and infinite bodies, as far
as the equations are concerned, is that a finite body is one in
which the reflected wave becomes significant in determining the
varlation at any point. The approximate length a body must be
in order to neglect the reflected wave is to be the subject of
a later section.

Consider for purposes of analysis a homogeneous rod of the

configuration shown in Figure 16.

i
(o]
»
|| —
=

Figure 16, Finite Rod

Wt

There is an applied temperature source TSe1 at x = 0.
The rod has a characteristic impedance Z., and an end impedance Z,.
Assuming for the moment that the forward wave has an amplitude

at X= 0 of Ts+9 there can be derived equations for temperature and

51
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heat flow at any point in terms of this value. From the boundary
conditions and the equations to be derived, TS+ can be determined,
and the Solution will be complete.
The amplitude of the forward wave at the receiving end (x = L)
is
TF =Tt e VL (7.1)
This follows from the discussion in section 3.2, Using the defini-
tion of the reflection coefficient,
T = 220/ (22 (7.2)
Using the reflection coefficient, there is obtained the amplitude
of the reflected wave at the receiviﬁg end (x = ﬂ).
T = [p Tr+ = Ts+ eniyi(f} ' (7.3)
The reflected wave after it reaches the sending end would then be
LT = Ty 4 Tt e”EyL Ir (7.4)
The resultant temperature at the sending end, which was given as
Ty = Tgh 4147 = T (g 271y (7.5)
Using this equation, TS+ can be obtained since we know Tg, Ts+
would then be given as
1w L1/ (i [y a2 05y (7.6)
If the resultant temperature at the receiving end were desired, it
would be
L R AT - VL I

7t e/t I (7.7

It is l1ikely that the temperature at any point x along the rod would
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be desired. The forward wave at any point x is ‘
.t e VX (748)"
] .
and the reflected wave at any point x is
T" = (Tt oV Iy o~ Y (%) Ir
om {x-2L) ~
1t e o | (7:9)
Then either by adding these two terms, or by substituting equatibn Tl
into equation 3.4, we get for the temperature at any point
¢ + = + : "2L
e VX art o V(2D
T (@)% em V2D T (7.10)

TU

I

it

The temperature as a function of both time and position would be

given by
T(x, t)ﬁTs.;.(e-(O?iB)x + T (e-(O'+is) (2L—x))eia)t

5‘Ts+(e-CTk+i(Cdt'Bx)+ I} (e-CT(EL-x)+

| i(wt+5(x_2L))) | (7.11)

The heat flow equation corresponding to equation 7,10 is found By
evaluating equation 3.5.

@'tz & VE S n iz, [ e2)L o)X

etz Ve T2V )y (7.12)
The heat flow at anW point as a function of both x and t is

Q(x, t) = (‘rs+/zc)(e”0_’;+i(wt”5x> _ 1‘1‘? _e~0"(2LmX)+i(CUt+B(?~2L>i)
Ta13

The magnitude of the heat flow at each boundary (x=0 and x =L)

would then be

qg = (TgT/2.) (1= I e'27yi) . (7.14)
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VL)

+ - /L -
and G- Tz e

'

= (Tst12e)e Vi - T (7.15)

Note that these equations for the finite bar are perfectly

general and can be applied either to the insulated case or the
uninsulated case. This is true, of course, only if the coefficients
derived in section 5.2 are used and since hy = O for the insulated
case,

7.2 Total Impedance

Interesting results can be obtained by investigating the im=-
pedance for a finite body as a funcfion of x. As a fifst step in
this direction, T' will be plotted in the complex plane as x varies
from O to L. The expression for T' in the finite rod was found to be

T T+ + T7 = TS+ e"’yx + TS+ e_ErYL +’>'/X :[_]‘:.

Plotting the incident wave and the reflected wave, T' can be found

as the vector sum of these two curves. This is done in Figure 17.
7 TN

~ -
Figure 17. Projection of the Traveling Temperature Waves on to the
Complex Plane and Their Sum

f
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The resultant curve for T' appears as a spiral flattened somewhat
about the real axis, Actually the spiral is flattened about an
axis which is rotated by some small angle from the real axis in the
clockwise direction. The distribution in a finite bar may be more
readily visualized if there is included in Figure 17 the distri-
bution in an infinite bar with Ty applied at the sending end,
This is plotted as a dotted line in Figure 17. Recall that in the
discussion of Figure 11 for the infinite body that as the curve ro-
tated about the x axis, which is perpendicular to the page in Fig-
ure 17, the temperature at any point x varied sinusoidally with an
amplitude dependent upon X. Similarly in the finite rod, the
temperature at any point x varies sinusoidally as the curve féund
above rotates about the x axis, The distinction between the finite
and the infinite bodies is that in the finite case, the amplitude
of the temperature variation is not decreased with x according to
a simple exponential decay. In fact, it is possible to find some
point or points, x such that the temperature variation at this
point or points is actually greater than the amplitude of variation
at some points nearer the source than the point or points being
investigated. In other words, the decay seems to be according to an
exponential with some periodic term superimposed upon it. This be-
comes even more evident if the magnitude of the variation as a func-
tion of x is plotted. This has been done in Figure 18.

At points one quarter wave length or 90° apart, the vector sum

becomes alternately the arithmetic sum and the arithmetic difference,
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Figure 18, Magnitude Distribution

These points are not quite the maximum and minimum points, but
closely approximate them.

This type of temperéture response is unique to traveling
waves traveling in opposite directions, Theréfore, if this type
of response could be verified in an actual physical situation, it
would confirm the wvalidity of the traveling wave type of solution
that has been developed. Significant data is not readily available,
but it is intended to obtain such data from an actual test and present
it in one of the latter sections of this thesis. This type of response,
due to the interference of traveling waves, is not readily observable
due to the rapid decay of the incident wave in most systems. The
decay usually is so great that at a distance greater than about one

.

wave length, the variation is negligible. This subject will be
developed more fully in Chapter IX,

A sketch of q' in the complex plane can be obtained in the

same manner as was obtained the sketch in Figure 17 for T'. This
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Figure 19. Projection of the Traveling Heat Flow Waves on to
the Complex Plane and Their Sum

To obtain this plot, recall the expression for q'
q' =Ts+/zc e4>/x ‘Ts+/zc [ e-gvég'e 3/x
Note that
Q' =T7/2Ze -T/2c = T /g |- -T2 |-8 (7.16)
Figure 19’can be obtained from Figure 17 merely by rotéting the

component vectors by -0, dividing them by ]Zc , and findihg their

vector differences. Remember that for the insulated body © has
a vélueogf 45°, but for the uninsulated case @ will be different
from 45°, This curve is also a flattened spiral. It is flattened
about an axis dependent upon 6, If © were 90°, the spiral would be
flattened about an axis only slightly rotated from the imaginary
axis,

If}pne assumes O = 90° and plots the magnitude of q' in
Figure 18, one sees that the minimims of q' occur at the miximums

of T' and vice versa. If this were the insulated case where 6 = 45°,
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this would not be true, but the shape of the curve would be the
same.,

The preceding results indicate that the temperature and hpat
flow at the receiving end depend critically upon the length of the
body. It .is possible, if the length of the bar is some odd multiple
of a quarter wave length, to increase the magnitude of the tempera-
ture variation.and decrease the magnitude of the heat flow variation
by ei;her increasing or decreasing the length of the bar by some
amoun; less .than a quarter wave length., If the length of the rod
is an even multiple 6f a quarter wave length, the magnitude of the
temperature variation may be decreased and the magnitude of the heat
flow may_be increased at the receiving end by either increasing or
decreasing the length by some values less than a quarter wave length,
Those facts and other variations are observable in Figure 18« The
effect on temperature of varying the length remains essentially the
same under all conditi@hs. The relati&e effects on heat flow, how-
ever, would depend upon the impedance angle,_?, which would determine
the amount of shift in the heat flow magnitudes from the position
'ghown in Figure 18, Figure 18 was formed on the basis of an uninsu~
lated bar or @ = 90°, If © had some other valﬁe, as in the insulated
case, the heat flow curve would be shifted along the lqsl e;CTk
curve, If the body were uninsulated, then the effect on the heat
flow of varying the length would have .to be.detefmingd for each
particular case.

This technique suggests certain ramifications which could be of
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value in practical analysis. For example, the temperature variation
or heat flow variation in a building, due to heat transfer through
the walls, could be reduced by this process of either thickening or
reducing the width of the walls, depending upon building requirements
and the feasibility of the change in design under certain circumstances.
At least an optimum thickness could be found to satisfy certain re-
qﬁirements or desires.,

It is possible that other suitable building materials could
be selected so as to adjust the wave length in the material to
optimize the amount of heat flowing into the building. These are
only a few of the possibilities and are'ﬁentioned only to point out
the potential of this type of analysis. A further study than will be
possible in this thesis, in conjunction with the many transmission
line techniques that have been developed would undoubtedly be very
rewarding and would probably suggest many methods of reducing un-
desirable effects in the application to heat transfer problems.

The féasibility of this analysis depends upon the magnitude
of the attenuation constant. The attenuation determines the amount
of reflection and thus the magnitude of the variations about the
simple exponential decay. If attenuation is great and these wvaria-
tions in Figure 18 are shall, then there can be little gained by any
adjustments in length.

It is also interesting to notice the value of the impedance as

a function of x. The total impedance at a paint has been defined as
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2Tt fq =T, e Ve VCL Ty bz e V5 T eV L9 (7.17)

This can be rewritten as o
Ze= Z[14e2 ) (L) I /[1-e2Y (L=%) I

or

wr +28(x-L) ]/ [1-e2 O (x-1)

qu + 2B(x=L) ]

I

The numerator and the denominator of the fraction in this expression

Ze= [2] [9_[1+e+26_(x'1‘) iF

can be represented as shown in Figure 20. For convenience, rewrite
equation T7.1l9 as

z, = ‘Izzcl-»li N(x) /D (x) = ]zcj o (ramp)/ (1w

where N1 = eECT(X?L) I; \1L& + 28 (x~L)
Notice that since I; has a maximum value of 1 and as x increases
to L, eECT(X_L)approaches a maximum value of 1, then the magnitude

Figure 20, Ratio of Total Impedance to Characteristic Impedance
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of N; has a maximum value of 1 and as a result all vectors repre-
senting both N and D will lie in the right half plane in Figure 20
for all values of x ¢ L,

Tﬁe vectors shown in the figure are of an assumed position
and magnitude to represent Nj and -Nj at x = 0. As x increases,
the vectors increase in magnitude and rotate in a counterclockwise
direction at the same magnitude. The loci of their end points would
then be an increasing spiral rotating in the counterclockwise direc~
tion as shown in the figure. Note that in the plane the end points
of these vectors, which rotate as x increases, represent the vec~-

tor sum of 1 and N and 1 and ~N1 or N(x) and D(x). This is true

1)
since the base of these vectors has been placed at the point 1“1
in the plane. Thus the loci of these vectors as x increases also
represents the loci of N(x) and D(x) as x increases.

For the special case where there is no attenuation, the loci
in Figure 20 become circles and the figure becomes the bicycle
or crank diagram encountered in connection with lossless trans~
mission lines.

The total impedance may now be found as a function of x by
plotting the quotient of N(x)/D(x) as x varies from 0 to L, and
then multiplying this quotient by 'Zc‘ and rotating the whole dia-
gram about the origin through an angle ©., N(x)/D(x) is plotted in
Figure 20. It is interesting to note that if I; = 1, as x approaches

L, N; approaches 1 or -1 depending upon and ,thus D approaches 0,

r’

making Z; approach infinity, or N approaches 0 making Z{ approach O.
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This is actually the case because if Zy =0, [ =1or if 2. =0,
f} = 1, Likewise, as either O increases or L increases, the
spiral becomes tighter about the point 1193 If O or L were in~-
creased enough, the point at x = 0 would be approximately the
point 1[Q_and the impedance at x = 0 would be approximately Zc.
Of course if L became infinite, the entire spiral would become the
point I[Q, and the impedance at all points x would be Z,, which is
the condition that was previously found for the infinite body,

The concept of total impedance becomes a little clearer if the

magnitude of Z; is plotted as a function of X. This is done in

Figure 21.
Zt . /2
A
¢ /2 |
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I
K== Xzl x

Figure 21. Total Impedance as a Function of x

The curve has been extended beyond the point x = L in order to more
fully iilustrate the wvariation.
The point to be made here is essentially the same as before.

That is, by adjusting the length of the body the most desirable value
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of Z can be obtained and thus of q' and T'. It is evident that
varying the length to effect the impedance'has exactly the same
effect that was discussed previously in analyzing the T' and q'
curves. Note that Zg is a function of the length and is given by
2g=ze[(1re2 VL T/ (1-e2 VT )] (7.21)
This indicates that as L changes, the position of the curve in
Figure 21 is translated parallel to the x axis. The length also
has a direct effect upon the magnitude of Z; as well as on the
magnitudes of T' and q'. It appears now that the amount of heat
flow at the source could be regulated merely by changing the length
of body. This also would find its place in practical applications.

7.3 .End Impedance for Finite Rods

The study of finite bodies brings us to another problem which
is the determination of the receiving end impedance for these bodies,
Consider first a composite rod such as is represented in Figure 22.
Reference will be made to the two sections as rod 1 and rod 2, Con-
sideration will be directed toward finding the receiving end im-
pedance Z.; of rod 1. If the most general case of an uninsulated
rod of finite length is considered, Z,; can he determined for other
conditions as special cases of this one.

Actually, there is no problem in this case since the receiving

e

end impedance of rod 1 will be the sending end impedance of rod 2, or
- =2 )2L2
Zp1=Zgo=Zoo [1+e 2’212 [ /1 7 [,] - (7+22)
This expression says that the amount of reflection in rod 1 and the

amount of heat flowing into rod 2 can be affected by changing the
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length of rod 2,

If rod 2 were of infinite length, equation 7.22 would still

be valid for if Ip = o

Zr1 = Zgp = Z¢p (7.23)
» The receiving end impedance of rod 1 then becomes the character-
istic impedance of rod 2. The expression for Zrl where either
rod 1, rod 2, or both are insulated would be obtained by setting
either hy = 0, hy = 0, or both,

If the end of rod 1 is exposed to some medium such as a gas
or liquid in which conduction is not the significant“method of
heat transfer, the heat transfer from the end can be computed and
thus Z,., by using the combined coefficient of heat transfer, h,, and
wfiting

4 = h, TA; , (7.24)
where Aj is the cross sectional area of the end of bar 1. Then the
end impedance would be

Z.q = T/q = 1/h Ay (7.25)
This has as a special case, the case of the perfectly insulated
end. In this case hy = 0, and

Z,1=1/0 = 00 (7.26)
This result agrees with previous conclusions.

The receiving end impedance has now been derived for several
general cases. Most systems may be adequately described using
these expressions. However, there are potentially several con-

ditions which might not be covered by these equations, but the
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process is clear and a suitable approximation of Z, can usually be

made.
rod 1 ht1 X2=0 rod 2 ht2 X2=L2
Tg Ze1 Zy Ze2 Zrp hoe
x1L0 qi,l T3 xp=Li+lp
x1=Ly

Figure 22, Composite Rod, Two Sections



CHAPTER VIII

THE COMPOSITE ROD

8.1 Analysis

The next case of interest is the composite, finite, homo-
geneous rod, Figure 22 is a suitable representation of.this case,
The assumption will be made, of course, that the two rods are
perfectly joined at the point x = L; and that there is no heat loss
there due to the connection. The general case where both sections
are uninsulated will be considered from which the insulated case
may be obtained by setting h, = 0 for the insulated section or
sections. Assume also that the receiving end of section 2 is
exposed to still air or some other media such that equation 7;25
applies. This can be specialized to include the insulated case
also, by setting hy, = 0, where h,, is the combined coefficient of
heat transfer at the end of section 2.

The solution of this system will be represented by two equa-
tions, one for section 1 and one for section 2. The equation for
section 1 will merely BeAthe finite rod equation that has already
been derived.

For section 1,

0£x; €1 |
Ty (xp, £)=T [e-T7 x+i(0)1t~51x1)$111;é-CTi(2L1‘X1)+i(O)1t+51(xl‘2L1)_

66
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and q1(xy,t) = T1(x,t)/Zpq o (8.2)
where
[31 = Zp1 = ZeD)/(Zp1 + Zc1) (843)
and ‘
zﬂ:zcg[me‘zyel‘z I}2>/<1-e"2yELE [ (844)
L= (Zyp=2ep) [ (2ot 2ep) | (8.5)
Zeom 1/(hpe Ap) (8.6)

For sectior;2 the sending end temperature is the receiving
end temperature of section 1, or
Tgo = Ty (8.7)
then

Tgo" (14e” )2 (?LQ) [

Tsl+(e'71L1>(1+ D
or
- L1 . ) 2 , .
Tgot= Tgpte Nt g, Lopreul, e Vele, ] (8.8)
Using this value of T32+J return to the finitevrod equations and
find the solufion for section 2,
For section 2,
=, = =
L= 5™l + Iy 0=x%=1,
To(x, t) = TS2+[e'C"EXE“l(th'BEXE).z. |
v Ip a7 T2 @2+ 1(Wat+By (xp-21p)) 4 (5.9)
9o (x5, t) = To(xp,8) /215 (8.10)
If it is preferred to have these expressions in terms of xy,

merely replace x, by x;-L;, giving
~Op (x1=L)+i(Wot=Bo (x1-L1)

o~ 02 Lo+l =x)+1 (o t+Bo (x1=L1-2Lp))

+
T2 (Xl, t)=T52 [e

+ 1 1 (8?11)
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and-

qo (%1, t):TSg/ch [e"O—g (Xl‘Ll)+i(w2 t"Bg (Xl"Ll))

I ?-o"g (2LQ+L1-X;)+i(w2;fBg(xl-Ll-aLa)_)] (8.12)

The equations for the composite rod aétually present nothing new,
The analysis of these equations is essentially the same as the analysis
of the finite rod equations. These equations have been derived for
the ﬁurpose of illustrating an application of the finite rod equations.
The only additional point that could be made here is that in situations
such as this, the length, area, and all the physical constants associated
with one bar affect the temperature and heat flow in the other. An
analysis of temperature, heat flow, and impedance variation could be
performed on this system exactly as was done in section 7.2 for the
finite bar. This analysis would have essentially the same results that
obtained before and would add nothing new to our investigation., Keep
in mind that there is as much or more potential wvalue in this type
of analysis for the composite bar as there is for the finite bar.
Further investigation in this area could be very profitable, but it
is not the purpose of this thesis to go into such detail, The possi-
bilities that are apparent here indicate that it is a subject worthy
of further pursuit.

8.2 Transfer Impedance

~Many times it is not of interest to find the temperature and heat
flow distribution in a body, but merely to find the terminal values,
It would then be of interest to derive an expression for the system

transfer impedance, so that the terminal values could be found with a
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minimum of effort. Transfer impedance is to be defined as
Zer = Tin/dout (8;13)
Congider first the finite rod. The transfer impedance for this
case 1is
2Vt rzg a- Tpe /™

= Zy cosh 7/L + Z¢ sinh‘>/L ‘ (8.14)

, + '
Zep=Tolap= Ty (1+ [, e

Notice that if L = 0O, ztr = Zr .

This indicates that if the rod were removed, the driving function
would be acting directly into the end conditions. In this case the
sending end temperatureiand heat flow would be the same as the re-
ceiving end temperature and heat flow, Notice also that the transfer
impedance and thus q, are independent of the receiving end temperature

T.. in this expression.

T
This type of approach is not of particular value in the finite
case, since g, can be more easily computed from equation 7.15., This
approach becomes of value when composite bodies of two or more sections
are considered. If the heat flow at the receiving end of a composite
body was desired, and not the intermediate temperature and heat flow
distribution, it would be a very laborious process to grind through
the equations for each section separately. In a composite section,
the concept of transfer impedance could be applied to each section
repeatedly to obtain terminal values. If an overall transfer impedance
. for the entire composite section could be determined, it wouldvgreatly

gsimplify the calculations by offering the advantages of compactness

and a simpler form.
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Consider now the composite section shown in Figure 22. This
figure could represent either a compésite rod or a section of a
composite wall or plate. The transfer impedance of section 1 of
this composite body may be expressed as .

Zepl = Tfai | (8415)
Likewise the transfer impedance of section two can be expressed
as

Zipp = Ti/qr | (8,16)
Realizing that

q; = Ti/zrl = dy ztr2/zrl

equation 8,15 becomes

Zer1 = Tg2p1/dplipp
or
Tg/9p= Zeyp2 = Zer1 Zer1/Ze1 (8.17)
Z represents the overall transfer impedance for the composite
trol !

body with two sections.

Proceeding now to a composite body of three sections su;h as
shown in Figure 23, the transfer impedance for the first section
and third section are the same as the transfer impedances for the
first section and second section of the body just considered., From
previous considerations, it is known that

Tg/ay = Zerl Zeyn/Zyy
Then, since

a4 = T;/25 = a4, 2.5/25
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giving Ztrbs = Tg/qy= Zyl Zepp Zer3/2p1 Zep (8.18)
x=0 x=L1 x=L1+Lo X=L1+L2+L3
z | z Zey
Tgs g trl l “tr l Ztr3 Terde
Ti544 Tira4
Zr1 Zy2
Figure 23. Composite Rod - Thﬁé% Sections

Similarly, a composite body consisting of n sections was considered

as shown in Figure 24 and an expression for the overall transfer im-

pedance could be obtained which would be of the form

Z

(Ztrl Ztr2 "“Ztrn)/KZrl Zr2 il Zrn-l) (8,19)

tron ©
= Ts/qr
x=01 ¥=L1 x=lytly " x=Ig+lpt. . Ly x=Li+. .. Ly
A A A - A
T, dg trl tr2 o tr(n-1) trn Ty Gy
Zr1 Zy2  Zyn-2 x=L1+...1p-1 Zrn
Zyn-1
Figure 24, Composite Rod - n Sections

Use of this equation would permit simplified calculation of the

terminal values of a composite body, such as a wall where one might'

know the outgide temperature and be concerned only with finding the

heat flow into the inside of the structure.

Although this form does
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not greatly reduce calculations, it does reduce error and increase
the speed of calculation due to the compact form.

8.3 Equivalent Four Terminal Networks

In accordance with the line of thought of the previous section,
it is possible to represent a finite section by an equivalent four
terminal network, for the purpose of investigation of terminal values
only. The only restriction that will be placed upon fhisvequivalent
network is that the input and output temperature and heat flow be
the same as in the actual system. This equivalent network may be
found as either a # section or a T section. An equivalent =« section
as shown in Figure 25 will .now be considered. 1In this equivalent
network, the T's represent temperature but are treated as voltages,

and the q's represent heat flow but are treated as currents.

dg dy dy
O 75t . PO O
93
2 2
it Yt T, zr
Y q1 q2
O -0 O

Figure 25, Equivalent w Section

'

The current in the left hand "pillar" is
ql = TS Yo /2
The current in the "architrave'" is

q3 = qs— q]. = qS - TS(Yﬂ,/Z)
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The temperature at the right hand side is

T, = T4 Zﬂq3= Ty (I4+2ZaY w/2) - Zmqg
We also know from equation 2,22

I, = T4 costhL-Zch sinh:yi

Equating coefficients of Tg and qg we obtain

| Zn = 2, sinh )L (8.20)
and Yu/2 = (CoshYL-1)/Zx = (eyL/E-e-yL/e)g/
2, (e V212 LNy e, YR,
= (tanh YL/2)/2, (8.21)
or 2/Y¥x = Z, coth YL/2 (8.22)

If an equation for q,. had béen obtained instead of T, and solved for
Zz and ¥x/2, the same results would have been obtained. This = circuit
is equivalent to a distributed system with constants Z, and 7VL if its
components have the calculated values.
It is very simple to show that the transfer impedance for the
equivalent st circuit is the same as previously obtained in equa=~
tion 8.14, so time need not be taken to show this, It should be evi-
dent that this would be true since the terminal values remain unaffected.
Since the equivalent w in Figure 25 represents a finite body, a
composite body could be represented as a certain number of these
equivalent circuits connected in cascade. The equivalent of a com-
posite body is shown in Figure 26. Using this configuration and the
standard methods of network analysis, the terminal values can be
easily determined.

The equivalent system method of approach is not as simple, and
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| | 2 | q,; |
o——TﬁP—1—~—A Zyy [ - | Zity ( > ;gi .._r,__ Za'a:m..___.,__.T_,__t,|,,__,‘__I
T2 2] [ 2] = 2 L[>
Ts | |'Yog Yty T1 | ¥y Y5 g T2' | | Yn Yty rl
o . Ty ]
| | | , |
o Zyy o ¥y _lVL__ —_ Lrrn

Figure 26. Equivalent of Composite Rod

does not yield itself to calculation as readily as does the transfer
impedance method previously discussed; but it does introduce the
possibility of design and analysis according to the principles set
forth in most transmission line texts with regard to equivalent
systems. It is not in accordance with the purpose of this thesis

to pursue the subject further, but it should be mentioned that this
type of analysis is developed fully in transmission line literature,
The application of this method to heat transfer should be the subject
of a later work.

It would be possible, according to network analysis, to obtain
an expression comparable to equation 8.19 in terms of Zw, and Yﬂn/E;
but such an expression is sure to be much more complex than equation
8.19 and would be of no value to us,

The equivalent systems are especially interesting because they
give a physical concept of the impedance approach to a finite or a
composite body.

8.4 Impedance in Parallel

There is only one more composite system desirable to attack at this
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time. This would be a body of the composition shown in Figure 27.
These two materials have a common temperature source at x = 0. The

receiving end heat flow will be considered to be the sum of the heat

X=|O X=|L1
7 Z dr1
T, dg trl’ “cl l r dy
ZiyprLe2
Ay2

Figure 27. Composite Sections in Parallel

flow from the end of each of the sectipns., Remembering the definition

of transfer impedance,

dr = dpp 7 A2
= Ts/Ztr1 + Ts/Zey2 (8.23)
2ty = Ts/qr = Ztrl Ztre/(ztrl+ Ztre) (8.24)

which is the standard equation for the total impedance of two im-
pedances in parallel,

If either or both of the two sections of this body are composite,
the respective transfer impedances can be calculated according to
equation 8.19 and then substituted into equation 8.24 to give the
total overall transfer impedance for the body.

Many different combinations of the cases presented, infinite,
finite, insulated, uninsulated, simple, and composite, are possible.

¥

These cases, too numerous to discuss, are all subject to the basic



attack presented for each class of problem and should be fairly
simple to evaluate, using these methods or combinations of these

methods and the basic principles of heat conductiom.
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CHAPTER IX
ATTENUATION ANALYSIS AND CRITERION FOR INSULATED BODIES

Ffom previous investigation, it appears that the decay of a
temperature or heat flow wave, be it the incident or reflected wave
in a finite body or the single wave in an infinite body, as a function
of n is the same for any insulated body irrespective of the material
or any characteristic properties. Define now
n = x/;\ = number of wave lengths from the sending end.

gx

By this it is meant that a plot of e as a function of n would be
independent of any of the properties of the propagating medium as long
as it is an insulated body. It was mentioned previously in section 3.2

-Ox ,
that the decay of the waves was due to the e term, .As a function
of n the exponential becomes

e»CTX B e—C7n>é ewCTEnw/B

Since for an insulated body, it was previously found that

then ‘e = e

Tﬁis is indeed independent of any properties of the medium, and may
be plotted as shown in Figure 28, ©Notice that this is a very rapid
decay with respect to wave length. By the time one wave length is
reached, the magnitude has been reduced to a value of 0.00188, Due

to the rapid decay of this term, a more correct representation of

77
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Figure 10 is as shown in Figure 29 with quarter wave length values

as indicated.

14
- X
e
i ' - ; 1
0 5 % 3/4 1
Figure 28, Exponential Attenuation
i
1lee
% % 3/4 1 1%
A\ -0432(180° .0019[0°  .0004[270°
.208 {270° .0091 [90°
- .
-1

Figure 29, Attenuation of Traveling Wave

In most cases it could be said that 3/4 of a wave length would
be sufficient length to insure that there would be no reflection if
the body were terminated at that points It would depend, of course,
upon the accuracy desired, but generally 3/4 of a wave length could

be taken as a criterion for reflection. If the body under study had
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a length greater than 3/4 wave length, it could safely be éaid that
reflection would be negligible. If the body had a length less than
3/4 wave length, it might be desirable to compute the magnitude of
the reflection. The criterion could be varied to suit the demands
of any particular problem and applied in a similar manner.

From equations 3.12 and 5.25, it is seen that the wave length
is a function of the properties of the conducting medium and the
frequency of the driving function. It would be possible to draw
a straight line curve for any particular material desired with )~and
() as the coordinates. A family of curves such as this, for several
different materials, could be a valuable design tool in particular
types of problems. If a designer was given the frequency of the
driving function and the required dimensions of the body, he couldgo
‘to this family of curves and pick the most suitable material to use
by considering the wave lengths indicated. There could be many
variations of this procedure,

The 3/4 wave length criterion, a4s mentioned above, need not be
restricted to insulated bodies as was the discussion assoclated with
Figure 29. The damping that occur5 in an uninsulated body is greater
than that in an insulated body, so this criterion would be more con-
servative in the uninsulated case., A more accurate criterion could
be developed for uninsulated bodies 1f so desired, but such a criterion
would be more complex, since it would no longer be a simple function
of the input frequency and the properties of the medium,?but would also

be a function of the overall heat transfer coefficient,
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It would be interesting to investigate several materials and
determine if it might be possible to have reflection in some common
physical system in which these materials are present,

JAir at O0°F and a frequency of 1/24 cycles per hour gives a
wave length of 4.58 feet, Three fourths of this wave length is 3.44
feet. The given frequency corresponds to the frequency of atmospheric
temperature variation due to radiation from the sun., A common physical
object in which there could be reflection in air would be a wall or
roof of a building which has an enclosed air space. This air space
in most cases would not be greater than six inches, which is much
less than 3.44 feet, This physical situation would then give rise to
considerable reflection. Reflection analysis could then be an im-
portant concept to an air conditioning or heating engineer.

In frame houses, heat transfer through the walls is determined
not only by reflection in the air space in the walls but also by
reflection in the wood. 1In southern yellow pine with. 13.8% moisture
and heat flowing perpendicular to the grain, the wave length is 1.34
feet at a frequency of 1/24 cycles per hour. Since the maximum
thickness usually encountered in the walls of a frame building is
about two inches, which is much less than 1.00[3/4(1.34) = 1] foot,
reflection would certainly be significant,

If heat transfer through a concrete wall of dam was of concern,
reflection might also be significant here. At a frequency of 1/24
cycles per hour, the wave length im average stone concrete is 2.38 feet.

Three fourths of this value is 1.79 feet. In most concrete dams and
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some large concrete buildings, reflection could be neglected. In
small concrete buildings, with a wall thickness less than 1.79 feet,
reflection would be a significant factor.

Considering the steam engine referred to by Ingersoll and
Zobel (7) inrtheir paragraph 5,13 there eﬁists a frequency of
100 cycles per minute or 6000 cycles per hour. Considering cylinder
walls of 1% carbon steel, a wave length of .382 inches is obtained,
Three fourths of this value is 0.286 inches, The thickness of the
cylinder wall could possibly be less than 0,286 inches, and thus give
rise to reflection, In a quarter inch steel plate, a frequency as
slow as 1/24 cycle per hour would evidently give rise to considerable
reflection.

These examples are only a few of the possibilities, but these
few point out the fact thét many common pﬁ&sical systems give rise

to reflection and deserve approach by this method.



CHAPTER X
COMPARISON WITH EXPERIMENTAYL RESULTS

Some interesting and especially applicable work has been dene with
reference to heat conducticn through roof panels heated in a pericdic
manner by solar radistion by Héughteng Blackshaw, Pugh, and McDermott.
(13)., It is interesting to.observe a comment made by them in this
paper. "Research, carried on by the Research Laboratory of the American
Society of Heating and Ventilation st the Pittsburgh Station of the
United States Bureau of Mines, has shown that a large error may be
introduced into the calculations by fsilure to consider the pericdic
character of heat flow resulting from the diurnal movement of the sun
and the heat capacity of the structure, which determines the timing and
magnitude of the heat wave flowing through the walls into a building on
a hot sunny day." This quotation isg compatible with observations made
in the last chapter,

This team obtained much ddats for tempersture and heat flow through
various types of roof panels ‘over a series of days 'as the external tem~
perature waried periodically, They found that the exterﬁal or applied
temperature did not vary as a simple sine wave but thzt it could be
closely approximated by a4 two term Fourier analysis approximation. Up=
on this basis attempt will be made to verify the data obtained by them

for a four-inch gypsum panel. In their presentation, the team also
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solved this particular problem by mathematical analysis. After a solu-
tion is obtained, it will be compared with the solution they obtained,
as well as the data presented by them, in order to evaluate this method

of approach. The data as presented by them for this panel is

k = 0,1203 Btu/ft-hr-°F
o = 64,9 1b/ftd

c = 0,234

P

L = 4,188 in = 0.348 ft.

The fundamental frequency is of course one cycle per 24 hours. Then

W g= 2xf = 2x¢1/24 = w/12 = ,262 rad/hr

Bf;'cyf = VeppW/2k = ~(.234) (64.9) (/127 (2) (-1203)

= 3,94 feet™ !

Zog = ~NL/2(.1203) (2347 (64.9) (x/12)  {(1-i)
Here the cross sectional area considered will be one square foot, The
wavelength in gypsum at the fundamental frequency is
A
36 Nt

i

6.28/3,94 = 1,59 feet

1,19 feet

u

Since three~fourths of the wavelength is much greater than 4.2 inches,
some degree of reflection could be'expected at this frequency., There=
fore equations 7.11 and 7.13 sre the ones that should be applied. The
overall heat transfer ccefficient for the end conditions was given as

h., = 1.9 Btu/feZehr=CF

t

h!

Then

N
Il

1/(1.9 x 1) = 0.526 hr-"F/Btu

and
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I“f = (.526-1.022 (1=1))/(.526 + 1.022 (l=i)) = .613 [149.4° = -0.528
r

+ 1(0.312)

The frequency of the first harmonic will be twice that of the funda-
mental or one cycle every twelve hours. This gives
Wys 2x 1/12 = 0,525 rad/hour

Oy By 2 (3.94) = 5.58 feet™

1

z, =(LAZ) (1.022)(1-1) = 0.723 (1-i) = 1,025 | =45
Ay
3/4 A,

6.28/5.58 = 1,148 feet

0.86 feet = 10,3 inches

Three~fourths of the wavelength st the frequency cf the first harmonic
is still large enough for significant reflection. Equations 7.11 and
7a13 must be used for the first harmonic also, The reflection coeffi~

cient is
[ =(.526-,723(1=5)/(,526+.723(1-1)) = .52|135.3° = -0,370 + 1 0.368

The Fourier approximstion of the temperature at the outer surface was
found by the team to be
T(0,t) = =27.186 cos(t + 20.929 sin(Jt = 4.308
cos 2t - 12,9 sin 2Wt + .

This can be reduced to the form

T(0,t) = 34.3 sin((Wt-52.4")+ 13,7 sin (20t -

161.55°) + , . .
. 1 T 9 ;0 N N .
Im (24,3 oH(WE = 524°), 44 5 1(2WE-161.55%)

... )
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The amplitude of the fundamental and the first harmonic are then

34,3°F

Tsf

13.7°F

Tsh

The ocuter surface temperature variation takes place about an average
value of 87,14%F. Zero time is taken as 4:00 A.M.

An evaluation will now be made of equation 7,11 for the funda-
mental compenent and then for the first harmonic component, Equation

7.6 gives
+ ~2(3.94) (1-1).348
Tgp = 34.3 [1/[1+(.613 [149.4%) (e (3.94) (1-1).348)y 11 3319,3°

and

TSZ = 13.7[[1/ [1+1.52 [135,3%) (e~2(5-58)(1-1) (.348)y 11 = 13,7]0.62°

i(Wt - 52.4°

‘Assuming an input of the form e ) for the fundamental and

12t - 161.55°

of the form e ) for the first harmonic, equation 7.11

gives
. : G o _ &5 10
Tf(x,t) =33 e 3.94x% + 1(.262¢t 3.94 x 52.17) + 1,295
o3.94x + 1(.262t + 3.94x - 60.2°)
and
: - . : o
Th(xpt) = 1307 ei“55~58x + l(y525t - 5.«587{ - 160,93 )

o o . ] _ o
b 0,148 o3+58% + 1(.525t + 5.58x - 248.13%)

Since the input was taken as a sine wave, the actual expressions for
the fundamental and first harmonic components may be obtained by taking

the imaginary parts of these equations, If this is done,



86

T (x,t) = 33 e 9% in (0.262t - 3.94x - 52.1°)
+ 1,295 3+ 9%% gin (0.262t + 3.94x - 60.2°)
and
Th(x,t) = 13.7 e“5ﬁ58x sin (0.525t = 5.58x = i6Oa930)
+0.173 7% gin (0,525t + 5.58% - 248,13°)

The average integrated temperature at the inner surface may be computed
by the usual steady state methods in which the driving function is con-=

stant. An expression for the heat flow at the receiving end giveés
Ur = [(Tgy = Tpg /LI KA = (Tpy = Tyyp) by

The temperature of the air inside is known to be 69@6OF, so the above

expression can be solved for T,.,. In doing this, one obtains

T = 72.3°F
ra
The temperature distribution in the steady state with a constant applied

temperature will be a straight line function, and can be written as

Tc(x) = 87.14 = (87,14 - 72.3/0.348)x = 87.14 = 42.7x

The total temperature in the bar is then the sum of this distribution
and the fundamental and first harmonic components; or

T(x,t) = Tc(x) + Tf(x,t)‘+ Th(g,t)

The fundamental and first harmomnic components of the heat flow may be

computed in the same manner as were the corresponding components of

the temperature. These are easily seen from equation 7.13 to be
qe(x,t) = 22,8 7394 gin (0.262t - 3.94x - 7.1°)

3.9%4x

- 0.89% e sin (0.262t + 3.94x - 15.2°)
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and

-5,58x%

qh(x,t) = 13.35 e sin (0.525t = 5.58x =~ 115,930)

-0.1442 > %% gin (0.525t + 5.58% = 203,13°)

The steady state heat flow with an applied constant temperature of

87,14°F and an average inside surface temperature of 72,3°F is
qe = ((Tgy = Trga)/L)KA = 5,14 Btu/hr

The total heat flow at any point is then the sum of these three components,
or
qGx,) = q_ + 4 (6,) + q (x,¢)
The main interest in a problem such as this is the conditions at
the receiving end or at the interior of the building. If x is set equal
to L in the foregoing equations and they are reduced to a éimpler form,
then
Te(Lyt) = 4.82 sin (0.262t = 97.4°)
Ty (L, t) = 1.435 sin (0.525t - 241.83°)

qg(L,t) = 8.98 sin (0.262t - 97.25°)

qp (L,t) = 2.76 sin (0.525t - 212.,13%)
The form of the input was assumed to be

T_(0,t) = 34.3 sin (0,262t - 52.4)
for the fundamental,. and

Ty (0,t) = 13.7 sin (0.525t = 161,55)

for the first harmonic. The lag in the temperature at the receiving
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end for the fundamental and first harmonic components respectively are

tlag TE = 97.4 ~52,4/(57.3)(0.262) = 3 hours
and

t lag Th = 241,83 - 161.55/(57.3)(0.525) = 2.67 hours

This compares favorably with 3.216 hours and 2.837 hours ‘as computed by

the investigating team., Note that their values were not verified by

experimental data, so it is not known whether our wvalues were better

than theirs or not. The lag of the total temperature wave at the receiv=

ing end could be obtained by differentiating the sum of the fundamental

and harmonic components, setting this equal to zero, and solving for t.
The expressions for the total temperature and heat flow at the

receiving end will new be given as

T(L,t) = 72.3° + 4.82 sin(0.262t=97.4°) + 1.435 sin(0.525t=241.83°)
and
q(L,ty = 5.14 + 8,98 sin(0.262t=~97,25°) + 2.76 sin(0.525t-212,13°)

In the paper (13), the team presented a plot of the observed hesat flow
4t the inner éurfaéé, and a superimposed plot of the heat flow at the
inner surface as calculated from their equations, This figure will
now be reproduced here, and fhere will be plotted on it the heat f&ow
at the inner surface as calculéted from our equations. This should

provide an evaluation of the equations and method of solution.
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Figure 30, Heat Flow at the Inner Surface

This figure shows that the methodZOutlined in this thesis gives an almost
perfect fit to the observed curve. The fact,that‘éhisfsbluéionjgivespa
much better approximation than the solution obtained by the investigators,
should be sufficient proof of the validity of these ﬁethods; The time
lag of the heat flow as computed from the equations, obtained by setting
the derivative of q (L,t) equal to zero,: should be'fairly accurate since
the maximum of the author®s computed curve.seéms to coincide with the
maximum of the observed curve. At any rate, it is much more accdrate
than would have been obtained using the solution obtained by ‘the.inves=
tigators since 1ts maximum deviates somewhat from the time of the ob-
served maximum,

As a whole, the results of this comparison have been gratifying in
that they indicate the desirability'of using the equations and method

of approach listed here in many cases involving the periodic flow of
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heat. There are many other areas in which the application and desirabil~-
ity of these methods could be shown, but the one presented here is a

sufficient indication.



CONGLUSIONS

Since the object of this thesis Was to see if the proposed method
offered any particular advantages over comventional methods; it could
be considered a success., Im the relatively little space devoted to
each aspect of the method, several advantages became evident in most
cases, Alth@ugh time and purpose did mot permit full development of the
analysis in many areas, sufficiemt background has been laid to form the
basis and incentive for further investigation,

The form of the equations for temperature and heat flow themselves
offer several advamtages, The first of these iz the fact that the solu-
tion has beenr obtaimed in ome form which is applicable to all problems
involving sinusoldal periedic driving functioms, The basic differential
equations do mot have to be resolved for each imdividual problem, How=
ever, there is mo restriction to purely sinusoidal driﬁimg functions,

Sinmce the equatiome are linear and the primcipal of superposition applies,

of sine and cosine functions, to be applied to our equations for a
sufficient number of termsy, and them the results superimposed, Thus
there has been obtained a solution which is applicable to virtually any
heat conduction problem concerned with periodic flow of any type.

The value of having a clesed form type af solution which accurately
 describes the system is evidemt, It leads to simplified calculaﬁion and

likewize a reduced possibility of error., The fact that the approach does



92

give a closed form solution which is evidently much more accurate than
conventional methods leads to a better physical understanding of the
problem, The time lag, which is usually of great interest, is readily
computed in most cases; and the factors affecting time lag are better
understood,

The accuracy of the method iIs evident from .the example presented
in Chapter X, The little errata that was present in this example was
probably due to the twe term.approximaﬁionq If higher order terms had
been taken to approximate the driving function, such erréta would prob-
ably mot!have been present.

The portion of this thesis with the most potential to the engineer
and designer is the valuable design techmiques which are inherent in the
method, Some of these techniques have been presented here as time would
allow, and many others worth investigating can be obtained frqm the trans~
mission line field, The possibility of varyingz the output temperature
or heat flow by varyieng the length of the body as discussed in section
7.2 could be a very valuable toocl, especially to the heating or air
conditioning engineer im the design of walls or insulation, The three-
fourths of a wavelemgth criteria presented in Chapter IX prowvides a
quick idea of the.sigmificance of reflection in a.bodyu 1f a designer
wished to reduce reflectiom as much as possible; he could apply this
criteria;, and then vary the frequemcy, change certain prmpertieﬁ of
the bedy, or change the material in the body, until he obtaimed the
desired degree of reflection or.absence of reflection,

The ease of computing temperature, heat flow, and lag in a composite
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body regardless of the number of sections or the configuration, makes
the method very valuﬁbleh The number of different problems and con-
figurations that could be handled is almost limitless, The concept of
transfer impedance has much potemntial in this area,

In summary, it cam be concluded that the investigation has been
worthwhile, There have been pointed out several advantages inherent
in this type of approach and certain areas suggested as being especial=-
ly indicative of bearing fruit if subjected to further study. Whether
or not this further study is performed, the ideas, equations, and tech-
niques presented hers should be sufficieﬁt to allow a complete and
critical analysis and design im any problem cpncerming the periodic

flow of heat by the mechanism of comduction ﬁith which an engineer might

be confronted,
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APPENDIX

An experiment has been performed for the purpose of illustrating
the presence of reflected waves in an actual physical situation. The
experiment was run in three partsa«

The setup for the first part consisted of a three foot long, in-
sulated aluminum rod, three—fourths-of an inch in diameter. This rod
was driven at the sending end by a periodic temperature and was
left exposed at the receiving end to slightly mo&ing air at room
temperature., The periodic driving function was approximately sinu-
soidal and could be assumed to be such.,  Thermocouples were placed
at points O inches, 6 inches, and 11 inches from the sending end,
and the temperature at those points were recorded as a function of
time. This is shown in the following plate.

In the second part, the original rod was cut off at 13 inches,
and a two foot long aluminum rod of 1/2-inch diameter’was connected
to it at that point. The original thermocouples Were?ieftjin p1ace
and one more was located at the junction of the two rods. The
receiving end conditions of the second rod were approximately the
same as they were in the first case. A constant temperature source
was then applied, and the resulting response was recorded as shown
on the plate.

The third part used the same physical setup as was used in part

two. The difference was that in this case the same periodic source

95
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was applied that was applied in part one. This was done in order
that the results of part one might be compared with the results of
part three where there should be measurable reflection.

The response in part one was exactly as expected. The periodic
source gave rise to periodic variations of some smaller magnitude and
lagging behind the source variation. The decrease in magnitude and.
the time lag increased as points were observed farther from the source,
This part of the experiment was run only to obtain some basis on
which to compare the response obtained from part three. Since the
exact properties of the aluminum alloy used were unknown, the
attenuation and phase constants for the materiai were determined from
the data recorded for this case. To do this, the magnitude of the
variation was noted to be 92.5°F at %=0, and 39°F at x=% ft. It
could be safely assumed that the attenuation near x=0 approximates

the infinite case, them
ok  92.5
€ ‘
39

i

or C = 1.726

i

From the measured time lag, B can be found

W

B = = 1.365

Before proceeding, it should be noted that this method of determining
the properties of a material could be very interesting to an individual
interested in obtaining such values, The method 1s very simple, and

should provide practical values for these constants. To obtain reliable

values the body under study should have a length of at least one wave
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length in order to insure a simulation of the infinite case. QWithr
e little care iﬁwmeasufement and calculatiensvfhis method sheuiﬁ<§ro-A
vide accurate resuies. | | |

The response to the constant temperatﬁre which was eeplied in
pért two éives convinciﬁg.eQieence.of reflection; .Conside£ firgt
the response at thermocouple one. The curve starts at O with eeﬁe
iﬁitielvfate4ef:ehange:determiﬁed byyfhe incident wave, and coﬁtiﬁues
entiila;epeint A,on the eﬁrve the:poin; feceives a'reflécted &&Gé f
ﬁhicﬁahee’eeﬁe,fremEEhe head.;hich wes plaeed on the.rod to coﬁﬁein‘
the heating element. This.wave.causee a small discontinqity, and
 then after reaching point B, the.eurye continues on at eéseﬁtially
the initiel rate of change. ‘The curﬁe continues oﬁ until at C the
‘point receives another reflected wave through the head, but this
time about the time D is reachee the reflected wave from the receiving
end reaches the source. This component is of sufficient'magnitude
and of proper phase to change the rate ofvchéﬁge of the curve, which
ie evident from point D on, The curve theﬁ continues on eseentially
uninterrupted e#cept for an occasional reflection from.the head.

The response at thermocouﬁle number tﬁowfeliew a curve typical . °
of aﬁeritically overdamped system until it reeches point A', Atﬁehia
time the reflected weve has reached theisix;inch point and changes
the rate of change of the curve, This change is obvious from,inspection
of the curve., The curve thenbcontinues on at this rate, since there
are no other reflections significant enough to affect it.

The thermocouples three and four, follow what is a typical response
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for an overdamped system. There is significant reflection at thermo-
couple three, but it is so close to the source of the reflection

that there is not enough lag between the incident and reflected

waves for a change to be noticeable,

The experimental response obtained for this case cannot be
simply explained unless reflections are considered. These results
then should be convincing evidence of the presence of reflection.

In order to compare part one of the experiment with part three,
it is useful to compute what would be expected and then compare this
with the actual results., Using the values of U and B computed in part
one, expressions may be found for the temperature at various points.,
Assuming a frequency of one cycle per hour, and using the previously
given values, it is found that

T(4,t)= 38 cos(Wt = 39.2°) + 2,06 cos (Wt - 122,8%)
and  T(,t) = 18,35 cos (WE-72°) + 4.24 cos (WE-90°)
assuming that thé input is a cosine function with a magnitude of
900F,. This gives maximum values for the temperatures at 6 inches
and 11 inches of 39°F and 22°F which lag behind the input by
7 minutes and 10 minutes. This compares with the experimentally
obtained maximums of 42°F and 19°F and lags of 7 minutes and 10
minutes. These results are very good in view of the several approxi-
mations which were made., The values of U and B for the second section
of the rod were obtained from those for the first section by proportion.
This, together with the fact that the temperature at x = 0 was not

exactly a sine wave and the fact that the frequency was not quite
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one cycle per hour, assures us that these values are sufficiently
accurate. The values given by these two equétions are plotted on
the plate for the purpose of comparison.

The magnitudes computed for the system in part one are 38°F
and 18,35°F as compared with the experimental values of 39°F and
18.5°F. These computed values are excellent considering the approxi-
mations made,

The significant point to be made here is that in the stepped or
composite rod the magnitude of variation is greater than the magni-
tude of variation in the simple rod. This in itself is conclusive
proof of the presence of reflection in the composite rod, for if
there was no reflection the magnitude of variation at any point would
be the same for both cases. The increase in wvariation at the 6~inch
point was 3.5°F, and at the 1l-inch point the increase was 8°. The
increase was greatest at the point nearest the receiving end. This
fact removes any doubt that the increase was due to reflection, be-
cause if the increase was due to some exgérnal effect it would no

. £
doubt have been uniform, d%ereas; considering reflection you would
expect the greatest incfease at the receiving end.

The purpose of this experiment was for the confirmation of the
existence of reflected waves in heat conduction systems. Considefable
effort, time, and money could have been put into this project, and
some very elaborate, cénclusive results could probably have been ob-
tained. However, it was the purpose here to only confirm the existence of

traveling waves in order to supplement the‘development presented in the

body of the thesis, and to lay the foundation for further investigations.
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