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INTRODUCTION 

The solution of heat conduction·equations, when the applied heat 

sou,rce Ls a periodically varying function, is ordinarily obtained by 

one of two methods. The first ·of these is solution by Fourier Series., 

Although the accuracy obtained by this method is limited only by the 

pains a person is willing to take, the method is usually quite tedious 

and dtawn"out .. The method also requires.several integrations. The 

second method in common use is that of the separation of variables. 

In this method a solution is usually obtained in terms of a negative 

exponential term, the possibility of a positive exponential term 

being discarded. This method requires resolving for ea~h individual 

problem with its own characteristic boundary conditions and leads to 

some degree of error if the body under consideration is of the finite 

class. 

An attempt will be made to obtain one solution, applicable to 

all systems in which the driving tunction is periodic, in terms of 

the boundary conditions and apply the reflection type of analysis 

usually associated with electrical transmission lines. The method 

' should have certain advantages and use could possibly be made of 

many transmission line techniques. 

'rhe nature of this thesis is purely investigative, of which the 

purpose· is to see if the method is applicable and to see if· it offers 
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CHAPTER I 

REVIEW OF THE LITERATURE AND STATE OF THE ART 

1.1 Historical Notes 

The transfer of heat has always been of primary concern to man 

since he comes into direct contact with it every day. The transfer 

of heat in our atmosphere and through our buildings affects the 

physical comfort of man, and man has learned that knowledge of the 

properties of bodies undergoing temperature variations can be a 

powet1·fµl tool, whether possessed by a blacksmith or a design engineer. 

The theory of heat transfer has been revised several times as 

man has uncovered experimental evidence to support new theories. One 

of the first theories was the superstitious belief that heat was the 

evidence of the presence of an angry spirit. A more scientific theory 

was proposed by Lavoisier in the 18th century. This theory held that 

heat was a substance (caloric) that got between the particles of a 

body and made it hot. Still later Count Rumford proposed that heat 

was made manifest by the vibrations of the molecules of a body, and 

this theory is presently accepted. 

It is now understood that heat may flow by three distinct mecha­

nisms; radiation, convection, and conduction. The study in this thesis 

will be restricted to a study of the latter of these. The mathematical 

theory of heat conduction in solids is due primarily to Jean Baptiste 

3 
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Joseph Fourier (1768-1830) and was set forth by him in his "Theorie 

Analytique de la Chaleur. 11 (1). It was Fourier who first brought 

order out of the confusion in which the early experimental physicists 

had left the subject. While Fourier treated a great number of problems, 

his work was extended and applied to more complicated problems by his 

contemporaries, LaPlace and Poisson, and later by others including 

Lame and Thomson (2). To date, extensive work has been done, and 

there have appeared many fine texts on the subject of heat conduction. 

Of the recent works, one of the most elegant and authoritative is 

that aone by Carslaw and Jaeger (3) in 1947. Some approximate methods 

are in use, and more recently the area of analogous systems has been 

explored and found to be of considerable value. 

1.2 Basic Heat Conduction Equations 

Fourier's law for the conduction of heat states that the instan­

taneous rate of heat flow dQ/dt is equal to the product of three 

factors: 1) The area A of the section, taken at right angles to the 

direction of flow; 2) The temperature gradient -dT/dx, which is 

negative due to the fact that temperature decreases in the direction 

of flow and which is a partial derivative, since heat flow and tempera­

ture variation as a function of time as well as position will be con­

sidered; and 3) T~e thermal conductivity (k) of the solid. Expressed 

mathematically this is: 

q = -kAdT/dx (1.1) 

Fourierts equation expresses the conditions that govern the 

flow of heat in a body. It can be derived as follows, from the basic 
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laws of heat conduction. 

Consider the differential element of volume dV = dx•dy•dz which 

has as one end the differential element of area dA = dy•dz and a 

temperature Tat its center. This element is illustrated in Figure L 
z 

X 

y 

Figure L Differential Element of Volume 

Considering temperature distribution in the x direction only, as will 

be done throughout this thesis, the temperature difference between the 

center and the two faces would be: 

Then the temperature of the :!;ace nearest the source would be: 

and that farthest from the source would be: 

T = T - 'oT/ax .. dx/2 
0 

Therefore the heat flux into the volume would be: 

qi= k dA dT/dx ~ k dy dz d(T+dT/dx•dx/2)/dx 

The heat flux out through the other face would be: 

The difference in these two would then evidently give the rate of 

change of thermal energy of the differential volume. 



6 

dq/dt = k dy dz dx o2T/o~ = d(dQ/dt)/dt 

This change nrust also equal 

dq/dt = cp p dx dy dz oT/ot = d(dQ/dt)/dt 

tvhere Cp is the specific heat of the.material 

pis the density, and 

oT/ot is the temperature gradient with respect to time. 

Therefore 

k dx dy dz (o2T/ox2 ) = cp p dx dy dz oT/ot 

such.that oT/ot :.a(o2T/o~) (1.2) 

where 

and is called thermal diffusivity. 

If heat flow in three dimensions w:ere being considered, it would 

be similarly obtained that 

oT/ot = a(o2T/o~ + o2T/oy2 + o2T/oz2 ) (1.3) 

Here, of course, it is assumed that k .is constant over the temperature 

variation and that there are no sourcesf.nor sinks within the material. 

1.3 State of the Art 

Equations 1.1 and 1.3 are the two basic equations from which heat 

conduction equations are derived. The usual method of solution is to 

solve differential equation 1.3 in conjunction with various available 

boundary and initial conditions. If the rate of heat flow is then 

desired, this solution may be used in conjunction with equation 1.1 

to obtain the desired equation. The connnon methods of solution of 

equation 1.3 are limited somewhat since certain boundary conditions 

mu~t be known before a satisfactory solution can be obtained. This 



limitation leads to the necessity of finding a solution for every 

particular problem with its own characteristic boundary and initial 

conditions. These solutions have .been treated extensively in the 

literature, and most cases have been developed ·,thoroughly. The most 

commi:mly encountered methods of solution are the separation of vari­

ables method, the LaPlace transform method, and solution by Fourier 

sine and cosine series expansions .. Each of the\,'methods has its 

advantages and disadvantages. These will be discussed more fully 

in a later section. 

Recently a number of approximate methods for solving heat con­

duction problems have been developed. These are especially useful 

when a quick evaluation is desired and accuracy is not too critical.. 

The accuracy with these methods usually depends upon the pains one 

is willing to take. When very accurate results are desired however, 

the approximate methods lose their value., The approximate methods 

are useful also in that some of them help to get a better physical 

picture of the situation. This is true especially with respect to 

the method of isothermal surfaces and flow lines.. (4).. Othe;­

approximate methods are the Schmidt (5) method, the relaxation 

method (6), and the step method, to name only a few. 

The similarity between certain physical phenomena in other areas 

and the phenomena encountered in heat conduction leads to the concept 

of mathematically analogous sy~tems. These .systems are termed mathe­

matically analogous since the equations describing them have the same 

form., It fbllows that once a solution has been found for one system, 

the solution for the analogous system has the same form and can be 

7 



found by changing the terms in the solution, to the correspond:Ung 

terms in the desired system. 

The use of analogous systems has led to a more refined study of 

heat transfer in certain areas. This is due to the fact that by the 

nature of other systems, it is easier to study certain phenomena than 

it is in heat conduction. Thus analogous systems lead us to a better 

understanding of the nature of heat conduction. When an experimental 

or analytical solution is not easily obtained in the system lnwhich 

one is working, use can be made of this technique to convert to a 

system which has .an easily obtained experimental solution. 

8 

Analog computers are a result of this work, and they have proved 

themselves of great value. Several el~borate analogs have been designed 

for use, solely for heat transfer studies. One of these is the Paschkis 

model at Columbia University, and others were made by Gelissen in 

Holland, Fisher and Muller in Germany, Miroux in France, Jackson and 

Lowson in England, and McCann in the U~ted States,, Probably the 

first of these though was constructed in 1934 by Beuken in Holland. 

Many analogous systems exist, a few of which are the fluid flow 

analogy, the membrane analogy, and of course the electrical analogy. 

As an example of one analogous system, the corresponding terms for 

electrical and thermal systems are shown in Table L 

1.4 Definition of Steady State 

More will be said about the electrical analogies later. 

At this point, it might be well to make some distinguishing re­

marks as to terminology. It has been common practice in the field of 
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T~LE I 

ANALOGOUS ELECTRICAL AND THERMAL TERMS 

---------------------.---------------- -- ------------
Electrical Thermal 

Charge= Q (coulomb) Heat= Q (Btµ) 

Voltage= e (volt) Temperature~ t (°F) 
----------------------. 

_, 

Resistance= R (ohm) Resistance :;:: R (hr-°F/Btu) 

Current= i (amps.) Flow= q (Btu/hr) 

Capacitance= C (farad) Unit Capacity= Gnu.JV (Btu/°F) 

heat transfer,· to refer.I to "st,eady state" as those conditions under 

which temperature or heat flow does not vary with respect to time. 

Departure will be made from this practice in this thesis, in that 

when reference is made to the steady .state solution of a differential 

equation, the telchnical meaning is wliat is otherwise called a particular 

solution., Steady state conditions are now the conditions in the system 

after all transient or decaying components have become negligible. Thus 

it will be possible to encounter "periodic steady state" conditions., 

In this light, there may be steady state conditions, regardless of the 

form of the driving function. 

With these thoughts in mind, advance can be made toward obtaining 

a steady state solution of the equations. 



CHAPTER II 

STEADY STATE SOLUTION OF BASIC EQUATIONS 

2.1 Solution 

Taking the partial derivative of equation l~l with respect to~, 

Substituting for 2J· 2T/ox2 from equation 1.2, 

I 

·'?Jqf"?l;c = -clh,2JT/~t 
or 

(2.1) 

Now solvi:p.g equation 1.1 for ~!J;./a.x, 

d'T{d:x = -q/ kA (2 ,2) 

As mentioned previously; the us:q:al method of sblution is to solve 
.I< 

equation 1.2, Attempt will be made instead to keep equations 2.1 and 

2~2 separate and obtain steady state solutions. This method of solution 

will have advantages for this method of artalysis, as will become 

evident later. 

It is evident that solutions of these equations will giv~ e·quations 

for q and T as functions of both time (t) and distance (x) or q(x,t) and 

T(x,t). Representing these functions as products of two characteristic 

functions, 

10 



T(x,t) = T1 (x) f(t) 

q(xtt) = qt(x) g(t) 

11 

(2.3) 

(2.4) 

The basic underlying assumption in obtaining the form of these 

two equations is that the steady state solution will be expressible 

as some temperature, which varies with time (T 1 (x) ), plus a con­

stant temperature term (Ta), about which T' (x) varies. Throughout 

this thesis the assumption will be made that Ta is zero, since this 

term adds nothing to the analysis of the time variant distributions 

in the bar. In applications, Ta may be s-0me non-zero value, and in 

this case, the actual temp·erature distribution may be found by, 

Tactual= T(x,t) + Ta (2.5) 

This is valid, since with linear differential equations the principle 

of superposition holds. Note that heat flow is not affected by the 

value of Ta~ since in equation Ll, the constant term would drop out. 

Then 

q.actual = q (x, t) (2 .• 6) 

For this reason the primary concern will be only with an analysis of 

T(x,t). The fact that equations 2.5 and 2.6 are solutions of equa­

tions Ll and L2, if equations 2.3 and 2.4 are, is easily seen by 

substitution • 

. The assumption is now made that the driving function is periodic 

with angular velocity W, and if the transient effects are neglected 



T(x,.t) 

q(x,t) 

= rt (x) e iwt 

:iwt = q• (x) e 

12 

(2,7) 

(2.~) 

since the periodic driving function would result in a periodic response. 

(7). T' (x) a°rd q' (x) represent the maxill)Um instantaneou$ values of 

temperature and heat flow at any point x, or the amplitude as T(x,t) 

and q~x,t) vary periodically. 

It shoqld be noted that 

iWt 
e = c;osWt + i sinWt 

and then 

'iWt 
Re [T' (x) e ] = Real part of T' (x)eiWt T' (x) cosWt 

and 

Im tT 1 (x)eiWt] = Illlaginary part of T1 (x)eiWt = :' ~x)sinWt 

Then if a solution was desired for rt (x) sinWt or Ti (x) cosWt, 
\ 

it could be obtained merely by takiri.g the imaginary or the real part 

respectively of the T1 (x)eiWt solution. The same is true of course 

forq(x,t). 

The restriction to periodic driving functions is not a very limit-

ing on1: since there can be obtained an approximation of any forin of 

driving function with Fourier series, which is merely a sertes composed 

of sinusoidal functions. This gives the equations the desired :j:lexi• 

bility. 

Substituting equations 2.7 and 2.8 into equations 2.1 and 2.2, 



and 

[-q I (x)/kA] iuJt e · = eiWt [oT' (x)/dk] 

Then 

(2.9) 

and 

c:JT' (dx = .. 1/kA q' = -Zq 1 (2.10) 

where 

(2.ll) 

and 

Z = 1/kA (2.12) 

In the future reference will be'made to T1 (x) and q' (x~ merely as 

T1 and q 1 • The constant Z represents series impedance or a measure of 

the opposition to a change in temperature due to the heat flow at a 

point. Z has the form of what is comntonly called thermal resist;ance in 

the literature. Similarly, Y represents the shunt admittanc~, or is..~ a. 

measure of the loss in heat flow at a point, as a result of the tempera~ 

ture varying with time at that point. Y has the form of thermal capacity. 

The usefulness of the concept of thermal resistance has been proven in 

the steady state case in which temperature at a point does not vary with 

respect to time, but little has been done with respect to an impedance 

analysis in the periodic case~ It would now appear that such an analysis 

might be possible. This thought will be developed in section 8.2. 

It should be noted that, due to the introduction of the time de-

pendent function, the equations now become ordinary differential equa-

tions. 
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Proceeding with .the solut.ion, by differentiating e'<luations 2 •. 9 and 

2.10 with res~ect to x, 

2 2 
d q:1/dx = -Y dT.'/dx 

and 

Now substituting from 2 .. 9 and 2,.10 

iq,''/ dx'l; = YZ q 1 

d2t' I dx2 = YZ Tt 

Bot.h of these equations are of the form (D2 - YZ) T1 = 

the solution 

Similarly 
,ZY X ,..,j'zy X 

q1 =Ce +De 

But since 

(2.13) 

(2.14) 

O, which has 

(2.15) 

q; = -1/Z [dT~ / dx] = -1/Z --Jzy A em x + 

-{zy/z B e-ffi x = 

.. ~y/z A e~ZY X +·h/z B 

then 

... -{zy X 
e 

C = -~Y/Z A and D = +1Y/Z B 

2 •. 2 Assum_ption . .2f Boundary Condit.ions 

(2.,16) 

There has now been obtained a general form for the solutions. 

If boundary conditions are assumed, evaluation can be made of t'/:te 
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coefficients A and B and a more workable form found that lends itself 

to analysis. The assumption has already been made that the driving 

£unction will be perio-dic, so if the magnitude of this variation is 

indicated, there will then be sufficient boundary conditions to permit 

evaluation -of A and B. Call this source amplitude, T. Then at x = 0 
s 

T1 = Ts = A+ B 

q' = qs = --Jy/z (-A + B) 

Remember that 'Is is the amplitude of the periodic variation, which 

takes place about some aver~ge value T, taken here as zero. For 
a 

example, if the periodic source varies from 50°F to 150°F, then 

and take Ts as 

Solving for A and B, 

Giving 

T = 50°F s 

q = ~Y/Z ( .. A-A+T ) · = .. 2A~Y/Z +JY/Z T s s .. s "! 

" 

A = - [q --,J.Y/Z T. ] /2-{Y/Z = ~c---Jz/y q + T ) s s . s s 

B = T -A= T ... ~(~ q + T) s s s s 
:k(T ;-..fz7y q) 
2 S S 

-r;;-,-;; ~ X ~ ~ X T~ = ~(T -~~11 q) e + \(T + - Z/Y q )e s s s s 



and 

Now let 

giving 

and 

Zc = -fi]Y = Characteristic impedance 

)I =~=Propagation constant 

Ye= 1/Zc = Characteristic admittance 

16 

(2 .17) 

(2 .18) 

(2 .19) 

(2 .20) 

(2 .21) 

Expressions for T' and q', in terms of Tr, qr, the temperature and 

heat flux at the receiving end, could be similarly obt~ined if such 

was desired. These would be found to be 

T' = ~(Tr+Zcqr)e'Yx + ~(Tr-Zcqr)e- "Ix 

and 

where, in this particular case, xis measur~d from,the receiving end .. 

A discussion of "I and Z will be presented in the next section. 

An equivalent, and sometimes more useful, form for equation 2.20 

and 2.21 could be found by expressing them in hyperbolic notation. 

T' = Ts ~(e'Y'x + e·'Y'x)-Zcqs ~(e)"x_e- ')Ix) 

= Ts cosh )"x -Zcqs sinh )"x (2 ,22) 

and 

q' = qs ~(e )ix +e- Yx) -Ts/Zc ~(e /'x_e· Yx) 

= qs cosh Yx - TsfZc sinh "fx (2.23) 
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These equations are the desired solution of equations 2.9 and 

2.10. It should be recalled that equations 2.22 and 2.23 are func-

tions of x only and represent the maxinrum amplitudes of T and q at 

any point as tp.ey vary periodically with respect to time. The com-

plete solution of equations 2.1 and 2.2 may now be had merely by 

. I iWt multiplying Tl' and q bye , as mentioned in the first part of 

section 2 .. 1. These are then 

T= [Ts cosh Yx - Zcqs 

q = [qs cosh Yx - 1/Zc 

sinh /x]eiWt 

Ts sinh YxJe 
iWt 

(2 .24) 

(2.25) 

which represent a periodic steady state solution. 



CHAPTER III 

ANALYSIS OF SOLUTION 

3.1 'rtie Wave Equation 

In their present form, a casual inspection of equations 2.24 

and 2.25 does not present a clear picture of the response. Therefore, 

further investigation and analysis is in order. 

It is interesting to note at this point, that equations 2.9 and 

2.10 are of the same form as the basic electrical transmission line 

equations 

dE/d~ ::: ZI 

and 

dI/dx = YE 

where, as 111entioned previously in connection with analogous systems, 

Eis analogous to T' and I is analogous to q'. These equations do 

not have the negative sign that the equations used in this study do, 

because these were derived with x taken from the receiving end. Ex­

cept for this difference, the solution is found to be exactly the 

same as the solution for the transmission line equations. One would 

then expect an analysis of the splution to closely pqrallel the 

transmission line analysis (8), and this is found to be true. It 

will also be found that the solution and analysis are very similar 

to that obtained by Norton and Freeny in their sucker rod research. (9). 
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The sucker rod solutions differ from the equations in this study 

due only to the effect of mass in the eqµations. The inclusion of 

mass in these equations affects the coefficients of the solution, 

however, and does not affect the form of the solution. Therefore, 

the analysis remains essentially the same. 

The .concept of a wave analysis of the heat conduction equations 

should not be hard to accept for recalling equations 2.J and 2.2, 

~F0x = -cppA(:oTf,c)t) 

,oT/(dx = -q/kA . 

differentiate them with respect to x, 

o·8q/'o;.,l- = -cppA[d /o,x(cl:T{cl,t)] = -cppA[d /o,t (d:T/o:x)] 

o·2T /o-f- = -1 /kA cl ~/o:x 

and substitute from equations 2.1 and 2.2, 

and 

These two equations ar~ recognized as special cases of the wave 

equation in its general form. 

(3 .1) 

(3.2) 

For systems in which there are no interior sources, the last ter~ is 

not present and 

(3.,3) 

When this general form of the wave equation. is solved by the method 

of separation of variables, the space function must satisfy 

19 
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where Fis the space function dr the function of mas a variable of 

x only. This is identical to equations 2.13 and 2.14, and therefore 

the solutions would be identical. 

If the transient state were being considered, there would be 

some difference in the solution to the equations and the solution 

of equation 3.3, since the solution for the time functions would be 

different. However, since here .the consideration is only with the 

steady state solution with an externally applied periodic driving 

function, both time solutions would be the same; i.e., of the form 

eiu.Jt since the steady state response has the same time variation 

as the forcing function. (10). It is seen then that the equations 

3.1 and 3.2 have steady state solutions which are identical with the 

steady state solution of the general wave equation. The equations 

should then lend themselves to a wave type of analysis. 

3.2 Wave ~nalysis 

In keeping with the line of thought of the previous section, ad­
t . 

vance will be made toward an interpretation of our solution as travel-

ing waves. In order to facilitate this interpretation, rewrite equa-

tions 2.20 and 

and 

where 

2.21 as 

T' = T- + r = T -efx + T +e..:Yx s s 

q' - + q+ qs-e'Yx + qx+e·'>1x = q = 

Ts~= \(Ts-Zcqs) - A 

Ts+= \(Ts+Zcqs) = B 

(3.4) 

(3. 5) 

a) 
(3 .6) 

b) 



qs = ~(qs-YcTs) = -YcA 

qs+ = \(qs+YcTs) = YcB 

c) 

d) 
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(3 .6) 

Realize that each term of equation 3.4 is a temperature since 

their sum must be a temperature, and each term of equation 3,5 is 

heat flow since their sum must give heat flow.. Recalling that at 

x = O, T' = Ts, and q' = qs, then 

T T - T + - + s = s + s, qs = qs + qs 

It is now evident that Ts- and Ts+ are components of the driving 

function temperature, and q8 - and qs+ are components of the heat 

flow at the source. All of these terms are complex numbers and have 

associated with them magnitudes and phase angles. This is due to the 

complex form of Zc and will become more apparent as progress is made. 

Since these terms are independent of x, the manner in which tempera-

ture and heat flow is distributed along a bar is determined entirely 

+Yt ::r~ by thee and e· · terms. 

From its definition in section 2.2,/ will be a complex number 

and can be represented by 

Y= CT+ if3 

iWt Then multiplying equations 3.4 and 3.S bye , 

T = T' eiu.Jt= T -eO-x +i(Wt+/3.x) +T +e-O-x+i(Wt-:-f3x) s . . s . (3 .7) 

and 
iWt _ CTx+i(Wt+f3x) + _CTx+i(Wt-f3x) 

q = q'e = q8 e · +q8 ~e ·- . · .. (3,8) 

_ O-x+i(Wt+f3x) . -O-x+i(.Wt-/3x) 
=Ye Ts e · . · · · +YcTs+e .·· ·. •· 

Since the equations for T and q are so similar, there is need to 

treat only the temperature equation throughout the rest of this 
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section and realize that the analysis for Twill apply equally as 

well to q. 

Consider first the term Ts+e- (Tx_+i(Wt-t3x) or T/e-0-x ei(Wt-t,x). 

Since .both 0- and x are real and x increases from the sending end at 

x = O, it is seen that the term T8 +e-O-x decreases as one moves away 

from the sending end or as x increases. The ei(Wt.;q3x) term is simply 

the product of two harmonic functions, one of which varies as a func-

tion of time and the other as a function of space. The time function 

is the reproduction of the source variation in the response, as pre-

viously discussed. The space function may be represented by 

which always has a magnitude of 1, but an associated angle which 

decreases as x increases. Therefore, as one moves away from the 

source at x ~ 0 and moves toward the receiving end, the~ term is 

decreased in magnftude and retarded in phase. 

A traveling wave is characterized by a retardation of pqase and 

usually by a decrease in magnitude in the direction of travel. There-

fore the second term of equation 3.7 may be interpreted as a tempera-

ture traveling wave, traveling toward the receiving end, and the 

second term of equation 3.8 as a heat flow traveling wave, traveling 

in the same direction. 

This wave, as it travels along the rod, or the distribution in 

the body at some instant of time tis shown in Figure 2~ The periodic 

+ -0-x response must be enclosed within the envelope formed by the Tse 

term .. 



+ 
Ts 

j__ 
+ 

Ts sinWt 

X '*' L 

Figure 2. Traveling Wave 

While the temperature at the source varies periodically with time 

as shown in Figure 3, the temperature at some distance along the x 

axis, x, in the body also varies periodically with a maximum ampli­

+ -0-x 
tude, determined by Tse as in Figure 4 and lagging behind the 

source temperature by some angle determined by J3x. 

+ 
""Ts 

2 rc/W = T 

Figure 3. Temperature Variation at the Source 

+ .. (Tx 
T . e s 

+ --0-x 
·. -T8 e 

I 

I 

T = 2 11./W 

- - - ---1- - -

Figure 4. Temperature Variation at Some Point x 

t 
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Examination of the first term of equations 3.7 and 3.8 shows 

that as x increases, T- is increased in magnitude by-f5i and increased 

in phase by the ei~x term. However, if this term is examined as one 

moves from the receiving end at x = L toward the source at x = O, it 

is seen that T- is decreased in magnitude and decreased in phase which 

is just the reverse process from moving from x = 0 to x = L. Therefore, 

it can be interpreted that the first term in these equations is a 

travel-ing wave·,· traveling from the receiving end at x = Li. This wave 

has a distribution in x 

wave is enclosed within 

,., . X = OJ 

at any time t as shown in Figure 5. 

- (F(x - L) the envelope formed by Tr e 

X = L 

Figure 5. Distribution of the Reflected Wave 

This 

The waves traveling toward the receiving end are called incident 

waves, and those traveling toward the source, are called reflected 

waveso These waves have properties which are commonly encountered in 

other types of waves, such as electromagnetic waves on a transmission 

line, water waves, sound waves, and light waves. Some of these properties 

are phase shift, wave length, frequency, velocity of propagation, and 

reflection. 
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3.3 Propagation Constant 

The complex quantity~, which determines the change in phase 

and magnitude of each component wave per unit distance traveled, is 

called the propagation constant. The real part of the propagation 

constant O-, determines the rate at which the magnitude is decreased 

or attenuated as x increases and is called the attenuation constant. 

The imaginary part of the propagation constant /3, determines the 

change in phase of the wave per unit distance and is called the phase 

constant. 

CT= Re] 

/3 = Im r 
Since the exponent of e in the term ei(Wt-f3x) must be radians, it 

follows that 6J must have units of radians per unit time, and f3 must 

have units of radians per unit length. 

To evaluate v and /3, recall that 

Then 

Y 2 = ;,2 2 _ zy =v -/3 + 2iuf3 = 

equating real and imaginary parts 

a-2 - 132 = 0 

or 

and 

substituting 

u f3 = \ cppwl/k 

±132:= \ C p(J)l/k p . 

Since CT and f3 are real numbers by definition, take the positive sign, 

and then 
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Then 
Y = ~cppW/2k (1 + i) (3,10) 

If a particular point is picked on a traveling wave at time t, 

and distance x, and neglect attenuation for the moment, then 

If a second point is picked~, t 2, such that 

it follows that 

These two points represent the same wave condition, or they are equi-

phase., This means that a fixed point on the traveling wave has moved 

from point x1 to point ~ in time t 2-t1 • Therefore, the phase velocity 

or velocity of propagation of our traveling wave is defined by 

Wt-~x = constant 

Wdt-~dx = o. 

dx/dt = v = W/~ = phas.e .velocity 
' ~ t 

This is illustrated by Figure 6. 

t 

V =6.x/6.t 

Figure 6. Displacem~nt of Wave in Time 6.t 

(3 .. 11) 

The traveling wave T +ei(Gut-~x) is then traveling toward the receiving 
s 

end with a velocity v. Upon investigating the reflected wave, it is 
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seen that it travels from the receiving end to the source with the same 

velocity v. This result proves the validity of our assumption of two 

tr ave ling waves. 

To visuqlize more completely the physical picture, it is instructive 

to re-introduce the damping term (e-0-t) and sketch Figure 6 again, both 

for the incident wave and the reflected wave as shown in Figures 7 a) 

and 7 b). 

t+6t 

X 

---
Figure 7 a). Incident W:ave 

Figure 7 b) ~ Reflected Wave 

The temperature at any point x at any time tis then the sum of these 

two components. 

From the definition of 13, the change in phase in distance xis 

l3x radianso Since wave length is the distance required for the phase 

to change a whole revolution of 211'. radians, then 

13 )\ = 211'. 

or A - wave length= 2~/13 (3 .12) 
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A might also be referred to as the space period. Similarly, there is 

a time period given by 

T = 21C/W (3 .. 13) 

The time period, of course, is determined entirely by the driving 

source. The time period is indicated on Figure 3 and Figure 4. 

3.4 Characteristic Impedance 

As previously defined, 

zc = ifY = ~l/kcpp¥iW = ·•l-i/kcppA2u.) 

= ~l/2l<cppAFW (1-i) (3 "'14) 

ubing the identity -fi =(1-i)/-{°2. If the relationships are investi-

gated among the equations 3.6. a, b, c, and d, it is found that the 

ratio of the incident" temperature wave to the incident heat flow wave 

is 

(3 .15) 

and the ratio of the reflected temperature wave to the reflected heat 

flow wave is 

(3.16) 

This shows that the ratio of incident temperature to incident heat 

flow at any point xis a constant and is independent of any terminal 

conditions. This constant, as previously noted, is called the character-

istic impedance of the body. The reciprocal of characteristic impedance 

is called the characteristic admittance, Ye. 

Since Zc is a complex number, it must have associ~ted with it a 

~.. magnitude and a phase angle. From equation 3 .14, this form is 

Zc = ~l/kcppA2W 1-45° 

., 
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Therefore the incident temperature wave lags behind the incident heat 

flow wave by a phase angle of 45° or 'lf./4 radians.. Do not mistakenly 
, 

suppose that this is always true in·all systems, because if more com-

plicated cases are considered, such as an uninsulated bar with surface 

losses, it is definitely not true., Howeve! it is always true for the 

case of the uniform, perfectly insulated body that is considered at 

present. The more complicated cases are approached in a later section. 

The concept of lag in heat conduction systems has some potential 

value in the analysis of these systems.,_ For example, one could determine 

the time lag between the time that the maximum temperature outside a 

building was obtained and.the time that the maximum heat flow into 

the interior of the building was obtained. There are many similar 

applications some of which will be investigated later. The time la.g 

ia· the time required for the wave to move from the surface to a point x. 

When the time lag at a point xis desired and the phas~ velocity is 

known,., it can be expressed as 

t1ag = x/v = x ~/0.J 

The minus sign associated with equation 3.16 is due to the £act 

that the positive direction for heat flow is the same for both waves; 

that is, the direction of travel of the incident wave. The minus sign 

arises since the temperature is always positive and the heat flow in 

the reflected component is in the di.rec~ion x = L to x = O, acting 

as interference to the incident wave;;· the negative sign is necessary. 

3.5 Reflection Coefficient 

Traveiing waves going in both directions could be produced by a 
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source at both ends. However, from man's experience with sound waves 

being reflected from a cliff and light rays being reflected by a 

mirror, it would be reasonable that the backward waves or reflected 

waves could also be a reflection of the incident wave. In the con-

sidered case, the incident wave i'3 due to the source, and the reflected 

wave is a reflection of the incident wave as it is seen at the receiving 

end. It follows that, if the body is infinitely long, there will be no 

reflection and no reflected wave. This follows since at x =Od , the 

incident wave has decayed to zero, and there can be no reflection. 

For this case 

Z. :::: T/q ::/1'"1q':::: T +/q + = Z 
· .. t S S C 

(3 .18) 

from equation 3.15. Then for the infinite rod, the temperature is 

equal to the characteristic impedance times the heat flow, or the total 

impedance is equal to the characteristic impedance·;...: 

If a finite insulated rod is then perfectly connected to an 

infinite insulated rod with characteristic impedance zc2, as in Figure 8, 

x=O x=L 

Figure 8. Composite Rod 

the temperature at x =Lis 
I 

(3.19) 

Here zc2 will be referred to as the terminating impedance or the 
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receiving end impedance Zr• If the conditions at the point .x =Lare 

examined, there can be found significant information concerning the 

reflected component. At poit.!:t x = L there is an incident temperature 

+ Tr and a reflected temperature Tr-, as discussed previously. Since 

under steady state conditions there should be continuity of heat 

flow at any point, it can be written at point x = L, 

qr in= qr out (3 .. 20) 

The total temperature at x = L will be the sum of the two components 

or T =T++T-r r r 

Since in the infinite bar 

qr Zr = Tr 

then qr out= 'r /z·. = .,.r :t'. 
(T +,, r .+ 't -)/Z ' r .. r 

Then recalling equation 3.15 and 3 •. 16, 

• Substituting 3.21 and 2 .22 into equation 3.20, 

and 

Tr -(-1/Zc - 1/Zr) = Tr+ (1/Zr- 1/Zc) 

= Tr-<-zr-Zc/ZrZc) 

Then 

(3 .. 21) 

(3.22) 

(3.23) 

~r is called the reflection coefficient and depends entirely upon 

the characteristic impedance of the body and the terminating impedance. 

As is shown above, the reflection coefficient is the ratio of the re-

flehted temperature wave to the incident temperature wave. 
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Cot\sidering again the case of.the infinite rod, which can be ob­

tained, in this case, by .saying that the infinite section is merely 

an extension of the finite bar., it is found that 

Zr= zc 

and fr = (:Z~- Z'c,)/2Zc = 0 

o:t' in .an infinite rod, tl;iere is no reflection. This result confirms 

the previous analysis of the infinite rod .. 

If in Fi&ure 8 the infinite rod is not of the .same material as 

the finite rod but has other paramed~rs, such that 

and 

Zc2 :;:: Zr = ·~.ci 

fr= O 

there is again no reflection in the finite bard In this composite bar, 

there is a sioolation of the conditions for the .infinite bar, although 

the two Jo· not necessa!ilY propagate .. $nd at.t'enuate their traveling 

waves in the same manner. The point is, however, that the temperature 

·and heat flow distribution in the finite rod is identical with the 

length from x = 0 to x =Lin the infinite case. 

There is another critical value of the reflection coefficient when 

the receiving end is perfectly insulated or Zr = oo. In this case., 

fr·::, (oo - Z )/oo + Z = re/(~-f:Z)- 0 = 1l.Q: 

and there is now perfect reflection. or the case in which the reflected 

wave .at x =Lis exactly equal to the incident wave at x = L., Of 

course, it is physically impossible .to obtain perfect insulation and 

thus perfect reflection, but such conditions can be approximated if 

Zr is made very la,rge with respect to Zc• This case is analogous to 
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the case of an open circuit in the transmission line analysis. Since 

fr is a complex number, it may he expressed as a magnitude times a 

phase angle or 

fr= (3 .24) 

The corresponding ratio of refle'cted heat flow to incident heat flow 

wohld be 

(3 .25) 

The 
.·. ' - ' difference in sign between equations 3.24 and 3.25 is necessary 

in order for them to be consistent with equations 3.15 and 3 .16. · 

Fdr the case where the receiving end is perfectly insulated, then 

fr = 1 = 1 LJr_ 

so that the reflected temperature wave is of the same magnitude and 

phase as the incident wave at x = L. The ratio of the reflected heat 

flow to the incident heat flow is 

sb that the reflected temperature wave is of the same 'magnitude as the 

incident wave, but 180° out of phase with it. This irituation :i.s illus-

trated in Figures 9~) and b) ,., 
=-- --- -

X = L ' 

------------Figure 9 a). Reflected Temperature .Wave for fr = 1 



Figure 9 b). 
x=L 

Reflected Heat Wave for fr= 1 
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In general it can be said that the reflected temperature wave has 

a magnitude + Tr and is shifted in phase from the incident wave 

by t/Jr· The reflected heat flow wave has a magnitude 

shifted in phase from the incident wave by 1fr + ~. 

Now consider the other extrem~, or the case where Zr= O. This 

case corresponds to the case of a short circuit in transmission line 

analysis .. This case in this problem is physically impossibl~, but it 

can be approximated by making Zr very small with respect to Zc• For 

this case, 

fr= -l 

This indicates that perfect reflection is again present, except that 

this time, there is phase reversal of temperature and no phase change 

in the heat flow. 

As a summary of the critical cases: 

If Zr= Zc(or L = oo), then fr= o. There is no reflected waveg 

If Zr -· oo (perfect insulation), then fr = +l. The incident wave 

is totally reflected with phase reversal of heat flow, but no phase 

change in temperature. 

If Zr = O, then fr -1. The incident wave is totally reflected 



35 

with phase reversal of temperature, but no phase change in heat flow. 

This condition is illustrated in Figures 10 a) and b). 

Figure 10 a). Reflected Temperature Wave for r, = -1 r . 

Figure 10 b).. Reflected Heat Flow Wave for fr - -1 



CHAPTER IV 

INFINITE BAR EQUATIONS 

4. 1 Form of J:.hg_ Equations 

There has been previously mentioned the special conditions for an 

infinite insulated l:>ar. There will be developed in this section a : .. 

further analysis of the infinite bar and an investigation of the 

temperature .and heat flow distribution in this bar. 

For completeness recall the conditions that have been associated 

with the infinite insulated bar •. 

Zr = Zc 

fr = 0 

T/q = Zc 

Then equations 3.6 become 

Ts = 0 

T + s = Ts 

qs - = 0 

q + s = Ts/Zc 

Substituting these values in equations 

and 

4.2 Interpretation of Equations 

Equation 4.1 can be rewritten as 

36 

3 .. 7 and 3 .. 8, 

(4~ 1) 

(4 .. 2) 



T = T e-0-x - i~x eiC..Ut 
s 
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(4.3) 

A sketch of the T8 e-CTx-i~x portion of this equation in three dimen-

sions, as a function of the complex plane and xis shown in Figure 11. 
'T 

-T 

I 
I 

I 
I 

/ 

/" 
/ 

Figure llo Traveling Wave at t = 2~n/u) 

-o-x e 

The form of this sketch becomes evident if it is not(:ld that 

T8 e-0-x e-i~x = Tse-Ox (cos ~x-i sin ~x) (4.4) 

This plot is independent of time, although it is the plot of Tat 

t :: 2n1l/w, where n is an integer sufficiently large to assure steady 

state conditions. This could be considered as a series of phasors 

separated by a distance Dx. It is recalled from alternating circuit 

theory that a phasor is merely a vector in the complex plane that has 

some magnitude and phase angle associated with it. Any two adjacent 

phasors then have a difference in phase angle of ~Qx. Then as x 

increases, the phasors spiral around the x axis, and they are decreased 

in magnitude according to -CTx e .. This curve has the form of the thread 

of a left hand wood screw as Qx -o. 

Reintroducing the time variant portion, 

T :::, T8 e-0-x[cqs (~x-Wt) -i sin (~x-Wt) J (4. 5) 
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which corresponds to equation 4 .. 4 .. Then as t increases, the curve 

rotates in a counterclockwise direction about the x axis. This 

motion rotates the curve in this direction with an angular velocity, 

given by was shown in Figure 11. This may now be visualized as the 

thread of a left hand wood screw rotating with an angular velocity W 

about its axis, in the right hand or counterclockwise direction. 

Since the angular velocity 0J is constant and the same at all 

points, x, the phasers rotate about the x axis with this velocity and 

thus become sinors. Again referring to alternating circuit theory, it 

is recalled that a sinor is a phaser with some angular velocity about 

its origin. To facilitate the study of the temperature variation at 

any point x, note that it can be represented as a phaser with magnitude 

-CTx 
Tse and initial angle of -(3x. This concept agrees with equation 4.5. 

If x = 0 

T = Ts[cos(-wt) - i sin(-Wt)] 

= Ts[coswt + i sin wt]= TseiWt 

This result agrees with the assumption of a periodic driving 

function as was discussed in section 2 .L If the temperature at the 

source is a sine function, Ts sin wt, the temperature at any point x 

may be obtained by taking the imaginary part of equation 4.5. 

-CTx I~[T] = Tse sin (wt-(3x) 

If the source temperature is a cosine function, Ts cos Wt, the 

temperature at any point x may be obtained by taking the real part of 

equation 4 .. 5. 

Re[T] = T8 e-ux cos(wt-(3x) 
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This process of taking the real or imaginary part of equation 4.5 is 

the same as takin~ the projection of the curve in Figure 11 on to the 

real or imaginary planes, respectively, as the curve rotates about the 

x axis. These projections are shown in Figure 12 and Figure 13 for any 

time t. 

T 
s 

T cos Wt s 

-T s 

Ts 

T sin Wt s 

y 

---
-y 

Figure 12. Projectionfon to the Real Plane 

iy 

-----iy 
! 

Figure 13. Projection on to the Complex~flane 

X 

X 

Both of these curves are enclosed by the envelope f~rmed by e-CTx .. They 

represent the temperature distribution in the infinite rod at any time t. 

The heat flow at any point in the bar will be of the same form ex-

cept that it will lead the temperature wave by an angle of Q and will 

have a magnitude determined by Ts/Zc as we discussed previously in 

section 3.4 .. 
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4.3 Comparison.With Existing Equations and Simple Example 

Before moving on to more complex applications of the equations, a 

comparison should be made of these results against existing formulas 

and apply our equations to a simple example which has been solved by 

ordinary methods. 

For purposes of comparison, several of the variables which have 

been derived are rewritten. 

f3 = v= ~cPpW/2k = ~w/20: 

v = W/f3 = w~2cx/w = ~ 

A= 2n/(3 = 2Jt ~2a:/W = ,d 8a./ W 

t lag= x/v = x ~l/2a:W 

These equations are identical with those found in the literature~ (11), 

and require no further investigation. They have been rewritten in order 

to be compatible with the form in which they are usually found., 

For purposes of illustration and comparison, an example will be 

worked illustrating the concepts presented to this point. This example 

will be concerned only with the case for an infinite body. 

The temperature variation at the earth's surface at a given place 

is from -10°F to l0°F over a 24 hour periodo If this temperature is 

assumed·to vary sinusoidally, find a) the amplitude of the,temperatu:re 

oscillation at a depth of 1 foot, b) the time lag of the temperature ,wave 

at a depth of .l foot, and c) the temperature at a depth of 1 foot, five 

hours after the surface temperature reaches the minimum temperature. 

-1 -1 -1 -1 -1 Assume k = 0.3 Btu hr ft F , cp "" 0.,47 Btu lb m F , and p = 

100 lb ft-J. 
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()= f3 = iCppW /2k 

W = 2'Jf./24 rad/hr = '.': 2:/24~:3p00 = 7 .88 x 10-5 rad/sec 

= .. 2 62 rad/hr 

CT= f3 = ~0 .. 47 :•· 100 :<!: .262/2 :~: .. 3 = -..j20.5 = 4.53 

a) T' (x) = lOe - 4 • 53 .x 1 = 10( .011) = o.11 °F 

b) t lag= x f3/(.;J = 1(4.53/.262) = 17.3 hr. 

Assume 

T(O, t) = Ts s in(uJ t + n 3'JC/2) 

which gives the minimum at t = 0 when n and (n+l)/2 are odd, the 

temperature at 1 foot is 

T(l,t) = 0.11 sin (Wt - f3x + 3n'Jf./2) 

= 0.11 sin (Wt - 4,.53 + 3n~/2) 

Five hours after the minimum is reached at the surface or at t = 5 hours, 

c) T(l,5) = 0.11 sin (,1g62 x 5-4.53 + 4.72) 

= 0.11 sin (1.50) = 0.11(.997) 

= 0 .. 11 °F 

This example is identical to example IV-7 page 70, Jakob and 

Hawkins (12). The results are identical with those obtained in the 

reference by classical methods. This confirms the validity of the 

equations derived., 

Since the equations for velocity of propagation, yave length, and 

time lag have already been proved to be the same as those found in the 

literature, an example illustrating their use does not seem feasible. 



CHAPTER V 

APPLICATION OF EQUATIONS TO THE UNINSULATED CASE 

5.1 Re-analysis of Solution 

A commonly encountered situation in practice is the case of an 

uninsulated body or a body which loses heat from its sides or trans-

mits heat across its boundaries. This heat loss from the sides of 

a body could be due partially to the mechanism of convection and 

partially ta, the mechanism of radiation. In order to retain a general 

form which is applicable to most conditions, it will be assumed that 

heat is lost due to both these pro.c.esses .. 

The heat flow from a surface of area A1 and temperature T1 into 

a surrounding environment of temperature Te, due to the combined effects 

of convection and radiation, is 

(5.1) 

where 

Here he is the coefficient of heat transfer due to convection, hr is 

the coefficient of heat transfer due to radiation, and ht is referred to 

as the combined coefficient of heat transfero Values for these constants 

depend upon the surrounding conditions, the material of which the body 

is composed, and the temperature differenceo These constants are tabu-

lated for various conditions in many heat transfer books~ 
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In the derivation of equation 1.2, the heat flow through a 

differential volume dx dy dz was considered. In this case then, 

Al= 2dx(dy + dz) 

The rate of heat flow through the differential volume then becomes 

dq/dt = (kdxdydz) d2T/dx2 - ht2dx(dydz)(T-Te) 
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= (kdxdydz) "2J2T/2r;:. - 2ht (T-Te) dxdy2dz+dxdydz2 I dydz 

Setting this equal to Cpp dxdydz ~dT/cot)' 

cpp(1dJ:'/,ot) = k(o2T/di2)-[ht (T·Te)] 2 (dy+dz) /dydz 

or ,0T/1at =Q(°2J:2T/1d:;:,) - ht(O:P/kA)(T-Te) 

where Pis the perimeter of the body to be considered and A is the 

cross sectional area. The use of these par~meters is justified by the 

assumption of a homogeneous body and consideration of heat flow and 

temperature variation only in the x direction. It is convenient to 

define 

giving 

or 

S = ht(~/kA):: ht P/cppA 

cl'I'/ot = o: (cR:T/io,;:.)- ST+STe 

d2T/2l,(2.= 1/a. 12lT/clt + S/a, T - S/a.Te 

This equation may be used to dbtatn a solution in the same manner 

as was equation 1~2§ For the sake of completeness, the following will 

proceed with a solution of the heat conduction equations as they have 

been modified to account for surface losses. 

Differentiating equation 1.1 with respect to x and substituting 

equation 5.2 into it, 

or 

'cJq/<cJ'X = -kA(l/a.(cT/cct) + (S/a) T - (S/o:) Te) 

'd(:Jfcx = -Acpl (r2JT/1dt +ST-STe) (S .. 3) 
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Solutions must be assumed of the form 

T(x,t) = T' (x)eiwt + D (5o4) 

and q (x, t) q' (x) iwt 
+ E (5.5) = e 

since there has been added the effect of a surrounding constant 

temperature to our system. Now substitute the equations 5 •. 4 and 

5.5 into equations 1.1 and 5.3.1 obtaining 

cT 1 /o,r,_ = -1/kA(q' + Ee-iwt) (5 .. 6) 

and dq 1 /ax= 
/ 

e-iwt (-Acpp[iWeiWtT'+S(T' eiu.Jt+D)-ST~]J 

= -Y[T1 ~/i(y'r'-t(S/iW)=~i-~t(D-Te)] (5. 7) 

Now since 5 .. 6 and 5.,7 are functions of x only by hypothesis, it is 

required that 

E = 0. and D ""'· Te 

This result indicates, as should be expected, that the temperature 

varies at all points ih the body about the environmental temperature, 
! 

Te .. Te rl:lpresents an ~verage value about which the periodic temperature 

I 
variation takes place. The temperature at the sending end then has a 

form as shown in Figure 14. 
T 

Figure 14 •. Actual Sending End Temperature 

This is identically the situation discussed previously in section 2 .1 
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in connection with the insulated body. It would seem then, that the 

uninsulated case could be treated similarly. Since the variation takes 

place about Te, this value is the same as Ta that was mentioned in 

section 2 .• 1. Setting Te = 0 in equations 5 .. 4 and 5.5 and solving for 

and 

T(x, t) = T' (x) iWt e· 

q (x, t) = q" (x) eiWt 

the actual temperature could be found as before, or 

Tactual= T(x,t) + Ta 

and q = q(x,t) actual 

This is actually the same solution that was obtained before except the 

notation has been changed to retain compatibility and to facilitate the 

analysis., Then equations 5~6 and 5.7 can be rewritten as 

dT 1 /dx = -1/kA q>t = -Zq' 

and dq I I dx .::: -Y(T' +$/ iu.}r 1 ) 

Differentiating 5.8 and 5.9 with respect to x again 

d2T1 /dx2 = ZY(T't(S/i~T') 

and d2q 1 /d~ = ZY(l+S/iG.u)q' 

Solutions to these two equations are of the form 

T 1 = Ae fx+ Be- /x 

q' = Gf=\ fx+ Fe'"'Yx 

or q' = (f/Z) (Be- /x - Ae (x) 

where r has uow been redefined as 

( = -{zY(l+S/iW) 

from equation 5.8 

at x = 0, Ts = T 1 ::: A+ B 

(5.8) 

(5 .. 9) 

(5~ 10) 

(5.11) 

(5,.12) 



and 

then 

or 

q 8 = q' = ()//Z)(B-A) 

B = T - A s 

q8 = (f/Z)(Ts - 2A) 

A= ~((-z/Y)(g.8 + T8 )) 

B = ~((z/Y)(qs + Ta)) 

which gives 

T'(x) = \((-Z/~)q8 + T8 )e Yx+\((Z/')/)q8 + T8 )e-"Yx 

q' (x) = \[qs-(Yfz) (Ts) Je 'Yx+\[qs+(j/z) (Ts) Je-Yx 

If Zc is redefined as 

Zc = Z/"f = ~Z/Y(l+S/iW) 

the complete steady state solution is 

T(x, t) = irrs-Zcq.s]e Yx + \[Ts+ZcqsJe-Y;; e-iWS: 

q(x,t)= ~[qs-(1/Zc)(Ts)J e,'x+~[qs+(l/Zc)(Ts)Je-)'x} ?Wt 

Equations 5.16 and S,17 are of the same form as equations 2.~11 and . 

2;.12. The only requirement in order to correct for surface losses 
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is to use the more general values for Zc and Y just derived. Note.:, 

that if ht = o, Zt and Y return to the values as defined for the irt-

sulated case~ In both cases, insulated and uninsulated, to obtain 

(5.13) 

(5.14) 

(5.15) 

(S.'i!.p) 

(5.17) 

the real temperature Ta must be added to the values given by equations 

5.16 and s.17. Ta will be assumed to be equal to zero unless otherwise 

indicated because it adds nothing to the analysis. 

5.2 Analysis of Coefficients 

The coefficients in the equations, that have been·redefined for the 

general case of an uninsulated body, and their new definitions are as 

follows: 



Zc=Z7'/= -lZ/Y(i+S/iW) = ~l/kA2cpp(iW+$)= i(-iW+s)/kA2cpp (S2+w2 ~ 

The impedance angle is not now as easily defined as it was for 
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(5 .18) 

the uninsulated caseo It is now a function of the physical parameters. 

Y = ,lZY(l+S/iW) = i(cpp}/k(i4J+S)= ~iW/o:+ht.' P/kA 

S = ht(P/CppA) = ht(J?Q:)/kA 

With these values it is possible to re-evaluate the attenuation and 

phase constants. RememberinJ~ that 

Y2 ::0"2 :..l +2i0-f3=(~/o:XJW+~)= ht(P/kA)+iW/o: 

Equating real and imaginary parts, this becomes 

and 

then 

0-2 -f32 = htP /kA 

2iO-f3 = i uJ /Q 

f3 = (Jj /2a. CJ 

f32 = W 2 /40,2()2 

'Then substituting :e:qu:;afiori; 5.23' into<equatiott\5.20, 

CJ""2-W2/4a2a-2 = htP/kA 

cr4'"'ht P/kJ0"2-w2 /4a2 = o 

Solving by the quadratic formula, 

(T"2 = htP /2kA -t~ ~-ht 2P2 /k2A~ '+w2 /a.2 

eJ-2 = l/2kA(htP "!:1/0: ~h~2P2o:2 +w2k2K) 
er=~ 1/2kA(htP + i'1~ ~h?F2o:2 + w1

2k2A2? 

Since ()and f3 are real by definition and are both positive by con-

vention, the negative signs in front of the square root radicals can 

be eliminated,, Substituting equati.on 5.24 into equation 5,.20, there 

is ob.tained an ~xpression for f3., 

(5.19) 

(5 ... 20) 

(5 .. 21) 

(5,,22) 

(5.23) 

(5 .. 24) 
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f32 =( l/2kA)(htP+l/O: ~ h/P2cx2 +u.Pk2 A2)-ht P /kA 

. I 2 2 2 2 2 2 
=( 1/2kA)(-htP+l/O: IJht P a: +w k A ) 

=~(~/'2kA)(-htP+l/o: ~ht 2p2o;2 +w2k2A2) (5.25) 

From inspection, it is seen that this expression for f3 gives a real 

number, which agrees with the initial assumption. 

The equations for the characteristics of the solution, such as 

phase velocity, wave length, period, and time lag, remain the same 

a~ previously defined in sections 3~3 and 3.4 except that the (T and f3 

used in their evaluation must be the ones that have just been derived. 

Notice that if ht = 0 ? CT= ~w/20:, and f3 = ~w/20:. = CT ' 
which is the same as obtained for the insulated case. 

From inspection of equations 5.24 and 5.25, it is seen that the 

introduction of surface losses into our equations has increased the 

value of u and decreased the value of (3. This means that the attenua-

tion of the traveling waves is greater or that they decrease in magni-

tude faster than they did in the insulated case. A smaller value of /3 

means that the phase change as the traveling waves travel down the bar 

will be less, thus the phase velocity is greater, the wave length is 

greater, and the time lag is less. All these results are reasonable and 

to be expected when there is an additional energy loss. 

The same effect, as f 1ar as the change in phase velocity, wave length, 

and time lag are concerned, could be attained by decreasing cp, increas-

ing k, or both in the insulated case. These variations are not sufficient 

to realize an approximation of the uninsulated case, however, since in 

this case CT decreases also, instead of increasing~ 



CHAPTER VI 

UNINSULATED INFINITE ROD 

It is now desirable to apply the equ~tions for an uninsulated 

body (5.16 and 5.17) to the particular case of an uninsulated in­

finite rod. If it is recalled from section 3.5 that an infinite rod 

has no reflected wave, then the coefficient of the e /x terms in 

equations 5.16 and 5.17 must be zero. 

Ts - Zcqs = 0 

or zt ~ zc = Ts/qs 

The equations for the infinite rod must then be 

T(x, t)=\(Ts+'rs)e-(u+i/3)xeiWt 

and q (x, t)=(l/2Zc)(Ts+Ts) e- (CT+i/3) xeiWt 

Then 

T(x,t)/q(xyt) ~ Zc 

(6 .1) 

(6.2) 

(6 .. 3) 

In this light it is needed only to discuss the solution for T(x,t). 

'I'(x, t)=Tse=U Xcos (Wt-tpx)+i sin(wt-/3x)=Tse-ux+i (wt-/3x) (6. 5) 

Since equation 6.5 is exactly of the same form as equation 4.1, the 

analysis previously performed for the insulated infinite rod will apply 

equally as well to the uninsulated infinite rod. The effect of the 

Te term, if the actual temperature was desired, is merely to cause a 

transformatio11 in coordinates in Figure 11 or to give the attenuated, 

phase shifted sinors a non-zero temperature about which to rotate. 
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This case is illustrated in Figur~ 15. 
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Figure 15... Actual Position of Temperature Traveling Wave 

Wave length, phase velocity, period, and time lag may be com-
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puted using the values of u and f3 given by equations 5.24 and 5.25. 

The analysis of the infinite rod then is essentially the same whether 

it is insulated or uninsulated. 



CHAPTER VII 

THE FINITE ROD 

7.1 Derivation of Eguations for!!, Finite Body 

The distinction between finite and infinite bodies, as far 

as the equations are concerne.d, is that a finite body is one in 

which the reflected wave becomes significant in determining the 

variation at any point. The approximate length a body must be 

in order to neglect the reflected wave is to be the subject of 

a. later section. 

Consider for purposes of analysis a homogeneous rod of the 

configuration shown in Figure 16. 

1----'tl•- X 

X=O X = L 

Figure 16. Finite Rod 

ffih ' l' d T iCUt 0 .!. ere 1s an app 1e temperature source se at x = • 

The rod has a characteristic impedance Zc, and an end impedance Zr,. 

Assuming for the moment that the forward wave has an amplitude 

at x"" 0 of Ts+, there can be derived equations for temperature .and 
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heat flow at any point in terms of this value. From the boundary 

conditions and the equations to be derived, Ts+ can be determined, 

and the solution will be complete. 

The amplitude of the forward wave at the receiving end (x = L) 

is 

This follows from the discussion in section 3.2. Using the defini-

tion of the reflection coefficient, 

tr :::: (Z -z ) / (Z +z ) ~lr r c r c (7.2) 

Using the reflection coefficient, there is obtained the amplitude 

of the reflected wave at the receiving 

T"1 T + - T + e- (L. P 
lr r - s ix 

end (x == ~). 

(7 .3) 

The reflected wave aft;er it reaches the sending end would then be 

, Ts='"' Tr- e-Yt -·· Ts+ e-2 'Y1 fr •, (7o4) 

'I'he rresmlta:nt temperature at the sending end, which was given as 

"' ··- ·r + 'I' -· ~ T + (1 ri - 2 )IL) Lg - s + s - s +1r e 

+ Using this equation, Ts can be obtained since we know T8 • 

would then be given as 

+ . _ r -2)1L 
T8 ~ Ts[l/(1+ lr e )] 

(7. 5) 

(7 .6) 

If the re.sultant temperature at the receiving end were desired, it 

would be 

e-fL + T + e-fL f: s r 

e= /L (1+ fr) (7.7) 

It is likely that the temperature at any point x along the rod would 



be desired. The forward wave at any point xis 

T+ = T + e -Yx' 
s 

and the reflected wave at any point xis 

T= (T. + - 'Vt) - 'V (_:L-x) r = s e I e I·. lr 

= T + Y<x-21) r 
s e 1 r 
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(7 ,s) 

(7. 9) 

Then either by adding these two terms, or by substituting equation 7.4 

into equation 3.4, we get for the temperat,ure at any point 

T' - 'r~/ e-Yx +Ts+ e Y (x-21) fr 

·- T,/ (e-Yx + e-Y(x-21)) fr (7 .10) 

The temperature as a function of both time and position would be 

given by 

T(x, t)=Ts +(e-(CT+i/3)x + fr (e-(O-+i/3) (2L-x))eiWt 

"" 'I's+ (e -0-x+i (Wt-13x\ fr ( e-CT (2L-x)+ 

. i (Wt+/3(x-2L))) (7 .11) 

The heat flow equation corresponding to equation 7.10 is .found by 

evaluating equation 345$ 

q'=Ts+/zc e=Yx - Ts+/zc fr e-2YL eYx 

+ ·)(·-Yx r:·. =2fL /x_) =(T8 /Zc ,e · - re e 

The heat flow at an~ point as a function of both x and tis 

( t) _ ('1' +/z '( -O-x+i(Wt-/3x) [, -CT(2L=x)+i(Wt+/3(x-2L))) q x, - 1 8 cl e - re 
(7 a 13) 

The magnitude of the heat flow at each boundary (X=O and x =;L) 

would thi,rn be 

(7. 14) 
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and 

(7 .15) 

Note that these equations for the finite bar are perfectly 

general and can be applied either to the insulated case or the 

uninsulated case. This is true, of course, only if the coefficients 

derived in section 5.2 are used and since ht= 0 for the insulated 

case. 

7.2 Total Impedance 

Interesting results can be obtained by investigating the im-

pedance for a finite body as a function of x. As a first step in 

this direction, T' will be ?lotted in the complex plane as x varies 

from 0 to L. The expression for T' in the finite rod was 

T' ,,,1'1' + T- = T9 + e-Yx + T + s 
e-2Y1 + /x rr 

Plotting the incident wave and the reflecte4, wave, T' can 

as the vector sum of 

found to be 

be found 

+ 
+Ts 

x.=,O 



. 5.5 

The resultant curve for T' appears as a spiral flattened somewhat 

abdut the real axis .. Actually the spiral is flattened about an 

axis which is rotated by some small angle from the real axis in the 

clockwise direction. The distribution in a finite bar may be more 

readily visualized if there is included in Figure 17 the distri­

bution in an infinite bar with Ts applied at the sending end. 

This is plotted as a dotted line in Figure 17. Recall that in the 

discussion of Figure 11 for the infinite body that as the curve ro- ,i 

tated about the x axis, which is perpendicular to the page in Fig-

ure 17, the temperature at any point x varied sinusoidally with an 

amplitude dependent upon x. Similarly in the finite rod, the 

temperature at any point x varies sinusoidally as the curve found 

above rotates about the x axis. The distinction between the finite 

and the infinite bodies is that in the finite case, the amplitude 

of the temperature variation is not decreased with x according to 

a simple. exponential decay.. In fact, it is possible to find some 

point or points, x such that the temperature variation at this 

point or points is actually greater than the amplitude of variation 

at some points nearer the source than the point or points being 

investigated. In other words, the decay seems to be according to an 

exponential with some periodic term superimposed upon it .. This be­

comes even more evident if the magnitude of the variation as a func­

tion of xis plotted. This has been done in Figure 18. 

At points one quarter wave length or 90° apart, the vector sum 

becomes alternately the arithmetic sum and the arithmetic difference. 
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X;:::L 

0 --1~~~~-+~~~~---t-~~~~--1--~~~~+-~~.,__~-1-..__~x 

0 rr./2 3'it/2 211'. ~L Src/2 

Figure 18. Magnitude Distribution 

These .. points ave not quite the maximum and minimum points, but 

closely approximate them. 

This type of temperature response is unique to traveling 

waves traveling in opposite directions., Therefore, if this type 

of response could be verified in an actual physical situation, it 

would confirm the validity of the traveling wave type of solution 

that has been developed. Significant data is not readily available, 

but it is intended to obtain such data from an actual test and present 

it in one of the latter sections of this thesis. This type of response, 

due to the interference of traveling waves, is not readily observable 

due to the rapid decay of the incident wave in most systems., The 

decay usually is so great that at a distance greater than about one 

wave length, the variation is negligible .. This subject will be 

developed more fully in Chapter IX. 

A sketch of q' in the complex plane can be obtained in the 

same manner as was obtained the sketch in Figure 17 for T'. This 



Im· q' 

curve appears in Figure 

X = 0 

Figure 19. Projection of the Traveling Heat Flow Waves on to 
the Complex Plane and Their Sum 

To obtain this plot, recall the expression for q 1 

q' =Ts+ /Zc e-'Y x -T/ /Zc fr e-2~:~ e Yx 
Note that 
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(7.16) 

Figure .19 can be obtained from Figure 17 merely by rotating the 

component vectors by -9, dividing them by ·1zcj, ahd/f.i~di-ng ·t:.heir 

vector differences .. Remember that for the insulated body 9 has 

a valueoof 45·0 , but for the uninsulated case 9 will be different 

from 45.0,., This curve is also a flattened spiral. It is flattened 

about an axis dependent upon 9,. If Q were 90°, the spiral would be 

flattened about an axis only .slightly rotated from the imaginary 

axis. 

If., one assumes 9 = 90° and plots the magnitude of q I in 

Figure 18, one sees that the mininnims of q 1 occur at the .mixinru.ms 

of T' and vice versa.. If this were the insulated case where 9 = 45\ 
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this would not be true, but .the shape of the curve would be the 

same. 

The preceding results indicate that the temperature and h~at 

flow at the receiving end depend critically upon the length of the 

body. It is possible, if the length of the bar is some odd multiple 

of a quarter wave length, to increase the magnitude of the tempera-

ture variation and decrease the magnitude of the heat flow variation 

by either increasing or decreasing the length of the bar by some 

amount less .than a quarter wave length., If the length of the rod 

is an even multiple of a ql:larter wave length, the magnitude of the 

temperature variation may be decreased and the magnitude of the heat 

flow may be increased at the receiving end by either increasing or 

decreasing the length by some values less than a quarter wave length. 

Those facts and other variations are observable in Figure LB. The 

effect on temperature of varying the length remains essentially the 

same under all conditlo'ns. The relative effects on heat flow, how-

ever, would depend upon the impedance angle, ~, which would determine 
·r· 

the amount of shift in the heat flow magnitudes fran the position 
\ 

shown in Figure 18. Figure 18 was formed on the basis of an uninsu ... 

lated bar or Q = 90°,. If .Q had some other value, as in the insulated 

case, the heat flow curve would be shifted along .the [ qs I e-CTx 

curve. If the body were uninsulated, then the effect on the heat 

flow of varying the length would have to be determined for each 

particular case. 

This technique suggests certain ramifications which could be of 
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value in practical analysis. For example, the temperature variation 

or heat flow variation in a building, due to heat trans.fer through 

the walls, could be reduced by this process of either thickening or 

reducing the width of the walls, depending upon building requirements 

and the feasibility of the change in design under certain circumstances. 

At least an optimum thickness could be found to satisfy certain re-

quirement:s or desires., 

It is possible that other suitable building materials could 

be selected so as to adjust the wave length in the material to 

optimize the amount of heat flowing into the building. These are 

only a few of the possibilities and ar~ mentioned only to point out 

the potential of this type of analysis,. A further study than will be 

possible in this thesis, in conjunction with the many transmission 

line techniques that have been developed would undoubtedly be very 

rewarding and would probably suggest many methods of reducing un-

desirable effects in the application to heat transfer problems .. 

' The f6)asibility of this analysis depends upon the magnitude 

of the attenuation constant. The attenuation determines the amount 

of reflection and thus the magnitude of the variations about the 

simple exponential decay., If attenuation is great and these varia-

tions in Figure 18 are 9itnall, then there can be little gained by any 

adjustments in length .• 

It is also interesting to notice the value of the impedance as 

a function of x~ The total impedance at a paint has been defined as 



This can be rewritten as 
., 

f ]/[l-e'."21)l(L-x) 
r 

or 

1~11,·'lj;r +2~(x•L) ]/[1-e20-(x-L) 

Jfr\ j1Pr + 2~(x-L)] 
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The numerator and the denominator of the fraction in.this expression 

can be represented as shown in Figure 20. For convenience, rewrite 

equation 7,.19 as 

zt = '!zql-~ N(x)/D(x) = lzcl J.!_ (l+N1)/(1-N1) (7.20) 

where N1 = e2cr(x.,.L) l~l 11flr + 2~(x-L) 

Notice that since \r;.\ has a maximum value of 1 and as x increases 

20-(x-L) to L, e approaches a IIJElximum value of 1,1 · then·.the .. magnitu'de 

\ 
\ 
\ 

x=L---~ 

\ 
\ 

' '- ' .._ --

!!.{& 
D(x) 

Figure 20. Ratio of Total Impedance to Characteristic Impedance 
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of N1 has a maximum value of 1 and as a result all vectors repre-

senting both N and D will lie in the right half plane in Figure 20 

for all values of x ~ L. 

The vectors shown in the figure are of an assumed position 

and magnitude to represent Ni and -Ni at x = o. As :X increases, 

the vectors increase in magnitude and rotate in a counterclockwise 

direction at the same magnitude. The loci of their end points would 

then be an increasing spiral rotating in the counterclockwise direc-

tion as shown in the figure. Note that in the plane the end points 

of these vectors, which rotate as x increases, represent the vec-

tor sum of 1 and N1, and 1 and -N1 or N(x) and D(x). This is true 

since the base of these vectors has been placed at the point 1j_Q_ 

in the plane. Thus the loci of these .vectors as x increases also 

represents the loci of N(x) and D(x) as x increases. 

For the special case where there is no attenuation, the loci 

in Figure 20 become circles and the figure becomes the bicycle 

or crank diagram encountered in connection with lossless trans-

mission lines. 

The total impedance may now be found as a function of x by 

plotting the quotient of N(x)/D(x) as x varies from Oto L, and 

then multiplying this quotient by Jzcl and rotating the whole dia­

gram about the origin through an angle Q. N(x)/D(x) is plotted in 

Figure 20. It is interesting to note that if rr = 1, as x approaches 

L, N1 approaches 1 or -1 depending upon 'lj;r, and ,thus D approaches O, 

making Zt approach infinity, or N approaches O making Zt approach O. 
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This is actually the case because if Zr = oo, fr = 1 or if Zr = O, 

fr = 1. Likewise, as either 0- increases or L increases, the 

spiral becomes tighter about the point 1 ~ If 0- or L were in-

creased enough, the point at x = 0 would be approximately the 

point 1 ill_ and the impedance at x = 0 would be approximately Z • 
C 

Of course if L became infinite, the entire spiral would become the 

point 1 lQ., and the impedance at all points x would be zc, which is 

the condition that was previously found for the infinite body. 

The concept of total impedance becomes a little clearer if the 

magnitude of .Zt is plotted as a function of x. This is done in 

Figure 21 .. 

1 

X 

Figure 21. Total Impedance as a Function of x 

The curve has been extended beyond the point x =Lin order to more 

fully illustrate the variation. 

The point to be made here is essentially the same as before. 

That is.:, by adjusting the length of the body the most desirable value 
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of Z can be obtained and thus of q' and·+'• It is evident that 

varying .the length to effect the impedance has exactly the same 

effect that was discussed previously in analyzing the T1 and q·' 

curves. Note that Z8 is a function of the length and is given by 

Zs~Zc[(l+e-2YL rr)/(1-e-2Yi fr)] (7 .. 21) 

This indicates that as L changes, the poisition of the curve in 

Figure 21 is translated parallel to the x axis. The length also 

has a direct effect upon the magnitude of Zt as well as on the 

magnitudes of Tv and q'. It appears now that the amount of heat 

flow at the source could be regulated merely by changing the length 

of body,. This also would find it.$ place in practical applications. 

7.3 .End Impedance for Finite~ 

'l'fte study of finite bodies. bring.s us to another problem which 

is the determination of the. receiving end impedance for these bodies .• 

Consider first a composite rod such as is represented in Figure 22. 

Reference will be made to the two sections as rod 1 and rod 2,. Con-

sideration will be directed toward finding the receiving end im-

pedance Zrl of rod 1. If the most general case of an uninsulated 

rod of finite length is considered, Zrl can 9e determined for other 

conditions as special cases of this one. 

Actually, there is no problem in this case since the receiving 

end impedance of rod 1 will be the sending 

-2Y21.2 r ti-e-2 Y21.2 Zr1=Zs2=Zc2[l+e r2 . 

end impedance of rod 2, or 

(7.22) 

This expression says that the amount of reflection in rod 1 anf the 

amount of heat flowing into rod 2 can be affected by changing the 



length of rod 2. 

If rod 2 were of infinite length, equation 7.22 would still 

be valid for if L.2 = oo 
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(7.23) 

The receiving end impedance of rod 1 then becomes the character­

istic impedance of rod 2. The expression for Zrl where either 

rod 1, rod 2, or both are insulated would be obtained by setting 

either h1 = O, ~ = O, or both. 

If the end of rod 1 is exposed to some medium such as a gas 

or liquid in which conduction is not the significant ·.method of 

heat transfer, the heat transfer from the end can be computed and 

thus Zr, by using the combined coefficient of heat transfer, ht, and 

writing 

q = ht TA1 (7 •. 24) 

where A1 is the cross sectional area of the end of bar 1. Then the 

end impedance would be 

(7.25) 

This has as a speciar case, the case of the perfectly insulated 

end. In this case ht = o, and 

2rl = 1/0 = 00 (7 .26) 

This result agrees with previous conclusions. 

The receiving end impedance has now been derived for several 

general cases. Most systems may be adequately described usi~g 

these expressions. However, there are potentially several con­

ditions which might not be covered by these equations, but the 
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process is clear and a suitable approximation of Zr can usually be 

made. 

rod 1 htl ~=0 rod 2 ht2 ~=~ 

Ts Zcl I Zr Zc2 I Zr2 ~e 

x1Lo IT qiJ i x1=~1+12 
X1=L1 

Figure 22. Composite Rod, Two Sections 



CH,A.PTER VIII 

THE COMPOSITE ROD 

8.1 Analysis 

The next case of interest is the composite; finite,·· homo-

geneous rod. Figure 22 is a suitable representation of this case. 

The assumption will be made, of course, that th~ two rods are 

perfectly joined at the point x = 11 and that there is no heat loss 

there due to the connection .. The general case where both sections 

are uninsulated will be considered from which the insulated case 

may be obtained by setting ht= 0 for the insulated section or 

sections. Assume also that the receiving end of section 2 is 

exposed to still air or some other media such that equation 7.25 

applies. This can be specialized to include the insulated case 

also, by setting ~e = O, where ~e is the combined coefficient of 

heat transfer at the end of section 2. 

The solution of this system will be represented by two equa-

tions, one for section 1 and one for section 2. The equation for 

section 1 will merely be the finite rod equation that has already 

been derived. 

For section 1, 

9,~xl ~ 11 

T ( t) -T [ -a:;1 x+i(W1t-t31x1)+'- r'i ,-0-1 (211 -x1)+i(W1 t+t31 (x1 -211) -1 x1, - s e lr11:·,e .. 
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l\nd 

where 

and 

fr2=(Zr2-Zc2)/(Zr2+Pc2) 

Zr2= 1/ (h:2e A:2) 
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(8.,2) 

(8 .. 3) 

(8., 5) 

(8.6) 

For section\ 2 the sending end tiemperature is t,he receiving 

end temperature of section 1, or 

then 

Ts2+(l+e-Y2<212) f r2) = Ts1+(e-')\t1)(l+ rrl) 

or 

(8,8) 

Using.this value of Ts2+, return to the finite rod equations and 

find the solution for section 2. 

Fpr section 2, 

L 1~ xf=·L:2 + Lp 0~ *2 ~ t 2 

T2(~, t) = Ts2+[e-CT2x2+i(W2t-f32x2) :-

+ ~ 2 e-CT2(2~-~)+ i(W2t+f32(~-2~))] (8.9) 

If it is preferred to have these expressions in terms of x1, 

merely replace ~ by x1 -Lp giving 

T ( t) -T +[ -0-2(x1-L1)+i(W2t-t32(x1-L1) 
2 xi, - s2 e 

(8.10) 

+ r e-cr2<212+11-x1)+i(W2t+f32Cx1-L1-212.n] (8·11) 
· 1r2 • 
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and 

q2 (x1, t)=Ts~/Zc2 [e ~~2 (x1-L1)+i(W2 t-~2 (xcL1)) 

~ ~ -0-2 (2L2+L1 -x1)+i(W2t'.+~ (x1 -L1 -212))] 
r2 ' . -. -

(8 .12) 

The equations for the composite rod actually preserit nothing new. 

The analysis of these equations is essentially the same as the analysis 

of the finite rod equations. These equations have been derived for 

the purpose of illustrating an application of the finite rod equations. 

The only additional point that could be made here is that in situations 

such as this, the length, area, and all the physical constants associated 

with one bar affect the temperature and heat flow in the other. An 

analysis of temperature, heat flow, and impedance variation could be 

performed on this system exactly as was done in section 7.2 for the 

finite bar. This analysis would have essentially the same results that 

obtained before and would add nothing new to our investigation. Keep 

in mind that there is as much or more potential value in this type 

of analysis for the composite .bar as there is for the finite bar~ 

Further investigation in this area could be very profitable, but it 

is not the purpose of this thesis to go into such detail. The possi-

bilities that are apparent here indicate that it is a subject worthy 

of further pursuit. 

8.2 Transfer Impedance 

. Many times it is not of interest to find the temperature and heat 

flow distribution in a body, but merely to find the terminal values. 

It would then be of interest to derive an expression for the system 

transfer impedance, so that the terminal values could be found with a 
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minimum of effort. Transfer impedance is to be defined as 

Consider first the finite rod. The transfer impedance for this 

case is 

+ [' -2 'Y L . , + • r, - Y L 2tr'""Ts/qr= l's (l+ re )/[(rs /Zc)(l- lt)e J 

= Zr cash Yt + Zc sinh ry1 
Notice that if L = O, Zt = Z • r . r 

(8.14) 

This indicates that if the rod were removed, the driving function 

would be acting directly into the end conditions. In this case .the 

sending end temperature and heat flow would be the same as the re-

ceiving end temperature and heat flow. Notice also that the transfer 

impedance and thus qr are independent of the receiving end temperature 

Tr in this expressiono 

This type of approach is not of particular value in the finite 

case, since qr can be more easily computed from equation 7.15. 'I'his 

approach becomes of value when composite bodies of two or more sections 

are consideredo If the heat flow at the receiving end of a composite 

body was desiredJ and not the intermediate temperature and heat flow 

distribution, it would be a very laborious process to grind through 

the equations for each section separately. In a composite section, 

the concept of transfer impedance could be applied to each section 

repeatedly to obtain terminal values. If an overall transfer impedance 

for the entire composite section could be q.etermined, it would greatly 

simplify the calculations by offering the advantages of compactness 

and a simpler form~ 
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Consider now the composite section shown in Figure 22. This 

figure could represent either a composite rod or a section of a 

composite wall or plate. The transfer impedance of section 1 of 

this composite body may be expressed as 

(8.15) 

Likewise the transfer impedance of section two can be expressed 

as 

llealizing that 

ql.. = T1../Zrl - q Z /Z - r tr2 rl 

equation 8 .. 1;'5 becomes 

or 

.. 

(8.16) 

(8.17) 

Z~roZ represents the overall transfer im1:)edance for the composite 

body with two sections. 

Proceeding now to a composite body of three sections such as 

shown in Figure 23, the transfer impedance for the first section 

and third section are the same as the transfer impedances for the 

first section and second section of the body just considered. From 

previous considerations, it is known that 

Then, since 



71 

giving (8.18) 

X=O X=L1 :x=L1+L2 :x=L1+Lz+L3 

Ts,qs I 2trl I Ztr2 I Ztr3 ITr,qr 
I I I I T1, qi T1, qi 

Zrl 2r2 

Figure 23. Composite Rod - Thte~ Sections 

Similarly, a composite body consisting of n sections was considered 

as shown in Figure 24 and an expression for the overall tr.!ms.fer iIJ1-

pedance could, be obtained which would be of the form 

X=01 

Ts, qs I 

2tron = (Ztrl 2 tr2 '.,.Ztrn) /'.(;Zrl 2r2 • • • 2rn-1) (8 • 19) 

= Ts/qr 

~=11 X=L1+L2 · x= ;;i.+Lz+ • • • Ln-2 x=L1+ ••• Ln 

2trl I 2tr2 I 2tr(n-1) I 2trn I Tr,qr 
Zrl Zrz . Zrn-2 x=L1+ • • • Ln-1 Zrn 

Zrn-1 

Figure 24. Composite Rod - n Sections 

Use of this equation would permit simplified calculation of the 

terminal values of a composite body, such as a wall where one might 

know the outside temperature and be concerned only with finding the 

heat flow into the inside of the structure. Although this form does 
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not greatly reduce calculations, it does reduce error and ip.crease 

the speed of calculation due to the compact form. 

8.3 Equivalent Four Terminal Networks 

In accordance with the line of thought of the previous section, 

it is possible to represent a finite section by an equivalent four 

terminal network, for the purpose of investigation of terminal values 

only. The only restriction that will be placed upon this.equivalent 

network is that the input and output temperature and heat flow be 

the same as in the actual system. This equivalent network may be 

found as either a re section or a T section., An equivalent re section 

as shown in Figure 25 will now be considered. In this equivalent 

network, the T's represent temperature but are treated as voltages, 

and the q's represent heat flow but are treated as currents. 

qs qr 
-- - Zrc r ~ 

~ -
q3 

2 ' 2 
1(l-C Y~t Tr z 

r 

, I I 

ql qz 
- -- ~ 

Figure 25. Equivalent~ Section 

The current in the left hand "pillar" is 

The current in the "architrave" is 
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The temperature at the right hand side is 

We also know from equation 2.22 

Tr = Ts cosh')l1-Zcqs sinh ;i 
Equating coefficients of Ts and qs we obtain 

Z:n: = Zc sinh /1 (8.20) 

and 

or 

Y1r/2 -- (Gosh /L-1) /Zrc == (e "/112 -e -"jl/2 / / 

Z ( )IL/2 -"/1/2)( "j1/2 -,1L/2) 
c e -e e + e 

= (tanh "/1/2)/Zc 

2/Y'Jt = Zc coth JL/2 

(8.21) 

(8.22) 

If an equation for qr had been obtained instead of Tr and solved for 

Z:;r and Y1£/2; the same results would have been obtained. This :n: circuit 

is equivalent to a distributed system with constants zc and r1 if its 

components have the calculated values. 

It is very simple to show that the transfer impedance for the 

equivalent 'li circuit is the same as previously obtained in equa-

tion 8,.147 so time need not be taken to show this. It should be evi-

dent that this would be true since the terminal values remain unaffected. 

Since the equivalent :n: in Figure 25 represents a finite body, a 

composite body could be represented as a certain number of these 

equivalent circuits connected in cascade. The equivalent of a com-

posite body is shown in Figure 26. Using this configuration and the 

standard methods of network analysis, the terminal values can be 

easily determined. 

The equivalent system method of approach is not as simple, and 
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,------1- -- - -,~r - - --- l 
I qs ql I I I I q2 qn-1 qr 

Z:rc1 Z:rt2 Znn 

Ti~ I I I 
I 2 2 2 I 2 

I Yrc1 Y~11 Tl Y1c2 Tz I I Ynn 

I I 1T 

I I I I I 
L---hu-- L __ kr.2_ _L~- hrt1- - ---1 

Figure 26. Equivalent of CpI11posite Rod 

does not yield itself to calculation as readily as does the transfer 

impedance method previously discussed; but it does introduce the 

possibility of design and analysis according to the principles set 

forth in most transmission line texts with regard to equivalent 

systems. It is not in accordance with the purpose of this thesis 

to pursue the subject further, but it; should be mentioned that this 

type of analysis is developed fully in transmission line literature. 

The application of this method to heat transfer should by the subject 

of a later work. 

It would be possible, according to network analysis, to obtain 

an expression comparable to equation 8~19 in terms of Z:rcn and Y'!(n/2; 

but such an expression is sure to be much more complex than equation 

8 .. 19 and would be of no value to us., 

The equivalent systems are especially int1:resting because they 

give a physical concept of the impedance approach to a finite or a 

composite body., 

8.4 Impedance in Parallel 

There is only one more composite system desirable to attack at .this 
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time. This would be a body of the composition shown in Figure 27. 

These two materials have a common temperature source at x = O. The 

receiving end heat flow will be considered to be the sum of the heat 

:x=O 
I 

Figure 27. Composite Sections in Parallel 

flow from the end of each of the sectipns. Remembering the definition 

of transfer impedance, 

= Ts/Ztrl + Ts/Ztr2 (8.23) 

2 tr = Ts/qr == 2trl 2tr2/(Ztrl + 2 tr2) (8 .24) 

which is the standard equation for the total impedance of two im-

pedances in parallel. 

If either or both of the two sections of this body are composite, 

the respective transfer impedances cari be calculated according to 

equation 8.19 and then substituted into equation 8.24 to give the 

total overall transfer impedance for the body. 

Many different combinations of the cases presented, infinite, 

finite, insulated, uninsulated, simple, and composite, are possible. 

These cases, too numerous to discuss} are all subject to the basic 



attack presented for each class of problem and should be fairly 

simple to evaluate, using these methods or combinations of these 

methods and the basic principles of peat conduction. 
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CHAPTER IX 

ATTENUATION ANALYSIS AND CRITERION FOR INSULATED BODIES 

From previous investigation, it appears that the decay of a 

temperature or heat flow wave, be it the incident or reflected wave 

in a finite body or the single wave in an infinite body, as a function 

of n is the same for any insulated body irrespective of the m~terial 

or any characteristic properties. Define now 

n = x/ A = number of wave lengths from the sending end. 

By this it is meant that a plot of e-O-x as a function of n would be 

independent of any of the properties of the propagating medium as long 

as it is an insulated body. It was mentioned previously in section 3.2 

-0-x that the decay of the waves was due to thee term. •. As a function 

of n the exponential becomes 

-0-x -0-nA -0-2m·,/f3 
e "' e "" e 

Since for an insulated body, it was previously found that 

0- = f3 

then 
-0-x -2nrc 

·e = e 

This is indeed independent of any properties of the medium, and may 

be plotted as shown in Figure 28. Notice that this is a very rapid 

decay with respect to wave length. By the time one wave length is 

reached, the magnitude has been reduced to a value of 0.00188. Due 

to the rapid decay of this term, a more correct representation of 
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Figure 10 is as shown in Figure 29 with quarter wave length values 

as indicated. 

e 

i 
Figure 28. Exponential Attenuation 

1' 2 3/4 1 H; 

• 4321lso 0 .0019~ 
-- • 0091 j90 ° 

.0004~ 

- CT 

-i (JJ 

Figure 29.. Attenuation of Traveling Wave 

In most cases it could be said that 3/4 of a wave length would 

be sufficient length tb insure that there would be no reflection if 

the body were terminated at that point. It would depend, of course, 

upon the accuracy desired, but generally 3/4 of a wave length could 

be taken as a criterion for reflection. If the body 4nder study had 
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a length greater than 3/4 wave length, it could safely be said that 

reflection would be negligible. If the body had a length less than 

3/4 wave length, it might be desirable to compute the magnitude of 

the reflection. The criterion could be varied to suit the demands 

of any particular problem and applied in a similar manner. 

From equations 3.12 and 5.25, it is seen that the wave length 

is a function of the properties of the conducting mediull\ and the 

frequency of the driving function. It would be possible to draw 

a straight line curve for any particular material desired with A and 

(JJ as the coordinates. A family of curves such as this, for several 

different materials, could be a valuable design tool in particular 

types of problems. If a designer was given the frequency of the 

driving function and the required dimensions of the body, he could go 

·to this family of curves and pick the most suitable material to use 

by considering the wave lengths indicated .. There could be many 

variations of this procedure. 

The 3/4 wave length criterio·n, as mentioned above, need not be 

restricted to insulated bodies as was the discussion associated with 

Figure 29.. The damping that occurs in an uninsulated body is greater 

than that in an insulated body, so this criterion would be more con­

servative in the uninsulated case. A more accurate criterion could 

be developed for uninsulated bodies if so desired, but such a criterion 

would be more complex, since it would no longer be a si~ple function 

of the input frequency and the properties of the medium, but would also 

be a function of the overall heat transfer coefficient. 
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It would be interesting to investigate several materials and 

determine if it might be possible to have reflection in some common 

physical system in which these materials are present. 

Air at 0°F and a frequency of 1/24 cycles per hour gives a 

wave length of 4.58 feet. Three fourths of this wave length is 3.44 

feet. The given frequency corresponds to the frequency of atmospheric 

temperature variation due to radiation from the sun., A common physical 

object in which there could be reflection in air would be a wall or 

roof of a building which has an enclosed air space. This air space 

in most cases would not be gre~ter than six inches, which is much 

less than 3.44 feet. This physical situation would then give rise to 

considerable reflection. Reflection analysis could then be an im-

portant concept to an air conditioning or heating engineer. 

In frame houses, heat transfer through the walls is determined 

not only by reflection in the air space in the walls but also by 

reflection in the wood. In southern yellow pine with. 13.8% moisture 

and heat flowing perpendicular to the grain, the wave length is 1.34 

feet at a frequency of 1/24 cycles per hour. Since the maximum 

thickness usually encountered in the walls of a frame building is 

about two inches, which is much less than 1.00(3/4(1.34) = l] foot, 

reflection would certainly be significant. 

If heat transfer through a concrete wall of dam was of concern, 

reflection might also be significant here. At a frequency of 1/24 

cycles per hour, the wave length in average stone concrete is 2.38 feet. 

Three fourths of this value is 1.79 feet. In most concrete dams and 



81 

some large concrete buildings, reflection could be neglected. In 

small concrete buildings, with a wall thickness less than 1.79 feet, 

reflection would be a significant factor. 

Considering the steam engine referred to by Ingersoll and 

Zobel (7) in their paragraph 5~13 there exists a frequency of 

100 cycles per minute or 6000 cycles per hour .. Considering cylinder 

walls of i% carb~n steel, a wave length of .382 inches is obtained. 

Three fourths of this value is 0.286 inches. The thickness of the 

cylinder wall could possibly be less than 0.286 inches, and thus give 

rise to reflection. In a quarter inch steel plate, a frequency as 

slow as 1/24 cycle per hour would evidently give rise to considerable 

reflection. 

These examples are only a few of the possibilities, but these 

few point out the fact that many common physical systems give rise 

to reflection and deserve approach by this method. 



CHAPTER X 

COMP.AR.ISON WITH EXPERIJiENTAL RESULTS 

Some interesting and especially applicable work has been di0ne with 

reference to heat ccmduct:ion thri!Jugh roof p,anels heated in a periodic 

manner by solar radi'9,tion by Houghten~ Blackshaw~ Pugh, and McDermott. 

(13). It is interesting to.observe a comment made by them in this 

paper, HResearcih~ carried on by the Research l.aborat!Olry of the American 

Society of Heating and Ventilation ,?1t the Pittsburgh Station of the 

United States Bureau of Mines~ has shown that ta. large error may be 

introdt11ced into the calculaticms by failure to consider the periodic 

cha.racter of heat flow resulting from the diurnal movement of the sun 

and the heat capacity of the structure, which determines the timing and 

magnitude of the heat wave flowing through the walls into a building on 

a hot sunny day O 
II This q',u.<())t:at:ion is comp,~.tible with observations made 

in the last chapter. 

This tea.m obtained much d~ta for temperature and heat flow through 

various types (Q)f roof p;a.nels over a series of days as the external tem­

perature varied periodically,. 'I'hey found that the external or applied 

temperature did not vary as a simple s.ine wave but that.it could be 

closely a:pproximated 'by a two term Fourier analysis .approximation~ qp .. 

on this b,rnis attempt will be made to verify the <la.ta obtained by them 

for a four-inch gypsum pan,el. In their presentationD the team also 

82 
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solved. this particular problem by matheni.atical analysis. After a solu-

tion is obtained,. it will be compared with the solution they obtained) 

as well as the data presented by them, in order to evaluat.e th'is method 

of app!oach. The data as presented by them for this panel is 

k = 0.1203 Btu/ft-hr-°F 
..., 

p -· 64.9 lb/ft.) 

C = 0.234 p 

L = 4-188 in= 0.348 ft. 

The funq.amental frequency is of course one cycle per 24 hours. Then 

W :F 2.:rrf == 2:,d/24 = rc/12 = .262 rad/hr 

t,f~ (Tf = '1cppW/2k = -1( .234)(64 .. 9)(n/12) I (2)( .1203) 

-1 = 3.,94 feet 

Zcf "' ...J1/2(.12GJ) (.,2J4) (64 .. 9) (:r,/12) (l=i) 

Here the cros.s sectii0rnal area considered will be one square foot.,. The 

wavelength in gypsum at the f:~ndament~l frequency is 

A. f = 6. 28/3. 94 = L59 feet 

3/4 A. f = 1.19 feet 

Since three-fourths of the w~.velength is. much greater than 4.2 inches~ 

some degree of reflection could be' expected ~.t this frequencyo There .. 

fore equations 1.11. and 7 ... 13 ~re the ones that sit.tn:i.ld be applied,. The 

overall heat transfer coefficient for the end conditions was given as 

I 2 o ht= 1~9 Btu ft -hr~ F 

Then 

Zr= 1/(1.9 x l) = 0~526 
0 

hr- F/Btu 

and 
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f • (.526-1.022 (l-i))/(:526 + 1.022 (1-i)) = .613 1149.4° = -0.528 
rf 

+ i(0.312) 

The frequency of the firs.t harmonic will be twice that of the funda• 

mental or one cycle every twelve hours. This gives 

W b.'i" 2:rr 1/12 = Oo 525 rad/hour 

r,:;- -1 
0-ho-: /3h'"'"'ll 2 (3 .. 94) == 5.58 feet 

Zeh = (1/(2) (1.022)(1-i) = 0~ 123 (1-i) = 1.025 j -45° 

\h = 6.2s1s.sa"'" 1.148 feet 

3/4 Ah ;= 0~86 feet "" 10.3 inches 

Thre~·,,;fourths of the wavelength at the frequency of the first harmonic 

is still large enough for significant reflection. Equations 7 •. 11 and 

7. 13 must be used for the first h,anportic also. The reflection coeffi:-

cient is 

rrh =(.526-.723(1 .. :i))/(.526+.723(1-i))== .52\135.3° = -0.370 + i 0.368 

The Fourier approxim~tion of the temperature at the outer surface was 

found by the teall\ to be 

T(O!lt) = ... 27.186 cosWt +.20.929 sinWt ... 4.~108 

cos 2Wt .~ 12. 9 sin 2Wt :+ • " .• 

This can be reduced to the form 

T(O, t) = 34.3 sin(Wt-52.4°)+ 13~ 7. sin (2Wt -

161.55°) + ••• 

= Im (34,3 ei(Wt ~ 52 •4°)+ 13.7 

+ ft (I. Q, 
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The amplitude of the fundamental and the first harmonic are then 

The outer surface temperature variation takes place about an average 

value of s7.14°F. Zero time is taken as 4:00 A.M, 

An evaluation will now be made of equation 7 .11 for the funda-

mental component and then for the first harmonic component, Equation 

and 

Ts~ = 13.7[[1/[1+1.52!135,3°)(e-2 (5.SS)(l-i)(.348))]] = 13.7J0,62° 

Assuming an 

of the form 

gives 

and 

. f ·h f i(Wt -input o t e orm e 52 4°) · for the fundamental and 

i(2Wt - 161.55°) f th e or· e first harmonic, equation 7 .11 

'i'f(x,t) = 33 e-3.94x + i(.262t - 3,94 x - 52.1°) + 1. 295 

3,94x + i(,262t + 3.94x - 60.2°) e 

Th(x,t) = 13,7 e .. 5.58x + i(,525t - 5.58x - 160,93°) 

+ 0 _148 e5.58x + i(.525t + 5.58x - 248.13°) 

Since the input was taken as a sine wave, the actual expressions for 

the fundamental and first harmonic components may be obtained by taking 

the imaginary parts of these equations. If this is done, 



and 

'"'3,94x = 33 e sin (0.262t - 3.94x - 52 .. 1°) 

+ 1.295 e3 •94x sin (0,262t + 3i94x - 60.2°) 

13.7 -5.58x e sin 0 
(0.525t - 5.58x - 160.93) 

5 ,.58x . o + 0.173 e sin (0.525t + 5.58x ~ 248.13) 
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The average integrated temperature at the inner surface may be computed 

by the usual steady state methods in which the driving function is con-

stant. An expression for the heat flow at the receiving end gives 

The temperature of the air inside is known to be 69.6°F, so the above 

expression can be solved for Tra' In doing .this, one obtains 

T = 72,3°F ra 

The temperature- distribution in the steady state with a constant f!pplied 

temperature will be a straight line function, and can be written as 

Tc(x) = 87.14 - (87.14 - 72.3/0.348)x = 87.14 - 42.7x 

The total temperature in the bar is then the sum of this distribution 

and the fundamental and first harmonic components J or 

The fundamental and first harmonic components of the heat flow may be 

computed in the same manner as were the corresponding components of 

the temperature. These are easily s.een from equation 7.13 to be 

3 94x o • 0 •. 894 e · sin (0.262t + 3.94x - 15.2 ) 
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and 

13.35 -5. 58x 
e sin 

. 0 
(0.525t ~ 5.58x - 115,93) 

144 5.58x . . . o 
-Q •. 2 e sin (0.525t + 5.58x - 203.13) 

The steady state heat flow with an applied coµ.stant temperature of 

87.14°F and an average inside surface tempera.ture of 72.i3°F is 

q,c = ((T8 a - Tra)/L)kA = 5.14 Btu/hr 

The total heat flow at any point is then the sum of these three components, 

or 

The main interest·in a problem such as this is the conditions at 

the receiving end or at the interior of the building .. If xis set equal 

to L in the foregoing equations and they are reduced to a simpler form, 

then 

Tf(L,t) = 4a82 sin (0.,262t • 97.4°) 

Th(L,t) = 1.435 sin (0.525t ... 241.83°) 

Tc (L) = 72 .3° 

qf(L,t) = 8(98 sin (0.262t 97.25°) 

qh(L,t) = 2.,76 sin (0.525t,., 212,13°) 

The form of the input was assumed to be 

T (O,t) = 34.3 sin (0,262t - 52.4) 
f 

for the fundamental, · and 

Th(O,'t) = 13 ... 7 sin (0.525t .. 161,,55) 

for the first harmonic~ The lag in the temperature at the receiving 
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end for the fundamental and first harmonic components respectively are 

t lag Tf = 97,.4 .. 52,A/(57~3)(0.262) = 3 hours 

and 

t lag Th= 241~83 .. 161.55/(57.3)·(0.525) = 2~67 hours 

This compares favorably with 3t216 'hours and 2 .• 837 hours as computed by 

the investigating team.. Note that their values were not verified by 

experimental data, so it is not known whether our values were better 

than theirs or not. The lag of the total temperature wave at the receiv­

ing end could be obt:ainerl by differentiating. the sum of the fundamental 

and harmonic components, setting this equal to zero, and solving for t. 

The expressions for the total temperature and heat. flow at the 

receiving ,end will n0w be given as 

0 . 0) . . 0) T(L~t) = 72.3 + 4.82 sin(0.262t-97.4 +.1.435 sin(0.525t•241~83 

and 

q(Lat) = 5.14 + 8.98 sin(0.262t ... 97«25°) + 2.76 sin(0.525t-212.13°) 

In the paper (13), the team presented a plot of the observed heat flow 

l!tt the inner ~ur:face, and a superimposed plot of the h.eat flow at the 

inner surface as calculated from their equations.. This figure will 

now be reproduced here, and the.re will be plotted on it the heat flow 

at the inner surface as calculated from our equations. This . should 

provide an evaluation of the equations and meth~d of solut.ion. 
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Figure JO, Heat Flow at the Inner Surface 

This figure shows that the method.outlined in this thesis ~:j.ves an almost 

perfect fit to the observed curve.. The fact. that this: solutic:m ;givesea 

much better approximation than the solution obtained by the investigators, 

should be s:uffid:ent proof of the validity of these methods,. The time 

lag of the heat flow as computed from the equations, obt.ained by setting 

the derivative of q (L,. t) equal to zero,. should 1tf fairly accurate since 

the maximum of the a:uthorfs computed curve.seems to coincide with the 

maximum of the observed curve .. At any .rate, it is much more accuri:ite 

than would have been obtained using the solutien obtained by the,·inves ... 

tigators since its maximum deviates somewhat from the time of the ob-

se.rved maximum. 

A$ a whole, the results of this comparison have been gratifying in 

that they indicate the desirab'd.lity of using the equations and method 

o·f approach listed here in many cases involving the periodic flow of 
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heat. There are many other areas in which the application and desirabil­

ity of these methods could be shown, but the one presented here is a 

sufficient indication. 



CONCLUSIONS 

Since the object of this thesis was to see if the proposed method 

offered any particular adv an tag es over conventional me. thods; it could 

be considered a success .. In the relatively little space devoted to 

each aspect of the method.9 sever~l advantages became evident in most 

cases.. Although time and purpose did not pe.rmit full development of the 

analysis in many areas; sufficient background has b~en laid to form the 

basis and incentive for further investigation. 

The form of the equations for te.mperature and heat flow themselves · 

offer several ad.vantages. The. first of these is the fact that the solu"" 

tion has be.e.n obtained in one form which is applicable to all problems 

b1volving sinusoidal periodic d:dving functions. The basic different·ial 

equations do ID.ot have to be resolved for each individual problem~ How ... 

eve.r,, there is no restriction to purely sinusoidal driving functions. 

S:i'.:nc.e the equations a.re. linea:r and. the principal of supe.rposition applies, 

the:re can be obtaimie.d a Fourier expansion of a given. waveform in terms 

of sine and cosine fun\c.tions, to be applied to ou:r equations for a 

sufficie.nt numbeir of te:rmsy and then the. results sttpe.:dmpose.d. Thus 

there has beem o'bta.ined a solution which is a.pplfoable to virtually any 

heat conduction p:roblem couce.r!lled with periodic flow of any type .. 

The value. of having a closed form type o:f solution which accurately 

describes the sy,:,item is evident. It leads. to simplified calculation and 

likewise a reduced possibility of error. 'I'he fact that the approach doe.s 
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give a closed form solution which is evidently much more accurate than 

conventional methods leads to a better physical understanding of the 

proble~ The time lag1. which is usually of great interest, is readily 

computed in most casesJ> and t.he facto:rs affecting time lag are better 

understood., 
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The accuracy of the method is evident from the example presented 

in Chapter X., The little errata that was present in this example was 

probably due to the two term approximation~ If higher order terms had 

been taken to approximate the,drivitj.g functionJ> such errata would prob­

ably not have been presentq 

The portion of this thesis with the most potential to the engineer 

and designer is the valuable design techniques which are inherent in the 

method., Some of these. techniques have been pxesente.d here as time would 

a.lltow» and man.y othe:rs worth investigating can be obtained from the trans­

mission line field. The possibility of varying the output temperature 

or heat £Low by va.:ryin.g the length of the body as discussed in section 

'7,.2 Cl1illuld be a ve:ry valuable tool, a.specially to the heating or air 

cond:i.ti.)!iling e.ng;in.e.e.r in the design of .walls or insulation. The three­

fourths of a waveloogth criteria pre.sented in Chapter IX. provides a 

quick idea of t;he significance. of reflection in a body<) If a designer 

wished to reduce· refle.ction as muph as possible,, he could apply this 

crite:riaJ> and then vary the frequency, change certain properties of 

the body» or cha,nge the material in the body 1 until he obtained the 

de.sired degr.·ee l@.f reflection or absence of reflection9 

The ease of computing temperature, heat flowJ!· and lag in a composite 



body regardless of the nu.mber of sections or the configuration, makes 

the method very valufbleQ The number of different problems and con­

figurations that could be. handled is almost limitless. The concept of 

transfer impedance has much potential in this areau 

In summary.? it can be concluded that the investigation has been 

worthwhile., There have been pointed out several advantages inherent 

in this type of approach and certain areas suggested as being.especial .. 

ly indicative of bearing fruit if subjected to further study., Whether 

or not this further study is performed, the ideas, equations, and tech= 

niques pre.sented here should be sufficient to allow a complete and 

critic.al analysis and design in any problem concerning the periodic 

flow of heat by the mechanism of coEduction ~ith which an engineer might 

be confron te.d. 
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APPENDIX 

An experiment has been performed for the purpose of illustrating 

the presence of reflected waves in an actual physical situation. The 

experiment was run in three parts,, 

The setup for the first part consisted. of a three foot long, in­

sulated aluminum rod, three-fourths of an inch in diameter .. This rod 

was driven at the sending end by a periodic temperature and was 

left exposed at the receiving end to slightly moving air at room 

temperature .. The periodic driving function was approximately sinu­

soidal and could be assumed to be such .. Thermocouples were placed 

at points O inches, 6 inches, and 11 inches from the sending end, 

and the temperature at those points were recorded as a function of 

time. This is shown in the following platev 

In the second part, the original rod was cut off at 13 inches, 

and a two foot long aluminum rod of 1/2-inch diameter was connected 

to it at that point,. The original thermocouples were left .. in place 

and one more was located at the junction of the two rods., The 

receiving end conditions of the second rod were approximately the 

same as they were in the first case. A constant temperature source 

was then applied, and the resulting response was recorded as ·shown 

on the plate .. 

The third part used the same physical setup as was used in part 

two. T.he difference was that in this case the same periodic source 
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was applied that was applied in part one. This was done in order 

that the results of part one might be compared with the results of 

part three where there should be measurable reflection • 

. The response in part one was exactly c1.s expected., The periodic 

source gave rise to periodic variations of some smaller magnitude and 

lagging behind the source variation. The decrease in magnitude and. 

the time lag increased as points were observed farther from the source. 

This part of the experiment was run only to obtain some basis on 

which to compare the response obtained from part three .. Since the 

exact properties of the aluminum alloy used were unknown, the 

attenuation and phase constants for the materia~ were determined from 

the data recorded for this case. To do this, the magnitude of the 

variation was noted t-0 be 92 • .5°F at Xi=O, and 39°F at :x;::~ ft .. !t 

could be safely assumed .that the attenuation near :x=O approximates 

the infinite case, the'tl-

CJ~ 92.5 
e = 

39 

From the measured time lag, ~ can be found 

~ = 0J t = 1.365 
.5 

Before proceeding, it should be noted that this method of determining 

the properties of a material could be very interesting to an individual 

interested in obtaining such values.. The method is ve.ry simple, and 

should provide practical values for these constants. To obtain reliable 

values the body under study should have a length of at least one wave 
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iength :i,n order to insure a sinrulation of. the infinite cas·e. ·WiA:p. 

a U.tt;le .care in -me-asurement and calculations this method shoui.a -pro-

vide 4ccurate results. 

The r:esponse to the constant f:em~rature which was applied in 

J4t't two gives convinc:Ll'lg evidence of reflection. Considt}r first 

the response.at thermocouple one. The curve starts at O with •ome 

:t~itial rate .of change determined by 'the incident, wave, and continues 
. ·-. 

". 

until at point A .on the curve the point receives a 1;efle.cte.d wave 
·. . } 

. . . . . . ... ~ . ·. . . .. . . . . . . ' . . . 

which has come.from the head whieh was placed on the rod to coQ,ta1n 

the heating element.;. This wave causes a small discontinui.ty, and 

then after reaching point B, the curve continues .on at e1:4sentially 

the .initial rate of change.,. The cqrv~ continues on until at C the 

point receives another reflecte4 wa~e through the he.an, but this 

time about .the t:f.meD is reached the .reflected wave f:i-om the receiving 
! ' 

e.nd reaches the source. This co~ponent is c;,f sufficient magnitude 

and of proper phase to chan~e the rate of .change of the curve, whi-ch 

is evident from point :o on.., The curve then continues on essentially 

uninterrupted except for an occasional i:-eflection frolll the· head •. 

The response at thermocouple .number tw.o ;.fonow: a .curye .typ':(:cal. 
•!.. . ... 

\. 
of a t:riticapy overdamp.ed system untU it l;'e.aehes point At.. At this. 

time the .reflected wave has reached t.he six-inch point and .eh,nge, 

the rate .of change of the curve. 'l'hi'3 chang·e .is obvious frolll, inspection 

of the curve., The .curve then continu~s on at this rate, since ~here 

are no other .reflections .significant enough to affect it. 

The thermocouples three aqd four, follow what is a typ;f.cal ,:,:espotift 
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for an overdamped system .. There is significant reflection at thermo-

couple three., but it is .so .close to the source of the reflection 

that there is not enough lag between the incident and reflected 

waves for a change tobe noticeabl~ .. 

The experimental response obtained for this case cannot be 

simply explained unless reflections are considered., These results 

then should be convincing evidence of the presence .of reflection., 

In order to compare part one of the experiment with part three, 

it is useful to compute what would be expected and then compare this 

with the actual results... Using the values of 0-and f3 computed in part 

one, expressions may be found for the temperature at various points .. 

Assuming a frequency of one cycle per hour, and using the previously 

given values, it is found that 

and 

'I'(.\.,t)= 38 cos(Wt - 39.2°) + 2.,06 cos (Wt - 122.8.a) 

11 
'I'(J.2., t) == 18,.,35 cos (Wt-721.1) + 4.24 cos (Wt-90°) 

assuming that the input is a cosine function with a magnitude of 

90°F.. This gives maximum values for the temperatures at 6 inches 

and 11 inches of 39°F and 22 °F which lag behind the input by 

7 minutes and 10 minutes,. This compares with the experimentally 

obtained maximums of 42°F and 19"F and lags of 7 minutes and 10 

minutes .. These results a.re very good in view of the several approxi ... 

mations which we.re made... . Tb.e values of 0- and f3 for the second section 

of the rod were .obtained from those for the first section by proportion. 

This, together with the fact that the temperature at x = 0 was not 

exactly a sine wave and the fact that the frequency was not quite 
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one cycle per hour, assures us that these values are sufficiently 

accurate .. 'I'he values given by these two equations are plotted on 

the plate for the purpose of comparison .. 

The magnitudes computed for the system in part one are 38°F 

and 18.JS"'F as compared with the experimental values of 39°F and 

18 ... 5°F. These computed values are excellent considering the app:tfoxi-

mations made. 

The significant pdint to be made here is that in the stepped or 

composite rod the magnitude of variation is greater than the magni-

tude of variation in the simple rod. This in itself is conclusive 

proof of the presence of reflection in the composite rod, for if 

there was no reflection the magnitude of variation at any point would 

be the same for both cases. 'The increase in variation at the 6-inch 

point was 3.,5°lfJ1 and at the ll~inch point the increase was 81-'.. 'I'he 

increase was greatest at the point nearest the receiving end., This 

fact removes any doubt that the increase was due to reflection, be-

cause if the increase wa:s due to some. e:K:ternal effect it would no 
·ii 

doubt have been uniform, ~ereas, considering re.flection you would 

expect t'he greatest increase at the receiving end. 

The purpose of this experiment was for the confirmation of the 

exis·~ence of reflected waves in heat conduction sys.terns. Consideta.ble 

effort, time, and money could have been put into this project, and 

some very elaborate, conclusive res.ults could probably have been ob-

tained. However, it was the purpose here to only confirm the existence of 

traveling waves in order to supplement the development presented in the 

body of the thesis, and to lay the foundation for further investigations~ 
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