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PREFACE 

Cascade eontrol systems in the processing industries came into 

use about 1947. Since that time numerous papers have been written 

concerning the performances attained. Principal attention was placed 

on the benefits of interlocking a primary process variable with a 

secondary variable and the improved control when disturbances fall 

within the secondary loop. The work presented here will show that 

still further advantages may be realized from a cascade control 

system by including significant process time constants in the 

secondary loop so that the over-all time constant (transfer lag) may 

be reduced. 'rhi:s can greatly improve the controllability of the 

primary variable when disturbances enter the process outside the 

secondary loop. 'I\.ro methods will be used to analyze a system. 

( i) Simulati.on on an analog computer ls used to analyze the 

benefits of including various portions of the pro<.~ess .inside the 

secondary loop. (2) Hoot Locus techn:i.ques are employed to analyze 

various controller configurations for the secondary controller. 

Indebtedness acknowledged to D:r. 'Truet B. 'Thompson and 

Professor Paul A. McCo.1.lum for their valuable gui.dance and advice. 

The author wishm, to express his appreciation to Phillips Petroleum 

Company for permission to publish this work. 
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CHAPTER I 

INTRODUCTION 

In visiting any of the modern chemical plants or petroleum refineries, 

one striking feature noticed is the complex layouts of processing equipment. 

This equipment with its interwovenj interconnecting pipe networks almost si

lently processes millions of tons of valuable productij ,a.ch yearo A 100:re 

subtle fact is that these huge plants operate continuously with very little 

need for adjustments by a human hand. This is the reward of hundreds of 

automatic pro.cess control systems on duty in the plant. Sensitive trans

ducers located in the process streams throughout the plant.sense output var

iables of many processes. Signals from these transducers are continuously 

transmitted to centrally located recorders and controllers that automatical

ly keep the individual processes within operating limits. A real benefit of 

all this is not only the :reduction of manpower but also the ability to safely 

produce a higher quality product at a greater profit and herein lies the 

purpose of ari.y manufacturing plant. 

Automatic control is now recognized by many industrial organizations 

a~ being an essential aid to efficient plant operation. Furthermore, many 

.processes would not operate at, all if it were not for automatic control 

systems. Synthesis of organic compounds like benzene and toluene, produe= 

tion of synthetic rubber, catalytic refining of gasoline, and the separation 

of the isotope of uranium. for atomic energy could never have resulted with

out precise controls. 
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The principle of operation of most process control systems is based 

on; the feedback theory that is $0 important to audio communications and 

se~vomecha.nisms. The essential requirement of feedback control is that 

the error between the state desired and the state existing is constantly 

measured a.nd if there is an error, corrective action is taken through a 

power amplifying device to eliminate the error. 1 Figure 1 is a diagram 

of a feedback control system. 

It is true that some process control systems are true servomechanisms; 

however, most would be classified as regulators, because only load dis

turbances (not changes in commands) account for the initiation of cor

rective action. 

In closed loop process control there are principally two types of 

systems: 

(1) Single loop 

(2) Multiloop (cascade). 

The single loop system is the workhorse for controlling the ordinary pro

cess. Figure 1 is an example of a single loop control system. If the 

characteristics of the process are such that a single loop system does 

not do a satisfactory job of control, the multiloop or cascade control 

system will many times provide the quality of control desired (see Figure 

2). It is the author's purposes: (a) to relate some of the character

istics and benefits of cascaded systems used for process control and 

{b) to demonstrate by analog simulation and root locus analysis of a.n 

actual system, effects of transfer lags and controller configurations 

on the performance of such systems. 



CHAPTER II 

REVIEW OF CONTROL SYSTEM PARAMETERS 

From an engineering standpoint, the objective of a control system. 

in any process.is to maintain a state of dynamic equilibrium despite 

disturbances which may occur in any part of the process. Optimization 

of the design and perfo:nnance of automatic controls requires a technique 

known as systems engineering. W. E. Vannah and L. E. Slater had this to 

say about systems engineering~ 

11 There is no magic to systems engineering. It requires 

definition of the problem, statement of the preliminary speci-

fications» detailed examination of the components of a system 

and organized (not necessarily routine) integration o.r:a+l the 

components into a system in such a way that over-a.ii performance 

will be known before the system. is flanged up. 2 

Regardless of the type of feedback control system used, there are 

four basic components which are required and which will receive the most 

attention in the systems analysis. They are~ 

1. Controller (one, two or three mode) 

2. Final Control-Element (control valvej etc.) 

3. Process 

4. Measuring Device (therm.ocouplej etc.) 

Againj Figure 1 is a block diagram of a. simple loop using these cozp.po

nents. They will appear in other more complex systems in greater nwnb~ri :i, 
I -• 

and various arrangements. It is not the purpose to giv~ a ___ s1etailed 

3 
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description of the hardware and its operation since it can be found in 

any book written on process control.3 

In this chapter we will review different system parameters that must 

be recognized and investigated in order to complete a systems analysis. 

Transfer Lags. In analyzing any system one of the most important 
I 

parameters to investigate is the transfer lag. A component in a system 

will have a transfer lag (sometimes called residence time,cap~city lag 

or time lag) when time is required for the element to follow a change in 

energy level made at its input. An example of a transfer lag is the time 

required to complete the mixing of two feeds in a reactor. Another ex-

ample is the electrical circuit consisting of a resistance Rand a 

capacitance C in shunt (see Figure 3a}. This is an electrical analog 

of m.any. other systems such as surge tanks or thermocouple probes. 

Transfer lags are described mathematically in a transfer function 

expressed as a complex ratio in H.eaviside or Laplacian.notation. The 

RC transfer lag shown in Figure 3a would be described mathematiGally by 

equation 2-1 

(2-1) t:: o 
e1 

,,..._, 
= _J_ where (; = RC the system time constant. 
Ts+t 

The response of e O following the application of a step voltage e 1 

is the well known first ordered exponential rise seen in Figure 3b. 

Ceaglske writes that it is difficult to make an all-inclusive 

statement on the effects of the transfer lag upon the stability and 

controllability of a system. Large lags ~low the response of the 

system to a change, and this is not desir~ble. However, generally 

speaking the relative values of the lags are of greater significance 

than the value of any particular lag. It is a truism that the system 

with the least controllability is one in which the iags in each block 

of process are equal.3 
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Some of the segments of a process control system that contribute 

transfer lags are: (1) the process itself such as reactors, heat ex

changers or distillation columns, (2) measuring elements such as thermo

couple probes 1 (3) final control elements such as control valve actu

ators and positioners. If the designer can eliminate or reduce transfer 

lags in any of these segments, he will improve the response of the system. 

With today's increasing emphasis on improved dynamic performance of 

industrial control systems, intensive attention is being focused on the 

final control element, actuators and positioners; for aside from the 

process itself the final control element has been the least responsive 

element of the control loop. However, there are many temperature control 

systems whose main improvement would be in decrease of transfer lags in 

thermocouple probes and wells. 

Many of the lags of a process control system are second ordered. 

Pneumatic valve actuators, bourdon tubes, and thermocouples are typical 

examples. The process is most notorious for its multi-ordered lags. 

For example, in a fractionation column where each tray represents a heat 

exchanger with thermal capacite,nce and resistance, as well as mass trans

fer, the transfer lag is multi-ordered. This greatly retards th~ effect 

of heat input to the column reboiler upon a temperature measurement at 

some point toward the top of the column. 4 

Pure Time Delays. When there is an interval of time following a 

change in a system input before the output starts to change:, a pure time 

delay is' present. ( This is sometimes called transport lag, distance 

velocity lag or dead-time.) It may be contrasted with the single 

ordered transfer lag where the output starts to change immediately 

after an input ~hange. 
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Field experience has shown that systems which have pu:re time de-

lays are very difficult to control. Dominant quant:f_ties of it will 

cause the controller gain to be set quite low for the .sake of sta-

bility. With even small amounts of pure time delay1 controllability 

deteriorates sign:! .. ficantly. This is because of the linearly increasing 

phase lag of the output 'l'f'lth respect to the input when the system 

.frequency is increasect. 5 A pure time delay arises more generally in 

connect:l.on with fluid flow in a pipej ·chemical process or heat ex.changer 

(see Figure 4). However, the measuring system itself may introduce this 

undesirable characteristic. One of the problems of the application of 

an on-stream analytical instrument in a chemical process is the pure time 

delay introduced by sampling systemso 6 Several transfer lags in cqscade 

contribute an apparent pure time delay which is as detrimental to control 

systems as delays arising from fluid flow. A pure time delay is eJfpressed 

=Ts as e in Laplacian calculus form where T is the delay time o 

Nonlinearities.o Most chemical or petroleum processes have non-

linear relationships between variables over the range in wnich they 

operate. As a consequence, if a load disturbance covers a considerable 

range of values:, then the control system will not b~ able to correct 

properly with any one gain or set point. 

Some of the control components in a system will have nonlinearities. 

Pneumatic controllers and transmitters are examples since they sat~rate 

at both ends of their operating ranges. The presenqe of dead zone in 

instruments contributes a nonlinearity. Orj if energy is fed into a 

systarn through a controlled valvej this valve usually constitutes a non~ 

linear element unless special provisions are made tq insure linearity. 



7 

This.is because the energy flow and the displacement of the valve are 

not linearly related.? Also all valves have in their system mechanical 

movement which produces a nonlinear effect called hysteresis; that is, 

the valve will not produce the same flow when a given stem position is 

approached from opposite directions.3 

For practical purposes, the reader may assume that a system is 

linear if in a sinusoidal analysis with fixed frequency the amplitude 

of the output is directly proportional to that of the input. But this 

is seldom the case. 

Self Regulation. A factor that has an important bearing on the 

type of response and ease of control of a process is its degree of 

self regulation. The term self regulation is used to describe that 

action (in a system) which tends to correct for load changes inde

pendently of the controller.3 Notwithstanding the many factors involved 

in unit design which favor self regulation, a cascaded system of material 

residences arranged in progressively decreasing time constants is 

inherently self regulating and can be operated with simpler instrumen

tation than a systern not having this featureo 8 



CHAPTER III 

CASCADE CONTROL SYSTEMS 

Cascade control is defined as a control combination where a primary 

variable is held closer to the desired value by interlocking a primary 

controller with a controller for a related secondary variable4 (see 

Figure 2). 

The primary variable governs the operation of the portion of the 

process to which the system is applied. The secondary variable, while 

not being a primary variable in the process, is related to the primary 

variable. The magnitude of this effect will be dependent upon the 

characteristics of the process, the sensitivity of the primary variable 

to small changes in the secondary variable, and the transfer lag be

tween a change in the secondary variable and a corresponding change of 

the primar-.r variable. The greater the sensitivity of the primary 

variable and the larger the lags in the process the more important it 

is that cascade systems be used. In such systems, not only is each 

variable controlled independently but the two are linked together to 

provide an integrated control. 

To further define the cascade systemj it is well to discuss the 

different loops involved. Most systems will have two or three loops. 

These loops are referred to as2 

(1) Primary 

(2) Secondat·y 

(3) Tertiary 

8 
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The primary loop has in its path every element in the over-all multi

loop system3 including the secondary controller et al. It is shown by 

the outside loop in Figure 2. The secondary loop then is inside the 

primary loop and includes the secondary controller, final control element, 

the portion of the process up to 1,,rhere variable C I is measured and the 

associated measuring element. A tertiary loop would be any loop re

quired inside the secondary loop. The primary loop must have the largest 

transfer lags and delays while the secondary loop has smaller amounts and 

the tertiary even smaller. 

The cascade control system derives an advantage from the secondary 

control loop being around a significant transfer lag. The existence of 

this loop provides two principal effects. First, the disturbances which 

fall inside.it are regulated out very quickly because of the single 

transfer lag and the higher gain permissible in the secondary controllero 

(In an actual process the disturbance referred to could be changes in 

ambient conditions, feed conditions or other sudden changes.) Secondly, 

the response time of the control system in the regulatl.on of disturbances 

entering the process outside the secondary loop is substantially decreasedo 

There are other advantages gained frc>m using cascade controL The 

following will cover the main reasons for using this type of' system.10 

1. Improve control by reducing the effective transfer lag. 

2. Reduce load changes, nonlinearities and discontinuities near 

their source. 

3. Maintain a desired relationship between variables. 

4. Accurately limit a secondary variable. 

Imrestrnent,wise it is economically sound to run several continuous 

processes in series with small or no surge capacity between pla:p.ts and 
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this has led to the use of cascade controls. The following a.re comments 

by Mr. Allen L. Chaplin:8 

11 The instrument engineer has made available a technique 

of instrumentation which minim.iz.es the necessity for surge-

averaging control and also makes possible in some cases a 

reduction in volume inventory of processing equipment. The 

cascade control system can be applied to series or branch 

arranged processing units and can be so adjusted to transfer 

load changes of a preceding stage without the necessity of 

large volume surge." 

The most rewarding cascade control systems are those which 

actually improve the control system by reducing the effective transfer 

lag. When one o.f the main system time constants lies within the loop 

of the secondary controller, its harmful effect on the over-all systems 

control can often be greatly reduced and result .in higher gain of the 

primary controller and shorter period of oscillation of the primary 

variable •. Investigations on this advantage will be reported on in a 

later chapter. 

Mr. J. G. Ziegler reports that one should always look for the 

second largest time constant (transfer lag) :Ln the process for in= 

clusion in the secondary loop. 'I'he largest is the one usually to 

be controlled by the primary loop. But the second largest has a 

considerable effect on the over-all effective lag, which in turn 

determines the period of oscillation of the system. If the second 

largest one were f.31:iminated, it i.s likely that the system could be 

represented by a single transfer lag. This is what the design(Sr 

strives for. Thus by including a large transf,::r lag in the secondary 
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loop this time constant can virtually be eliminated from the transfer. 

lag of the over-all cascade control system, thereby increasing the 

f f th t d O O t l 10 requency o e sys em an lll1prov1ng con ro. 

Mr. R. L. Day states this another way by saying that if the gain 

of the secondary controller is increased to infinity, the phase advance 

resulting.will be the lag angle of the process which this controller 

controls., and the frequency response will be the same as the section 

between the measurement of the secondary variable and primary variable. 9 

In an actual plant, of coursej the system will become unstable before 

this can be realized. However, the more plant included in the secondary 

loop, the greater is the phase advance obtainable and the more the 

operating period may be reducedo Mr. Day goes on to say that the ratio 

of the two loop time constants 

(see Figure 5) must be greater than 3 so as to avoid resonance effects; 

but desirably not greater than 10. The total loop gain (the product of 

the controller gains) must not be so high as to over-range the final 

control element. 

Figure 5 is a typical case of cascade control and can be used to 

define mathematically why we expect to eliminate a transfer lag and 

thus improve the frequency response of the total system. K G ar1d s s 

K1G1 represents the transfer function of' the secondary controller and 

part of the process included in its loop. H represents the transfer s 

function of the measurement element and transmitter for the secondary 

loop. The equation representing the transfer function of the secondary 
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loop then is simply 

(2-1) 

If HK G K1G, is very much greater than unity for all frequency values 
S S S I 

of interest, equation 2-1 reduces to 

(2-2) 
1 KG =-

2 2 H :s 

If H is characterized by a transfer s 

lead. This would mean that G,,.. would 
~ 

. 1 
lag then H would be a transfer 

s 
render lead compensation to the 

over-all system instead of a lag resulting in system improvement. 

Usually H has a relatively small time constant and KG cannot be 
. S S B 

increased so that equation 2-2 holds, consequently, very little lead 

compensation results. However!/ even though very little actual lead 

compensation i.s present:i the transfer lag of G and G1 is reduced s 

which is in effect the same as lead compensation. 11 

When the time constant i.n the secondary loop is very small)) the 

secondary controller can be thought of as a perfect valve positioner. 

In this case both the primary and the secondary controller can be 

12 
adjusted independently with respect to their own closed L::iopo 

A vector diagram method may be used to deduce the fr,1quency response 

of a cascade control system:1 a.nd hence to allm,1 deduction of appropriate 

controller settings by a method used for simple loops. Also the vector 

diagram clearly illustrates the phase-advance properties of the secondary 

loop. Through their use the performance of a cascade control system can 

be predicted when the frequency response of the process is kno1Ji.rn or can 

be estimated. 9 A series of vector diagrams is drawn for a number of 

frequencies. 'I'he vector diagram is started by drawing a l:i.ne E8 of 

unit lengthjl representing the error in the secondary control loop (see 
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Figura 6). Vector Q8 , representing the controller output, is drawn at 

the appropriate angle to E (180° for a proportional controller) and with s 

length equal to the controller gain. The angle and length of vector B3 

representing the measured variable, is known from the frequency response 

of the portion of the process included in the secondary loop. The diagram. 

is completed by joining the ends of vectors Es and B which represents the 

set-point of the secondary controller. The angle~ can then be read off. 

This is the angle which must be subtracted from the over-all process phase 

lag to determine the 11effective 11 phase lag when the cascade controller is 

used. The effective open loop gain of the process, as seen by the primary 

controller, is obtained by multiplying the actual process gain by the 

ratio G /G. 
' s p 

If the interinediate measuring point is chosen so that the portion of 

the process included in the secondary loop is one single transfer lag3 

obviously the gain of the secondary controller can be very largeo Further

more, the phase lag in this part of the process will approach 90°0 The 

effective phase advancecA then tends to approach 90° .as shown in F;i.gure 7. 

This is an appreciable phase adv-ance when compared with that obtainable 

with derivative action in a controller, wh.ic:h is usually about 30°. 
':f '' 

There are many examples of cascade control systems in industryo One 

of the more common places to find them is on a fractionation column i.n a 

petroleum refinery (see Figure 8)0 Here you will find level controllers 

cascaded onto flow controllers forming a single.cascade and composition 

controllers cascaded on temperature controllers which in turn are cascaded 

onto steam flow controllers forming a double cascade. In this case the 

flow controller's time constant is so small in comparison that its loop 

acts more like a perfect valve positioner. The composition analyzer 



monitors the product to determine whetht3r the temperature controller i.s 

maintaining the desired value. If notJ the composit,icm controller will 

transmit an error signal chcmging the set point of the temperature 

controller so that through tem.pri:rature correction the desired composJ .. tion 

may be attained. As a follow· up the thermocouple monitors temperature to 

check it against the new set point; if a discrepancy exists, an error 

si.gnal is generated and the set point of the steam flow controller i.s 

changed to call for a new steam flow rate. 

Each of these variables is related. The primary ·variable is compo

sition. The first intermediate variable is temperature, which j_s 

indicative of composition. The second intermediate variable is steam 

flow. This variable is related more to temperature and less to 

composition. One of the criteria of a well performing system is to 

have firm relaticinships between these measured variableso 



CHAPTER IV 

THE ANALYSIS OF TRANSFER FUNCTIONS 

Information on the advantages of cascade control systems over single 

loop systems may be obtained by analyzing the differences in the transfer 

functions for two such systems. These transfer functions may be the process 

output with respect to: (1) set-point inputs or (2) load inputs. From the 

comparison of analysis of systems with these inputs improvements in transient 

responses and the natural frequency of the system can be seen. 

In this chapter transfer functions will be analyzed first for set-

point inputs and then load inputs. 

Set Point Inputs 

In the past the response of a process control system to a set point 

change was used primarily for. finding out more about the process which the 

system controlled. However, with the advent of computer systems cascaded 

onto the conventional control loops 9 the importance of set-point disturbances 

takes on added importance. This is because the computer system will manifest 

itself by applying a fJtep change to the set points of other loops. Of 

course, set point changes have always taken place within a cascade syste:.m3 

but these changes have not been discrete but rather continuous. 

To write the transfer function of a single loop system refer to 

Figure 9" 

The transfer function of the process output with respect to the set 

point is Q. Equation 3-1 is this transfer function. 
r 

15 
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(3= 1) C - "" 

The transfer function fo,r a cascade control system for a set-poi.nt 

change is now derived. Refer to Figu:re 10. It is assumed that the transfer 

function for both measuring elements are equal. This may or may not be 

true but for the;se purposes it will be accurate enough to make the assumption. 

'.l'he transfer function of the secondary loop i.s~ 

(3-2) 

then 

(3-3) 
C 

Substitute KG K1G1 
S :5i I = ,rr: w --

·i+HK8 Gii!K 1G1 

0-4) ~ -
i+HK G K G K1G1K2~ .. · 

E,PSS . ·-

Simplify 

(3-6) 

Simplify 



Compare this with the transfer function for the single loop system 

which was equation 3-1. 

(3-1) C 
r 

From this comparison it is readily noted that the transfer function 

representing the lag of process If 1 and measuring element has been 

el.iminated from the main transfer function. This is contingent on K 
s 

being quite high as pointed out previously. 'fhe 1 term can be :neglected 
H 

in the comparison since it appeared in both expression.,. Actually thh, 

term would furnish lead compensation to the system. 

Since equation 3-7 has a smaller nu.m.ber of transfer lags than equation 

3~1~ it is self-evident that the cascade system would follow a set point 

change closer and the frequency of the response would be higher. 

One of the principal obj ecti ve.s of a process control i.ystem i.s to 

eliminate the effects of load disturbances. Thus, the figure of merit 

of a system depends on how successfully this is aceomplished. The com-

parison of the transfer function for a load disturbance with respect to 

th~. prcH.::ess output for the two syiBtem.s under consideration 1,dll enable a 
t 

judgment on thi.s relative merit. 

The adva:ntage8J of catilcade control systems when the load digturbanceiB 

fall within the secondary loop ha-v·e been descril;)ed in a rm.mber of different 

paperis written on the subject. However)> there seems to be little work done 

to show the merits of' such a system when the load disturbance falls in the 

primary loop but not in the secondary loopo Obvigui:,ly;i we do not e;,;cpect 

the same dramatic :improvement that can be had for the 1,econdary loop 

disturbances:,» but improvement is experienced 11:;ince the natural frequency 



of the entire system is increased. Mr. J. G. Ziegler says that an 

improvement for disturbances in the outside loop should be one of the 

10 objectives of a cascade control system. It is this type of 

disturbance which will be studied here. The transfer function we are 

interested in is C/U ( s'ee Figure 10). 

Equation (3-8} is this basic transfer function for the cascade 

system. 

(3-8) C - = u 

by rearranging., 

(3-9) C 
- == u 

Substitute 

(3-10) ~ = }HkpGpKsGsK1GtK2~2 - . .J 
~+HK5G$K1G1 + HKpGpKsG5K1G1K2Gij 

if HK!!,P8 K1G1 771 then, 

Simplify 

(3-11) ~ ~ ~KpGpKsGsK1G1K2G2 . - . J 
~K8G8K1G1 + HKPGPK5 G5K 1G1K2G~ 

(3~12) ~ z f°KpGpK2G2 l [Kp\tPJ __ 
l]+KPGPK2G2 J 2J 

[k~n;J 

18 

Compare this with the transfer function for the ~ingle loop system 

shown by equation 3-13. 

C 
{3-13) U = 

This comparison is more difficult to analyze than that involving the 

set point change. Perhaps block diagrams will aid in recognizing the out= 

standing differences. 
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'!'he transfer function for the two systems as represented by 

equations 3-12 and 3-13 are diagram.med in Figures 11a and 11b. 

A well performing control system will have a configuration which 

forces C to follow the set point r rather than a load disturbance U, 

i.e., we want Q = O, while we want Q = 1. 
U r 

In looking at the d.,!i.agrams developed from. the respective transfer 

functions, we see that the single loop system has one transfer lag K2G2 

in the forward direction, but it.has a multi-ordered lag in the feedback 

representing the measuring element, controller and process #1. 

On the other hand the cascade system has transfer lags representing 

the primary controller and process #2 in the forward loop, but no transfer 

lag in the feedback. It also has a transfer lead acting after the 

closed loop. 

Based on this information we can conclude the C is more tightly 

coupled to U in the single loop system than in the cascade system because 

a smaller lag exists between the two. This will mean that C will try to 

follow a load change at U more readily. Furthermore, the feedback of 

this change is slower because of the multiordered lag in the feedback 

circuit causing a larger value of U' to be maintained. This could cause 

E to overshoot the value of U resulting in an even greater disturbance 

in the output of the process c. 

For the cascade system,C does not follow U so quickly because of 

looser coupling through the forward part of the system. However, because 

of the gain of KG any disturbance which passes will be of a greater pp 

magnitude, but any change at the point mis quickly fed back to reduce the 

value of the disturbance. Even if a disturbance is felt at the point~, 

the extended portion of the proces$ 1/K G will attenuate this disturbance pp 
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so that the output C is less affected. This attenuation is proportional 

to 1/K and can be quite important in maintaining Cat the set point 
p 

rather t~an following the disturbance. 



CHAPTER V 

ANALYSIS OF CASCADE CONTROL SYSTEMS 

It has been discussed in previous chapters how a secondary loop in 

a control system could imp:rl~ve the response of a process output not only 

for disturbances falling inside the secondary loop but also for a 

disturbance falling outsideQ It will be the purpose now to investigate the 
I 

;,benefits of including various portions of a process in the secondary loop 

'when a disturbance enters outside the secondary loop; also a study of 

controller parameters will be made when the secondary loop contains 

multiple lags. 

Two methods will be used to analyze and investigate the systems: 

(1) analog simulation and (2) Root Locus. For the study an idealized 

linear third order process i,dll be used. It was dynamically represented 

by three transfer lags <:1f .5, 1.0 and 1.6? minutes. These lags are shown 

as transfer functions in Figure 12. 

Analog simulation 1,,J'.ill be used to study the effects of including 

various portiom, of the process in the secondary loop when a cascaded 

sysrt.em controls the process. The Root Locus method will be used to study 

the benefits of different controller modes in the secondary loop. Both 

methods will be used to study a single loop control of the process so 

that its compari~,on with the Ca$cade control system may be madee 

The analog computer after having been ug;;ed so fruitfully as a reli.ant 

tool in the study of servomechanisms is now being accepted in the study 

21 
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of process control systl;lllls. It receives its greatest workout in the 

synthesis of control systems, but since the process is a part of the 

control.loop, the simulation of its dynamic characteristics is necessary 

and has pointed to improvement in the design of the process itself. 

With the analog simulation of a process, the design of desired dynamic 

parameters is possible. As a consequence, the control loop around the 

process can be improved. 

The electronic analog computer operates by means of an electrical 

model of the system described by the mathematical expressions being solved. 

The voltages at various points in the computer represent the values of the 

variables involved. Operation of the analog computer is on a continuous 

basis, with the electrical parameters behaving precisely as the continuous 

physical system does. 

By analog simulation of a process its measurable behavior, both 

dynamically and at steady state, is reproduced. The simulation is 

quantitative and requires a model that is accurate enough for the kind of 

performance needed and simple enough to be. quickly assembled, modified 

and operated. 

When applying the classical methods of synthesis to process control 

systems, the frequency response of the system is dete:rminede Obtaining 

the actual time response of the system is possible, but it entails a very 

considerable amount of calculations in translating the results from the 

frequency domain to the time domain. In engineering applications the end 

result desired in evaluating a:ny process control system is its time 

responsee Fortunately this is the result obtained from the analog com

putere 
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The analog equipment used in this study consisted of special com-

puting units built around the George A. Philbrick operational amplifiers. 
( 

All integrators were stabilized. Resistors and capacitors used in 

computing were the external plug-in type with per cent accuracy. 

Outputs were recorded on a 6 channel, Sanborn 150 Recorder, Model 156-

1100R. Speed of recording was 2.5 mm per second. A Sanborn D-C 

coupling preamplifier, Model 150-13002 was used in the input to the 

recorder. 

The process was simulated first with a single loop control system 

and then with a cascade control system. The cascade system was studied 

with the secondary loop containing three different transfer lags of the 

process: (1) .5 minute, (2) 1 minute, (3) .5 and 1 minute lag. The 

major process lag was always outside the secondary loop. The disturbance 

introduced to test the system's regulating ability consisted of a step 

change which always entered the process just before the 1.67 minute lag. 

The controller simulated had -proportional and reset modes. Its transfer 

function is given in equation 5-1. 

(5-1) 
g 

0 = 
g, 

1. (s + 1 ) 
200 T. 

l. 

T. is the reset (integral) mode time constant. The 200 associated with 
l. 

the pole is the integral mode gain at zero frequency. K is the proper-

tional gain of the controllero 

'I'he analog simulation diagram used to patch the cascade control 

systems into the computer is shown in Figure 16. A similar diagram 

was used for the single loop simulation, but without the secondary 

controller. 
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In each ease approximate controller adjustments were arrived at by 

first tuning the secondary controller without the primary controller 

cascaded onto it. Then the primary controller was connected and 

appro;ld..mate adjustments were made on it. Optimum settings of each mode 

was accomplished by minimizing the integral of the absolute value of the 

error in the primary variable. This is sometimes called IAE or integral 

of absolute error and can be mathematically expressed as~ /E/dt. 

Since this was an idealized process, the physical variables were not 

described other than in the dimensions of the analog domain, i.e. volts. 
il'9 ' 

Of the functions that were recorded, the two important ones were the 

values of the primary variable C and the IAE. Others are useful, 

however, in making a complete analysis. 

Figure ... 12 is a record on performance of a single loop control of 

the process. Curve a is the response of the controlled (primary) variable 

after a step change load disturbance. Curve c is the IAE and its maxi.mum 

value of 9 volts furnishes an index for evaluating the other configurations 

of control. 

Figure 13 depicts the performance achieved by cascade control with 

the .5 minute transfer lag in the secondary loop. The best controller 

setting showed that no reset action was needed in the secondary controller 

since a very high gain is permissible. Theoretically, this 0.5 minute lag 

is reduced to about .01 minutes by the application of the high gain. 

It is this that caused a quite definite improved performance of this 

system over the single loop system, when a load disturbance enters the 

process at the designated location. Curve e shows that the maximum 

value of IAE was decreased from 9 volts to 3.5 volts wI+en compared with 
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the single loop system. Curve a shows the output of the secondary loop. 

This is also the output of the primary controller since the secondary 

loop tran1sfer .function has been reduced to approximately one. Based 

on this, it can be seen that the primary controller output is the error 

amplified with i~t~gral Fction added. At steady state, the 9 volts 

output of the primary controller shown in curve a is from the integral 

mode. Thus the integral mode output permits load c~anges while the out

put is still held very close to the set point value of the primary 

controller. 

Figure 14 illustrates the further improvement when the 1 minute 

transfer lag of the process is inside the secondary loop and the .5 and 

t.67 minute tr?nsfer lags are in the primary loop. To include the 1 

minute lag in the secondary loop, it required that the position of it 

and the .5 minute lag be interchanged. This is theoretically possible 

in linear systems without altering the dynamic characteristics of the 

over-all process. Obviously, it would not be possible in an actual 

system. By applying a gain of 70 with a negative feedback loop around 

a 1 minute trans.fer lag., this lag would be reduced to .014 minutes. This 

reduction re.sul ts in an IA.E of 3, which was a decrease over Figure 13 as 

well as Figure 12. 

Figure 15 shows a cascade control system with both the .5 and l 

minute transfer lag in the secondary loop. The IAE curve shows that 

control of the primary variable deteriorated slightly over that of 

Figure 14 but was better than Figure 12 or 13. 

The response of the output has a small high frequenc; component 

which is added to a larger slightly under-damped component. The higher 

frequency component is caused by two complex poles in the secondary 
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loop. '.lhe slightly undamped component is generated by the single process 

transfer lag and the pole and zero of the reset mode. If the secondary 

controller gain were reduced the higher frequency component would be 

reduced but a larger d-c component would result. It was found that the 

secondary controller settings were more critical in this case than in 

others. 

Even though the time response of the system in Figure 15 is not so 

good as that of Figure 14 it still has a merit which the other does not 

have. That is, the proqability of disturbances falling inside the secondary 

loop greater. These disturbances can be regulated out very quickly 

with little effect on the primary variable. 

Figure 17 shows the effect of Reset action (integral) in the primary 

controller on the IAE number with various secondary controller gains for 

the system shown in Figure 15. It is noted that for any secondary con

troller gain, some reset action improves control but additional reset may 

cause control to deteriorateo 

Root Locus Anal¥sis 

The root locus method i.s a graphical method for :t:inding the roots of 

the characteristic equation of a system. This equation must be linear 

and of the form F(s) + 1 = O, in which F(s) is a function of the complex 

variables and :Ls factored. A single loop control system has this form, 

where F(s) is the transfer function around the loop for the system. To 

find the locus of roots the poles and zeros of F(s) are plotted in the s 

plane and used as the basis for sketching the locus. Each point on the 

locus is a root of the characteristic equation for a particular gaine 

This method of analysis was developed by Walter R. Evans and has been 

used quite exte~sively in the analysis of control system dynamics. 13 
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The root locus method of analysis has advantages over the 

frequency response method in that the closed ioop transient response 

can innnediately be obtained where with the f:reqpency response method, 

only a very tenuous correlation exists between it and the transient 

response of the closed loop system. 14 For cascade control systems a 

partieula.r advantage of the root locus method of analysis is that, 

when changes are made ~n the seco~d~y loop, the effect on the ove~~all · 

loop is shown directly. 

Frequent examples are found in the literature on obtaining the 

transient response, for a change in set point, using root locus tech-

niques; however, nothing has been written showing the transient response 

obtained for a load· change. It is. this type of system change which is 

considered .in the analog study and shall also be used in this analysis. 

For cascade systems, the procedure is to plot the root locus of the 

inner loop to obtain its transfer function in factored form for a 

particular gain. The major loop root locus is then that of a Si;ngle loop. 

containing this inner loop transfer function. 

The control system shown in Figures 12 and 15 will be analyzed using 

root locus methods. The single loop system will be studied using the 

same contro.ller settings as used in the' analog study. This will allow a 

check to be made between the two methods of analysis. It will also be 

used as a r.e.f'erence for determining the total improvement when the cascade 

control system is studied using root locus. 

This particular cascade control system was chosen for root locus 

analysis since its secondary loop is more complex than the others and the 

analog studied showed its controller setting to be more critical. This 

system will be studied with various modes in the secondary controller to 
,. ·:·' t/>i/'. 

determine the improvement possible. 
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A Spirule was used to determine the locus of roots. This device is 

described very well in the literature. 13 

Sinele Loop System 

Figure. 19 is a plo~. o;f the loei (possible roots) of the single loop 

system under st~dy (Figure 12). The only difference between the two systems 

is that the pole of the reset·m.ode transfer function is assumed to be at 

the origin instead of at -.005. This infers that the integr?l mode gain 

at zero frequency is infinite instead of 200. 

At zero gain the closed loop poles are also the open loop poles of the 

control system. \,Jp.en gain is applied to the closed loop systemj the closed 

loop poles move away from the open loop poles to determine the loci. 

'I'he open loop pole at the origin and t.he zero at 0.3 are contributed 

by the reset action of the controller. When controller gain is increased 

the closed loop pole moves toward the zero. (This closed loop pole is a 

root of the characteristic equation for the system.) Calculations of the 

gain at points on this locus reveals that this pole reaches the zero when 

the gain is infinite; however, with a finite gain it moves quite close to 

the zero. 

At a gain (K) of .126 note that the system is critically damped. This 

is indicated by the loci leaving the real axis. 

The pole located at -2~0 (for zero gain) moves out on the real a.xis 

as the gain of the closed loop system is increased. This renders the 

t!ansfer lagj which is associated with this pole, less significant to the 

dynamic response of the over-all system. 

The net effect of the reset pole and zero mentioned above is to bend 

the locus toward the jw axis. This of course makes the system more un

stable. However3 the pole near the origin causes the steady state error 

of the system to be very small and is usually desired in a control system. 
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'llle basic closed loop transfer function of the system for the output 

C with respect to the disturbance Ub is: 

( 5-2) ,_Q__(_tl__ = 
.. ,~ s+. s+.005 + 1.2K s+.3 

When the root loci are referred to, at a gain of five, the following 

closed loop transfer function can be written: 

(5-3) 3~ri, . = ·~.~~~2 s+.125+j 1.43 s+.125-j 1.43 

If a load step change (9~87~ is substituted for Ub the equation for C 

in the time domain can be written by taking the inverse transform. The 

inverse transrorm is equation 5-4. 

(5-4) C(t) = l.2ct? -· 282t - .435e - 3 .o7t + 3.4e -· 125t sin(81.5t-14) 

Figure 18 is a plot of equation 5-4. It is noted that this time 

response has a smaller damping factor than that shown in Figure 12. The 

assumption that the reset mode pole was exactly at the origin instead of 

at -.005 caused this difference. The reset mode consequently had a higher 

gain for any particular frequency. This moved the closed loop poles 

further out on the loci for the proportional gain considered. 

Secondary Loop 

The particular cascade control system to be studied with root locus 

plots has two transfer lags in the secondary loop; thus the control of 

the secondary loop i s more significant to the over-all process than if 

only one process lag was included. When only one process lag is in the 

secondary loop proportional gain is usually all that is necessary to regu-

late for disturbances inside the loop and also to reduce the single tL~e 

constant to a small value. (The latter is important for regulation when 

disturbances enter the process outside the secondary loop.) With two lags 

in the secondary loop j consideration should be given to several controller 

mode combinations. 
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Figures 20 through 25 are root locus plots of secondary loops similar 

to that in Figure 15 b~t with various controller modes. The combinations 

used were: 

J. Proportional only 

2. Proportional and Reset 

3. Proportional, Rate and Reset 

'.!he controller, with three modes of operation, has the following transfer 

function. 

(5-5) 0o(s) ·= 

Qi csr·· 

where Td = rate or derivative action time constant 

Ti = Reset or integral action time constant 

K == ptoportional gain of controller 

Kd = 5 '(giln of rate action) 

Again the reset mode of the controller is assumed to have a pure integrator 

which is not the case with commercial process controllers. If the transfer 

function of a commercial controller is used, highly sensitive plotting 

scales would need to be used to represent the. fipite integral gain at zero 

frequencies. This amounts to a pole very near the origin but not quite 

upon it. 

Figure 20 is a plot of the secondary loop with proportional control 

only. With proportional control only the controller does not introduce 

any poles or zeros into the system. Note that the secondary loop will 

begin to o.scillate after disturbances when the lpop gain is increased 

above .2, i.e., the loop is critically damped at this gain. This is shown 

by the loci moving away from the real axis into the complex plane. Once 

the roots move into the complex plane they move in a straight line to high 
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frequencies as the gain is increased. The real component of the complex 

roots remains constant, i.e., the real root is not a function of the loop 

gain. In the time domain this real component is the time constant of the 

decaying oscillation. Thus an increase in gain does not change the decay 

time of the disturbance but only increases the frequency and decreases 

the damping factor. This is important since the real components determine 

the time constant of the secondary loop and ultimately play an important 

part in determining the response.of the over-all cascade control system. 

When the real component of any complex root is small, it is easy for the 

root to move into the unstable region, once it has another loop cascaded 

onto it. 

Figures 21, 22 and 23 show plots of the secondary loop with propor-

tional and reset in its controller. In Figure 20 the zero of the reset 

transfer function (;r,-) lies at the same place on the real axis as a process 
1 

pole, thus eliminating each from affecting the system. In Figures 22 and 

23, the reset zero is smaller and larger, respectively. It is noted that 

the real component of each set of complex roots is smaller tha~ that in 

Figure 20 when the damping factors are similar. Furthermore, an additional 

closed loop pole is added for cases in Figures 22 and 23. This pole will 

cause a slow decaying transient in the secondary loop and slower response 

in the out.side loop. Consequently, none of these controller configurations 

would be better than that of Figure 19. 

Of course, it would not be expected that reset action could help the 

transient response of a system. Its usefulness is after the transient has 

decayed, particularly on a system that has low gains and a constant load. 

Therefore, tpe above does n9t exclude the use of reset action to improve 

system performance. 
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Figures 24 and 25 are plots of the secondary loop when the controller 

has proportional, rate and reset action. There is a definite improvement 

in the system by the introduction of rate action since the real part of 

the complex roots is much larger. This will result in a faster decay of 

oscillations. Note that the controllers rate and reset zeros were located 

to cancel the process poles leaving only a pole at the origin and the pole 

out on the real axis. This plot clearly shows the system to be an irn-

provement over Figure 20 since it results in a similar loci except having 

complex poles with real components three times larger. 

Figure 25 is a plot of the secondary loop with less rate but more reset 

action. When the controller gain is 20 or more the complex poles have a real 

component ~hat is four tini.es that of the straight proportional system. As 

pointed out before, this will cause the oscillations to decay faster. 

However, the closed loop pole which moved in on the real axis will increase 

the secondary loop time constant and slowing down the response of the over-

all cascade system. 

Cascade Control System .. 

A rational closed loop transfer function of these various secondary 

loop configurations can now be determined. It can then be used with the 

open loop transfer function of the remainder of the primary loop to plot 

the locus of roots for various controller gains. Transient response will 

be found when disturbances enter the process between the secondary loop 

and the final part of the process. 

Figure 26 are the results of a root locus plot of the cascaded system 

' using proportional gain only in the secondary loop. '!his system is the 

one shown in Figure 15 except pure integral (reset) is used instead of 

that which is available in most commercial controllers. The secondary 
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loop transfer function was determined for a gain of 30 from Figure 20 • 

. The transfer function is shown in equation 5-6. 

~ (5-6) rT(s"J ... 
60 

2 s +3s+62.5 

Referring to Figure 26a, it is noted that increases of gain in the 

primary controller move the two poles in the real axis into the complex 

plane and back to the real a.xis. This type of locus contributes to stable 

operation in the loop. 'l'o counteract this, the two complex "control11 poles 

of the sec.ondary loop move in unstable regions as gain is increased. 

·By referring to Figure 15 and using equations 5-6 and 5-5, the basic 

transfer function for the cascade system with respect to Ub is: 

.6(s2+3s+62.5)(s) (5-7) .iliL = 
~ (s)(s2+3s+62.5)(s+.6)+36K(s+.9) 

For a gain of five, the roots of the denominator of equation 5-7 can 

be evaluated from the root locus plot. This enables equation 5-8 to be 

written 

Note that the numerator is the same as in equation 5-7 but the 

denominator is in factored form. Thus an inverse transform can be easily 

taken. 

When Ub is a 10 volt step change, equation 5-9 can be written by 

taking the inverse transform of equation 5-12. 

(5-9) C(t} = 4.ose.- 1•07t - 3.s4e-2•5t + .262e-· 1t sin(447t-69) 

Equation 5-9 has two d-c components and a highly underdamped a-c 

component. The a.-c component is of great enough magnitude to drastically 

affect controllability. This component is caused by the secondary loop 

poles. A decrease in gain would be necessary to increase the damping of 
' 

the oscillation. For a gain of 2.5 the transient response is equation 5-10. 
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{5-10) C{t) = 12e-l.05t sin .5t - .15ose-.?5t sin(444t-90) 

Figure 26b is the transient response for a gain of 5. Figure 26d 

is the response for a gain of 2,5. It is evident that when the oscil-

lation is reduced, a greater overshoot and slower decaying low frequency 

oscillation exist. The low frequency oscillation is because the two 

poles which left the real axis are still in the complex area. 

Figure 26~ is analog simulator solution to this same system and . 

disturbance for a primary controller gain of 5, The fact that it is 

similar to Figure 26b confirm~ the correctness of the root locus solutions. 

Figure 27 is the root locus plot of the cascade system with the 

secondary loop using a three mode controller. The root locus plot of 

this secondary loop is sh~'Wl'l in Figure 25. For a secondary controller gain 

of 20 its loop transfer function is equation 5-11. 

This results in the following basic transfer function for the cascade 

system. Again refer to Figure 15 for the general configuration under 

study. 

<5_12 , ~be.ch· = .6(s+3.5Hs2+13s+16s.aHsl 
(s)(s+.'.3, 5·)(s2+13s+168.8) (s+6)+200K( s+ 1) (,+3) 

The root locus plot indicates that a gain of 10 may give the roots for· 

an optimum system. Based on'these roots equation 

(5-13} _llil, = 
ub 

When Ub is a 10 volt step change the following equation can be written 

for C by taking the inverse transform of equation 5-13. 
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Note that equ~t ion 5- 14 shows thr ee d-c transient components and 

an a-c component. The d- c components are from poles on the real axis 

and the a-c component i s from the t wo complex poles . Tne t ime constant 

of the a- c .component is small enough to reduce i t to zero in about two 

minutes. 

Figure 28 is a plot of equation 5-14. 

It is quite clear at this point that this secondary loop controller 

configuration improves control over the system shown in Figure 26. The 

improvement came about, even though there were additional poles introduced 

on the real a.xis. The main reason for the better response was that the 

real components of the complex poles were increased through the use of 

derivative in the secondary loop. 

Figure 29 is a plot of the root locus of the system with more rate 

and less rese.t action in the secondary control. Figure 24 is the root 

locus plot of the secondary loop. The ' transient response to a 10 volt 

step is shown by equation 5-15 and in Figure JO. 

(5-15) G(t) = 12.88e- 1•07t slin 28.6t 

This .re.spons.e· is not as good as that shown in Figure 28. However, it is 

evident that additional gain would improve the response still further. 

At this point it is hard to say which adjustment of rate action is better 

but it has been shown that it definitely improves the over-all response 

of a cascade system when r ate action is included in a secondary loop 

with at least two transfer lags. .This is true when a load disturbance 

enters the system outside the secondary loop as well as inside the 

secondary loop. 

It is apparent f rom the r oot locus plots that secondary loops with 

multiple transfer lags can easily cause rapid oscillations in the output 
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of cascade control systems. If the complex poles which cause these 

oscillations do not have a fast time constant, very little gain is 

possible in the primary controller and fast over-all response may not 

be possible. 

As the transfer lags in the secondary loop increase above two, the 

benefits of rate action decrease because of the over-balance in poies 

to the one zero of the rate aetion. 



CHAPTER VI 

CONCLUSIONS 

The purpose of this work is to discuss some characteristics of 

cascade control systems and show the advantages of including larger 

proportions of the process in the secondary loop of these systemso 

The benefits of rate action in the secondary controller when two lags 

are included are demonstratedo 

If a multilag process is to be controlledj very great improvement 

is realized when a cascade control system is used instead of a single 

loop systemo This is true even though the disturbance enters the 

process outside of the secondary loop. By including larger portions 

of the process in the secondary loop, further improvements are possible. 

The most effective way to obtain improvement of system response 

to a step disturbance is to include the second largest process transfer 

lag in the secondary loop. This is because the large lag can be 

practically eliminated with a simple proportional controller thus 

reducing its effect when disturbances enter the process outside the 

secondary loopo 

As the gain of the proportional controller is increased, the size 

of the transfer lag is reduced. However, there is a limit to the amount 

of gain used because the secondary controller gain is a multiplier of 

the primary controller proportional gain which eauses the apparent gain 

of the system to be quite high. When this apparent gain is too high, 

unstable operation res~mts. 

37 ' I 
I 
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When it is not possible to include only the second largest transfer 

lag in the secondary loop, next best improvement in respons~ is possible 

by including t,his second largest together with a lesser but signifi·ca.Ilt 

lag inside the secondary loop. Here the type of secondary controller 

used is more critical. A prpportional-only controller can be used, but 

the gain must be kept rather low for over-all stability reasons. Better 

results are possible when rate action is used in the controller. This 

enables a higner gain setting and consequently faster response for the 

over-all system. Reset action will be needed only when a low controller 

gain is used. This is mainly for keeping steady state offset disturbances 

from entering the primary loop. 

It is deduced from this investigation that when more than a second 

ordered lag is incl~ded in the secondary loop, the degree of control 

deteriorates and the complexity of controller settings increases. As 

more lags ar~ added, the phase advance rendered by rate action becomes 

negligible a~d the controll~r gain must be lowered. Furthermore, the 

apparent pure time delay (dead time) associated with multi-ordered 

lags causes a drastic reduction in the controller gain. Thus the 

advantages o! the secondary loop are greatly reduced. 

Since tpe copfiguratiop of the secondary loop has so much effect on 

the response of the over-all system, the correct procedure is to first 

adjust the controller for tpe secondary loop without the primary con

troller casc~ded onto ~t. aere the secondary contro+ler is tuned for 

a disturbance inside the secondary loop and its response can be more 

oscillatory than usual. After an optimum operation is obtained, then 

~ascade the primary controller onto the secondary controller and tune 

the' ~ary controller. The primary controller is tuned for a 



, . 

disturbance outside the secondary loop and should be only slightly 

oscillatory. If unstable operation results with a very low primary 

controller gain, then the gain of the secondary controller should be 

reduced, because again it is the product of the two gains that is 

important to the over-all system. Thus a compromise will need to be 

made between the two settings. 
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It has been shown that both analog simulation and root locus 

methods are very effective methods of studying cascade control systemso 

Analog simulation is effective where a wide variety of controllers and 

settings are tried in order to arrive at a proper controller con

figuration. Root locus is useful in gaining an insight op what is 

happening to the system as the different parameters are cpangedo 

\, 
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F.IGURE '29 
ROOT LOCUS PLOT OF CASCADE CONTROL SYSTEM WITH 

RESET' & RATE ACTION IN SECONDARY CONTROLLER 
SEE FIGURE 24 

FIGURE 30 
TIME RESPONSE OF SYSTEM WHO'SE ROOT LOCUS· 

rs SHOWN IN F.IGURE 29 
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APPENDIX A 

DEVELOPMENT OF TIME RESPONSE EQUATIONS 

FROM ROOT tOCUS PLOTS 

To write the transfer function of a system from the root locus 

plot, the basic transfer function which has a polynomial in the 

denominator must first be written. This transfer function is then 

normalized by reducing the coefficients of all highest powered Laplace 

operators to one. When this has been accomplished the resulting constant; 

factor must be moved into the numerator. The numerator is now the 

numerator for the transfer function obtained by root locus. The 

denominator for the transfer function obtained from root locus is 

obtained by determining the roots of the denominator of the basic 

transfer function and is written·simply as the factored form of the 

original transfer function. The following shows the development of 

various equations used in this paper. 

Development of eguation ,-4 

Using theories of partial fractions 

C(s) = K1 + K2 + . K:3 + 
s+.282 s+3 .07 s+. 125-j 1 .43 s+.125+j1 .43 

Calculate the residues 

_ (5.8,5,f 1.72)(.72) 
Kt - (2. 79~ -. 157+j 1.4.3)(-. 157-j 1.43) = 1.264 
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K = p.85}~-1.07)(-2.07~ . . , = _ 435 
2-2. 79 (-2. 94+j 1 .43 ~ (-2. 94-j 1.43} . • 

K4 = -.403+jl.65 

C ( ) 1 • 264 • 43 5 
• 6 = s+.282 - s+3.07 

= -.403-j 1.65 

.403+jl.65 + -.403+j1.65 
s+. 125-j 1.43 s+. 125+j 1 .43 
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By taking the inverse transform the following equation in time is 

written. 

C(t) = 1.26e-· 282t - .43.5e'-J.O?t +J.4e-· 125t sin (81.5t-14) 

Development of eguation 5-9 .. 

s+.l+j7.8 s+.l-j7.8 

Using theories of partial fractions, 

K C(s) = 1 
s+1.07 

+ 
s+2.5 

Solve for the residues, 

K = 6 1.4+ .O 
3 0 97+j7 .8) 

K4 = -.122+j.0469 

+ 'K 
3 

s+. 1-j7 .a 

= 4.08 

= -. 122-j .0469 

C(s) ,.,, 4.08 _ 3.84 + -.122-j .0469 + -. 122+~0469 
s+l .07 s+2. 5 s+. 1-j? .8 s+. 1+j7 .8 

By using inverse transforms shown on page 37 of Truxal's Synthesis 

of Automatic Control System~ 

C(t) = 4.08e- 1•07t -3.84e-2• 5t + .262e-.lt sin (447t-69) 



Developing of equation 5-10 

s+.75-j?.75 s+.75+j7.75 

Using theories oi' partial fractions, 

C(s) = Kt + K2 + 
s+ 1 .05-!j. 5.:.: s+ t .05+j. 5 

K3 .! 
s+.75-j7.75 s+.75+j7,75 

Solve for the residues 

= -j6 

K2 = j6 

K 6(.75)(.7~+j~5.5). . 
3 = t . .3+j7.25 (.3+j8.25}{j15.5) ;.. -.0754 

K4 = .... 0754 

C(s)· = j 6 . -· ···-'°""!!36 ......... _ s+1.05+j.5 s+t.05-j.5 
.0754 .0754 

s+.75+j7,75 s+,75 ... j?.75 

I ,1 

By taking inverse transform 
.' 

C(t) = 1~ ·-t .05t sin • 5t-j. 150~ -. 75t. sin (7. 75'6+1!'/2) 

Development of equation 5-14 

e+2+j11,5 s+2-j11.5 
. ' 

·qsing partial fraction theory-

C(s) ~ + '4 + K Kt + K2 

e+.1 .25.·:.. .. s+~. 72 . s+2.:.j 11.~ 5 
.. ~ 

s+2+j 11.5 

K = 1 

' 

Solve for the residues 

-7. 5-.111. 5 

= 1 • .3 

- -.5 

=. -.455 
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v 6 1. +·11.5 {4.5+·.25 4.5+·22.75 161 .. 06"' 
1\4 = -.75+j11.5 .72+j11.5) 7.5+j11.5' +j2.3 = -. -JJ •. ,G 

K = -.161+j.062 
5 

- 1 •2 • 5 
C{s) - s+l.25 - s+2.72 

~ + -.161-,j.062 + -.161+.i.062. 
s+9.5 s+2-jl1.5 s+2+j11$,; 

Ta.king the inverse transform the following time response equation is 

written: 

,,t.tt 
"¥* 

(5-14) C(t) = 1 • .3e-1. 25t -.5e - 2•72t -.455(!1""9•5t + .346e-2t sin(658t-61) 

Development of equation 5-15 

s+4.25-jll.75 s+4.25+j11.75 

Using partial fractions 

K C(s) = _......,..1,,.,.... ___ + 
s+t .07-j.5 

K2 + ----s+l.07+j.5 
+ 

s+4.25-j11.75 s+4.25+j 11. 75 

Calculate the residues 

= -j6.44 

.· j23. 5 = -.0.32-j.0068 

K4 = -.032+j.0068 

Terms involving K.3 and K4 can be neglected 

C(s) = J6.44 _ j6.44 
s+1.07+j.5 s+l.07-j.5 

Inverse transform gives the following in (t,) 
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