AN ANALYSIS OF THE FIRE EXPERIENCE AND

INSURANCE COST: FOR OKIAHOMA
COTTON GINS, 1956-1958

By
PERCY LEO STRICKLAND, JR.
Bachelor of Science
North Carolina State College
Raleigh, North Carolina

1957

Submitted to the faculty of the Graduate School of the Oklahoma State University of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

May, 1960

AN ANALYSIS OF THE FIRE EXPERIENCE AND

 INSURANCE COST FOR OKLAHOMACOTTON GINS, 1956-1958

Thesis Approved:

May I express my sincere appreciation to the Department of Agxicultural Economics and its graduate comittee for the opportunity of underw taking this study.

Special recognition is given Frofessor Mark In Fowler, majox advisor, for his patience, suggestions and criticisms both on the graduate program and in writing this thesis. Professors Renneth B. Boggs and Geoffrey P. Collins were very helpful in reading the manuscript and offexing suggestions for its improvement.

Appreciation is expressed to Mx. William Cathcart, former Instructory for setting up the study and collecting the data for the first two years. Sincere thanks is also given to the cotton gin operators in Southwest Oklahona for their cooperation in reporting the cotton gin fires.

Acknowledgment is made of the assistance rendered by the secretarial and statistical staff of the Department of Agricultural Economics and to Mrs. Gwendol Martin for her cooperation in typing the final manuscript.
Chapter Page
I. THE PROBLEM AND PROCEDURE 1
Introduction 1
Specific Objectives 2
Scope and Procedure 2
Sampling Procedure 3
Selection of Sample Gins in Oklahoma 4
Procedure for Collecting Data 6
Method of Analysis 7
Limitations of the Study 8
II. THE INCIDENCE OF FIRES IN COTTON GINS 10
The Frequency of and Losses from Fires 11
The Probable Cause and Location of Fires 16
The Relation of Volune Ginned and the Incidence of Fires 19
Frequency of Fires 19
Losses from Firas 21
III. THE EFFECT OF FIRE -PREVENTIVE DEVICES AND THE AMOUNT OF CLEANING AND DRYING EqUIPMENT ON THE INCIDENCE OF FIRES 23
The Effects of Fire-Preventive Devices 23
Losses from Fires 25
The Frequency of Fires 25
The Probable Cause and Location of Fires 27
Loss from Fires Associated with CausesWhich Fire Preventive Devices were Designedto Eliminate32
The Effect of Equipment on Fire and Fire Losses 33
Losses from Fires 35
IV. INSURANCE PAID AND CIATMS COLLECTED FOR SAMPLE GINS 37
Building and Machinery Insurance 37
Determination of Rates 37
Insurance Coverage of Sample Gins 38
Insurance Rates 39
Premiums Paid and Claims Collected 42
Bale Yard Insurance 44
Bale Yard Premiums and Claims 45
Gin Processing Loss 45

TABLE OF CONTENTS (Continued)

Chapter Page
V. SUMMARY 47
BIBLIOGRA PHY 51
APPENDICES 52
Table Page
I. Total Number of Gins and Number of Gins with Selected Fire Preventive Devices, Dklahoma and Fourteen Southwestern Oklahoma Counties, 1955 5
II. Gin Fire Experience for Sample Gins, Oklahoma, 1956-1958 12
III. Average Loss from Fires Per Gin for Sample Gins, Oklahoma, 1956-1958 14
IV. Loss from Fires Per Fire for Sample Gins, Oklahoma, 1956-1958 15
V. Loss from Fire Per Bale Ginned for Sample Gins, Oklahoma, 1956~1958 16
VI. The Place of Occurrence and Probable Cause of 211 Fires Reported by Sample Gins, Oklahona, During 1956, 1957, and 1958 17
VII. Incidence of Fires and Fire Losses by Volume of Ginning Classes, Sample Gins Oklahoma, 1956-1958 20
VIII. Incidence of Fires by Fire Preventive Devices, Sample Gins, Oklahoma, 1956-58 24
IX. Losses Per Gin, Per Fire and Per Bale Classified by FirePreventive Devices and Type of Loss, Oklahona, 1956-1958 . 26
X. Frequency of Occurrence of Fires by Types of Fire PreventiveDevices, Sample Gins, Oklahoma, 1956-1958 27
XI. The Place of Occurrence and Probable Cause of Fires Reported by 71 Sample Gins with No Fire Devices During 1956, 1957, and 1958 28
XII. The Place of Occurrence and Probable Cause of Fires Reported by 71 Sample Gins with Green Boll Traps During 1956, 1957, and 1958 29
XIII. The Place of Occurrence and Probable Cause of Fires Reported by 12 Sample Gins with Green Boll Traps and Magnets During 1956, 1957 and 1958 30
XIV. Losses from Fires by Type of Fire Preventive Devices for Fires Started by Causes the Devices were Designed to Eliminate, Sample Gins, Oklahoma, 1956-1958 33
Table Page
XV. Incidence of Fires in Sample Gins Classified by theAmount of Cleaning and Drying Equipnent, Oklahoma,1956-195834
XVI. Losses from Fires in Sample Gins Classified by Amount ofCleaning and Drying Equipment, Oklahoma, 1956m1958 . . . 35
XVII. Losses from Fires for Which Equipment Could Have Had anEffect by Types of Equipmert, Sample Gins, Oklahoma,1956-1958. 36
XVIII. Number of Gins by Percent of Value Covered by Insuranceand Type of Construction, 142 Sample Gins, Oklahoma,1956-1958 . 39
XIX. Average Insurance Rates for Building and Machinery byType of Construction for Sample Gins, Oklahoma, 1956.1957, 19540
XX. The Average Value, Average Insurance Coverage, andCoverage as a Percent of Value for Sample Gins by Typeof Construction, Oklahoma, 1956, 1957, 1958 41
XXI. Number of Gins by Insurance Rate and Type of Constructionfor Sample Gins, Oklahoma, 1956×1958. 42
XXII. Premiums Paid and Claims Collected; Building and Machinery Insurance, 142 Sample Gins, Oklahoma; 1956-1957 43
XXIII. Premiums Paid and Claims Collected; Bale Yard Insurance, 129 Sample Gins, Ok1ahona, 1956-1958 45
XXIV, Gin Processing Losses Paid by Gin Owners; Sample Gins, Oklahoma, 1956-1958 46
Table Page
I. Summary of Ginning and Fire Experience Classified by Types of Equipment and Fire Preventive Devices, Sample Gina; Oklahoma 1956 53
II. Summary of Ginning and Fixe Experience Classified by Types of Equipment and Fire Preventive Devices, Sample Gins: OkIahoma 1957 54
III. Sumary of Ginning and Fire Experience Classified by Types of Equipment and Fire Preventive Devices, Sample Gins: oklahoma 1958 55
IV. Summary of Ginning and Fire Expexience Classified by Types of Equipment and Fire Preventive Devices, Sample Gins; Oklahoma 1956-1958 56

CHAPTER I

THE PROBIEM AND PROCEDURE

Introduction

This thesis reports the results of a sudy undertaken to determine the causes of and costs associated with cotton gin fires in Oklahoma, and to determine the relationships between fire preventive devices and auxiliary equipment and their influence on the frequency of and losses from gin fires.

Losses from cotton gin fires are among the major risks faced by gin owners and operators. Insurance premiums for protection against fire losses, and uninsured losses from fires, constitute a sizeable item of expense to gin owners each year. In the past few years, however, a number of fire preventive and control devices were developed and installed in gins. These devices were designed primarily to remove from the seed cotton such objects as metal, rocks, and green bolls which are known to cause fires in the ginning process. It was expected that these devices could eventually reduce the frequency and extent of gin fires and losses associated therewith. However, no research has been carried out to evaluate the effectiveness of these devices in reducing losses from fires. Moreover, no consideration is given to the presence or absence of these devices when determining insurance rates.

The losses associated with gin fires, whether shifted by insurance or not, result in higher ginning costs. These costs are paid directly by producers through charges for ginning and thus reduce the net
income from producing cotton. Any reduction in costs due to fire losses, therefore, would tend to increase returns to cotton producers. It would also increase the overall efficiency of cotton marketing and thereby help to maintain or improve the competitive position of cotton in fiber markets. It is hoped that the analysis contained in this thesis will be helpful to gin operators in reducing the number of gin fires and the resulting losses, and thereby lead to reductions in ginning costs.

Specific Objectives

The specific objectives of this study were as follows:

1. To ascertain the origin and probable canses of fites in cotton gins.
2. To evaluate the effectiveness of fire preventive devices on the frequency of and losses from gin fires.
3. To analyze the selationship between the amount of cleaning and drying equipment in cotton gins and the frequency or and losses frow fires.
4. To ascemen the rimbionship botween premiums paid for the various typeg of gin fire insurance and fixe losses hncurted by the gins.

Scope and Procedure

This study is part of the Southern Regional Cotton Marketing Prou ject SM-17 in which elght stace agricultural experiment stations and the Agricultural Marieting Service ot the United Statem Depatment of

Agriculture cooperated. Actwally, however, the overall stwdy was conducted throughout the cotton belt, since AMS workers collected data in those cotton belt states not cooperating directiy.

Sampling Procedure

The sampling procedmze for this study was set up by the Techiocal Committee, SM-17. It was to be dentical in all acaces. The sample gins were to be classified in two ways. Fixst, they were classified according to the amount of eleaning and drying equipment. Within each equipment classification the gims were classified by the types of fire preventive and control devices in the gin.

The equipment growps wowld include simply equipped gins, modm erately equipped gins and elaborately equipped ging. For the pura poses of this study, a simple gin is a gin mith no cleaning or drying equipment or with only one dryer or only one overhea cotton cleaner. A modexately equipped gin is a gin which has in addtion to lime clean ens either (1) one overhead cotton cleaner and one dryer, or (2) combination of one overhead cotton cleamer and two dryers, or (3) two overhead cotton cleaners and one dryer. An elaborately equipped gin is a gin with two or moxe dryers, a burr machine, two or more overhead cotton cleaners and lint cleaners.

Within each of the above equipment groups, the gins were to be classified on the basis of fire preventive and control devices as follows: (1) gins with green boll traps only, (2) gins with magnets only, (3) gins with complete CO_{2} systems, (4) gins with magnets and green boll traps, and (5) gins with none of these devices.

Selection of Sample Gins in Oklahoma
A list of the cotton gins operating in Oklahoma in 1955 was obtained from the Oklahoma Ginners Association. Each of the 337 gins operating in 1955 was mailed a questionnaire to determine the type of equipment and fire preventive devices installed in the gin. Of these, 294 or 87% returned the equipment questionnaire (Ta"le I).

It was found from the state-wide survey that 172 gins, or 51 percent of all gins in the state, were located in the 14 sorthwest counties. 1 Moreover, there were only 113 gins in the state that had any fire preventive devices and 103 of these gins were located in these same 14 southwest counties. Since most of the gins with devices wexe in the 14 southwest counties and the other gins were widely scattered throughout the state, it was decided to include only gins in these 14 southwest counties in the sample for this study.

The survey also revealed that there were no simply equipped gins operating in the state in 1955. Consequently, the sample for the stady includes only moderately equipped and elaborately equipped gins. Moreover, the survey also showed that the only types of fire preventive devices in use were green boll traps only and magnets and green boll traps in combination. Thus, there were only three classes based on fire prem ventive devices: (1) gins with green boll traps only, (2) gins with magnets and green boll traps, and (3) the control group which had none of the devices.

[^0]TABIE I

TOTAL NUMBER OF GINS AND NUMBER OF GINS WITH SELECTED FIRE PREVENTIVE DEVICES, OKLAHOMA AND FOURTEEN SOUTHWESTERN OKLAHOMA

COUNTIES, 1955

Item	Location	
	Oklahoma	Fourteen Southwest Comatie
Number of gins	337	172
Number of gins returning questionnaire	294	172
Fire Preventive Devices		
Green boll traps	109	99
Magnet	0	0
Complete CO_{2} system	0	0
Magnets and green boll traps	4	4
None of these devices	159	69
Not operating	22	0

Source: (1) Oklahoma Cotton Ginners Associations.
(2) Survey of Cotton Gins in Oklahoma.

The committee had suggested taking a sample of approximately 30 gins with no devices and 15 gins with each type of fire preventive device. However, there were only four gins with magnets and green boll traps in the state. All four of these were incivded in the sample.

In order to make the sample larger, 25 gins with green boll taps only were included in the survey instead of the 15 gins as suggested. The original sample therefore included 4 gins with magnets and green boll traps, 25 gins with green boll traps only and 30 gins with no fire preventive devices

During 1957 and 1958 several sample gins stopped operating or cooperating. The 1957 sample included 23 gins with green boll traps only, 4 gins with magnets and green boll traps, and 24 gins with no devices for a total of 51 gins. There were still fewer gins in the 1958 sample. It included 22 gine with green boll traps only, 4 gins with magnets and green boll traps, and 18 gins with no devices for a total of 44 gins.

Appendix B shows the breakdown of sample gins for each year and the three year total. In these tables, the gins are classified both as to the type of fire-preventive devices and the amomt of cleaming and drying equipment.

Procedure for Collecting Data
Data were collected from the sample gins for the three ginning seasons of 1956-57, 1957-58, and 1958-59. Before the beginning of each ginning season, each sample gin was contacted and given a suyply of
fire report cards (Appendix A). The operator was requested to fill out one of these cards and mail it in at the time of each fire. If there was no fire during any given week, the operator was asked to send in a fire report card indicating that his gin did not have a fire during the specified week. This information was then accumalated and summarized at the end of the season.

In addition, a supplementary insurance survey was made each year. A schedule was taken by personal interview each year from each gia operator in the sample to obtain information on insurance premimm rates, insurance coverage, premium payments and claims collected. Other information about the type of insurance and insurance compamies was obtained also.

Method of Analysis
Year-to-year vardation in gin fire experience due to wncontrollable factors is such as to render suspect an analysis based on data for a single year. Moreover, as pointed out above, there was a different number of gins in the sample for each group for each of the three ginning seasons, except for the four gins with magnets and green boll traps in combination. Therefore, the data for all three years were combined for most of the analysis presented. In order to give each gin weight in the sample equaivalent to the amount of data obtained from it, the data were converted to a gin-year basis.

Thus, the total number of gins in the combined sample was obtained by weighing each gin by the number of years in the sample. A gin which was in the sample all three years was counted as three gins.

A gin in the sample two years was counted as two gins and a gin in the sample one year was counted as one gin.

An analytical procedure employed was what might be termed descriptive analysis. For the most part, the survey data are sumarized according to various cross classification schemes. Because of the stratification employed and the random selection of sample gins in each class (except the class containing green boll traps and magnets in combination), the results provide information reasonaly representative of all gins in Oklahoma under similar situations. Consequently, the infomation is sufficient for the practical purpose of drawing teritative conclusions regarding the specific objectives of the study.

Ifmitations of the Stwdy

There are a few factors which showld be considered in applying the findings of this stwdy. By coincidence, the three year period of this study is the same as that during which the Federal Soil Bank Program was in effect. Therefore the volume of giming for the sample gins is lower than would be expected in the absence of such programe.

According to the survey, the four gins with magnets and green boll traps formed the entire population of these gias in the state in 1955 and therefore these are the only fow gins of this classifica* tion included in the study. It would heve been desirable to have a larger number of gins in this class to fully evaluate the effectiveness of this device. It wowld probably be desirable to have observations over a longer period of time if recommendations of an actuarial nature are to be made. However, the results for the three year period
of this study should indicate the potentialities or lack thereof of the devices.

CHAPTER II

TAE INCIDENCE OF FIRES IN COTRON GLNS

This chapter contains a description and anglysis of the fregueray, causes, and location of fires and associated losses in the sample gins dwring the three seasons of 1956-57, 1957-58 and 1958-59.

Many factors influence the frequency and extent of fires in cotton gins and the losses therefrom. Anong the more important face tors are the type of beildings, the amount of cleaning and drying equipment, the volume of cotton ginned, the types of fire preventive devices present, and, perhaps most important of all, the care exercised by management to safeguard against fires. However, these factors are often so interrelated that it is difficult to separate the effects and attribute them to a single factor.

It seems logical to expect more fires in the more elaborately equipped gins because the cotton is subjected to more operations and this increases the possibility of a fire. Also, losses from fires in the more elaborately equipped gins would be expected to be greater because of the more expensive equipment subject to damage from fires. The volume of ginning would affect the frequency of and loss from fires because as more cotton is ginned the opportuntiy for a fire to staxt is increased. Also, the more the machinery is operated the great er is the friction and wear which in turn would tend to increase the occurrence of fires.

However, it is likely that the volume of ginning and the amount of equipment is positively correlated. The cleaning equipment us used
to give a cleaner; better quality bale. When a gin with more equipment is convenient for a cotton grower to use, he would likely prefer this gin over a gin with less cleaning and drying equipment. This adds to the difficulty of isolating the effects of either factor on the occurrence of fires.

The fire preventive devices used in gins are intended to remove foreign matter such as rocks, metal, and green bolls from the seed cotcon before it enters the cleaning and drying equpment. Previous fire records indicate this foreign matter is a cause of a latge percentage of fires in gins. 2 If these devices can remove this foreign matter from cotton, the number of fires in gins using these devices showld be reduced.

In this chapter, an analysis wil be made of the fire experfence of the sample gins as a group. The influence of the volume of ginning on fires will also be analyzed. In the next chapter an evaluation of the effect of cleaning and drying equipment and the effect of fire preventive devices on the cawses of fires and the losses therefrom, will be made.

The Frequency of and Losses from Fixes

Of the 154 gins 3 in the sample, 60 reported no fires and 94 reported a total of 211 fires (Table II). This represents an average
${ }^{2}$ Handbook of Fire Protection, (National Fire Protection Association, 60 Battery March Street, Boston, Massachtsetts) Ninth Edition, p. 338. 1948.
$3_{\text {Based on gin years, see p. } 7 .}$

TABLE II
GIN FIRE EXPERIENCE FOR SAMPLE GINS, OKLAHOMA, 1956-1958

Item	Year			
	1956	1957	1958	Total
Number of gins	59	51	44	154
Number of fires	68	84	59	211
Number of fires per gin	1.15	1.65	1.34	1.37
Number of gins having f	fires 34	37	23	94
Number of bales ginned	77,904	81,152	95,989	255, 045
Losses from fires				
Machinery loss	\$40,364	\$85, 150	\$ 10 \$	\$125, 524
No. gins	5	3	1	9
No. fires	5	3	1	9
Building loss	\$2,550	\$20,000	\cdots	\$22,550
No. gins	2	2	0	4
No. fires	2	2	0	4
Subtotal loss	\$42,914	\$105, 150	\$ 10	\$148,074
Cotton loss	\$ 3,495	\$ 10,857	\$2,469	\$ 16,822
No. gins	31	28	18	78
No. fires	53	57	35	145
Gin time loss	\$498.81	\$932.93	\$370.70	\$1,802.44
No. gins	30	31	18	79
No. fires	61	68	39	168
Extinguisher material used	1. $\$ 491.10$	\$886.70	\$378.80	\$1.756.60
No. gins	20	19	11	50
No. fires	39	32	19	90
Subtotal	\$4,484	\$12,676.62	\$3,218.92	\$20,381.29
TOTAL	\$47,398.91	\$117,827.46	\$3,228.92	\$168,455.29

of 1.37 fires per gin year. The total estimated loss from these fires was $\$ 168,455$. However, the extent of the fires ranged from those quickly extinguished and causing no loss to three fires in which the gin bullding, gin machinery, and cotton on the bale yard were a total loss. These three fires accommed for $\$ 149,750$, or 88.9 percent of the total estimated loss from all fires. A single fire resulting in a loss of $\$ 56,700$ accounted for one-third of all losses during the three-year period.

Only 41 of the fires caused an estimated lose of $\$ 100$ or more each. Thirty-seven of these fires had building, wachinery and cotton loss of more than $\$ 100$ each. The bullding, machimery and cotton loss for the other four fires was less than $\$ 100$ but the estimated loss in Gin Time and Fire Extinguisher Material used caused the total loss to be greater than $\$ 100$.

Many of the insurance policies were written with a $\$ 100$ deductible clause. 4 Since the fire insurance covers only building, machinery, and cotton loss, thirty seven of the 211 fires would have caused enough loss for the insurance company to pay damages under this clause, had it been in affect on all insurance policies.

The losses from fires were classified into those due to gin buildings, gin machinery, cotton, gin down time, and extinguisher material used (Table II). In terms of this classification, the loss in gin machinery of $\$ 125,524$ was by far the largest loss. This represented 74.5 percent of all losses. However, as in the case of total losses,

[^1]practically all of the machinery loss occurred in the three fires mentioned in the preceding paragraph. These three fires accounted for all but $\$ 524$ of the total estimated machinery loss.

The second largest item of loss was the $\$ 22,500$ associated with gin buildings. All of this loss was reported in the three fires discussed previously.

The average loss per gin per year for the three-year period was $\$ 1,093$ (Table III). During the 1957 season in which two gins burned completely, the average loss per gin was $\$ 2,310$. However, in 1958 , when no fires were reported with a total loss, the average loss per gin dropped to $\$ 73$ per gern.

TABLE III
AVERAGE LOSS FROM FIRES PER GIN FOR SAMIPLE GINS, OKLAHOMA, 1956-1958

	Year						
Type of Loss	1956	1957				1958	Total
Machinery loss	$\$ 684.14$	$\$ 1,669.61$	$\$ 0.23$	$\$ 815.09$			
Building loss	43.22	392.16	\ldots	146.43			
Cotton loss	59.24	212.90	56.12	109.24			
Gin time loss	8.45	18.29	8.42	11.70			
Extinguisher material used	8.32	17.39	8.61	11.41			
Total Loss per Gin	$\$ 813.37$	$\$ 2,310.35$	$\$ 73.38$	$\$ 1,093.87$			

The average loss per fire for the three-year period was $\$ 798$ (Table IV). Once again, however, the influence of the three fires which resulted in a total loss may give a somewhat distorted picture.

For example, the loss per fire in 1958 when there was no complete loss reported by sample gins was only $\$ 54.73$. In contrast, in 1957 when two gins swffered a complete loss the loss per fire was $\$ 1,402.72$.

Losses were computed also on an average loss pex bale ginned pet year basis (Table V). For the three-year period, the average loss per bale ginned per year was 66 cents. Again the influence of the three fires resulting in total loss is emphasized. Machinezy loss, which was almost completely accounted for by the three total loss fixes, represented 49 cents of the 66 cents average loss per bale gimned. The influence Of these fires is brought into sharp focus also when a comparison of the loss per bale ginned is made for the three years separately. The loss per bale ginned was only 3.36 cents in 1958 but was 61 cents in 1956 and $\$ 1.45$ in 1957.

TABIE IV
LOSS FROM FIRES PER FIRE FOR SAMPIE GINS, OKLAHOMA, 1956-1958

Type of Loss	Year			
	1956	1957	1958	Total
Machinery loss	\$593.59	\$1,013.69	\$0.17	\$594.86
Building loss	37.50	238.09	\cdots	106.86
Cotton loss	51.40	129.26	41.58	79.72
Gin time loss	7.33	11.11	6.29	8.54
Extinguisher material used	7.22	10.56	6.42	8.33
Total loss per fire	\$697.04	\$1,402.71	\$54.73	\$798.31

TABLE V

LOSS FROM FTRE PER BALE GTNNED FOR SAMPLE GINS, OKLAROMA, 1956-1958

Iype of Loss	Year			
	1956	1957	1958	Total
Machinery loss	\$. 5181	\$1.0493	\$.0001	\$.4922
Building loss	.0327	0.2464	\cdots	. 0884
Cotton loss	. 0449	0.1338	.0257	.0659
Gin time loss	.0064	0.0115	. 0039	.0071
Extinguisher material used	. 0063	0.0109	. 0039	.0069
Total loss per bale ginned	\$0.6084	\$1.4519	\$. 0336	\$.6605

The Probable Cause and Location of Fires

Gin managers were asked to indicate on the fire report cards (Appendix A) the probable canse and the location in the gin where the fire was first noticed. A sumary of these data is shown in rable VI. Frequently, more than one cavse was reported for a single fire occasw ionally a fire was noticed in more than one place at the same time

The cause of over one-fourth of all fires was reported to be unknown. This apparently indicates that ginaers could not determine whet caused the fire in some cases. However, the percentage of fires caused by manown factors seems high. Moreover, some gin operators reported the cause of most of their fires as unknown, while others reported practically all fires to be the result of specific causes. This raises the question as to whether some operators actually made an attempt to discover the cause of some fires.

THE RLACE OF OCCURRENCE AND PROBABLE CAUSE OF 211 FTRES REPORTED BY SAMPLE GINS, OKIAHOMA; DORTNG 1956; 1957, AND 1958*

*In some cases fires were believed caused by more than one specfice camses therefore, the number of believed cawses totals more than the actual number of fires.

Matches in the seed cotton caused the largest number of fires. Sixty-two fires, or 27.4 percent of all reported causes of fires were attributed to matches. Most of the fires caused by matches were first noticed in the overhead cleaners and conveyor. Friction in the roll box was the next most important cause of fires, accounting for 9.7 percent of all causes reported. Most of these fires were filust noticed in the gin stands. Rocks in the seed cotton accounted for 8.8 percent and metal in seed cotton accounted for 7.0 percent of the reported causes of fires. These causes were followed closely by sparks which accounted for 6.6 percent of all cavses of fires. The fires caused by rocks, metal and sparks were first noticed in a wide variety of places, although more fires caused by rocks were first noticed in the gin stands than any other Jocation.

Fires were noticed first most frequently in the gin stands and overhead cleaners. About 41 percent of all fires were first noticed in these two places combined, each representing a little over 20 percent of the reported places of fires. The next most frequent place for a fire to be noticed first was in the conveyor where about 10 percent of the fires were first noticed. The remaining 50 percent of the fires were first noticed in a wide variety of places. In comparison to the 26 percent of the fires which were reported originating from unknown causes, only about 6 percent of the fires were reported to have started in places other than those listed in Table VI.

The Relation of Volume Ginned and the Incidence of Fires

Frequency of Fires

It was expected that as the number of bales gimned per season increased, the occurrence of fires would also increase. ${ }^{5}$ It was also expected that the loss from fires would be related to the volume ginned per season. Table Wit shows the sample ging classifged by the number of bales ginned per season and the associated losses from fires.

The total bales ginned for the three seasons was 255,045 baless ox an average of $1_{2} 656$ bales per gin per season. Sintymone gins in the sample ginned less than 1,000 bales pex season, 47 ginned between 1,000 and 2,000 bales per season, 28 ginned between 2,000 and 3,000 bales per season and 18 ginned over 3,000 bales per season. The highest number of bales ginned in one season by any gin was 7,300 .

For the three-year period, thexe was an average of 1.37 fires per gin per year and the average number of bales ginned per fire was 1,209 bales. The average rumber of fires per gin per year was .87 fires for the gins with less than $1_{2} 000$ bales ginned per seasom and increased for each increase in volpme class to an average of 3.22 fires per gin per year for the gins with a volume of 3,000 or more bales ginned per season. The average bales ginned per fire was 659 bales for the gins with less than 1,000 bales ginned per season and increased for each class to an average of 1,445 bales per fire for the gins with over 3,000 bales ginned per season. These data show that as the number of liales ginned pet season
$5_{\text {The simple correlation coefficient (} x \text {) between volume of ginning }}$ and occurrence of fires was calculated to be .425. This was found to be significant at the one percent level.

TABLE VII

INCIDENCE OF FTRES AND FIRE LOSSES BY VOLUME OF GINNING CLASSES, SAMPLE GINS, ORLAHOMA, 1956-1958

Item	Number of Beles			
	$\begin{gathered} \text { Less than } \\ 1,000 \end{gathered}$	$\begin{aligned} & 1,001- \\ & 2,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 2,001 \alpha \\ & 3,000 \end{aligned}$	$\begin{aligned} & \text { Over } \\ & 3,000 \end{aligned}$
Number of gins	61	47	28	18
Number of fires	53	52	48	58
Total bales ginned	34,901	67,170	69.169	83, 805
Average bales per gin	572	1,429	2,470	4,656
Average fires per gin	. 87	1.11	1.71	3.22
Average number of bales per fire	659	1,291	12441	1,445
Building and Machinery Loss (dollars)				
Total	92,784.00	50.00	55, 240.00	\cdots
Average per gin	$1,521.05$	1.06	1,972.85	-
Average per fire	1,750.05	0.96	1,150.83	- $-\infty$
Average per bale	2.650	. 007	. 7987	-
Cotton, Gin Time, and Extinguisher Material Used Loss (dollars)				
Total	10,348.26	2, 320.05	4.708 .91	2,789.72
Average per gin	169.64	49.36	168.19	154.43
Average per fire	195.26	44.62	98.10	49.64
Average per brle	. 295	. 0345	. 0247	. 0331
Totel Loss All Sowtces (dollars)				
Total	103,132.46	2,370.05	59,948.91	2,779.72
Average per gin	1,690.69	50.42	2, 141.03	154.43
Average per fire	$1,945.31$	45.58	$1,249.93$	49.64
Average per bale	2.953	. 0352	.8234	. 0331

increases, the average number of fires per gin increases. But thay also show that as the volume ginned increases the number of fires per bale ginned decreases, although the difference between the two largest classes is obviously not significant.

Losses from Fires

When losses from fires were calculated for the gins classified by volume of ginning, the results formed a fluctuating pattern from which few conclusions could be drawn (Table VII). One possible reason for this may have been that volume was considered for an entire season and the losses from fires may have affected the season volume in some instances. This is especially true if the result of the loss was damage to vital machinery or an entire gin so that the gin had to close down for a period of time of for the rest of the season. The rate of ginming at the time of the fire may have been sufficiently high that the total volume for the season would have placed the gin in a higher volume class In the absence of the fire.

Two gins in the class that ginned less than 1,000 bales per season were completely destroyed by fire in early September. Their ginaing volume had they operated for the entire season is not known but it probably would have been much higher had the fire not occurred. The loss associated with these two fires is so large relative to the total loss for all gins that the loss for this volume class is relatively high. There was also one gin in the 2,000 to 3,000 bale per season volume class which burned after the season had closed. Obviously, there was no relation between the volume ginned and the occurrence of this fixe.

The losses associated with these three fires ware mainly losses of gin buildings and machinery. Since these three fires cannot be accurately associated with the volume ginned, the data has been subtotaled into machinery and building loss and cotton loss, gin time loss and extinguisher material loss. The sub-total of cotron loss, gin time loss and exw tinguisher material used may be a more meaningful measure of the associa~ tion between volume ginned and losses from fires.

In addition to total losses from fires for the sample gins classi. fied by the number of bales ginned per year, Table VTI also shows average losses per gin, per fire and per bale ginned. There was no consistent relationship between any of these measures of losses from fires and the quantity ginned as represented by the volume classification.

THE EFFECT OF FIRE PREVENTIVE DEVICES AND THE AMOUNT OF CLEANING AND DRYTNG EQUIPMENT ON THE INGDDENCE OF FIRES

This chapter is devoted to an attempt to evaluate the effects of fire preventive devices and the amount of cleaning and drying equip. ment on the incidence of gin fires. First, the data on all fires expexienced by the sample gins are classified and analyzed by the type of fire preventive devices and by amount of cleaning and drying equipment. How ever, some fires were reported which neither of the above factors could have influenced. For example, some fires were started by sparks getting into seed cotton in wagons on the yard and one fire was started in a gin after the ginning season was over. Therefore, the losses from fires which could not be associated to the above factors were subtracted from total loss and the data were reevaluated for the effect of these factors.

The Effects of Fire Preventive Devices ${ }^{6}$

As pointed out in the previous chapter, the sample contained only three classes of gins based on fire preventive devices in use: (1) a control group of gins with no devices, (2) gins with green boll traps only, and (3) gins with magnets and green boll traps in combination.

[^2]For the three-year period, there were 71 gins in the sample of the control group, 71 equipped with green boll traps only, and 12 equipped with both magnets and green boll traps (Table VIII). ${ }^{7}$ The gins within each of these classes reported an average of $1.18,1.31$ and 2.83 fires per gin, respectively. However, since the average number of bales ginned per gin per year was smallest for those gins with no devices and largest for those with both green boll traps and magnets, the average number of bales per fire was approximately the same for each classification.

TABLE VIII
INCIDENCE OF FIRES BY FIRE PREVENTIVE DEVICES, SAMPLE GINS, OKLAHOMA, 1956-58

Item	Type of Fire Preventive Device		
No Device	Green Böll Trap	Magnets and Green Boll Trap	
Number of gins (no.)	71	71	12
Fires per gin (no.)	1.18	1.31	2.83
Bales per gin (no.)	1,432	1,668	2,913
Bales per fire (no.)	1,210	1,273	1,028
Losses from fires (dollars)		$1,504.34$	100.17
Loss per gin	851.42	$1,148.47$	35.35
Loss per fire	719.64	0.595	0.902

Source: Appendix \mathbb{B}, Table IV.
${ }^{7}$ Gin numbers refer to gin years, i.e., a gin in the sample all three years is counted as three gins.

Losses from Fires

The average loss per gin, per fire, and per bale ginned for the gins in each classification are also shown in Table IX. In each case, the loss is highest for the class of gins with green boll traps alone and lowest for the class with green boll traps and magnets in combination.

However, two gins with green boll traps and one gin in the control group were destroyed completely by fire. Building and machinery losses associated with these three fires accounts for practically all building and machinery loss for the entire sample. Moreover, this building and machinery loss is a relatively large portion of total fire losses in all categories. Table IX shows the loss per gin, per fire, and per bale ginned separated into that part due to damage to buildings and machinery and that part due to other damage.

When machinery and building losses are excluded, losses are still lower for those gins having both green boll traps and magnets. However, in this case, losses are largest for those gins with no devices rather than for gins with green boll traps alone as was the case when machinexy and building losses were included.

The Frequency of Fires

As would be expected from the low average mumber of fires per gin, the frequency of fires in sample gins was low. In all three sample classes, the majority of the gins had less than two fires per season (Table X). The largest number of fires for any gin was eight.

In gins with green boll traps, 83 percent of the gins reported no more than two fires per season. Eighty-seven percent of the gins with no devices reported no more than two fires per season and 58
percent of the gins with magnets and green boll traps were in this category.

TABLE IX
LOSSES PER GIN, PER FIRE AND PER BALF, CLASSIFTED BY FIRE PREVENTIVE DEVICES AND TYPE OF LOSS, SAMPLE GINS, OKIAHOMA, 1956-1958

Item	Type of Fire Preventive Device		
	$\begin{gathered} \text { No } \\ \text { Device } \end{gathered}$	Green Boll Trap	Magnet and Green Boll Trap
	(Dollars)	(Dollars)	(Dollars)
Loss per gin	851.42	1,504.34	100.17
Buildings and machinery	704.39	1,380,53	4.17
Other ${ }^{\text {a }}$	147.03	123.81	96.00
Loss per fire	719.64	1,148.47	35.35
Buildings and machinery	595.37	I, 053.94	1.47
Other ${ }^{\text {a }}$	124.27	94.53	33.88
Loss per bale	0.595	0.902	0.034
Buildings and machinery	0.492	0.828	0.001
Other ${ }^{\text {a }}$	0.103	0.074	0.033

ancludes loss of cotton, gin down time and fire extinguisher material used.

Sowre: Appendix B, Table IV.

TABLE X

FREQUENCY OF OCCURRENGE OF FIRES BY TYPES OF FIRE PREVENTIVE DEVICES, SAMPLE GINS, OKLAHOMA, 1956-1958

		Number of Fires				
		0	1\&2	$3 \& 4$	5\&6	$7 \& 8$
$\begin{aligned} & \text { Green boll } \\ & \text { traps } \end{aligned}$	No. of gins	25	34	11	1	0
	\% of gins	35	48	15	1	0
Magnets \& green boll traps	No. of gins	1	6	3	1	1
	\% of gins	8	50	25	8	8
No device	No. of gins	35	27	3	5	1
	\% of gins	49	38	4	7	1

The Probable Cause and Location of Fires

Matches were the major cause of fires (29 percent) in gins with no fire preventive devices (Table XI), followed closely by unknown causes (24 percent). Matches also caused 29 percent of the fires in gins with green boll traps, but unknown causes accounted for 33 percent of the fires in this classification (Table XIT). In gins with both green boll traps and magnets, matches and friction in the roll box each cassed about 19 percent of the fires (Table XIII). Most of the fires in gins with no devices and in those with green boll traps occureed in the over. head cleaners and gin stands. In gins with both devices the location of the fires was more evenly distributed, although 12.5 percent of the fires occurred in both the burr extractor and gin stands and 12.5 percent occurred from unknown causes.
the place of occurrence and probable cause of fires reported by 71 sample gins with no FIRE DEVICES DURING 1956, 1957, AND 1958

	Believed Causes																
Location		$\begin{gathered} \text { 最 } \\ \text { of } \\ \text { " } \\ 0 \\ \text { E } \\ \hline \end{gathered}$	$\begin{array}{r} 0 \\ \text { un } \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 7 \\ & \text { 5 } \\ & 0 \\ & 0 \\ & \hline \end{aligned}$						$\begin{aligned} & \infty \\ & \substack{y \\ 0 \\ 0 \\ \infty \\ \infty \\ \hline \\ \hline} \end{aligned}$	$\begin{aligned} & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { g } \\ & 0 \\ & \text { E } \\ & \text { E } \\ & \hline \end{aligned}$	$\begin{gathered} \text { N } \\ \stackrel{4}{4} \\ 0 \end{gathered}$			*
Wagon or Trailer on yard	1	2	-	-	-	-	∞	-	-	2	\cdots	-	1	-	6	6	
Cotton house	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Drier	1	-	-	-	-	-	1	-	-	-	-	-	1	-	3	3	
Separator	-	-	∞	1	-	-	-	-	-	-	-	-	-	1	2	2	
Overhead cleaners	11	-	4	3	-	-	1	-	-	-	-	\cdots	2	2	23	24	
Burr extractor	1	-	1	1	-	-	-	-	-	∞	\cdots	-	3	-	6	6	
Conveyer	3	-	1	-	-	-	1	-	1	-	-	-	2	1	9	9	
Gin stands	1	-	2	1	5	\cdots	∞	-	-	-	1	-	8	-	18	19	-
Lint cleaners	-	-	\cdots	\sim	-	\cdots	-	∞	-	-	-	1	-	-	1	1	
Condenser	1	-	2	\sim	\cdots	-	\pm	-	-	-	1	$-$	1	-	5	5	
Press box	3	*	-	-	-	-	-	\cdots	-	1	-	-	-	-	4	4	
Bale platform	-	-	\cdots	2	-	-	-	-	\cdots	1	-	-	2	-	5	5	
More than one	3	-	-	1	-	\cdots	\cdots	-	-	-	1	-	2	1	8	8	
Other and unknown	3	-	2	-	-	-	-	-	*	1	-	-	1	-	7	7	
Total	28	2	12	9	5	-	3	-	1	5	3	1	23	5	97		
Percent	29	2	13	9	5	-	3	-	1	3	3	1	24	5			

In some cases fires were believed carsed by more than one speciric carse, therefore, the number of believed causes totals mote than the actual number of fires.

TABLE XII
THE PLACE OF OCCURRENCE AND PROBABLE CAUSE OF FIRES REPORTED BY 71 SAMPIE GINS WITH GREEN BOLL TRAPS DIRING 1956, 1957, AND 1958

	Believed Causes															
		$\begin{aligned} & \text { 毕 } \\ & \text { H } \\ & \text { E } \\ & \text { E } \\ & \text { E } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { x } \\ & \text { ón } \\ & \text { an } \end{aligned}$							$\begin{aligned} & \infty \\ & \stackrel{\sim}{4} \\ & 0 \\ & 0 \\ & \infty \end{aligned}$			$\begin{aligned} & \text { E } \\ & 0 \\ & E \\ & E \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \text { H } \\ & \stackrel{4}{\partial} \end{aligned}$		$\begin{aligned} & 4-1 \\ & 0 \\ & \text { H } \\ & \text { H } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Wagon or trailer yard	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cotton house	-	1	-	-	-	-	-	-	-	1	-	-	-	-	2	2
Drier	-	-	-	-	-	-	-	-	-	-	1	\sim	-	-	1	1
Separator	1	∞	1	2	-	-	\cdots	-	-	-	1	-	1	-	6	6
Overhead cleaner	13	-	2	-	\sim	-	-	\cdots	-	\cdots	-	-	6	2	23	24
Burr extractor	1	-	-	-	-	1	-	-	-	-	1	-	3	-	6	6
Conveyer	6	\cdots	-	\sim	-	-	-	-	-	1	-	-	1	1	9	9
Gin stands	6	-	1	2	7	-	-	-	-	\cdots	1	1	8	-	26	27
Lint cleaners	-	\cdots	-	\cdots	-	-	-	-	∞	-	-	1	1	-	2	2
Condenser	-	\cdots	-	-	\cdots	-	\cdots	-	-	-	-	1	3	-	4	4
Press box	1	-	-	1	1	-	-	-	-	1	-	-	3	-	7	7
Bale platform or yard	-	-	1	-	2	-	\cdots	-	-	∞	-	-	6	1	10	10
More than one	-	\cdots	-	-	-	-	\cdots	-	-	-	-	-	-	-	-	-
Other and unknown	-	-	-	\cdots	1	-	-	-	\bigcirc	1	-	-	-	-	2	2
Total	28	1	5	5	11	1	-	-	-	4.	4	3	32	4	98	
Percent	29	1	5	5	11	1	\cdots	-	\cdots	4	4	3	33	4		

In some cases fire were believed caused by more than one specific cause, therefore, the number of believed causes totals more than the actual number of fires.

TABLE XIIT

THE PLACE OF OCCURRENCE AND PROBABLE CAUSE OF FTRES REPORTED BY 12 SAMPLE GINS WITH GREEN BOLL TRAPS AND MAGNETS DURING 1956, 1957, AND 1958

Location	Believed Causes															
			$\begin{aligned} & \text { a } \\ & \text { u } \\ & 0 \\ & \text { an } \end{aligned}$			$\begin{gathered} \text { Mechanical } \\ \text { failure } \end{gathered}$				$\begin{aligned} & \stackrel{y}{n} \\ & \stackrel{y}{n} \\ & \text { Non } \end{aligned}$			$\begin{aligned} & \text { 䂞 } \\ & 0 \\ & \text { E } \\ & \text { 吕 } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \stackrel{y}{\rightleftarrows} \\ & 0 \end{aligned}$	T d 0 0	
Wagon or trailer on 																
Cotton house	-	\cdots	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Drier	-	-	∞	-	-	-	-	-	-	-	\cdots	-	-	-	-	-
Separator	\cdots	\cdots	\cdots	∞	1	-	\cdots	-	∞	\cdots	-	-	-	-	1	3.1
Overhead cleaners	2	-	1	-	-	-	-	-	\cdots	-	\cdots	-	-	-	3	9.3
Burr extractor	2	∞	-	-	-	1	\cdots	\cdots	-	\cdots	-	-	∞	1	4	12.5
Conveyer	1	-	1	\cdots	-	-	-	-	-	\bigcirc	-	-	-	1	3	9.3
Gin stands	1	\cdots	-	1	-	-	-	\cdots	-	-	-	2	-	-	4	12.5
Lint cleaners	∞	-	-	-	1	-	-	-	-	-	∞	-	\cdots	-	1	3.1
Condenser	-	-	-	-	-	-	-	-	-	1	-	\cdots	-	-	1	3.1
Press box	-	-	-	-	1	\cdots	1	-	-	1	\cdots	-	-	1	3	9.3
Bale platform	-	-	\sim	∞	2	\cdots	\cdots	-	∞	1	-	-	-	\cdots	3	9.3
More than one	-	-	1	-	-	-	-	-	-	∞	-	\cdots	\cdots	-	1	3.1
Other and unknown	-	\cdots	-	1	1	-	-	-	1	-	-	-	1	-	4	12.5
Total	6	-	3	2	6	1	1	\sim	1	6	-	2	1	3	32	
Percent	18.8		9.3	6.3	18.3	3	3.1	-	3.1	18.8	-	6.3	3.1	9.		

In some cases ffres were believed caused by more than one specific cause, therefore, the number of belicved carses totals more than the actual nowler of fires.

Rocks and metal caused ten fires in gins with green boll traps and five fires in gins with both green boll traps and magnets. Since the devices were designed to eliminate these causes, it is evident that they were not fully effective $\mathbb{1}$ n doing so. Apparently, however, they were partially effective. The gins with no devices reported 21 fires caused by metal and rocks. On a percentage basis, rocks and metal caused 22 percent of the fires in gins with no devices, 10 percent in gins with green boll traps, and about 16 pereent in gins with both devices. When the two groups of gins with devices are combineds rocks and metal caused only 11.5 percent of all fires in the combined group.

However, there was little difference in the percentage of fires caused by metal in the gins with only green boll traps (five percent) and in those gins with magnets in addition to green boll traps (six percent). Metal caused nine percent of the fires in gins with no devices. This seems to indicate that green boll traps were about as effective in removing metal from seed cotton in the sample gins as were magnets, that most of the metal that causes gin fires is heavy enough to be eliminated by boll traps, or there were few pieces of metal in the cotton ginned by sample gins.

Thirty-one ${ }^{8}$ fires were caused by friction in the roll box chokew ups, and knots in ribs. While the exact cause of these events is not known, it is known that green bolls contribute indirectly to these causes of fires. However, gins with no devices for removing green bolls
$8_{\text {Tables } X I, ~ X I I ~ a n d ~ X I I I ~ s h o w ~ t h a t ~} 35$ fires were believed caused by friction in the roll box, choke ups and knots in ribs. However, in foux instances, fires were reported to be caused by combinations of these causes, so the actual number of fires was 31.
reported a smaller percentage of fires resulting from these three causes combined (nine percent) than did those gins with devices. Gins equipped with green boll traps only reported 18 percent of all fires caused by these three factors and gins with both green boll traps and magnets in combination reported 25 percent of all fires caused by the three factors combined (Tables XI, XII and XIII).

Since magnets are not designed to remove green bolls, the data for the two groups with green boll traps were combined. When this was dome, the three causes combined still accounted for 20 percent of all fires in those gins with green boll traps.

Loss from Fires Associated with Causes which Fire Preventive Devices Were Designed to Eliminate

The fire preventive devices used in the sample gins were not over* all preventive devices and many fires occurred for which these devices had no influence or control. The devices were designed to remove foreign matter such as rock, metal and green bolls from the seed cotton.

There were 36 fires xeported by the sample gins which wexe believed started by rocks and metalwa cause which the devices should control. Thirty-one additional fires were believed caused by friction in the roll box, choke ups and knots in ribs. Green bolls could indirectly contribw ute to these causes. It is evident therefore that 67 fires were believed started by factors the fire preventive devices were designed to directly or indirectly control.

Twenty-nine of these fires were in gins with green boll traps (Tatie XIV). Twelve were in gins with magnets and green boll traps and 26 were in gins with no devices. When the data for these carses were summrized,
one gin, with no devices was a total loss. The losses in the other fires were small. Therefore the loss per gin, loss per fire and loss per bale ginned were much lower in the classes with fire preventive devices.

TABLE XIV
LOSSES FROM FIRES BY TYPE OF FIRE PREVENTIVE DEVICES FOR FIRES STARTED BY CAUSES THE DEVICES WERE DESIGNED TO ELTMTNATE, SAMPLE GINS, OKLAHOMA, 1956-1958

Item	Type of Fire Preventive Device		
		Green Boll Trap	Magnet and Green Boll Trap
Number of gins	71	71	12
Number of fires	26	29	12
Number of bales ginned	101,660	118,424	34,961
Loss from fires			
Machinery loss	40,000.00	454.00	--
Building loss	10,000.00	--	--
Cotton loss	929.30	984.40	373.00
Gin time loss	126.70	183.46	213.54
Extinguisher materi used	a1 75.05	323.95	21.00
Total Loss	51,131.05	1,945.81	607.54
Average loss per gin	720.16	27.41	50.63
Average loss per fire	$1,966.58$	67.10	50.63
Average loss per bale ginned	. 503	. 016	. 017

The Effect of Equipment on Fire and Fire Losses

One of the factors expected to affect the occurrence of fires and losses from these fires was the amount of equipment. Although the effect of other factors cannot be completely separated from the effect of equipment, the data are analyzed by equipment classification in this
section. Since there were no simply equipped gins in oklahoma, the only two groups in the study were gins with moderate equipment and elaborate equipment.

There were 62 moderately equipped gins and 92 elaborately equipped gins in the sample (Table XV). The moderate gims reported 69 fires for an average of 1,11 fires per gin. The elaborately equipped gins reported 142 fires for an average of 1.52 fires per gin.

Thirty-three moderately equipped gins (47 percent) during 1956 , 1957 or 1958 went through a complete season without a single gin fire. Thirty-one elaborately equipped gins (34 percent) ginned a fall season without experiencing a fire.

TABLE XV

INCIDENCE OF FTRES IN SAMPLE GINS CLASSIFTED BY THE AMOTRTT OF CLEANING AND DRYING EQUIPNENT, OKLAHOMA, $1956-1958$

Item	Moderate	
Number of gins	62	Elaborate
Number of fires	69	92
Eires per gin	1.11	142
Gims having fires	33	1.52
Bales per gin	1,056	61
Bales per fire	949	1,335

Thws, the elaborately equipped gins had a higher average numbex of fires per year per gin than did the moderately equipped gins and also had a higher percentage of gins having at least one fire during
a ginning season. However, they also ginned a larger number of bales per year (2,051) than did the moderately equipped gins (1,056). As a result, the average number of bales ginned per fire was greater from the elaborate gins (1,335) than for the moderate gins (949).

Losses from Fires

The average loss per gin per year was greater for the elaborately equipped gins ($\$ 1,178.61$) than for the moderately equipped gins ($\$ 968.19$). However, the loss per fire and the loss per bale was greater for the moderate equipped gins (Table XVI). For the moderately equipped and elaborately equipped gins, respectively, the average loss per fire was $\$ 869.98$ and $\$ 763.55$, and the average loss pex bale ginned per year was $\$ 0.92$ and $\$ 0.57$. In every case buildings and machinery accounted for a preponderant share of total losses.

TABLE XVI
LOSSES FROM FIRES IN SAMPLE GINS CLASSIFIED BY AMOUNT OF CLEANING AND DRYING EQUTPMENT, OKLAHOMA, 1956-1958

Item	Amount of Equipment	
	Moderate	Elaborate
	(dollars)	(dollars)
Losses per gin	\$968. 19	\$1,178.61
Building and machinery	810.71	1,063.20
Other ${ }^{\text {a }}$	157.48	115.41
Loss per fire	869.98	763.55
Building and machinery	728.48	688.78
Other ${ }^{\text {a }}$	141.50	74.77
Loss per bale	0.917	0.572
Buildings and machinery	0.768	0.516
Other ${ }^{\text {a }}$	0.149	0.056

ancludes loss of cotton, gin down time, and fire extinguisher material used.

Source: Appendix \mathbb{B}, Table IV.

However, there were some fires reported which were not associated with the amount of equipment in the gin. These fires could not be attributed to the presence of any equipment. Fires which were considered in this category were fires started by sparks from the burr burner, fires in the cotton house, seed cotton fires in wagons on the yard, and fire in the gin after the season closed. Thirteen fires resulted from these causes combined with a total loss of $\$ 52,565.82$. This loss was subtracted from the total loss to give the loss from fires which might be expected to be related to the amount of equipment (Table XVII). When this adjustment was made, the difference in per fire and per bale losses between the two groups was even greater. Moreover, moderately equipped gins now show a greater loss per gin than do elaborately equipped gins.

TABLE XVII
IOSSES FROM FIRES FOR WHICH EQUIPMENT COULD HAVE HAD AN EFFECT BY TYPES OF EQUIPMENT, SAMPLE GINS, OKLAHOMA, 1956-1958

	Amownt of Equipment	
Iten	Moderate	Elaborate
Total gins	62	92
Total fires	65	133
Total bales	65,460	189,585
Loss		
Machinery loss	$\$ 40,264.00$	$\$ 45,260.00$
Building loss	$10,000.00$	$2,500.00$
Cotton loss	$8,414.03$	$5,869.05$
Gin time loss	401.50	$1,253.34$
Extinguisher material	9 ased	734.26
Total	$\$ 59,814.29$	$\$ 55,861.73$
Average loss per gin	964.75	607.19
Average loss per fire	920.22	420.00
Average loss per bale	.914	.295

CHAPTER IV

INSURANCE PAID AND CLATMS COLIEGTED FOR SAMPLE GINS

Insurance expemse is an important item in the cost of operation for Oklahoma cotton gins. Insurance was used by all but four of the sample gins in the survey as the method of shifting the riak of loss from fire. These four gins were owned by a large cotton oil company. This company owned several gins and chose to assume the risk of loss from fires.

Several of the gin operators, including some who were single gin owners, did not carry insurance on the seed or baled cotton on yard. In most of these cases, the cotton was removed from the yard as soon as possible after ginning. The amount of cotton on the yard at any one time was small enough for the operator to assume the risk of loss.

Building and Machinery Insurance

Determination of Rates
The premium on the insurance coverage for each gin is a function of the amount of coverage and insurance rate. There are many considerations which determine the rate. The primary one is the type of building construction. For insurance purposes, cotton gins are classified as come bustible or noncombustible. Combustible buildings include those with wood frame construction. Noncombustible buildings include those with all-metal or masonry construction.

The insurance rate for an individual gin is determined by an inspector for the insurance company. He uses a set of rates which is
established by the insurance company, or a rating bwreau to which the company subscribes. ${ }^{9}$ These are approved by the Oklahoma Insurance Commission and are filed with the Commission. Starting with the base rate for the type of bullding construction, the rate is adjusted for the individual gin. Credit is made for equipment, construction, or managem ment practices which would decrease the chance of occurrence of fires and fire losses. Charges are made for any equipment, construction or management practices which would increase the chance of fire and fire loss. The final rate obtained would be applicable only to the gin ino spected and would probably be different for any two gins.

The Oklahoma Rating Bureau, which establishes the rates used by many companies in the state, is owned by the companies which subscribe to its services. Stock or mutual companies who subscribe are subject to the regulations and rates which are established by the bureau and filed with the Oklahoma Insurance Commission. Insurance companies may operate in the state without subscribing to the services of the Bureau. These companies must establish and file their rates individually with the Insurance Commission.

Insurance Coverage of Sample Gins
For the threewyear period there were 142 givs which reposted inm surance coverage on buildings and machinery. Sixty of these gins were classified as noncombustible. Eighty-two of the gins were elasified as combustible. The percent of the value of the buildings and machinery

9
The set of rates established and used by the Olelahoma Inspection Bureaw, Oklahoma City, Oklahoma is shom in Appendix C.
that was covered by insurance ranged from 30 percent to 100 percent. The distribution of the percent of coverage is shown in Table XVIII.

TABLE XVIII

NUMBER OF GINS BY PERCENT OF VALUE COVERED BY INSURANCE AND TYPE OF CONSTRUCTION, 142 SAMPLE GTNS, OKLAHOMA, 1956-1958

Type of Construction	Percent of Value Insured				Total
	20 to 40	40 to 60	60 to 80	80 to 100	Amount
Combustible	6	5	26	45	82
Noncombustible	3	0	21	36	60
Total Gins	9	5	47	81	142

The average percent of the value which was covered by insurance was approximately the same for combustible gins (79 percent) and non-combus. tible gins (78 percent). However, the average value of noncombustible gins was $\$ 108,842$ while the average value of the combustible gins was only $\$ 60,678$ (Table $X X$). Consequently, the average amount of coverage was much higher for noncombustible gins.

The average insurance coverage for combustible gins was $\$ 47,962$ While the average insurance coverage for non-combustible gins was $\$ 85,144$.

Insurance Rates

The average rate per year for the threewyear period for non-come bustible gins was $\$ 1.184$ per $\$ 100$ valuation (Table XTX). The average rate for combustible gins was $\$ 3.329$ per $\$ 100$ valuation. This average rate includes both the fire rate and the rate for the extended coverage of wind, hail and other damages.

TABIE MIX
AVERAGE INSURANCE RATES FOR BUILDING AND MACHINERY BY TYPE OF CONSTRUCTION FOR SAMPLE GINS, OKLAHOMA, 1956, 1957, 1958

Year	$\frac{\text { Type of Construction }}{\text { Combustible }} \frac{\text { (Dollars per } \$ 100 \text { Valuation) }}{\text { Nombustible }}$	
1956	3.414	1.222
1957	3.251	1.206
1958	3.285	1.124
3 -Year Average	3.329	1.184

The decline in the average rate each year was probably due to the closing of the more dilapidated gins which would carry a higher risk of loss and a higher rate. Several of the gins were remodeled and newer all-metal equipment was added. This would aiso tend to lower the rate applicable to the gin.

A separate analysis of the fire rate and extended coverage rate was impossible for two reasons. The data in the survey were separated into fire and extended coverage rates only for the 1956 season. Also several of the gins were owned by a cotton oil company which was also the primary owner of stock in a mutual insurance company. This inswro ance company wrote the insurance for all of the gins owned by the comm pany. The rates used and quoted included both the fire and extenced coverage rate. The individual gins did not have the rates separated.

The premium rates for noncombustible gins ranged from $\$.85$ to $\$ 1.67$. The rates for combustible gins ranged from $\$ 1.32$ to $\$ 6.05$ (Table XXI).

The rates for noncombustible gins were very closely grouped together. The large majority of the rates in the group between $\$ 1.00$ and $\$ 1.50$ were below \$1.15.

TABLE XX
THE AVERAGE VALUE, AVERAGE INSURANCE COVERAGE AND COVERAGE AS A PERCENT OF VALUE FOR SAMPIE GINS BY TYPE OF CONSTRUCIIION, OKLARORA, 1956, 1957, 1958

Average Per Year	$\frac{\text { Combustible of Construction }}{}$	
1956		
Average gin value		
Average insurance coverage	$\$ 58,457$	$\$ 105,125$
Percent of value insured	$\$ 45,754$	$\$ 80,492$

1957

Average gin value	$\$ 63,556$	$\$ 108,850$
Average insurance coverage	$\$ 48,957$	$\$ 85,232$
Percent of value insured	77	78

1958

Average gin value
$\$ 60,679$
$\$ 112,550$

Average insurance coverage
$\$ 50,618$
$\$ 89,709$
Percent of value insured
83
80

Three-year Average

Average gin value	$\$ 60,678$	$\$ 108,842$
Average insurance coverage	$\$ 47,962$	$\$ 85,144$
Percent of value insured	79	78

The reasons for the wide range in rates for combustible gins were hard to detemine. The lower rates were explained by the presence of a sprinkler system in the gin. The highest rate was explained by the presence of highly combustible auxiliary buildinge nearby and highly combustible businesses in the vicinity. Some of the other variations were probably for the same reasons or similar reasons not expleimed in the survey.

TABIE XXI

NUMBER OF GTNS BY INSURANCE RATE AND TYPE OF CONSTRUCTION FOR SAMPLE GINS, OKLAHOMA, 1956-1958

Type of	Insurance Rate									
	Less	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	
Construction	than	to	Over							
	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.00

Non-

| Combustible | 27 | 26 | 7 | - | - | | - | - | - | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Combustible | - | 3 | 4 | 2 | 19 | 33 | 6 | 5 | 6 | 3 |

Preminms Paid and Claims Collected

The 142 insured gins paid a total premium of $\$ 100,957.27$ (Table XXII). This was an average of $\$ 710.97$ per gin. Claims collected by these gins totaled $\$ 81,740.35$ for an average of $\$ 575,64$ per gin. Hence, 80.9 percent of total premiums was collected as elains.

The 82 gins with combustible buildings collected approximately 98 percent of the total claims collected. In two of the three years, these gins collected claims in excess of the premiums paid. For the three year period the combustible gins collected claims for losses equivalent

TABLE XXIT

PREMIUMS PAID AND CLATMS COLLECTED; BUILDING AND MACHINERY INSURANCE, 142 SAMPLE GINS, OKLAHOMA, 1956-1957

Year and Item	Type of Construction		
	Combustible	Nom Combustible	Total

1956

Number of gins	37	20	57
Total premiums paid (\$)	$24,508.58$	$14,102.72$	$38,611.30$
Total claims collected (\$)	$36,264.00$	0	$36,264.00$
Average premium per gin (\$)	662.39	705.14	677.39
Avexage claim per gin (\$)	980.11	0	636.21
Percent of premium collected			
as claims	148	0	93.9

1957

Number of gins	26	20	46
Total premiums paid (\$)	$20,034.25$	$15,656.35$	$35,690.60$
Total claims collected (\$)	$43,656.35$	0	$43,656.35$
Average premim per gin (\$)	770.55	782.82	775.88
Average claim pers gin (\$)	$1,679.09$	0	949.05
Percent of premiums collected			
as claims	218	0	122.3

1958

Number of gins	19	20	39
Total premiums paid (\$)	$12,696.40$	$13,958.97$	$26,655.32$
Total claims collected (\$)	0	$1,820.00$	$1,820.00$
Average premium per gin ($\$$)	682.60	697.95	683.47
Average claimper gin ($\$$)	0	91.00	46.67
Percentrif premiums collected			
as claims	0	13	6

Three-year Total

Number of gins	82	60	142
Premiums paid (\$)	$57,239.23$	$43,718.04$	$100,957.27$
Claims collected (\$)	$79,920.35$	$1,820.00$	$81,740.35$
Average preminm (\$)	698.04	728.63	710.97
Average claim (\$)	974.64	30.33	575.64
Percent of premiums collected			
as claims	139.6	4.2	80.9

to 139 percent of the premiums paid. During this period noncombustible gins collected claims for losses which were only 4.2 percent of the prew miums paid.

The large amount of claims collected by combustible gins was due to the three fires in which the buildings and machinery were a total loss. The only loss in noncombustible gins was partial damage to one dryer.

Bale Yard Insurance

Cotton products insurance is carried by gins to cover the risk of loss to cotton in and around the gin. It is usually carried only for the period of the ginming season. It is increased or decreased during the season according to the value of the cotton and products at the gin.

There were two basic rypes of inswrance wsed by the sample gins. With one type, the cotton was insured for a value at least as much as the cash value of the cotton. The rate for this type of insurance was a minimum of $\$ 3.75$ per $\$ 100$ valuation as escalished by the Oklahoma Rating Bureau. However, if the rate for the insurance on the gin bwilding and machinery exceeded this minimum rate, then the building rate applies also to the products.

The other type of insurance has a flat rate per bale ginned. This rate ranged from 12 cents per bale to 25 cents per bale. A report of the number of bales ginned each day was made to the company. The insurance covered only the value of these bales.

Bale Yard Premiums and Claims

Bale yard insurance was carried by 129 of the 154 gins in the survey. These gins paid a total of $\$ 21,635.84$ in premiums for this Insurance (Table XXIII). This was an average of $\$ 167.72$ per gin. These gins collected claims which totaled $\$ 9,865.59$. This was an average of $\$ 76.48$ per gin. The total claims collected were 45.6 percent of the total premiums paid for this type insurance.

TABLE XXTIE

PREMIUMS PAID AND CLATMS COLLECTED; BALE YARD TNSURANCE, 129 SAMPLE GINS OKLAHOMA $1956-1958$

Year	Number of gins	Premiums	Claims	Average Premiuan	Average Claim	Claim as Percent of Premivm
1956	52	$\$ 5,734.54$	$\$ 3,845.37$	$\$ 110.28$	$\$ 73.95$	67.0
1957	40	$6,359.29$	$2,475.89$	158.98	61.90	38.9
1958	37	$9,542.01$	$3,544.33$	257.89	95.79	37.1
TOTAL	129	$\$ 21,635.84$	$\$ 9.865 .59$	$\$ 167.72$	$\$ 76.48$	45.6

The bale yard preminm for individual gins wowld be based primarily on the volume of giming. The increase in average premium per gin in 1957 and 1958 is a result of the increase in volume ginned per gin as was pointed out in Chspter II.

Gin Processing Loss

None of the gins in the survey carried any insurance on cotton while it was actually being processed through the gin machinexy. Any
loss of cotton from fires in the gin machinery was paid for by the gin owners. The relatively small amount of cotton which would be in any one piece of machinery at the time of a fire made it feasible for the owner to assume this risk.

The sample gins paid claims of about $\$ 4,600$ for gin processing losses for the three years (Table XXIV). Only 34 of the gins for 22 percent) swffered losses of cotton during processiag which required payments. Most of these losses were small averaging $\$ 134$ per gin and ranging from $\$ 6.00$ to $\$ 700.00$ per gin.

TABLE XXIV
GIN PROCESSING LOSSES PAID BY GIN OWNERS;
SAMPLE GINS, OKLAHOMA, 1956-1958

					Year			Total
Data	1956		1957					
Number of gins having loss	17	13	4	34				
Total loss	$2,031.98$	$1,760.27$	786.54	$4,568.79$				
Loss per gin	110.53	135.41	194.14	134.38				
Range	$\$ 9.00 \times 700.00$	$\$ 6.00-400.00$	$\$ 10.00-400.00$	$\$ 6.00-700.00$				

SUMMARX

The study underlying this thesis is a part of a regional marketing study. The major objective of the regional study was to seek the answer to the following question: Do fire preventive devices such as magnets and green boll traps reduce the frequency of or losses fxom fires in cotton gins? For reasons stated in Chaptex If the olelahome phase of the study was confined to the fourteen southwet oklahoma countes.

There were 59 sample gins in 1956,51 sample gins in 1957 and 44 sample gins in 1958. Therefore the findings included in this thesis are based on gin experience equivalent to 154 gin years. Over the three year period, the sample gins reported a total of 255,045 bales of cotton ginned, for an average of 1,656 bales pew gin pex season. They also reported a total of 211 fires with a total estimated loss of $\$ 168,455$. This was an average loss of $\$ 1,094$ pex gin per year, $\$ 798.31$ per fire, and $\$.66$ per bale ginned.

Ouly 41 of the 211 fires caused a loss of more than $\$ 100$ each. Three of the fires caused a total loss of the gir plant and cotion on the bale yard. In respect to the total estimated Loss reported. the loss of $\$ 125,524$ in machinery was the largest single item of loss.

The average number of fires per gin was 1.37. Eightyothree percent of the gins reported no more than two fixes per season. One gin reported seven fires for one season and one gin reported eight fires in one season.

The fires were reported to have been caused by a variety of reasons. The largest single known cause was matches in the seed cotton which caused 27.4 percent of all reported fires. Rocks and metal in the seed cotton caused 1.5.8 percent of all fires. Other important causes were friction in roll box (9.7 percent), sparks (6.6 percent), and wnknown causes (26.1 percent). Forty-one percent of the fires wexe fixst noticed in either the gin stands or the overhead cleaners. The remainder were first noticed in a variety of places with the more frequently reported places being the conveyor, the bale platform or yard, the burr extractor, and the press box.

When the gins were classified by the volume of ginning, it was found that as the volume of ginning increased from less than 1,000 bales ginned per season to a volume of over 3,000 bales ginned per season, the average fires per gin increased from . 87 fires per gin per season to 3.37 fires per gin per season. But the average bales ginned per fire also increased from 659 bales per fire to 1,445 bales per fire.

When classified by types of fire preventive devices, the gins with green boll traps on $1 y$ had the highest average loss per gin ($\$ 1,504$), the highest average loss per fire $(\$ 1,148)$, and the highest average loss per bale ginned ($\$ 98$). The gins with magnets and green boll traps had the lowest average loss per gin ($\$ 100.17$), the lowest average loss per fire ($\$ 35.35$), and the lowest average loss per bale ginned (\$.034).

However, some fires were reported that resulted from causes not influenced by the fire preventive devices. When these fire losses were eliminated from the analysis, the gins with no fire preventive devices had the largest average loss per gin, the largest average loss per fire
and the largest average loss per bale ginned. The average loss per bale ginned was approximately the same for the two classes of gins with fire preventive devices.

The data for the two classes of cleaning and drying equipment showed that the elaborately equipped gins had a higher average number of fires per gin, but they also ginned a higher average number of bales per gin and per fire. The average loss per gin was higher for the elaborately equipped gins, but the moderately equipped gins had a higher average loss per fire and a higher average loss per balle ginned.

All but twelve of the sample gins carried insurance on the gin buildings and machinery. For insurance purposes, the gins were classi. fied as combustible or non-combustible. The combustible gins had an average value of $\$ 60,678$ and an average insurance coverage of $\$ 47,962$. The non-combustible gins had an average value of $\$ 108,842$ and an average insurance coverage of $\$ 85,144$. The average insurance rate for combustible gins was $\$ 3.329$ per $\$ 100$ insurance coverage and the average rate for non-combustible gins was $\$ 1.184$ per $\$ 100$ insurance coverage.

The combustible gins paid a total of $\$ 57,239.23$ in premiums. . They collected a total of $\$ 79,920.35$ in cllaims. The avexage premium was $\$ 698.04$ per gin and the average clajms collected was $\$ 974.64$ per gin. The claims collected by combustible gins were 139.6 percent of the premiums paid by these gins.

The non-combustible gins paid a total of $\$ 43,718$ as premiums. They collected a total of $\$ 1,820$ as claims. The average premium paid was $\$ 728.26$ per gin and the average claim collected was $\$ 30.33$ per gin. The
claims collected by non-combustible gins were only 4.2 percent of the premiums paid by these gins.

Bale yard insurance was carried by 129 of the sample gins. They paid an average premium of $\$ 167.72$ per gin and collected an average of $\$ 76.48$ as claims. The claims collected for bale yard losses were 45 percent of the premiuns paid for this type of insurance.

The small size of the sample, the limited number of fire preventive device and equipment classifications present in Oklahoma, and the short period of cime covered by the study, makes it necessary to use caution in applying the findings or in making inferences from this study. This is true particularly in trying to evaluate the imfluence of fire preverstive devices and amount of cleaning and drying equipuent on the frequency of fires and the losses from fires. However, these short comings of this individual study should be overcome when the Oklahoma data are combined with those from other states in the regional analysis.

The Oklahoma study will be useful in helping gin owners to realize the major causes and locations of cottongin fires. It will also point out the large fire losses incurred by cotton gins and the risk they face from fires. This knowledge may serve as an incentive to gin operators to eliminate some of the causes of fires and to reduce the fire losses.

BIBLIOGRAPHY

Cotton Risk for Oklahoma. Oklahoma Inspection Bureau, Oklahoma City, Oklahoma, July 1, 1933 reprinted June 1956.

Handbook of Fire Protection. National Fire Protection Association, Boston, Massachusetts, Nineth Edition, 1948.

Hudsong James F. "Cotton Gin Fires, "Louisiana Rural Economist, Department of Agricultural Economics, Louisiana State University, Baton Rouge, Louisiana, November 1957.

Hunt, Robert L., Origins and Causes of Gin Fires and Fire Losses of 176 Texas Gins, 1956. Progress Report 1979, Texas Agricultural Experiment Station, College Station, Texas, August, 1957.

Magee, John H., Property Insurance, Richard D. Irvin, Inc., Chicago, 1951.

Pritchard, Dewey Leong "The Incidence of and Losses from Fires in Mississippi Cotton Gins as Related to the Amount of Machinery and to Insurance Rates, umpublished Masters Thesis, Mississippi State College, State College, Mississippig 1958.

Raskopf, B. D. "Cotton Gin Fires and Losses in Tennessee in 1957." Ag. Econ. Circular No. 2, University of Tennessee, Knoxville. Tennessee, 1958.

APPENDIX A
Gin No. \qquad
COTTON GIN FIRE REPORT
To be Mailed After Each Fire and At End of zach Week

FIRST FIRE NOTICED:
_ Seed Cotton in Field or Transit

- Wagon or Trailer on Yard

Cotton House
Drier
Separator
Overhead Cleaners
Bure Extractor
Conveyor
Gin Stands
Lint Cleaners
Condenser
Press Box
Bale Platform or Yard
(Does not include fire packs)
Other
FTRE BELIEVED CAUSED BY:
___ Matches

- Smoking
_ Rocks
- Metal
- Friction in Roll Box

Mechanical Failure
Overheating in Drier
Defective Wiring
Static Electricity

- Chokewap in
\qquad Other

SUMMARY OF GINNING AND FIRE EXPERIENCE CLASSIFIED BY TYPES OF EQUIPMENT AND FIRE PREVENTIVE DEVICES, SAMPLE GINS; ORLAHOMA 1956

	Mreen Mod Boll Traps	$\begin{aligned} & \text { ate Equipmen } \\ & \text { No } \\ & \text { Device } \end{aligned}$		Green Boll Traps	Elaborage Equ Green Boll Traps and Magnets		Totaz	Green Bol1 Trsps	All Equi Green Boll Iraps and Maymets	prent No Device	Total
Number of Gins	11	15	26	14	4	i5	33	25	4	30	59
volume of cinning											
Total bales Ginned	12,957	10,772 23	23,729	17,917	9,311 26	26,947	54,175	30,874	6,311	37,719	77,904
Number of Bales per Gin	1,178	718	913	1,280	2,328.	1,796	1,642	1,235	2:328	1,257	1,320
Fire Experience											
Total Number of Fires	13	10	23	15	13	17	45	28	13	27	68
Bales Ginned per Fire	997	1,077	1,032	1,194	716	1,585	1,204	1,103	716	1,397	1,146
Number of Fires per Gin	1.18	. 67	. 89	1.07	3.25	1.13	1.36	1.12	3.25	. 90	1.15
Number of Gins Having Fires	8	6 .	14	9	4	7.	20.	17	4	13	34
Loss from Fires by all Gins											
Machinery Loss	264.00	--	264,00	40,040.00	50.00	10.00	40,100.00	40,304,00	50,00	10.00	40,364.00
Building Loss	--			2,550.00	--	-	2,550.00	2,550.00		--	2,550.00
Cotton Loss	353.00	373.00	726.00	1,869.00	180.00	720.00	2,769,00	2,222.00	180.00	1,093.00	3,495.00
Gin Time Loss	53.70	76.50	130.20	194.87	80.36	93.38	368.61	248.57	80.36	169.88	498.81
Extinguisher Material Used	93.67	83.09	176.76	108.08	65.00	141.26	314.34	201.75	65.00	224.35	491.10
Total Loss from Fires	764.37	532.59	1,296.96	44,761.95	375.36	964.64	46,101.95	45,526.32	375.36	1,497.23	47,398.91
Loss from Fires per Gin											
Machinery Loss	24.00	-	10.15	2,860.00	12.50	0.67	1,215.15	1,612.16	12.50	0.33	684:14
Building Loss	-	-	-2	182.14	--.		77.27	102:00	--	--	43.22
Cotton Loss	32.09	24.87	27.92	133.50	45.00	48.00	83.91	88.88	45.00	36.43	59.24
Gin Time Loss	4.88	5.10	5.01	13.92	20.09	6.22	11.17	9.94	20.09	5.66	8.45
Extinguisher Material Used	8.52	5.54	6.80	7.72	16.25	9.42	9.53	8.07	16.25	7.48	8.32
Total Loss from Fires	69.49	35.51	49.88	3,197.28	93.84	64.31	1,397.03	1,821.05	93.84	49.90	803.37
Loss from Fires per fire											
Machinery Loss	20.31	--	11.48	2,669.33	3.85	0.59	891.11	1,439.43	3.85	0.37	593.59
Building Loss	--	--	--	170.00	--85		56.67	91.07	--		37.50
Cotton Loss.	27.15	37.30	31.56	124.60	13.85	42.35	61.53	79.36	13.85	40.48	51.40
Gin rime Loss	4.13	7.65	5.66	12.99	6.18	5.49	8.19	8.88	6.18	6.29	7.33
Extinguisher Material Used	7.21	8.31	7.69	7.21	5.00	8.31	6.99	7.20	5.00	8.31	7.22
Total Loss from Fires	58.80	53.26	56.39	2,984.13	28.88	56.74	1,024.49	1,625.94	28.88	55.45	697.04
Loss from Fires per bale Ginned											
Machinery Loss	0.0204	--	0.0111	2.2348	0.0054	$4 \quad 0.0004$	0.7402	21.3055	5.0 .0054	0.0003	0.5181
Building Loss	--	--	--.	0.1423	--	--	0.0471	10.0826		--	0.0327
Cotton Loss	0.0272	0.0346	0.0306	0.1043	0.0193	30.0267	0.0511	10.0720	0.0193	0.0290	0.0449
Gin Time Loss	0.0041	0.0071	0.0055	0.0109	0.0086	- 0.0035	0.0068	0.0080	0.0086	0.0045	0.0064
Extinguisher Material Used	0.0072	0.0077	7 0.0074	0.0060	0.0070	0.0052	0.0058	8 0.0065	50.0070	0.0059	0.0063
Total Loss from Fires	0.0589	0.0494	- 0.0546	2.4983	0.0403	30.0358	0.8510	- 1.4746	. 0.0403	0.0397	0.6084

APPENDIX B - TABLE II
SUMMAR OF GINNING AND FIRE EXPERIENCE CLASSITIED BY TYPES OF EQUIPMENT AND FIRE PREVENTIVE DEVICES; SAMPLE GINS; OKLAHOMA 1957

APPENDIX B - TABLE III
SUMMARY OF GINWING AND FIRE EXPERIENCE CLASSLFIED BY TTPES OF EQUIPMENT AND FIRE PREVENTIUE DEVICES, SAMPLE GINS; OKLAHOMA 1958

SGMMARY of ginning and fire experience classified by types or equipment and fire preventive devices, sample gins; orlahoma 1956-1958

	Moderate Equipment			Elaborate Equipment				A11 Equipment			
	Green Boll Traps	$\begin{gathered} \text { No } \\ \text { Device } \end{gathered} \quad \text { T }$	Total	$\begin{array}{ll} \text { Green } & \text { Gree } \\ \text { Boll } & \text { Trap } \\ \text { Traps } & \text { M } \\ \hline \end{array}$	en Boll ss and Magnets	$\begin{gathered} \text { No } \\ \text { Device } \end{gathered}$	Total	Green Gr Boll Tr Traps	Green Boll raps and Magnets	$\begin{gathered} \text { No } \\ \text { Device } \end{gathered}$	Total
Number of Gins	31	31	62	40	12	40	92	71	12	71	154
Volume of Ginning											
Total Bales Ginned	45,631	19,829	65,460	72,793	34,961	81,831	189,585	118,424	34,961	101,660	255,045
Number of Bales per Gin	1,472	640	1,056	1,820	2,913	2,046	2,061	1,668	2,913	1,432	1,656
Pire Experience											
Total Number of Fires	42	27	69	51	34	57	142	93	34	84	211
Bales Ginned per Fire	1,086	734	946	1,427	1,028	1,436	1,335	1,273	1,028	1,210	1,209
Number of Fires per Gin	1.35	. 87	1.11	1.28	2.83	1.43	1.54	1.31	2.83	1.18	1.37
Number of Gins Having Fires	21	12	33	26	11	24	61	47.	11	36	94
Machinery Loss	264.00	40,000.00	40,264.00	85,200.00	50.00	10.00	85,260.00	85,464.00) 50.00	40,010.00	125,524.00
Building loss	--	10,000.00	10,000.00	12,550.00	--	--.	12,550.00	12,550.00	- -	10,000.00	22,555.00
Cotton Loss	1,364.53	7,240.00	8,604.53	5,325.25	701.50	2,190.97	8,217.72	6,689.78	701.50	9,430.97.	16,822.25
Gin Time Loss	216.65	188.30	404.95	710.80	347.98	338.71	1,397.49	927.45	347.98	527.01	1,802.44
Extinguisher Material Used	546.77	207.49	754.26	626.53	102.50	273.31	1,002.34	1,173.30	- 102.50	480.80	1,756.60
Total loss from fires	2,391.95	57,635.79	60,027.74	104,412.58	1,201.98	2,812.99	108,427.55	106,804.53	1,201.98	60,448.78	168,455.29
Loss from Fires per Gin											
Machinery Loss	8.52	1,290.32	649.42	2,130.00	4.17	0.25	926.78	1,203.76	4.17	563.54	815.09
Building loss	--	322.58	161.29	313.75	-	--	136.42	176.77	--i	140.85	146.43
Cotton Loss	44.02	233.55	138.78	133.13	58.46	54.77	89.33	94.23	58.46	132.84	109.24
Gin Time Lost	6.99	6.07	6.53	17.77	29.00	8.47	15.19	13.06	29:00	7.42	11.70
Extinguisher Material Used	17.64	6.69	12.17	15.66	8.54	6.83	10.89	16.52	8.54	6.77	11.41
Total Loss from Fires	77.17	1,859.21	968.19	2,610.31	100.17	70.32	1,178.61	1,504.34	100.17	851.42	1,093.87
Loss from Fires per fire											
Machinery Loss	6.28	1,481.48	583.55	1,670.60	1.47	0.18	600.40	918.99	1.47	476.32	594.86
Building Loss	--	370.37	144.93	246.08	--.	--	88.38	134.95	--	119.05	106.86
Cotton Loss	32.49	268.15	124.70	104.42	20.63	38.44	57.87	71.94,	, 20.63	112.28	79.72
Gin Time loss	5.16	6.97	5.87	13.94	10.24	5.94	9.84	9.97	10.24	6.27	8.54
Extinguisher Material Used	13.02	7.68	10.93	12.28	3.01	4.79	7.06	12.62	3.01	5.72	8.33
Total Loss from Fires	56.95	2,134.65	869:98	2,047.32	35.35	49.35	763.55	1,148.47	35.35	719.64	798.31
Loss from Fires per Bale ginned											
Machinery Loss	0.0058	2.0172	20.6151	1.1704	- 0.0014	0.0001	0.4497	0.7217	$17 \quad 0.0014$	0.3935	0.4922
Building Loss	-	0.5043	30.1528	0.1724	4 --	--	0.0662	0.1060	160 --	0.0984	0.0884
Cotton Loss	0.0299	0.3651	10.1314	0.0732	0.0201	0.0268	0.0433	0.0565	650.0201	0.0928	0.0659
gin Time Loss	0.0047	0.0095	50.0062	0.0098	. 0.0100	0.0042	0.0074	0.0078	780.0100	0.0052	0.0071
Extinguisher Material Used	0.0120	0.0105	5 - 0.0115	0.0086	-0.0029	0.0033	0.0053	0.0099	99 0.0029	0.0047	0.0069
Total Loss from Fires	0.0524	2.9066	. 0.9170	. 1.4344	4 0.0344	0.0344	0.5719	0.9019	190.0344	0.5946	0.6605

APPENDIX C
 Schedule for Rating
 GIN HOUSE BASIS RATES ${ }^{1}$

A. Brick, stone, concrete, hollow tile or steel ikon clad gin house with metal or incombustible roof on steel supports
B. Brick, stone, concrete, hollow tile or steel ixon clad gin house with metal or incombastible roof on wood rifters or supports
C. Frame or frame iton clad ginhouse with metal os other incombustible roor 3.45

1. Floors: If combustible floor in part of Building, (except press platform), add .30
2. Height: For each story over one, add . 30
3. Roof: Wood shingle, boaxd, or unapproved composition, add
1.00
4. Boiler:
(a) In boller house of brick, stone, concrete, hollow tile or all steel construction with no wood work within 5 feet of gin house, unless property cut off by standard fire wall, add
(b) In boiler house with brick, stone, hollow concrete block or tile walls with wood rafters os supports. within 5 feet of gin house, unless property cut off by standard fire wall, add
(c) If walls are frame or frame iron clad:
5. Within 20 feet of ginhouse or sheds or awaings attached to elther building, add
6. Within 40 feet of (and more than 20 feet from) ginhowse or sheds or awnings attached to either building, add .30 NOTE: If other than steam power make no charge under Item 4, but apply Item $10(\mathrm{~d})$.
7. Smoke Stack:
(a) If not equipped with spark arrester of not more than $\quad 10$
(b) If less than 18 linch clearance from 211 wood work, add .25
(c) If less than 40 feet high, add . 25
8. Electric Motors: If in main building or not cut offin accordance with standaeds. add

NOTE: Not to apply if motor is approved enclosed dustless type. Switchboards and/or Fuses: Must be installed in accordance with standards.
7. Electrical Grounding: If gin machinery not grounded according to standard, add
${ }^{1}$ Cotton Risks containing General Basis Schedules, Nos. $38-6-37$, Oklahoma Inspection Burear, Oklahom City, Oklahoma.
8. Internal Combustion Engine:
(a) If not located in separate room cut off by partition. with selfmelosing door, add \$ 25
(b) If with gravity feed, add 25
NOTE: If Diesel engine refer to Oklahoma Inspection Bureau.
(c) Unless supply tank located outside of building, 5 feetdistant and buried 3 feet underground or 20 feetdistant if above ground, add25
9. Cotton Cleaner: No approved seed cotton cleaner or cleaming system not properly installed, add 30
10. Flues and Condensers:
(a) If no lint flwes and battery condenser, add 1.90
(b) If lint flues are not all wetal, add 35
(c) If dust flues are not all metals add 35
(d) If no steam pipe from boiler to lint flues and condenser, add 50
NOTE: Must have only one valve, accessibly located.
11. Press: If single box press (not applying to round bale press), add 30
NOTE: Omit if charge $10(a)$ is made.
11 1/2. Cotton Drying and/or Conditioning:

1. Furnace, burnex or boller:(a) If gas oil or electric fuel--
2. In building, addition or engine room not properly cut off 10
NOTE: Not cumulative with charge underItems 4,6, and $8(a)$.(b) If frel other than gas, oil or electricos
3. In building, addition or engine room ofincombustible construction, properly cutoff, or in separate building of incombustibleconstruction within ten feet10
4. In building, addtion or engine room of incombustible constructiom, not cut off 15
5. In building, addition or engine room ofcombustible construction properiy cutoff, or in separate building of combustibleconstruetion within 25 feet25
6. In building, addition of engine room of combustrible construction, not cut off 35
NOTE: Cuarge nnder Item $111 / 2 . \operatorname{1.}$ (b)is not cumulative with charge underItem 4 . When both chaxges apply,make highest charge only.
7. Cabinet:(a) If any part of dryer cabinet is of combustiblematerial and located in gin or within five feetof gin building50
(b) If installation of cotton dryer cxeates congestedcondition in gin or if dryer is not readilyaccessible and arranged so it is not under closeobservation at all times, or if otherwise notproperly installed (see standards) . 10 to50
8. Barrels and Buckets: If none, of not according to standard, add $\$ 1.25$
9. Chemical Extinguishers: If none, of noc according to standard add 30
10. Elevated Tank and Hose: If none, or not according to standard add 30
11. Storage or Wse: TE hay, feed or broom corn stored in buildings on gin premises, add 95
12. Seed Cotton or Cotton Seed stored in gin house, add 75
13. Corn Shucker or Feed Mill: If operated in connection with gins add 1. 20
14. Corn Sheller on Flour Mill: If operated in connection with gin, add 35
NOTE: Not cummative with Item 17.
15. Accumulation of Hulls: If hulls, burws, shale or other trash be discharged within 25 feet of gin house, add 30
NOTE: This charge mot to apply where burned accordingto standard in boiler or in standard incineratorproperly located.
Incinerator to be of 12 inch brick walls not less than 18 feet high and not less than 12 feet inside diameter top and bottom, with top 2 feet of walls honeycombed to permit air passage, with trash discharge 8 feet above ground, and located at least 40 feet from any building or gin plart. For full standards of construction, refer to Oklahoma Inspection Bureau.

CREDITS

20. Municipal Protection: If gin located within city limits of 8 th class town or beter and is within 250 feet of a public fire hydrant, decuct 20
21. All Metal Mechinexy:(a) For rachinery entirely incombustible, (except press)in building of imcombustible construction (no woodwork except press platform deduct $^{\text {w }}$25
(b) For machinery entirely incombustible, with steel press(excepting press boaxds) in building of incombustibleconstruction (no woodwork) and with incombustiblepress platform, deduct50
22. Watchman:
(a) If watchnan sexvice according to standacd during operating season only, deduct 25
(b) If watchman sexvice according to stendard during entire year, deduct 50
23. Whitewash: If all interior woodwork of gin house is whitew washed or painted with approved fireproof paint chrowghout, at least once each year, deduct 10
24. Cotton House: If equipped with at least 1 inch steam jets, deduct 20
25. Carbon Dioxide Systems: For approved carbon dioxide extinguishing system in lint flues and condensex in lieu of steam jets, deduct
26. Exposures:
(a) Cotton howse within 40 feet and wless a clear space of at least 25 feet is maimtained between open sheds. awnings ox driweways attached to either building, add65
NOTE: If walls of both cotton kouse and gin howse axe brick, stone, concrete, hollow concrete block, tale or skeleton steel (no combustible material in walls). reduce charge one-half.
(b) Baled cotton or seed cotton on platform or in yard within 40 feet of gin if left over nights add .95
(c) Saw mill in connection with ging and located adjoining or within 100 feets add
(d) Add for exposure from other property as per exposrre tables in Ceneral Basis Schedule No. 3.
27. Aftercharges: Fevits of management, general condition of premises or hazgrd not provided for in schedule, add $.05=1.00$
28. Buildings and Contents: Cottom Houses. Seed Cotton or Cotton Seed Houses, Boiler Howses, Offices and all other Auxiliary Buildings, and Machinery, Furniture and Fixtures in same take same rate as Gin House. For Cotton (Baled and Unbaledd, See Cotton, Cotton Seed, Begging and Ties, see Items No. 30-33 inclusive.
29. Other Occupancies: Occupancies other than above in connection with gin, refer to oklahoma inspection Burear for rating.

THREE-FOURTHS VALUE CLAUSE

The Threemputch Value Clause must be attached to all policies covering buildings and/ot contents (except cottong seed cottong cottom seed, bagging and ties) withont regard to fire protection.

GIN PRODTCTS IN OR WITHTN 100 EEET OF GTN OR AUXILIART BUTLDTNGS

Coverage
Rate
30. Blanket on cotton (baled and mbaled), seed cottong cotton seed, bagging and ties (mo exclusioms)

Gin Rete
Minimum Rate, \$3.75.
31. Same as Item 30 but excluding baled cotcon Gin Rate plus. 65 Minimum Rate, \$3.75.
32. Baled cotton cotton seed and/or bagging and ties Gin Rate Minimum Rate, $\$ 3.75$
33. Unbaled Cotton Gin Rate plws 1.25 Minimum Rates \$3.75.
34. Coinsurance Clause: All policies covering Gin products must contain Cotton Coinsurance Clause.
35. Minimum Term and Cancellation: No policy on Gin products (except specific insurance on baled cotton) shall be written for a period of less than one month. If cancelled by insured the company shall retain at least one month's premium. Specific insurance om baled cotton may be written for less than one month at option of company. Oklahoma Standard Short Rate Table to be used.

Perey Leo Strickland. Jr.
Candidate for the Degree of
Mister of Science

Thesis: AN ANALYSIS OF THE FIRE EXPERIENCE AND TMSURANCE COST POR OKLAROMA COTTON GINS $1956-1958$

Major Field: AgricuItural Economics
Biographical:
Personal Data: Born in Sampson County, North Carolina, May 16, 1933; the son of Percy L. Strickland and Elizabeth B. Strickland.

Education: Attended elementary and high school in Sampson County, North Carolina; graduated from Mingo High School in May, 1951. Received the Bachelou of Schence Degree from North Carolina State College, Raleigh, North Carolina, om May 26, 1957, with a major in Agricultural Economics. Engaged in post graduate study towatds the Degree of Mester of Science at Oklahoma State Uniwersity, Stillwater, Oklahom, from September, 1958 to August, 1959 .

Professional Experience: Served with the United Scates Axmy from September, 1953 until September, 1955. Was Assistant County Agent with North Carolina Agriculturgl Extension Service in Hoke County, Noxth Carolina from Jume, 1957 to August, 1958.

[^0]: ${ }^{1}$ The 14 southwest counties include: Beckham, Caddo, Canadian, Comanche, Cotton, Custer, Grady, Greer, Harmon, Jackson, Kiowa, Roger Mills, Tillman and Washita.

[^1]: ${ }^{4}$ A $\$ 100$ deductible clause required the gin to pay the first $\$ 100$ of any loss and the insurance company will pay all loss above $\$ 100$ up to the total value insured.

[^2]: ${ }^{6}$ The data shown in the tables in this chapter are summaries of more complete tables presented in Appendix B. The appendix tables present detailed data regarding fire experience of the sample gins for the individual years and for the three-year period combined with the gins classio fied by the amount of cleaning and drying equipment and fire-preventive devices in use.

