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PREFACE

This thesis reports the work performed by the author in compiling
an analysis of the tunnel diode as a device and developing a suitable
design procedure for utilizing the diode in an amplifier circuit. Be-
cause of the extreme non-linearity exhibited by the diode there are
numerous possible applications. Some which have been explored include:
logic elements, free running, astable, and bistable multivibrators,
relaxation oscillators, sinusoidal oscillators, mixers and convertors,
multi-function circuitry utilizing only one diode, and the topic dis-
cussed in the latter part of this thesis, straight amplification.

At the time of this writing, the tunnel diode is a relatively new
device. For this reason it was felt that a complete theoretical explana-
tion would enhance the understanding of any subsequent circuitry. Hence,
the first portion of this thesis is mainly concerned with an explanation
of the semiconductor characteristics of the diode. The latter portion
is a developement c¢f some design procedures and an experimental verifica-

tion of them.

The author wishes to gratefully acknowledge the encouragement, support,
and advice of his advisor, Dr. H. T. Fristoe. Sincere thanks are also
expressed to Professor P. A. McCollum for many helpful discussions.

Appreciation is also expressed to Texas Instruments, Inc., General
Electric Corporation, and International Business Machines Corporation
for their generosity in furnishing samples of their diodes.

Lastly, the wonderful encouragement and help of the author's wife,
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CHAPTER I
INTRCDUCTION

In the fall of 1958, the phenomenon of negative resistance in very
narrow p-n junctions was filrst reported by the Japanese physicist L.
Esaki,l Since that time there has been considerable effort expended in
uwtilizing the negative resistance diode in circuiltry. Experimental
amplifiers have been bulilt and the results rep@rtedgz but to the author's

3 The

knowledge, only one source has given a detailed design procedure,
analysis reported was based solely on the Nyquist plot of the loop
impedance with the diede inserted and the resultant design equations
were first-order approximations. For this reason it was decided to
attempt an analysis from a different standpeint. The method developed
herein by the author incorporates a freguency response analysis with
both analytical and graphical solutions which allow an exact theoretical
design,

Since the dinde is only a two terminal device, it might appear at
first glance that the problem of separating the input from the output
would be exceedingly difficult. However, if the device is inserted be-

tween the source and the leoad, amplification will be obtained although

lL. Esaki, "New Phenomenon in Narrow Ge P-N Junctions", Physical
Review, Vol. 109, p. 603, 1958.

ZH, S. Sommers, Jr., "Tunnel Dicdes as High Frequency Devices”,
Proceedings, L.R.E., Vol. 47, p. 1201, 1959; and K. K. N. Chang,
"low-Noise Tunnel Diode Amplifier", Proceedings, I.R.E., Vol. 47,

p. 1268, 1959,

BU, 5. Davidschn, Y. C. Hwang and G. B. Ober, 'Characterization of

Tunnel Diodes and Gircuit Stability Considerations", Electrconic Desgign,
March 17, 1960,
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the magnitude of the source and load impedance are still critical factors
in the design.

Since there are essentially two types of sources, voltage and current,
there are essentially two methods of insertion. Series insertion is used
for voltage amplification and parallel insertion for current amplifica-
tion. Only the series Iinsertion amplifier was considered in this thesis.

Analysis of the series amplifier implies that two essential modes of
amplification may be obtained. That 1s, the circuit may be adjusted to
yield either selective or non-selective amplification. From the analysis
it appeared that the non-selective amplifier was only a special case of
the selective amplifier and for that reason the selective tuned amplifier
was the only one considersd in the analysis,

The primary reasons for the intense interest shown in the negative
registance or tumnel dicde are its very high frequency response, extreme
resistance to radiation and low noise figure. These characteristics
rvegult from the fact that the operaticn does not depend upon minerity
carriers. In order to illustrate more effectively how these advantages
oceur, the first portion of this thesis is devoted te an analysis of the
tummel dicde as a semiconductor device,

The negative resistance characteristic depends upon guantum-mechaniecal
tunneling of electrons through a potential which they do not appear to
have the energy to surmount. Since electron tunneling theory is not widely
uwnderstood, the second chapter is devoted to an explanation of how this
effect is possible,

The third and feurth chapters are devoted to an explanation of the

dicde characteristics based upon conventional semiconductor theory and



Chapter V is the author's development of some design equations and pro-
cedures for utilizing the diode as an amplifier, Chapter VI reports

the results obtained from an experimental amplifier constructed from the

eguations developed in Chapter V.



CHAPTER IIL
QUANTUM MECHANICAL DEVELOPMENT OF ELECTRON "TUNNELING"

Quantum mechanics is in essence a mathematical formulation to analyze
and predict particle behavior on an atomic scale. In the late nineteenth
century the older classical theory of particles began to deviate slightly
from the observed results of experiments and in certain situations gave
completely erroneous resultsol It was felt at the time that perhaps these
deviations could still be fitted into the structure of classical mechanics
which up until this time had so adequately described all physical proc-
esses. However, time passed, and despite Herculean efforts of mathemati-
cal manipulation, the inconsistencies remained. Then a few farsighted
physicists among them, Heisenberg, Schrodinger, and Dirac, departed from
the older theory to formulate the new mathematical physics of quanﬁum
mechanics.

The new mechanics, which came into full bloom in the late 1920's,
had as its underl}ing principle a postulate developed by Heisenberg known
as the "uncertainty principle”, which fundamentally was a statement of
indeterminency. As applied to physical phenomena the uncertainty prin-
ciple simply says. that certain related guantities (i.e., momentuh.and
position, energy and time) which describe the state of a particle are so
interrelated that a precise knowledge of one of the quantities involved
automatically implies uncertainty as fb'the magnitude of the other re~

lated guantity. Helsenberg proved that the order of magnitude of the

lganesh Hoffman, ‘The Strange Story of the Quantum Dover Publica-
-tion, WNew York, 1959,
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uncertainty was related to a physical quantity kmown as Plank's constant,
6.23 x lo-lgerg-seca The order of magnitude of this uncertainty is se
small that the effect of the indeterminency &oes not become noticable until
the dimensions of the system approach the microscopic scale, but this is
precisely where the difficulty lay in the application of classical mech-
anics to physical processes. The new theory filled the gap admirably and
spurred developments in the field of atomic theory.

The method embraced by the new guantum theory as diectated by
Heisenberg's uncertainty principle implied that, although precise formula~
tion of the system state was no longer feasible, it was possible and, as
a matter of fact, highly desirable to describe the uncertainty inherent
in the system. This was accomplished by characterizing the physical

quantities by their probabilities of existence.

If, for example, one wished to hypothesize an electron existing in
space, he did not consider it as a particle existimg at a certain point
and moving with a definite velocity but instead formmlated it as a
probability wave. That is, the position of the electron would be char-
acterized by a probability fumction throughout the region under considera-
tien and the particle's momentum would be considered similarly. New, im
any mathematical treatment of the system, the probability waves would be
used to represent the electron instead of the older method of considering
the electron to be a particle at a fixed point with a fixed momentum.

From these first revolutionary concepts a highly intricate and
complex theory has been developed fr@h which it is possible for the
modern physicist to accurately amalyze and predict en an atomic scale.

A complete exposition of that theory will not be considered here, but



only those aspects ¢f it which will allow qualitative understanding of
the tunmel diodea With this in mind, a highly idealized example teo
illustrate the foregoing discussion will now be considered,Z

Consider the region in space arcund a hydrogen nucleus im which the
electrostatic attractive force between the nucleus and electron obeys the
Coloumb inverse square law of charged particles, Due to this attraction
the electron will have at any point in its orbit areund the nucleus a
certain amount of patential energy due to its position. The electron
will also have kineti{c energy determined by its veloecity and the total
energy of the electron will be the sum of its kinetic and potential energy.
Since the system will be considered to be non-dissipative and will have
no external forces acting on it;, the total electron energy must remain
constant. A diagram fllustrating the energy of the system is shown in

Figure 2~1,

V{x)

-Potential Energy Due to

Position

W, Total System
Energy

lEnergy —

!

Kinetic Energy
at & = %,

& 1

Potential Enargy \
at X = X —

<&

X
6]
x (Pogition Relative to Center of Nucleus) —

Figure 2-1. Electron Energy vs. Position im a Hydrogen Atom

1934,

‘R. W. Gurney, Elementary Quantum Mechanics, Cambridge,




It is thus seen that the electron resides in a sort of potential
"hole" the height of which is determined by the total energy of the
system. According to the older theory of classical mechanics, there is
no possible way for the electron to escape from the confines of this
potential hole since that theory states

V ¢W (2-1)
where

V is the potential energy of the electron
W is the total energy of the electron

In order to simplify the problem for quantum mechanical treatment
without changing the essential results, the potential "hole" will be
idealized into a potential "box" as illustrated in Figure 2-2, W, is the
amount of energy necessary to completely remove the electron frem the

influence of the nueleus,

Vi X) &
b ]
o
.5
Em
V(%) W i
; v{x)
-’{b 0 X — b

Figure 2-2., Idealized Electron Potential Energy vs. Position



In light of the earlier discussion it is evident that the electron
does not exist at any particular location within the potential box, but
rather there will exist some probability function describing the possi-
bility of electron existence throughout the region., It is one of the
triumphs of quantum wechanics that it exhibits a relatively simple methed
of obtaining this probability functien through means of an equation
developed by Schrodinger. 1In its time-free form for one dimension this
egquation is

%\{i -+ Q,CW—V(X))\F =0 (2-2)
where

a= 8ﬂ’zm/h2
is the mass of the particle
is Plank's coenstant
is the wave function

is the total emnergy
is the potential energy

<="E-<€zH

The actual probability, P{x), that an electron exists at any co-
ordinate x is found from
P = | Wl (2-3)
providing P(x) is normalized to unity. That is, the entire area under
the probability curve mugt be set equal to unity as we are dealing with
only one electron., Therefore
jp(x)dx = E\, L\’(x)lzch =1 (2-4)
where the indicated integrations are taken over the whole of space.
The formal derivation, justification, and implicatiouns of the abaove
equations are complex and abstract, and, furthermore, are not essential
to the desired reswlts. The interested reader is referred to the many

excellent books on the subject of theoretical quantum mechanics.



The Schrodinger equation, when applied only to the interior of the
potential box of the example yields the simple family of solutions
Yoy = AcosTaw-via x + B ewValW-ves X (2-5)
where

A and B are constants of integration determined by the boundary
conditions

It was Schrodinger who first pointed out that the wave equation was
valid outside the confines of the potential box. The guestion of how
this situation arises is best justified by noting that it gives the
necessary answer as dictated by experimental facts without being concerned
with how the potential energy V of the system Hés seemingly managed to
exceed its total energy. In any event, the solution of the wave eguation
for the case where (W-V) is negative yields for the region exterior to

the potential box
Yoo = Cexe(hE-w)x) + D exd@lim-w x) (2-6)

A necessary condition for the wave equation to represent the system
is that the complete solution must tend to zero as x tends to infinity
since it is not desirable to imply that the electron spends its entire
existence exterior to the box. Under this restriction it is evident that
the constant in the first term of Equation (2-6) mest be zero for x less
than -b and the comstant in the second term of the equation must be zero

for x greater than +b, The complete solution for all values of x is

Peyy = /—\Comx +.E>5\MMN‘V(*W ,=bex<b

Yoy = CexelValva-w) y bex
Yoy = D exe (ValUn-wix) , ~b>x (2-7)
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To preserve continuity the wave function and its first derivative
mast be comiinuows across the boundaries of the problem. This restric-
tion is essential for £itting the complete solution together.

When the complete solution is fitted to the potential box it is seen
that at the boundaries of the box where V is varying extremely fast that
it would be possible to fit any number of solutions into the box were it
not for the boundary restrictions. PFigure 2-3 (a) illustrates a number
of valid solutions te the wave equation, and Figure 2-3 (b) shows the
corresponding probability function. Figure 2-3 (c¢) shows what would be
the result if a shorter wavelength were to be used for the same boundary

condition on V as that for a longer wavelength.

W J///
vl .
" N
Koo N 0 K
__W___
A N
Ve .
o ] N
\ — ‘]y
K> 0 x— v
(a) Y {x) {(b) P(x) (c) Invalid Y (x)

Figure 2-3, Schrodinger's Wave Equation Solutions



11

It is interesting to observe that these solutions yield a finite
existence probability outside the confines of the potential box where,
according to classical mechanics, the electron could not possibly exist.
It is also worthy of note that in the valid solutions of the wave equa-
tien, the Vy, which are an indicaticon of the electron potential energy,
are discrete in value with Vﬂ+1f> Vi and that the Vi approach W as a
limit. This {8 known as quantization of electron energy and is the math-
ematical justification for the evidence which indicates that the electron
exists In its orbit at definite discrete energy levels. As a matter of
fact, when the Vs from the solution of the Schr@dingerlwave equation are
C@ﬁpared with the line spectra emitted by the hydrogen atom, there is an
exact numerical cerrespondence.

Each boundary energy level is characterized by a guantum number, and
is known as a quantum state in one dimension. When the problem is extended
to three dimensions, it fs found that there exist two other guantum
numbers associated with the other twe variables which describe the system
and, in additiecn, there is a gquantum number associated with the spin en
the electron which iz + 1/2 according to whether the spin is "parallel",
QT "anti=parallel“,3 It would be well at this time to introduce another
principle of theeretical physics which will again be referred to at a
later time. It is known as the "Pauli exclusion principle'" and states
that no two electrons may occupy the same quantum state simultanecusly.

Now let the problem of the electron in the potential bhox be extended
to that of two adjacent potential boxes with an electron initially in

the box on the left in Figure 2-4,

31b1d.
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Energy-—»

V(x) V()
_— — 1 — e e e
W W
m
d —» -
L
0 X —

Figure 2~4, Idealized Adjacent Potential Boxes

The method of solution for the wave function indicating the electron
position is esgentially the same as that given for the previous problem.
The Schrodinger wave eguation in one dimension is solved subject to the
boundary restrictions with the principal difference being in utilizing
the increasing expotential in the region of the "barrier" d. This varia-
tion is admissible az the complete selution still tends to zero as x
increases without bound. Two of the possible valid selutions are
1llustrated in Figure 2-5, where both of the solutions correspond te the
“ground state" or longest wavelength solutions. WNete that the term wave-
length refers to only that portiom of the solution which lies within one
of the potential boxes. The only difference in the solutions is that the
increasing expotential in (b) is the negative of the increasing expotential
in (a). Although it might first appear that both solutions correspond te
the same energy state, it is found, when fitting the solution to the
boundary conditions, that it is necessary to make the solution of (a) of
slightly longer wavelength than (b). This is shown gualitatively in

Figure 2-5,
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This slightly longer wavelength, in fact, corresponds to a slightly

lower energy state than that for the solution with the shorter wavelength.

>
l Hypothetical Extension of o
21 Solution from Interior of B g
&
W » - . V(x) W
Yix) L '
S AN A
/ \
/ \
\
; \
. \ / \\
/
_ﬂ:/]. \\_‘ \\

e Wavelength A > >

te—Wavelength Alg——&:ﬂ**
@ Yor (®) Woy

Figure 2-5., "Ground State” Wave Punctions for Adjacent Potential Boxes

To summérize the essential result contained in Figure 2-5, the pre-
sence of the second potertial box has caused a splitting of the initial
enargy levél inte twin energy states,

This result is immediately extendible toc the case of N potential
boxes clese t©gether as might be present in a crystalline structure. Now
the initial “ground state" solution of the crystal would be split into an
energy band of N discrete energy levels. Now by considering the other
two variables as well as the "spin" which are needed for a 3-dimensional
description of the problem, the energy band would contain 4N levels which

are known as quantum levels since a quantum number is associated with each
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of the 4 variables. This energy band concept is extremely useful in dis-
cussing semiconduction processes as will be done in later chapters,

A final point to be made in relatien to Figure 2-5, is that an
analytic development shows the energy difference (Vz-Vl) of the two solu-~
tions is an inverse function of the barrier widtth.,4 From this it may be
ggen that the band splitting effect does not become appreciable until the
barrier width becomes relatively small as in the case of a crystalline
-material.

All of the previous discussion, although correct under the assumption
made, must now be modifled somewhat to become more in accord with the
gltuation as it actuwally exists. In the normalizing process on W , the
probability of the electron's existence was normalized to unity to signify
the existence of a single electron. However, this process was only done
for one energy level. As may be seen from observation of Figure 2-3,
there are a ﬁumber of possible solutions of the Schrodinger wave equation,
and since the electron only exists in one of the probability states, the
preceeding results must be modified to allow the electron to exist inm
only one of these states at a particular instant. FProceeding according
to the methods of guantum mechanics, the concept of probability is again
introduced in the sense that the probability of any particular solution
being correct must be evalwated,

If ‘yluaeo.,\yn derote the different wave functions obtained from
the Schrodinger wave equation, then it is possible to assign a certain
B'.\‘nie:i.ght:" value to each of the W)i, corresponding to the prebability that

the electron actwally has this wave function as its solution state, This

41pid.
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"weight” will be denoted by a; where ai is the weight associated with the
wave function W T These a, are merely factors which indicate a rela-
tive ignorance as to which of the specific states the electron actually
occupies.

Since the electron must exist in one and only one state, then a

normalization is applied to normalize the a, to wnity as follows

i
1%+ oo e e rlan® = 2 » (2-8)

Utilizing the appropriate "weight'" factors, the complete time-free

wave function in one dimension becomes
Wy = g, e+ o v o 0 o 4 Qo W (x) (2-9)

The use of this representation for U (x) yields an answer to a previocus
vdifficmlty which was not discussed at the time it arose. To be specific,
the preblem of the electron in one of two adjacent potential boxes will
be discussed again.

It is reasonable to suppose that if the electren is initially im
the box on the left, it is very likely that when the system is examined
again after a very short interval of time that the electron will still be
in the region of the bex on the left. However, in examination of Figure
2-5, it is seen that this is not the case under the conditions set forth
for the solution. The reason that the solutlons of Figure 2-5, which
imply an equal prebability of finding the electrsm in either box, are
incerrect is that the assumption was implicitly made that the W pattern
belonging to a single energy level would adeguately represent the system,
However, as was'jwst shown, this is not correct. Instead it is necessary
to proceed according to Egquation (2-9), and assign the proper "weight" to
all p@ssiblé solutions before the probability is computed. For simplicity

in illustration, the ¥ function will be taken as
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W = 0B+ a, W (2-10)
where
a_ is the weight assoclated with solution VY
a; 1s the weight associated with solution Y
Y1 and Y o are the solutions shown in Figure 2-5
with the assumption being made that all higher solutions are negligible.
Now if the weflght of either solution is identical (a1 = a2) or
expressed according to the uncertainty principle, if knowledge of the
electron energy state is very gross, then it would be likely to suspect
that knowledge of the electron position would be correspondingly refined
and a falrly accurate presentation of the position probability should be
the result, The position probability is found as follows
| Poy= | bool*= la W+ a0 %= W+ |7 (2-11)
The operation indicated in Eguation (2-11) is that of adding ordin-
ates of the two solutions shown in Figure 2-5, and squaring the magnitude
of the resultant, The result obtained is that shown in Figure 2-6, and
it is observed that this is more in agreement with the situation as it
might be expected to exist. That is, if the electron is initially in the

box on the left, the position probability should indicate it on the left.

Energy~

V(%)

"’/’//// ‘\,_,/////“_‘\\\\\\N

0 X——p

Figure 2-6. "Welghted" Probability Function



17

The next logical development and the last feature of gquantum mech-
anical theory needed to gualitatively discuss the tunnel diode is that of
the time varying wave function so that it may be ascertained in what
manner the probability wave associated with the electron varies with time,

From all previcus discussien it would be likely to presuppose that
the time solution would exhibit a wave-like nature and, indeed, such is
the case. The time varying VY function is found to be expressible
mathematically ass

W) = Wy ewp (-12mrt) (2-12)
where

Y = V/h and is the frequency of wave oscillation

V is the particle energy level

h is Plank'’s constant

Thus each ¥ pattern associated with an allowed energy level Vi’
oscillates at its own particular frequency of Vi/h, The probability P(x)
is

Phut = [Tool= TU” (2-13)
where

W* denotes the complex conjugate of W

The Y pattern representing the electron is thus oscillating in time
and over some interval will represent all variations in the "weight" of
the time-free Schrodinger wave solution for a given energy level,

We may now apply this time varying function to the problem previously
discussed of the electron in one of the two adjacent potential boxes.
Again giving identical “weight" ﬁo either of the solutions shown in

Figure 2-5 it is seen by wtilizing Equation (2-12), that the time varying

wave function is

31bid.
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Tty = a, (Y, expliarvt)+ Y, e (i ur‘(,_t)) (2-14)

where

Y, and 142 are the frequencies assoclated with the time varying
solutions

The time varying probability P(x,t) is

Pit) = WY (2-15)
substituting Equation (2~14) in Equation (2-15) yields
Poty s LW+ |9 - 2T (Y, Lv:“em(-mm-mﬂ)] (2-16)

which contains the important result that it is the difference or beat in
the two frequencies (Tz- ‘rl) which determines the probability variation,
Now, ('Yé- T&) is proportional to (Vz-Vl), the difference in energy levels
of the two solutions, and, from previous discussion, proportional to an
inverse function of the barrier width. The probability variation is
actually found teo be proportional to ew(-kd) where k is a constant and d

is the barrier width.6

Since the freguencies Y, and W’Z are nearly equal, the total prob-
ability comprised of LPI and Y, starts with kPl and Y, in phase with
each other. As time progresses, the synchronism gets worse and worse
with the value of ¥ in one box growing at the expense of the Y in the
other box until fiﬁally the vibrations are completely out of phase with
. each other, The situation is now the reverse of that indicated in Figure
2-6, with the larger probability wave in the box on the right. Note the
impprtant result that the electron has traversed the region separating

the two potential boxes, a region that, according te the older concepts

Ibid.
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of classical mechanics, would completely contain the electron in the box
on the left, Since the electron did not possess the required energy to
climb the potential "hill", it might be said to have "tunneled through"
and for this reason the phenomenon is known as the "tunnel effect". It
is imbortant to observe that, if "tunneling" is a desired effect, one
requirement would be that of a small barrier width,

This at last is the end towards which the previous di&gws§i©n has
been pointed because it is precisely this tunneling effect which is
predominant at low values of forward bias in the tunmnel diode and is the
ma jor explanation for its unusual characteristics.

Now that the phenomena of tunneling can at least be gualitatively
visualized it will be profitable to return to more conventional methods
for the remainder of the theoretical discussion, keeping in mind that the
tunneling process may be drawn upon as an explanation for an apprepriate

effect should the need arise,.



CHAPTER 11X
PREPARATORY SEMICONDUCTOR THEORY

It has been found that the elements of Group 1V of the periedic

| table exhibit to a marked degree the property of crystal formation as

. a consequence of being tetravalent or having four electrons in the oufer
iéhéll or orbit. The atomé‘of the elements in this group tend to share
electrons with other atoms to form covalent bonds so that the atoms are
“formed into a tetrahedron crystalline struction which is i1llustrated

diagrammatically in Figure 3-1.1 The dashed lines indicate a covalent

bond.
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Figure 3-1, Group IV Diagrammatic Crystalline Struction

The situation as seen by any single valence electron in the crystal-
line struction may be found by applying the discussion contained in
Chapter II, The electron exists in a potential box determined by the
atomic core and the other three valence electrons. It is, however, alse

influenced by the relatively close presence of a number of other potential

1Aldert Von Der Ziel, Solid State Physical Electronics, Prentice
Hall Publishing Company, Englewocod Cliffs, New Jersey, 1957.
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boxes due to the other atoms throughout the crystal so that any single
‘enérgy'level corresponding to a solution of Schrodinger’s equation is
split into an energy band containing 4N discrete quantum levels each
differing slightly in value from all others. Now assuming the material
is at O°K, with no external fields applied, all of the electrons will
exist in the "ground state" solution and, since there are 4N electrons
to fill the 4N quantum states, all states in the valence energy band are
filled since the Pauli exclusion principle must hold. The density of the
4N availablé guantum energy states as a function of energy may be cal-
cielated from the methods of quantum mechanics as2
S
NGEY= C(E-Eof (3-1)
“where
N(E) is the energy state density, i.e., number of states per unit
vo lume
E0 is the emnergy reference level
C is a constant depending on the crystal
. Debénding up@n which elements constitute the atoms in the crystal
structure, there may or may not be a distinct energy "gap" between the
highest energy level in the valence energy band and the energy level
necessary to make the electron available for conduction through the
crystal. This energy difference between the top of the valence band and
thé "conduction" band is known as the forbidden gap,3 It is the width

of this forbidden gap which largely determines the external electrical

characteristics of the crystal,

W. Shockley, Electrons and Holes in Semiconductors, D. Van Norstad
Publishing Company, New York, 1956.

3Eo Wolfendale (Editor), The Junction Transister and Its Applications,
New York, 1958,
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The crystalline structure will tend to reject all applied energies
which are not of sufficient magnitude to raise an electron from the
valence band into the conduction band. Those materials with a large
forbidden gap consequently have high electrical resistivities and are
good insulators. These in which the top of the valence band overlaps the
conduction band have low electrical resistivity and are good conductors.
The materials between these two extremes have moderate values of re-
sistivity and are known as semiconductors. Relative energy band dia-

grams for these three cases at 0°K are illustrated in Figure 3-2.
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Consider the semiconducting crystal energy band diagram illustrated
in Figure 3-2 (¢). As the temperature of the crystal is raised, a few
- of the higher energy electrons in the valence band will accept enough
thermal energy to jump the forbidden gap and become available for conduc-
tion. As the electrons leave the covalent bond, they leave a vacancy or
"hole" in the valence band which acts in many respects like a charge
carrier of opposite sign since electrons from adjacent covalent bendsz may
"£i1l the vacancy and thus in effect move the hole through the crystal,
The energy band diagram of the semiconductcr as it might appear at room
temperature is shown in Figeure 3-3 which illustrates that the energy
distributicon of the electrons has been altered from that shown in Figure
3-2 (¢) in that some electrons are now in the conduction band, and some
holes have appeared in the valence band.

By considering the bands as a continum rather than a discrete set,
two physicists, Fermi and Dirac, working independently derived the
energy distribution of the electrons as a function of temperature and
crystalline material. The Fermi-Dirac distribution function for the
number of electrons with energies between E and E + dE is

n(g)= _NE) dE (3-2)
1 + exs|(E-Ee)fT]
where

n{E) is the number of electrons per unit volume with energy E

N{(E) is the number of energy states per unit volume with energy E

(Equation 3-1)

k is Boltzman's constant

T is the abselute temperature in degrees Kelvim

Eg is the Fermi energy level

The quantity, Eg, or the Fermi emergy level may be thought of as that

energy where the probability of a quantum state being occupied is 50

41bid.
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percent. In Figure 3-2 (¢) the Fermi level would fall in the exact center
of the forbidden gap since all states in the valence band are occupied
and all states in the conduction band are empty.

If certain selected impurities from Group IIL or V, which contain

an excess hole and electron respectively ccompared to the elements of

ction Band

ndue

Forbidden Gap

|
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Figure 3-3, Carrier Distribution at Room Temperature
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Group IV, are introduced inte the crystalline structure during the crystal

growing process, these elements will displace a normal atom from the

- erystal structure as illustrated in Figure 3~4,5 Now the crystal structure
as a whole will centain a number of loosely bound electrons or heles which

are readlly available for conduction.
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The impurities from Group IIL are selected se that the energy re-
guired to break an existing covalent bond and allew an electron to fill
the hole, is only slightly above the energy level at the top of the
valence band., Those from Croup V are selected so that the energy levels
of their leosely bound electroms are only slightly less than the energy
level at the bottom of the conduction band. The energy band diagrams

for these impure crystals at O®K are shown in-Pigure 3-5,
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{(a) p~type Crystal {b) n-type Crystal

Figure 3-5, Impurity Crystal Band Diagram

It is now appareﬁt that much less energy than for the pure crystal
must be accepted by the impure crystalline structure in order to make
some charge carriers available for conduction purpeses. The impurity
eoncentration is very sm@ll (approximately 1 part to 108) but, due to the
large number of atems present (approximately 1018 atoms/cmB) there are
still a lafge number of excess carriers existing se that relatively large
currents may be maintained through the crystal. Note that the Fermi level
of the p-type has been lowered and that of the n-type has been raised since

the energy for 50 perecent occupation probability is now different.
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At room temperature, practically all the impurities have been ionized
due to acquisition of thermal energy and their charges are available for
conduction purposes in addition to those charges from the valence band
which Have jumped the forbidden gap. Due to the large difference in
relative energy levels, the charges in the conducting bands are almost
exclusively determined by the impurity. That is, im the n-~type material
for example, there are go many unbound electrons that holes are combined
with one of these electrons almest as soon as the hole is formed. Thus,
to a very good approximation, it may be said that the charge carriers in
the p-material are holes and the charge carriers in the n-material are

electrons.
The P-N Junction

Now if by some means, a p~type crystal could be grown or attached
to an n~-type crystal such that the transition from one region to the
other is abrupt, the total system would fall into equilibrium in the
following manner. At room tewperature, the excess electrons in the n=-
material are in much greater concentration than the excess electrons in
the p-material, MHence, they tend to diffuse across the junction much as
molecules of a gas tend to diffuse from a region of high pressure to a
lower pressure., Thege electrons which traverse the junction are im a
region of large hole concentration and hence tend to combine with the
p-type impuritiez te form lonized atoms. \A similayr situation holds for
the excess holes in the p-wmaterial. As these jonizations oceur, an
electric field is built up across the jumction due to the different

charges on the immobile ions.  This process tends to continue until the
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transition region has been swept free of excess charge carriers and an
equilibrium condition is reached. Eventuwally the tendency of the excess
charges to flow by diffusion is just matched by the force exerted on the
excess charges by the electric field since the field is in such a direc~
tion as to oppose the flow by diffusion. The situation is illustrated in

Figure 3-6,
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Figure 3-6, Pertinant Variables Across a P-N Junction
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Even in the eguilibrium condition, there will be some holes in the
p-side which attain the necessary energy to surmount the potential barrier
at the junction. Due to thermal agitation, holes are also being generated
in the junction region which tend to flow away from the junction in the
direction of the electric field and opposite to the high energy holes.
Since at zeroc external applied voltage no net current may flow, these
two currents must be equal and opposite. A similar analysis holds for
electrons and when the amalytic expressions are solved for the concen-
tration variation, they yield the results of Figure 3-6 (c¢) which in-
dicates an expotential fall-off in concentration as the carriers move
into the region where they are in the minority. Physically, this is due
to the large tendenecy for ienizatien recombination which is present. 1In
egsence this is a storage or capacitive effect and greatly limits the
frequency response of the p-n junction since it is this minority current
which isﬁpredeinant when the external bias is in the forward directicn.

Fig&re 3-6 (d) is worthy of comment at this time., When the junction
is formed and the electric field is stabilized acreoss it the energy states
on the p-side are raised, the energy states on the n-side are lowered,
and equilibrium is reached when the Fermi levels of both sides of the
erystal attain the same value,6 The result of this energy band shifting
across the junction as shown in Figure 3-6 (d) may be thought of in this
way. The electrens in the lower level energy states on the n-side are
situated directly oppoesite forbidden regions at the same energy level so
their energy states must be raised if they are te pass to the p-type
material. The same is true for the holes in the p-type although the

sitwation is not se immediately obvious.

6W@lfendale9 op. eit.
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It may now be observed that the amount which the bands are shifted
relative to each other is a function of the impurity concentrations of
both the P and N types of semiconductors since in the discussion of
Figure 3-5, it was indicated that the shifting of the Fermi level from
the mid-point of the feorbidden region depended on how many impurity ione
were present. Thus, for large impurity comcentrations, there is a large
difference in initial Fermi levels which yields a large band shift when
the sections are joined. In fact if the impurity concentration is se high
that the impurity energy levels form a fairly wide band of their own, these
bands may overlap the available energy bands in the pure semiconductor and
. actually move the Fermi level inteo the overlapping region. This is ene

condition which must be satisfied in the fabricatiom of the tunnel diede.

If an external bilas is applied to the junctiem, the bands are again
“shifted relative to each other depending upon the direction of the
applied fleld, If the field is in such a direction to oppose the field
already existing across the junction, the bands will tend to become
aligned herizontally, thus making available more energy states for the
minority carriers and the external current will increase greatly. If
the bias is reversed the junction barrier height will be increased and
the majority of the small current which flows will be due to the thermal

generation of carriers in the junction regien.



CHAPTER IV
SEMICONDUCTOR THEORY OF THE TUNNEL DIODE
Qualitative Theory

If the reverse bias on an ordinary p-n junction is increased, an
eventual point will be reached where the V-I characteristic of the dicde
exhibits an unusual feature. The diode starts conducting current heavily
and the current changes by an extremely large amount for very little
increase in applied voltage. This V-1 characteristic is indicated in
Pigure 4-1. The theoretical origin of this phenomena may, in at least
some cases, be ascribed to the electron tunneling process described in
‘Chapter II. It will be of value to examine Figure 4-1 to obtain a quali-
tative explanation of the breakdown. The numbered regions correspond to

the various energy levels shown in Figure 4-2,

Current—

o Voltage —w

O

®4

Figure 4-1. V-1 Characteristics of a Lightly "Boped"™ P-N Juncticn
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Figure 4-2, Relative Energy Band Diagrams

Nothing of unusual interest is shown in Figure 4-2 (a). The dicde
is at zero bilas and no net current flows across the junction until
(Figure 4-2 (d)) the reverse bias is applied which causes the smali current
due to electron~hole generation in the junction to flow. As the bias is
increased, the breakover voltage will eventually be reached (Figure 4-2 (c¢))
and large currents will start to flow., The explanation of how this occurs
is fundamental to an understanding of tunnel diode action and is quali-

tatively fairly simple to understand.
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In Figure 4-2 (c) the highest energy electrons in the valence band
of the p-side of the junction are just approaching the empty energy states
at the same energy level on the n-side of the junction. As a consequence,
the only impediment to prevent their flowing to the n-side is the junction
barrier, In Chapter II it was shown that a definite probability existed
for an electron to tunnel through a potential barrier to an empty state
if the energy level on both sides of the barrier were equal. (See Eqwa~
tion 2-16.) This is exactly what occurs in this case. The electrons from
the valence band of the p-side tunnel through the junction barrier to the
empty available energy states in the conduction band of the n-side and
constitute a current flow.

Since the impurity cconcentration and thermal agitation have raised
some electrons to the conduction band in the n-side and also made avail-
able states in the valence band of the p-side, the electrons from the
conduction band of the n-side also tunnel through the barrier to the
available states in the valence band of the n-side but being much smaller
in number the two will still add algebraically teo give a large net current
flow across the junction.

As the impurity concentration or "doping" of the intrinsic material
is increased it is found that the breakover voltage is lower and lower
in magnitude as shown in Figure 4~3u1 This may be understood by recall-
ing previous discussion where it was indicated that the value of the zero
bias junction field became larger and larger for increased doping. Since

the initial field is larger, then obviously less bias is required in

lBernard Sklar, ""The Tunmnel Dicde - It's Action and Properties,”
Electronics, November, 1959,
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order to align the empty states in the n-side conduction band to the

filled states in the p-type valence band.

o Current——=

Voltage —

Increasing Impurity Concentratiom—*

Figure 4-3, Effect of Increased "Doping"”

If the impurity concentration were made high enough, the junction
would be in a breakdown condition at zero bias and would continue in such
a condition until the forward bias was of such a value that the valence
and conduction levels on the opposite sides of the junction were separated
by an energy gap. This high impurity concentration is one requirement for
tununel diode operation along with the requirement that the junction barrier
be extremely thim te facilitate the tunneling.

A typical V-1 characteristic for the tunnel diode is shown in Figure
4-4 where the numbered regions correspond to the band level diagrams of
Figure 4-502

At (1), the diode is in breakdown conditicn and the tunneling currents

are equal and opposite. These currents are produced by the quantum

2"Tunnel Diodes", Technical Information Sheet, General Electric
Research Laboratory, New York, 1959.
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Figure 4-4. Tunnel Diode V-I Characteristics

mechanical probabilities describing electron position in adjacent potential

boxes which were discussed in Chapter II. As & small positive bias is
applied the electrsns tunneling from the conduction to the valence band
greatly outnumber the electrons tunneling from the valence to the conduc-
tion band since there are many more empty available states in the valence
band and the electron current will increase te a positive maximum.

Now as the bias ig raised higher (3), some of the electrons in the
conduction band are directly opposite the forbidden gap and since there
are no availlable states for the electrons so described to tunnel to, the

total tunneling currents starts to fall with an increasing bias. Thus,

the V-1 characteristic exhibits a decrease Iin current for an increase in

current. This is the negative resistance region for the diode.

As the biaz is further increased (4), (5), the minority current starts
to flow in the forward direction as the potential barrier is reduced
enough to allow the high energy excess carriers to surmount the potential
barrier and contribute to the conduction,

The principle feature which is advantageous in this type of diode,

is that the current carriers are not minority carriers in the negative
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resistance region and hence the high frequency response of the junction
should be greatly improved over the normal junction diode. Also the
resistance of the junction to the effects of high energy radiation should

be improved. Such is found to be the case in the tunnel diode.
Quantitative Theory

The first important factor which affects the current flow across
the junction is the probability that any electron which strikes the
potential barrier will tumnel through. It was seen in Chapter II that
this probability would depend expotentially upon the barrier thickness.,
However, in the actwal case, the potential barrier is not linear as was
assumed in Chapter IIL. Under these circumstances, the Schrodinger
equation has non-constant coefficients and the exact solution is exceed-
ingly difficult. However, an approximate development indicates

Wy = QXPX- gfm dx] (4-1)

Now the tunneling probability is

T- YY* - ew{-zgj‘mm] (4-2)

where

T is the tunmneling probability
2
817 Mg
h 2
Mogg 1s the effective mass of electron in crystal
b is the barrier thickness

a is

To a good approximation, the potential barrier is triangular in
shape as in Figure 4-6, and the electric field across the junction is

constant.

31, A. Lesk, N. Holonyak, Jr., U. S. Davidsohn, and M. W. Aarons,
"Germanium and Silicon Tunnel Diodes - Design, Operation, and Applica-
tion', 1959 Wescon Convention Record.
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Under these conditions the solution of Equation (4-2) becomes

3
(3
= ew{-_E_WEF } (4-3)
where

€ is the electric field in the barrier
e is the charge on the electron

To cbtain the tunneling rate, T i1s multiplied by the number of collisions
per second of electrons against the potential barrier as follows.

From Newton's law, the time rate of change of momentum is equal to
the applied forces. The quantity under the square roct in Equation (4-2)
18 inversely proporitional to the wavelength of thz (P function and
through the de Broglie theorm relating the wavelength and momentum of a

moving electron T becomes propoertional to the electron momentum. Thus,

b - b
T= CXP{—ZS JaLu- vt M} = CXP i— g —i—(% dx} (4-4)

where

A(x) {8 the wavelength of the W function, A&0= 2

a. (W -V(y
TR est-amv
According to the de Broglie thesem
Momentum = "F(\O = _Ji’-f_ (4-5)

A
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Therefore
o]
= exP —4Trg } 4-6
T X_“Z‘DT O-p(x)djx (4-6)
Now since

E;applied forces = mass x accelaration = d(.“)= e E (4-7)

the change in momentum with respect to time becomes
ap.eb- b '@ (4-8)
or
5 = %m& (4-9)
Now if an electron striking the barrier does not tunnel through,
then its momentum must reverse in the barrier and then reverse again be-~
fore the electron strikes the barrier again. This means that the wave-
length associated with the electron musttake on all allowable values from
the upper band edge to the lower band edge and back again to its original
value., It was seen in Chapter II that the band width of solutions was
proportional to the spacing between potential boxes. In a crystal, this
spacing corresponds to the atomic spacing and may be signified by a cons-
tant called the lattice spacing A.
It is found that the change in wavelength is exactly equal to this
lattice spacing constant or
Ah= A (4-10)
Using this in Equation (4-9), and solving for the time between
collisions gives
sty A
Dividing Equation (4-11) into Equation (4-3) yields the tunneling

probability per second or tunneling rate Z as

2
Z - _EE_E = Aef expx-a%}jzmn! E%‘] (4-12)
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When this equation is plotted against E:, with normal values for the
other factors, it exhibits an extremely sharp rise in tunneling rate at
around 106/cm°4 Again this illustrates the need for a narrow junctieon of
arcund 100 R since the value of Eg for most semicenducting materials is
usually low and a high tunneling rate is desirable,

The remainder of this discussion is similar to that followed by
Esaki,s but it will prove more illustrative to refer it to Figure 4-7.

Following the normal rules of probability, the probability of two
events occuring simultanesusly is equal to the product of the individual
probabilities. Thus the probability or "tunnel" current of Energy dE

flowing in the unbiased p-n junction from the conduction band in the

n-region to the valence band in the p-region is egual to the number of

7

Energy -—>

7

2 // 2

() Zero Bias I, ., = Lye (b) Positive Bias I, ., ,>> I, ¢

Oy
ORI R

™
D
0%

209

Energy —
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5Esakn‘l, op. cit.
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electrong in the conduction band times the number of available states in
the valence band (uncccupied states) times the tunneling rate from the
conduction band to an idential energy level in the valence band. The

total current [, _ . is obtained by integrating over the range of over-

v
lapping energy states.
Quantitatively, the number of electrons in the conduction band in

n-region is determined by the product of the Fermi-Dirac probability dis-

tribution function

|
L&) = 7% exp( B2 (4-13)

where
g;ﬁ)is the Fermi-Dirac distribution function
and the density of available states that the distribution function applies
to. It is assumed that the available state density is given by Equatien
{3-1.
% 3-1

Fc(r—:)=c(E~Ec) (3-1)

where

- 1s the density of available states of conduction band in n-region
E, 1s the bottom of conduction band in n-region

Thus the number of electrons ch(E) available is
(= §.C<e)- NE) (4-14)
This function is shown gualitatively in Figure 4-7.
Next, the number of heles in the conduction band in the n-region is
‘ .0
found by

Nc(EB = \ - 'Y'LJE) (4“15)

6Wolfendale, op. cit.
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where

N.(E) is the number of holes in the conduction band in n-region

The electron and hole density in the valence band are found similarly
yielding

Ny@ = (1 - SVCEB)-QV (€) (4-16)

where

NV(E) is the number of holes in the valence band
E, is the top of valence band in the n-regien
Pv is C(Eva)l/Z in the p-region

and
‘ﬂN(Eﬁ = |- Nv(Eﬁ (4-17)
where
T%(E) is the number of electrons in the valence band in the p-region
All these functions are illustrated in Figure 4-7.

Proceeding as indicated previcusly the tunneling current I, __ is

found by
Ev

Ic_-f-v_': A% —YLC(Ex‘Nv(E\'Ec—»V'dE (4-18)

[

where
A 1is the junction area
A similar expression holds for current from the valence band to the
conduction band.
Ev
Tvoe = P\&E'Ylv(\'-")‘Nc@) vEy—rc® dE (4-19)
<
Over the bias range indicated, it is a reasonable assumption that

Ze vy equals Zv-rc and it i{s thus found that the total net current acroes

the junction is
Ev

L 5
TOVY = Tyers BS %&(ﬂ-&(a}-z-(E-EJ-CE»-EV-AE (4-20)

Ec
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where

V is the applied bias
B is a constant dependent on the crystal

This is the final result of this section, an expression for the
current as é function of the applied voltage. Equation (4-20) is a
particularly difficult integral to evaluate analytically but Esaki7 gives
the calculated V-I characteristic obtained from Eguation (4~20),vand it

compares favorably with that which is obtained experimentally.

7Esaki, op. cit.



CHAPTER V
AMPLIFIER ANALYSIS

Consider the region between Ip and I in Figure 4-4, The slope of
the V-I characteristic is negative between these limits implying that
the diode may act as an energy source to yield amplificatioen if the
proper circuit conditions are maintained. To examine these considerations
in more detail consider the circuit in Figure 5-1, The dicde is assumed
to be blased positively and the bias source is isplated from the a-c

circuit.

@)e /I_D | Y V=£(i)

Figure 5-1. Simple Amplifier Gircuit
The loop voltage equation may be written as
e= LR+ {0) (5-1)
where f(i) defines the V-I characteristic of the diode
Solving for £(1), 4
fh=-e-ir (5-2)
This is the familiar load line eguation employed so often in vacuum '

tube circuit analysis with an exception in that the voltage e is not

necessarily a censtant but may vary with time,
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The instantaneous diede resistance may now be defined as

ot -
hd = (5-3)

and it may be seen from Figure 4-4 that rq goes through a negative
minimum at the inflection point where the characteristic changes from
concave downward to concave upward.
When Equatiocn (5~2) is solved graphically the condition follows in
Figure 5-2 that unless
RL & R w (5-4)

the load line has the possibility of intersecting the characteristic at

three peoints instead of one.

- 7 Roond win
1 /’Enm
R R < Mdmiw
=1
]
1
&
o)
(&)
y Voltage—

Figure 5~2., Graphical Interpretation of Stability Conditions

This multiple intersection implies an unstable configuration which must
be avglded in the amplifier if relaxation oscillations are to be avoided.

Assuming Equation (5-4) is satisfied, let e in Eguation (5-2) be

e = Emsinwt (5-5)

Now there is a simple graphical interpretaticn which indicates how

amplification is pessible. As e changes, the lead line retains the same
slope but shifts herizentally with the voltage e intersecting the V-I

characteristic at different points.
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The time varying leoad line along with the ocutput current and veoltage of
the device may be found graphically by following the arrows in Figure 5-3.
The output veltage is larger than the input voltage indicating that

amplification has been obtained.

W
2
5
o
>
-1 w
o L g
= Q
g f
3
i +
o 3
&

DIODE CURRENT . \
v —+

T ]
. 4
Pt '
¥ T
« st ! !
T = _x - = = — = b
\ AY
\ \
LI
\, \
Voltage ———pm A A
H1—— |
Vol T
bt i Voltage E———
Bias Voltage ral

€
\%
Pigure 53-3. Graphical Solution for Diode Waveforms

The actual eguivalent circuit of the dicde Is more complex than that
of a simple negative resistance and has been shown to be the circult in

Figure 5w4.1

ISommers9 ops cit.
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:

Figure 5-4., Tunnel Diode Equivalent Circuit

where
L, is the lead and body inductance of the diede
Ry is the bulk resistance of the diode
Cq is the function capacitance

T4 min L5 the slope of the V-I characteristic of the inflection point
In order to reduce the distortion which is apparent in the ocutput

waveforms of Figure 4-3, the amplification mode usually used is that of

a tuned circuit. The essential circuit can be reduced to one similar to

Figure 5-4 where L., Rg Cy, and ry .. are replaced by L, R¢, €, and =R

where <R is considered to be linear for small signal analysis,

L=Lle+ L, (5-5a)
Re= Rg+ R, (3-5b)
C=Cq+C, (5-5¢)

where

L; is the external circuit Inductance

R; 1s the external ecirecuit resistance

C. is the casge and stray capacitance

This amplifier circuit has been analyzed from the Nyquist plot of
its loop impedance2 and degign procedures have been obtained. However,

it will be of interest to examine the circuit from a different point of

view so that more precise design equations may be developed.

ZU, 8. Davidsohn, et., al., op. cit.
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{2

Figure 5-5. Amplifier Equivalent Circuit

C -
2;(8)

The input impedance of Figure 5-5 is

Z(g = SALRC +g§§?g;l35-r(R—Ra (5-6)

where

i i sy, 1
é_ﬁ{ Lzmeen o{:;e‘ré?%@"ffif‘ & L\?T?]b’ ATy S EE

S is thQ—%apiacmanW@peratorvu

Amplifier stability, which is a prime consideration, will be preserved
if the zeros of Zi(S), which are the poles of the response, do not lie
in the right hand half of the S plane.>

The roots of Eguation (5-6) are

o7 7 (REE%E )+ mm{'&c D) LRE ) (5-7)

The cirewit will be unconditionally stable if
(1 Re > & (5-8)

and
(2) R R (5-9)
Now defining

Svon=L(Re - z¢) (5-10)
§ - s (EF-)\eth (5-11)
v 12

Equation (5-7) becomes

G- wn(-§= V-1 (5-13)
5,

J. L. Brown and Peter M. Schultheiss, Introduction to the Desgign of
Servemechanisms, John Wiley and Sens, Inc., New York, 1938.
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Obviously twe cases exist (note S must be positive and ur, must be
real for stability to be maintained) depending on whether the radical is
real or imaginary. If the radical is real ( {7 1) the amplifier will have
a non-selective response and if the radical is imaginary (S < 1) the
amplifier response will be selective. It is the latter case which will
be considered most carefully in this analysis.

Equation (5-13) is now substituted into Equation (5-6) so that the
numerator corresponds to an accepted convention for the description of
a normalized quadratic response. The numerator of Equation (5-6) will
then be

L&Y « 283 - [[r-=) (5-14)

Now the input impedance as & function of frequency becomes
JW§? Jw
Lilw) = L6 250+ 1]{R- =]
WrRE -4

A convenient power gain definition for the amplifier circuit is

(5-15)

“{ingertion power gain'. This is defined as the ratio of the power in

the load with the amplifier imserted (PLl)

R, = \mezRefﬁh (5-16)
to the power in the load with the amplifier removed (PL0)°’
. 2 “’1
Ro = |iol ReZ. (5-17)
Therefore, G the power gain is
Py
G = :PLLi is

v o
It will be convenient to consider the generator and lgad to be

ii}}z:e.,f’ (5-18)
ADA T »

i

purely resistive, Under these conditions

2

L3 2
G = | E | = | RirRa (5-19)
J%L ZL
o]
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With Equation (5-153) substituted for Zi in Equation (5-19) the power

gain is

G- \M]\ jWRE - 4 \Z

- ‘ ] (5-20)
- e (%%jﬂzg(%yi
Expressed in db
2 . 12
G lOLO%m\%—‘}%  10Ley, | -3+ jLore]
—\OLO%ID\(%\Z.\,Zg(JmL% +1\7~ (5-21)

Note that there are three possible terms which might yield power

gain, These terms will be defined as

Gd - \—i+3wRC\2 (5-23)
Gp = — r (5-24)
[CREET

Eguation (5-24) has been plotted in db, and is shown in Figure 5-6 along
with Equatiens (5-22) and (5-23) which are of nominal valueo4

Although Figure 5~6 has been derived by conventional methods there
iz a difference from conventional passive response in that the G, term
exhibits a power gaim which is not present in the plot of the same
efreuit as Figure 5-5 with a passive resistance for the dicde.

The Gc term has some interesting significance and therefore its
power gain comiribution as a functi@n of the R, ratio will be shown.

R
First

Re 4 Ri+Rg (5-25)

since R, is small (approximately 2 ohms).

4Ibid,
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Therefore
< | Be | _A_f
Ge \’wf-_m - \\—A (5-26)
Where
A= Kt 5.27
) { )
In db
: A |2
Gedos 10vog,| 5 (5-28)

Equation (5-28) is shown in Figure 5-7. Note the significant point where
A=1/2. G, is vnity for this value.
Now the gain due to the resomant term at the resonant frequency will

be derived., First

G&J\z* ZQ(.L“Q

D]

& | !
[(\_@M i)y 4 (%%ﬂ
i sy (1))

This functien exhibits a minimum value where

e UJ

M

(5-29)

(( )) (B84 H) + 4(BY=c {5-30)

This occurs at

W, %Jp_ = Vi-25t (5-31)

T O
£or S‘i 1,;%- , AND
Ao 48 -8 5239
= (1-5% (5-32)

The subscript zero refers to the resgnant fregquency. For S > %; the
funetion exhibits no ressnant peak whatseever.
Figure 53-8 shews the variatl om in Gr@db as a function of § . Observe

that above unity power gain the relationship Is alwmost linear,
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ar

with the last powar gaim term Gy, it will be

advantagecus to

power gain terms alrveady discu:

including the ¢

First the bands {B.W,) must be found. Leﬁtu be the fregquency

at which the curremnt throwgh the lvad resistance which is associated with

. a
G, i= V7 times 1ts mazimum value or

2 = 85§ {5-33)
Gro

ituting in E

B9 (1-6%)= 1+ (49Dt o (&U_xf’ {5=34)

(JUN
The solution of Eguaticao (5-34) is
(_U_J_xf = (1-28) « 257 - 8P (5-33)
WA

-31) and Eguation (5-32), Bguation (5-35) becomes

{5-36)

AT

{(5~37)

Bt Bguatien (5-37) may algo be expressed as

' |
Buw;> = 2 wo ‘ !‘ 2 . :ji__
o 2 009 + AW, - A | | 1= 487 ]| Gre

where Auw), - AW, &

F i
L
g
L
<0
)

ference between the half power freguencies on

efither side of W(o
Cy

2N

AW, = LU, (5-39)

then Equation (5-38) bacomes

\ 5~40
BWY 24 et (5~40)
(T)JT) (-2 G
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It is important te note from Equation (5-35) that unless S < ﬁ.1%

the bandwidth does net exist since the gain never drops to ene-half its
mwaximum value for frequencies below resonance.

The fractional gain-bandwidth product is defined as VG © @ﬂg

[FX

Therefore from Equatien (5-38)

'\[——" BW - 2 We \
Gro (WOB [Zwﬁ M\_&w;“ \ __zgz.} (5-41)

Again, 1f hws, is approzimately equal toAw, , then Equation (5-41) be-

Vere (5%¥\ ~ \—\zs2 (5-42)

Now the constant gain term G, may be included in the gain B.W.

product although its contribution iIs solely in terms of gain,

W@‘M : M( > ( f;\[ zwoﬁ—.zsw\ K 5-1 (5-43)

We

and 1if E%¢ati@n {5~39) is satisfie
Observe that as Ahﬁ>1, very large gain bandwidth figures result, especially
for non-selective application.

To cbtaln analytical relationships suwitable for design purposes, it
1s necessary to knew what quantities would determine the response curve.
In mest tuned responsge applicatiens 1t Is reasorable to assume that the
regonant frequency {W@E and B, W. would be specified., Under this assump-
tion it 1is possible to relate all the design variables to Wo and B.W.

From Equation (3-42)

) \ -
G g%gs = o (5-42)

bt

(5-32)
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therefore

L
(B_&g_) =K= 2% v_‘ﬂ] (5-45)

| - 28*
The factor in the brackets of Equation (5-45) is very nearly unity

for small S and hence
S K (5-46)
If there is doubt as to the approximation involved in Equation (5-46),
Egquation {5-37) has been plotted exactly in Figure 5-9 and for every K &
B may be found such that
$=8K (5-47)
where
B is 1/2 for small §

Since «S has already been defined in terms of the circuit, there is

now one design relationship involving the four circuit variables,

Also
(ASs :
Uk = = \’ F= A 5-48"
I-ZS ~-C ( J
Therefore .
b ( { >( Wo
e - \T=aflvT2¢r)/ (5-49)
The desired design eguations are now
(1) —% = A (5-50)
where A is yet to be determined
o L (Re L L
(2 $=Bks= z(—; Rc)( m) (5-51)
, i \ We?
(3 TZ = ( \-A\( T'—”%’s") (5-52)

Solving the thr ee previcus egquations simultanecusly yilelds

‘r‘z“a = fzg,{ysw'%—& ~ S] (5-53)

Therefore
¢ - T‘%.?X I (5-54)
CENY ygw-\__% -9
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Note that 1if C is also specified, as would be the case if the diode capaci-
tance alone were to be used in the tuned circuit then A is fixed,

From Equation (5-54) and Egquation (5-52) L is now found as

- — I _ Coen)E 2 Vo
L G g)&}z_s_) - %;,(‘ A1 zs)(\’g *Téﬁ S) (5-55)

From Figure 5-6 it is seen that 1 in Equation (5-53) is the
RC
"corner frequency"” of the Gy term and thus the only way in which G4 can
make a significant contribution to the gain at resonance is by letting A
be very much less than unity.
Now let

-
= T e (5-56)

Where W, is the cormer frequency of the G4 term. From Equation (5-53)

Uk - \‘ s -(f‘ - (5-57)

|

>

This expression is plotted in Figure 5-10 which gives the corner
frequency to be used in a graphical analysis. From observation of
Figure 5-10 it may be zeen that unless excessive attenuation is introduced

in G., the principal effect of Gy is a slight widening of the bandwidth

c?

and a small gain contribution. These effects must be accounted for since

W, and B.W. are the two given design parameters.

Sguaring both sides of Equation (5-57) gilves

(gv_cf = A+ Z{S‘—S ¢t ﬁ-f] (5-58)
W, | = A \ =
but
. 2 ' 2

GD.- l-—\%—JU)'RC\ = |+ <%¢.\ (5_59)

Substituting Eguatien (5-58) into Equatiom (5-59)
|
Gp= 1L + (l‘A)'YX ‘ -————-v1 (5-60) -
) W
G G
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At W = W’@9 Gq simplifies to

\ ' 2 A
GDO= \-A - ZS 5 +T—"—A

- — T\ 5-61)
e 2 _ 2 A v ( v
Er OO B +T:'A>
And for small g this expression reduces to
Goo = ) = 2SVAG-AY (5-62)

A - 2STRC-AY
which for moderately large values of A(A Y .1l) reduces still further to
Goe = 7‘; (5-63)
If A= 1/2, Gg~2 and from Figure 5-10 the corner frequency is
approximately equal to W, if € is small. Under these conditions it is

seen that the essential contribution of G, occurs after the response has

d
fallen to unity where it alters thebfa11~off in response from - 12db per
octave to -6db per octave., In general it might.be noted that Gd goes up
when G, goes down and vice versa. Now it is possible to state that Gy
causes no essential widening of the B.W. and hence the previous discussion
is still appropriate for design.

For #11 reasonable tuned amplifier design the foregoing relationships

may be summarized.

The total gain bandwidth expression becomes

Ligw V- 2STRGRY N \

From the desired G, gain ‘
B = A (5-50)
S is determined by the fractional bandwidth

3 = BK (5-47)

C is now determined

S W— -
C RWA<®—+T__/_E\_’;V _ 5) (5-54)
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and now L is completely specified

L= (l"%XL | (5-55)

wE C

Two further design considerations deserve discussion at this point.
First the value of A must not be so large that the d-c biasing is near
instability since the amplifier must be stable in the d-c circuit as well
as the a-c circuit. This means that unless moderate values of A are used
the biasing problem will become difficult.

Also it may be that for the W@ selected,cd may not lie in the allowed
range dictated by Equation (5-34) when the d-c Biasing considerations
discussed above are adhered te., One method of remedying this difficulty
is by paralleling the diode with a capacitance to bring Equation (5-54)
within the limits set by d-c stability.

While this is the simplest method of utilizing the dicde as an
amplifier at lower frequencies (less than 50 me) it alsp introduces a
stability problem. There is now a minor loop in the amplifier con-
figuration which is potentially unstable and sultable measures must be
taken to avoild escillation. The solutien is to insert a series resistance
with the parallel added capacitance. The open i@@p minor circuit is now
as shown in Figure 5-11 where Rp is the added resistance and terminals
xx! represent the Iinsertation point of the parallel capacitance.

This is obvicusly the same essential circuit configuration as that
observed at the terminals of the amplifier proper and hence the same
stability conditions must be met, that is

\-s < R <R (5-55)
Where
Ry = Ry + Rg

Ly is ght series lead inductance ar@und the loop including the
capacﬁt@r leads
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Figure 5-11. Minor Loop Equivalent Circuit

The external circuit at the open loop terminals with the parallel

branch is shown in Figure 5-12.

R¢ L Rg
VAWM LRE2AN I’\N\/\ l
Ry -R
c ::cd
.

Figure 5-12. Complete Low Frequency Amplifier Circuit

Since W, is to be low, the lead inductance of the minor loop is in-
slgnificant in the total analysis and is hence smitted. Also the bulk
resistance Ry (usually less than 2a) may be neglected to as good an
approximation as R remains linear which gives the final equivalent

eircuit shown in Figure 5-13.
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Figure 5-13. Approximate Low Frequency Amplifier Circuit

Since the amplifier will be driven from a sinusoidal source, the

series Rp and CP branch may be converted to equivalent parallel branches

as shown in Figure 5~14.5

Rt L
ANAN/ Q2000 8

11

Figure 5-14, Equivalent to Approximate Low Frequency Amplifier Circuit

Where
@  Re= Re(l+ Gapey) = ReC4 @)
(b) Co = Co( \+QP) (5-66)

These parallel branches may be represented equivalently as shown in

Figure 5-15,

5
H. T, Fristoe, The Use of Q Equations to Solve Complex Electrical

Networks, Oklahoma State University Engineerlng Extension Service, No.
105, 19539,
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Figure 5-15. PFinal Equivalent Low Frequency Amplifier

where
R'= —RE
(a) g
(b) C’= CprCp (5-67)

Since this configuration is exactly similar to that previocusly
considered, the same stability criteria again apply, that is
L LR R (5-58)
One further relationship must be found because the circuit ifllustrated
in Figure 5-5 is omnly valid at one frequency if the parallel RP-CP branch
is inserted. It is convenient to choose that frequency as W, and under
this c@ndiﬁion the simultanecus solution of Equations (5-66) and (5-34)

yields

Ce = RWoWZQZh& 2 TE - AR B -1] (5-68)

For Jﬂ small Eqmatiwn (5~ 68) reduces to
where Rp is determined ﬁwmnm1nor loop stability conditions.,
The effect upen the amplifier response of these eguivalent frequency

varying components is showm in the next chapter.



CHAPTER VI
AMPLIFIER DESIGN AND EXPEHIMENTAL RESULIS
Amplifier Design

The design equations derived in Chapter V were used to comstruct a
tuned series amplifier.

A resonant frequency of 3.0 mc was used since the resultant simpli-
fication in circuit layout aveided the difficultiesvinvolved in high
frequency circuitry. These difficulties are a problem in themselves and
are of little consequence in checking the equations which were developed.

The selectivity factor K was chosen to be 1/10 so that fairly sharp
tuning could be obtained and still obtain enough data to yield a
continucus curve with the available equipment.

The diode selected had the following parameters

R= W8x (6-1)
Cpw 8 uuf (6-2)
Re® 252 : (6-3)

Here it is appropriate to observe that Cy is a function of the junmc-
tion voltage in accordance with conventional semiconductor theory. In
this design the voltage variation im Cy was negligible since a large
external capacitance was added. If no capacitance were added, it would
be necessary to obtain the variation in C4 in order to proceed with the
design. The signal generator used had an output impedance of 25.a..

R%v- 2B (6-4)

The design proceeded along the following lines. First from Figure

5-9
65 K
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S = BK= ’_iié = 0495 (6-5)

The W, chosen was much to low to use only the diode capacitance
so an external Rp~cp branch was added, Rp was determined from the minor
loop stability egquations.

AL CReCR (6-6)
A FTirst-order estimate of the minor loop inductance was made to be 50 muh.
Since C4 and R were given, Equation (6-6) yields
46 d RpL1iBa | (6-7)
A value of
}QP = 100 (6-8)
was decided upon to allow as much leeway as possible for minor loop
inductance although this large value of Rp had a significant effect upon
the actual amplifier response curve.,

Now the design could have proceeded in either of two ways since an
external RP—Cp branch had been decided upon. Equation (5-59) could have
been used to find either A or Gp, If A is specified, then the constant
gain term is specified, If Cp is specified, then the corner frequency of
the G4 term is specified., For convenience in components, Cp was specified
as 400 uuf

Cp = 400uut (6-9)

Now from Equatiom (5-68)

2
CP = 400/&.&1(: R wafVVZz#__'éZ_sz—j?:;’EA““ 4%(1—%)“_— 11 (5"68)

From Equation (5~68) A was found to

A= .36 (6-10)
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MNote that A is this value only at resonance since
A= Re (5-50)
and R’ is now a function of frequency.

Now

1
Qe = Wy RpCp = 382 (6-11)

Therefore the equivalent parallel resistance Ré is

RP'= Reli+ @) = 292 (6-12)
and -
Co= Col %:) = 263unf (6-13)
From Equation (5-67)
R'= :RTR_% — (98= (6-14)
Now R_ is specified since
Re= AR'= I | | (6-15)
Since
Re < Ryt K. (5-25)

and Rg is 255, then RL is
B.: Tle 25, = 4bs (6-16)
“The last guantity to be obtained was the added series inductance

which from Equatien (5-55) was
‘

L= (L);é\/) (5-55)
When all the quantities on the right side of Equation (5-55) had been
substituted in, L becomes

b= 6.7ud (6-17

The d-c¢ biasing arrangement indicated in Figure 6-1 was used for

this amplifier. The operating point on the V-1 characteristics of the

diode was 160 mv which is the inflection point of the characteristies,

The R~-f coil was to decouple the d-c supply from the signal.
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The amplifier eircuit shown in Figure 6-1 was constructed using the
component values found from the preceeding design. These values were set

as close as possible to the theoretical values by using a bridge.

Aluminum Chassis

KXo T o

R — R _|

g ,
T o uhx H! T
| R-F coil l

<m en 360- 600 u;f VIVM
| 0-50< I
| [
100

= 1.34 v ;

T |

P Sy

Figure 6-1, Experimental Amplifier

During the amplifier aligmment, very slight changes in L and C were
necessary to resonate the amplifier at 3 mc. These changes were less
than 2 percent of the values calculated from the design equations. Below

is a complete list of the compoments and instruments used.

LIST CF COMPONENTS AND INSTRUMENTS

Components Instruments
G. E, tunnel diode - #1 Hewlett Packard VIVM - Model 400D
#30964
Ferrite slug tuned inductor - -
L= 1.68—>12.4 uh Booton Radic Corp. Q@ Meter - Type
Q(7.9 mc) = 165—=22 160-A, #3503
Resistor - 100« 1/8 W., 1% (2) General Radic Impedance Bridge
(Portable) - Type No. 1650-A,
Resistor = 47~-1/2 W., 1% #1301
R.F. choke coil - 16.8 mh Fluke Differential Voltmeter -

Model 801, #2354
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LIST OF COMPONENTS AND INSTRUMENTS (Continued)

Components Instruments
Wire wound pot =- 0-50-= Kepco Power Supply - 0-600 v

Model 815-B, #B-7410

Eveready mercury cell -~ 1.34 volts
General Radio Standard Sig.
Generator - Type 1001-A, #434

General Radic - Type 874-R20 3 foot
coaxial 50 <v patch cord

General Radio - Type 874-Q2 adapter

General Radio - Type 1000-P2 40x
Series unit

General Radie - Type 1000-P1 50s-
Termination unit

Tektronix Oscilloscope - Type 545
#9546

Tektronix Coaxial line and
Attenuation Proble - X10,
10 meg. and & uwuf input

Tektronix Plug in unit - Type 53/54L
#666

Experimental Methods

The circuit was mounted in an aluminum chassis with the exception of
the diode and external added capacitance which were mounted above the
chassis in a lucite base. The diode was mounted into copper strips to
reduce lead inductance. The added capacitance and resistance were
mounted close te the diocde with leads as short ag possible, again to
reduce lead inductance. The mercury cell was mounted internally.

The signal generator was taken as a voltage input standard and
coupled directly to the chassis through its coaxial line. The chassis
wage plugged directly into the VIVM which was calibrated from the signal

generator.
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The operating point was set by using a low level d-c voltmeter and
varying the 50 < pot.

Parasitic oscillation in the amplifier circuit was checked for after
each data point of Figure 6~2 by turning the generator output to zero
and checking the output voltage, which was read fmm a high sensitivity

VIV™, to insure that it was zero.
Discussion of Experimental Results

The theoretical output of the amplifier was easily found by a graph-
ical addition of the three terms of Figure 5-6 using the method of Rode
pl@tsul

The gain magnitudes of the theoretical output were taken directly
from FPigures 5-7 and 5-8 using the parameter values determined from the
design equations and the Gy corner frequency was found directly from
Figure 5-10. These were placed in Figure 6-2 along with the actual
msponse curve of the amplifier.

There are three distinct regions of analysis gn the response curve,
The first is from .0l me to 1.15 mec where the response is flat. The
governing gain term in this reglon is G, which ils a function of the Ry

=
vatio. The value at resgnance of G, is -5db and assuming R' is

eonstant gives the predicted curve as shown. However, R' is a function

]
of Rp

R'= —RR, ]

lBrown and Schultheiss, op. cit.
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and R; is an inverse function of frequency which tends to infinity as

the freguency temds to zero, This means R' tends te drop in magnitude

from its resonance value thus making Gc approach the value

R |?

Ge —o g _R% = 2.0%3 (6-18)
and

Ge db = 3.4db (6-19)

The actual magnitude of G, is approximately 2 db and the apparent

c
inconsistency in the first reglon Is resolved,

The second region i3 in the near vicinity ¢f the resonant peak.

The predicted and aetual responses are in good correlation inm this area
except for an actual wider bandwidth and smaller resonant peak than
predicted. The reason f£or this is agaim traceable to the frequency wvary-
ing components which were assumed constant in constructing the predicted
response, The freguency varying equivalent Gé starts contributing gain
in the Gy term soomer than theory would predilict eince

Gd= 1|+ (wHEF (6-20)
¢! is prineipally @% which 18 a direct fumction of frequency and thus the
corner frequenmcy at which Gy contributes 3db of gain i3 essentially lower
than predicted,

The third regiom to comsider is that for frequencies appreciably
higher than resomance., The actwal response is approaching -18db per
octave fall-off while the predicted curve is asymtotic to a fall-pff of
-6db per octave.

The reason for this is that the equivalent RQ has become lower than
the megative resistance of the dicde and consequently from Equatiom (6-11)

the entire circuit has become passive.
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Another curve of gome interest is shown in Pigure 6-4 which illustrates
the non-linear relation between the power gain and the magnitude of the
driving voltage. The data was taken at ﬁhe resonant frequency and clearly
shows that if the amplifier is overdriven, the gain falls rapidly. The
reason for this is that the negative resistance ¢f the diodes is net
constant for large eilgnal application. This may be seen from Figure 4-4
by noting that the average or effective negative resistance depends upon
the driving magnitude. The end points of the negative resistance at Ip
and I, are soon reached and eventually the effective resistance may even
be positive. Figure 6-3 suggests some application in automatic gain
control since the gain is a fmncti@n‘@f input amplitude,

Some final points should be cbserved. While the device is capable
of large power gain, nevertheless, the output power is limited. Power
cutput at Wé in Figure 6-3 was approximately 22 mu watts while the
maximum output pewer before the power gain dropped below unity in Figurve
6-3 was 0,158 m watts. This means that the device should only be used imn
lew level applicatioms such ag the first amplification stage in radar or
ﬁ@levisi@no

Also the device iz essentially at {ts best at higher freguencies than
were used in this thesis since no parallel Rpwcp branch must be added.

If this is the case, then the design equations developed should
follow almost exactly the theoretical predicted response obtained from
the graphical method. Imn any case the equations sheould be accurate

enough for most engineering applicatiens.



CHAPTER VII
SUMMARY AND CONCLUSIONS

The phenomenon of electron tunneling was gqualitatively shown through
quantum mechanical methods. This effect was then wtilized, after some
preparatory semiconductor theory, in a gualitative and quantitative
description of the Esaki tumnel diode. This analysis explained the
origih of the negative resistance region in the marrow p-n junctien.

By assuming the negative resistance regionm was linear, a small-
gignal analysis of a series tuned amplifier cirecuit was outlined, based
upon stabllity criteria and a graphical analysis,

Design equations were developed which gave all circuit parameters,
in terms of a selectivity factor, 1/K where K was the ratio of the desired
bandwidth to the desired resomant frequency.

An amplifier was then constructed based upon the derived design
considerations and its response was compared to its theoretical predicted
response.

The developed design relationships appeared valid based upon the
experimental results. The deviations observed seem to be due to the»
additional circultry requived for low frequency operation, Even with
these deviations the design equations give very geood correlation between
the predicted and actwal response especlally in the significant regilon
of the resonmant peak.

However, the non-linear relation between gain and input magnitude
would seem to limit the application of the amplifier to low power level

applications, especially 1f large amounts of gain are to be obtained.
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The amplifier circuilt seems best suited for much higher frequency
operation than was used since the circult is simpler and no approximation
is invelved in the design equations.

A study of the non-selective amplifier would be useful since this
amplification mode has a number of useful applicat@nsu For example,'it
might be considered in such uses as very low voltage operational amplifier
or as a video amplifier,

The non-linear relationship between input magnitude and resultant
gain suggests some applications in automatic gain control.

A number of devices in addition to the tunnel diocde such as
maltivibrators, gas tubes (thyratrons, neen bulbs, etc.), PNPN transistors,
superregenerative amplifiers, tetrodes, Dynatron and Transistron oscilla-~
tors, and parametric amplifiers exhibit a negative resistance between some
two terminals, It is ﬁhe anthor's suspicien that feedback in general
{especially positive feedback) may be analyzed as a negative resistance
effect, Thus, it might prove advantagecus to take a study of the general
properties of negative resistance so that circults incorporating these

elements might be better understood from a stability viewpoint.
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