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PREFACE 

A note of explanation with reference to gravitational effects is 

in order. The reader may assume that the described motion takes 

place in a space which is free of gravitational forces or that these 

forces do exist but their lines of action are parallel to the fixed ver­

tical axis. In either case, the motion would not be affected. 

The term "axis of rotation" is used in this study to denote the 

Hne about which the body is to be balanced. 

I wish to thank Dr. James H. Boggs for the opportunity to 

work as a half-time graduate assistant in the School of Mechanical 

Engineering of Oklahoma State University, which reduced consider­

ably the expense of an added year of study. 

I would like to acknowledge my indebtedness to Professor 

L. J. Fila, my thesis advisor, for his guidance and understanding 

throughout this study. Also I wish to thank my wife, Dana, for her 

constant encouragement and undying faith that this study would be a 

success. 
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CHAPTER I 

INTR.ODUC TION 

It is known that a body which is rotated about one of its prin­

cipal axes will not experience translation. Because of manufacturing 

imperfections and non-homogeneity of the material it is difficult to 

insure that the desired axis of rotation will coincide with a principal 

axis of the body. Therefore it is necessary to alter the mass dis­

tribution of the body, if the axis of rotation is to remain fixed in 

space. This process is known as balancing. 

There are several different balancing methods in use. One 

method is to provide a movable fulcrum by which the effect of bal­

ance weights in the arbitrary balance planes may be nullified. In 

operation, the fulcrum is fixed at one of the chosen balance planes 

and the object is balanced by a weight in the other plane. The ful­

crum is then moved to the second plane and the object is balanced by 

a weight in the first plane. 

Another method is employed by the Gisholt-We.stinghouse bal­

ancing machines. In operation the effect of a trial weight in each of 

the balance planes is observed, thus establishing two vector equa­

tions i.n two unknowns. These equations are then solved with the aid 
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of electrical circuits. 

These balancing methods are suitable for production balancing 

of single components. With the advent of multi-stage space vehicles 

it becomes necessary to insure the balance of the complete assembly 

as well as the individual componen~s, since the vehicle may depend 

upon spin stabilization as a means of counteracting thrust unbalance 

and thus maintaining the desired trajectory. 

The purpose of the study contained in this thesis is to investi­

gate the effect of an additional unbalance upon the motion of the axis 

of rotation and thus show that a two plane balance proble.m may be 

reduced to two single plane balance problems. 



CHAPTERll 

DERIVATION OF THE EQUATIONS OF 

MOTION OF THE MASS CENTER 

Any condition of unbalance may be represented by two masses 

in two planes which are perpendicular to the axis of rotation. In 

Fig. 1, a general unbalance condition is represented by the masses 

m 1 and m 2 at radial distances r 1 and r 2 with phase angles 9 1 and 

9 2 respectively. 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

Axis of Rotation 

Fig. 1. General Unbalance 
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The body will be rotated about the axis of rotation with a con-

• 
stant angular velocity e and the resulting motion of the axis of rotation 

will be de 1.:ermined. 

The first step will be to determine the motion of the mass cen-

ter. In Fig. 2 a cartesian coordinate system is established in a 

horizontal plane through the mass center. The coordinates of the 

axis of rotation are taken as x and y. The eccentricity of the mass 

center from the axis of rotation is taken as f> with the phase angle 6. 

I X I 

I : 
>- I 

I 

l _________ : __ 
\e 

Fi.g. 2. Coordinate System for 
Motion of the Mass Center 
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Thus the coordinates of the mass center are 

Xcm = X+ .P cosG , Y "' Y + fJ sing cm 
(2~ 1) 

The velocity and acceleration of the mass center are 

~ .. . . . . 
Xcm = X - 'f' 8sin8 ,. Y ""Y+f 8cos9 , cm 

• • 2 
Xcm = X ... fG cosg , 

2 
Y = Y - .p Asin8 • cm ti 

To obtain the steady state equations of motion, a damping force 

which is proportional to the velocity is placed at the mass center. 

Thus the differential equations of motion are: 

MX +K X "'0 cm x cm ' 

. 
MY cm+ Ky Yem= O. (2-2) 

. 
After substituting for Xcm' Xcm and Y cm' Y cm the equations are 

M (X - f' ~ cose ) + Kx (X -pSsine ) = 0, 

which may be written as 

MX:0 + Kx X = Mp e2 case + Kx..P 8sin8 ' 

M0Y + Ky y = M f e2 sine - Kxf E,cose ; 

and the reduced equations are 

. 
MX+ Kx X = 0, 

. 
MY+ Ky Y :c: O. 

(2-3) 

(2-4) 

(2-5) 

Multiplying through by dt and integrating, ,the reduced equations 

are 

. 
MX + Kx X "'c 1 , 

. (2-6) 
MY +K Y:::: C , 

y 2 

in which the variables may be separated and the equations become 



Mdx ----- + dt::: 0~ 
Kx X - C1 

Mdy + dt = O. 
Ky Y ... -C 2 

After integrating the equations are 

KM ln (x - C 1) + t ::: C 3 • 
X 

__M_ ln (y - C2) + t = C · 
K · 4' 

y 

which may be solved for X and Y 

Particular solutions to Equation (2-4) will be taken as 

X ::: A cos9 + B sin9 • 

Y =:C cos9 +D sine 

with velocities and accelerations 

.6 

(2-7) 

(2-8) 

(2-9) 

(2-10) 

X "" -A 9sin8 + B Scose • Y::: - C E3sin9+ D9cos9 , 

• • 2 2 
X == -A<9 cos9 - B 8 sin9 -~ 

• • .• 2 2 
Y = ""'C9-cose- D9sin9 • 

Now substituting into the differential equati(!)ns of motion 

-MA 92 cos 8 ... MB 92 sin9 - Kx A 9sin9 + Kx B 9cos8 ::: 

• 2 • 
Mf 8 cos9 +Kxf 9sin8 , (2-11) 

• 2 5 2 • • 
-MC 8 cos9 - MD 8 sine .,. K C 9sin8 + K D 9 cos 8 ::: y y 

.2 . . 
Mf e sin9 - K ,09cos9; y 

and equating coefficients of like terms 
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• 2 • • 2 • 2 • . 
-MB e - K A e:: K f e -MA e +KXBe= Mfe , 

-MC 8 2 + K D 8"' K f' 9., 
X X ., 

• 2 • • 2 
(2-12) 

y y 

Thus the unknown constants are 

and the equations of motion are 

K 

-MD e - K Ce"' M-,Oe . 
y 

Y "'C +e--L (C - t) - f> sine • 
2 M 4 

The steady state motion is 

xcacl~pcose .. 

Y "" C 2 ~ ,P sin e . 

(2-13) 

(2-14} 

(2~ 15) 

Therefore the motion of two points of the system is described. One 

point., which is the center of mass, remains fixed in space. The 

second point is the intersection of the axis of rotation with a plane 

perpendicular to this axis passing through the mass center. 

This second point describes a circular orbit about the mass 

center with a velocity of constant magnitude. This magnitude is the 

product of the radius of the path and the rotational velocity of the sys~ 

tern about its axis of rotation. 



CHAPTER III 

DERIVATION OF THE EQUATIONS OF MOTION 

OF THE AXIS OF ROT AT ION 

In Fig, 3, a fixed vertical axis through the mass center is taken 

as the reference and is denoted by Z. The horizontal distances from 

Z to m 1 and m 2 are denoted by d 1 and d 2 with phase angles cx 1 and 

ex 2 respectively. 

Since the mass center remains fixed in space, m 1 and m 2 must 

be diametrically opposite and 

(3-l) 

0 • 

D<.1 = CX. 2 (3-2) 

When the motion becomes steady, damping has no effect as was 

shown in the previous chapter. Thus, the angular impulse about the 

Z axis is zero and the angular momentum is constant. Denoting the 

angular momentum by H 

Hz= (3- 3) 

which may be written as 

= (3-4) 

Now d 1 may be eliminated by Equation (3-1)., and the resulting 

8 
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Fig. 3. Coordinate System for Motion of 
the Axis of Rotation 

expression is 

= 

2 
which may be solved for d 2 
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= 

H m 
Z 1 

Therefore, d2 remains constant and from Equation (3,..1) d 1 also re-

mains constant. 

The configuration of m 1., m 2 and the axis of rotation may be 

10 

visualized as a frustum of a cone, whose axis coincides with the axis 

of rotation, with concentrated masses m 1 and m 2 in planes normal to 

the axis of the cone. 

Now m 1 and m 2 rotate about Z in a circular path with the same 

constant angular velocity and the line connecting m 1 and m 2 must pos-

sess this same motion. Therefore, all lines through the cone rotate 

about Z in a circular path with a constant angular velocity, and one of 

these lines is the axis of rotation. 

It was shown in Chapter II that the axis of rotation in the plane 

of the mass center rotated about Z with the same angular velocity that 

the masses rotated about the axis of rotation, Therefore., the axis of 

rotation rotates about Z with the same angular velocity that the masses 

rotate about the axis of rotation. 

The motion of the axis of rotation may be summarized as follows. 

The axis of rotation seeks an inclination relative to the vertical such 

that the mass center will remain fixed in space as the axis of rotation 

rotates about a vertical axis through the mass center, 



CHAPTER IV 

REDUCTION OF A TWO PLANE BALANCE PROBLEM 

TO TWO SINGLE PLANE BALANCE PROBLEl\lIS 

It has been shown that any rigid body can be balanced by ap­

propriate masses in two planes. 1 In Fig. 4, two arbitrary balance 

planes are chosen. The displacement, velocity, or acceleration of 

any two points on the axis of rotation will be measured to define the 

motion. Since any point on the axis of rotation travels about the fixed. 

axis Z in a circular path, the displacement velocity and accelera-

tion of the point are related. Therefore, if any one of the three 

quantities is reduced to zero, the other two must also be reduced to 

zero. This measured quantity will be referred to as the vibration 

vector and denoted by v{ where the subscript denotes the plane of 

the vibration vector and the superscript denotes the location of a 

trial mass. 

The vibration vectors are related to the unbalanced masses by 

dynamic influence numbers. During the steady state motion the sys-

tern is free of damping and the influence coefficients are real 

1 
J. P. Den Hartog, Mechanical Vibrations (4th ed., New York, 1956) 

p. 233. 
11 
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Upper Balance Plane 

Point of Measure-
ment of Va 

Lower Balance 
Plane 

/ 

/ 
/ 

/ 

Plane of m 1 

~-- Plane of m 2 

Point of Measure-
rnent of vb -------..m 

Fig. 4. Location of Balance Planes and 
Vibration Measuring Points 
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numbers which are entirely independent of the amount of unbalance 

present~ 2 The vibration vectors may be written as complex numbers 

as 

(4-1) 

The symbol 'f)ij is the dynamic influence number in which the first 

subscript denotes the plane of the vibration vector and the second 

subscript denotes the plane of the unbalanced mass. 

When a trial mass is placed in the upper balance planet the 

vibration vectors are 

u ie ie2 1e3 
Va"' llJ m r e 1 +111 m r e +llJ 3m.3r3e I 't"al 1 1 Ta2 2 2 'l'a 

(4-2) 
ie 1 9 1e 

V~ "'\.I) bl mlrl e .1 ·HJlb2rn2r 2 e 2 +'-l\3m3r 3e 3 

and the vector difference.,. which is the effect of the trial mass, is 

(4-3) 

Thus., the vector differences are collinear and directly proportional 

to the dynamic influence coefficients •. Consequently there is some 

point on the axis of rotation whose vibration vector was not affected 

2J. P. Den Hartog, Mechanical Vibrations (4th ed.:; New York:; 195 6) 
p. 239 .. 
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by the trial mass in the upper balance plane. This implies that there 

is some point on the axis of rotation for which the vibration vector 

was not affected by placing the trial mass in the lower balance plane. 

0 
In Fig. 5,. a set of vibration vectors is plotted in which Vi de-

notes the vibration vector of the unbalanced body without a trial mass. 

The vibration vector of the point on the axis of rotation which was not 

affected by a trial mass in the upper balance plane is denoted by L. 

The relationship of L to the measured vector is as follows. 

In Fig. 5, two possible cases exist. The vector L may be exterior 

to the region bounded by the measured vectors (5 ... a) or it may be in-

terior to the region (5 ... b). In .both cases the vector differences 

V~ - V~ are collinear but in the latter case the vector differences 1 1 -

are in opposite senses. 

In the first case the relationship of the vectors may be ex-

pressed as 

Vu ... Vo 
a a _____ .. ~ 

0 L,.. V 
a 

0 
L- Vb 

The vector L may be expressed as 

{Vo ___ o 

(4-4) 

o o o I o j b - Va) 
L = Vb + L - Vb El Vb + L - Vb I O O J ( 4-5) 

- vb ... -v I -a 

where the symbol I vi I denotes the absolute value of the vector 

which is the length of the vector. Equation (4.,.4) may be rearranged 

and expressed as 



1.5 

(a) 

(b) 

Fig. 5. The Vector L 



L-V0 

a 
Vo - Vo 

b a 

which may be further rearranged to 

L- V0 

b 

0 O 
Vb - V a 

U 0 
V -V 

b b 

U O O U v -v+v ... vb a a b 
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This expression may be substituted into Equation (4 ... 5) to obtain L 

as a function of the measured vectors 

0 0 

0 I u 01 (Vb-va) 
L !'='vb+ vb - vb I u O o.· u I . 

V -V +V -Vb 
a a b 

In the second case the measured vector differences are in 

opposite senses. In Fig. (.5 ... b)., the vector relationship is 

a 
0 u 

V - V 
b b 

L - V0 
a 

0 
V ..,. L 

b 

and the expression for L becomes 

Equation (4-7) may be rearranged as 

0 
L - V0 v~ - v: V - L b a 

:a:: !5 0 U Vu_ yo Vo ... vu + vu .,. Vo 
vb - vb a a b b a a 

(4-6) 

(4-7) 



which may be further rearranged to 

v0 - L 
b _......,_._ __ ::a 

Vo - Vo 
b a 

Vo -Vu 
b b 

and substituting in Equation (4 ... 8) the expression for L becomes 

17 

I O u U OJ 
(4-9) 

V ... v +V .... v 
b b a a 

A general expression for L is 

L -"" Vo + I Vo ... Vu I 
b - b b 

where the sign is chosen to agree with the vector differences. If 

the vector differences are in the same direction., the positive sign is 

chosen and conversely the negative sign is chosen when the vector 

differences are in opposite senses. 

Now let the b:ial mass be placed in the lower balance plane and 

a third set of vectors will be formed. The vibration vector of the 

point on the axis of rotation which was not affected by the trial mass 

in the lower balance plane is denoted by U • 

The expression for U as a function of the measured vectors 

could be derived by the same method of analysis as was used to de-

termine the expression for L .. The equation would be as follows: 

o ... I o ll U "'V - V ... V. 
b b b 

(Vo - Vo) 
b a 

/ v~ - v~ + v~ - v~ I ~ 
(4-11) 
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where the sign convention is the same as used in Equation (4 .. 9). 

To balance the body.t it is necessary to reduce the vibration 

vectors of any two points on the axis of rotation to zero. Therefore,. 

if the balance masses are placed so that they form the vectors -L 

and = U the body will be balanced. 

Since the vector L was not affected by a mass in the upper 

balance plane.t it will be necessary to place a mass in the lower 

balance plane to produce the vector ... L. The mass that is placed in 

the lower balance plane will not affect the vector U. 

The effect of a mass in the lower balance plane upon the vi-

bration vector for the point on the axis of rotation denoted by L 

must be determined. 

A complete set of vibration vectors is plotted in Fig. 6. When 

the trial mass was placed in the lower balance plane the vector cor= 

responding to L was changed. This vector difference, which is 

~ 

denoted by L· - Lis-collinear with the measured vector differences. 

V 

Thus, the vector L - Lis the effect of the trial mass in the lower 

balance plane upon the motion of the point on the axis of rotation 

whose motion was not affected by a mass in the upper balance plane. 

J 

From Fig. 6,. the expression for L - L is 
yl 0 

L·' - L ~ I L-u I b "" Vb 

Iv~ -ul 
.I 

In a similar manner the vector U ... U is the effect of the trial 

\mass in the upper balance plane upon the motion of the point on the 



Fig. 6. _ A Complete Set of 
Vibration Vectors 
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axis of rotation whose motion was not affected by a mass in the 

lower balance plane. Again, the vector differences are collinear 

i 
and the expression for U - U is 

(4-13) 

' ' The vector L = L must be rotated through the angle between 

I 

=L and L - L to produce a vector in the direction of -L and the trial 

mass must be increased by the :ratio of the length of L to the length 

i 
of L - L to prod.1we the vector .. L. This may be stated in equation 

form as 

(4.-14) 

where l denotes the lowe:n:· plane balance mass, Mt the trial mass and 

9. the angular location of the trial mass. The upper plane balance 
l 

mass is determined in a similar manner and the equations are 

iul 
Mu "' lu a:-u I Mt 1 e u :a: e -u - e u u ... u + ei u . (4-15) 

Thus the two plane balance problem has been reduced to two single 

plane balance problems for a system free of damping. Also,. it is 

not necessary to dete1~:mine the dynamic influence coefficients for the 

body. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

The motion of the axis of rotation of a rotating unbalanced rigid 

body may be described as follows. The axis of rotation seeks an in­

clination relative to the vertical such that the mass center remains 

fixed in space as the axis of rotation rotates about a vertical axis 

through the mass center. 

The dynamic influence coefficients for a system free of damping 

are real numbers. Thus, the vectors which represent the. effect of a 

trial mass are collinear and their magnitudes are proportional to the 

dynamic influence coefficients. Therefore, there is some vibration 

vector which was not affected by the trial mass0 and this vector must 

be reduced to zero by a mass in the other balance plane. Thus, the 

two plane balance problem is reduced to two single plane balance 

problems. 

Some of the advantages of this balancing method are as follows: 

1. The balancing machine would be capable of balancing a wide 

variety of parts~ 

2. The ~achine would be ideal for a configuration such as a 

multi-stage space vehicle w·here it is necessary to balance each compo­

nent as well as the complete assembly. 

21 
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3. It is ,not necessary to know the mass, inertia properties., or 

the dynamic influence numbers of the body to be balanced., thus elimi­

nating the need for a balanced specimen. 

4. The balance problem is easier to understand since it has 

been reduced from a two plane balance problem to two single plane 

balance problems. 

A trivial disadvantage is the time required to balance an ob­

ject. The calibrated balance machines require a single set of vibra­

tion readings as opposed to three sets of readings required by this 

method. 

The following recommendation for future study is suggested 

the design of a balancing machine with a suspension system in which 

no forces are introduced in the horizontal plane and which has the 

ability to measure the vibration vectors. 
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