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PART I
INTRODUCTION

A general procedure for the analysis of continuous truss%es on
elastic supports is presented. The depth of the truss may be constant
or variable and deformations may be caused by transverse 10-ad?s,
applied couples, displacement of the elastic supports or inaccufacies
in fabrication and erection. The presentation is an extension of i’che
study of continuous beams on elastic supports (1) which deals W]:'.ﬂ’l
continuous beams whose supports cannot be assumed rigid and the
elasticity of which must be considered.

The recommended procedure is the direct solution of sirjnul’can"-
eous equations or successive approximations which may be carried to
any desired degree of accuracy. The general five-moment equaé’cion is
derived for a continuous truss and can be used as a mathematicél mo--
del to develop the algebraic carry-over procedure (1, 2, 3).

The éuthor was introduced to the subject in a graduate s;eminar,
C. E.620, taught by Professor Tuma in the spring semester of i959
at the Oklahoma State University. The possibility of its extensi&on to
continuous trusses was suggested in 'zva.n ""Analysis of Guyed Towgrs"
course also taught by Professor Tuma for the Flint Steel Corpo;ration,
Tulsa, Oklahoma. |

The method presented can easily be applied to guyed towﬁers.
The elasticity of the guys would be considered to be the spring ét the

supports. The method recommended to analyze the guys is preisented

1



in (4,546).

This study is restricted to coplanar trusses,and the cus%t‘omary
assumptions of truss analysis are introduced. The sign conveﬁtiOn of
the three-moment equation is adopted.

The following discussion is divided into six parts. The ifirst
contains the derivation of the five-fnoment equation; the second% is the
physical interpretation of the angular -;fun?cti'ohs*:due::'tbifri,otatiorif;f’.;the
third is the physical interpretation of the angular functions due ;to dis-
placement of supports. The fourth is the recommeﬁded p;_c‘ocedﬁre,
while the fifth demonstrates this procedure through an illﬁstratzive ex-
ample. Finally, the results are summarized and a conclusion 1s drawn.

In the physical interpretation of the angular functions dlie to
rotation, the basic structure hijkl is assumed elastic and the sﬁppor’cs
rigid. Fictitious hinges are assumed placed at the supports, ahd the
vertical bars are assumed split at the supports to allow rotatioin., In
the physical interpretatioﬁ of thé aﬁgular functions due to displécement
of supports, the basic structure hijkl is assumed rigid and the isupports
elastic. TFictitious hinges are again assumed placed at the ‘supp;or'ts
and vertical bars are split a;c the supports to allow displacemerit. Once
these functions are calculated the continuity is established by d#ter—

mining the required moment.



PART II
DERIVATION OF THE FIVE-MOMENT EQUATION

1. Statement of the Problem

A continuous truss, resting on elastic supports, subject
general system of loads is considered. The supports are denof

1, 2, 3, ... h,i,j,k,1, ...and their elastic constants by C,, C

0&

C C C The exterior ends are simply

" hCpC3p CpoCpa o

and the bending moments at the supports, MO, Ml’Mz’MB“ ce

Mj’Mk’ Ml’ ... are selected as unknowns. A portion of this co

truss is shown in Fig. (2-1).

2. Three Moment Equation

L

ted to a

ed by 0,
1? CZ’
supported

Mh"

ntinuous

M.,
1

The general three-moment equation written for the intermediate
|

joint j (any joint) in terms of the angular flexibilities (F?), angu‘lar carry-

over values (G'), angular load functions (%) due to rotation; angular dis-

placements slopes (’T(A)) due to displacement of supports; and r
moments is (1):

A

N
J1

A | 1
GyIM; + (F+F i

R S
ji

M, + G TM
j i jk

)
ik ki"k
- The meaning and physical interpretation of the angular f

due to rotation (F!, G', 7') are explained in Part III.

3. Angular Displacement Slope

(&)

J1

The angular displacement slope T (or 'rjk(A)) is defi:

edundant

(2-1)

unctions

ned as
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Fig. 2-1

Typical Portion of a Continuous Truss
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i
the end slope at the elastic support (j). Denoting the displaceménts' by

Ai’ Aj”‘ and‘:Ak (Fig. 2-2), the end slopes become:

- A A, - A
A _ A A o
'TJ(:L)"—‘L‘,‘.“j‘ 'Tj(k)"'“JTk‘“‘ (2-2)
J
Introducing
g7, B) = A) L (A)
j i L
Egs. (2-2) become:
A, A | i
A) 1 1 1 k i
£ - 1 A :[-—+-]+———, . (2-3)
j Lj j 'Lj Lk Lk ;

The Eqg. (2-3) is the change in the angular displacement islope
at j expressed as a function ofdisplacements A’i, -Aj" and 'k‘ These
displacements can be expressed as functions of the elastic support

constants (Spring Constants) and the corresponding reactions. From

Hooke's Law they are:

=

R, p
A, = A= . (2-9)

il

M

A,

1

)

(-
[
W

With these new equivalents (Egs. 2-4), Eq. (2-3) becomes:

A) _ 1 3 1 1 1 .
L™ = v By Ry Ite oot oo B o (28
J 1 37 k] j
In order to express the reactions as functions of the»loacjls and
redundant moments, the basic structure hijkl is isolated into four

free bodies by splitting the vertical bars h, i, j, k, and 1 (Fig. :2-3),,



—— — — _ — X - = — - Initial

Structure

Displaced
Structure

{ R
e o B

B P I IITC, Ly 7 L,
I -+ ! - J —— -+ = 1‘\
Fig, 2-2

Angular Displacement Slopes

Elastic Strueture -~ Elastic Supports

® . © - O ® ®» & - O

Py | Py 4 P3 ! Py ‘ |
MhC =L M > MjC > i i 3 et
| L, ] . L, 1 i L L, K
) : r~ : —
Vi Vin Vi Vi Vik Vi Via Vik
 Fig. 2-3

Free Bodies hlL—E;T’:]—E, and kT



The end shears as found from static equilibrium are:

V., = BV, + —— - 2L
ji ji L, L, ,
M, Mk '
V, = BV, - —l 4 _X s
Jk | ik Ly I-:‘k _ RS

wher.e }
|

the end shear of the simple truss'_i:]'_(or‘_j'i::').

(2-6)

The reaction at the support j of the basic structure ijk is the sum of

the end shears. Thus,

R, =V,, + V. .
| ji ik

(2-7)

The substitution of Eqs. (2-6) into Eq. (2-7) results in the following -

equatioh for the reaction atj:

M, | M,

| 1,1

R, =BR, + = - M, |[+— + =— | + =% |
] oL ] [_LJ' Lk] Ly

where .

BR, = BV.. + BV. R
j ji ik T

(2-8)

Similarly, the reactions Ri and Rk are developed (Egs. 2-6, 7), :;;Thug,_x

1 (1,1 M,
Ry = BRy *'qy— - M, |-+ 1| + ¢
i _ 1 J J

_ 7
M, T M

1 1 1 1

R, = BR, + —L - — + ——{} + == . |

k k Lk . M-Wk ___Lk Lfl 3 L1' I

Finally, substituting equivalent R's (Eqs.. 2-8, 9) into tl‘me

1.

(2-9)

Eq. (2-5) results in the following equation for the change in the 1a.ngular

displacement slope:




(a) o _1 S L !
LT Lo, (BRI Mol ‘Tfj) My * o M
Qij %Uh qu qlJ

~- g —~ — =~
=9 s =9 i
1 1 11 1
+ 2 |BR, +— M, = (3 + )M, _+ -— :]
L.C. [ kT L, T %k e
- Nt - — —_
Qs Uy By U1

4, Development of the Five-Moment Equation

Rear\rangin'g and substifutin'g equivalents of Eq (2‘— 10) into the

three moment equation (Eq 2-1)" results in the flve—moment equ

for a general system of loads:

Qe My, * ["Qiqui - EQ3q31:| M,
S — ~—
1

i

G”

[Qu U T ORIy + ijqkj] M,

‘EFH‘
S E

['Equjk ) ijzqk] My * Qg My
(v ) e

Yn ’ : 1
“ S

G M+ (P FL) M+ G5 My .

EF“Tj
+ - . 1 1=
* QuBR; - DQBRy + QBRy + 7y + 7y = 0.
£ I,

j J

ation

c(2-11)




Combining the functions due to rotation (G"'ij, EF‘J., G"kj, E'rf.’j.) With the

. . 1" 11 1 1" : 1
functions due to displacement of supports (G hj* Gij" EFj * ijf, Glj’

E'T'JZ )s and introducing the expressions:

LF, =’EF§ + L , C (2-12)

G, = G., + G",  (2-13)

1] ij ij ’ ‘

Gy = Gl + G'l’{j . | (2-14)
and ‘ j |

E"Tj, = E"T‘% + E'r”j s (2-15)

as new notations, Eq. (2-11) results in the five-moment equation in a

new forms¢

| Gy M

+ G,..M, + £EF.M, + G, .M
131 J

h 3 kj "k

(2-186)

+ GU. M, + E7, = 0.
11 J

The physical interpretation of the functions due to displacement

of suppor‘t‘s will be explained in Part IV,



PART III

ANGULAR FUNCTIONS DUE TO ROTATION

In the physical interpretation of the angular functions du‘;,e to
~ rotation, the basic structure hijkl is assumed elastic and on rigid sup—'
ports. The following angular functions havebeen derived from the prin-

ciple of minimum enefgy (2)

1. Angular Flexibility
The angular flexibility Fl; (or F}y) is the end slope of the basic
structure RIFKT at j due to:& unit.moment applied at j (Fig. 13-1).

/

ol 3 2 : nh s L2 3-1
Fjl = 21: Bm >"m /‘ i FJk - ? al’l k.’ﬂ’ : ( B )
; v
where "
@ = the axial force in bar n due to unit moment at j,
'Bm = . the axial force in bar m due to unit moment at j,
and -
dm dn
m = A E Ay T AE

The notations used in the axial flexibilities .(}tm, kn)’ are:

the length of the bar,

It

dm"' 'dn

i
>
i

the cross-sectional area of the bar,

and

=
i}

modulus of elasticity of the bar.

10
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2. Angular Carry-over Value

The angular carry-over value G{J (or Gf{j) is the end slope of

the basic structure hijkl at i (or k) due to a unit moment applied at j

(Fig. 3-1).
, | Y k
Gij = ?'O{mﬁmlm ij = :)]:;aanAn‘ (3-2)

3. Angular Load Function

The angular load function '7'31 (or T;'}k) is the end slope of the

basic structure hijkl at j due to loads (Fig. 3-2).

k

TJr.»i = {: BN, B M. rrJ'k = )j:BNnanxn, (3-3)
where
BN, = the axial force in bar m of the basic structure i due
to loads,
and
BNn = the axial force in bar n of the basic structure jk due

to loads.

4. Axial Force

The total axial force in the bar m (or n) of 1j (or jk) is (Fig.

- 3-3) -

(3-4)
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PART IV
ANGULAR FUNCTIONS DUE TO DISPLACEMENT
OF SUPPORTS

For the purpose of explaining the physical interpretation of the
analytical expressions and angular functions due to displacement of

supports, the basic structures are assumed rigid and on elastic supports.

1. Reaction Due to Unit Moment

For a unit moment applied at the left or right end of the basic
structure’ij (or jk), the reaction at the elastic support i, j, or k is

(Fig. 4-1la):

= = L = =L -
qu = qji = Lj qjk qkj Lk’ (4 l)

and

Zq. = q.. t qjk ‘ (4-2)

2. Displacement Due to Unit Moment

For a unit moment applied at the left or right end of the basic
structure 1j (or jk), the displacement at the elastic support i, j, or k

is (Fig. 4-la):

14 ' |
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1 1 )
Q. = Q. =
. L.C.
S ! L
| L (4-3)
Q= Qi = T
k- LG ki DGy |
and
rYQ. = U G4 4-4
Q7 9 T (-4)

’B‘y combining the two bagic structuresIj and jk and applying a unit mo-
ment at j, the terms qu (Eq. 4-2) and ‘EQj (Eq. 4-4) become the reaction

and the displaéer_nent of the elastic support j, respectively (Fig. 4-1b).

3. Angular Flexibility

The angular flexibility Fj'i’ (of'Fji{') is the end slope of the basic
structure hijkf[\ at j due to a unit moment applied at j (Fig. 4-2).

-

a4 Al

R S R R ';] |
ji L, i Q * B
r (4-5).
1) (1) :
AL LAl
Pl = X 1 . [.+2.] .
jk L, U | O Y ]

4. Angular Carry-Over Value (Near End)

The angular carry-over value G1'5 (or Gk';;) of the near end i (or
k) is the change in the end slope of the basic structure hijkl due to a

unit moment applied at j (Fig. 4-2).



‘ Fig, 4-2
Angular Flexibilities and Carry-Over Values

Rigid Structure - Elastic Supports

1 J
n 1
1"

' Fig. 4-3

Angular Load Functions
Rigid Structure - Elastic Supports
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1) [ 1 g Aj(l) ]
11 — e
G, =4 [TI“LTI]“L L. ~
j i j
T QEd; T OEQay
F (4-6)

1) [ 1 1 alt)
G.'f--Ak [_E;+EI:]+—L_ =

i

+
E-qujk ij raq; . |

5. Angular Carry-Over Value (Far End)

The angular carry-over value Gh'J' (or Gl'Jf) at the far end h (or
1) is the end slope of the basic structure hijkl at that end due to a unit

moment applied at j (Fig. 4-2).

Al A
Gp; = ii = Qi3
" NG L (4-7)
G 7 oo T Uk

6. Angular Load Function

The angular load function 'Tj‘; (or 'rji;) is the end slope of the

basic structure hijkl at j due to loads (Fig. 4-3).

)

n _BR, - Q._BR,
T T Q4R T 9ty

(4-8)

H

-1 _
Tjk ijBRk Qj kBRj s

where Qij (or ij) is as defined in Eqgs. (4-3) and BRi (or BRj’ BRk)

as defined in Eqgs. (2-6,7).

18



PART YV
PROCEDURE

The analysis of staticvélly indeterminate trusses cannot be ac-
complished unless the cross-sectional areas of all members are pre-
determined. How to ''produce" these areas of the truss members is.
the common dilemma of indeterminate truss analysis. ''The desigﬁ of
such structures is essentially a ''cut and try'' process; a structure
must be assumed, the redundants determined, the stresses calculated,
and the parts proportioned; if the section values differ éubstantially
from those orginally assumed, the process is repeated - one or more
times, as necessary' (7).- An alternate approach is to calculate the
redundants by using the relative values of ;che elastic coﬁstants, i.e.
using a ratio of the spring constants to the areas of the truss members
(assumed equal for all members) and modulus of elasticity (1).

| Whichever approach is used, the following steps are recom-
mended for the analysis of continuous trusses on elastic supports.
1. Angular Truss Constants Due to Rotation
(a) Angular Flexibilities (Eqs. 3-1)
(b) Angular Carry-Over Values (Egs. 3-2)

(c) Angular Load Functions (Eqs. 3-3)

2. Angular Truss Constants Due to Displacement of Supports
(a) Reactions of the Basic Structure’ij (or jk) Due to Unit

Moment (Eqgs.. 4-1, 2)

19



(g)

20

Displacement of Supports of the Basic Structure ij (or jk)
Due to Unit Moment (Eqgs. 4-3, 4)

Reactions of the Basic Structures hi, ij, jk, and kI Due to
Loads as Defined in ' Egs. (2-6,8)

Angular Flexibilities (Eqs. 4-5)

Angular Carry-Over Values (Near End) (Eqs. 4-6)
Angular Carry-Over Values (Far End) (Eqgs. 4-7)

Angular Load Functions (Egs. 4-8)

Angular Truss Constants Due to Rotation and Displacement of

Supports

(a)
(b)
(c)
(d)

Angular Flexibilities (Eq. 2-12)
Angular Carry-Over Values (Near End) (Eqs. 2-13, 14/)
Angular Carry-Over Values (Far End) (Egs.4-7)

Angular Load Functions (Eq. 2~15)

Write Five-Moment Equations

Solve for Redundant Moment in Five-Moment Equations

Numerical Control - Redundant Moments Must Satisfy Five-

Moment Equations

Axial Forces j



PART VI

ILLUSTRATIVE EXAMPLE

A numerical example is presented to illustrate the application
of the five-moment equations to the analysis of continuous trusses on
elastic supports. To simplify the numerical labor the areas of all
truss members are assumed to be equal to 1 in, 2, the modulus of
elasticity,

3 . 2
E = 30x 10° k/in,
and the spring constants,

C, = C, =C

{ 5 = 10 k/ft.

3

All other values are given in feet, kips, or kip-feet.

» EYAMP_LE: A four span continuous truss of constant depth, resting on
elasfic sﬁpports and loaded as shown (Fig. 6-1) is analyzed. The real
structure 04 is resolved into three basic structures 12, 23, and 34.
The computation of the relafive angular truss constants due to rota;nion
is demonstrated in Table (6-1) and Fig. (6-2). Because the compﬁted
values 'ére ‘relative‘, they must be divided by AE (1) (30 x 103) in

order for the real angular constants to be obtained.

1. Angular Truss Constants Due to Rotation

The angular truss constants due to rotation are calculated by

means of Egs. (3-1, 2, and 3), as shown in Table (6-1) and Fig. (6-2).
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(a) Angular Flexibilities (Eqs. 3-1)

Fol = Fg} = z%mzxnl - (.414 ~ = 247.1x 1078
(1) (30x 10°)
2 , 7.414 -6
F.! = F i = F,t = £8 “x = = 247.1x 10
21 32 43 m ‘m U)(BOxlOB)
LF) = 494.2x 1078 LF) = 494.2x 1078 LF) = 247.1x 1078
(b) Angular Carry-Over Values (Egs. 3-2)
3,871 -6
G, = G, = G}, = Za B X 122.4 x 10
12 23 34 m m’ m (1) (30x 103)
3.671 -6
G,! = G, =G,L = E8 a A = : = 122.4x 10
21 32 43 m rn m (1) (30x 103)
(c) Angular Load Functions (Egs. 3-3)
924, 46 -3
7.l = 71 = 71 = BN a N\ = : : 30.82 x 10
12 23 34 m m' m (1) (30x 10?)
, 924. 46 -3
Tol = 7,8 = 7L = EBN_B A = : = 30.82x 10
21 32 43 m"m m (1) (30x 103) .
£y = 61.64% 10°° Ty = 61.64x 107° It = 30.82x 1073

2. Angular Truss Constants Due to Displacement of Supports

The angular truss constants due to displacement of supports

.are calculated by means of Eqs.. (4-1, 2, 3, 4, 5, 6, 7, 2-6, 8).

(a) Reactions Due to Unit Moment (Eqgs. 4-1, 2)

_ o1 1 -3
= dgy T T = oo - 10x10

919 = 933



Pad

91 % d3g T 943 T 100

3 3

Tq, = 20x 10 £q, = 10x 10~

' Zqy = 20x 10°

(b) Displacemenf of Supports Due to Unit“‘MOm'entv_ (Eqs. 4-3,4)

- _ R 1 4o 13
Qg = Q3 = Q¢ = ¢~ ~ mooygoy - 1* 10
- - 1 - 1 - -3
Qi = Q3 * T ~ wooyoy - * 10
Qs = 0
Q. = 2x10°° | £Q, = 2x10°° | zQ, = 0
2 r3 ‘ 4 '

(c) Reactions of the Basic Structures Due to Loads (Egs. 2-6,8)

12 ] BR. = 5+5+5=15

BR by ®

1
i)

pmrees

H-
"

BR 5+5+5

5 15 ' "BR, = 5

(d) Angular Flexibilities (Eq's. 4-5)

i

Foa = dg4 [Q43 i EQS] = 10 [o+2] 107° = 20% 1076

Foi = Fgg = dgy [le +‘EQ2] = dg, [Q23 + EQS] _
= 10 [1+2] ;0"6 = 30x 1076

6 = 10x 1078

"o = 1 -
Fys = dyg ‘:Q34 + EQ4] 10 [1+0] 10 -
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LF) = 60x 108 | gF" = 50x108 | 2" = 10x 1076

4

(e) Angular Carry-Over Values (Near End)(Egs. 4-6)

1t = " - - = - -
Gy = Ggy Qipfa; - IZQydy, ZQ,%y9 - QgqZq,
_ e -6
= - [(1)@0)+ (2)(10)] 10°° = - 30x 10
"o " = . _ - - =
Ggg = Ggg Qy3Zdy - IQgdgy LZQpdg3 - QggTdg
) | 6 -6
= - [@WEo) + @) (10)] 107% = - 40x 10
1" — 1Al = _ - - - _ -
Ggy = Gys QgqZdg - Qa4 LQgdgy ~ Qy3Lay
6 _ -6
= - [(1)(20) + (0)(10)] 107 = - 20x 10

(f) Angular Carry-Over Values (Far End) (Egs. 4-7)

-6
noo_ oo = =
Giz = Ggg = Q3d1p = Qzqdp3 = (1)(10)x 10
"o no_ v = - -6
Ggp = Gy = Q1435 = Q3p9,3 = (1)(10)x 10
(g) Angular Load Functions (Eqs. 4-8)
T = - Ty == @ BR, + QyBRy = [~ (1)(12)+ (1)(15)] 107 %=3x 1073
12 21 1271 21772 7 « w9
Ty = = Tah = = QuuBRy + QguBRy = [- (1)(15) + (1)(15)] 1073 = 0
23 32 2359 32713
.0 = - 7,8 = - Q. ,BR, + Q,.BR, = [- (1)(15) + (0)(5) ] 10%=-15x107°
34 43 34773 4377 -
1 - _3 1" _3 " — —‘3
23'7'2 = - 3x10 237'3 = - 156x 10 274 = + 15x 10



3. Angular Truss Constants Due to Rotation and Displacement of

Supports = -

The results of steps (1) and (2) combined according to Egs..
(2-12, 13, 14, 15) give the final values of the angular flexibilities,
carry-over values (near end), and load functions. The angular carry-

over values (far end) are functions of the displacements only (Eq. 4-7).

(a) Angular Flexibilities (Eq. 2-12)

LF, = LFJ + EFS = 554.2x 100
LF, = LF} + OFj = 554.2x 1076
LF, = SF} + LF) = 257.1x 10°°

(b) Angular Carry-Over Values (Near End) (Egs. 2-13, 14)

Gy = Gyf *+ G = 02.4x 1076
Ggg = Ggp = Gyi + Gy = Ggf + Ggp = 82.4x 107"
Gyy = Gy = Ggl + Gy = G ¢ + G, = 102.4x 1076
(c) Angulaf Carry—Over‘Values (Far End) (Eq. 4-7)
G = @ = 10x10°° G," = G, = 10x 1078
13 24 31 42

(d) Angular Load Functions (Eq. 2-15)

LTy, = E7§ + L7 = 58.64x 1073
LTy = mg + )3'7"3' = 46.64x 10°°
LT, = LT, + BT, = 45.82x_10'3

28



29

4. Write Five-Moment Equations (Eq. 2-16)

Since there are three redundant moments, My, Mg, and M,.

three five-moment equations must be stated:

1" -
G12M1 + EF2M2 + GSZMS + G42 M4 + 2'7'2 0
1" =
G13M1 + G23M2 + EF3M3 + G4£3M4 + 2'7'3 = 0
" =
G24M2 + G34M3 + EF4M4 + E’T4 = 0

Computing M1 as the cantilever moment (-20 k-ft. ) in span 01 and with

results of step (3) these equations simplify to:

556.6 M, + 84.4M, + 10.0M, + 56,552 = 0

2 3 4

84.4M2 + 546.6 M3 + 104.4M4 + 46,440 = O

10.0 M, + 104.4 M, + 258.31\/[4‘ + 45,820 = 0

5. Solve er Redundant Moments

From the five-moment equations the solution for redundant

moments is:

M2 = - 02,87 k~ft. M3 = - 40.55 k-ft. 1\/[4 = - 157.23 k-ft.

6. Numerical Control

The results of step (5) must satisfy the five-moment equations

of step (4).
(556.6)(-92.87) + (84.4)(-40.55) + (10.0)(157.23) + 56,552 = 0

84.4 (-92.87) + (546. 6).(-40. 55) +'(104. 4) (-157. 23) +'46, 440 = 0

(10.0) (-92. 87) + (104. 4) (-40. 55) + (258. 3)(-157. 23) + 45,820 =0
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7. Axial Forces

Once the redundant moments are known the final values of the
axial forces for all truss members are calculated by means of Egs.
(3-4).

For example, in span 12:

Npg = BNgg + aggM; + Bp3M,

17.60 + (.293)(-20.00) + (. 040)(-92. 87)

f

8.03 k



PART VII

SUMMARY AND CONCLUSIONS

In this study the general procedure for the analysis for contin-
uous trusses on elastic supports is presented. The general five—rﬁo—
ment equation is derived and the physical interpretation of its terrﬁs is
explained,

The presented method is adequate for application in engineering
practice. The derived five-moment equation is applicable to continuous
trusses for any number of spans. However, the numerical labor in- |
creases with the number of spans and the method used for solution of
the system of simultaneous equations becomes impractical when the -
number of unknown moments reaches five or more. In such a case, it
is suggested a carry-over procedure (1,2, 3) be ‘adapied.

However, since most continuous trusses on elastic supports are
limited to less than five spans, the use of the method outlined in this

study will prove to be desirable.
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