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PREFACE 

In August of 1958 Douglas Aircraft Company allotted man-hours and 

money for the purpose of developing design and construction capability 

within the company, in the use of stainless steel honeycomb sandwich. 

I was one of a group of stress analysts at the Tulsa Division, assigned 

to study the problems of stress analysis as applied to sandwich struc-

tures. 

In an attempt to catch up with the rapidly changing state of the 

art, the group undertook a literature survey, in conjunction with simi

lar groups from the Design and Process sections. 

We ordered, and received, to.na, ·of material. Gove~nt publica

tions, manufacturers' reports, research papers, magazine tear sheets, 

books, all were funneled to the appropriate groups, and read, re-read, 

digested, and evaluated. 

In the field of stress analysis, several interesting facts became 

apparent. On the one hand, quite a bit of test data was found in many 

scattered places. On the other band, a ,. good deal of purely theoreti

cal work was being done by a number of investigators. Only a small 

part of the literature was found to be concerned with comparing the data 

to the theories. The reduction of theory to usable form, and the corre

lation of data became a large part of the group effort. 

A surprising fact which came to light, was that the subject was so 

new that no attempt bad bee.n made to cover the field, or any one 

part of the fieJ.d. No introductory material defining concepts, 
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physical properties, or modes of failure, or attempting to relate the 

findings of different investigators, was available. Our study was 

therefore a 'bootstrap' operation of self-education. 

One of the normal functions of the Strength Group is the evalu

ation of the load-carrying structure designed by other groups. Accord-

1.Ilgly, I was assigned the problem of evaluating methods of selecting 

efficient configurations of sandwich structure. 

Finding little on the subject, and that little difficult to inter

pret, I began to attempt an independent approach to the problem. I 

shortly found a device, apparently overlooked by other investigators, 

which reduced the problem to the study of a three-dimensional surface. 

However, the etuation of the surface was q_uite complex, and the necess

ary calculations were extremely laborious. Much credit is due my super

visor, R. L. Keirsey, for encouragement, criticism, and assistance in 

this labor. 

When the allotted time and money ran out, we reported our findings, 

including the bare idea of the new optimization procedure, in Engineer

ing Report TU-2444o. The group was broken up and the members returned 

to their usual duties. 

Some time previously, I had begun Extension courses at Oklahoma 

State University, and had come under the influence of Professor Jan J. 

Tuma, who expressed interest in the work described above. At his sug

gestion I prepared a report for seminar credit, which attempted to f ill 

the need for a correlation between test data and theory, and provide 

some background in terms of explanation of concepts and modes of fail

ure, for the engineer unf ami liar wi th honeycomb constructi on. 

He further accepted the suggestion that if the optimization 
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procedure described above, could be developed into practical fonn, it 

might be a suitable subject for a Master's thesis. 

Since that time, I have spent many working hours, as time pennit-

ted, and many more on my own time, increasing my own understanding of 

the problem, and evolving methods of simplifying the calculations re-

quired. The present fonn re,uires less calculation, and provides more 

insight into the physical problem, than any I have been able to find in 

the literature. 

Grateful acknowledgment is due the Douglas Aircraft Company for 

the scholarship monies I have received, the library, and other facili-

t i es I have used, and the associations I have used to advantage, in the 

preparation of this paper. 
... 

It is my hope that its publication will re-

pay, in some sma.11 part, my indebtedness to the Company. 

Acknowledgment is also due my thesis adviser, Professor R. L. 

Flanders, for his help and advice in the preparation of this paper. 
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CHAP!'ER I 

INTRODUCTION AND BACKGROUND 

Although various kinds of material sandwiches have seen varied uses, 

usually non-structural, since 1919, and a theory of sandwich behavior 

was being developed as far back as 1940 (Ref .l), the subject of aircraft1, 

use of honeycomb sandwich, particularly metallic honeycomb sandwich, is 

so new as to have no history. 

Airplanes such as the British De Havilland 'Mosquito' of late 

World War II vintage used a plywood-balsa sandwich construction to ad-

vantage, but airplanes using metallic honeycomb sandwich as primary 
. 't~E? 

structure, such as the Convair B-70 'Hustler', are being built at the 

present writing. No such airplanes are old enough that their degree of 

excellence in terms of cost, performance, and efficiency, can be evalu-

ated with any historical perspective. 

However a relative estimate of excellence in terms of performance 

may be inferred from the wide and growing use of metallic, particularly 

stainless, steel,· honeycomb sandwich in the design of current aircraft. 

If aircraft, including missiles, can be built any other way, and 

meet their design requirements, they will be built that other way. 

Metallic honeycomb sandwich is fantastically expensive, inordinately 

difficult to fabricate, inspect, and repair, and difficult to design for 

and analyze. That it is used at all, is a clear indication that this 

material is the best, and possibly the only available solution to 
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certain mission requirements. This fact necessarily relegates consider-

~tions of cost to the status of 'someone else's problem' as far as the , 

aircraft designer is concerned. 

However the ·fund.amental problem of all aircraft structural design, 
r:-1 

that of designing the lightest possible structure whic~ will carry the 

design loads, without protruding from the aircraft contour or clutter-

ing up its interior, is even more pressing and difficult than with con-

ventional structure. There is a vast body of experience and theory 

which may be drawn upon to guide the designer to the optimum configura-

tion of the several conventional types of structure. In contrast, a 

really useful guide or procedure to aid in the selection of an optimum 

configuration of stainless steel sandwich structure, does not exist 

today. In fact the useful guides to selection of even the best 'build-

ing block' of such a structure can be numbered on the fingers of one 

hand. (See References l through 4) 

By 'building block' is meant the fundamental load-carrying element 

of structure. Because of the inherent instability of lightweight struc-

ture, the most difficult single problem of the aircraft structural de-

signer is the design of efficient compression structure. In convention-

al compression structure as exemplified by wing spar -caps and stringers, 

fuselage longerons, a.n.d landing gear linkage, the fundamental load-
... !-

carrying element is the classical Euler column, complicated by consider-
~_._ 

ations of low slenderness ratio and local instability such as flange 

buckling and crippling. NACA TN 2435 (Ref.5) gives direct-reading 

design charts for aluminum alloy sheet-and-stringer composite columns, 
.r 

enabling the designer to select the optimum configuration of this common 

type of wing construction methodically and rapidly. (Gerard (Ref. 6) 



Chapter 3) gives typical experience and trend data to enable the de

signer to consider the effects of such parameters as wing rib weight, 

and to integrate these effects into the selection of sheet-and

stringer combinations so as to optimize the structural weight of the 

entire wing. 
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In contrast, because of the higher inherent stability of honeycomb 

sandwich, the 'building block' of this type of structure is the classi

cal panel, complicated also by local instability, such as wrinkling and 

dimpling, and by 'shear instability' due to the flexibility of the 

honeycomb core. 

As is generally known, the load-carrying capability of a column 

tlecreases as the second power of increasing column length. In contrast, 

as will be shown later, the load-carrying capability of a panel in com- : 

pression decreases as . the second power of increasing panel width. Thus 

in the typical case of an airplane wing, which functions basically as 

a cantilever beam, conventional structure dictates many ribs to shorten 

the effective column length of spar caps and stringers, while sandwich 

structure requires relatively more spars to decrease individual panel 

width, and fewer ribs . since panel length is an unimportant parameter . 

This fact weakens, not to say invalidates, such otherwise excellent pro

cedures and parameter studies as Reference 6 for application to sandwich 

structures. 

Finally, as noted above, l ittle useful help is available in t he 

literature to the designer as he seeks to optimize hi s fundamental 

'building block', the classical panel, modifi ed to the practical stain

less steel honeycomb sandwich panel. I t i s the purpose of the present 

paper to investigate this problem, comment on the existing literature, 



and propose a solution which appears to have practical advantages over 

previous ones. 

Limitations and Scope 

Before proceeding further, it appears desirable to attempt some 

definition and limitation of scope. In the first place, several types 

of honeycomb sandwich are available, differing widely in properties, 

method of fabrication, and price. Sandwich panels are fabricated from 

kraft paper, wood veneer, ;fibreglass, dural, titanium, and several 

stainless steels, to name the most common materials. Assembly i s 

accomplished by glueing, organic bonding, brazing, resistance welding, 

and solid-state (pressure) welding, among the more common processes. 

Obviously a paper of this length cannot adequately cover a field of 

such magnitude, although many of the principles used are generally 

applicable. 
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The scope of this paper, then, is limited to hon~ycomb sandwich 

panels suitable for high temperature applic~tions; which eliminates 

materials other than titanium and stainless steel, and fabrication tech

niques other than brazing and welding. In particular, the data adduced 

and sample calculations given, will apply to panels fabricated by braz 

ing and made from a stainless steel alloy, 17-7PH TH 1050, indicating 

17~ chromium, 7~ nickel, and a trace of phosphorus; drawn to a tempera

ture of 1050 F. after cooling from brazing temperature. 

The only loading condition considered is edgewise compression, and 

only appropriate modes of ·failure are considered. 

A large number of physical properties of such a panel are of in

terest, and both theoretical and test values can be found for most of 



these in the literature. However, for the purposes of this paper, s·ome 

properties will be dealt with rather cursorily, while others will re

ceive a fairly full treatment. 

Panel Physical Properties and Related Characteristics 

5 

One of the fundamental assumptions of most structural analysis, along 

with Hooke's Law and small deflections, is homogeniety of material. Since 

any sandwich is by definition not homogeneous, the structural analysis of 

homeycomb sandwich contains terms and concepts not found in other such 

analysis. M:>st of these terms describe properties of the honeycomb core 

itself. The construction of a typical sandwich is shown in Fig. 1, along 

with the symbols used to denote significant dimensions. The symbols are 

those of ANC-23 Part II(Ref. 7) except where those were found to be in

adequate. A complete list of symbols is given on page 6 5. 

Core density de• The fundamental honeycomb core parameter is the 

weight density, usually given in pounds per cubic foot (pcf). This is 

not primarily because the weight is significant, but because all the 

other important core parameters can be estimated from it. The density 

itself can be estimated with good accuracy from the cell size and shape, 

and the thickness of the steel foil or ribbon from which the core is 

made. Practical steel core densities range from 5 to 25 pcf. Since the 

density of 17-7 PH stainless steel is approximately 477 pcf, the adver

tising boast of honeycomb manufacturers that their product is 97~ air, 

is not exaggerated. 

Figure 2 shows the regular hexagonal shape favored by some honey

comb manufacturers, the slightly modified square used by others, and the 

idealized square used for simplified analysis of square cell honeycomb. 



a. 
loaded 

edge 

unloaded 
edge 

Figure 1. 'rypica.J. Sandwich Construction and Panel Geometry 
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y Cross-ribbon direction 

x Ribbon direction 

D 

(A) Hexagonal Cell 

(B) · Square Cell. 

(C) Idealized Square Cell 

Figure 2. Typical Honeycomb Core Configurations 
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From a consideration of the percentage of the total volume of the 

honeycomb occupied by metal, it is rather easy to derive expressions for 

the core density in terms of cell size 'D' and ribbon gauge 'tr' (Appen

dix A of Ref. 1). These expressions are: 

de= 8/3 (tr/D)477 for hexagonal cells 

de = 2 (tr/D)477 for idealized square cells 

de= 2.22(tr/D)477 for practical square cells 

The usefulness of these expressions is indicated in Fig. 3 where mea-

sured core densities from various sources are compared to the predicted 

values. 

Apparent core extensional modulus Ezc• This is a little used and 
\ 

rarely measured parameter. It is the out-of-plane stiffness of the core 

and obviously can be predicted by multiplying the percentage of steel in 

the honeycomb by the Young's modulus of the steel. Using the results of 

the preceding paragraph: 

Ezc = 8/3 (tr/D) E for hexagonal cells 

Ezc = 2 ( tr/D) E for square cells 

Certain theories of face wrinkling ( see page 28 ) cons id.er the 

sandwich faces as columns supported on a continuous elastic medium. The 

elastic properties of this medium ( the honeycomb core) are obviously 

essential to the development of the theory. 

Apparent ~ shear modulus Ge, Gcxz, Gcyz• In the development of 

sandwich panel theory, the assumptions are made that the honeycomb core 

can be treated as a material with 'apparent' physical properties and 

that it will resist all loads acting out of the plane of the panel. 

That is, all edgewise loads such as tension, compression, and 'picture 

frame' shear, are carried entirely by the two faces, while loads applied 
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normal to the faces of the panel produce bending in two directions, 

which is reacted by axial loads in the faces, and shear whioh is carried 

entirely by the core. The strain in the core is significant under · rather 

small shear stresses, and cannot be neglected as an energy-s;t;l::},r~ll'tt\me

chanism. This is in contrast to usual analysis assumptions in which 

bending is reacted by a stress distribution which varies linearly from 

the outermost fibre to the neutral axis, and shear strain is considered 

negligible. 

Thus the apparent shear modulus of' a honeycomb core is the shear 

modulus of an hypothetical homogeneous material which occupies the same 

space as the core, and strains in shear at. the same rate. 

However it is important to note that this hypothetical material 

while homogeneous, is not necessarily isotropic. It is apparent from 

Fig. 2(A) that more :material in each hexagonal cell is oriented in the 

ribbon direction than norm.al to it. Intuition suggests that the core 

should be stiffer in shear along the ribbon (Gexz), than in the direc

tion normal to the ribbon (G0 yz)• Thus a. hexagonal honeycomb core is 

orthot:ropic; that is, it has different :material properties along mutual

ly perpendicular axes. 

A core of idealized s,ua.re cell honeycomb can be shown to have e,ua.1 

lengths of ribbon oriented along the ribbon direction, normal to it, and 

in all directions in between. Thus a Sl[uare cell honeycomb core is 

effectively isotropic. 

Because panel formulas for isotropic ma.terials are much simpler 

than. those for orthotropic materials, a considerable computational ad

vantage is gained by using the 'effective' apparent core shear modulus 

(G0 ) expression given. .by Kaechele in Appendix A of Ref. 1. This gives a 
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sort of average apparent core shear modulus for orthotropic cores, which 
2GcxzGcyz 

may be used in isotropic formulas. It is Ge = G + G • 
cxz · cyz 

Reference 8 is by far the most comprehensive and thorough discussion 

of core shear moduli in the literature. The resw.ts of this discussion 

lead, in part, to the following conclusions: 

for hexagonal cells 3/2 (tr/D)G < Gexz< 5/3 (tr/D)G or 

Gcxz ~ 19/12 ( tr/D )G 

and Geyz = ( t.1/D )G 

where G is the shear modulus (modulus of rigidity) of the material from 

which honeycomb is made. Applying the approximation above, 

2GcxzGcyz 2(19/12)x l 
G = = (tr/D)G = (38/31)(tr/D)G 

c Gcxz + G0 y-z. (19/12)+ l 

For square cell honeycomb 

Combining these results with those of the section on core density, 

and taking G = 11 .. 5 x 106 for steel, 

Gcxz = (19/12)(tr/D)G = (19/12)(3/8)(<1.e/477) X 11.5 X 106 = 143?0 de 

Gcyz = (tr/D)G = {3/8)(de/477) X llo5 X 106 = 9000 de 

Ge = (38/3i){tr/D)G = (38/31)(3/8)(dc/477) X 11.5 X 10 = 1108o de 

for hexagonal cell core; and for ·s1tua.re cell core, 

Ge = (tr/D)G = (l/2.22)(dc/477) x 11.5 x 106 = 10850 de 
These relationships are plotted in Fig. 4 with some data from Ref-

erence 8 indicating acceptable agreement between theory and test data. 

It is noteworthy that there is less than 2% difference between the hexa.-

gonal and square expressions for G0 , which is well within the limits of 

experimental error. ·· For simplicity and conservatism it is hereinafter 

assumed that Ge= 10000 de is sufficiently accurate for any practical 
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honeycomb core configuration ma.de from 17-7PH TH 1050. 

Shear instabilit/w This is a term describing the influence of the 

shear deflection of the core on the behavior of a. sandwich panel under 

load. It may best be visualized. by considering the effect of core shear 

deflection on the stability of a sandwich column. A relatively long 

slender column (L'/e >40 for sandwich) is assumed., with the ends ground 

square. Such a column will behave in a test fixture as a fixed-ended 

column. 

As load is applied the usual unavoidable small eccentricity causes 

a slight curvature to develop. This curvature causes bending moments 

which tend to increase the curvatureo This is normal (Euler) column in

stability. Due to the fixity developed by the fla.:t square ends, points 

of inflection (zero m0ment) will appear approximately at the upper and 

lower 1uarter-length points. 

Since the bending moment varies from a. maximum at the mid-point to 

zero at the q,uarter ... length points, obviously a beamwise shear is acting 

across the colunm, .eq_u&l to the rate of change o:f' the bending moment; 

The moment is changing from positive to neg~tive at the two points of 

inflection so tlia.t maximum shear occurs at these points. 

This shear produces shear deflection in the honeycomb core which 

contributes to the offset at the midpoint of the coltmm, which increases 

the bending moment, which increases the shear, producing more offset, so 

that the column is actually more unstable than indicated by the Euler 

formula, and fails at a lower load., If' ·the core is fairly light, ob

vious shear damage in the core at the quarter-length points, will ac

eom:pany the failure. 

The picture is similar but more conq)licated in the panel ease, 1n 



that panel buckling produces bending and hence core shear, in two direc

tions {along and across the ribbon). It is still intuitively apparent 

however, that the shear flexibility of the honeycomb core contributes to 

the overall instability of the pan.el in compression {and also in panel 

shear). An extreme case can be imagined in which shear deflection of 

· the core so f'a.r outweighs bending deflection of the panel that collapse 

occurs before much bending oan be qeveloped. .This is the significanoe 

of 'shear instability'. 

~ fixity considerations In the column case {page 21 ) shear 

instability is handled by an additional term. In the oase of the panel 

it is oonveniently considered as modifying the panel buckling coe:f'fi-

cient 'K', which also describes the effect of the edge support condi-

tions. 

For a given set of edge conditions, say all edges fixed, or two 

edges fixed, K is a. complex function of the aspect ratio (b/a) of the 

panel, and the para.meter 'V', whioh is a dimensionless ratio of the panel 

bending stiffness to the shear stiffness. 

For the pa.rticw.ar case of a.11 four edges simply supported, and 

aspect ratio greater than about three, the re~ationship simplifies to 
4 

K = (l+V)2 (Ref .9, E~.2). Since the oorresponding value for a homo

geneous panel is K = 4 (Ref. 10, Te.ble T), the correation for shear in-

stability is olea.rly apparent. Furthermore, since for homogeneous 

materials the assumption of infinite shear stiffness is usually made 

(i.e. V = O), the correction is clearly in the right direction. 

AB noted previously, honeycomb sandwich is usually employed as a 

panel or a group of contiguous panels formed by subdividing a large 

panel by crossing substructure such as wing ribs and spa.rs. The edge 
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support conditions which may reasonably be assumed for such panels ob

viously depend on the substructure. If this structure is just stiff 

enough to hold a.11 four edges of each panel straight but to permit them 

to roll, so that ea.oh downward buckle in a panel is adjacent to an up

ward buckle either in the same panel or a.cross a support line in the 

surrounding panels (checkerboard pattern), the classical case of simple 

support may be assumed. If, due to stiffer support strueture, or ini

tial curvature, or norm.al loading, the panels tend to buckle symm.etri

aa.;tly a.bout ea.ch support line, then the condition of fully fixed edges 

is approached. 'l'b.e s i tua.tion is exactly analogous to conventional wing 

structure consisting of axially loaded stringers lying a.cross regularly 

spaced ribs. Obviously a.ny one stringer can bow upward between two ribs, 

and downward in the adjacent bays inboard and outboard. Since rotation 

occurs at each rib, it is reasonable to analyze ea.ch bay a.s though the 

stringers have pinned ends at each rib. This is som.ewb.a.t conservative 

but is standard practice in some aircraft companies. Other companies 

assume some slight degree of end fixity at each rib, as a. result of ex

perience. 

It therefore· seems reasonable to suppose that as experience is 

gained in the design of structures using honeycomb sandwich panels, some 

experience fa.ctor·for edge fixity will evolve. However such experience 

is meager today and also proprietary. The published literature is ina.de

Etu&te to support any assumption other than simply supported edges. As 

noted in Reference l, page 3, the majol:' theories of panel buokling re

duce to a. oom.mon result for the :gase of simply supported edges which 

also offers significant eomputationa.J. advantages over other conditions, 

as described above. For the purposes of this gtudy tb.en, panels will be 
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assumed simply supported on all four edges. See Fig. 8. 

Plasticity considerations In order to realize satisfactory effi

ciency from stainless steel in aircra~ construction, it is necessary to 

stress it far above the proportional limit. '!'he utility of honeycomb 

construction rests on its ability to stabilize steel sheets to the ex

tent that they can withstand such high stresses in compression and 

shear. However nearly a.J.l structuraJ. a.naJ.ysis is predicated upon the 

applicability of Hooke's law that strain is proportional to stress. By 

definition this law does not apply above the proportional limit of 

stress. 

The probiem is not acute for most comm.on materials for which the 

yiel.d point and proportional limit a.re cl.ose together, and about two

thirds of the ul.tima.te strength. For aircraft aluminum. alloys and 

stainless steels, which have no well-defined yield point, the stress at 

which a line of slop~ E, offset .2'/o strain, intersects the stress-strain 

curve, is arbitrarily defined as the yield stress. On this basis the 

typical stainless steel l7-7PH THJ..050 has a proportional limit of 93,000 

psi:, a yield stress of 185,000 psi, and an ultimate strength of 200,000 

psi (Reference U). It is apparent that the use:f'w. range of stress 

levels for this material is entirely in the plastie rang&o ~he problem 

of plastic behavior must be considered for such materials. 

The neatest device for considering stresses in the plastic range is 

the so-cal.led 'reduced' modul.us.. This is simply an a.ttenq>t to relate 

the plastie behavior of a material, in a particular mode of failure, to 

the non-+inear part of its stress~strain diagram, just as the Young's 

m.odul.us relates elastic behavior to the stra.ight ... line portion. 

Stowell in NACA Report No. 898 (Ref .. 12) has developed a unified 
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theory- of elastic and plastic buckling of panels which considers column 

buckling a.s a limiting case. His results indicate various aom;plioa.ted 

functions of the stress-strain diagram as suitable reduced moduli for 

different conditions of edge restraint, including the use of the tan-

gent modulus for column buckling. This agrees with the work done by 

other investigators (Ref. 10). Seide and Stowell in NAOA Rep. 967 

(Ref. 9) have - applied Stowell' s theory to sandwich (not honeycomb) 

panels with t'air test agreement, but the results reflect the effects of 

panel geometry as well as the material stress-strain diagram, and hence 

do not permit ·expression in terms of a simple reduced modulus. 

By a process of back-figuring from Reference 9 the curves of Fig. 5 

have been prepared, indicating that the effects of practical ranges of 

panel geometry a.re rela.ti vely small and for a parameter study such as 

this pa.per, may be neglected. On the basis of Fig. 5 a reduced modulus 
4EEt 

of ER = ( r,r +l' Et)a has been selected for panel buckling, although 

the use of any other reduced modul:us will not significantly affect the 

analysis of pamel buck.ling. For colmm:l buck.ling the same reduc_ed modu-

lus is arbitrarily assumed. For wrinkling and monooell buokling the 

tangent modul:us has been used simply because it appears to give good 

results. 

Another s ignifica.nt effect of' streB/iEui above the proportionaJ. limit 

is the change in Poisson's ratio. This materia.1. property a.ccottnts for 

the bi-axia.l stress state in the panel faces. For a.l'llll1inum and steel 

this ratio lies between .25 and .33 in the elastic region, but assumes 

a value of' .50 in the fully plastic region (Ref'. 10, page 17)• In the 

yield region a transition occurs which is given by equation 25 of Refer-

ence 10 as fJ = f-'r> - (E8/E) ( /JP -f" e) where subscript 'p' refers to 
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fully plastic and subscript 'e I refers to fully elastia. Neglecting 

this transition, the value('-' = .50 is used throughout this pa.per. 
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Material properties The density of 17-7 PH TH1050 is given in Ref

erence 13 a.s .276 lb./cu. in. It is used in this pa.per as 477 lb./cu. 

ft. (pcf) 

Tangent modulus in compress ion data. for 17-7 PH TH1050 is taken 

from NAOA ffl 4074- (Ref. 11) and b presented in figure 6. The 'reduced 1 

modulus ER, shown in the same figure, is caleuiated from tne Fil curve by 

means of the expression shown. The derivative of the reduced modulus 

with respect to stress is simply scaled from the ER curve. 

Significant points on the stress-strain curve are (froii. Bet'. 11) 

Proportional limit 93,000 psi 

.2% offset yield strength 185,000 psi 

tn.timate compressive strength (assumed) 200,000 psi 
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CHAJ?ll'.lm II 

MODES OJ' FAILURE 

Honeycomb sandwich ea.n :f'a.il 1n a num.ber of ways, depending to some 

extent on tbe manner of loading. Only those which can occur due to edge-

wise compression will be described in this paper. 

Although the panel is the basic structural unit, much testing is 

done on sandwich colt1Illl1S o For this reason a discussion of column buck-

ling, a.dJusted for plastic behavior due to high stress level and shear 

instability due to flexibility of' the honeycomb core, is included. 

Column buckling The column buckling e11:1.uation f'or sandwich is the 

usual Euler etruation with an extra term to account for shear flexibility 

of the core. It is most concisely written in the form 

l l 1 
- = - + -Par ~ PS (EQ l. ) 

where Per is the aritieal load, P,m is the critical. load if core flexi

bility is not considered (tbt Euler oritical load), and P8 is tlie core 

shear flexibility correction, cal.led in this form., the shear instability 

load. Among others, Williams in Reference 3 gives this expression. 

Making the :following substitutions, 

column area= 2a.tr 
column length= b for a pin-ended column 
radius of gyration, = (t0 + tr)/2 

1t2% I 
PE = (t)2 



Etua.tion (1) ean be re-arranged to give 

( ;)
2 = ( 2b ) 2= if~ _ 2rr2tr; e t 0 +tr F .. tG 

C a 
(EQ 2) 

Tbi11 ectua.tion is plotted on page 23 for 17-7PH TH 1050 assumtng 

4EEir 
ER = (l'E + ""fET}2 

Two data points from Ref'erenae 14 are shown, indicating fair agreement. 

Pertinent values are G0 = 34400 psi 
t 0 = .313 in. 
tf' = .008 in. (point 1) 

. tr = .. 012 in. (point 2} 
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Panel buckJ.ing A general form. of' the panel buakJ.ing e,ation, given 

in Reference 4, in the symbols used in this pa.per, can be written 

K'n"'I, 
Par= a.2 

If' the substitutions 

,I = (1/1a)at3 
'eross-seetional area. = at 

a.re ma.de for homogeneous panels, there results 

KTT2ER f !.)2 
F = 12 \a. 

If the substitutions 
2atr. ( t 0 + tr )2 

I ==-r a. 
cross-sectional area= 28.tr 

a.re ma.de for sandwic). panels, there results 

KTI'. 2.ER ( tc + tr )2 
F = 4X l a 

For simply supported edges and an aspect ratio greater than three, 

K is 4 for a homogeneous panel (Ref. 10, Table 7), and 4/(l+V)2 for a 

sandwich panel. (See page 14) 

With these substitutions, the following eq_uations result: 

41T2 ER ( t )2 F = 12 )I. a , which is the usual textbook form for 
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homogeneous panels; and 

= K Tr2ER ( tc + tfl2 
.F 

4 A a (EQ 3) 

which can be obtained from ANG - 23,3.2.1.1 (A) (Ref 7) by substitu-

tion. This is the basic eiuation in the optimization process of this 

paper, as well as References land 3. 

It is of interest to note that the length 'a' of the loaded edge 

of the panel enters into the panel buckling e~uation in the same ma.nner 

as the length 'b' of the unloaded edge enters into the column buckling 

eg_uation. 

It is also instructive to correlate the appearance of a buckled 

panel (Fig. 8) with the form of Equation 3. The buckled panel will ex-

hibit a wavy deformation pattern in the direction of the load, but only 

a single half-wave across the panel. This is the reason that the width 

enters into a 'slenderness ratio' form instead of the length. 

Intuitively it might be concluded that little difference in applied 

stress would be necessary to cause the panel to buckle into, say six, or 

seven half-waves. This is confirmed by the fact that 'K' becomes a func-

tion of V only, for aspect ratios greater than about three, and hence 

neither the length of the panel nor the number of half-waves enters the 

equation. 

Also intuitively, it might be supposed that a panel with low shear 

stiffness in the core would buckle at a lower stress than one with a 

stiff core, and it may be observed in ANC-23 (Ref 7) Fig. 3ol or in the 

expression K = 4/(l+v)2, that K, and hence the critical stress decreases 

with increasing V (decreasing Ge)~ 

A comparison of Eq. (3) with some Boeing Airplane Company data for 

aluminum honeycomb panels is given in Fig~ 8 of Reference l and shows 



Figure 8. Buckled Panels With Simply Supported Edges. 
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fair agreement. Somewhat different parameters are used however, and the 

figure is not suitable for inclusion in this paper. 

Monocell buckllng In addition to .. overall instability such as panel 

and .coltnnn buckling, edgewise compression of honeycomb sandwich can pro-

duce at least two types of local face instability. The simplest of these 

is monocell buckling, also called I intra.cell buckling 1 , 1 dimpling 1 , and 

1 read out' • This occurs when the cell diameter of the core is more than 

about ten times the thickness of the faces. In this mode of failure the 

face material buckles locally into each individual cell, producing a 

1 dimpled' appearance and enabling the honeycomb core configuration to be 

'read' through the facing material. Obviously this action depends on 

the stiffness of the faces and the cell size. The face stiffness de-

pends on the face thickness and the modulus of elasticity. 

The relationship between the critical stress and these variables is 

developed empirically in FPL 1817 (Ref.15) and quoted in ANC-23 (Ref.7). 

This relationship is 

F = (E:a/3)(tr/:a)3/2 where R is the radius of the honeycomb 

cell. 
4-EE 

In reference 15 the reduced modulus ER = ( rr; + T fi$)2 is used 

for aluminum faces with good results. However to be conservative, it 

is assumed that ER = ET for monocell buckling in this paper. 

In Fig. 9 the above equation is plotted for 17-7PH TH 1050 and com-

pared to some scattered data from different sources. The significant 

point about monocell buckling is illustrated in this figure, that is, 

that at tf/R = 20, the critical stress is very near the yield strength 

of the material. This is true for many materials, and may be ex;pressed 

as a rule of thumb that monocell buckling will not be critical as long 

as the cell size is not more than ten times the face thickness. It is 
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assumed in this pa.per that m.onocell buckling is always avoided by ad-

justing the internal configuration of the core so that core density can 

be varied independently of face thickness without violating this rule 

of thumb. 

Wrinkling The second mode of local instability is not ~a.rly so 

well defined. Wrinkling in most of the literature is idea.liz.ed as 

symmetrical, sine-shaped waviness of the faces. Two main types of 

theocy exist, of which one (Ref'.7, 4.7.1~1.3.2)depends heavily on 

knowledge of fabrication variables and the use of empirical constants. 

The other theoey is much more convenient to use and is used herein. 

This latter theory is developed in Reference 3 a.nd 16, and the re-

su.lts a.re quoted in Reference 1 in the form 

· 1/3 F • kw(EREzcG0 ) with the suggestion that a reasonable 

value of kw might be • 50. Theoretical values range from • 78 to • 961. 

Using the resu:J.ts of previous para.graphs, the apparent core ex-

tensional modulus Ezo • (d.c/477)E; and the apparent core shear modu

lus 00 = 10,000 du• Substituting these in the above equation gives the 

wrinkling stress as an implicit function of the core density alone, 

since En, whatever its form, is a function only of the stress level. In 

this pa.per it is assumed that ER 1111 Eir is a suitable reduced modulus for 

face wrinkling. Then taking E = 30x106 for steels, 

F 1111 266,000kw(ET/E)l/3(da)2/3 (EQ 4). 

This equation is plotted in Figure 10 for 17-7PH 'l'Hl050. It is 

apparent that the critical stress for wrinkling is above the yield 

strength of the material :f'or core densities of less than 5 pc:f' if 

Kw >·50. Hence wrinkling should not oceur in practical steel panels. 

The possibility, however, is discussed later. 
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CHAPTER III 

THE OPTIMIZATION PROBLEM 

Review of Previous Investigations. 

The simplest approach to the problem of making the least weight 

of sandwich structure carry a given load is that given by Peery in 

Reference 21. He uses the Euler column formula, solves it for the 
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~ace thickness, substitutes it in the expression for the weight of the 

column, and minimizes the column weight with respect to the core thick

ness. This procedure leads to the conclusion that for any load the most 

efficient column is one in which the core weighs twice as much as both 

faces together. 

This procedure is open to several objections , among which are that 

the shear flexibility of the core, and the possibility of individual 

face instability are not accounted for. Besides which, as noted earlier, 

the basic unit of sandwich construction is the panel, not the column. 

The approach used by Gerard in Chapter 6 of Reference 6 overcomes 

all these objections, and yields the same conclusion. However, other 

serious objections can be raised. In taking the derivative of solidity 

with respect to buckling stress, the core density, and panel buckling 

coefficient, and the secant modulus, are all considered as constants, 

effectively removing from consideration, core flexibility and plasti

city effects. A less serious omission is the neglect of local face in

stability by simply showing that it will not ordinarily affect the 
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optimization analysis. AB explained earlier, similar reasoning is em

ployed in this paper, although with reservations due to lack of reliable 

face wrinkling data. 

The work reported by Willia.ms in Reference 3 includes both over

all and local instability but draws no general conclusions as to op

timum core weight. The overall instability expression used is a wide 

column formula similar to that given on page 21, modified for edge sup

port by a factor depending .on the aspect ratio of the panel. This ap

pears to describe a buckle pattern consisting of a single half-wave 

in each direction, which is of doubtful validity. 

An excellent presentation is given by Flugge in Reference 2. 

Pan.el buckling is described by an expression similar to the one used 

herein, and face wrinkling by an expression similar to the thin panel 

formula of Yusuff (Ref. 16). The mathematical criterion for a maximum 

is employed. Wrinkling and buckling are permitted to occur simultaneous

ly. (It is axiomatic in minimum weight analysis that two or more mod.es 

of failure should occur simultaneously (Ref. 6, para. 1.4). The only 

solid criticism of this approach is that it fails to account for plastic 

effects in the region of high stress. It is also difficuJ.t to compare 

different materials by this method due to the complexity of the para

meters employed. 

The best general approach appears to be that of Kaecb.ele in Refer

ence l which cannot be criticized on any of the points mentioned hereto

fore o The deveJ.,.opment is based on the panel buckling and. wrinkling 

formulas given in this paper. The reduced modulus used is slightly 

different from the one used herein. The development is clearly ex

plained, and the degree of straightforwardness lost in the approach is 



compensated for in the convenience of the results which are in the form 

of charts. However much calculation is :required to produce such charts 

for any given :material. A minor criticism may be made that the cri

terion for comparing different materials, the 'equivalent stress', is 

a rather difficult concept, although fundamentally related to the 

stress/density and strength/weight ratios. 

An approach nearly as good as that of Reference 1 is given in 

NACA TN 3751 (Ref.. 4). However only the panel buckling mode is consid

ered. The development is exceptionally straightforward but the para

meters used are more complicated than those of this paper. No optimi

zation is done during the development which is essentially a re

grouping of the terms in the panel equation used in this paper .. 
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Once the terms are grouped into independent parameters, the ex

pression is plotted for reasonable ranges of these parameters, and rela

tive efficiency is determined by inspection. Efficiency is not de

scribed by a particular ratio but is simply described by a relatively 

high value of a loading parameter occurring in conjunction with a rela

tively low value of a cross-sectional area parameter. Extensive calcu

lation and plotting are required by this method .. 

A Simplified Approach 

The first aspect of the problem is the choice of a criterion of 

efficiency. It is instructive to consider the simplest such criterion, 

the strength-to-weight ratio. This is simply the load a structure can 

support divided by the weight of the structure, both in pounds.. For un

stable structures this ratio takes the form R = Pcr/W where Per is the 

critical (instability) load, and Wis the weight of the structure. 



For sandwich structure in compression, 

Per= F(2a.tr) 

W = Wr + W0 = (2abtrd.r + a.btcd.a)/1728, that is the weight of 

the f'aces plus the weight of the core, where dimensions a.re in inches 

and densities are in pcf'. To be strictly correct, the weight of' the 

braze alloy should be inc.Irudeq. in the sandwich weight, since none of' it 

is lost in the f'abricating process. However it is theoretically a con-

stant increment for panels of' the same area (ab), although in practice 
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it may vary considerably, depending on whether 1-t is deposited as a foil 

or as a paint, and on the gauge of the foil used. In any case it is not 

a large increment and is customarily neglected. 

Another common.structural efficiency criterion is the stress-to-

d.ens::t,ty ratio, which f'or homogeneous materials may be written 

A= F/d =Par/at= Pcrb or in general A= bR 
w/abt .,.-

Applying this result to sandwich material 

In this expressi<;>n the denominator is an 'effective' density of the 

sandwich, sinQe, when multiplied by the load-carrying volume (of the 

faces), 2abtf, it gives the weight of the sandwich structure. 

In Reference 22 this ratio is called the 'efficiency ind.ex'. It 

has several advantages over some other silnilar indices. It can be used 

to compare, directly, different material.a. It can be expressed as a 

single-valued f'u.nction of' a structural para.meter (the structural index) 

for a wide range of.types of structure and modes of failure, and hence 

serves to compare different structural configurations as well as differ-

ent materials. 



However, when extended into the plastic region, any such index, 

including this one, becomes a function of the applied stress through the 

use of' the reduced modulus described earlier, when applied to unstable 

structures. Tbat is, the critical stress, F, depends on the reduced 

modulus, which is a. :function of the applied stress, f, which is equal 

to the critical stress at failure. 

For this reason, it is not generally possible to solve instability 

type equations, including the panel buckling equation used herein, 

explicitly for the critioal stress in the plastic region. Thus for 

computational purposes it is usua.J.l.y easiest to select a stress level, 

and with it a value of the reduced modulus, then calculate the struc-

tura.J. variables which can associate with that stress. 

Accordingly, the first step in the optimization process is to ex

press the efficiency index 'A' in terms of a. structural index (as yet 

undefined) and the stress level. 

Kfr~ 
The panel buck.ling equation F = 4 . X 

in which K = 4/(l+V)2 may be written 

V ~lrr2En (tc+ ttl2 - l = M - 1 =~ X F a 

(EQ 3) 

(EQ 5) 

where M is simply a grouping symbol. 
2 

By definition V = if D from .AN0-23 3.2.1.1 (Ref. 7) where D is the 
a2u 

bending stiffness of the panel per inch of length, and U is shear stiff-

ness per ineh of length9 Choosing simple expressions for these proper-

ties, D = Entr(tc+tf)2 ANC-23 3.1.2(E) 
2 ~ . 

ANC-23 3.1. 3(A) 

and letting Ge= kd.a for generality, where k = 10,000 psi/pcf for 

stainless steel honeycomb as noted on page 11, there results 



Setting the two expressions for V equal to each other, 

t FM2 
V = M-1 = t which upon rearranging gives 

2kdctc 

( de tc/2tr) = ....,FM,....,2,....· ...,...,,-
4k (M-l) (EQ 6) 

When this result is substituted in the previously derived express-

ion for the efficiency index A, there results 

A=. 1728F 
df + FM~ . 

4k(M-l) . 

However since values of A from this expression tend to run around one 

million, it is convenient to omit the cubic feet-to-cubic inches con-

version factor and write 

A= F 

dr + FM2 
4k(M-1) 

(EQ 7) 

This expression contains only F and Mas variables. Since M con

tains only the variables F, ER, and a where ER is a function of 
tc+tf 

F only, then a is the structural index for panel buckling and the 
te+tr 

efficiency index is now expressed in terms of the structural index and 

the stress level, which was desired. 
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It is noteworthy that considerable simplification has resulted from 

this manipulation. The variables de, Ge, b, and the thickness ratio if 
e 

have all been eliminated from the optimization problem which is now 

only three-dimensional. a. = s. i.e. A, F, and t t 
c+ f 

The straightf0rward application of mathematical maximizing cri-

teria to Equation 7 yields (from Appendix A) 

when 7'A/ ~ = O, M = 2 which is elegantly simple, 



= o, 8kdf 

F2(~ _ !) 
R F 

when ?>A/ oF = (.lL\lM-2) (EQ A2) which is not 
M-1] 

difficult but is rather laborious to solve. The solution is also given 

in Appendix A,. 

From the form of Equation (7) it is apparent that if M=l, A=O. 

From Equation (5) if V=O, M=L V=O implies an infinitely stiff core 

which requires that the core be infinitely heavy since G0 = kdc• Thus 

the condition M=l implies an infinite core density which intuition 

indicates should result in zero efficiency by any criterion, confirm-

ing the results of E;quation (7). 

A point must now be considered which has not heretofore been men-

tioned. .ANC-23 3.2.1.1 (Ref. 7) states that when V is greater than one 

(or M>2 from Eq.5), Equation (3) no longer applies, and 'shear insta-

36 

bility' buckling occurs. As will be shown later this is of academic in-

terest only, but it affords some insight into the problem to show that 

the optimum structural index for a given stress level occurs along the 

boundary (M=2) between norm.al buckling and shear instability buckling 

which implies extremely light honeycomb cores. 

In order to understand the results of the preceding comments it 

must be realized that, since M = fr" 2ER (tc+tf) 2 Eq (8),from Equation 5, 
>. F a · 

statements such as M=l and M=2 are the equations for curves of stress 

versus structural index which produce certain behavior of the efficiency 

index and may also have other physical significance. Thus M=l indicates 

a relationship between stress and structural ind.ex which Will everywhere'' 

produce zero efficiency. It furthe:r:m.ore describes the highest stress level 

theoretically obtainable at each value of structural ind.ex since it im-

plies a panel constructed with an (hypothetical) rigid core. M=2 



indicates a relationship between stress and structural. index such that 

the most efficient structural index for a given stress level is de

scribed. It also describes the limits of applicability of the normal 

panel buckling equation. 

M may also be a function of F to produce certain desired varia

tions of A. Equation A2 describes, although implicitly, the relation

ship between stress and structural. index which produces the maximum 

efficiency for a given structural index. 
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In addition to producing desired variations of the efficiency 

index, by use of Equation 6 relationships between stress and struc

tural index can be selected so as to produce desired variations of the 

ratio (datc/2tf), which contains the variables which were eliminated 

from the optimization process. In particular, it is possible to select 

a relationship between stress and structural index, say M=2~ which de

fines the most efficient structural index for each stress level, by 

substitution in Equation 7 calculate the maximum efficiency obtainable 

at each stress level, and by substitution in Equation 6 define in 

general terms the structural and geometrical configurations of the most 

efficient panel constructions. It then remains only to apply the con

ditions of a particular problem to define completely, the optimum panel 

configuration for that problem. The foregoing generalities are best 

illustrated by some numerical examples. 

Numerical Calculations 

As noted earlier, for purposes of illustration, the high strength, 

high temperature stainless steel 17-7 PH TH 1050 is used throughout this 

paper. For this material df = 477 pcf, and k = 10,000 psi/pcf as pre-



viously shown. The necessary stress-strain information is given in 

Figure 6. For this material, as for most engineering materials, the 

value of Poisson's ratio in the plastic range may be taken as .50. 

Hence 
>,. = 1 - ~ 2 = 1 - • 25 = • 75 

Table I gives the solutions of Equations (6) and (8) for various 

constant values of the parameter M. Table II gives the solutions of 

Equations (6) and (8) for the relationship of Equation A2. Table III 

gives the solution of Equation (7) for the useful ranges of struc-

tural index and stress. These tables are referenced internally in 

order to make them as nearly self-explanatory as possible. The ease 

and speed with which these tables can be constructed is particularly 

noteworthy. In order to obtain this simplicity in Table I, it is 

necessary to assume convenient values of F and Mand plug them into 

Equations (6) and (8) to obtain the associated values of the con-
a 

struction para.meter (d0 tc/2tr) and the structural index, S = tc+tr• 

Both equations are simple in form and well adapted to slide-rule cal-

culation. As a matter of even greater convenience, once the solutions 

for M=l have been found, the solutions for other values of M may be 

obtained by simple ratios. 

Maximum utility of the information thus gained is obtained by 

plotting the contents of Tables I and II on a single chart, which, 

while it does not indicate values of efficiency does provide a large 

amount of information as to which ranges and combinations of struc-

tural index, stress level, and other configuration details will pro-

. duce the most efficient panels. This is illustrated in Figure 11. Be-

cause of the simple form of Equation (7), it is usually not desirable 

to calculate Table III, but rather to calculate the efficiency index of 

38 



(EQ) Opera- M Fxlo-3 (1) 
tion 

Fig.6 ERxlo-6 (2) 

(8) 1.00 a (3) 
tc+tf 

(8) 1~6~ 1.08 a (4) 
tc+tr 

(6) 2iil~ 1.08 d.ctc (5) 
~ 

(8) ..ill 1.09 a (6) 1.09 tc+tf 

(6) .J!1 1.09 date (7) 3030 2tf 

(8) ..ill 1.10 a (8) 1.10 tc+tf 

(6) ~ 1.10 date (9) 33 2tf 

(8) ..ill 1.20· a (10) 1 .. 20 tc+tf 

(6) ~ 1.20 dctc (ll) 
555 ~ 

(8) ..ill 1.30 a (12) 1.30 tc+tf 

(6) .J!1 1-30 d.ctc (13) 7101 2t:r 

(8) ~ 1.6o a (14) 1. t 0 +t:r 

(6) _(.il 1.60 dctc (15) 
9375 2t'.r 

(8) 2!~6 2.00 a (16) 
tc+tr 

(6) (1) 2.00 date (17) 
10000 :te:r 

TABLE I 

SOLUTIONS OF EQUATIONS 6 AND 8 FOR 17-7PH TH 1050 

6o 80 100 120 140 160 179 180 185 

30.0 30.0 29.0 27.8 26.4 22.7 19.5 13.5 9.2 

81.1. 70.3 61.8 55.2 49.8 43.2 38.9 31.4 25.6 

75.1 65.1 57.2 51.1 46.1 4o.o 36.0 29.1 23.7 

21 .. 9 29.2 36.5 43.8 51.1 58.4· 62.0 65.7 67 .5 

74.4 64.5 56.7 50.6 45.7 39.6 35.7 28.8 23.5 

19.8 26.4 33.0 39 .. 6 46.2 52.8 56.1 59.4 61.0 

73.7 63.9 56.2 50.2 45.3 39.3 35.4 28.5 23.3 

18.1 24.2 30.2 36.2 42.3 48.3 51.3 54.4 55.9 

67.6 58.6 51.5 46.o 41.5 36.0 32.4 26.2 21.3 

10.8 14 .. 4 18.0 21.6 25.2 28.8 30.6 32.4 33.3 

62.4 54.1 47.5 42.4 38.3 33.2 29.9 24.1 19.7 

8.5 11.3 14.1 16.9 19.7 22.6 24.o 25.4 24>.1 

50.7 43.9 38.6 34.5 31.1 27.0 24.3 19.E> 16.0 

6.4 8.6 10.7 12.8 15.0 17.1 18.2 19.3 19.8 

40 .. 6 35.2 30.9 27.6 24.9 21.6 19.4 15.7 12.8 

6.o 8.o 10.0 12.0 14.o 16.0 17.0 18.0 18.5 

190 

5.0 

18.6 

17.2 

69.4 

17.1 

62.7 

16.9 

57.4 

15.5 

34 .. 2 

14-3 

26.8 

11.6 

20.3 

9.3 

19.0 

200 

0 

0 

0 

73.0 

0 

66.o 

0 

60.4 

0 

36.0 

0 

28.2 

0 

21.4 

0 

20.0 w 
'-0 



(EQ) 

Fig.6 

(A2) 

(8) 

(6) 

(8) 

TABLE II 

SOLUTIONS OF EQUATIONS 6 AND 8 :FOR OPTIMOl'Y1 STRESS AND CONSTANTE, 17-7PH TH 1050 

Fxlo-3 (1) 8o 100 120 140 16o 170 180 185 190 200 

E xio-6 
R (2) 30.0 29.0 27.8 26.4 22.7 19.5 13.5 9.2 5.0 0 

M2 (3) 1.095 1.120 1.131 1.165 1.239 1.327 1.551 1.715 1.999 4.ooo 

M (4) 1.046 1.058 1.063 1.079 1.113 1.152 1.245 1.310 1.414 2.000 
a (5) _ 67.2 58.4 51.9 46.2 38.8 33.8 25.2 19.5 13.2 0 

tc+tf 

dote (6) 47.6 48.3 53.9 51.6 43.9 37.1 28.5 25.6 22.9 20.0 
2'tf 

Ex.10-6 (7) 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.0 
a (8) 70.3 62.8 57.4 53.1 49.7 48.2 46.8 46.2 45.6 44.4 

tc+tf 

.j::"" 

0 



Table 
Source 

I 
Row 5 

I 
Row 7 

I 
Row 9 

I 
Row ll 

I 
Row 13 

I 
Row 15 

I 
Row 17 
II 

Row 6 

M 

1.00 

1.08 

1.09 

1.10 

1.20 

1.30 

1.6o 

2.00 

EQ A2 

date 
~ = 0 

TABIE III 

SOLUTIONS OF EQUATION 7 FOR l7-7PH TH 1050 

Fxlo-3 (1) 6o 80 100 120 140 16o 170 18o 185 190 200 

A 

A 

A 

A 

A 

A 

A 

A 

A 

A 

(2) 0 0 0 0 0 0 0 0 0 0 0 

(3) 120.3 158.0 194.7 230.4 265.1 298.8 315.4 331.7 339.8 347.7 363.6 

(4) 120.7 158.9 196.1 232.3 267.6 302.0 318.9 335.6 343.9 352.0 368.3 

(5) l2l.2 159.6 197.2 233.8 269.6 304.6 321.8 338.7 347.2 355.5 372.2 

(6) 123.0 162.8 202.0 240.7 278.8 316.3 334.9 353.4 362.5 371.7 389.9 

(7) 123.6 163.8 203.6 243.0 281.9 320.3 339.3 358.3 367.7 377.1 395.9 

(8) 124.l 164.7 205.0 245.0 284.6 323.8 343.3 362.7 372.4 382.1 401.3 

(9) 124.2 164.9 205.3 245.4 285.l 324.5 344.l 363.6 373.4 383.1 4o2.4 

(10) 152.5 190.4 226.0 264.9 307.2 330.7 356.1 368.1 38o.1 402.4 

(ll) 125.8167.7 209.6 251.6 293.5 335.4 356.4 377.4 387.8 398.3 419.3 

~ 
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each panel which appears from Figure ll to offer good efficiency. By 

this means a rather critic al comparison can be made between panels of 

almost equal efficiency, and the effects of deviating slightly from 

optimum proportions may be narrowly appraised. This is an extremely 

desirable feature since it is quite possible that for some panel 

materials, as for the one considered herein, the ranges of truly op-

timum proportions and of practical construction simply do not overlap. 

However for purposes of exposition, and providing additional in-

sight, Table III has been calculated and the results plotted in Figure 

12. As a. means of further describing the three-dimensional surface 

generated by Equation (7), Figure 13 has also been presented, largely 

by cross-plotting from Figure l2o 

The solutions of Equation (7) could logically and economically have 

been carried out 1n Tables I and II/} by simply adding a row for this 

purpose below each row of solutions for Equation ( 6). As a typical 

example consider row (5) of Table I, which gives solutions for Equation 

(6) for various values of stress level, when M = 1.08. In the column 

for F=80,000 psi the value (dctc/2tr) = 29.2 pcf is given. Substitu

ting in Equation (7), and using Equation (6)., A = df ! (detc/2tr) = 
80,ooo 8 477+29•2 = 15 oOo This is the value given in Table III, and by taking 

. a . 
the appropriate value of tc +tr = 65 .1 from row ( 4) of Table I, this 

point may be plotted as in Figure 12. However, since the calculations 

in Tables I and II a.:re fundamental, while the material in Table mis 

largely expository, these sets of calculations have been segregated in 

this paper. 

Some discussion of Figures 11, 12, and 13 may prove illuminating. 

If', in accordance with the analogy used by Flugge 1n Reference 2, the 
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surface generated by Equation (7) is compared to a rise of ground (the 

1 A' hill), the .upper part of Figure 11 :may be described as a plan view 

or map, upon which might be drawn contour lines of constant efficiency 

ind.ex A. 

Viewed from the South (Figure 12) the 'A' hill is an almost flat 

ramp-like surface, rising to the northward (increasing stress, F) and 

becoming narrower., with a very steep slope on the eastern flank. The 

line eA/ 'bS = o, i.e. M"'2, .l;,ocates the topological crest of the 1A 1 

hill while the line oA/ oF = 0 (EQ A2) locates the eastern military 

crest of the hill. The line A = o, i.e .. M=l, represents the foot of 

the ea.stern bluff as it intersects the base plane. 

Figures 12 and 13 represent series of profiles cut through the 

hill, and viewed from the South and East, respectively. 

For the purposes of design, it is sufficient to have derived 

only Figure 11. To employ another geological metaphor, it is of pri

mary importance to define the boundaries within which it is profitable 

to 'prospect' for efficient panel configurations. In general, theoreti

cal optima can only be approached in practice, due to the necessity of 

using stand.a.rd material gauges, and other arbitrary restricti.ons., 

Several purely practical considerations may be imposed on Figure 

11 to further define the boundaries of efficient panel design. It has 

been found as a matter of prac·ticaJ. hardware that is unwise to design. 

for stress levels above the yield strength for these high-strength 

stainless steels. The extra care required in design and fabrication 

is simply not economically justifiable. This puts an upper limit on 

stress level in Figure 11. 

Another practical limit may be derived :from the following 
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considerations. Usual applications of honeycomb sandwich panels rarely 

require the face thickness tr to be more than 10~ of the core thickness 

t 0 • In addition to this, it has been found that when the core density 

is below about . 5 pc.:f', the honeycomb is so flexible and delicate that · 

shop handling is difficult, and pressures used in the brazing process 

may damage it. These two factors combine "'to give a lower limit of the 

dctc 5 
parameter, 2tf, of .,,..2.x-• ...,,.1..,,..0 = 25. If this limit is drawn on the lower 

part of Figure 11, and projected into the upper part, a 'low struc-

tural index' boundary is defined. That is, all practical panel con-

figurations lie to the right of this line. For 17-7 PH TH 1050, Fi.gure 

11 shows that most of the efficient range lies to the left of this 

line, indicating the difficulty of designing truly optimum panels of 

this material. 

Some further comments on Figure 11 may be useful. The field of 

stress level vs. structural index is divided by the line M=l, (V=O) 

into 'possible' and 'impossible' ranges. That is, any point to the 

right of this line represents a stress which cannot be withstood by a 

panel of that structural index. The 'possible' range is divided by 

the line M=2 (V=l.O) into 'shear instability' and 'normal' panel buck-

ling ranges. The shear instability range is not of practical signi-

ficance for most m.aterialso 

The normal buckling range is divided by the line ~A/ ~F=O 

(Equation A2) into a range of very high efficiency, and a range in 

which efficiency falls off very rapidly as the line M=l is approached. 

(This is because large increases in core density are required to pro-

duce even small increases in the critical stress near M=l.) 

The normal buckling range is also divided into a 'practical' 
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range and an 'impractical' range of light cores and heavy faces by 

dctc 
the line projected up from the line -2t = 25 in the lower part of the 

·f 
figure. For 17-7 PH TH 1050 the 'efficient' and 'practical' ranges do 

not overiap at 18o,ooo to 185,000 psi and do so only slightly at lower 

stresses. This rnay not be true for all materials, however. 

It is noteworthy that the division into a very efficient range, 

and a range of sharply falling efficiency, is of rather slight utility, 

and for a large saving in labor with only a slight loss in convenience, 

Equation A2, and hence Table II, need not be calculated. As noted pre

viously, it is not necessary to prepare Table III from Equation (7) 

either. The calculations are thus reduced to what must be nearly ,µti-

mate simplicity. 

The Use of Figure 11 

In the design problems considered herein it is assumed that the 

approximate size and shape of the panel to be defined are known or rnay 

be assumed. As in any design problem, it is assumed that the load 

which the panel must support without buckling, is known. (It is herein 

assumed that buckling constitutes failure, altho~gh actually the panel 

might continue to carry load even after buckling.) 

One more 'open' variable needs to be filled by assumption before 

optimization rnay be begun. This is the stress level at which the panel 

should failo This may seem odd at first glance, since it superficially 

appears that the higb.er the allowable stress, the higher the efficiency. 

However Figure 13 shows rather graphically that for a given structural 

index, stress level can profitably be raised only to the limit defined 

by Equation A2. Above this stress, efficiency falls off rapidly as 



stress is increased. Then, it may be argued, why not use a structural 

index which permits the yield strength of the material to be obtained 

before buckling occurs? The answer is that at this point side con

ditions other than maximum strength/weight may be introduced. 

As an example, consider an item of structure such as an airplane 

wing, the stiffness of which may be more important than its strength. 

It is quite possible that a wing could be designed for the design 
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loads on a given airplane, such that, while it did not fail under those 

loads, it might deflect so far under normal flight loads as to com

promise the performance of the airplane. The solution to this problem 

is simply to lower the stresses in the various structural elements of 

the wing, thus decreasi.ng strains in these members 9 and lowering the 

cumulative deflections. 

Other reasons for designing to a reduced stress level might be 

to inhibit material fatigue, or to maintain safe stress levels i.n 

areas of stress concentration and reduced area, such as rows of fasten

ers, although these are not normally considerations in design of com

pression structures. 

Another more practical concern is the need in preliminary design 

to account, simply and quickly, for secondary loads and stresses. Pro

vided that the secondary loads are not such as to reinforce the buck

ling pattern due to the primary loads, this may be handled by simply 

lowering the primary stress level by some 'guesstimated' margin. 

With the preceding remarks as background, consider the following 

design problem: The loading intensity (total load divided by the total 

width) is 10,000 pounds per inch. The design stress has been fixed by 

other considerations, as 160,000 psi. End supports are 6o inches apart 



and it is desired to examine the effects of dividing the total width 

into 20 inch panels. Then P/a = 10,000 

P/2atf = 16o,OOO = F 

a = 20 and b • 60 

From the upper pa.rt of Figure 11 it ma')f be seen that the structural 

index for any practical panel meeting these specifications must fall 

within the range 34.5<( s<:_ 43.2, and relatively efficient panels 

will be found onJ.y in the range 31t-.5< s< 38.8. For a first try 

a 4 . . 10 000 
assumes= tc+tr = 3 .5. From the given conditions, tf = 2x16b,ooo 

a 20 = .03125 which is a standard gauge. Then since S = tc+tf = -t-c+-.-0-3-1-2--5 
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20 = 34.5, tc = 34.5 -.03125 =.55. From the lower part of Figure 11, it is 
dctc 

found that for F = 16o,OOO and S = 34.5, 2tf = 25.0 
· 2x25xtr 50x.03125 

then d0 = tc = •55 = 2.7 pcf. 

This is an impractically light core. The point to be noted is that 

while impractical points may sometimes be found to the right of the 

'low structural ind.ex' boundary, no practical points will ever be found 

to the left of. it. 

For a second try assume S = 38 •. 8. Then as before, tr = • 03125 and 

t 0 = 3§~8 -.03125 = .484. From the lower part of Figure 11,, for F = 
- . de tc 4 . . 2x44x. 03125 

160,000 and S = 38.8, 2tf = 4 .. o. Then d0 = •484 = 5. 7 pcf. 

This is a practical panel construction, and from Equations (6) and (7) 

. F _ 160,000 _ 16o,OOO _ 
A= df+(dctc/2tf) - 477+44 - 521 - 307. Furthermore, from a funda-

mental relationship given earlier, the weight of this panel. is 

2abtr(df+dctc/2tf) 2x20x6ox.03J.25x521 
W = 1728 = .· 1728 = 22.6 lbs. 

For a slight further re::f'inem.ent, ass:ume S = 38. 3. By the preced-

. date 
ing process, tr=.03125, t 0 = .491, ~ = 39.5, de= 5.0 pcf, A= 310, 

f 
and W = 22.4 lbs. Within the assumptions Of this paper, and neglect-



ing edge attachments, local reinforcements, if any, and braze alloy, 

this is the lightest panel which will fill the allotted space and 

carry the specified load. 

In a real design problem, the designer might again divide the 

total width into panels of say, 24 inch width, and by the process 

illustrated above, converge upon the lightest panel of this width. 

He could then balance off the extra weight of the wider panels against 

the weight of the smaJ.J.er number of edge supports required, to arrive 

at an optimum arrangement of his total structure. Such a problem is 

beyond the scope of this paper. 

Summary and Conclusions 

The selection of optimum proportions for a stainless steel panel 

is rendered difficult by three main considerations. One., there are 

several possible modes of failure; two, the range of useful stress 

levels is entirely above the proportional limit; and three, the 

critical buckling stress for these panels depends on a large number of 

panel physical properties. 

In this pa.per, modes of failure other than panel buckling have 
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been written off as not applicable to stainless steel panels with 

properly chosen core configurations. The non-rigorous but useful con

cept of a 'reduced' modulus is used to. account for plasticity effects. 

The large number of structural variables in the panel buckling equa

tion is reduced to a manageable number, first by selection of an 

efficiency criterion, the 'efficiency index', which for this particu

lar case ( and for some other loading cases) has the property of elimina

ting a number of panel variables from the optimization process. 
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The remaining variables are grouped into a 'structural index' 

and functions of the stress level. This leaves a three-dimensional 

optimization problem which is solved by a straightforward applica-

tion of the usual processes of the differential calculus. 

When the solutions are plotted, which is tremendously simplified 

by the introduction of the symbol 'M' in place of a group of variables, 

a chart results which, with the addition of some practical boundaries., 

serves to define the rangeis within which practical, efficient panels 

may be designed. 

This chart (Figure 11) relates all the panel variables, and in 

particular, shows those relationships which give high efficiency. 

Several conclusions can be drawn simply by inspection of this chart. 

For instance, if the chart is complete, it may be determined at a glance 

whether or not truly optimum panels can be designed within the limits 

of practical hardware. 

It is also apparent from Figure 11 that, for 17-7PH TH 1050, truly 

optimum panels require honeycomb cores of i.rn;pract,ically low density. 

This conclusion is in accord with those of NACA TN 3751 (Ref 4). 

An interesting sidelight is also thrown on the problem by Figure 

11.. From the lower part o:f the :figure it is apparent that the upper 

useful limit of the parameter (dct0 /2tr) does not exceed, say, 8o at the 

mosto A little thought will show that if this expression is divided by 

the density of the face material, df = 477pcf, the resulting number is 

the ratio of the weight of the core to the weight of both faces. Here 

80 it is shown that the magnitude of this number does not exceed 477 "" 

.168 at most. This is at sharp variance with the conclusion reached 

in Reference 6 by simplified analysis that the weight of the core 



shouJ.d be twice the weight of both faces, and indicates tbe inade

quacy of simplified analysis for sandwich structure. 
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A practictu extension of this approach may be made into the high 

temperature ranges which may be of design interest for stainless 

steels. All that is required is that Fig. 6 be redrawn to reflect. tbe 

tangent modulus variation of the stress-strain diagram of the material 

at the design temperature. '!'be new data must be carried through 

Table I, at least, and will result in a new Figure 11. The upper. 

limit of design stress in the new Fig. 11 should reflect the lowered 

yield strength at temperature. 

It is quite possible that the question of wrinkling failure of 

the faces of a compression panel has been written off too lightly in 

this paper. However both RM 1895 (Ref. 1) and NACA TN 3751 (Ref. 4) 

avoided the question in the same way. It is probably fair to say that 

in t'be dim light of present knowledge, any attempt to include it in 

an analysis such as this would be shooting in the dark. 

The most useful existing wrinkling theory now available (Ref. 16) 

can be reduced to relationships between the critical stress, the core 

density, and the thickness ratio (tf/tc)• If, as the state of the a.rt 

advances, these relationships can be retained, perhaps by the use of 

empirical coefficients, it appears possible to include wrinkling con

sideratiqns as tbe panel configuration is evolved. Figure 11 contains 

the functions of these same variables which are associated with panel 

buckling. If the wrinkling relationships of these variables could be 

superimposed on the lower part of Figure 11, they could then be pro

jected upward into the upper part of the figure and perhaps produce 

limitations on the choice of efficient compression sandwich panels. 

However this work must await the publication of suf'ficient wrinkling 



test data to permit the evaluation of consta.nts in the existing 

theories, or to indicate the need for a new theory. 
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APPENDIX A 

Introduction 

Equation (7) has been presented in terms of the parameter M be-

cause of the resulting simplicity in numerical computations. Because 

of the cumbersome form. of Equation (7) if the expression M (Equa-

tion 8) is substituted in it, it is convenient to retain the variable, 

M. By this device the necessary algebra is greatly simplified, while 

the partial differentiation is made slightly more difficult. Because 

of the uncomplicated nature of the surface generated by Equation (7), 

it is sufficient simply to set the partial derivatives of A with re-

spect to Sand F equal to zero, to obtain optimum relationships be-

tween S and F. In the following operations the symbol M' will be used 

to denote the partial.of M with respect to whichever independent varia.-

ble is being considered. 

Partial Differentiation With Respect to Structural Index 

A - F 
- df + FM2 

4k(m-l) 

= 4kF(M-1) 
4kdt(M-l)+FM2 

Equation (7) 

"?.,A/'?,S = 0 = [4kdt(M-l)+FM2] 4kFM 1 - 4kF(M-l) [ 4kdtM' + 2FMM 1] 

4kdfMx4kF'M' - 4kdf X 4k.F'M'+ 4kF2M2M1 - 4kFM X 4kdtM'+ 4kF X 4kdfM' 

- 4k.F'M X 2FMM' + 4kF X 2FMM' = 0 

16k2FdfMM'- 16k2FdtM'+ 4kF2M2M1 - 16k2FdrMM'+ l6k2FdtM'- 8kF2M2M' 

+ 8:k.FMM' = 0 
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M = 2 Equation (Al) 

Partial Differentiation With Respect to Stress Level 

Equation (7) 

?JA/'oP = 0 = [ 4kdt(M-l)+ffl2] [ 4kFM 1+4k(M-1)] - [4k.F(M-l)] [ 4kdfM'+2FMM 1+M2J 

[4kdfM - 4kd.t+ FM2][FM'+M -1]-[FM -:r][4kd.tM'+ 2FMM'+ M2J = 0 

Expanding this; 

4kdt-li'MM'+ 4kdfM2- 4kdfM - 4kd.fFM'• 4kdf'M + 4kdf+ :,2M2M'+ FM3- ~ 

= 4kdfFMM' - 4kdtFM'+ 2F2M2M'- 2F2MM'+ FM3- FM2 

Collecting like terms; 

4kdtM::L 8kdf'M + 4kdf .. F2M2M'+ 2F2M!4, = 0 

4k.dt(M2 -2M + l) + M' (-F2M2 ,+ 2F2M) = 0 l 

4kdr(M-1)2 = F2M(M-2)M' where, since M =(fr2ER,,, )'2" · · · A psi:: 

M' = ?;M/aF = '!.( xpg2 ) i ( >J'S21'r2Eft -1i2ER s.2 ) 
· 2 rr 2iii "2,2s4 . ·. 

• ~( ,$( )~ ( rrA2:2 ) ( ~ -.~) 
! .. (ER l) 1 . • 2 Ei' - ji where En. ~dlP 

EQ (8) 

H,nce 

4kdr(M-l)a = :,2M(M-2) ~ ( En. - !. l 
· .::: ER F 

a.nd, by re-arranging 

(M-2) Equation (A.8) 

This is the condition for the optimum stress level for each value 

of struatura.J. index. It is still in terms of' the para.meter M, which 

has now served its purpose. 



'?he problem of eliminating M is best handled in two steps. The 

first is to detenn.ine M as a function o.f F. This is most readily 

accomplished by calculating the value of the left-hand side of the 

equation for a number of values of stress, F. The values of M which 

make the right-hand side of the equation equal to these left-hand va.l-

ues may be read from a. plot of the right-hand side as in Figure 14. 

This gives pairs of values of F and M which satisfy Equation A2. 

The second step is simply to substitute these simultaneous pairs 

into Equation ( 8) to obtain a set of pairs of values of F and S 

=tat which satisfy the equation. 
c+ t 

The first step is carried out in Tables IV and V, and in JPigu.:re 

14. The results are given in row (3) of Table II, and the second step 

is carried out in rows (4), (5), and (6) of Table II. 

6o 

A few observations may be made from the form of Equation (A2)..,, 
., ... ' 

'·" . ~. : 

negative, the left-hand side of the equation is always negative. From 

the form of the right-hand side, it can only be negative for values of 

M less than 2.0. The curve of the right-hand side obviously passes 

through zero at M=O a.nd M=2, and is discontinuous at M=l• From Figure 

11, it is apparent that values of M less than 1 .. 0 a.re without physical 

meaning in this problem, so th.at it necessarily follows that only the 

branch of the curve of the rigb.t-ha.nd side lying between M=l a.nd M=2 

is of interest. 

As a matter of practical draftsmanship, it is just as easy to plot 

the right-hand side a.gain.st M2 as a.gain.st M, and the accuracy of read

ing the plot is improved by this device.. For this reason, Figure 14 is 

plotted with M2 as the a.bcissa.. 



As elsewhere in this pa.per, calculations a.re carried out for 

17-7PH TH 1050, for which k = 10,000, d:r is 477 pcf, and the stress

strain data. is given in Figure 6. 
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Source Operation 

Fig. 6 

Fig., 6 

(3)/ (2) 

1000/(1) 

(4)-(5) 

38.16o* 
(1)2x(6) 

TAB!.$ IV 

8kdf = 
Solution of X = Fa(ER ±) 

- - F ER 

8xlo,ooox477 
?(~i . 1) Eil - F 

38._16o * 
= ( F )2(E 1 1 \ 

1000 E: - F} 

(1) FxJ.o-3 8o 100 120 l4o 16o 170 l8o 185 190 

(2) ~o-6 30.0 29.0 27.8 -·26.4 .. ~ 22.7 19.5 13.5 9.2 5.0 

(3) En 0 - 66 - 46 ... 114 -247 -416 -745 -789 -745 .... : 
.. , 

(4) ~ 0-6 0 -a.276 -1.655 -4.318 °10088 -21..33 -55.18 -85.76 -149.0 
ER 

(5) kio-6 12.50 10.00 8.333 7.143 6.25 5.88 5.56 5.40 5.3 
F 

(6) -12.50 -12.28 -9.99 -11.46 -17.13 -27.21 -6o.74 -91.16 -154.3 

{7) X -477.0 -310.8 -265.3 -169.9 .. a7.01 -48.52 -19. 39 -J.2.23 -6.85 

200 

0 

-315 

0\ 
I\) 
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TABIE V 

Solution of X = f M ~ l 12 (M - 2) 

I 

'tl{l. M M - l M -2 X 

1.045 .045 -.955 - 515.0 1.092,, 

1.050 .050 -.950 - 419.0 l.102 

l.06o .ooo -.94-0 - 293.4 1.124 

1.070 .070 -.930 -217.3 1.145 

1.090 .090 -~910 - 133~5 1.188 

1.100 .100 -.900 - 108.9 1.no 

1.130 .130 -.870 65.7 1.277 

1.150 .150 -.850 - 50.0 1.322 

1.170 .170 -.830 - 39.3 1.369 

1.200 .200 -.Boo .. 28.8 1.446 
,' 

1.220 .220 -.1ao - 24.o 1 .. 488 

1.250 .250 -.750 - 18.8 1.562 

1.300 .300 ... 700 - 13.J. 1.690 

1.350 .350 -.650 ... 9.67 1.822 

1.4oo .400 -.¢5oo - 7.35 1.960 
,, 

1.414 .414 ~.586 . - 6.84 2.000 

1.6oo .6oo -.4oo - 2.85 a.560 

1.800 .eoo -.200 - 1.01 3.240 

2.000 1.000 0 0 4.ooo 
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Figure 14-o Plot of the Right-hand Side of Equation A2 

64 



LIST OF.SYMBOLS 

DIMENSIONS 

a = length of the loaded edges of the panen.. 

b = length of the unloaded edges of the panel. 

t = total thickness of a sandwich or homogene9us panel. 

t 0 = thickness of the honeycomb core. 

tr= thickness of one face of a. sandwich panel. Both faces assumed 
etua.llY thick. 

D = diameter of a circle inscribed in a nominal honeycomb cell. 

R = radius of a circle inscribed in a nominal. honeycomb cell. 

tr = thickness (gauge) of ribbon or foil used in fabricating honeyeomb 
core. · 

L = effective length of a column. 

e= radius of gyration of a column= ta+tf for sandwich columns. 
2 

PANEL PROPlmfIES 

S = structural index = t '\ for panel buckling. 
c+ f 

~ = sandwich thiokness ratio. 

! = panel aspect ratio. 
b 

do = weight density of honeycomb core in pounds per cubic foot (pet). 

Ecz = core extensional modulus in the out-of-plane direction. 

G0 xz = apparent core shear modµlus in the x (ribbon) direction. 

Gcyz = apparent core shear modulus in the y (cross-ribbon) direetion. 

00 = 'effective' apparent. core shear modulus. 

W = weight of panel or panel component. 



I = area moment of inertia of a cross-section of a sandwich column or 
panel. 

ERtf(tc+tr)2 
D = bending stiffness per inch of cross-section= 2 

U = shear stiffness per inch of cross-l;ilection = t 0 Gc• 
2 

V = Tr D 
a2u 

K = panel buckling coefficient = (l:v)2 for sandwich p8fels. 

r112ER ( ta+tf ) 2] ~ 
M = a gl;'ouping symbol representing L 'A F a . 

M' = partial derivative of M with respect to Fors. 

X = a symbol representing the value of either side of E,uation (A2). 

CONSTANTS 
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k = the ratio of 'effective' apparent core shear modulus to core density 
= 10,000 psi/pcf for 17-7PH TH1050o 

kw= a theoretical constant in the sandwich wrinkling expression, El!l.ua
tion (4) which possibly should have a lower, empirical, value. 

LOADS AND STRESSES 

Per= critical buckling load for columns or panels. 

PE = criticiµ column buckling load if core shear flexibility is neglected; 
= 'll'~RI 

(L)2 

Ps = shear instability load,= atcGc• 

F = critical instability stress for any mode of failure. 

f = applied stresso 

EFFICIENCY CRITERIA 

R = strengthmto-weight ratio. 

A= critical stress-to-density ratio, and called 'efficiency index 1 • 

MATERIAL PROPERJ.'IES 

E = Young 1s modulus 

G = modulus of rigidity = :2(~+t,J) 



Et,r = tangent modulus 

; = reduoed modulus 

ER= derivative of reduced modulus with respeot to stress. 

Fey= compressive yield strength. 

li'0 u = ultimate compressive strength. 

d = weight d.ensi ty. 

t,J= Poisson's ·ratio. It is assumed that t,Je = .30, and ~P = .50. 

A= (1 -,_.; 2> 

SUBSCRIP!'S 

e = core 

E = Euler 

e = elastia 

f = faces 

p = plastic 

R = reduced 

T = tangent 

w = wrinkling 

x = core ribbon direction 

y = ·aore a:roiss-ribbon direction 

z = out-of-panel-plane dire~tion 
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