APPLIGATION OP BOOLEAN ALGEBRA TO HYDRAUIC
 CIRCUTT SIMPLIFICATION

By
O'Neill James Burchett
Bachelor of Science Oklahoma State University Stillwater, OkIahoma

1958

```
Submitted to the faculty of the Graduate Setrool of
            the Oklahoma State University
    in pareial fulfillment of the requirements
            for the degree of
            MASTER OF SCIENCE
                May, 1960
```


APPLICATION OF BOOLEAN ALGEBRA TO HYDRAULIC CIRCUIT SIMPLIFICATION

Thesis Approved:

452661

ACKNOWLEDGMENT

The writer wishes to acknowledge the honors fellowship grant which started this investigation.

The writer also would like to thank Mr.E. C. Fitch, Jr who guided and made this study possible. Thanks also go to Mr. W. H_{o} Easton, who gave able assistance in guiding the final form of this study, and to Mrs. Avery who gave the writer inspiration and a final typed thesis.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. BOOLEAN ALGEBRA. 4
ITI. TGE SRATEMENT AND SOLUTION OF A PROBLEM...... 13
IV. CONFLLESIONS..................... 20

LIST OF FIGURES

Figure Page

1. Two-Variable Veitch Diagram 8
2. Three-Variable Veitch Diagram 9
3. "And" Circuit 10
4. PilotwCheck Valve "And" Circuit 10
5. "Ow" Cireuit 10
6. Fydraulic "Or" Cireuit. 11
7. Toggle Flip-Flop Cixeuit. 11
8. Fiip-Flop Cireuit 12
9. Cyinders 13
10. Data. 15
11. General Eydraulic Circuit for Problem 16
12. Partial Control Circuit 17
13. Electrical Amalogy of Partial Control Circuit 17
14. Modified Brain Gireuit.................. 18
15. Different Form of Brain Gircuit 19

CHAPTER I

INTRODUCTION

In the past few years the trend in industry has been toward automation. More and more machines with automatic controls have appeared. Finding a suitable control for a machine has often been an expensive and laborious task for the engineer. When a control procedure is so complicated as to need a memory device, the electronic control is probably the most commonly used The reason is that more is known of design procedures for electrical components and also because more electronic control components are available on the market.

Most large machines already have a hydraulic power source available if any of the machine has hydraulic actuators. The control system and the machine might be much cheaper to build and simpler to service if electronic components were eliminated. This, of course, is one of the factors to be determined and considered in the design of a particular machine. It is the opinion of the author that more hydraulic control systems would be used if more wexe known about theit design.

A more or less trial and error procedure is now in general use for the design of hydraulie controls. Since moxe progress has been made in the electronic controls field, an investigation of the methods
of design used in this field was undertaken to determine if a similar design method could be used for hydraulic controls.

Boolean algebra is one mathematical device used for simplification of twostate deviees (on or off) used in electronic design. Since most hydraulic power components are of the type to be either at one state or another (cylinder extended or retracted), the algebra of George Boole will apply as long as time sequence is considered.

The problem under consideration here is to select a sequence of operations for two double-acting eylinders such that one operation does not always follow amother operation in the sequence of operation. This, in the opinion of the author, determines the need for a "memory device" in the control system. Since the same end result in the memory part of the control system can be accomplished in different ways by a different arrangement and number of components, the determination of all possible variations in areangement is unimportant beGause one arrangement will probably be of more value (perbaps deterw mined by economics) than the other possibilities. A method by which 211 othez possible arrangements may be determined from one arrangement would then be of extreme value. Boolean algebra representation of the situation in one method of accomplishing this. After a function of the state of the outpur of the system (cylinders) is determined, the simplim fication methods of Bcolean algebra may be applied to the function to determine all possible forms of the function and thus all arrangements of the system can then be determined. This investigation follows this procedure. The problem is not difficult to solve by trial and
error methods but che problem iliustrates the point that the author wishes to convey as well as would a more complicated problem or situation. The usefulness of the methods will be stated as opinions of the author further in this investigation but it should be realized that the material is presented with the idea that those with more experience in the field could probably draw a better conclusion from the material presented as it applies to their particular problem. For this reasor, the authox will state the conclusions of the investigation more as a means of stimulating others to consider how the methods presented may be applied to their particular problems.

CEAPTER II

BOOLEAN ALGEBRA

Zeawe ago George Boole deduced an algebra by which a reasoning process could be carried out. It was possible to represent an animal ow thing by a symbol, use algebraic mechanics on simple equations containing the symbols, and obtain new equations reprew senting a meaning that the mind usually derives in its process of thougkt. Of course, the original statement had to be written in equation form before the algebraic manipulations could be exercised. After the form of the equation was changed, the translation of the meaning bask into words had to be performed. Some of the meaning of the matter could be lost in this tuanslation process or perhaps the original situation was too involved to be represented by a single equation of usable size。

In the electical enginesing field, complicated switching rea guixements of computers can be stated by a Boolean function that can be dhanged to diffexent forms by the same type processes as were used in Booleam algebra. Certain types of electrical circuits represent a Boolean tem (shown later). Thus, the requirements of the output of a circuit for certain inputs can be determined if the Gireuit is represented in Boolean form.

Boolean terms have the characteristic of being two-valued-
either one or zero. This is analogous to the "on" state or "off" state of a switch, and thus fits the requirements of switching circuits in this respect. For notation purposes, assume that the inputs of a circuit are A and B. The output of the circuit can then be represented by a function of A and B.

$$
\text { output }=f(A, B)
$$

Let A represent $a \operatorname{lon}$ "on" value of input A and B represent a I or "on" value of input B. Similarly let \bar{A} (read not-A) represent the off or zero state of input A. \bar{B} represents no signal at input B. Then the output of a switching circuit with inputs A and B could be represented by

$$
\text { output }=f(A, \bar{A})+f(B, \bar{B})+f(A, B, \bar{A}, \bar{B})
$$

From the above equation the output function can be seen to consist of terms containing any of the variables A, \bar{A}, B, and \bar{B}. With the theorems and postulates of Boolean algebra or other methods developed Iater, the form of the equation (output) can be changed without changing the value of the output.

The postulates of interest here are:

1. If an element A is a member of a class, and B is also an element of the same class, then $(A+B)$ is also a part of the given class.
2. Element A is a part of a given class as is element B. Then $A \cdot B$ is also a member of the given class.
3. An element 0 exists such that element $A+$ element $0=A$ for every element A in a given class.
4. There is an element. 1 such that in a given class there exists $A \cdot 1=A$.
5. When two \in lements A and B are in the same class, $(A+B)=(B+A)$.
6. When two elements A and B are in the same class, then $(A \cdot B)=(B \cdot A)$.
7. When elements A and B are in the same class then $A+(B \cdot C)=$ $(A+B) \cdot(A+C)$.
8. When elements A and B are in the same class, $A \cdot(B+C)=$ $(A \cdot B)+(A \cdot C) \cdot$
9. Elements 0 and 1 mentioned in postulates 3 and 4 must be unique and then for every element A in a given class, there is an element \bar{A} such that $A \cdot \vec{A}=0$, and also $A+\bar{A}=1$.
10. At least two elements, A and B, exist in a given class such that $A \neq B$.

From the above postulates a set of formal theorems has been deduced. The theorems are stated below in equation form when convenient with no proof.

1. The 0 element in postulate 3 is unique.
2. The element 1 in postulate 4 is unique.
3. $A+A=A$.
4. $A^{\circ} A=A$.
5. $A+1=1$.
6. $A \cdot 0=0$.
7. $A+A \cdot B=A$.
8. $A(A+B)=A$.
9. $\overline{\mathrm{A}}$ can be uniquely determined.
10. $\overline{(\mathrm{A})}=\mathrm{A}$.
11. $\overline{(A+B)}=\overline{\bar{A}} \bar{B}$.
12. $A+(\bar{A}+C)=1$.
13. $A \cdot(\bar{A} C)=0$.
14. $\overline{\mathrm{AB}}=\overline{\mathrm{A}}+\overrightarrow{\mathrm{B}}$.
15. $(A+B)+C=A+(B+C)$.
16. $(A \cdot B) \cdot C=A \cdot(B \cdot C)$.
17. $\mathrm{A}+\overline{\mathrm{A} B}=\mathrm{A}+\mathrm{B}$.
18. $A \cdot(\bar{M}+B)=A B$.
19. $(A+B)(\bar{A}+C)=A C+\bar{A} B$.
20. $(\overline{A B}+B \bar{C})=\bar{A} C+\bar{B} \bar{C}$.
21. $\overline{(A+\bar{C})(B+\bar{C})}=(\bar{A}+C)(\bar{B}+\bar{C})$.

The above theorems are useful when the form of a Boolean expression is to be changed. The simplification procedure is a change in the form of a Boolean function so that it is the simplest expression possible for given specifications. In other words, there is no simplest form if no qualifications are to be met.

A certain function is represented by the equation

$$
f=A \cdot B+A \cdot C .
$$

By factoring the A, the function is then

$$
f=A \cdot(B+C)
$$

This illustrates that a function can have its form changed with no change in its value. The terms A, B, and C can have either the value zero or one. Take the case of $A=1, B=1$, and $C=0$.

$$
\begin{aligned}
f & =(1) \cdot(1)+(1) \cdot(0) \\
& =1+0 \\
& =1 \\
\text { or } \quad f & =1 \cdot(1+0) \\
& =1 \cdot(1) \\
& =1
\end{aligned}
$$

Then either form of the function obtains the same end result although the form of each is different.

The function can be expressed in many different forms by using the theorems stated earlier in this chapter.

A visual simplification or form change will be introduced to belp explain the simplification processes of Boolean algebra.
mhis particular visual method uses a diagram called a Veitch diagram. If the variables are A, \bar{A}, B, and \bar{B}, then the Veitch diagram would be as follows. B is represented by the area of the top two squares and A is tepresented by the area of the two left squares.

Figure 1. Two-Variable Veitch Diagram
Considering the function $f=A \cdot B+A \cdot C$, the diagram would contain three sets of variables A, B, and C. The Veitch diagram would then be:

Figure 2. Three-Variable Veitch Diagram
The cross $-h a t c h e d$ area represents that part of the function which is A.B. It is the cross-hatched area common to both A and B. The dotted area represents that area common to A and C. Notice that the areas are common to A and C and that the areas overlap. The total cross-hatched and dotted area represents the function. A function can have an area duplicated in its terms but this has no particular meaning, The duplication is similar to two buttons to the same doorbell being pushed at the same time. The bell does not riag twice as loud.

By inspecting the Veitch diagram, one could ascertain that the area could also be represented by the following terms:

$$
\begin{aligned}
& f=A \cdot C+A \cdot B \cdot \bar{C} \\
& f=A \cdot C \cdot \bar{B}+A \cdot \bar{B} \cdot C+A \cdot B \cdot \bar{C}
\end{aligned}
$$

Each form is equivalent with the original equation. The original equation is probably the simplest form depending on the conditions.

It should be noted that the function $f=A \cdot C \cdot \bar{B}+A \cdot B \cdot C+A \cdot B \cdot \bar{C}$ contains a form of each of the three variables in each term. The name minterm has been given to such cerms. They represent a minimum area (one square) on the Veitch diagram.

The term $A \cdot C$ can be read that the signal A "and" signal C must be present to have a signal out. From this comes the name of a circuit called an "and" circuit which has the characteristics wanted. In electronics the circuit could be represented by diodes as follows:

Figure 3. "And!" Circuit
In hydraulic components the same effect could be obtained by the following:

Figure 4. Pilot-Check Valve "And" Circuit
The term $(B+C)$ could be represented in electronic components by the circuit below.

Figure 5. "Or" Circuit

In hydraulic components the circuit would be:

Figure 6. Hydraulic "Or" Circuit
The mame given to this circuit is the "or" circuit because either signal at B "or" C would place a signal at the output.

Another circuit of interest is the flip-flop circuit. This civeuit has two outputs, and when one, signal is an "on" or one, the other is an "off" or zero. The toggle flip-flop circuit remains at one state until a signal is received and then the outputs change to opposite states. Tine next signal received again reverses the state of the outputs. A typical circuit is as follows:

Figure 7. Toggle F1ip-Flop Circuit

It is believed that a single hydraulic component which serves the same purpose as the toggle flip-flop does not exist.

Another bi-stable state flip-flop circuit exists which has two inputs and two outputs. A signal at one input switches one of the outputs to either a 1 or 0 state depending on the particular circuit. If the state of the flip-flop is already correct, then nothing will happen to the state of the circuit. A signal at the other input would, of course, reverse the zero or one state of each output. A typical circuit follows.

Figure 8. Fiip-Flop Circuit

CHAPTER III

THE STATEMENT AND SOLUTION OF A PROBLEM

For illustrative purposes a problem will be stated and then Boolean algebra will be applied to the problem to illustrate the use of Boolean algebra.

The problem concerns the operation of two hydraulic actuators or cylinders. The cylinders are dowblemating or have the property of applying force and movement in two directions. The two cylinders have the identification numbers (1) and (2).

Cylinder (2)

Figure 9. Cylinders
The sequence of operation is:
Cylinder (1) extends.
Gylinder (1) retracts.

Cylinder (2) extends.
Cylinder (1) extends.
Cylinder (2) retracts.
Cylinder (1) retracts.
The terms A, \bar{A}, B, and \bar{B} refer to the signals which cause the cylinders to either extend or retract. The functions A and \bar{A} are respectively the signal for cylinder (1) to extend and the signal for cylinder (1) to rew tract. The term B is the signal for cylinder (2) to extend and \bar{B} is the signal for cylinder (2) to retract.

In symbol form the sequence of operation will be used as follows:
(1) E
(1) R
(2) E
(1) E
(2)R
(1) R。

Where (1)E represents the extend operation of cylinder (1), and (1)R represents the retract operation of cylinder (1). The rest of the sequence of operation symbols are self-explanatory.

In Boolean terms the state of the input signals for each operation in the sequence are as follows.
(1) E
A \bar{B}
(1) R
$\overline{\mathrm{A}} \overline{\mathrm{B}}$
(2) E
$\bar{A} B$
(1)E AB
(2) R
A \bar{B}
(1) R
$\overline{\mathrm{A}} \overline{\mathrm{B}}$ 。

A simple Boolean function $f(A)$ in terms of the variables cannot be written because of the time factor in the sequence. It is possible for the sequence of operations to be either synchronous or asynchronous. Either type of operation is suitable although asynchronous operation is more prevalent in hydraulic circuits.

The memory element must be employed in this problem since one operation in the sequence does not always follow the same previous operation. This necessitates the use of the electrical flip-flop circuit or the two -position valve in hydraulic components.

For the sequence of operations stated, the following will be assumed given.

CYLINDER (1)

CYLINDER (2)
 $\bar{B}^{\text {completed }}$ \bar{B}

signal out

Figure 10. Data

The above assumptions reduce the problem to the sequencertime operation af the two cylinders. A signal out will be assumed to exist at the completion of each operation.

The figure which follows represents one form of a hydraulic circuit that will perform the sequence of operations stated in the problem.

CZITIDER (1)

Figure 11. General Hydraulic Circuit for Problem.

The figures below show the brain circuitry of Figure 11 and an electrical analogy。

All but essential components have been deleted.

Figure 12. Partial Control Circuit

Figure 13. Electrịal Analogy of Partial Control Circuit

The next figure shows another possible form of the brain circuitry. The circuit was determined by using hydraulic analogies for the electrical components of Figure 13 .

Figure 14. Modified Brain Circuit
Any of the functions $f(A), f(\bar{A}), f(B)$ and $f(B)$ could have their form changed by Boolean algebra methods but they are in as simple form as is needed for this problem.

For illustration purposes the form of $f(\bar{B})$ and $f(\bar{A})$ will be changed.

$$
\begin{aligned}
& \mathfrak{f}(\bar{B})=A_{c} \cdot(1)=A_{c}\left(\bar{A}_{c}+(1)\right) \\
& £(\bar{A})=\bar{B}_{c}+A_{c} \cdot(2)=\bar{B}_{c}+A_{c}\left(\bar{A}_{c}+(2)\right)
\end{aligned}
$$

The circuit for the changed forms of $f(\bar{B})$ and $f(\bar{A})$ follows, leaving the reader to make the comparison between Figure 14 and Figure 15.

Figure 15. Different Form of Brain Circuit
It is evident that this circuit is more complicated than Figure 14. The form has been changed but the output sequence is the same.

A system that uses a small element to control a larger power element usually has three distinct divisions. One division is a central power source. Another division is control system that controls the last divi= sion. The last division is composed of components that change the power from the source into the desired end result. A system using an elec. trical power source has an analogous system using fluid under pressure as a power source. It would be a valid conclusion that the general sysw tem could be designed on the basis of using one type of power source alone. Then if any part or perthaps the whole system need be changed to another type power source, direct analogy translation could be made. On this basis one could use the known design methods of each or all syso tems wing a particular type pewer source. Which design method one uses wald depend on che proficiency of the designex. The cype of central power source used in the actual system would depend on such factors as initial cost, operating eost, maintenance cost, size, speed of operation, sarety, ete.

In this investigation a hydrawically controlled and operated system was determined which would produce a given end result. The system was then converted to an analogas electrical system. The electrical system was expressed as a Boolean fanction and was then operated on so as to
change its form without changing the end result. The new form of the electrical system was converted back into an analogous hydraulic system to provide an evaluation between the original hydraulic design and the changed form of the hydraulic system. The conclusions reached are that the form of the hydraulic circuit can be changed by using the Boolean algebra techniques of simplification. After the form of the system has been changed, an evalwation of which form is better can be made, depending on the particular circumstances under which the system is to be used.

VITA
O'Neill James Burchett

Candidate for the Degree of

Master of Science

Fhesis: APPIICATION OF BOOLEAN AIGEBRA TO HYDRAULIC CIRCUIT STMPLIFICATION

Major Field: Mechanical Engineering
Biographical:

Personal Data: The writer was born at Seiling, Oklahoma, June 11, 1935, the son of Roy and Louise Burchett.

Education: He graduated from Seiling High School, Seiling, Oklahoma, in May, 1953. In September, 1953, he entered Oklahoma State University, Stillwater, Oklahoma, and received the Bachelor of Science Degree in Mechanical Engineering in May, 1958. He entered the Graduate School of Oklahoma State University in January, 1958, and completed the requirements for the Master of Science Degree in May, 1960.

Experience: The writer has served as a graduate assistant, honors research fellow, and an instructor of Mechanical Engineexing while attending Graduate School at Oklahoma State University. The writer has also worked summers at Oklahoma City Aix Materiel Area, Hallibuxton Oil Well Cementing Company, and Sandia Corporation.

Professional Organizations: He is a member of the American Society of Mechanical Engineers, Pi Tau Sigma, Oklahoma Professional Engineex in Training, Oklahoma Society of Professional Engineers, and the National Society of Professional Engineers.

