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PREFACE 

The purpose of thi~ thesis was to determine a correlation be­

tween the pressure drop ?nd the properties of the 2-phase flow sys­

tem and to design and select the apparatus with which the necessary 

experimental data can be obtained. The selection of a method for 

injection of the solid particles into the flow stream required con­

siderable study. A syst~m must be used which will provide a uniform 

flow into the test section and a solid storage capacity sufficient 

to maintain this flow throughout the test run. Mini.mum obstruction 

of the gas flow stream i~ necessary. The following types of systems 

were considered: (1) auger, (2) variable speed gear, '(3) forced 

air injection, · and (4) free-flow hopper. It was found. that the 

free-flow hopper system was adequate and caused negligible fluctua­

tion in pressure readings. It is necessary that the injection 

openings into the flow stream be completely covered by solid 

particles if flow is to be uniform. 

The apparatus was assembled and the desired correlation obtained 

using air and water as the flow components. 

This study has been performed through a graduate fellowship 

sponsored by the Pan American Petroleum Corporation. Thanks is 

given for their ehthusiasm in engineering education and the financial 

assistance awarded for this research project~ 
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SYMBOLS·AND ABBREVIATIONS 

A Area of flow (ft 2) 

A Projected area of the particle in the direction of motion p 

Cn Drag Coefficient expressed as a function ·of the Reynolds 
number 

D Diameter of the pipe (ft) 

DP Diameter of the particle 

F Net gravitat.ional force on the particle 

g Local acceleration due to gravity 

~ Factor which considers wall effect in Ur calculations 

NR Reynolds number 

P Absolute pressure 

Q 

R 

T 

Pressure d~op in the test section for 2-phase flow 

Pressure drop in the test section for air flowing alone 

Flow rate of gas (ft3/min) 

Rotameter reading for air flowing alone 
(cubic ft/min; at 14.696 psia and 100°F) 

Qgs co~rected for conditions existing during flow of air only 
(cubic ft/min. at Ta and Pa) 

Rotameter r~ading for 2-phase flow (cubic ft/min. at 14.696 
psia .and lQQOF) 

Q2s corrected for conditions existing during flow of air only 
(cubic ft/min. at Ta ·and Pa) 

Q2s corrected for conditions existing during 2-phase flow 
(cubic ft/min. at T ·and P) 

Gas constant (ft-lbf)/(lbm-0 R) 

Absolute temperature (0 R) 
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Time 

u 

V 

w 

z 

Time elapsed during the test run (min.) 

Particle velocity 

Terminal velocity of the particle 

Volume of the particle 

Velocity of gas flow negiecting the effect of particles in the 
flow stream (ft/se~.) ' 

Weight of the partJcles ~lb) 

Weight rate of gas flow (lb/min.) 

Weight rate of particle flow (lb/min.) 

Gas compressibility factor 

Mass density of the gas (lbf-sec 2/ft4) 

Mass density of the particle (lbf-sec2/ft4) 

Absolute viscosity of the gas (lbcsec/ft2) 

lbf Pound force unit 

lbm Pound mass unit 

I. D. Inside diameter 

O.D. Outside diameter 

0 R Degrees Rankine 

1st subscripts: 

g gas flow only 

2 2-phase flow 

2nd subscripts: 

s = measured at standard conditions of 14.696 psia and lOOOF 

a= measured at conditions of air flow only (Ta and Pa) 

f = measured at conditions of 2-phase flow (T and P) 
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CHAPTER I 

INTRODUCTION 

The gas flow stream has been applied, by many industries in 

recent years, to the problem of transportation of solid particles. 

The petroleum and grain industries yield examples of such applica-

tions. In the petroleum industry, air is used as a drilling fluid 

to transport the drill cuttings from the well. The grain industry 

transports small grains by introducing them into an air stream. 

The resulting 2-phase flow stream has many interesting properties 

and characteristics. 

As a result of interest shown in this field, a research project 

was undertaken which was sponsored by the Pan American Petroleum 

Corporation. The purpose of the project was to design and assemble 

equipment in the Mechanical Engineering Laboratory of Oklahoma State 

University for the measurement of properties of the vertically up-

ward, isothermal, 2-phase flow system; to attempt to correlate the 

ratio of pressure drops, (b,.P/b,.Pg), to the properties, w, w, p, 
p g g 

pp' and (NR)g; to analyze the results. The test results are presented 

in this report. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Many studies have been made to determine the flow characteristics 

of one-phase, two-phase, and three-phase flow. One-phase flow is gas 

or liquid flowing alone; two-phase flow is a flow stream of gas-liquid, 

gas-solid, or liquid-solid mixtures; three-phase flow is a flow stream 

of a gas-liquid-solid mixture. Since the purpose of this report is the 

discussion of the transportation of solid particles in a gas flow 

stream, this literature review summarizes only the results of the 

major studies of gas-solid, two-phase flow. 

It is necessary to evaluate the properties of the system when 

approaching any two-phase flow problem. The type of flow (viscous 

or turbulent), the properties of the transporting medium, and the 

characteristics of the flow boundaries must be determined. Many 

problems have been encountered in these determinations. Several 

investig~tbrs have attempted to consider the two-phase system as 

being homogeneous and to correlate pressure drops on this basis. 

However, the determination of the properties of this homogeneous 

fluid is difficult and makes this method unpopular. Viscosity is 

an example of such a property. 

J. Happel (1) developed a method for determination of the vis­

cosity of suspensions of uniform spheres. This mathematical development 

2 
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is based on the steady-state Stokes-Navier equations of motion 

omitting the inertia terms.. The disturbance due to each sphere is 

assumed to be confined to a frictionle13s envelope surrounding it 

similar to a stream tube for flow inside ducts. The relationship 

obtained by this method is in good agreement with existi11g data. 

The terminal velocity of a particle is the maximum velocity 

attained in free fall in a fluid medium. In order to tr?nsport 

particles vertically in a fluid stream, velocities in excess of 

the terminal velocities of the particles are required. Ideally, 

when the fluid velocity exceeds the terminal velocity of the particle, 

the partiC'le will move upward with a velocity equal to the difference 

between the fluid and terminal velocities. 

The "choking" velocity, and for practical purposes, the "slip", 

is essentially the minimum transport velocity pecessary to convey 

the solids. 

H. O. Croft (2) presented equations for determination of the 

terminal velocity of particles based on the assumption that the 

net gravity force on the particle is equal to the fluid resisting 

force acting on the particle. 

If the net gravity force= F = Vg(Pp - p) where 

F = net gravitational force 

V = volume of the particle 

g = local acceleration due to gravity 

Pp = W/g = mass density of the particle 

w = Weight of the particle 

Pg = mass density of the fluid 



and the fluid resisting force = R = (CD/2)A ifp where 
p g 

R = total resi~tance of the fluid to particle motion 

projected area of the particle in the direction of 
motion 

U = particle velocity 

pg= mass density of the fluid 

CD - drag coefficient expressed as a function of the 
Reynolds number, NR 

4 

a relation for particle terminal velocity, UT, can be found by letting 

F =Rand so~ving for U. The result is 

For the determination of CD for spherical particles, se.e Table I. 

The wall effect on the value of UT becomes important when the 

ratio of the diameter of the particle to the diameter of the pipe 

exceeds 0.2. This effect can be considered by dividing UT as cal-

culated from the equation, by the factor~· 

For values of the diameter ratios less than 0.1, 

K = 1.0 + 2.l(D /D). w p 

For diameter ratios ranging from 0.13 to 0.97 and values of NR 

from 0.000015 to 6.9, 

where 

K = [1.0 - (D /D)]-2 • 5 
w p 

DP= diameter of the particle 

D = diameter of the pipe 

NR = Reynolds number. 



FLUID 

Air 

Water 

TABLE I 

DRAG COEFFICIENTS (Co) FOR SPHERICAL PARTICLES 

0.1 

0.1 to 2.0 

2 to 1000 

1000 to 200,000 

TABLE II 

24/NR 

Approx. (24/NR) 

18.5/(NR)0. 6 

Approx. 0.44 

VISCOSITY AND DENSITY OF AIR AND WATER 

TEMPERATURE VISCOSITY 

OF (cp) 

70 0.0181 

70 0.981 

5 

DENSITY 

(lb /ft3) 
m 

0.0749 

62.3 
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The information on wall effect is generally used for streamline 

flow.. It shoµld be noted that the terminal velocity· relationship 

given here is for solid particles in a gas flow stream of one p~rticular 

gas. 

Figure l shows terminal settling velocities ·Of spherical particles 

of different densities settling in air and water at 70°F under the 

action of gravity. In this figure, numbers on the curves represent 

true (not bulk or apparent) specific gravity of particles referred 

to water at 4°C. The physical properties used in obtaining the 

curves are shown in Table II. 

It should be noted that the treatment presented by Croft con-

siders the individual particle in an unbounded fluid stream. 

The .determination of pressure drops in flow systems is important. 

G. E. Alves (3) predicted that the components of the total pressure 

drop in the gas-solid system should be as follows: 

1. That required to accelerate the gas to the carrying velocity 

2. That required to overcome the friction of the gas on the pipe 

walls 

3. That required to supply the loss of momentum of the gas in 

(a) a~celerating the solids 
(b) keeping the solids in suspension 

4. That required to support the gas 

5. That required to support the solids. 

An important paper was presented by O. H. Hariu and M. C. 

Molstad (4) on the pressure drop in vertical 0.267 and 0.532 inch 
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inside diameter glass tubes with air as the fluid medium. Closely 

sized sand (28- to 35-, 35- to 48-, 48- to 60-, and 60- to 80- mesh 

Tyler) and both ground and spherical silica-alumina cracking catalyst 

were used. Solids circulation rates ranged from 2 to 54 pounds per 

second per square foot at various constant air rates ranging from 

0.9 to 390 pounds per second per square foot, equivalent to 12 to 

40 feet per second. Calculations of the average particle velocity, 

slip velocity and pressure drop could be made since direct measure­

ments of the dispersed solids density were taken. 

The paper presented analytical expressions to determine the 

pressure drops, horsepower output, horsepower input, mechanical 

efficiency, and the slip factor. Graphs were introduced to correlate 

the experimental work with the analytical study. A description of 

the apparatus along with operating procedure was contained in the 

paper. 

R.H. Wilhelm and M. Kwauk (5) reported on the fluidization of 

solid particles by means of air and water in 3-inch and 6-inch 

diameter columns. Spherical and uniformly sized particles of sand, 

glass, silicate catalyst, and lead shot, ranging in size from 5mm 

to 0.3 mm in diameter, and in density from 1.125 to 10.792 gm/cc. 

were used. Pressure drop, fraction void, and velocity were measured 

and then correlated by means of four dimensionless groups. 

The paper deals primarily with fluidized beds and presents ex­

perimental measurements on fluidization from a quiescent bed to the 

maximum possible degree of expansion, with water and with air. 
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Allen Hazen, E. D. Hardy, and Nora Stanton Blatch (6) made 

early investigations on the transportation of sand in dredges. The 

tests dealt primarily with pressure loss determinations and revealed 

that for horizontal pipes, the pressure loss due to carrying the 

sand is quite significant at low velocities. The loss is reduced 

at higher velocities. The results of their experiments lead to 

the assumption that for flow of solids and gas in vertical pipes, 

when the velocity is great enough to lift the particles they will 

be in fluidized form thus creating a pressure drop of some constant 

value in excess of that required to pump only the gas. No data., 

however,was taken for vertical flow. 

John L. Alden (7) experimented with low pressure pneumatic 

conveying of solids in air. He concluded that dense materials 

require less air per pound than do lighter and bulkier substances. 

It was found that from 35 to 50 cubic feet of air per pound of 

solid would carry practically any material which can be conveyed. 

s. L. Sao, H.K. Ihrig, Jr., and A, F. El Kouh (8) presented 

a paper which discusses the determination of the turbulence charac­

teristics of both the solid and fluid phases of a two-phase (solid 

suspended and conveyed in a gas) flow stream. The stream is a fully 

developed turbulent air stream flowing horizontally and transport­

ing spherical glass beads of close size range. The turbulence of 

the fluid phase and of the solid particles was determined by using 

a tracer-diffusion technique and a photo-optical technique respec­

tively. 
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Their experiments showed that: 

1. For a two-phase turbulent stream of the loading from 0.01 

to 0.06 lb of solid per lb of air and particle size below 

250-micron diameter, the stream turbulence is not signifi-

cantly affected by the presence of the particles. 

2. The particle motion is nonisotropic, even where the stream 

motion is nearly isotropic, mainly due to gravity and wall 

effects. 

3. The intensity of particle motion is greatly affected by the 

distribution of stream intensity in the duct. 

4. The probability of particle-stream encounter has a signifi-

cant effect on the particle diffusivity, which, in the 

-2 cases studied is of the order of 10 of the eddy diffusivity 

of the stream. 

5. The particle Reynolds number of the cases investigated is, 

in all cases, below 10; hence the Stokes approximation of 

drag is a reasonable one. 

One of the most valuable contributions to the literature on 

transportation of solids in a gas flow stream was presented by 

Frederick A. Zenz (9). The paper gives the results of a series of 

experiments to determine the flow characteristics of particle-fluid 

mixtures having a large particle-to-fluid weight ratio, essentially 

a fluidized bed. Tests were run for vertical and horizontal flow 

with air as the fluid medium and solid particle size from 0.0066 

to 0.066 inch in diameter. The test section was a 1.75-inch I. D. 
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lucite tube. 

Figure 2 shows the results of the flow tests. In the vertical 

flow system at velocities below that at which the curves show mini­

mum pressure drops, the particle velocities decrease and there is 

a considerable increase in hold up of particles in the tube. The 

solids apparently continue to flow through the increasingly dense 

mass of slowly moving particles floating in the tube. The increased 

pressure drop is due to the weight of material hold up that slowly 

ascends in the tube. With a further reduction in air velocity, the 

particles became extremely turbulent and the hold up of material 

eventually caused slugging to take place. Slugging or erratic 

flow is indicated in the figure by the dashed lines. These features 

appear in the transition region separating true 2-phase flow and 

fluidized bed flow. 

The curves for horizontal flow are shown in the lower part of 

Figure 2. The breaks in the curves are due to the settling out of 

particles in the tube. More particles settled out at velocities 

less than the settling velocity and filled the tube with a deep 

layer of particles causing a rapid increase in pressure drop. A 

comparison of the curves for horizontal and vertical flow indicates 

that choking in vertical flow occurs at the same velocity as settling 

in horizontal flow. 

Many additional articles discussing the gas-solid flow system 

are available for study. Only a few have been summarized in this re= 

view to acquaint the reader with the background material for the 
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present problem. Each of the articles presented contains a bibliog­

raphy of related articles and should be checked before further re­

search is attempted. 



CHAPTER III 

THE RESEARCH EQUIPMENT 

Equipment was selected which would fulfill the requirements 

of the test and minimize experimental and human error. An attempt 

was made to eliminate unnecessary apparatus and to provide a simple 

flow system. The flow diagram of the test is shown in Figure 3. 

A two stage compressor was used to maintain a pressure of 

1g5 psig in two air storage tanks. The compressor provided a 

continuous supply of air at the maximum test flow rate (9.15 ft3/min. 

at 14.696 psia and 100°F) without pressure variations in the test 

section. The air passed from the tanks through a pressure regulator 

which reduced the pressure to 28 psig under static conditions before 

entering an air filter which removed any entrained oil or water 

from the air stream. The fl9w was then measured by a rotameter 

with a range of Oto 9.15 ft3/min. at standard conditions of 

14.696 psia and 100°F. 

Before entering the test section, the air passed through a 

pressure chamber and a sand hopper tube. The pressure chamber was 

a 10-in. x 10-in. x 10-in. air-tight chamber constructed of 1/4~in. 

steel plate with a 6-in. diameter viewing window of 1/4-in. plate 

glass. The chamber was used to determine the time of any solid 

particle fallout during a test run. A thermometer was located in, 

14 
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the chamber to measure the temperature of the flow stream. 

The sand hopper is shown in Figure 4. Its purpose was to 

introduce the solid particles into the air stream. The top and 

bottom of the hopper were constructed from 5-in. aluminum bar stock 

and the hopper cylinder from a 1-ft. section of 4-in. O. D. lucite 

tubing. The flow tube through the hopper was a 3/8-in. brass tube 

with an I. D. of 0.300-inch. Four slots were milled into the tube 

for injection of the solid particles. The slots were 3/32-in. wide 

and 1-in. long. The solid injection rate was controlled by varia­

tion of the slot opening by raising and lowering the hopper assembly 

on the brass tube using the adjustment screw shown in the figure. 

The hopper was filled through the 1/2-in. opening in the top. This 

opening was then plugged to seal the hopper assembly. A 1/4-in. 

rubber hose was connected from the pressure tap on the hopper to 

a tap located at the rotameter exit to equalize the pressure be-

hind the sand and in the flow tube. If any air flow occurred 

through the sand and into the test section, it was measured air 

which had already passed through the rotameter. A small vibrator 

was attached to the hopper to insure a constant flow of the dry sand. 

The test section was a 12-ft. section of pyrex tubing which had 

an inside diameter of 0.301-inch and an outside diameter of 0.500-inch. 

Pressure taps were located 10-ft. apart, one foot from either end, 

thus giving 40 pipe diameters of undisturbed flow both before and 

after the taps. The test section was mounted in a vertical position 

and in line with the sand hopper flow tube. 
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A semi-circular section of 1/2-in. copper tubing was connected 

at the top of the pyrex tube to direct the flow into either of two 

2-ft. sections of 5-in. open-end pipe thus reducing the flow velocity 

and allowing the sand particles to fall into the collecting containers 

at the bottom of the pipes. The copper tubing was connected with a 

swivel joint so that the flow could be directed into either of the 

collectors by moving the exit. 

All seals in the. hopper and between brass and glass or copper 

and glass were obtained by using 0-rings. 

Two manometers were connected as shown in Figure 3 to measure 

the pressure at the lower pressure tap and the pressure drop in the 

test section. Globe valves were used to control the flow. 

An equipment list is included in Appendix I. 



CHAPTER IV 

TEST PROCEDURE 

The two stage compressor was started and time was allowed for 

the pressure in the air storage tanks to reach 125 psig. The flow 

line valves were then opened and air passed through the test section 

until equilibrium existed as indicated by the thermometer and manometer 

readings. Room temperature and the barometer reading were recorded. 

The flow system'was checked for air leaks and instruments were in-

spected to insure proper operation. 

Tests were run by initially adjusting the flow as recorded by 

the rotameter to a specified value, Qgs' and then taking the required 

data for air flow only after equilibrium had been established. The 

sand hopper tube was graduated so that five different sand flow rates 

could be directed into the air stream. With a flow of Qgs still 

passing through the rotameter, the hopper was adjusted to positions 

1 through 5 respectively, and data was taken at each successive 

adjustment. The system was returned to air flow conditions after 

each adjustment to insure a constant Qgs throughout the 5 positions. 

Data was not taken using all 5 positions in some of the test runs 

because of limitations of the equipment. The maximum rate of sand 

injection was limited by the hopper system and this maximum was 
' 

reached before the last adjustment in some runs. The introduction 

19 



20 

of the sand into the flow stream increased flow resistance and caused 

the rotameter reading to decrease and this new reading was recorded 

for each sand rate as o_ , After the runs for the various sand 
vc!S. 

rates had been made (maintaining Qgs at its initial value), Qgs 

was reduced and additional runs were made at this new Qgs• The Qgs 

values which were used during the test ranged from 9.15 to 5.00 

£t3/min. 

For each test run, equilibrium was reached in the flow stream 

before any data was recorded. After this equilibrium was established, 

the 2-phase flow stream was directed into a clean collecting con-

tainer and a timer was started.. At the end of the run, the stream 

was moved to the second collector and the time of the run recorded. 

The weight of sand collected during the run was recorded as w. Read-

ings of pressure at the lower pressure tap in the pyrex tube, pressure 

drop in the test section, temperature of the flow stream, Qgs, and Q2s 

were taken during each run. 

Since there was only a small di:Sference in the flow stream 

temperature and room temperature, it was assumed that isothermal 

flow existed. The room temperature and barometer reading were check-

ed frequently during the test. 

The calibration curve for the rotameter is shown in Appendix II. 



CHAPTER V 

COMPUTATIONS 

The test data and the necessary properties and dimensionless 

groups computed from the initial data are given in the following 

chapter. The present chapter presents the equations and relation-

ships used in obtaining this additional information. 

The values of flow rate read from the rotameter were converted 

to various other temperature and pressure conditions by the following 

equation: 

where 

Q2 = Gas flow rate as measured at P2 and T2 (ft3/min.) 

Q1 =~corrected to conditions at P1 and T1 (ft3/min.) 

T = Absolute temperature ( 0 R) 

P = Absolute pressure (psia). 

The velocity of the air stream was found by the equation: 

where 

v = Velocity of gas flow neglecting the effect of particles 
in the air stream (ft/sec.) 

Q2 f = Air flow rate at 2-phase ·now conditions (ft3/sec.) 

A = Area of flow (ft2 ). 

21 
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The density of the gas is expressed by the equation: 

where 

where 

where 

Pg= Gas mass density (lbf-sec2 /ft4) 

P = Absolute pressure (lbf/ft2 ) 

z = Gas compressibility factor 

R = Gas constant (ft-lbf/lbm- 0 R) 

T = Absolute temperature ( 0 R) 

The weight rate of air flow was found by the equation: 

. 
Wg = (pg)(Q2f)(g) 

Wg = Weight rate of air flow (lb/min.) 

pg = Gas mass density (lbf-sec2/ft4) 

~f =Airflow rate at 2-phase flow conditions (ft3/min.) 

g = Local acceleration due to gravity (32.2 ft/sec2). 

The weight rate of particle flow was found by the equation: 

wp = W/Time 

' . 
wp = Weight rate of solid flow during the test run (lb/min.) 

W = Weight of solids collected during the test run (lb.) 

Time= Time elapsed during the test run (min.). 

The Reynolds number was determined by the equation: 



where 

NR = Reynolds numJ:,er 

v = Air velocity (ft/sec.) 

Pg= Gas mass density (lbf-sec2 /ft4) 

D = Tube diameter (ft.) 
2 

µ Absolute viscosity of the air (lbf-sec/ft ). 

23 

The density of the solid particles was determined, by the water 

2 4 
displacement method, to be 5.114 (lbf-sec /ft ). 

Since air was the only gas used and the temperature and cross 

sectional area were constant throughout the test, the following values 

were constant in the computations: 

-4 2 
A= 4.94 x 10 ft. 

µ = (3.83 x l0-7)(lbf-Sec/ft2 ). 

D = 0.02508 ft. 

R = 53.35 (ft-lb/lbm- 0 R) 

z = 0.9998 

The sand particles used in the test were of random size from 

28 to 35 mesh Tyler. This is a diameter range between 420 and 

590 microns, or less than 1/13 of the flow-tube diameter. The 

sand was high-grade "frac" sand obtained from Halliburton Oil 

Well Cementing Company. 



CHAPTER VI 

TEST DATA AND RESULTS 

A total of thirty four tests were run for 2-phase flow. The 

data recorded during the test runs are shown in Tables III and IV. 

Tables V through VIII list the additional information calculated 

from this initial test data. Information necessary for a plot of 

( D..P/ 6. Pg) vs. (wp/wg)(Pgf Ppf (NR) g is presented in these tables. 

Since it was necessary to determine D..Pg for the test flow rate 

Q2s, a plot was made of Qga vs. D..Pg. This curve is shown in 

Figure 5. Valu~s of Q2 s were converted to air flow conditions, 

Q2a, and values of D,.Pg for Q2a = Qga were read from the curve. 

This procedure would not have been possible if the pressure had 

been varied at the exit of the test section. These values of 

D,. Pg from the curve are shown in Table VII. 

The various flow rates listed in the tables have the following 

meanings: 

Qgs = Rotameter reading for air flowing alone (cubic ft./min. 

at 14 .• 696 psig and 100°F) 

Qga = Qgs corrected for conditipns existing during flow of air 

only (cubic ft./min. at Ta and Pa) 

·Q2 s = Rotameter reading for 2-ph~se flow (cubic ft./min. at 

14.696 psia and 100°F) 

24 
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TABLE III 

DATA FOR AIR FLOW ONLY 

. Qgs Pg ~Pg 
(ft3 /min.) (in. Ilg. abs.) (in. Hg.) 

5,..00 34.20 4.30 

5 .. 58 35.95 5.90 

6.19 37 .. 60 7.30 

6.80 ~9.45 8.80 

7.,38 41.45 10.60 

7 •. 93 44.15 12.75 

8.56 46 .. 65 14 .. 80 

9.15 49.95 17~60 

B~rometer: 29.35 in •. Hg;. 

Room Temperature: 80°F 

Tg: 77°F 
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TABLE IV 

DATA FOR TWO-PHASE FLOW 

· Run Q2s p L:.t. p T.ime w 
No. (ft3/min.) (in. Hg. abs.) (in. Hg.) (min.) (lb.) 

1 4.10 4.2.65 10.60 1.002 1.492 

2 3.99 43.15 10.90 1.002 2.188 

3 3.86 43.85 11.50 1.014 2.523 

4 4.65 44.05 11.60 1.003 1.391 

5 4.35 46.45 13.20 0.998 2.4.38 

6 4.23 47.05 13.60 1.001 3.141 

7 .4.23 47.45 13.90 1.003 3.406 

8 5.00 46.35 13.10 1.002 1.578 

9 4.70 48.75 14.70 1.001 2.609 

10 4.58 49.85 15.40 1.005 3.336 

11 4.52 50.05 15.70 1.002 3.563 

12 5.30 49.25 14.90 1.004 2.109 

13 4.88 51.65 16.50 1.002 3.188 

14 4. 76 52.45 17.10 1.003 3.500 

15 4.76 52.55 17.20 0.805 3.234 

16 5;72 50.95 16.20 1.003 1.859 

17 5.30 53.65 17.90 1.002 2.875 

18 5.07 54.45 18.30 0.919 3.406 
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TABLE IV (CONTINUED) 

Run Q2s p ~p Time w 
No. (ft3/min.) (in. Hg. abs.) (in. Hg.) (min.) (lb.) 

19 5.00 54.65 18.50 0.815 3.313 

20 5.90 54.05 18.30 1.002 2.281 

21 5.30 56.70 19.90 0.956 3.266 

22 5.25 57.05 20 .10 0.863 3.328 

23 5.19 57.15 20.10 0.815 3.328 

24 5.12 57.15 20 .10 0.788 3.313 

25 6.25 56.75 20. 20 1.001 2.375 

26 5.58 58.95 21.30 0.862 3 .109 

27 5.36 59.55 21.80 0.763 3.125 

28 5.30 59.65 21. 90 0.706 3.063 

29 5.30 59.45 21.60 o. 714 3.125 

30 6.55 58 .15 21.70 1.004 2.438 

31 5. 72 60.95 23.40 1.002 3.656 

32 5.58 61. 75 23.60 0.822 3.328 

33 5.42 61. 95 23.40 0.749 3. 281 

34 5.42 61.35 23.00 0.836 3.594 

Barometer: 29.35 in. Hg. 

Room Temperature: 80°F 

Tg = T: 437°R 
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TABLE V 

DATA FOR Qga vs.b.Pg CURVE 

Qga Pg b. Pg 
(ft3 /min.) (psia) (in. Hg.) 

3.051 15.50 1. 95 

3. 581 15.87 2.60 

4.088 16.33 3.45 

4.579 16,80 4.30 

4.985 17.66 5.90 

5.407 18 .47 7.30 

5.799 19.38 8.80 

6.140 20.36 10. 60 

6.392 21.69 12.75 

6. 714 22.91 14.80 

6.934 24.54 17.60 
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TABLE VI 

FLOW STREAM PROPERTIES 

Run Q2a Q2f V Pg wg wg 

No. (£t3/min.) (£t3/min.) (ft/sec) (slugs/ ft3) (lb/min,) (lb/min.) 

1 3.755 3 .. 363 113.4 3. 20 X 10-3 0.347 1. 489 

2 3.654 3.253 109.7 3.24 0.339 2.184 

3 3.535 3.122 105.3 3.29 0.331 2.488 

4 4.154 3.752 p6.5 3.31 0.400 1.387 

5 3.886 3.418 115.3 3.49 0.384 2.443 

6 3. 779 3. 3"03 111.4 3.53 0.376 3.138 

7 3.779 3.289 110.9 3.56 0.377 3.396 

8 4.367 3.93-3 132 .. 6 3.48 0.441 1.575 

9 4.105 3.605 12L6 3.66 0 .4.25 2.606 

10 4.000 3.474 117 .2 3.74 0.419 3.319 

11 3.948 3.422 115.4 3·, 76 0.414 3.556 

12 4.520 4.046 136.4 3.70 0.482 2.101 

13 4.162 3.637 122.7 3.88 0.454 3.182 

14 4.059 3.521 118. 7 3.94 0.446 3.490 

15 4.059 3.518 118 .6 3.95 0.447 4.017 

16 4.759 4.292 144.8 3.83 0.529 1.853 

17 4.410 3.876 130.7 .4.03 0.503 2.869 

18 4.218 3.680 124 .. 1 4.09 0.485 3.706 

19 4.160 3.623 122.2 4.10 X 10 -3 0.479 4.065 
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TABLE VI (CONTINUED) 

Run Q2a Q2f V .Pg Wg Wg 
(ft3/min,) (ft3/min;) (ft/sec) (slugs'/ ft3) (lb/min.) (lb/min.) 

20 4.756 4.298 145.0 4,06 X 10•3 0.562 2.276 

21 4.272 3. 770 127.1 4.26 0 •. 517 3.416 

22 4,232 3. 724 125.6 4.28 0.514 3.856 

23 4.184 3.677 124.0 4.29 0.508 4.083 

24 4 •. 127 3.628 122.4 4.29 o. 501 4.204 

25 4.902 4.444 149.9 4.26 0.610 2.373 

26 4.377 3.893 131.3 4.43 0.555 3.607 

27 4.204 3. 721 125.5 4147 . 0.536 4.096 

28 4 •. 157 3.676 124.0 4.48 o .. 530 4.339 

29 4 .• 157 ,3. 682 124.2 4.46 0.529 4.377 

30 4.963 4.601 155.2 4.37 0.647 2.428 

31 4.334 3.924 .132.3 4.58 0.578 3.649 

32 4.228 3.804 128.3 4.64 0.568 4.049 

33 4.107 3.689 124.4 4:.65 0.553 4.38,1 

34 4.107 3.706 125.0 4,61 X 10 -3 0.550 4.300 
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TABLE VII 

DETERMINATION OF ( 6P/ 6Pg) 

By use of Figure 5 

Run Q2a L:. Pg 6P (L:.P/ A Pg) 
No. (ft3/min.) (in. Hg.) (in. Hg.) 

1 3.755 · 2.87 10.60 3.693 

2 3.654 2.70 10.90 4.037 

3 3.535 2.55 11. 50 4.510 

4 4.154 3.51 11. 60 3.305 

5 3.886 3.06 13.20 4.314 

6 3. 779 2.90 13.60 4.690 

7 3. 779 2.90 13.90 4. 793 

8 4.367 3.96 13.10 3.308 

9 4.105 3.45 14.70 4.261 

10 4.000 3.25 15.40 4.738 

11 3.948 3.16 15.70 4.968 

12 4.520 4.31 14.90 3.457 

. 13 4.162 3.55 16.50 4.648 

14 4.059 3.35 17.10 5.104 

15 4.059 3.35 17.20 5.134 

16 4.759 5. 01. 16.20 3.234 

17 4.410 4.05 17.90 4.420 

18 4.218 3.66 18.30 5.000 



··Run 

No, 

19 

20 

21 

. 22 

23 

24 

25 

26 

27 

28 

29 

30 

31. 

32 

33 

34 

Q2a 
(ft3 /min.) 

4.160 

4.756 

4,272 

4.232 

4.184 

4.127 

4.902 

4.377 

4. 204 

4.157 

4.157 

4.963 

4,334 

4.228 

4.107 

4.107 

TABLE VII (CONTINUED) 

AP g 

(in. Hg.) 

3.55 

5.01 

3.76 

3.69 

3 .58 

3.49 

5.45 

4.00 

3.61 

3.55 

3.55 

5.65 

3.90 

3.68 

3.45 

3.45 

AP 

(in. Hg.) 

18.50 

18.30 

19.90 

20, 10 

20.10 

20 .• 10 

20.20 

21.30 

21.80 

21.90 

21.60 

21,70 

23.40 

23.60 

23.40 

23.00 

(AP/ AP ) 
g 

5.211 

3.653 

5.293 

5.447 

5.615 

5.759 

3.706 

5.325 

6.039 

6,169 

6.085 

3.841 

6.000 

6.413 

6.783 

6.667 

33 
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TABLE VIII 

DIMENSIONLESS GROUPS 

Run 
. 

<~p;;,g> (p/pp) (NR)g (~)(e_a)(N) 
No. • p R g 

wg p 

1 4.295 6.26 X 10-4 23,783 63.95 

2 6.4.35 6.34 23,279 94.98 

3 7.519 6.44 22,696 109.90 

4 3.472 6.47 27,398 61.54 

5 6.364 6.82 26,331 114.28 

6 8 .. 352 6.91 25,761 148.67 

7 · 9.oor 6.97 25,879 162.36 

8 3.574 6.81 30f227 . 73. 57 

9 6.132 7.16 29,147 127.98 

10 7.927 7.32 28,714 166.63 

11 8.589 7 .. 35 28,393 179.25 

12 4.363 7.23 33,036 104.20 

13 7.006 7.58 31,150 165.44 

14 7.818 7,70 30,613 184.29 

15 8.989 1.n 30,646 212.41 

16 3.504 7.48 36,265 95.05 

17 5,708 7.88 34,470 155.05 

18 7.649 8.00 X 10•4 33,233 203.35 
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TABLE VIII (CONTINUED) 

Run . .. 
No •. (wp/w8 ) fp~/Pp) (N) ( ~ ) ( ~ ) (NR) g R g 

Wg pp 

19 8~495 8 .• 02 x. 10 
.. 4 

32,820 223.60 

20 4.053 7.94 38,517 123.95 

21 6.610 8.33 35,439 195.13 

22 7.508 8 .. 38 35,223 221.63 

23 8.039 8.39 34,837 , 234. 98 

24 8.388 8.39 34,372 241.91 

25 3.892 8 .• 33 41,818 135.57 

26 6.501 8.66 38,052 214.23 

27 7.646 8.74 36,743 245.55 

28 8.187 8.76 36,350 260.70 

29 8. 273, 8.73 36,291 262.09 

30 3.754 8.54 44,352 142.19 

31 6.311 8.95 39,657 223.98 

32 7.130 9.07 38,949 251.89 

33 7,929 9.10 37,889 273,37 

34 7 .821 9.01 X 10""4 37,705 265.71 



Q2a = Q2s corrected for conditions existing during flow of 

air only (cubic ft./min. at Ta and Pa) 

Q2f = Q2s corrected for conditions existing during 2-phase 

flow (cubic ft./min. at T and P). 

It must be remembered that ~pg and (NR)g are for conditions 

of gas flow only. Figure 6 shows the plot of the test results. 

A preliminary test was run to determine if the test setup 

would yield results for air flow alone which could be predicted 

by previously used methods. Test data and calculated data are 

presented in Appendix III for a test using air only. The re­

sulting curve is compared to the Moody friction factor diagram. 

The curves compare satisfactorily. 
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CHAPTER VII 

ANALYSIS OF RESULTS 

The curve of (AP/A.Pg) vs. (wp/wgHPglPp)(NR)g is shown in 

Figure 6. The data, although somewhat ~cattered, is well correlated 

by these parameters and can be approximated by a straight line. This 

indicates that the ratio·, (AP/A Pg), can .be represented by the linear 

relationship 

where Kand Care constants and the remaining terms are dimensionless 

groups. The least square method was applied to the data points and a 

linear approximation was obtained. Values for Kand C were found to 

be 0.0152 and 2.213, respectively. Therefore, it follows that the 

ratio (AP/APg), within the range of this study, can be predicted 

by the relationship 

( AP/ APg) = 0.0152(wp/wgHPgf PpHNa)g+ 2.213. 

It should be mentioned that the product (wp/wg)(p8/pp)(NR)g 

can be expressed as (wp/pgvAg)(p8/pp)(vDp8 /µ) which equals 

(D/µ)(1/ppAg.) (pgwp). D, µ, Pp, A, and g are all constant for the 

test runs. Therefore, A'.g and Wp were the only variables for these 

tests. Pg can be determined with little error if pressure and tempera­

ture re~dings are carefully taken and the value varies only a small 

amount throughout the range of tests. The only remaining data 

recorded are .those leading to values of Wp• Thm~ it is necessary 

to obtain accurate values of this fac;;tor if the test results are to 
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be valid. The solids transported during these tests ranged from 

3.472 pounds of solid per pound of gas to 9.001 pounds of solid 

per pound of gas. No previous work was available which could be 

used to check the experimental results of the tests. 

The straight line relationship has a positive slope which is 

constant throughout the test range. It is recommended that future 

tests be run to determine the maximum value of (6.P/6.Pg) and 
,......._ 

(;p/;g)(pg/Pp)(NR)g obtained before the curve has a definite change 

in slope .. Qualitative reasoning makes it clear that an upper limit 

to these flow parameters must exist since wp obviously cannot in­

crease without limit. These tests will require a change in equip~ 

ment from that used in the present tests to allow either (a) accur-

ate measurement of small values of wg or (b) an increased gas 

density, Pg• 

The results presented in this report are dependent on size of 

solid particles injected into the flow stream. Since the drag on 

the particles increases approximately as the square of the diameter 

and the gravity force increases as the cube of the diameter, it is 

believed that the straight line in Figure 6 would have had a greater 

positive slope if larger particles had been used and a smaller posi-

tive slope if smaller particles had been used. Tests should be run 

to determine the effect of particle size on the constants Kand C. 



CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

· .Test equipment was designed and assembled which can be used 

to determine the pressure drop in two-phase (gas-solid) flow. A 

free-flow hopper was used to inject the solids into the flow stream 

at a uniform rate. This method proved satisfactory and permits 

negligible fluctuations in pressure readings during a test run. 

The test data could be reproduced within very narrow limits. 

The pressure drop whichooccurs during vertically upward, 

isothermal, gas-solid flow can be predicted by 

where 

~p 
g 

= Pressure drop in the test section for two-phase flow 

= Pressure drop in the test section for the gas flowing 

alone (No solids) 

= Weight rate of solid particles (lb/min.) 

= Weight rate of gas (lb/min.) 

= Mass density of the gas during two-phase flow (lbf-sec2 /ft4) 

density the solid particles 
2 4 

= Mass of (lbf-sec /ft ) 

= Reynolds number of the gas flowing alone. 

The range of values used in the tests was: 

wp: 1.387 to 4.377 lb/min. 

40 



wg: 0.331 to 0.647 lb/min. 

(NR)g: 22,700 to 44,350. 

Air was used as the gas and sand particles with a diameter 

range of 420 to 590 microns as the solid. The diameter of the 

test section was 0.301 inch. 

41 

It is recommended that further tests be run using increased 

values of (wp/wg)(pg/Pp)(NR)g and various solid particle diameters. 
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APPE.NDIX I 

LIST OF EQUIPMENT 

1 - Jischer and Porter rotameter #B-851346; 0-8.5 cfm air at 0 

psig and 100°F; tube 4/5A-25; 3/4-in. pipe inlet and outlet. 

1 - Commercial Filters Corporation fulflow filter; Model WF6; 

2-in. pipe inlet and outlet; cotton packing. 

1 - Fisher Governor Company pressure regulator; Type 630; 

Serial no. 2035007; maximum inlet pressure, 1000 psi; 

maximum outlet pressure, 30 psi. 

1 - Meriam Instrument Company manometer bank; Type W; Model 

M-202; Serial no. G50801; 0-50-in. Hg. range. 

1 - Standard Elec~~ic timer; Type S-6; No. 44655; 0.001 to 

10.000 minute range. 

1 - Troemner beam balance scale; Type 19; Serial no. W2; 

No. 124; 16 lb. capacity. 

1 - Standard 6-inch mercury thermometer; -20 to +120°F range. 

1 Mastergauge pressure gauge; Type 101; 0-200 psi range. 

The air was supplied by a Pennsylvania Pump and Compressor 

Company two-stage air compressor; Serial no. 4727; Class llAT; 

Rated at 100 cfm at 400 rpm. The compressor was driven by a 

25 hp electric motor. 

43 



' ' "' 

0 
• O'\ 

~ -
I"", 

0 
• 

00 

APPENDIX II 

"' '-" " 

0 
• 

I:'-

" "'-

0 
• 

'° 

~~ 

"' 
0 
• U') 

~ 
1'. 

"' 
0 
• 

...;j-

1',. 

"" 

44 

0 
• 

°' 

0 
• 

00 

0 
• 

I:'-· 

0 
• 

I.Cl 

0 
• 

Lf"I 

0 
• 

-::t 

0 
• 

(Y) 

0 
• 

0 (\J . 
(Y) 

Qj 

e 
8 
i:: 
0 ·~ 

~ 
.µ 
ct! ·~ 1-l 

'O ,.c 
ct! ·~ 
Qj ,-1 

l:t'. ct! 
c.:, 

1-l 
Qj 1-l 
.µ Qj 

~ 
.µ 
Qj 

ct! ~ .µ 

~ 
.µ 

~ 

• 
I:'-
Qj 
H 
::i 
bO ·~ 
~ 



APPEND IX I II 

COMPARISON OF TEST DATA WITH MOODY DIAGRAM RESULTS 

A preliminary test run was made using air only, to check 

the reliability of the test apparatus. Experti.mental data was 

taken and values of friction factor, f, and Reynolds number, 

NR, were calculated. These calculated values were plotted on 

the Moody Diagram and were found to compare satisfactorily as 

sbpwn in Figure 8. The test data and calculated data are shown 

in Tables IX and X respectively. The glass test section was 

smooth when these runs were made but became very rough after 

the tests using sand in the air stream. 
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Figure 8. Comparison of the Test Data\ With the 
Moody Diagram 
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TABLE IX 

EXl?ERIMENTAL DATA FOR CHECK OF TEST EQUIPMENT 

Qgs p t::,. p Tg 
Run No. 

(ft3 /min.) (in. Hg. gauge) (in. Hg.) (OR) 

1 3.20 2.60 2.00 549 

2 3.80 3.82 2.90 549 

3 4.40 5.10 3.70 549 

4 5.00 6.70 4.35 549 

5 5.58 8.63 5.20 549 

6 6.19 9.95 6.25 549 

7 6.80 11.20 7.25 549 

8 7.38 13.20 8.40 549 

9 7.93 15.10 9.45 549 

10 8.56 17.60 10.85 549 

11 9.15 19.95 12.05 549 

Date: 6/29/60 

Barometer Reading: 29.15 in. Hg. 

Room Temperature: 95°F 
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TABLE X 

CALCULATED DATA FOR CHECK OF TEST EQUIPMENT 

Qga V Pg 

(ft3 I sec) (ft/sec) (16 -sec2/ft4) NR f 

p.0513 103.7 2.38 X 10''"'3 15,942 0 .• 0279 

0.0597 120.9 2.48 19,289 0.0282 

0,0679 137.3 2. 5·7 22,760 0.0272 

0.0754 152.5 2.69 26,464 0.0247 

0.0819 165.8 2.84 30,316 0.0237 

0.0894 180.8 2.94 34,217 0.0231 

0.0966 ·195.5 3.03 38,185 0.0222 

0,1024 207.1 3.18 42,451 0.0218 

0,1076 217 .8 3.32 46,638 0.0213 

0.1130 228,7 .3.51 51, 748 0.0210 

0.1179 238.5 3,69 X 10•3 56,681 0.0204 
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