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PREFACE 

Vibrations from reciprocating pumps have created problems in 

the petroleum pipeline industry for years. Much work has been done 

with empirical studies of the vibrations by making measurements on 

the pipelines and pumps but little has been accomplished on the prob­

lem of determining the fundamental conditions for the transmission of 

vibrations along pipelines. 

The purpose of this study was to provide a sound mathematical 

basis for the description of the phase velocities and frequencies of vi­

bration which are transmitted as guided waves along pipelines .. Equa­

tions were derived for steady state guided waves in liquid filled pipe­

lines in space and liquid filled pipelines buried in an elastic medium . 

. Indebtedness is acknowledged to Dr. D.- R. Shreve for his valu­

able suggestions in changing the equations into a form suitable for IBM 

computation, for writing the programs necessary to perform these cal­

culations, and for operating the IBM 650 for the purpose of obtaining 

the computations. · Indebtedness is also acknowledged to the Oklahoma 

State University for providing IBM. 650 machine time and to Dr. Clark 

A .. Dunn, Dr .. H. T. Fristoe, Dr. R. B. Deal, and Professor J. R. 

· Norton for their guidance and valuable suggestions for organization of 
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this study, and for the opportunity to work with Dr. Fristoe and 
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CHAPTER I 

INTRODUCTION 

The study of vibrations connected with the flow of liquids 

through pipes and tubes is of interest in several fields of science and 

engineering. For example., in the study of medicine the vibrations 

introduced by the heart in the otherwise steady flow are. through tubes 

with elastic and yielding walls. On the other hand., in the petroleum 

industry the vibrations or variations in flow are generally in steel 

pipes. These pipes may in some cases be considered as being rigid, 

In many cases concerned with vibrations in liquid cylinders 

there is also a steady state flow superimpos.ed on the vibrational motion. 

If, however., the velocity of the steady flow is slow in comparison to the 

wave velocity in the liquid the effect of the steady flow may be neglected 

when considering vibrations traveling in the liquid and in the containing 

walls. 

The Purpose of the Study 

The purpose of this study was (1) to provide an operational. mathe­

matical basis for setting up equations for the study of vibrations in liquid 

cylinders and the surrounding solid media., (2) to resolve typical prob­

lems by operational methods that had already been solved by classical 
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mathematical methods, (3) to provide a procedure to solve more com­

plex problems in liquid cylinder vibrations., and (4) to show how other 

circular symmetric problems concerned with steady state 'vibrations 

may be solved by these methods. 

Previous Work 

The most notable paper recently published on steady state vi­

brations in liquid cylinders is by William J. Jacobi (1949) (1). Only 

the simple problems concerned with the propagation of vibrations along 

liquid cylinders are considered. These are (1) liquid cylinder with 

rigid walls, (2) liquid cylinder with pressure release walls, (3) liquid 

cylinder embedded in an infinite liquid, (4) liquid cylinder with liquid 

walls, and (5) an approximate solution for a liquid cylinder with thin 

solid walls. 

The approach used by Jacobi to the problems does not include the 

part of the general elastic equations concerned with shearing stresses 

in the materials considered. The present work contains the results ob­

tained by Jacobi and extends the solutions to the case of a liquid cyl­

inder in an infinite solid medium. The method developed in this paper 

also extends the mathematical equations to the case of a liquid cylinder . 

in an elastic pipe. This case is treated both for the pipe in free space 

and buried in another medium. 
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Conditions for the Physical Application of Mathematical Results 

In the study of vibrations in liquid filled pipes and tubes one en­

counters all variations of wall conditions from that which may be called 

pressure release walls to almost perfectly rigid walls. In some cases 

the outside walls are in air so that little vibrational energy is lost by 

the outside wall. In other cases the pipes are buried in another medium 

so that vibrational energy is lost by the pipes to the surrounding 

medium. 

Fundamental assumptions were made as to the physical proper­

ties of the liquid and pipe walls. The liquids were considered to be 

ideal and to have no viscosity. Perfect elasticity was assumed to hold 

for both the liquids and solids unless otherwise stated. In all cases 

the materials were considered to be homogeneous and isotropic. 

Mathematically operational methods were used and cylindrical 

symmetry was assumed. If a medium surrounds a pipe it has been 

assumed to be infinite in extent, the effect of the surface thus being 

neglected. This does not introduce appreciable error if the depths of 

burial are large compared to the radius of the pipe. The effect of the 

steady flow of the liquid in the pipes has been neglected, 

Plan of Attack 

In order to set up the specific problems considered for solution 

the general equation for small motions in liquids and solids has been 
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solved by operational mathematical methods. When applied to a liquid, 

this equation was derived by Webster for a conservative system. This 

means that no wave energy is lost due to dissipative forces. Since 

cylindrical bodies were considered in this study, cylindrical coordi­

nates have been used throughout. In· order to simplify the problem 

still further, cylindrical symmetry has been assumed. This means 

that for a buried pipe no account has been taken of the effect of the sur­

face. The solutions of the general equation are in terms of Bessel and 

Hankel functions. Fo.r the specific problems considered, the appropri­

ate solutions which rhake the solutions finite along the axis and at in­

finity have been used. Also where there are no reflections of the wave 

energy the solutions which hold for outgoing waves are used. The ap­

plications of the mathematical results to each more specific case con­

tain only the steady state guided waves in the liquid cylinder and the 

surrounding medium. 

It has been assumed that the reader is familiar with vector 

notation, (2). 



CHAPTER II 

MATHEMATICAL FOUNDATIONS 

In order to provide a mathematical foundation for this study the 

general equation for small motions in an elastic body has been used 

as a starting point. This equation is given by Webster (3) as 

2_ 
p .£.....9. = (A'+ µ)'v(V. q) + µv2q 

at2 
(2. 1) 

where q is the vibrational displacement. ;;\. and µ are elastic con-

stants due to Lame' $ P is the density, t is time and 

2- . 
'\7 q = y" ( \] • q) - y7 X ( '7x q} , (2. 2) 

In Equation (2.1) ~o body forces such as,gravity are taken into 

consideration. In the follo\l\'_ing investigation all body forces have been 

neglected. 

The Laplace Transformation (4) is now applied to .Equation (2. 1). 

This results in 

where Q is the transform of variable q , q ( O+) is th~ displace.:µient 

at the reference time (t = 0),. and q,' (O+) is the vcHodity at the ref~rence 

5 
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time. 

For transient solutions of vibrational problems it is frequently 

desirable that q (O+) and q' (O+) have some specified non-zero 

value. For the solution of steady state problems, however, q (O+) 

and q' (O+} may both be taken to have zero values (5). Since steady 

state solutions are desired, it has been assumed that q (O+} and 

q' (O+) are both zero. Equation (2. 3) becomes 

2- · - 2-
p s Q = (A + µ) 'v ( 'v. Q} + µ 'v Q (2. 4) 

and Equation (2. 2) becomes 

2- - -'\1 Q = '\J ( \]. Q ) - '\7 X (\i'xQ } • (2. 5) 

In any elastic solid two forms of wave motion are possible. 

These are (!}waves of'dilatation which are commonly known as com-

pressional waves and (2) waves of shear which are also known as 

transverse waves. The vibrational motion in diJatationa1 waves is in 

the direction of propagation while the motion in shear waves is per-

pendicular to the direction of propagation. In the interior of an ideal 

elastic solid these waves are propagated independently. These two 

forms of wave. motion may be separated mathematically by the follow-

ing Equation ( 6) : 

Q = - \lt t'\?'xA ( 2. 6) 

with the condition "v. A = O. 
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The function I is a scalar potential while the function A is a 

vector potential. 

Since !I? and A are independent in the interior of an elastic 

solid., substitution of Equation (2. 6) into Equation (2. 4) leads to 

p s2 «'? = (X + 2 µ.) 'v2 ~ (2. 7) 

and 

(2, 8) 

In cylindrical coordinates 

- -r - k 
Q 

r r 

\lxK = _§_ ..Q_ B 
Br BB az 

(2. 9) 

A rA9 A 
r z 

where ~. "e"., and 1c' are unit vectors. 

For cylindrical symmetry 

BA BA 
r z o. -- = Bz Br (2. 10) 

For 'v.A = 0 

BA BA BA 
r e z o. = = - = Br Be Bz (2. 11) 



These conditions are satisfied if 

A 
r 

= A 
z 

= :::.r o. 

Then from the Equation (2. 8) 

Equation (2. 7) may be written 

= 
A.+ 2 µ. 

p 

8 

( 2. 12) 

(2. 13) 

(2. 14) 

The compressional wave velocity V in an elastic solid is given by 
C 

(7) 

V2 = A+ 2 µ. (2. 15) 
C p 

· and the shear wave velocity V is given by (7) 
s 

Substitution of Equations (2. 15) and (2. 16) into Equations (2. 13) 

and (2. 14) leads to 

2 = v2 ~
2
A8 + 

1 
8A9 Ag a2A8 J s A9 - - + s or2 r or 2 

oz2 r 
(2. 17) 

and 

s 2 (} v2 [82m + 
1 o\P 

a2m J = + _. -
C ar2 1" a r az 2 . (2. 18) 
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To solve Equation (2. 17) in terms of Bessel functions, the follow-

ing procedure was used. 

Let 

A = A A 
S er · Sz 

(2, 19) 

where ASr is a function of r alone and ASz is a.function of z alone. 

Then Equation ( 2. 1 7) becomes 

2 v2 (Aez 
d2A 
· Sr 

s As As. = 
r . z s dr2 

A dASr ASz ASr 
+ 

.Sz 
dr 2 r 

r 

Let 

+ ASr 

2A -n 
Sr 

d2A 
9z 

dz 2 

where n can have real or pure imaginary values, 

J • 

Substitution of Equation (2. 21) into Equation (2. 20) leads to 

= v2 
s [ 2 J 2 d AS 

-nA + z • 
9z dz2 .. 

Equations (2. 21) and (2. 22) may be re-written 

1 · dA9r 
+ dr 

2 1 
+ (n - ~) r 

r 

(2. 20) 

(2. 21) 

(2. 22) 

(2. 23) 



and 

2 
= { .,!_ + n 2 ) A9 ... v2 ~ 

s 

Equation (2. 23) is a Bessel equation with solutions (8) 

A9r = A1J 1 {nr) + B 1 Y 1 {nr) 

In Equation { 2. 24) let 

2 
!._ + n2 = 132 . 
v2 

s 

Then Equation (2. 24) becomes 

with a solution (9) 

From Equations (2.19)., (2. 25) and (2. 28) 

10 

(2. 24) 

(2. 25) 

(2. 26) 

(2. 27) 

{2._28) 

(2. 29) 

Correspondingly., to solve Equation {2. 18) in terms of Bessel 

functions let 



\'.O = I m 
r z 

11 

(2. 30) 

where ~ is a function of r alone and I is a function of z alone. 
r z 

Substitution of Equation: (2. 30) into Equation (2. 18) yields 

Let 

1 + r 
d<li 

r 
dr 

I d\'.O 
+ _:! r 

r dr 

2 
= - m !Ii 

r 

d21'1? J + w __ z 
r dz2 

where m can be real or pure imaginary. 

Substitutiqn of Equation (2~ 32) into Equation (2. 31) yields 

[ 2 J 2 2 2 · d «iz 
s ·«) = V - m !Ii + --,. 

z C Z 2 . dZ 

Equations (2. 32) and (2. 33) may be re-written 

d2!D 
1 di m2<» r + + 0 = 

2 r dr r • 
dr 

and 

d 2g) 2 
m2) ·!Ii z = (.!_ + 

dz 2 v2 z 
C 

Eq,uation (2. 34) is a Bessel equation of order zero and has 

solutions 

(2. 31) 

(2. 32) 

(2. 33) 

(2. 34) 

(2. 35) 



In Equation (2. 35) let 

2 
s + m2 = a2 
v2 

C 

Equation (2. 35) then becomes 

2 = a !P 
z 

with solutions 

Combining Equations (2. 30), (2. 36) and (2. 39) leads to 

12 

(2.36) 

(2. 37) 

(2. 38) 

(2. 39) 

(2. 40) 

Equations (2. 39) and (2. 40) are the general solutions to the dif-

ferential Equations (2. 7) and (2. 8). These solutions can be expressed 

in a different form by the introduction of Hankel functions H(l) (x) and 
p 

H( 2)(x) . Thus (10) 
p 

H(l)(mr) = J (mr) + i Y (mr) 
p p p 

and 

H( 2> (mr) = J (mr) ·-'"" . i Y . (r:rir) •. 
p p p 

(2. 41) 

(2. 42) 
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Substitution of Equations (2. 41) and (2. 42) into Equations (2. 29) 

and ( 2. 40) results in 

(2. 43) 

and 

(2. 44) 

where 

A2 
1 

( A 0 - i B 0 ) = -
2 

( 2. 45) 

A3 
1 

( Al .- i B 1 ) = 
2 

(2. 46) 

B2 
1 

( A 0 + i B 0 ) = -
2 

(2.47) 

B3 
1 

( A 1 + i B 1 ) = 
2 

(2. 48) 

In steady state solutions eiwtH(l)(x) represents waves traveling 
p 

. d t th . . . d iwt <2>( ) t 1· mwar o e or1grn an e H x represen s waves trave mg out-
p 

ward from the origin (11). Use will be made later of these two prop-

erties to simplify the applications to vibrations in fluid tubes. 

Other forms of solutions for ~ and A9 are obtained when m 

and n are imaginary; that is 



n = in 
1 

Thus ( 12) 

J (ix) = iPI (x) 
p p 

J (ix) + i Y (ix) = 2 i- (p+l) K (x) 
p p 7( p 

14 

(2.49) 

(2.50) 

(2.51) 

(2. 52) 

Substitution of Equations: (2. 5l) and (2. 52) into Equations (2, 21) 

and ( 2. 3 2) leads to solutions 

where 

and 

i = 

A4 = Ao - Bo 

-2B i 

B4 
0 = 

7( 

-2B1 
B5 = -­,,r 

(2. 53) 

(2. 54) 

(2. 55) 

(2. 56) 

(2. 57) 

(2. 58) 



2 
s 

..-;i;._ 

· 2 
V 

C 

2 
.S 

v2 
·s 

2 
- m 

1 

2 
- n 

1 
= /32 

1 

Equations (2. 40)., (2, 44) and (2. 53) are solutions t6 Equation 

15 

(2. 59) 

(2,60) 

(2. 7) and Equations (2. 29)., (2. 43) and (2. 54) are solutions to Equation 

(2. 8). In the application of these equations to specific problems., the 

choice of form depends on the boundary conditions to be satisfied. 

Thus., the particular equations used for a specific problem will deter-

mine whether m and n are to be real or imaginary. 



CHAPTER III 

BOUNDARY CONDITIONS.FOR THE 

GENERAL SOLUTION 

The exact boundary conditions for various configurations of liquid 

cylinders and liquid filled pipes will depend on the specific configura-

tion of the individual problem. However:, several conditions may be 

applied to the general .solutions to make them more useful. In this 

chapter the general solutions of Equations (2. 7) and (2. 8) have had 

these conditions applied to them. 

The Laplace transformed displacement Q is given in terms of 

the potentials «I and A · by Equation (2. 6) This is 

Q = -v'\T> + 'VxA 

With the aid of Equations (2;9), (2. 10), (2.11)~ and (2.12) 

and 

. ~ aAn 
'\"7 xA '9" ' ~ u va=-.r~ 

'7• .,,..._ a, ...--. at 
vw = r - + k -· ar az 

-+ 
.k 
r 

Now Q is a vector and may be split into two components, a 

component in the r direction Q and into a component in the z 
. r 

16: 

(3. 1) 

(3. 2) 

(3. 3) 
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direction Q!z • Then 

and 

+ 
aA 

9 
ar 

at 
Q = - - -r ar 

am 
az (3. 4) 

(3. 5) 

Solutions for guided waves in the z-direction are obtained by the 

choice of zero for the C's and non-zero values for the D's if a has an 
. t . . . (t az) 1w -iaz 1w - -

imaginary value. Thus e multiplied by e yields e w 

The reason for this result will be apparent when the solutions are re-

duced: to steady state conditions.. Thus Equations (2. 40), (2. 44), (2. 53), 

(2. 29L .· (2. 43) and (2. 54) become 

= [ A 0J 0 (mr) + B 0Y0 (mr) J D0 e-az (3. 6) 

[ Ai~) (mr) + Bi/~) (mr) J D0e-az (3. 7) 

t.. = (3. 8) 

(3. 9) 

A9 = [A3H(~\nr) + B 3H(~) (nr) J D 1 e -/lz (3.10) 

A9 = [ A5\ (n/l + B5K 1 (n1 r) J Dl e-/ll z (3. 11) 

where m, n, a and {3 for Equations (3. 6)., (3. 7), (3. 9), and (3. 10) 

are given by Equations (2. 26) and (2. 37)., while for Equations (3. 8) and 



(3. 11) m., n, a., f3 are given by 

2 
s 
v2 

s 

2 
- n 

1 

18 

(3. 12) 

(3. 13) 

In Equations (3. 6) through (3. 11), n0 and D1 are multiplying 

constants and their values may be included in the A 1s and B 1s. Thus., 

in the following this has been done. 

To evaluate Q find the components of Q as given by z z 

Equation (3, 4): 

Therefore 

(3. 14) 

J 1 (nr) J [ Y 1 (nr)J~ --/3z · + B n Y (nr) - .... e · 
r . 1 O r . (3 • 15) 

-az 
e 

-az 
ae 

(3. 16) 

(3. 17) 

Correspondingly one evaluates Q from the components given by 
r 
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Equation (3.5). This leads to 

(3. 18) 

Correspondingly from Equations ( 3. 7 ) and ( 3. 10) Q is given by 

(3.19) 

and 

(3. 20) 

From Equations ( 3 .. 9 ) and ( 3. 11) 

(3. 21) 

(3. 22) 
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In the applications of the solutions for Equation (2., 1) to various 

physical conditions steady state solutions will be considered. For steady 

state solutions .s may be replaced by iw • · · This justifies assuming that 

q (O+) and q' (O+) are zero ( 5 ). With this substitution Equations 

(3. 17), (3. 18),, (3. 19), (3. 20L. (3. 21L and {3. 22) may be written 

qr = m [ All (mr) + B 1Y 1 (mr)J 
iwt - a2; e 

+ ·ff [ All (nr) + B 1 Y 1 (nr) J e 
iWt - {3z 

(3. 23) 

[ . i iWt - Q'Z 
qz = a A0J O (mr) + B 0 YO (rnr) j e 

+ n [A1J 0 (nr) + B 1 Y 0 (nr) J e 
iWt - {3z 

(3. 24) 

qr = [A H(l)(. ) + B H(2)( ) J iwt ~ arz m 2 1 mr 2 1 . mr e 

+ fJ [ Ai~) (nr) + B 3H(~) (nr)J e 
iWt ... {3z 

(3. 25} 

a [ A2H(~) (mr) + Bi~) (mr) J iWt - az 
qz = e 

+ [ (1) (2.) J n A3:H O .(nr) + B3 H O (n:d e iwt - [3z 
(3. 26) 
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( A4\ (m1r) + B4K 1 (mr) J e 
~wt - a1z 

qr = ml 

' 
tA5I 1 (n1r) + B5K 1 (n1r) J 

iwt - J3 1z 
+ /3>1 e · (3. 27) 

[A4I0 (m1r) + B4K0 (m1r)J 
iwt - a z 

1 
qz = al e 

[ A5I0 (n1 r) - B5K 0 (n1 r~ 
iwt -- /3 z 

+ nl 
1 e (3. 28) 

where 

2 2 
2 w 

a = m ... -
v~ 

(3. 29) 

e 

/32 2 
2 

w = n - -·2 
V s 

(3. 30) 

2 
+ a~ 

2 
""'W 

ml = 7 (3.31) 

C 

2 + /32 
2 -w 

nl = 1 2 
V .,.1 

(3. 32) 

fl 

iwt 
In the following the factor e will be omitted for convenience 

in writing the equations. 

The stresses in a homogeneous solid are as follows (13): 

' 8q 
s = A6.+ 2µ.1 rr ar 

s = 
rz 

r z t" aq aq ·] 
µ- + -­az ' ar 

(3. 33) 

(3. 34) 



where 

6 = + + 
aq 

z 
az 

Correspondingly the strains (13) 

aq 
r = e 

rr ar 

--
aq 

z e = 
zz az 

aq aq 
r + z e = rz az ar 
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(3. 35) 

(3. 3 6) 

(3. 37) 

(3. 38) 

where q is the displacement_. e is the strain and s is the stress, 

For fluids µ = 0 • This yields 

s 
rr 

= (
aq 

A _..£.. 
ar 

s = o. rz 

+ 
+ __ z a q ) 

az 
(3. 39) 

(3. 40) 

This completes the discussion of the general conditions which 

apply to all steady state applications of the solutions of Equation (2. 1). 

In the following chapters specific problems will be considered. 



CHAPTER IV 

APPLICATIONS· TO LIQUID CYLINDERS 

In order to check results previously obtained by Ja~obi (1) and· 

others the results of the previous chapter will be applied in this. chap-

ter to some previously solved problems. 

Liquid Cylinder with Pressure Release Walls 

A liquid cylinder is considered which has walls such that no 

pressure is exerted on the walls. This means that the radial stress 

at the surface of the cylinder is zero. An approximation to this con-

dition in practice. is a thin walled rubber tube. Since the liquid is ideal, 

the vector potential part of the solution is zero. · Under these conditions 

Equations (3 .• 23) and (3. 24) become 

~ ~ m GoJi'(mr) + B 0Y 1. (mr)J e -az (4 •. 1) 

and 

(4. 2) 

I 

For Equations (4.1) and (4. 2) to describe the motion. along the 

axis of the tube· qr and qz must be finite.· This means that B 0. must be 

z'ero. This leads to 

(4. 3) 
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Since the radial stress is zero at the surface of the tube, 

s = 0 aa 

. where a is the radius of the tube. 

From Equations (3. 39), (4. 3), (4. 4) and (4. 5) 
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(4. 4) 

(4. 5) 

(4. 6) 

. SinGe in general A0 and w2 are not zero, J 0{ma) = 0 and them' s 

are zeros of J O (ma). In this case m does not have a zero value and 

there is a low frequency cutoff since from Equation (3. 29) 

2 2 2 2 
w = V {m - a ) . 

C . (4. 7) 

. This result has been reported by Jacobi {l ). 

Liquid Tube with Rigid Walls 

Next a liquid filled pipe with rigid walls is considered .. The con-

dition that the walls be perfectly rigid is that the radial component of 

displacement in the liquid be zero at the inside surface of the pipe . 

. This yields from Equation (4. 3) 

(4. 8) 

. Since m and A0 are not in general zero, J 1(ma) = O. In this 

case, .m =' O is a zero of J 1(ma), and the zero mode of vibration is 

transmitted .. There is no. low frequency cutoff •. This result was also 

reported by Jacobi (1). 
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Liquid Cylinder Buried in Infinite Liquid 

For a liquid cylinder buried in an infinite liquid body the bound-

ary conditions may be taken that the radial stress and displacement 

are continuous across the boundary. This is expressed mathemati-

cally as 

(4. 9) 

(4. 10) 

where the subscripts 1 and 2 refer to the liquid cylinder and the sur-

rounding fluid body respectively. 

The solutions given in terms of Bessel functions will be used for 

medium 1, while the solutions given in terms of the Hankel functions 

will be used for medium 2. This is to permit a finite solution along 

the axis and to permit outgoing waves in medium 2. 

Using Equations (3. 23), (3. 25) and (3. 39) results in 

2 2 -az 
(s ) = X. 1(m - a ) J 0(mr) A 0e 
· rr 1 

-az = mJ1 (mr) A0e 

Equations (4. 9) and (4. 10) yield 

" ( 2 2) J ( ) A -az " 2(n2 -{32) H(02)(na)A3e-{3z "' 1 m - a O ma O e = "' 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4. 15) 
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and Equations (4.13) and (4.14) yield 

~az (2) -~z 
mJ 1 (ma) A0e = n H1 (na) e (4. 16} 

along the tube at radius a . 

. Since Equations (4. 15} and (4. 16} hold for all values of z, 

a = ~. (4.1'7) 

2 2 2 2 (2) 
>.. 1(m - a } J 0(ma) A0 - >.. 2(n - a ) H0 (na) A3 = 0 (4. 18) 

(2) 
mJ1 (ma) A 0 - nH1 (na) A 3 = 0 . (4.19) 

If A0 and A3 are not identically zero·, the determinant of.the co­

efficients vanishes. Thus, 

mJ1(m~) 

2 2 (2) 
>.. 2(n - a ) H 0 (na) 

n H( 2) (na) 
1 

= 0 . (4. '20} 

· Values of m, n and a which satisfy this equation determine the 

permitted frequencies and phase velocities. This result has been ob-

tained by Jacobi (1). 

This completes the comparison of the results obtained by previ-
. . 

ous. workers with the results obtained by the operational solutions in-

troduced in this paper. The following chapter introduces solutions 

which are extensions of previous work .. 



CHAPTER V 

LIQUID CYLINDER IN AN INFINITE ELASTIC SOLID 

A liquid cylinder in an infinite elastic solid approximates a liquid 

filled pipe buried in the ground if the walls of the pipe are quite thin. 

Because shear waves are possible in the solid, two functions are 

needed to describe the wave motion. .In the liquid cylinder only one 

function is needed as shear waves are not propagated . 

. However, there is a choice of two forms of solution in the liquid 

cylinder .. These are the Besselfu.nctions of the first kind, J (mr). 
p 

and the modified Bessel functions of the first kind,, I .(mr). · The J (mr) 
p p 

functions are considered first .. The solutions using the Ip(mr) functions 

may be obtained by using Equations (3. 27) and (3. 28), or they may be 

obtained by replacing m by im in the equati_ons resulting from the 

treatment of the case involving the JP (mr) functions. 

Boundary conditions at the contact of the liquid and the solid can 

be set up by assuming continuity in the radial displacement and stress. 

If the liquid is con.sidered to be ideal, it will not adhere to the solid 

and theref<;>re there will be no shearing stress at the surface of the 

solid. The resulting boundary conditions will be 

(5. 1) 
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and 

{s ) • O · az 2 
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{5. 2) 

(5. 3) 

. where the subscript 1 refers to the liquid cylinder and the subscript 2 

refers to the elastic solid. 

In the liquid cylinder the radial displacement is given from 

Equation (4. 3) by 

(5. 4) 

and the radial:stress is, from using. Equations (3. 39), (4. 3), and (4. 4), 

i.. e.' 

{5. Q) 

In the elastic solid a form of solution for outgoing waves is used, 

H( 2) {x). · The compressional and shear components of radial dis-
p . 

placement are obtained from Equations (3 .. 25), (3. 26) and (3. 33) as 

{q ) = nH{ 2) (nr) A e -f3z + -vH{ 2) (pr) 
. r2 1. 3 I 1 

--yz 
. e ' {5. 6) 

and the radial stress is 

{s >2• rr ((-~ (n2- {3 2) + 2µn2\ H( 2)(nr) - 2µn H( 2)(nr)J A e-f3z 
2 J o r 1 1 

( 
. (2) 1 {2) ~,. --yz 

+ 2µ-y pH0 (pr) - r H1 {pr) A 2e . . (5. 7) 

. The tangential stress in the solid is given from Equations (3 .. 25), 

(3:.26) and (3. 34) by 

( . (2) -f3z 2 2 (2) --yz] . 
(srz) 2• - µ. 2n{3H1 (nr) A1 e + ( p + r JH~ (pr)A2e . (5. 8) 

At the boundary between the liquid and solid, using. Equations (5. 1 L 
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(5. 4),. and (5. 6) results in 

--yz ( 2) -(3z ( 2) --yz 
mJ 1 (ma) A0e = nH1 (na.) A1 e + -yH1 (pa)A 2e , (5. 9) 

From Equations (5. 3) and (5. 8) results 

- r2 QH( 2)( ) A. -(3z + (· 2 + 2) H( 2)( ·) A --yz] O (5 11) µ n,-, 1 na 1 e . p 'Y 1 . pa 2e = • . • 
l · . 

. If Equations (5. 9), (5.10), and (5.11) are to hold as z varies 

along the tube, they must be independent of z. This is true if 

(5. 12) 

1 Thus, /3 and 'Y may be replaced by a. 

If solutions of Equations (5. 9), (5.10) and (5.11) exist for non-

zero values of the A's, the determinant of the coefficients of the A's 

must vanish •. That is 

. mJ1 (ma) 

0 

2 
w p1 (ma) 

where 

2 
m 

nH~2)(na) 

2naHi2)(na) 

[ 2 2 2 2] 2 x. (n -(3 ) + 2µn H 0(na) 

_ 2µn 
H~2) (na) 

a 

-yHi2)(pa) 

2 2 (2) 
(:p + 'Y )H1 .(pa) = 0 

(5. 13) 

2µ-y(p H~2)(pa) 

- !. H( 2) (pa)) 
a 1 . 

(5. 14) 



2 2 
n - a 

. 2 2 
p - a 

= 
2 

w 

V2. 
c2 

2 
w = -. -2 I • 

.Vs·· 
2 

Examination of Equations (2. 21) and (2. 32) reveals that 
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(5. 15) 

(5. 16) 

m, n, and p are each real or imaginary. Complex values for m, n, 

and p do not satisfy the differential equations. · Now H~2)(x) is complex 

if x is real but is imaginary if x is negative imaginary, and correspond­

ingly H~2)(x) is real if x is negative imaginary but complex if x is real. 

· Therefore, if mis real and n arid p are negative imaginary, Equa-

tion (5. 13) can be solved for the existing frequencies of vibration and 

the phase velocities • 

. The following substitutions will put Equations (5.13), _(5.14), 

(5.15) and (5, 16) in dimensionless form. 

ma 

na 

pa 

aa 

wa 
V 

c2 

Ye 
,'-2 

v-
C1 

= ··M 

- . - iN ... 

= .-iP 

= iA 

:.,w 

(5. 17) 

(5. 18) 

(5. 19) 

(5. 20) 

(5. 21) 

(5. 22) 

(5. 23) 
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(5. 24) 

. These substitutions provide equations in convenient form for cal-

cu1ation. Thus, Equations (5. 14), (5.15) and (5. 16) become 

w2 2 
gl 

2 2 2 
A - N = W 

.· Equation (5. 13) becomes 

MJ1 (M) iN H( 2\-iN) . 1 

0 2ANi H~2) (.'.,iN) 

2 2 .. ( ) 
. W hl g2 JO M .. (A 2 + P 2)H( 2\-iN) 

0 

+ 2iNH( 2) (-iN) 
1 

Now 

H( 2) (-ix) 2i K 0(x) = 0 7f 

H( 2) (-ix) -2 
K1(x) . = 1 7f 

. Thus, Equation (5. 28) becomes 

iAH( 2\-iP) 
1 

-(P 2 + A 2)H( 2) (-iP) 
1 

2Ai ( -iPHb2) ( -iP) 

-H( 2} (·iP)) 
1 ' 

(5. 25) 

(5. 26) 

(5. 27) 

= 0 . 

(5. 28) 

(5. 29) 

(5. 30) 
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MJ1 (M) . - NK1(N) - AK1 (P) 

0 2ANK1 (N) (P 2 + IA 2)K1(P) 
:;: d 

. W2hlg~ J O(M) (A 2 + p 2) JO (N) 2A ( PK0(P) + K/P)) 
(5. 31) 

. + 2NKi(N) 

.. Equation (5. 31) may be simplified to 

4P KO(P) 

A K 1(P) 

p2 2 J 0(M) J p2 
- h (1- -) . = 2(1 - -) . 

1 A2 M J (M) A2 
A ; 1 ..... 

(5. 32) 

· The other form of solution mentioned at the beginning of this 

chapter is obtained.by replacing M by iM in Equations: (5.17.), (5. 25) 

and (5. 32). · By using. Equation (2. 51) this results in 

A 2 _ M2 = W2 2 
gl 

A 2 - N2 = W2 

2 2 2 2 · 
A -· P = W g2 

t ' 2 2 . Ko(N) 4P Ka(P) 

A 1+ .. ,AP .. 2.) N . -AKl.(P)+ 
A K1(N) 

(5~ 33). 

(5. 34) 

(5. 35) 

p2 2 I (M) J p2 
h (1 --) O ' · = 2(1 ) 

1 A 2 . M l (M) . - A 2 
A 1 .. 

. (5. 36) 
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Equations (5. 25), (5. 26)., (5. 27) and (5. 32) were solved for A,. 

W., M., N, and P for specifically chosen values of the ratio WI A. These 

calculations were made on an IBM 650. The write-up of the IBM pro .. 

gram is given in Appendix A. 

From the values of W and A curves were plotted showing the 

relationship between wave length and phase velocity. 

The phase velocity may be obtained from the factor eiwt- az in 

Equations (5. 23) and (5. 24). Any function oft - ; represents wave 
p 

motion traveling in the po.sitive z direction with phase velocity V {14). 
p 

Comparison of these two expressions yields 

V 
p 

iw 
a 

{5.37) 

In terms of the dimensionless quantities W and A , Equation 

(5. 37) becomes 

V 
w 

V = 
p A c2 

(5. 38) 

Thus 

V w _e_ = V A 
(5. 39) 

c2 

and 

V w _E.__ = gl V A • {5. 40) 

cl 

This gives the ratio of the phase velocity and the velocity in the 

liquid cylinder. 
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With the wave length denoted .by A 

V 
w = 2;r _E._ 

A 
(5.41). 

Thus in terms of A 

2,ra 
A A= (5. 42) 

and 

A " = 2a A 
(5. 43) 

This gives the ratio of the wave length and the diameter of the 

liquid cylinder. 

· Figures 1,. 2.,. and 3 show the computed relationships between 

and A 
2a 

for Equations (5. 25),. (5. 26)~ (5. 27) and (5. 32). 

These curves are for guided waves in the liquid cylinder. The fol-

lowing 'list. gives the values of g 1, g 2, and h 1 in the Figures: 

Figure 

1 1. 5 1.25 0.4 

2.0 1.5 0.4 

3 2.5 1.5 0.4 

In each of these Figures two curves are shown. Due to the periodic 

nature of J0 (M) and J 1 (M) there are more curves to the left of thes~,. 

but none to the right. Search was made on the IBM 650 for more 

curves to the right but none were found. 

The solid line.s of the curves are from calculated points and the. 
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dashed lines are extrapolated. In ea.ch Figure the upper limit of the 

ratio of V to V has been drawn in, Their limit is calculated 
p cl 

from the ratio of · g1 and g2 and is 6/5~ 4/3t and 5 /3 for Figures 1~ 

2, and 3 respectively.. The lower limit for each curve is unity. 

In Fig. 1 there is a low frequency ~utoff at about 

A 
2a = 1. 28 (5. 44) 

for the first curve and a low frequency cutoff for the second curve at 

about 

A 
2a 

= o. 48 

There is probably no high frequency cutoff. 

Correspondingly the curves in Figs. 2 and 3 exhibit low frequency 

cutoff points. 

It should be noted that at the low frequency cutoff point the wave 

length is less than two diameters of the liquid cylinder. Thus for a 

liquid cylinder two feet in diameter and a shear velocity in the solid of 

2000 feet per second~ the cutoff frequency is higher: than 500 cycles per 

second. 

Examination of Equations (5. 25) and (5. 27) reveals that g1 must 

be greater than g2 • This means that the shear wave velocity in the 

elastic solid must be greater than the compressional wave velocity in 

the liquid. If this velocity relationship does. not hold., this solution to 

the problem doe.a not exist. 
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Figure 4 shows the value of M plotted as a function of t . 
Curves A, B, and C correspond respectively to the curves on the 

right in Figs. 1., 2,. and 3. Thus it is possible to calculate a profile 

. of the relative amplitude distribution of the guided wave.s at any given 

time in a plane perpendicular to the axis of the liquid cylinder. It 

should be noted that the maximum amplitude of these guided waves is 

at the axis of the liquid cylinder. 

Equations (5. 33), (5. 34),. (5. 35) and (5. 36) are for another 

type of guided wave which has its maximum amplitude at the contact 

of the liquid cylinder and the elastic solid. 

From Equation (5. 33) one may determine that the phase 

velocity of the guided wave is less than the compressional wave ve­

locity in the liquid cylinder. From Equation (5. 35) one may cor­

respondingly determine that the phase velocity of the guided waves is 

less than the shear wave velocity in the elastic solid. Other than 

these conditions" there are no restrictions on the velocities which 

limit the existence of this solution. 

The determination of the phase velocities and cutoff frequencies., 

if any, would require the solution of these equations for sets of 

curves. This could be done by a modification of the IBM program 

used for the other set of equations .• 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The purpose of this study was (1) to provide an operational mathe-

matical basis for the study of steady state guided waves in liquid cylin-

ders and surrounding elastic solids, (2) to check this operational method 

by re-solving typical problems that had been solved by classical mathe-

matical methods, (3) to provide a procedure for solving more complex 

problems in guided wave propagation in liquid cylinder and elastic 

solids, and (4) to show how other vibrational problems having cylindri-

cal symmetry could be solved with these methods. 

The general equation for small motions in liquids and elastic 

solids was solved by operational mathematical methods in terms of 

Bessel and Hankel functions. These solutions in terms of vibrational 

displacements were applied to some of the less complex problems in 

"' 

liquid cylinder vibrations. Classical mathematical solutions had pre-

viously been published for these problems. The solutions developed 

in this study checked the published results. 

The solutions of the general equation for small motions was ap-

plied to the problem of a liquid cylinder in an elastic solid. Two sets 

of equations were derived for two types of guided wave vibrations along 

41 
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the liquid cylinder and the elastic. solid. One of these sets of equations 

was solved for phase velocities and wave lengths of the guided waves. 

The phase velocities for the first set of guided waves ar~ bounded 

above by the shear velocity in the elastic solid and bounded below by 

the compressional wave velocity in the liquid cylinder. Thus, unless 

the shear wave velocity in the elastic solid is greater than the com­

pressional wave velocity in the liquid, this solution does not exist. 

Inspection of the equations shows that the phase velocities for the 

second set of waves are bounded above by the shear wave velocity in 

the elastic. solid and by the compressional wave velocity in the liquid. 

· Thus, there are no restrictions on the existence of these guided wa{res. 

These two sets of guided waves differ in that the maximum am­

plitude of vibration in the first set is in the liquid tube while for the 

second set of guided waves the maximum amplitude is at the contact 

of the liquid cylinder and the elastic solid . 

. The IBM program used to obtain the calculations mentioned above 

has been included in Appendix A. 

In Appendix B equations are given resulting from the application 

of the general solutions to the problems of 

(1). Elastic cylinder in infinite liquid, 

(2) Liquid filled pipe in. space, and 

(3) Liquid filled pipe buried in. an elastic solid. 

Examination of these equations leads to some general statements 

about the limits on the phase velocities possible in the various cases. 
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Thus, in the case of the liquid filled pipe in an elastic solid, phase 

velocities of the guided wayes are bounded above by the compressional 

wave velocity in the liquid, the shear wave velocity in the pipe, or the 

shear wave velocity in the elastic solid. 

Further work can be done on these problems by investigating the 

effect of changes in the boundary conditions. The liquids considered 

in this study were assumed to be ideal so that at the contact of the liquid 

and elastic solid the shear stress in the solid was taken to be zero. 

However, many liquids wet solids and a thin layer adheres to the sur­

face of the solid. Thus, it would be interesting to investigate the effect 

of replacing the boundary conditions expressing the shear stress as 

zero at the surface of the elastic solid with one which provides for con­

tinuity of axial displacement across the contact. This would probably 

yield solutions more nearly fitting the effects observed in practice. 

Although in this study the general solutions have been applied 

only to cases for steady state guided waves, the equations developed 

in Chapter II can be applied to transient vibrational problems. For 

these transient problems the Laplace transformed equations would be 

used with the appropriate initial conditions. Use of the Inversion Inte­

gral would yield solutions in the time domain. 

Conclusions are: 

(1) A set of equations was set up by operational mathematical 

methods for application to problems of guided waves in liquid cylinders 

and elastic solids. 
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(2) These methods checked published results, and 

(3) Applications were extended to the solution of more complex 

problems concerned with liquid cylinders and elastic solids. 
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APPENDIX A 

IBM FORTRAN PROGRAM 

The IBM program which was used for the computation of curves 

determined by Equations (5.25), (5.26),, (5.27) and (5.32) is given in 

the following. 

The equations are re-written here as follows: 

2 
1+~ = 

A2 

N2 
1 - - = 

A2 

f (A) 

w2 2 

A2 
gl 

w2 

A2 

JO(M) J 
~ J l(M) 

4P KO(P) - -A K 1(P) 

where f(A) is less in absolute value than a given 6 . 

(A.1) 

(A. 2) 

(A. 3) 

(A. 4) 

In writing the program in FORTRAN, Latin characters were 

used. The following list. gives the program equivalent for the · 

characters in the equations. 
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In Equations 

6 

w 

M 

N 

p 

w 
A 

M 
A 

N 
A 

p 
A 

JO(M) 

Jl(M) 

K 0(N) 

K/N) 

K 0(P) 

K 1(P) 

In the Program 

·DELTA 

G3. 

ALPHA 

OMEGA 

EM 

EN 

p 

WA 

EMA 

ENA 

PA 

EMJO 

EMJl 

ZERKN 

ONEKN 

ZERKP 

ONEKP 

The following is the IBM FOR TRAN Program: 
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1 0 READ,Gl,G2,G3,WA•ALPHA,DELTA, 

1 1 ESZ,ABMIN,ABDER 

TMIN=l•0/G2 
·------·-·-·----·-······· 

TMAX=l•O/Gl 

NCNT=O 
·-···-···-···---- .. -----------·- ·---'---

2 O IF(WA-le013,1,1 
···-·· ---···--- ·---

3 0 ENA=SQRTF(l•O-WA*WAI 
·------------- ·-·--·····-·-········· 

CPHI=WA*G2 

IF(CPHI-le0)4,1,1 

4 0 PA=SQRTFfl•O-CPHl*CPHI) 
------·------------

CMU=WA-*Gl 

-- IF(l.O-CMU)~,1,1 
, 

·5 0 EMA=SQRT F ( CMD"*CMU;,;;hO r· 

7 0 EN=ENA*ALPHA 

P =PA*ALPHA 

EM=EMA*ALPHA 

ZERKN=BEKOF(EN) 

ONEKN=BEKlF(EN) 

ZERKP=BEKOFIP) 

ONEKP=BEKlF(P) 

----- -- EMJO=BEJOF (EM) 

- --EMJl=BEJlF(EM) 

-o-TFTlfffSFTEMJ 1 l -AB Ml N I 2 2 , 2 2 , 9 

. ···-·--------------RAT2"=7ERKPTONE"KP 

RA T3=EMJO/EMJ1 

RAT 5-:::-.4--;-01FpJ·~------·------

1 o O---rvir6=i,3*CPR l'.1F"CPH I *CPR I *CPR I I 
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10 1 EMA 

TERMl=RA Tl *RAT 4 

TERM2=RAT2*RATS 

TERM3=RAT3*RAT6 

VALU=ALPHA*CTERM1+TERM2-TERM3) 

VALU=VALU-2,0*CPHI*CPHl 

DUMMY=PRNTFCNCNT,ALPHA,VALU, 

l lERKN,ONEKN,ZERKP,ONEKP,EMJO, 

2 EMJ1,C:OR~ 

rFTt:sr;;;;crns--nvA LU ) > 3 2 , 2 5 , 25 

32 0 IF(NCNT-1)33,36,36 

33 O lf(VALU)34,35;35 

--"34- -o--F.rsR T=:;::r 

ALPi==ALPHA 

VACf=VALU 

GO TO 1l 

-·-----~· --3-;-o--imIT=r-·-·· 

.. ------ A0>2=ALPHA 

VAL2=VALU 

GO TO 11 

36 o IFIVALU)37,!B,38 

3 r-o ALPl=ALPRi 

VALl=VAL 

IF(NSRT)ll,39,40 

. 40 0 ~-SRT=·-o-.-·----------~----

0 IO 3"9 

38 0 AL1""2=A~L-P.,_,.H._A _______ ~---"-· 

VAL2':rt/A 

IF l N'SR I I 40, 3 9, II 
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39 0 CORR=VAL2*(ALP2-ALP1)/(VAL2-

-4~---· 
39 1 VALl) 

ALPRA=ALP2Zc:m-R 

GO TO 50 

11 0 TERM4·= ( ( EN*RAT1+2 .o) *RAT1.:.:-tr~r~-

11 1 RAT4-

12 0 TERM5= ( I P*RAT2+2•0 )*RAT2~PT~--.· 

--------· 
12 l RATS 

----TI O TERM6=( (EM*RAT3-2eO)*RAT3+EM)* ____ _ 

13 1 RA-T6 --- ------------· -·---·----------·· 

-------- ----··--------
DERIV=TERM4+TERM5+TERM6 

.---------- ----- 24 u---IF-(ABDER-ABSF(DERIVI fl4t23,.23 --·--

.. __ .. _____ -------14 - 0 --CORR=VALU/DEfff V -- . ---------------------

----------·---~ IF (CORR) 15 , 30, 17 

- 15 0 IF(5·eO+CORR>l6,16,19 _________ .. 

--------------------16·0 UJRR=-2.-0 ------

GO TO rg-
-----------------r,-1r1F ( CORR-m9, 18 t 18 

___ .. ______ -~1Hs-o-c,..o-R R=·o-.,,--

u O IFTAtP"Htr~l,20,_20 

-----.... -----------z-o O ALPH-~-0-l't 

------------------_ -----~rn"SRTT53, 5 O, 5 3 

· ------------2 ..... 1..--,o~c-o ..... R ..... R'""'=~o,-• ...,2.-..*'""C..,.,O""R ..... R ________ _ 

------- ... -----"GO'"-,ro--1""9" 

---------·--.. ------2_.,z---Ao---1rA-1-LPH"A"=At:PHA-+-O.·----------

G010-,--

25 0 OMEG~=WA*A-cPHA 

POfRH, WA ,ALP'R7S.""i"ONEGA, EM, EN, P 
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26 0 DUMHY=PRNTFIWA,ALPHA,OMEGA, 
••·•-•~·• v_., ---·--·-•·----

____ ___,2"-'6'---'l=-- EM, E_N ,~·EMA, ENA, PA,NCNT) 

____ 27. __ CJ ___ WA=Wl\+DELT._A ___ -'-~---­

NCNT=O 

IF!WA-TMINl2,1,l 
--······--···----- .. ·····--··-··· ---- ....... ---·- ··---········--· ·------

28 0 DERIV=-0.1 

GO TO 14 

29 0 DERIV=O.l 
-···· ···--------·-------

GO TO 14 
·············---···---

30 0 CORR=Oal 

GO TO 19 

50 0 IF(ALPHA-ALP1)51,55t51 

51 0 IF(ALPHA-ALP2)53t55,53 
. . . ···-·--·····-·---------······---··- -·----·-·-···-·------------ ·---

55 0 DUMMY=PRNTF(ALPHA,VALU,Z,ALPl, 

55 1 VALi~Z,ALP2,VAL2tZ,2) 

NCNT=9999999999 

.... -··-"····-····----··---· --······--------·---·····-··-----------· GO TO 25 

52·-0 ALPHA=0.5*(ALPl+ALP2) 

---- S-3 0 ITT:NT=NC:NT+ 

GO ::ro 7 

END 
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APPENDIX B 

OTHER PROBLEMS CONCERNING VIBRATIONS 

IN LIQUIDS AND SOLIDS 

The solution to Equation (2. 1) developed in Chapters II and III 

may be applied to a variety of problems concerned with vibrations in 

liquids and solids having cylindrical symmetry. Equations are given 

in the following pages for: (1) elastic cylinder in a liquid; (2) liquid 

filled pipe in space .. and (3) liquid filled pipe in an elastic medium. 

The boundary conditions for each case are listed. The equations 

giving the displacements and stresses are also given. Finally the equa­

tions resulting from applying these boundary conditions are given. 

Elastic Cylinder in a Liquid 

Two of the solutions for the problem of a solid elastic cylinder in 

a liquid of infinite extent are presented here. There are three possible 

solutions to this problem. However, one is re.stricted by the ratios 

among the velocities. The solution restricted by the velocities and one 

of the unrestricted ones is given below. At the contact of the liquid and 

solid the displacement and radial stress are continuous and the shear 
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stress is zero., These conditions are expressed as 

and 

= (s )2 aa 

(s ) = a,z 1 

In the elastic cylinder 

In the liquid medium 

(s )2 rr 
2 (2) --yz 

::: w p 1 A 2H O ( pr) e 

H (2) 1 ) --yz = p 1 ~ pr e 

(s ) 
rz = 0 . 
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(B. 1) 

(B. 2) 

(B. 3) 

(B. 4) 

(B. 5) 

(B. 6) 

(B. 7) 

(B. 8) 

(B. 9) 

With these equations and the procedure used in Chapter V the 

dimensionless equations result: 

A2 + M2 = w2 2 
g 1i (B. 1 O) 

A2 + N2 2 2 
(B. 11) = w g2 

A2 - p2 = w2 CB. 12) 



Thus 

MJ1 (M) 

. 2 2 
h 1 (N - A )J 0(M) 

-h1MJ1(M) 

- 2MAJ1(M) 

. In Equation (B.13) 
V 

g = 1 V 
92 
cl 

V 
~2 

g2 = v­
sl 

= 

55 

AJ1(N) . PK1(P) 

2h1 A( NJ o<N) 
2 2 

. W g.2 K0(P) .. 

= 0 
- Jl (N)) (B. 13) 

(N2- A 2) Jl(N) 0 

(B. 14) 

(B. 15) 

(B. 16) 

· Replacing M by iM and N by iN leads to another form of solution. 

A2 - M2 2 2 = w g 1 

A2 - N2 2 2 =· w g 
~ 

A2 _ p2 = w2 . 

- MI1(M) 

2MAI1 (lVI) 

• Al (N) 
' 1 

2 2 
-(N + A·.) l 1(N) 

: PK/P) 

0 

(B. 17) 

(B. 18) 

.(B.19) 

.(B. 20) 
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Solutions of Equations {B.10), (B.11}, (B.12}, and (B.13} yield 

phase velocities for guided waves in the elastic cylinder. · For high 

frequ~ncies these waves tend to concentrate in the cylinder.· There 

are some restrictions on the velocities for the existence of this solu-

tion .. They are 

V > V 
C2 Ci 

(B. 21) 

and 

v >vP>v . 
c2 cl 

(B. 22} 

Equation (B. 22) means that the phase velocity VP is bounded 

above by the velocity in the liquid and below bythe compressional wave 

velocity in the elastic cylinder . 

. For a steel cylinder in water this solution does not exist since 

the velocity in steel is greater than in water. 

Solutions of Equations (B. 17), (B.18}; (B. 19}, and (B. 20) yield 

the phase velocities and frequencies of waves which are guided along 

the elastic cylinder but tend to concentrate at the contact of the liquid 

and solid. 

· The ratios of the velocities do. not restrict the existence of these 

solutions .. Thus these guided waves should be expected in, for example, 

a steel cylinder in water. ; The: phase velocity V p is less than the 

shear velocity V . in the elastic cylinder qr the compressional wave 
sl . 

velocity in the liquid, depending on which is smaller. 
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Liquid Filled Pipe in Space 

A problem of theoretical interest is the guided waves in a liquid 

filled metal pipe in space • 

. There are as many as six possible solutions to this Gase but the 

existence of only two of them is not restricted by the relationships of 

the velocities. Equations for these two solutions are given here . 

. The boundary conditions are:. at the contact of the liquid and pipe 

the radial displacement and stress are continuous, and the shear stress 

is zero;. on the outside of the pipe the radial and shear stresses are 

zero . 

. These conditions are expressed at r = a (inside.radius of pipe) as 

(s >1 = (s >2 aa aa 

(s > = o 
az 2 

. and at r = b (outside radius of pipe) 

In the liquid cylinder 

In the pipe 

(B. 23) 

(B. 24) 

(B. 25) 

{B. 26) 

(B. 27) 

(B. 28) 

(B. 29) 



(<1,.) 2 • n [ A 1 J 1 (nr). + B 1 Y 1 (nr)l e-~z 

+ {A2Jt(pr) + B 2Y 1 (pr)J e --yz . 

(srr)2 = >.. 2 (n2- ~2) [ Al J O(nr) + Bly O(nr)J e -~z 

+ 2µ 2n 2 [ A 1 J 0(nr) + B 1 Y 0(nr) J e -~z 

r A1J 1(nr) + B1Y1(nr) e-{:3z -2µ 2n [ J · 

+ 2µ 2 P'Y [ Al 0(pr) + B 2Y 0(pr) J e ·'YZ 

-2µ 'Y 
2 

r 
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(B. 30) 

(B. 31) 

(B. 32) 

. With these equations and the aid of the procedure used in Chapter V, 

the following dimensionless equations result: 

A2 + M2 = w2 2 
gl (B. 33) 

A2 + N2 = w2 (B. 34) 

A2 + p2 2 2 
(B. 35) = w g.2 



NJ1 (N) NY 1(N) AJ1(P) 

2 2 2 2 2 2 
hl W ,g l Jo(M) (P -A )Jo(N) (P -A )Yo(N) 2APJO(P) 

0 

0 

0 

where 

-2NJ l (N) -2NY l (N) -2AJ l (P) 

2ANJ1 (N) 

(P2 -A2)JO{b:) 

bN 
-2NaJ {..,.-) 

1 a 
b 

2ANJ (bN) 
·1 a 

V 
~2 

g1 = v 
cl 

V 
C 
.2 

V 
82 

2ANY1 (N) (A2 _ p2)J 1 (P) . 

(P2 -A2)Y (bN) 
O a · 

2APJ (bP) 
0 a . 

bN 
-2NaY l (-• ) 

-2AJ (bP) a 
b 1 a 

2ANY (bN) 
1 a 

(A2-P2)J/¥~) 

2APY0 (P) 

-2AY /P) 

(A2 -P2)Y l (P) 

2APY (bP) 
0 a 

-2AY ("bP) 
1 a 
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= 0 

(B. 36) 

(A2-P~)Y (~) 
· 1 a 

(B. 37) 

(B. 38) 

(B. 39) 

The other solution mentioned above is derived by using Equations 

(3. 27) and (3. 28) • 

. In the liquid cylinder 

(8. 40) 
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(B. 41) 

In the pipe 

(qr) 2 = n [-A1 \(nr) + B1 K1(nr) J e -fz 
+ 'Y [ A 2!1(pr) + B 2K1(pr) J e·--yz (B. 42) 

= /l [ A1 r0(nr) + B1 K0(nr) J e -/3z 

+ p [ Ai0(pr) ·- B 2K 0(pr)J e -'}'Z (B. 43) 

(B. 44) 

= 2µ 2n /3 [ A1 I1(nr) - B 1 K 1 (nr) J e -/lz 
(B. 45) 

+ µ2(P 2 - /) ( Ail (pr) + B2K/pr)J. e -11z • 

With. these equations,. the boundary conditions, and the· methods 

used above, the following dimensionless equations result: 

(B. 46) 



0 

0 

0 

+ 2NI1(N) 

2NAI1 (N) 

-(A2 +P2)\/:) 

+ 2N\ (~) 

2NAI (Nb) 
1 a 

, NK1 (N) 

-2AI/P) 

-2NAK1(N) -(P2 + A2)1i_ (P) 

-(A2+P2)~(N) 2AP1n(~b) 

Nb -2AI (Pb) - 2NK (-.. ) 
1 a 1 a 
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(B. 47) 

(B. 48) 

..;2AP~(P) 

-2AK1(P) 

-(P2 + A?)K1 (P) 

-2AP~(~ 

-2AK (Pb) 
1 a 

In the solution determined by Equations (B.. 33), (B. 34), (B. 35) 

and (B. 36) the waves tend to concentrate in the liquid. Examination of 

the equations reveals that the phase velocities have no upper limit but 

are bounded below by the compressional wave velocity in the liquid or 

the shear velocity in the pipe depending on which is larger. That is, 

= 0 

(B. 49) 



and 

V 
p 

V 
p 

> V 

> V 
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c: (B. 50) 

l 

S· 
2 

(B. 51) 

In the solution determined by Equations (B. 46), (B. 47), (B. 48),, 

and (B. 49) the waves tend to concentrate in the pipe, The phase ve-

locities have no lower bound but are bounded above by the compres-

sional wave velocity in the liquid or the shear wave velocity in the pipe. 

That is, 

V < V 
p C 

and l 
i 

(B. 52) 

V < V 
p s. 

2 
(B. 53) 

Liquid Filled Pipe in an Elastic Medium 

A problem of considerable practical importance is the guided vi ... 

brations in a liquid filled metal pipe buried in an elastic solid. The 

equations developed in Chapters II and III may be applied to this prob-

lem. When the pipe is buried several diameters below the surface., 

the elastic solid may be considered to be infinite in extent. Thus, 

circular symmetry may be assumed, 

The boundary conditions are: at the contact of the liquid and pipe 

the radial displacement and stress are continuous and the shear stress 

is zero; at the contact of the pipe and elastic medium the radial and 

tangential displacements and shear stresses are continuous. 

These conditions are expressed at r = a (inside radius of pipe) 

by 

= (B. 54) 



and at 

(s ) 
aa 1 

(s ,) 
az 2 

r = b 

(qb)2 

(sbb) 2 

(qz)2 

(sbz)2 

= (saa) 2 

= 0 

(outside radius of pipe) by 

= (qb)3 

= (sbb) 3 

= {qz)3 

= (sbz)3 
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(B. 55) 

(B, 56) 

(:8. 57) 

(B. 58) 

(B. 59) 

(B. 60) 

The 1.., 2., and 3 ·subscripts refer to the liquid tube, the pipe, and 

the elastic solid)( respectively. 

In the liquid tube two forms of .solutions are possible. The first 

gives the radial displacement and stress as 

and 

where 

and 

( ) = kJ (k ) A -az qr 1 · · 1 · · r Oe 

(s )1 = rr 

2 w =~ 
v2 

cl 

(B .. 61) 

(B. 62) 

(B. 63) 

The se.cond solution gives the radial displacement and stress as 

(qr\ - kh (\kr) A0e 
-az 

= (B. 64) 

(s \ 
2 -a:z = w Pi1o (kr) A0e rr 

{B. 65) 



where 

I 
\ 

2 
a?+.~ 

v2 
c1 

64 

= 0 . (B. 66) 

Correspondingly, in the pipe two forms of solution are possible .. The 

first solution gives tne radial displacement and stre~s, and tangential 

displacement and shear stress as 

where 

('\-) 2 ~ .1 [A1J 1(1r) + B1Y1(1r)J e·/Jz 

+ 'Y [ Al1 (1 r), + B 2Y 1(mr) J e·llcz 

<11z> 2 • · Ii [A1J 0(1r), + B1Y0(1r) J. e ·/lz 

(s . ) = 
rr 2 

+ m ~ 2J 0(mr) + B 2Y 0(mr)J e ·'YZ 

>.. 2(12 - fl'2) [ Al J 0(1 r) + Bly 0(1 r)J e ·/JZ 

+ 2µl 2 [ Al Jo(lr) + Bl Y 0(1 r) J e ·/lz 

. 2:l [ Al Jl(1r) + Bly 1(1 r) J e ·/Jz 

+ 2µ 2m:{Al0(mi,) + B 2Y0(m;) J e ·-yz 

2fl2 'Y . [ J --yz r · A 2J1(mr) + B 2Y 1(mr) . e 

·2µ 2/l1 [ A1 J 1 (1 r) + B1 Y 1 (lr) J e ~/lz 

·µ (m2 + i) [ A 2J1(mr) + B 2Y1(mr)) e ·'YZ 

(B. 67) 

(B. 68) 

(B. 69) 

· (B. 70) 
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(B. 71) 

2 2 
m - 'Y (B. 72) 

. The second form of solution in the pipe gi,ves the components 

of displacement and stress as 

(CJ,.)2 " 1 [-A1 r1(l r) ~ · B1 K1(l r) J e -/3z 

(B. 73) 

+ 'Y [A2r1 (mr) + B 2K1(mr) J e -/3z 

(~)2 = fl[A1lo(lr) + BlKO(lr) J•-/3z 
(B. 74) 

+ m [ A 210(mr) - B 2K 0(mr)J. e --yz 

(B. 75) 

(B. 76) 
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where 

12 /32 
2 

+ + 
w 

0 7 = (B. 77) 

c2 

2 2 
2 

w 
0 m + 'Y +-- - ·.= . 

V2. 
(B. 78) 

c2 

,i_,;i.,. · L:t,~the(eh;i.st'i·b1 so,lid,, the form of wave motion for outward wave 

travel is used •. Thus 

(B. 79) 

(B. 80) 

[ (2) -oz 2 2 (2) · -Ez] . (srz)3• - µ 3 2noH1 (nr)A3e + (p + E )H1 (pr)e (B.82) 

. When the boundary conditions are used it may be noted that there 

are eight ways in which these boundary conditions may be satisfied. 

Complete equations are given here for only two of these cases. 

· Use of the following. equations puts the final equations in dime~-

sionless form: 

ak = ·K (B. 83). 

a1 -- L (B. 84) 

am = M (B. 85) 

an • -iN · (B. 86) 
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ap = iP (B. 87) 

aa = iA (B. 88) 

V 
c2 

gl (B. 89) = V 
cl 

V 
c2 

(B. 90) = g2 V 
$2 

V 
c2 

(B. 91) v-- :: g3 
c3 

V 
c2 

(B. 92) = g4 V 
S3 

pl 
hl (B. 93) - = 

p2 

P3 
h2 (B. 94) = 

p2 

Using th~se equations., the boundary conditions~ and the first set 

of equations for the displacements and stresses results in 

A2 + K2 = w2 2 
gl (B. 95) 

A2 + L2 = w2 (B. 96) 

A2 + M2 2 
(B. 97) = Wg2 

A N2 2 2 
(B. 98) - = w g3 

A2 p2 2 2 
(B. 99) .-. =· .W g4 

\ 



68 

KJ1 (K) LJ1 (L) LY 1 (L) AJi (M) AY 1 (M) 0 

W2gfl JO (K) (M2 - A2) JO (L) (M2 - A2) YO (L) .2 MAJ0 (M) 2 MAY0 (M) 0 

- 2 L J (L) 
a 1-

-2LaY1 (L)_ - 2AJ1 (Ml -2AY1 (M)· 

- 2 ALJ1 (L) - 2 LY l (L) (M2 - A2) J 1 (M) (M2 - A 2) Y1 (M) ti 

0 = 
0 LJ (b£) LY (b£) AJ (Mb) AY (Mb) NKl (Nab) AK/"!-) 1 a 1 a 1 a 1 a 

(P2 +A2)g2 -2h 

(B. 100) 
0 (M2 - A 2) J (!>: L) (M2 - A2) YO (iL) 2 MAJ0 (~M) 2 MAY0 (iM) -h 2 K (.1'!!?)--2· APK (~) 

O a 2 2 Oa 2 Oa 
g4 g4 

-2LJ .(!>:L) - 2 LY (!>:L) - 2 AM J (!?_M) - 2 aA y (!?_M) 
- 2h- g2 . 

:2h2 AaK (~) ~~K(~) 
1 a I a b I a b 1 a 2 b I a 2 b . I a 

g4 g4 

- AJ (!?_L) 
0 a 

- AY (!?_ L) 
o a 

MJ0 (~ M) MY (bM) 
0 a 

-AK (Nb) 
0 a - PK0 cP~) 

- 2 A~Y (bL) 
. 2NAg2h 2 

2 ALJ (bL) (A 2 _ M2) J (bM) (A 2 _ M2)Y (Mb) __ 2_2K (Nb) (P2 + A 2) h2g 2 K tb) 
1 a 1 a . la -la 2 la 2 1 a 

g4 g4 

Using the second set of equations for the displacements and 

stress and the same procedure results in 

A2 - K2 = •W2g2 (B. 101) 
1 

A2 - L 
2 

= w2 (B. 102) 

A2 - M2 = w2g2 {B. 103) 2 

A2 - N2 2 ·2 
(B. 104) = w g3 

A2 - p2 = w2 2 
g4 (B. 105) 
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AK1 (M) 0 

11,g; w210 (K) • (M2 + A2) Io (L) • (M2 + A2) Ko(L) 2 AMI0 (M) 

~ 2 AI 1 (M) 

• 2 AMK0(M) 0 

0 

0 

0 

+ 2 Lil (L) • 2 LKI (L) 

• 2 ALI! '(L) 

···LI(~.) 
· I, a 

2 ALK1 (L) 

. All (M:) 

Ml (Mb)· 
0 a 

• 2 AK 1.(M) 

AK (Mb) 
I a 

MK· (Mb) 
o a 

NK (Nb) 
I a 

- AKO (:b) 

0 

· AK tb) 
t a. 

0 . 

- 2 AU (~; 
I a 

- 2.La K (~) 
b I a 

+ 2.ALK (Lb) 
I. a 

The phase velocities in the solutions for Equations (B. 95) through 

(B. 100) will be bounded above by the shear wave velocity in the elastic 

solid (medium 3). · The phase velocity also is bounded below by the 

shear wave velocity in the pipe .. Thus, this set of equations has no 

solution for a liquid filled steel pipe in the ground because steel has a 

higher shear wave velocity than earth materials close to the surface. 

= 0. 

The phase velocities in the solutions for Equations (B. 101) through 

(B.106) will be bounded above by the following: 

(B. 107) 



Vp< V 
82 

.,Vp< V, s· 
3 

. ' 

70 

(B. 108) 

(B. 109) 

. For a water or oil filled steel pipe in the earth the. phase velqcity of 

these guided waves will probably be limited by the shear velocity of 

the earth material. 

In any of the problems that :may be solved by the procedure used 

here the limitations on the phase velocities may be determined by ex .. 

amination of the equations applying to that case. 
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