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PREFACE 

During the past few years Professor R . B . Deal and his 

students have been concerned with a theory of abstract summability 

methods . As a part of this approach, the present paper studies 

each class of summability methods as a class of operators on a 

space of sequences . As a consequence, the space of bounded 

sequences , the space of convergent sequences , the space of 

sequences convergent to zero and their conjugate spaces are 

investigated in detail. Several theorems concerning characterization 

of some classes of summability methods and a few theorems on 

decompositions are established from structural analysis of these 

spaces . 

My thanks are due to Professor R . B. Deal and 0 . H . Hamilton 

who served as my advisors during preparation of this paper and to 

Professor L . Wayne Johnson and O . ff. Hamilton for their sound 

counsel and kind interest given me in all matters pertaining to my 

work. 
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I 

INTRODUCTION 

This paper is primarily concerned with the general theory of 

summability methods ; in particular , with the analysis of structures 

in each class of summability methods from a functional analysis 

viewpoint . 

The summability methods generalize the notion of the usual limit 

process, which was explicitly defined by Cauchy, and may attach a 

limit to a divergent series . The use of divergent series goes back to 

Euler . In those days , they asked only for the "limit" of a given 

series . They believed that the limit must exist a priori . They also 

had some techniques available and obtained many useful results in 

analysis. On the other hand they were really perplexed when different 

techniques produced different values for the same series and when 

these useful techniques lead to many absurdities . In the last century 

with the revival of the rigorous approach, divergent series gradually 

disappeared from analysis until Cesaro gave a formal definition for 

the (C , 1) summability method in 1890. Once definitions were given, 

all the mysteries were gone , and the theory of summability was well 

founded as a part of analysis . With the development of functional 

analysis in the Lwow school, centered around Banach, a general theory 

of summability methods was approached as an application of functional 
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analysis. Among the contributions to this area , S . Mazur' s paper 

in 1930 [1 J is distinguished. A fairly comprehensive knowledge 

about the general theory of summability methods can be found in 

S . Mazur and W . Orlicz's paper in 1955 [z]. 
In part II, two theorems on summability operators are given 

2 

from which some of the important classical theorems follow directly 

as colloraries. One theorem proves that any summability operator 

is a continuous linear operator , and the other theorem establishes a 

necessary and sufficient condition for a continuous linear operator to 

belong to the class of conservative operators in terms of a bas is in 

the space of convergent sequences. These two theorems are used to 

characterize various classes of summability operators . 

Part Ill is algebraic in nature. The theorems here establish 

the fact that any conservative summability operator can be, in a sense, 

decomposed uniquely into a regular summability operator and a 

summability operator which sums all bounded sequences . For this 

purpose, inclusion relations among various classes of summability 

operators are established in the beginning . Since the class 7r of 

regular summability operators is not a subspace of the space y of 

all summability operators , it is necessary to consider the subspace 

of J which is spanned by Jr· This turns out to be the subspace, J z• 
of conservative operators which map the space of sequences converging 

to zero into itself. Also fortunately , Jz n Jb turn out to be the 

class , 3'0 of operators which map all bounded sequence into sequences 

converging to zero . Now a decomposition of the conservative operators , 

Jc. has the form 
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(T;-

l/ Jz; Cr J c/ (7;- @ = Jo .Jo Jo 

= :lo/ f7?" 

r;-, 

@ J al 3 EB JA, Jo 0 

where X - { 6 A ; OE R ) for some fixed regular summability 

(i;
operator A . :J b' is the class of operators which take bounded 

sequences into convergent sequences , and 7& is the class of 

operators which take convergent sequences into sequences conver ging 

to zero, 

In part IV, a well - known representation of a continuous linear 

functional on C of the form , 

f (;) = (a. -
0 

; a. .) lim ;i + I: a..;i , where E la.- I <( 00 , [3] , 
i =l 1 i ~ oo i= O 1 i=O 1 

i.s generalized to a continuous linear functional on B . First, a 

representation of B* is established in an integral form with respect 

to a finitely additive set function on all subsets of the positive integers , I. 

A Banach limit, as a o:mtinuous linear functional on B , is completely 

characterized in terms of the corresponding set function , which can be 

considered as a probability function on all subsets of I . Then with 

respect to a fixed Banach limit L . a decomposition of B* is given as 

follows: 

B* = S @ @ GI { 6 L ; 6 E R } , 

where S is the subspace of functionals having a representation 

f(;) = 
00 • 00 

E ci.;1 with E I a.. I 
i=l l i=l l < oo and @ is the subspace whose 
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functionals vanish on the subspace of convergent sequences C . 

This decomposition theorem parallels the decomposition theorem 

given in part Ill. 

In part V, four different characterizations of the class ~ are 

given and their equivalence is established. The first characterization 

is a direct application of the decomposition theorem in part IV, which 

in turn gives natural c onditions on the matrix, (a. .. ) of an operator 
lJ 

T e %· The operator is characterized by the following conditions 

on (a. .. ) : 
lJ 

1. 

z. 

00 

I: ja. .. j ( M , 
i=l lJ 

i = 1, z, ... 

lim I: a... exists for all subsets E of I . 
i ~ oo jeE lJ 

It is also interesting that the above conditions are equivalent to the 

following conditions given by Schur [ 4] , 

1. lim 
i --, 00 

00 

a. .. exists for j = 1, Z, ..• 
lJ 

2 . 2:: ja. .. j converges uniformly with respect to i. 
j =l lJ 



II 

DEFINITIONS AND FUNDAMENTAL THEOREMS 

1 2 3 l · i ~ or rn ' s ' t ' ... ) or s1 J 

A bounded sequence of real numbers . 

B The set of bounded sequences of real numbers with the following 

operations and the norm, 

<1) s + " =lei+ ../} e. -v E B 

(2) o. ~ =la. si } g E B and a. is any real number 

<3> II s 11 = sµp Is i I 
1 

Then B is a complete norm d vector space . 

C The set of convergent sequences with same operations and the 

same norm as B . Then C is also complete normed vector space 

and a subspace of B . 

Z The set of' sequence,; converging to zero. Z is a subspace of C . 

R The field of real numbers . 

Summability transformation: 

A linear transformation T which is given by a matrix. (a.ij) , or, 

00 • 

T{€) = t t. (s) } , where t.(e) = I: (1 •• SJ ; (i=l, 2, . •. ) which 
1 . l j=l 1J . 

transforms a manifold of B into a manifold of B . 
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Swnmability operator : 

A summability transformation which maps a subspace of B into 

itself. 

J The class of all summability operators on B . 

Jb A class of summability operators on B to C. 

~ A class of summability operators on C to C. If an operator 

T e ::J;_, then Tis called a conservative summability operator. 

::J;. A subclass of Jc whose members map Z to Z . 

.5;, A class of summability operators which map B to Z . 

Jr A class of summability operators which preserves limits . If 

an operator T E Jr• then T is called a regular summability 

operator. 

In the space C , a linear functional t ( s) = lim Si is continuous . 
i ~ oo 

The subspace Z of C is the null space of the linear functional t(s). 

Let e be a vector in C such that ei = 1 for all i. Since t (e ) = 1, e 
0 0 0 0 
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does not belong to Z , and C can be decomposed into a direct sum of two 

subspace 

C = { a. e 0 } @ Z a. E R (2 . 1) 

Let ek = o ~ , (k = 1, 2 , 3, ... ) . Then the set of vectors { ek }forms 

a basis for Z . 

For, ifs E Z , then lim ~i = 0 and consequently 
i -=,oo 

that is , 

n . 
lim II s - 1: s1 e.11 = O; 
n 7 00 i=l l 

00 i s = 1: s e. 
. 1 1 1= 

( 2 . 2) 



Therefore any vector s in C has a representation of the form 

Sinc e 

and 

0 OO i s = a. e + l:: a. e . . 
0 . 1 1 

1= 

0 0 i O i 
t(s) = a. t (e ) = a. and s = a. + a. 

0 

o 1· ei -- eO a. = 1m <.:, '.::, 

i ~ oo 

s = s0 e + 
0 

00 • 

l:: (s1 - s0 )e. 
i=l l 

The representation ( 2 . 3) is unique and the set of vectors 

f ek; k = 0 , 1, 2 , · · • } forms a bas is for C . 

(2 . 3) 

Lemma 1. Any linear functional of the form f(;) 
00 • 

= l:: a..;1 defined 
i =l l 

on Z is continuous and II fjj 
00 

= l:: I a.. j . Consequently f(;) can be 
i=l l 

7 

00 

extended to the space B without changing the representation f( s) = l:: a..5 .. 
i=l 1 1 

Proof: 

Consider a sequence of continuous linear functionals 

f <s> = n 

n . 
l:: a..;1 ; n = 1, 2 , 3, .... 

i=l l 

Since f(s) is defined on Z , 

00 • 

£ <s> n 

converges for all s E z and lim f (s) = l:: a..;1 • That is . the 
n ~ oo n i=l 1 

sequence 

functional 

Let 

f converges weakly to f , and f is a continuous linear n 

[ s] . 
for i = 1, 2, ..• n 

= 0 for i / n . 



then £(;) = 

Since 

n 
l: la- I . 1 l 

1= 

and 

Taking the limit with respect ton; 

On the other hand, 

Letting II s II ~ 1, 

00 

Consequently 11 f 11 = ~ I Cl .1 . 
i=l l 

00 • 

for all n . 

(2 . 4) 

Define f by f (s) = ~ a..s1 for all s E B, then f coincides with f 
i=l l 

and it is a continuous extension off to B , Obviously II f II = II f II 
because the derivation of ( 2 . 4) is valid with s in B . This completes 

the proof. 

If £(~) is a continuous linear function on C and s is given by the 

representation (3. 3), then 

00 • 

f ( ;) = s0 £(e ) + £(~ (; 1 - ; 0 ) e.) 
0 i=l l 

00 • 

= ; 0 f (e ) + ~ f(e. )( ; 1 - ; 0 ) . 
0 i=l l 

(2 . 5) 
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00 

From the lemma 1, ~ j f(ei) I < 00 • The formula (2 . 5) can be written 
i=l 



[ oo Jo oo i 
f(~) = f(e 0 ) - i:_f(e.) s + L f(e.}£ 

. 1 l • 1 l l= 1= 

00 • 
· 0 1 = a. ~ + L a..t . 

0 i=l 1 

00 

where a. = f(e ) - L f(e.), 
0 0 . 1 l 

1= 

a.. = f(e.). 
1 l 

It is easily seen that 11£11 
00 

~ z: 1~·1· . 0 1 1= 

Since oo. I a.. I exists, given e ) 0, there exists an N such that 
i=l l 

co 
L ja..j < e. 

i=N+l 1 

Define a vector ~ such that Gi = sgn a1 for l ~ i ~ N 

= sgn a. for i ""7 N, 
0 

then 

Since e is arbitrary 

hence 

00 

sgn a. B a.. 
o . N 1 i 

1= + 

co 
- E ~ 2 Jo.. j - 2 I! • 

. 0 1 
1= 

(2. 6) 

Theorem 1. Any summability operator T with matrix (a. .. ) whose 
lJ 

domain is a subspace of Bis continuous and 

00 

II T IJ = s~p E I a·· 1 · 
l j=l lJ 
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Proof: 

Since each t. (s) is a linear functional defined on Z , it is 
1 

continuous and II ti II = 
00 

:2:: la. .. 1 by lemma 1. 
j =l lJ 

T (s) E B implies 

the sequence i l\<s> I} is a bounded sequence for each s E z. By 

the resonance theorem [ 6] , the sequence of the norms {II ti II ) is 

a bounded sequence. Let M be a bound for this sequence. 

For II S II ~ 1, II T (s) II = 8 fP lti(;) I ~ SfP lltJ < M . 

II T II = sup II T(s) II ~ sip II ti II < M. 

11 sll ~1 

10 

Therefore T is a continuous s u m mability transformation. For E / 0 , 

there exists an N and s e Z such that 

l1N(s)l / S~p lltJ - E, where llsll ~ 1 
1 

II T II ~ I 1N<s) I / sip lltJ - E. 

S ince e is arbitrary 

hence 

Theorem 2. Any summability operator given by T (s) = t ti (s) } = 

{ E a. .. ti i, on B into B , belongs to the class <7"j-' if and only if the 
j : l lJ ) J C 

sequence { ti(s) J converges for each vector ek in the basis for C. 

The limit function t {s) = lim t. (s) is a continuous linear functional 
i -:,a.-1 

and is given by 



where 

and 

Proof: 

00 • 

lim t.(~) = 
. 1 

6 l:o 
0~ + l: 63.(;J - i 0 ), 

j=l l ~ OO 

00 

6 = lim t. ( e ) = lim ~ a. .. 
0 i.,7«> l O j,7cO j=l lJ 

= lim t.(e.) = 
i ~oo 1 J 

lim o .. . 
. ____,. lJ 
1 ---"T 00 
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Since the operator T is on B into B , T is a continuous operator 

by Theorem 1. Consequently e ch ti(t) is a continuous linear 

functional . 

Suppose T E ~. The sequence { ti(G) J of continuous linear 

functionals converges for all e in C . That is, { tJ .. converges we kly 

to t . But { ti } converges weakly if and only if {ti ~ converges on an 

everywhere dense set in C [ s] . The set of finite linear combinations 

of base vectors is everywhere dense in C . Therefore weak convergence 

of a sequence ~ \ J is eq ·val nt to the convergence of t\<~> r for 

each base vector, and the limit function t is a continuous linear 

functional on C . 

Since t is a c ontinuous linear functional on C, t has a representation 

of the form given by (2. 6) . Th ti 

= 6 e;O 
o'=» + 

Fors= ek' t (ek) = lim t. (e k) = lim a..k = 6k. 
i -tOG l i -too 1 

00 
Fore= e , t(e ) = lim t.(e ) = ·lim l: a. . . = 6 o · 0 0 i,-,<o 1 0 i"t°'j=l 1J 



Coieollary l. (Kojirna-Schu.r) An operator given by T(;) = 

conditions are sati111fied. 

(1) 

(3} 
\G-C 

lim I: a .. exiwts. 
i-,ni, j =l !.J 

II T II 

('"' 

such that :ill au I < .M, By 
J~ ,Y 

12 

the conditicm {l) Tis a contim10us operator on B. Condition2i 

(2) and (3) imply the conve:rg(;!nca of {t}~,)} fiox e;::i.ch base vector. 

Ily Theorem 2, T 1,; X 

conditions are satisfied. 



(1) 

(2) 

00 

~ 1a .. 1 < M 
j=l lJ 

lim Q. •• = 0 
i "700 lJ 

co 

for i = l, 2, ... 

(3) lim 
i700 

;EQ. •• =1 
j=l lJ 

Proof: 

C °t and for T E (7/" , o = 1 and cL = 0. 
Jc Jr o J , 

Therefore 

conditions (1), (2), and (3) are satisfied. If conditions (1), (2), and 

(3) are satisfied, T e Jc and 

t{s) = s 0 = lim e,i 
i~oo 

Hence T is a regular operator. 

Corollary 3. An operator given by T(;) = {t.(g) ', = ~ ; a .. ~j} 
l J l j=l lJ 

belongs to .J;, if and only if the following conditions are satisfied. 

(1) 

(2) 

(3) 

Proof: 

00 

~ la,.j < M 
j=l lJ 

lim a. .. = 0 
i~co lJ 

00 

lim ~ a.. exists. 
i~oo j=l lJ 

Since :J;. C Jc, T E .::J;, implies that conditions (1) and (3) 

are satisfied. The mapping of Z into Z implies condition (2). 

Conversely, if' conditions (1), (2), (3) are satisfied, T e ::J;. 
Moreover the condition (Z) implies T is a mapping of Z into Z, 

(7';
Consequently T belongs to 0z· 

13 



Ill 

SOME DECOMPOSITION THEOREMS 

Consider the set ::J"of all su.mmability operators on B. 

00 

and ~ I a. .. j < M( T}, i = l, 2, 3, ... 
j=l lJ 

If one defines an addition operation and a scalar multiplication as 

follows: 

where 

and 

00 

T(~) + T 1
(;) = ;r.; (a .. + o.! .)~j 

. . lJ lJ l=J 

00 • 

C Tm) = ;r.; (ca. .. )~J 
j=l lJ 

T(s) = 
00 • 

::E a. .. sJ 
j=l lJ 

co . 
I: a, .. fJ 

j=l lJ 

(i = 1, 2, 3, .•• ) 

(i = 1, 2, 3, ... ) 

then O" becomes a vector space. Now, some classes of transformation 

are distinguished from ::f"and are characterized in the following table. 

Class of Transformation Jc Jr Jb Jz Je ~ 
5.=limo. .. {j . o. = 0 {5. o.= o cL = 0 o. = 0 

J i700 lJ J J J J J J 

00 

0 = um 2: a, •• 0 0 = l o =fuo. 6 6 = 0 0 = 0 
i ""7 00 j=l lJ J= J 

I Subspace Mapping c-,c G~C ! B~G c"7'c 
C7Z B-)Z 

. Relations z~z 

14 



(3) 

GD 

h-1 &ll eases l".: le .. i <. M. 
j~A iJ 

re,1uired. 

For Jr, lim ti(f) :all lim !;i. 
i -,) <:):) . i-"> ~ 

For any classes e:Ic.spt ~ fa rcbc above list, it ia easily seen that 

they form su.ospacefi: tiii tlle space of Gunu11a.bilify op~rators. lt is 

iutieL.·e::;rting to notic~ that n\f.:J d~sz "t forms a Ct>.~vex set in er, \Jr ..__;3 

(a.em.ally ~ flat ot~ come~; of ~ irra Jc>. evGF:&. t~·M)tJ!gli Sr is not a 

embspace.. Ii.: .fo well ~ow~ tl'l2l.t ::J:o n ~ ::'-: {) (nwl SGt) [1] • 

and @bvio':2.Sly .JG n h ::;; '}'• 



Lemma 2. 

Proof: 

If T E r:}b (\ ::Jz, then ~ = 0. 

Moreover, it is well known that T E G" b implies that 

lim t (e:) = n <,:, 

11.--to.o 

Therefore 

00 . 
~ ,e,l 

:E O ·S . 
. l 1 1= 

Hence !Jo. 
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Converseiy if T ~ :::;-0 , T(B) C Z. Hence T(C) C Z and T E <.?};,. 

Also T(B} C z implies T I! Jb· Thus Jo C 5o n c:;;. 

Theorem 3. 

Proof: 

Let T(s) = { tl.(;>} = ) f a.. ·Sj } for T E ~c· 
L j=l lJ 

Since ; 1Q. .. j < M, 
j=l lJ 

Taking the limit with respect to i yields 

Then 

Now 

00 I I E 5. 
j=l J 

00 j 
!: Q.. -~ 

j=l lJ 

co 
= ;z; (a .. 

j=l lJ 

for all n. 

fo:r all n. 



Therefore Tis a sum of two summability operators, one from 

~ and the other from ~-

Now to show the uniqueness of the decomposition suppose 

{ ti<s>J has another decomposition of the same form, 

where { ; 13. -~j ~ ~ ~ 
j=l lJ ) z 

Then 

or 

Since 

and 

; (a. •. - o.)~j 
j:::l :i.J J 

00 

E (a. .. - o.);j 
j=l lJ J 

00 • 00 • 

E 13 • • ~ J + :I.: 'V • • ;J 
j=l lJ j=l lj 

00 • 

:I; -y •• §J 
j:::l lJ 

00 • 

:E o.gJ. 
j=l j 

00 • 00 • CTj 
I; (a.. . - 6 . ) ~J - E f3 .• ~J , J ., 

j=l lJ J j=l lJ z 

17 

they belong to Jo = ~ n J;, By taking the coset decomposition 

one obtains a direct sum decomposition 

= 
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Now consider a decomposition of ':J"z. Let Tz E ~ and A be any 

regular summability operator, then if o /. 0 

T z = o (1/ -0 T z - A) + o A 

= T0 + oA, where Te= 6(1/6 Tz -A)IE c:Js (3.1) 

If o = 0, then Tz e 5'0 and the equation (3.1) is still true with 

T 0 = T z and o = o. 

Now suppose T has anothe:i.· decomposition of the form z . 

Then 

and 

Since Ta - Te e V'a, (o 1 - o)A e Ve, which implies o = o I and 

consequently T 0 = T0. Therefore the decomposition given by (3.1} is 

unique. The above argument gives the following direct sum decomposition. 

3. = !le 9 { 6 A; o e R } 

To consider the decomposition with respect to ~ first notice that 

~C~· 
If ~ = { oA; o e R + ~ ~ the cos et decomposition of c:J;. 

with respect to ':J"o is given by 

~- (3. 2) 

Combining (3. 2) with Theorem 3, yields the following theorem: 

Theorem 4. ':J'c can be decomposed into a direct sum of the form 

~-



IV 

STRUCTURE OF B* 

Let I be the set of all positive integers and l; be the family 

of all subsets of I . For each set E E ~ , let eE e B be defined 

as follows: 

e E = { e~ ~ where 
i 

eE = 1 if i e E (4. 1) 

i I eE = O if i E . 

That is , eE is the characteristic function of E . Consider the linear 

manifold D generated by { eE IE e ~ J, that is , s e D if and only if 

k 
~ = l; a..eE , where a.. E R and E. , l; . It is asserted that the 

. 1 1 . 1 1 
1= 1 

linear manifold Dis everywhere dense in the Banach space B . To see 

this , take any vector g in B . Since ~ is bounded, there exists an M 

such that I ti I <.. M for i = l , Z, 3 , ..• 

Let E<: = { ij - M + r: M 4 gi < -M+ m;l M } , 

m = O, l , Z, .•• Zn-1 and define a sequence l s (n) ] of vectors in D as 

follows 

n = 1, Z, 3, ••. (4. Z) 

For any vector g in B , define 

if i E E 

= 0 if i I E , 

19 . 



then 
2,n-1 

:E 
m=O 

using (4. 2} a11d (4. 3) yields 

and 

hence 

Zn-1 

S - ~(n) = k 
m=O 

m 
(- - l)M e"'C"(n) n b 

< M 
n' 

rn 

20 

(4. 3) 

The:i.:'efore, any vectm." € in B i£E the limit o:f a sequence from D. 

This proves: 

Lemma 3. In the space B, the linear manifold D is everywhere dense. 

Let f be a continuous linear. functional on B and ~ be the limit of 

a sequence G(n) from D. Since f(s) is continuous 

f(s) = lim f{t( )) 
n~CIO n 

As a matter of fact, one can use any sequence t~(n)} which converges 

to s. Therefore, one can use some specific sequence in D. Suppose 

the sequence defined in ( 4. 2) is used. Then 

2n-l 
= Z:: ( ~ - l)M f(e.~(n)) 

n l!. 
m=O rn 

Zn-1 
..,,., ( m l)"i· (=(n)) = L.J -- .i.Hµ.t.; ' 

0 n rn m=. 

an.d hence 
zn ... 1 

f(;) = lim ~ ( E2. - l)M 1-~(E(n)). 
:n n1 

n~oo m=O 
(4. 5) 
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Therefore µ is a finitely additive set function defined on the field of 

s1.1-bsets :;f; • Now f(t) can be written in the integral form 

t<s) = S sd~., 
where 5s d j.J. is a compact notation for (4. 5) and µ is a finitely 

additive set fllllction. 

(4. 6) 

For every set E, the total variation of µ on E is given by the 

definition 

then 

n 
?}':JE) = sup l; j 1.1{E.} I, where E. are disjoint subsets of E. 

p. i=l l l 

If for any disjoint sets E1, E 2, · . •, En, a vector ~ is defined by 

n 
-~ = .l: sgn f(eE_)eE .• 

1=1 1 1 

n 
f(s) = sgn µ(E.) µ (E.) = E I µ.(.E.) 1. 

l . 1 . l 1 
1= 

n 

and 11 e 11 = 1. 

Hence 2:: I µ(E.) I ~ II f II for all disjoint sets E .. i = 1, ..• n. 
• l 1 lJ 1= 

Thus l{:(E) ~ 11£11 for all Ee 1::. (4. 7) 

The inequality 11£ jj ~ '2J;:.( 1) is proved as follows. 

Given e / O, there exists ~ E D such that 

and II~ II ~ 1· (4.8) 

Now s has a represen~tion of the form 

n n 
; = I: a..eE , where !a.1. j ~ 1, fE1.} are disjoint and l) E. = 1 . 

. l l . . l 1 
1= 1 1= 
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Therefore (4 . 8) becomes 

n n 
llfll < I: <1 . µ(E.) + E ~ I: lµ(E.) I + E ~ Z!l I)+ ~. 

i =l l l · i=l l µ 

and since e is arbitrary 

llfll ~ liµ(I) , (4 . 9) 

so that (4 . 7) and (4 . 9) g ive 

llfll = 'Zr.(I) . 
µ 

That is , µ is a bounded set function and the total variation ofµ on I 

is equal to the norm of the continuous linear functional f . 

Conversely , ifµ is a bounded finitely additive set function on I: , 

then j s d µ can be defined as follows and is a continuous linear 

functional on B . 

If Se D, ands = ~ a.eE , define Js dµ = ~ a..µ (E.), 
·11 . ·11 l 1= 1 1= 

If llsll ~ 1, la.ii ~ 1 for i = 1, 2 , •. . , n , and 

n n 
I Jsdµ.j ~ I: 1<1.1 jµ(E.>I ~ I: lµ.<E·>I ~ Zf1 1) 

·1 1 l ·1 l µ 1= 1= 

Obviously ; d µ. is a bounded linear functional on D . Therefore it 

is a continuous linear functional on D . Since TI = B , it follows from 

the Hahn - Banch extension theorem that J s dµ can be extended to the 

whole space B with preservation of the norm and this extension is 

unique [9], Therefore , (4 . 5) gives a representation for continuous 

linear functionals on B . This proves the following representation 

theorem : 
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Theorem 5. Any continuous linear fonctional frn) on B has a unique 

representation of the form J ~ d fJ.., where µ is a bounded finitely 

additive set function on I: and f(eE) = µ(E) for all E e l: . Conversely, 

any finitely additive bounded set function on ~ defines uniquely a 

continuous linear functional J ~ d µ. 

A Ba~1.ach limit Lim t; is a linear functional on B which has the 

following properties 

(1) Lim t = lfo.'l t 11. 
n-+eo 

(2} lim sn ~ Lin'l ~ ~ lim ~n. 
~~~ ~~~ 

From the condition (1} 

Lim e = l, 
0 

Lim eE = 0, 

and from (2) 

if E is a finite set, 

for all E. 

Therefore the bounded finitely additive set function on :E corresponding 

to the Banach limit has the following corresponding properties. 

{l) µ{I) = 1. 

(2) µ(E) = O, 

( 3) 0 ~ µ( E) ~ l 

if E is finite; ( 4.10) 

for all E. 

Conversely. suppose a finitely additive Set functionµ has the 
' 

propGrties {4.10), and let f(~) be the continuous linear functional 

defined byµ.. If~ e C, then f(s) = s~ d !.L = ~0 , where § 0 = ~im ~i. 
1~00 

Let$ E Band i 0 = lim gi, ~o = lim ~i. Define three sequences 
i -,. oO - r:;;-00 



if si ) -o i - si so si = so, si o, s , thens - - , = u V w 

si < .10, i si = so, si = si _ so if thens = 0, and 
u V - w -

if 10 ~ si ' so, i 5i = si, gi - 0 then s = 0, u V w - . 

From this definition 

Now f(s} = f(; } + f (s } + f (s } = f(s } • 
U V W V 

For Sy, one can obtain a sequence i s (n} J 

as in (4 . 2) , by taking 

in D converging to s , 
V 

E <: = ti I s O + r: ( s O - so> ~ s~ < i O + rr; 1 { ; 0 - i 0) ) 

m = 0 , 1, 2, ..• , n-1 

n-1 
and S(n) = I; [(1 - ~) SO + ~ ;OJ e(n) • 

m =O n - . n m 

n-1 { 
Here , l; E (n} = I and E (n) m O 1 l J a e tuall m m • = • ; · · · n - r mu y 

m =O 

disjoint. 

He nce , 
n-1 

f (s ) = l; [ (1 .. ~} s0 + ~ s O ] 11 ( E (n}) , 
~) n - n r m 

m =O · 

Since 1 and µ (E (n) ) ~ 0 
m 
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Taking the limit as n ~ oo, 

That is , f{s) defined byµ and satisfying {4 . 10) is a Banach limit . 

This proves the following theorem . 

Theorem 6 . A continuous linear functional J s d µ defined by a 

finitely additive set £unction µ on ~ is a Banach limit if and only if 

µ. has the following properties: 

(1) µ(I) = 1, 

(2) µ{E) = O, 

(3) µ (E) ~ 0. 

if E is a finite set, 

Suppose µ is a bowided completely additive set function on :I; • 

Then once µ is defined at each point of I , µ is defined on ~ . 
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Let µ{ i ) = a. , 
l 

then µ.(E) = { 4 . 11) 

Fr om the definition of ~ ( I) , 

co 
V,(I) ~ ~ la., I 

µ i =l l 

00 

Consequently 'V,';( I) 
µ = :I; la..1 . 

i:::l l 
( 4.12) 

00 • 00 

Consider a linear functional f(s) = ~a. s1. then I f(s) I ~ II s II ~ I a..1 . 
i=l l i =l l 

00 

Therefore f ( s) is continuous , and it is easy to see II f II = ~ I a.. j . 
i=l l 
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00 • 

Now f ( eE) = I: a. . and the set function defined by £( s) = I: a.. s 1 

. E 1 . 1 1 lE 1: 

coincides withµ. given by (4 . 11). 

This proves the following theorem : 

Theorem 7. A continuous linear functional f(s) = J s d µ. has a series 

00 • 

representation I: a..51 if and only if the bounded finitely additive s et 
i =l l 

00 
function, µ , is completely additive, where f (e.) = a.. and II f II = I: I a. j . 

1 1 . l 1 
1= 

Consider now ad compos i tion of a continuous linear functional f(s) . 

n co 
Let f(e.) = a . . Since I: ja.. I , llfll , it follows that I: ja.. j ~ llfll -

1 1 ·1 1 ·1 1 

Then 

1= 1= 

00 • 

f(s) = I: a..51 is a continuous linear functional and 
i=l l 

Lis) = f(s) - Sf(s) is also a continuous linear functional . By Theorem 5 

let Lf(s) be represented by J s d µ. , where µ. is a bounded finitely additive 

set function. From the definitions of Lf, Sf' and J s d µ., it follows that 

the value of µ on all finite sets is zero . 

Now 

where 
00 

I: I f(e.) I ~ II f II and Lf(eE) = 0 on any finite set E . 
. 1 1 
1= 

Suppose 
00 · 00 

f(s) = Lf(s) + I: a. ! e where I: I a.! l exists and 
i =l l i=l l 

LieE) = 0 on any finite set E . 

Then 
00 • 

I: f(e.)51 • 
i=l l 



For g = e., ! = f(e.) = o.., b nee L'1s) = L1t) for all c B . 
1 l l 1 f' f' 

Since B• i a normed vector pace 

For any ~III = 1, con ider !1 = Tli such that Tli = s 

Since J TtJI = 1, 
n 

Utlf ~ f('ll) - f LJ~>f + . l;le1d + En. 
1=1 

Since e and n are arbitrary and lim E = o, 
n 

n -100 

00 

11£11 ? II Lf ti + i:i lo.i, . 

· her fore 11£1f = ~Lfl + flsfjj . 

Thi · give& L'ie following eorem. 

o.., i ~ n 
l 

Theorem .8 . Any continuous linear functional on B ha a unique 

00 

expres ion of the form f(g) = Lf(t) + l; a.~1, wh re Li(e ) = 0 
i=l l 
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~ ~ 

for a finite et E and l: fo.. f < oo . Moreover Ifill= IJLf~ + I: !o..J . . 1 1 . 1 1 1= 1= 



Theorem 9 . The set S of continuous linear functionals of the form 

£rn> = 
00 • 

1 
I: o..t ' . 1 1 

1= 

forms a subspace of B* . 

Proof : 

00 

2: Io. -I < 00, 
i=l l 
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Let 
00 • 00 

£.{;) = 2:0. .. eJ , I: la. .. 1 < oo be a Cauchy sequence in B*. 
1 j =l lJ j =l lJ 

Then, given E ) 0 , there exists an N such that for rn , n > N 

or 
00 

z:la. . -a., < E 
j =l mJ nJ 

Taking p a rtial sum , 

• I: Io. · - o. -I <. E , for arbi trary k 
j =l mJ nJ 

Letting n ~ oo and putting lim a. . = o ., (which always exists) , yields 
n ~ oo nJ J 

k 
I: I C1 • - o. j < E , for all k. 

j =l mJ J 

Since k is arbitrary, ; I a. . - o . j <. e: • and 
j =l IDJ J 

; I O • 1 = E I <l • .. 03· - a.mJ· 1 ~ ~ Io. · - 0 · 1 + ~Ia ·I < ; I a. · 1 + E , 
j=l J j =l mJ j =l mJ J j =l mJ j =l mJ 

or ~ Io -I .. E < ~ la. -1 , for m > N . 
j =l J j=l mJ 
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00 

Also 
00 00 00 

Eja -I ~ Ela . -o.j+ Ejo.j < e+ 
j =l mJ j=l mJ J · j =l J 

E I o. j , for all m > N . 
j =l J 

Then 
00 00 

lim I: I a . j ~ E I o. I. 
m -,oo j =l mJ j=l J 

Then it follows that 

00 00 00 

lim I: I a - I ~ I:jo.j ~ lim E I a -1 , 
m -too j =l mJ j =l J m "7oo j =l mJ 

00 00 

or lim I: Io. · 1 = I: I 0- I· (4 .13) 
m -1 00 j =l mJ j =l J 

Now define a continuous linear functional f(s) by 

(4 .14) 

Then 
00 

I: la . • o. j --7 o, as m ~00 
j =l mJ J 

Therefore the limit of a Cauchy sequenc e in S belongs to S . It is 

easily seen that S is a linear manifold, hence S is a subspace. 

Theorem 10 . The set K of all c ontinuous linear functionals L (s) such 

that L (eE) = 0 for all finite sets E forms a subspace and L (s) has a 

representation of the form 

where L is a fixed Banach limit and is a continuous linear function 
0 

such that 9 (;) = 0 for alls EC . 

Proof: 

The set of all L (;) obviously forms a linear manifold. Let (Li ) be 

a Cauchy sequence in this manifold K . From the completeness of B*, 
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lirn L. = L is a continuous linear functional, and lim L.(s) = L (;) for 
. 1 . 1 
l ~ OO 1-"> 00 

all s e B . In particular , if s = eE and E is finite, then Li(eE) = 0 . 

Therefore L (eE) = 1~m L.(eE) = 0 for all finite set E , that is, L belongs 
1-tao 1 

to the manifold K, which implies the manifold K is a subspace of B* , 

Consider a subset @ of K such that L {e 0 ) = 0 if L e @ . By 

the same argument as above, one can easily show that @ is a 

subspace of K . Let L E K and L / @ then L (e ) I O. 
0 

Now L (s) = L {e ) [ Ll ( ) L (s)] - L (e )L {s) + L (e )L (s) o e o o o o 0 . 

where L is a Banach limit. 
0 

Since 

L (s) = a. L (s) + 6 (s) , where a. = L {e ), 
0 0 0 0 

Theorem 9 and Theorem 10 give the following theorem . 

Theorem 11 . The space B* of all continuous linear functionals on B 

is the direct sum of three subspaces , { a. L 0 ; a. E R}, @ and S; 

B* = @ @ l a. L O ~ '9 S. 

0:r.e can show that the subspace @ is not a trivial one , that is, 

there exists a continuous linear functional 9 e @ and 9 I= 0 . 

To prove this , let s E B buts / C and consider a manifold given 
0 0 

by { a. s0 + Tl ; a. e R , Tl e C }. 

Define e (s0 ) = 1 and 0 (TJ) = 0 for all '11 e C , and 9(a. ; 0 + TJ) = a.. 

Then 9 is a linear functional on the manifold, and one needs only to 

show that 0 is continuous on the manifold, 



a.s + T) 
If <1 I O then I e ( 0 JI 

Ila.so+ rill 

1 
= = 

where 11' = f . Therefore 9 is continuous if infC II s0 + 1111 1 0 . 
11E 

Let 11 = 

or 

and 

d O 1· i an T'I = . 1m n • . , i -,.rt)·, Then by (3 . 3) , 

00 • 
e: e: 0 ( 1 0) 
, 0 + 11 = , + 11 e + I; 11 - 11 e. 

0 0 . 1 1 
1= 

i 1:i O i 0 
(so + 11) = ,0 + 11 + (11 - 11 ) 

Hence inf II so+ 11 II ~ 1/ 2 [ _lim s~ -_lim ;~] 
T}EC · 1 ~ 00 1 ~ 00 
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Actually the equality holds because for any E )> 0, there exi sts an N 

such that for all i 7 N , 

+ E . 

If for i ~ N , T)i = si , and for i / N , T} i = -1/2( lim gi + lim g i ), 
0 . 0 .--o 

1 -> oo 1 -) oo 

then i (; + 11) = 0 
0 

if i ~ N 

Sinc e e is arbitrary, 
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Therefore inf II s + fl II = 1/ 2( lim si - lim si) > 0 , from which o ,....,,. 00 o -. - o 
. 1, ,~~ 

2 
it follows that 1-. - el 1· ei 

1m ~ - 1m ~ 
{4 . 15) 

. 0 -- 0 
i -t«o i -,co 

By using the Hahn - Banach extension theorem Q can be extended to the 

whole space B with preservation of the norm, where the norm is given 

by {4 . 15) . 

Therefore 9 is a linear continuous func t i onal on B and, by 

d efinition 9 {s) = O for all s in C , whi ch proves 0 E: @ and 9 i O. 

In connection with Theorem 11, the following theorem gives some 

more information about the structure of the space B and its conjugate 

* space B . 

Theorem 12 . z* ..... s = 
'~ - B, s C 

* * * @ EB fooLo) - * Cons eq uen tl y , B = e s z • 

Proof : 

* If f E Z , then since Z is a subspace of B , f can be extended 

continuously to the whole space B and f has the form 

f{g) = 0 {s) + (l L (s) + ; <1.5i where 9 E: 'H' and ; la., I < oo . 
0 0 i=l 1 le) i=l 1 

00 • 

Since (0 + o L )(;) = 0 for s e z , f has the form f (s) = 1:: a. . ; 1 for all 
0 0 i =l 1 

00 

s E Z, and i=i I a1 I < oo . Therefore f e s . Conversely if f e S, 

that is , if 
00 • 00 

f{s) = 1:: o .;1 and 1:: la., I <. oo , 
i=l l i=l l 

then 



* and f{s) is continuous on z, which proves z = s. 
~ 

Since S is a subspace of B , any s in B can be considered as a 
00 • 

continuous linear functional on s by f (s) = s (f) = l:: a..51 

i=l l 

In the space S , define i (e.) = 6 ~ ; j = 1, 2, 3 , ... , then it is 
J J 

easily seen that 1 cri} forms a basis and any f can be represented in 

the form 

00 • n . 
f = 

l l:: a.. (J" 

. 1 l 1= 

and 11£ - l:: a..cr1 jj ---+ 0 as n --+ oo. 
i=l l 

Now let s be any continuous linear functional in S, then 

00 • 

s {f) = s{ l:: a..cr1) = lim 
. 1 l 
1= n ~ oo 

n . 
s( l:: a. .cr1) = lim 

. 1 l 
1= n ~ oo 

n . 
l:: a..5(cr1) 
i::l l 

therefore l g i}={s (cri) } is a bounded sequence and 

s<£> = 

That is , any continuous linear functional on S can be considered as 

* an element in B . Therefore, B ;- S , 

Now by substitution, 

* @ B = H 
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V 

OPERA TORS IN B 

Let T be an operator on Band T({;) = (s_H;), t 2(s),,,, )= fti(~)J, 

where T(t + 11) = T(I;) + T{ri) = fti(g)~+ fti(11)} ={ti(~+ 11}} 

hence t.((; + 'i']) = t.(;) + t.(~1), 
l l 1 

Also T(o.~) = a T(t) implies t.(a.~) = a.t.(s). Therefore, T 
l l 

induces a sequence of linear functionals on B. If T is a summability 

operator on B, T is always continuous and the norm is given by 

Theorem 1. 

Theorem l serves to give a one to one correspondence between 

the summability operators on .B and the sequences of continuous 

linear functionals on B. If T is not a summability operator, one 

needs to restrict T to be a continuous operator in order to obtain a 

sixnilar theorem. 

Theorem 13. Necessary and sufficient conditions for an operator 

T(s) = l ti(~)~ to be a continuous operator on Bare 

(1) 

(2) 

Proof: 

t.((;) is a continuous linear functional on B, i == l, 2, 3, .... 
l 

II tJ < M for all i = 1, 2, .••. 

Let T be a continuouo ope1·ator, Then 
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so 

or 

II T II = sup II TH;) I! = 
11 tll =1 

sup [supj ti HD I J, 
II(; II =1 

for all II ~ ii = 1, 

for all II~ II = l, 
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{ 5. 1) 

hence foralli. {5.2) 

That is, each t.(;) is a continuous linear functional and the sequence 
l 

of norms ll! ti II} is uniformly bounded. 

Conversely if T(t) = { ti(~)) iG an operator on Band the sequence 

l \J satisfies conditions {1) and (2) of the theore1:xl, II ti II exists for 

each i and II ti II < M for all i. Then 

Then, 

or 

j ti(;) I < M for all i and alls such that II s II = 1. 

s~p I\<£) I ~ M for all II £ II = 1, 
l 

II T II = sup II T((;) II = 

II t 11=1 

sup [s:rpltirn) I J ~ .M, .•• 

II t II =1 1 

and T is a continuous operator. 

( 5. 3) 

From (5. 2), SlfP II tJ ~ II T II and from (5. 3), one can obtain 
l 

Remark 1: 

In Theorem 13, operators are defined on B, but no use is made 

of the fact that the domain of an operator is B. All that is required 

in the above theorem is that the domain of an operator is a subspace 

oi B. Therefore, 11 a continuous operator on B' can be 1·eplaced by 

11 a contin.uous linear iransfornl&tion on a subspace of B into B, 11 and 

Theorem 13 is still valid. But such generality is not usually required. 



The linear functionals ti(t) for an operator T are usually given by 

a matrix. In that case, Theorem 1 becomes very effective. 

Now consider a Cauchy sequence ftJ in the subspace S of B*, 

given by 
~ . * 

t.(s) = L, a. ·SJ. Since s is a subspace of B ' 
l j=l lJ 

t = li:m t. e S 
l 

i"? 00 

and lim II t. -t II = 0 
. 1 

Putting 

l~oo 

o. = lim a. .. , t has a rernesenta.tion of the form 
J lJ 

trn) = 00 j 
z; 0 .~ • 
j=l J 

( 5. 5) 

Since 
00 

i; I oj I <( co, given e /' 0, there exists an N such that 
j=l 

00 

I: j 5, I ,( e/2 
j=N J 

From (S. 5), given !.t ) 0, there exists an N1 7 N such that s > N1 

implies 

and so 

00 

::Ela..-0.1 <(:Jz, 
j:l SJ Ji 

00 

!: I a. . - o .1 < f/2. SJ •. 
j=N J 
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Hence, 
ao oo oe ·. 

· ~ I a. • j ~ Z I a . - 5 . j + I: I o. I < e, for s > N 1• 
j=N SJ j=N BJ J j=N J 

Since the set { s j s ~ N1} is finite, given e ~ 0 there exists a 

positive integer N 2 / N 1 such that 

00 

;t jo..j<:e 
'-N•· SJ J-,. 2 

:for s = 1, 2, ... N1. 



Now 

That is , 

00 

I: ja. . j < E for s = 1, 2 , 3, .. . , 
·- N SJ J- 2 

00 

I: ja. . j converges uniformly with respect to s . 
j =l SJ 

Conversely, suppose lim a. . = o. exists for each j and 
S~ oo SJ J 

; ja. . j converges uniformly with respect to s . Since ; ja. . j 
j : l SJ j : l SJ 

converges uniformly , given E / 0, there exists an N such that 

~ I a. . j < E for all s . Since{a. 6 J. j s = 1, 2 , 3, . , , ) is a Cauchy 
j =N+l SJ 

sequence , given E 7 0, there exists N1 such that for p , q > N1, 

la.pj - a.qj I< ~, j =l , 2 , 3 , .. , N , 
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Then 
oo N oo co 
2:: I a. · - a. -I ~ 2:: I a. · - 0 - I + 2:: I a. - I + 2:: I a. -I < 3e 

j =l PJ qJ j : l PJ qJ j =N+ 1 PJ j =N+ 1 qJ 

for p , q )' N1. 

Since 
00 

II tp - tq II = I: I a. . - a. . j < 3 E for P, q > N • 
j =l PJ J 

* Cauchy sequence in B . 

This proves the following theorem: 

t. is a 
1 

Theorem 14 , Necessary and sufficient conditions for a sequence 

} . * i = 1, 2, 3 , ·, · to be a Cauchy sequence in B are 

(1) lim a... exists for each j • 
. lJ 
1 7 00 

00 

(2) .2::1 (l . • 1 
j =l lJ 

conver ge uniformly with respect to i. 
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R emark 2: 

Theorem 14 can be stated in a stronger form . The existence of 

lim a. .. for each j implies the existence of lim t. (ek) and so the 
. lJ . 1 
l ~ OO l ~ OO 

domain of summability of each continuous linear func tional must 

00 . 

contain the subspace Z of B . Als o, for t. (;) = .I: a. . . ;1. the norm 
1 j =l lJ 

00 

II t . 11 must be defined by II t. lj = .I: I a. . . j, which is also true if the 
1 1 j =l lJ 

domain of summability of ti(s) contains the subspace Z of B . Henc e 

~ 

in Theorem 14 , the phrase 11 a Cauchy sequence in B II can be replaced 

. * * by "a Cauchy sequence 1n C II or 11 a Cauchy sequence i n Z • 11 In 

* another words , Z has a minimal property with respect to the 

validity of the Theorem 14. 

The next theorem is concerned with the so called weak convergence 

of a sequence of continuous linear functionals in S , or the pointwise 

convergence of a sequence of continuous linear functions, 

Theorem 15. A Summability operator T = {t .( s) } = J.; a. .. ; il belongs 
1 l j=l lJ j 

to the class of transformations ~ if and only if the following two 

conditions are satisfied : 

(1) 

(2) 

Proof: 

00 

i;1a . . 1 < M 
j =l lJ 

for i = l ; 2 , 3, . .. , 

00 

lim .I: a. . . exists for all E E .I: • 
i 7 oo je E lJ 

T E ::J;, is equivalent to the condition that the sequence of 

continuous linear functionals f ti } converges weakly . A sequence of 
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continuoufl linear fLmctionals { \ ~ converges weakly if and only if 

the following two conditions are satisfied: 

I 

(2} lim t. (/;) e'.:h:istz fo,.~ all § in an everywhe!'e dense set in B, 
. l 
].-+ Cu 

and 1~m t.(t) = t(~) is a continuous linear functional on B [ s]. 
1-,.001 

I 00 

The condition {l) is equivalent to condition (l} ~ I a. .. j < M. 
. l l] J= • 

In the space B, D is an everywhere dense set in B, where D is the 

set of finite liiD.ear combinations of characteristic vectors { eE~ . 

Therefore the co:r1v:trgence on Dis equivalent to the convergence on 
I 

all characteristic vector:3, and the condition (2} reduces to the 

(Condition (2). 
,) 

exists for all E e :E: • 

~* 
In the conjugate space B, • the weak convergence of a sequence 

of contfa~ous 1:irn3ar fonctionafo may not imply strong convergence 

{Cauchy convergence in the n.o:rm). But; if a sequence of continuous 
Of) • 

linear functionals is restricted to the form t. {g) = Z: a. .. ~J, then strong 
1 j=l lJ 

and vve~ik convergence do imply each other. This fact is proved in the 

following theo:ren:1. 

Theo:rem 16. In a double sequence {a. .. ; i ::.: 1, 2, 3, ... , j = 1, 2, 3, .•. 'I. lJ . ) 

the co:;;1ditio11s 
00 

(1) 1: !a .. I < M 
j=l' lJ 

A 

{2) exists for all E E ~ 



are oqtctlva.lent to the cor!lditions 
l 

(l} li:rn a .. = o. exists for each J0 

. lJ J 
B 1-') 00 . 

I 

(2) converge tmi:formly with respect to i. 

Proof: 

First, conditions B imply A. Given E > 0, the1·e exist,3 an N 

00 

such that ;z:; ! a. -I ( E for all i. L,et E he any set and IN be a, 
j=I\r+ 1 1J 

set of ir1tegers 1, 2, 3, .. -N. 

Then 

Nov,1 I a . ·· ~a . j 
· ... PJ ie=: E'' e,J.J JE .I:!., .J -

= 1~(a . - a .) + 
PJ qJ 

. I r,, J E :\T (\ L!, 
.I.~ 

~ :E ja .-a. -I + 
PJ gJ 

+ L!aqjl 
jdN E jd-IN 

~E + E + € = 3E. 

Therefore •. { ~ .. a .. l.. is . . r lJ) 
J E "'!i 

a Cauchy sequence and lim Z a .. exists 
jE E lJ 

0() 

for all E E ~ • J:vloreover, since lim :£: J (11.. 0 I = Z:: I 01, j, the sequence 
• -"(I) • l 1 ' . 1 " 

CD 

!; I a..; • j is bounded, or 
j=l ~J 

GO 

z:10. .. 1 < :M, 
J=l lJ 

1 , J= ~ J= ., 

i = 1, 2, .••• 
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Now ii will be shown that conditions A imply B. From the 

condition (2) o. :: lim c. .. is defined for all j :: 1, 2, 3, , . , . From the 
J i~oo lJ · 

condition (1), :I; j a.., I < M for all n, 
·-1 lJ 

Now letting i increase without 
J- . 

bound yields 

n 
lim E jo. .. 1 = 
i~oo j=l lJ 

00 

Hence I: j o . j <. M, 
. l 1 J== 

co 

n 

~Io -I 
j=l J 

< M for all n, 

that is, the series !: o. converges absolutely. Also from (2), 
j=l J 

:t a .. convergee absolutely fo:rc each i. Now put f3 •• = a. .. - o.J. 
j=l 1J lJ . lJ 

Then E 13 •. = E (a .. - o .) == .,.,....lJ . .,..lJ J 
J::1!.. .. JE£.t 

~a. .. - Eo. 
lJ J j\a'.E jeE 

{5. 6) 

Since conditions (l) and (2} imply lim :Z a .. 1 = -:Bo. for all E" l; [ s]. 
i-too je E lJ Je Ji: J 

and 

lim 1: j3 .. = 0 
i..,.oo jeE lJ 

00 

I: I!\· I <. 2 M 
j=l J 

fo1· all E e ~ , (5. 7) 

i::l,2,3,···· { 5. 8) 

00 

If one can show that lim Z: I 13· · 1 = 0 under the conditions ( 5. 7) 
. . 1 lJ l~ooJ= 

00· 

and (5. 8) then it is eaaily seem that :E !a.., I converges uniformly with 
. l lJ J::: 

0:, 

respect to i. Suppose the sequence 2: I p .. 1 does not converge to 
j=l lJ 

zero, then there exists a subsequence converging to a number y? O. 

00 
Therefore, assume lim :E I 1(3 .. ! = y ....., 0. 

I lJ I r 
i~oo j:==l 

( 5. 9) 



and 
00 

!: 113 ·1< ·- , 1 n11J J-n2_.,.. 

l 
z· 
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Suppose two sequences rn1, rn 2 , .•. mk-l and n1, n 2, ... nk are chosen. 

Now choose mk so that 

nk 

~ Ii., ·I 
j=l m1e J 

1 
< ~k 

and then choose nk+ 1 > n., such that 
K 

l 
zk . 

By induction two sequences m 1, m 2 •.•• mk, .•. and nl' n 2, .•• , nk .•. 

are defined. 

Since 
00 

z I r2 I . l 11.1,. 
J= .i.CJ 

n., 
K 00 

I; !!3 I - ;;,:; l!3m I, 
. 1 ink. I . l 
J= J J=nk 1+ kj + 

Now put Jk - nk + 1, :nk + 2,, • •; nk+l 

= rt- + J-
k k 

where J+ = [nl . j p . ? oJ k t+ 1 · mknk,,1-1 

J; = fn. .j13 . < 0 J• k+1 m. n 1 +1 
K ,"\'. 

and let 

I; A 
P.,,.,,., t . .r ... ,.l,. 

Ji! KJ 



and 

00 

'f ',;"' fJ: ) '>' D 1- k,p -P . 
. 1- m. . . J+ m 1 • 
jE, kJ JE . !.'.:J 

Let H = !: Hi,.. 
k=l .... 

Then I l;13 . I ~ m,. 

je 

KJ 

H. 
l 

:z I f1. I mk. ~J 

H. 
1 

and hence lim 
k-,oo 

By hypothesis, lim z: p = 0, 
k-,c-0 jeH mkj 

and = 1:.:13 + . H m,. 
Ji<: k i(J 

therefore, 

But 1. z;H. j3mk.1 ~ ~ . 2:J· j f3rn,,_.1, 
JE. k J J E k r~J 

not converge to zero, which contradicts (5.10) and so 

00 

lim E j 13 •• I = 0. 
i7 oo j=l lJ 

00 

Since a. .. =~-·+~' and ~ IP·· I converges uniformly and 
lJ lJ ., j=l lJ 
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{5.10) 



fl o-l < M , 
j =l J 

~!a.., I converges uniformly with respect to i. 
j=l lJ 

This completes the proof of Theorem 16 . 

If the conditions B in Theorem 16 are satisfied, then 
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1im z: I Cl •• 1 = z: I o .1 , 
i ~ 00 jEE 1J jeE J 

for all Ee ~ . ( 5.11) 

00 

Conversely, if ~ ja.. · 1 < M and ( 5 .1 1) is satisfied. S ince 
j =l lJ 

00 

j;ll ~ I < oo , then for every E )' O, there exists an N such that 

00 

z: I o- I < E/ 2. 
j =N J 

Also, there exists an N1 such that if p )" N1, 

Then, 

or 

I f lei .1 
j =N PJ 

~lo·II <. e/ 2. 
j=N J 

00 
~ lei . , conver ges uniformly with respect top. Remembering, 

j =l PJ 

00 
also, that if ~lei .. , <. M and lim I: la.,, I exists for all E e ~ , 

j=l lJ i ~ 00 jeE lJ 

then lim ~ la. .. l -
. . E lJ l ~ oo JE 

00 

I: I o, I, one obtains the following corollary. 
j =l J 

Corollary 4. In a double sequence {a.ij ; i = 1, 2, . . . , j = 1, 2 , 3, .• :j 
the following three conditions (A) , (B) , and (C) are equivalent, 



(1) 

(A) 

{2) 

(1) 

{B) 

(2) 

{l) 

(C) 

(2) 

0-5 

!: la,. j < M. 
j=l lJ 

lim :Ea. .. exists for all E e I:, 
i~oo je E lJ 

lim a. .. = 6. exists for all J .• 
1J J i~oo -

00 

I: I a..· 1 
j=l lJ 

converge uniformly with respect to i. 

00 

~ la .. I < M, 
j=l lJ 

lim :Ej(l .. l 
i-"700 j EE lJ 

exists fo1• all E e I: ; 

Combining Theorems 14, 15, and 16 yields the following theorem. 

Theorem 17. A summability operator T{~) =J t.(t)} = {; a. .. si 1 
l 1 j=l lJ J 

belongs to the class of operators ~ if and only if the sequence l \ r 
:i!( 

in B is a Cauchy sequence. 

Remark 3: 

In the space B*, a sequence {tJ in which each ti is a continuous 

linear function on B Converges wealdy, that is the ~im t. {g) exists for 
. 1~DO l 

all~ in B, but{\ J may not converge strongly (conve:rgence in norm). 
00 , 

But if each t. is restricted to .the form t.(5) = l:: a. .. ~1, weak 
l l j=l lJ 

convergence and strong convergence are equivalent as a consequence 

oi Theorem 16. 
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