Dichanthium annulatum

COMPLEX

By

KHARAITI LAL MEHRA
Bachelor of Science
Delhi University
Delhi, India 1952

Master of Science
Delhi University
Delhi, India
1954

Submitted to the faculty of the Graduate School of the Oklahoma State University in partial
fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
May, 1960

CYTOTAXONOMIC STUDY OF THE

Dichanthium annulatum
COMPLEX

Thesis Approved:

DEDICATION

To the memory of the Late Dr. Robert Paul Celarier whose researches have controibuted so much to our knowledge of the difficult genera of the Andropogoneae

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere gratos itude to Professors J．R．Harlan and the late R．P。Celarier for their interest in my scientific growth，encouragement，and constructive criticism throughout the course of this study．I consider it a great parivilege to have worked under their guidance on the world＇s largest collection of the Dichanthium annulatum complex．

I acknowledge my indebtedness to Drs。 T。S．Brooks，I。Ho Bruneau， and J．A．Whatley，Jr．for their assistance and guidance in this in vestigation．

I wish to express my thanks to Dr。B．Bo Hyde of Oklahoma Unịverm sity，Norman，Oklahoma for his valuable suggestions and constructive criticism in preparing the final manuscript．

I would also like to take this opportunity to express my grato itude to Professor and Mrs．Edgar Anderson and their daughter Miss Phoebe Anderson of Missouri Botanical Gardens，St．Louis，Missouri for their keen interest in the development of my understanding of the semigraphical methods and for their hospitality during my residence with them in the spring of 1958.

I also appreciate the help and cooperation of Mr．W．L．Richardson and Mr．R．M．Ahring．

I must acknowledge my indebtedness to the Agronomy Department and the Agricultural Experiment Station，Oklahoma State University for
the research assistantship and the facilities，without which this in vestigation could not have been completed．

My sincere appreciation is also due to the Department of Botany and Plant Pathology for making the laboratory facilities available to me throughout the present study．

I express my special thanks to Dr。J。S．Bakshí，Mro．A。H．Gill， Mr．S．A．Faruqi．Mro D．S．Borgaonkar，and Mr。A。P。Singh for their help during this study．

I am also thankful to Mrs．Shirley Tracy for completing the pains－ taking work of typing this dissertation．

I am also thankful to my parents， Dr 。PoN．Bhaduri，DroSoL。 Tandon，and Mr．Krishen Lal for their interest in my education，without which my study in the United States would have been impossible．
Page
INTRODUCTION. I
REVIEW OF LITERATURE 5
Taxonomy 5
Historical 5
Descriptive. 6
Geographical Distribution. 11
Cytology 12
Cytogeography 12
Meiotic behavior 13
Cytotaxonomy 14
MATERIALS AND METHODS. 15
Accessions 15
Herbarium specimens 15
Cytological studies 16
Morphological studies 17Hybridization between the Tropicaland the Mediterranean type17
RESULTS 19
Cytology 19
Cytogeography 19
Diploíds 21
Tetraploids 21
Hexaploids 30
External Morphology. 33
Diploids 36
Tetraploids 36
Hexaploids 40
Cytogeography and Morphological Variation 43
Relationships of the Tropical and Mediterranean Types 45
FI hybrids 45
F_{2} population 46
Cytology 46
Mor phology 47
Origin of D。 papillosum Stapf 54
F1 hybrids 54
F_{2} hybrids 54
DISCUSSION 60
SUMMARY 72

Page
SELECTED BIBLIOGRAPY. 75
APPENDIXES 8 I

LIST OF TABLES

Table Page
I. Artificial and Natural Hybrids between the Tropical and Mediterranean Types of the D. annulatum Complex. 18
II. Class Intervals of the Cytological Featuresin the D. annulatum Complex 24
III. Comparison of the Range of Morphological Variation in the Diploid, Tetraploid, and Hexaploid Accessions of the D. annulatum Complex. 35
IV. Class Intervals of the Morphological Characters in the D. annulatum Complex 38
V. Comparison of the Morphological Characters in theParents, F_{1} Hybrids, and F_{2} Populations of theD. annulatum Complex. 49

LIST OF FIGURES

Figure Page

1. Geographical Distribution of Ninety-three
Collections of the D. annulatum Complex. 20
2. Frequency Histograms Showing CytologicalVariation in the D. annulatum Complex25
3. Pictorialized Scatter Diagram Showing the CytologicalVariation in Forty Tetraploid Accessions of the
D. annulatum Complex 26
4. Histogram Illustrating the Frequency Distribution ofCytological Index Values in Forty TetraploidAccessions of the D. annulatum Complex27
5. Frequency Histograms Showing Morphological Variationin the D. annulatum Complex. 34
6. Pictorialized Scatter Diagram Illustrating the
Morphological Variation in the D. annulatum Complex. 37
7. Pictorialized Seatter Diagram Showing Introgressionbetween the D. annulatum Complex and theB. intermedia Complex. 41
8. Histogram Illustrating the Frequency Distribution of Morphological Index Values in Fiftymethree Accessions of the D. annulatum Complex 42
9. Cytogeography and Mor phological Variation in the D. annulatum Complex 44
10. Frequency Histograms Showing Morphological Variation in the F_{2} Plants Obtained by Selfing the $4 n F_{1} H y b r i d$ between the Tropical and the Mediterranean Type。 48
11. Morphological Analysis of the F2 Population Obtained by Selfing the 4 n FI Hybrid between the Tropical and the Mediterranean type of the D. annulatum Complex . . . 50
12. Frequency Histograms Showing Morphological Variation in the F_{2} Plants Obtained by Selfing the 6 n FI Hybrid between the Tropical and the Mediterranean Type55
13. Morphological Analysis of the F2 Population Obtained by Selfing the 6n F_{1} Hybrid between the Tropical and Mediterranean Types of the D. annulatum Complex. 56

14 The Origin and Evolution of the Do annulatum Complex 。 64

LIST OF PLATES

Plate PageI. Meiosis in D. annulatum X 1180. 22
II. Meiosis in D. annulatum X 1210. 31

INTRODUCTION

Most of the forage orops grown in the United States are introduco tions from Europe, Asia, and Africa. Only a relatively small number of native grasses and practically no native legunes are used as cultivated forgge plants. In many cases these introductions have been far supero ior to native species in productivity, persistence under use, aggressiveness, and in some cases, forage quality (Celanier and Harlan, 1955).

The introduction of materials has not been very systematic uatil recent years, and some of the better adapted species, ox ecotypes within a species, perhaps have not yet been evaluated. Furthermore, oniy a few of these introduced species have been collected throughout their geographical range of distribution, even though at least some of them have been known for some time to be of considerable agronomic importance.

It has been recognized that several nembers of the grass tribe Andropogoneae have forms with considerpble potential as pasture and range forage (Celarier and Harlan, 1955; Mamlan et al. 1958). Of the genera that have been studied, Dichanthium, Bothriochloa, and Capillipedium are among those which have forms with certain desirable agronomic characters. Although, the group as a wole has much potential, no single collection has all of the desirable agronomic qualities. It will be necessary to develop plant breeding methods to utilize selected members of these grasses in the development of altogether new combinations of forms with desirable agronomic qualities. It has been suggested that if the vigor, productivity, and high quality of some collections
of Dichanthium could be combined with the winter hardiness of some colo lections of Bothriochloa, strains of great value to the Great Plains might be obtained (Harian et al. 1958). A systematic survey of the morphological and cytological variation prevalent within different species of these genera would be helpful in selecting the desirable colo lections to be used in the breeding program. Although, these genera are of considerable importance in the 01d World and seem to have much promise for the New World, they are poorly understood cytologically and texonomically. Only an analysis of Bothriochloa ischaemum Keng has been mos'e or less completed (Celarier, 1957; Celarier and Harlan, 1958) and similar survey is needed for the other species of these genera.

The objective of this stuady was to grow together, in an experimental garden, several introduced accessions of the Dichanthium gnmiaturn complex collected throughout its geographical range of distribution, and to conduct both a taronomical and cytological survey of them. The carrying out of such an objective should provide information from which to draw conclusions concerniag the pattern of variation prevalent in this complex, and also about its oxigin and evolutionaxy mechanios.

Preliminary cytological and taxonomic studies fCelarier and Harlan, 1956; Celarier et alo, 1958; Mehra and Celariers 1958; Harlan et al., 1958) have pointed out the presence of a polyploid series within the Dichanthium gnulatuan complex with somatic chromosome mumbers of 20,40 , and 60. Four morphological types (Tropical, Mediterranean, Senegal, and South Africand werg recognized within this complex. Furthemore, these studies have pointed out the corgelation between chronosome numbers geographical distribution, and morphological types within some accessions belonging to this complex. Several accessions were not included in
these studies. Also, more information is needed for some of these rea parted accessions. Cytological studies (Celarier et al., 1958; Sikka and Mehra, 1956) have revealed the presence of multivalents durixg microsporogenesis irs the tetraploid and the hexaploid accessions bes longing to this complex. It would be of interest to study whether such polyploid types have oxiginated by segmental allopolyploidy or by autoo alloploidy or autopolyploidy, followed by a long period of chromosome and genetic dilferentiation. Also, it would be desirable to understand the relationship between different morphological types within the same ploidy level. Mehra and Celarier (1958) suggested the presence of introgression between the Tropical and the Mediterranean tetraploid type. Celarier and Harlan (1957) have shown that aponixis is the prea dominant nethod of reproduction in the tetraploids and the hexapioids, and thet the diploids are completely sexual. Although, the hexaploids may be obligate apomicts, the tetraploids are thought to be facultative apomicts (Celarier and Herian, 1957\% Celarier et alo, 1958). In view of the presence of focultative apomixis and introgression between the Tropical and the Meditervanean tetroploid type, it would be desirable to produce artificial hybrids involving these two types and to grow their selfed progenies. A detailed morphological and cytological study of these (F_{1} and F_{2} plants) populations should provide information about the extent to which the characters of these two tase recombine, and therefore might make it possible to drav conclusions about their relationships.

The origin and evolution of the hexaploid South African type is not yet known. Celarier et al. (1958) have suggested that the South African type might be the product of the fertilization of an unpeduced
gamete of the tropical type of $\mathrm{D}_{\text {. }}$ gmatatum by a normal gamete of D_{m} anoistatum, another South Arrican species. In order to understand the origin of the South Afmican type, controlled crosses should be attempted to check the validity of their suggestion.

The investigation now to be discussed constitutes, then, a de= tailed analysis of morphological, taxonomical, and cytological studies of the Dichanthium ammatum complex; a correlation, if say, between the chromosome numbers the geographical distribution and the morphological type within seyeral accessions of this complex: a study of the relationship between the Tropical and the Mediterranean type; and a study of the origin of the South Africam tyo (D. papillosum Stapf).

REVIEN OF ITTERATURE

Taxonomy

Hiatoxical taxonomy.
The Dichanthforn anniatw complew belongs to the twibe Androo pogonege of the greas fanily. This taxom was filrst described as Andro poege annulatue by Norskal in 277%. In subsequent years this taxon was described as Andropoges gighinis (Retim, 2785), Ao camosus (Link, 1827), A obtusus (Nees, 1847), A. socndeng (Roxburgh, 1820), Lipoocereia annulata (Nees, 2841)s A。geripensis (Stand, 1855), and A papiIIosus (Hochsto 1835-43). Fraciel (1889) in his tweatment of the gemas Andro $=$ pogon included this trexon under the subgenus Dichanthium Also, Hackel (1889) recognized five vaioties (monostachyus, gemuinus, decalo vatus, Bladhii, and humilis) within A gmulatus Forsk. Fooker (1897) in his treatment followed Hackel (1889) and added another variety ioe., Andropogon amulatus vario papillosus. Randie (1899) presented a detailed description of the veriety papillosus of Andropogon annulatus Forsk.

Hackel's (1889) treatmext of this taxon was followed by several workers (Hooker, 1897; Cooke, 1908; Durond and Schinw, 1892-1894; and Prain, 1903). Since the subgexus Dichanthium of Hackel (1889) was earo lier recognized as a separate genus by willemet (1796), Stapf (1917) cleared the confusion in the synonymy of this taxon and presented a deo tailed description of it under two separate epithets i.e., Dichanthium annulatum (Forsk) Stapf and Dichanthium papillosum (Hochst) Stapfo.

Stax ${ }^{0}$ (1917-1919) treatment was followed by several workers (Haines, 1924; B1, tter \& MoCann, 1928; Bor, 1947; Gardnex, 1952; Chippindall, 1955; and Pandeya, 1953).

Celarier and Harlan (1955) in their treatment included Do anula tum Stapf and D. papillosum Stapfo under the Dichanthium amnulatum com plex and recognised three distinct morphological types (Tropical, Mediterquacan, and South African typesto Harian et al. (1958) recog. nized, in addition the Senegal type from Senegal, French West Africa. Descriptive taromomy.

Hackel (1889), in mis noteworthy monograph of the tiribe, included in the genus Andropogom number of taxa now generally recognized as distinct genera. In general, Hackel's system was followed by several workers (Hooker, 1897; Trimen, 1900; C00ke, 1908) until the worix of Stapf (1919) on the grasses of tropical Africa. Stapf (1919), in his treatment of the tribe, disagreed with Fackel in assigning generic rank to several of the subgenera of the genus Andropogon. Since Stapfis work, most taxonomista morking on the tropieal materials have, for the most part, accepted his treatnent (Camins and cams, 1922; fubbard, 1934; Blatter and MoCann, 1935; Reng, 1939; fenaxd, 1940; Box. 1940; Blake, 1944; Rhind, 1945; and Gardrer, 1952). On the other hand texonomists working on the texpergte naterials have largely followed the tradition of Heckel (1889) or its modification by Kumsrov (1934-1945), Fitchcock (1950).

The Dichanthium anmlatum complex is characterized by the presence of pedicelled spikelets, which are male or neuter, unpitted first glume, xacemes peduclate without long dense silky hairs, pedicellate spike。 lets being equal to or shorter than sessile, lower glume of the sessile
spikelet a simple awn, and racemes digitate (Celarier, unpublished) Synonyns, geographicel distribution, and the distinguishing charo acters of the varieties desoribed by Fiackel (1889) are outlined belows (a) A. anmiatus var. monostachnus.

Racemes solitary or two, inflorescence rachis $4-5 \mathrm{~mm}$ long, racemes 303.5 crf long; perfect spikelet articulate, 5 mm lomg, obt long more than twice as much shorter, less densely hairy; ffrst glume very swooth except cilia of keel. Pedicellate spikelets of ter without fourth giume putting forth a short straight awn, and which also hinges the unfolding pistil. Distributions Australia.
(b) A. amulatus var. genuinus.

Racemes $3-10$ (wery often 5), $4-6$ cm long; common rachis $1.5=$ 2.5 cm loxgs, $3-5$ nodes inserted, the lower peduncies $5-8 \mathrm{~mm}$ long; first glume of fertile spikelets, except cilia of keels, covered over with rigid hairs, with tubercled base, littie longer and some what equaliing the glume; papillose moreover on lower back, first glume of the pedfcellate spikelet with tuberculate hairs scattered over aimost all the back.

Synonyms: A. annulatus Forsk, A. Bladhif Roxb, A. Camosus link, Lipeocercis grmulate Neen and Ao goripensis Stend. Distributions Northern Africa, Morocco, Algeria, Tunisia, Egyp, Arabia, Iram, India, China, Australia,and Pacific Islandso
(c) Ao annulatus vazo decalvatus.

The first glume of the perfect spikelet glabrous except the minutely ciliolate keels, pedicellate often papillose, other characters like vax. genaimus.

Syonyms: A. geandens Roxb, has slightly glabrous spikelets, with cuims sonewhat ascending.

Distribution: It appears along with waw. genuinus in Egypt, Afghanistan, and India.
(d) A. anmulatus vais. Bladhii.

Racemes $8-15$, common rachis 4 em long, 506 nodes inserted, lower peduncles 10 inm long, first glume of the perfect spikelet smooth except the setulose ciliate keels, or scattered with sparse hain.

Synonyms : Ao Bladhin Retr, Ao obtusus Nees. According to Hackel (1889) the plant of Retr is too little separated from the variety geruinus, from which it departs through intermediate forms. Distaibution: India and China.
(e) Ao gnoulatus vario humilis.

Plamts small, racemes $4-6$ only, without definite gre of tubertle hair.

Distwi.bution: Austwalia.
This wariety was given a species status by Black (1936) as Dichano thium humilius.

Hooker (1897) in his theathent followed Hackel (1889) and described foum varieties from India. These varieties were var. genuinus, var. decalvatus, vax. Miladiv, and vair. papillosus.

Hackel ${ }^{\circ}$ (1889) treatment of this taxon into different varieties was followed by several workers (Durand and Schinz, 1892-94; Brain, 1903; Cooke, 1908; Canus and Cams, 1922). Since the subgenus Dichanthium of Hackel (1889) was arrlier recognized as a separate genus by Willemet (1796), Stapf (1917) cleared the confusion in the syonymy of
this taxon. Stapf (1917) presented a detailed description of the taxon under two epithets Dichanthium annulatum (Forsk)Stapf and Dichanthium paphllosum (Hochst)Stapt". The synonyms and the distinguishing features of these two species are outlined below (Stapf, 1917):
(a) Dichanthium gruulatum Stapfo

Lower giume of sessile spikelets without a semilunar row of long tuberclebased hais below the hyaline tip, and blade margins not revolute.

Under this species Stapf (1917) included all the material listed by Hackel (1889) as A. anmigtus Forsk vaxieties ioe。g genuinus, decalvatus, Eladhin, and the var. papillosus of Hooker (1897).
(b) Dichanthium papillosum (Hochst) Stapf.

Lower glume of the sessile spikelets with a semilunar row of long tuberciemased hair below the hyaline tip; blade margins at length revolute。

Under this species Stapf included the material descroibed as A. amulatue var. papillosus Randle or Andropogon papillosus Hochst. Stapf ${ }^{0}$ (191\%-19) treatment was followed by several workers (Haines, 1924; Blatter and McCam, 1928; Bore, 1947; Gerdner, 1952; Chippindall, 1959; and Pandeya, 1953).

Celarier and Harlan (1955) in theiso treatment included D. anula tum Stapf and D. papillosum Stapi under the Dichanthium annulatum comm plex and recognized three distinct morphological types i.e., Tropical, Mediterranean, and South African. Harlan et al. (1958) recognized besides these three types the Senegal type from Senegal, Frenoh West Africa. The distinguishing features of these four types are outined
below (Celarier and Farlan, 1955; Harlan et al., 1958):
(a) Tropical type.

Rachis and pedicel without a groove, peduncle usually glabrous, joints and pedicels with very few hairs. Primary axis of the inc florescence very short, racenes short, stubby in a subdigitate aro rangement. Glumes of the sessile spikelets broad, truncate at tip, often obozate, densely covered with long hair, mostly tubercle based. Plants exeet, decumbent or prostrate, and nodes with a cone spicuous $\sqrt{2}$ ing of long haim.
(b) Meditemanean twoe.

Similar to above with the following exceptions: glumes of the sessile spikelets more marrow and pointed at the tip, racemes longer than Tropical tope, slendar and often arranged in a more open windm mill patterm。 Piants relatively tril. erect or silghty decumbent, leaves more numerous than the rropical type.
(c) South African typo.

This type is refierred to D. papillosum Stapf. This taxon is similar to above with the following exceptions: glumes of the sesm sile spikelets considerably more hairy than others, with a semie lunas toing of long hair at the apex usually tuberclemased. Racemes of the Tropical type, but usually more numarous. Plants erect or sexidecumbent and sobust.
(d) French West Africen type.

This type is similam to the Nediteramean type of D. anmuatum except that the spikelets are nearily glabrous.

Geographical Distribution

Because of the weedy nature of the Dichanthium annulatum complex, it is difficult to determine with certainty what constitutes its natural geographical distribution. However, it is widespread throughout the tropics and subtropics of the Old World. It is found throughout Africa (Durand and Schinz, 1892-94; Hutchinson and Dalziel, 1927; Stapf; 1917), and has been reported from Senegal (Trochain, 1940), Morocco (Ball, 1877), Tunisia (Battandier and Trabut, 1902; Cuenod, 1954), Algeria (Battandier and Trabut, 1895, 1902), northern and central Sudan (Andrews, 1956; Broun and Massey, 1929:, Crowfort, 1928), Ethiopia (Duraand and Schinz, 1892-94; Stapf, 1917), northeastern tropical Africa (futchinson and Dalziel, 1931-36), Portuguese East Africa, Zambesi Delta, Expedition Islands, Mozambique, Nyasaland (Stapf, 1917), Angola (Futchinson and Dalziel, 1931-36), Lower Guinea, Mouhino, Loanda (Stapf, 1917), Southern Rhodesia (Sturgeon, 1954), Union of South Africa (Chippindall, 1955; Marloth, 1915; Stapf, 1917), Mauritius (Hubbard and Vaughan, 1940; Hutchinson and Dalziel, 1931-36), and from Rodriguez (Hubbard and Vaughan, 1940).

The D. anmiatum complex is found abundantly in Israel (Dinsmore, 1911), Syria, Palestine, and Sinai (Post, 1933), Iraq (Zohary, 1950), Arabia (Blatter, 1936), Egypt (Ascherson and Schweenfurth, 1887; Forskal, 1775; Muschler, 1912; Vivi Tackholm and Mo Drari, 1941), Iran (Parsa, 2952), Baluchistan (Burkill, 1909), and Afghanistan (Boissiex, 1884).

This complex extends into West Pakistan and India (Hooker, 1897), and it occurs abundantly in South India (Rangachariyar, 1921; Rangachariyar and Mudalier, 1921), Madras (Gamble, 1934), Mysore (Govindu
and Thirmalechar, 1952), Bombay (Cooke, 1908; Blatter and McCann, 2935), Uttar Pradesh (Bor, 1947), Madya Pradesh (Pandeya, 1953), Bihar and Crissa (Haines, 1924), Bengal (Prain, 1903) and in Punjab (Collett, 1902). D. annulatum is not reported from Ceylon, but it has been colo lected in Burma (Rhind, 1945) and Indo China (Camus and Camus, 1922). Although the distribution of this complex in China is not well known, it probably is common in the southern part of the country. This come plex has been reported from Kwangtung, Nainan, Yunan (Handel-Muzzetti, 1936; Keng, 1933), Canton (Hitchcock, 1929; Randle, 1906; Sauer, 1947), Ischang, and from Hong Kong (Randle, 1906). It is also common in Malaya and Indonesia (present report), and is seen occasionally in Australia (Bvart, 1917; Gardner, 1952), several Polynesian Islands, and Fiji Islands (Summerhayes and Fubbard, 1927).
Cytology

Cytogeography.

Cytological studies in the Dichanthium anmulatum complex have, until recently, been confined to the determination of the chromosome numbers. Kaxper and Chisholm (1936) were the first to determine the chromosome number of this species and they reported 2 n 〔40. This number was soon confirmed by several worikers (Hubbard and Vaughan, 1940; Krishnaswamy, 1941; Janaki-Ammal, 1945; Oke, 1950). Celarier and Harlan (1955) reported the presence of a polyploid series in this compiex with somatic chromosome numbers of 20,40 , and 60 and the $2 n=20$ type was confirmed by Mehra (1955) and Gould (1956). Also, de Wet and Anderson (1956) have reported $2 n=30$ in the South African type D_{0}. papillosum.

Sikka and Mehra (1956) reported one diploid and eight tetraploid aceessions from India. Celarier et al. (1958) studied fiftymeight accessions of the D_{0} annulatum complex, representing entries from almost all of its geographical range of distribution. In this study they re= ported four diploids, seven hexaploids, and the remaining fortymseven tetraploids. Also, Haxlan et al. (1958) reported four diploid, fortyofive tetraploid, and seven hexaploid accessions. Celarier et al. (1958) compiled the previous records (Oke, 1950; Sikka and Mehra, 1956; and Gould, 1956) of the chromosome numbers and geographical locations, and plotted these along with the accessions studied by them on a geographical map. Theix data showed that the tetraploids are found throughout the arange of distribution of the complex, whereas both the diploids and the hexaploids have a moze pestroicted distribu tion. The diploids have been reported from the Gangetic plains of India. The hexaploids may be restricted to South Africa (Celamier et al., 1958)。

Meiotic behavios.

Meiotic behavior of the Dichanthium annulatum complex was studied by several workers (Celarier et al., 1958; Sikka and Mehro, 1956; Kaxper and Chisholm, 1936). The findings of these investigators are briefly as follows: During meiosis the diploids were observed to be completely regular, the hexaploids extremely irregular; and the tetrom ploids represented alnost all intermediate degrees of irregularities. The meiotic ixregularities encountered were essentially of the same kind in all accessions, and differed only in their relative frequencies. These meiotic irregularities were the presence of multivalents and univalents at diakinesís and metaphase I; lagging chromosomes,
dividing and non-dividing univalents, chromosome bridges and fragments at anaphase I; lagging chromosomes at anaphase II; and varying number of micronuclei at both the dyad and the tetrad spore stages. Pollen fertility was also observed to be variable in different accessions.

Celarier and Mehra (1959) reported on the meiotic behavior of a desynaptic plant of Do gnulatum Stapf. This accession was obtained from South China. The meiotic irregularities encountered in this dee synaptic plant were of the same kind as found in other tetraploids, but were in much higher frequencies.

Cytotaxonomy

Cytological studies (Celarier et al, 1958; Harlan et al., 1958)
and morphological studies (Harlan et al., 1958; Mehra and Celarier, 1958) have shown that the diploids were all of the Tropical type, and found only in northern and eastern India, the hexaploids were all of the South African type, and found only in South Afxica, but the tetrac ploids were of several morphological types, and were distributed throughout the tropics and the subtropics from French West Africa to Fiji Islands.

MATERIALS AND METHODS

Accessions.

The plant materials reported in this investigation were grown in the Experimental Garden of the Oklahoma Agricultural Experiment Station according to the procedure outlined by Celarier and Harlan (1956). Forty, one hundred, and sixty-four accessions of the Dichanthium gmulatum complex comprising samples from both western (French West Afroica) and eastern (Australia) extremes of its range were grown in 1956, 1957, and 1958 respectively. There was, however, a deficiency of collections from Southeast Asian countries. Although it is likely that several significant types are missing from this collection, it does seem probable that most of the major types are represented in the material sampled. Appendix A (Table I) shows the accession number, oxigin and collector for all the accessions used in the present investic gation.

Herbapium specimens.
Hexbarium specimens were taken for all accessions, and after study has been completed, they will be deposited in the following herbaria: Herbarium of Oklahoma State University, Stillwater, Oklahoma; United States National Herbarium, Washington, D。Co; Royal Botanical Gardens Herbarium, Kew, England; Missouri Botanical Gardens, St. Louis, Missouri; University of California Herbaxium, Berkeley, California; University of Pretoria Herbarium, Pretoria, South Africa. In general, nine herbasium specimens were prepared from each accession such that
five were taken from the plant used for cytological study, while the rest were prepared from the other plants of the same accession. Cytological studies.

Bud material for cytological studies was collected between 8 and 11:30 a.m. during the flowering season, fixed in Carnoy ${ }^{\circ}$ s solution (6 parts ethyl alcohol: 3 parts acetic acid: 1 part chloroform), stored in a refrigerator and studied as time permitted. The anthers were smeared in acetocarmine, the slides were sealed and occasionally made permanent according to the procedure outined by Celarier (1956). Materials of some entries showed no ill effects after 24 months of storage, and none appears to have deteriorated appreciably during the first nine months. Although no attempt was made to use exactly the same number of cells to analyse the chromosome conditions, certain minimusn numbers were required. At diakinesis and metaphase I no fewer than 20 (or maximum of 50) cells were scored for any accession, and in the irregular materials an attempt was made to study 50 cells. At anaphase I and telophase I an attempt was made to analyze 50 cells and no fewer than 30 cells were used. For dyads and tetrads a minimum of 50 cells were analyzed. For pollen analysis a minimum of 500 cells were studied。

Several accessions were studied in two different seasons, some in three, and occasionally an accession was studied under greenhouse conditions as well as from the field. Since there was no obvious differo ence in chromosome behavior in these two environments, the data were combined.

Moxphological studies.

Morphological data for most of the accessions were recorded in the field. Five plants were studied for each accession if the accession was uniform, otherwise five plants of each type were studied separately. For inflorescence oharacters five inflorescences were subjectively chosen in an attempt to represent the variation present in an accession. No attempt was made to find extremes, but large, smail, and intermediate inflorescences were included in the sample.

Severgl accessions were studied in two different years, some in three, and occasionally an accession was studied from herbarium specio mens as well as from the field. Since there was no obvious difference in the average values of the morphological characters studied under these different conditions, the data were combined (for details see Mehra et alos 1959).

In order to study the patterns of association of the morphological characters, the pictorialized scatter diagram method (Anderson, 1949, 1957) was used, and the morphological indices were prepared according to the hybrid index method (Anderson, 1936, 1949, 1957). Hrbsidization between the Tropical and the Mediterpanean type.

In order to understand the relationship between the Tropical and the Mediteryanean type of the Dichanthium annulatum complex, controlled crosses (Table I) involving these taxa were attempted according to the technique outined by Richardson (1958). F_{1} hybrids were grown in 1957, and studied both morphologically and cytologically in the maner outlined for the accessions.

F2 plants were raised from a cross involving D. annulatum X -98 X D. annulatum $A=4390$. Since this cross produced two hybrids one
tetraploid and the other hexaploid, the two F_{2} populations were grown separately. Morphological data for these populations were recorded in the field in the same manner as for their parents. Preliminary cytoo logical study was conducted in a few selected F_{2} plants from the tetram ploid population.

TABLE I

ARTIFICIAL AND NATURAL HYBRIDS BETWEEN THE TROPICAL AND MEDITERRANEAN TYPES OF THE D. annulatum COMPLEX

* X=98, a Tropical tetroploid, was obtained from a cross involving A3242 X A5411 (for details see Harlan et al., 1958)
* 55-X $-98=1.0 . P(1$ to 3 and 5 to 7) were raised from open pollinated seeds produced on X-98.

RESULTS

Cytology

Gytogeography.

The chromosome number of nintyoseven accessions has been determined during the course of the present investigation and diploids* (8), tetraploids (82), and hexaploids (7) were found. Out of these accessions, eighteen were early introductions into the United States and the West Indies and their origins are no longer known. Seventy-nine accessions were from native collections, and these are plotted on a geographical map (Fig. 1). Also, on this map are ten sites that were taken from the Iiterature (Oke, 1950; Gould, 1956; Sikka and Mehra, 1957; Celarier, 1959). The degree of ploidy of each accession is also indicatedin Figure 1.

From this map it is seen that the tetraploids are found almost throughout the range of distribation of the complex, whereas both the diploids and the hexaploids have a more restricted distribution. The diploids have been found only in the Gangetic plain of India and in adjacent Burna, and the hexaploids may be restrieted to southern Africa
*Although five has been proposed as the basic chromosome number for the tribe (Celarier, 1956, 1957), it is nevertheless felt that in some groups ten is the basic building material and should be considered as functional diploids (Celarier and Harlan, 1957; Celarier et al., 1958) 。

Cytogeography of the Dichanthum annulatum Complex

Fig. 1. Geographical distribution of ninety-three collections of the Dichanthium annulatum complex.

The hexaploid found in Australia may very likely be a synthetic plant, for details see Discussion)。

Diploids

Meiotic behavior.

Six out of the eight diploids studied were of Indian origin, the seventh was from Burma, and the eighth was an early introduction that had escaped and become naturalized in South Texas. This Texas accession (A-1526b) was a single plant found in an otherwise tetraploid population ($A-1526 a$).

At diakinesis and metaphase I, ten bivalents were seen (Plate I; 1) and at anaphase I there was a normal $10: 10$ distroibution of the chromo somes to the daughter cells (Plate I; 2). The second division was also observed to be completely regular.

Except for the occasional precocious disjunction of one bivalent in A-5396 from Belatal, India, all accessions were normal.

Tetraploids

Meiotic behaviox.
Meiotic behavior wes studied during microsporogenesis in eightytwo accessions (for details see Appendix A)。 All accessions showed some irregularities during the process of meiosis. The irregularities encountered were essentially of the same kind, but their frequencies were dissimilar in different accessions. These irregularities were the presence of univalents and multivalents at metaphase I; lagging chromosomes and bridges with fragments at anaphase I; laggards at anaphase II;

Legend for Plate I

Fig. 1-15. Meiosis in D. annulatum X 1180 .
Fig. I. Metaphase I in A-3242 from Calcutta, India, with ten bio valents.

Fig. 2. Anaphase I in $A=3242$ with $10: 10$ distribution of the chromo somes to the daughter cells.

Fig. 3. Metaphase I in Am2566 a South Texas introduction with lo biw valents and one quadrivalent.

Fig. 4. Anaphase I in $A-3182$ from Israel with three lagging chromosomes.

Fig. 5. Anaphase I in A-2566 with two lagging chromosomes.
Fig. 6. Anaphase I in A-2568 from Coimbatore, India, showing a bridge and fragment.

Fig. 7. Telophase I in Am2566 with a bridge and fragment.
Fig. 8. Telophase II in $A=1526$ a from South India, showing numerous univalents.

Fig. 10. Metaphase I in A-3789 from Giza, Egypt, with 14 bivalents and three quadrivalents.

Fig. 11. Metaphase I in A-3789 with 20 bivalents (two bivalents in the center are lying together) .

Fig. 12. Anaphase I in A-5397 from Mathura with numerous lagging chromosomes.

Fig. 13. Anaphase I in A-3789 from Egypt with dividing laggards and a lagging fragment.

Fig. 14. Telophase I in A-3789 showing a bridge but no obvious fragment and an excluded chromosome.

Fig. 15. Anaphase II in Am 5397 from Mathura with many lagging chromo somes, both dividing and non dividing.

PLATE I

and numerous micronuclei at both the dyad and tetrad spore stages (Flate I; 3-15).

Patterns of chromosome behavior.
A comparative study of the chromosome behavior during meiosis was conducted in forty accessions of the Dichanthium annulatum complex. Five cytological features of meiosis: the average frequencies of univa lents, bivalents, trivalents, and quadrivalents (per ceil) at metaphase $I_{\text {s }}$ and chromosome bridges at anaphase I were analyzed in three grades in all these accessions (Table II). The variation patterns (Fig。2) of these cytological features were analysed by using the pictorialized scattex diagram method. Two additional cytological features the pero centage of cells with lagging chromosomes (univalents) and the average number of lagging chromosomes at anaphase I were used as ordinate and abscissa of the pictorialized scatter diagram (Fig. 3). Cytological indices (Fig. 4) were prepared for all accessions by using the hybrid index method.

It appears from the Figure 3, that most of the accessions have different patterns of associations of the cytological features. In general, most of the accessions have low frequencies of trivalents at metaphase I and chromosome bridges at anaphase I, while others have none at all. Furthermore, for the most part, low frequency of bivalents seem to be associated with, firstly a high frequency of either anivalents or quadrivalents (sometimes both) at metaphase I, and sece ondly with a high frequency of cells with number of lagging chromosomes at anaphase. I。

Although different accessions have varying degrees of cytological

TABLE II

CLASS INTERVALS OF THE CYYOLOGICAL FEATURES

IN THE Dichanthium annulatum COMPLEX

INDEX VALUES			
Metaphase I			
Univalents	0 0.0-0.9	$\bigcirc 1.0-1.9$	$\bigcirc \begin{aligned} & \text { O } 2.0 \text { or } \\ & \text { moxe }\end{aligned}$
Bivalents	O18.5-19.5	O 18.1018 .4	18.0 or less
Trivalents	O 0.000.09.	$\bigcirc \quad 0.1=0.2$	$\bigcirc 2.1$ or more
Quadrivalents	O0.000.50	$\bigcirc 0.51-0.79$	O0.80-1.2
Anaphase I Chromosome Bridges	$0 \quad 0.0$	$\bigcirc 0.01-0.09$	$0.1000 .15$
Lagging Chromosomes (per cell)	0.0000 .3	$0.31 \sim 0.70$	0.71 or more
\% Cells with Lagging Chromosomes	$0-25$	26-45	46060

Fig. 2. Frequency histograms showing cytological variation in the D. annulatum complex.

Fig. 3. Pictorialized scatter diagram showing the cytological variation in forty tetraploid accessions of the D. annulatum complex.

Fig. 4. Histogram illustrating the frequency distribution of cytological index values in forty tetraploid accessions of the D. annulatum complex.
irregularities duxing meiosis，the bulk of the material falls into three fairly recognizable groups which seem to be associated with the degree of chromosomal irregularities at anaphase I（Fig．3）．These three groups are i．e．，slightly irregular，medium irregular and highly irregular．
（a）Slighty irregulam．
This group located towards the left in Figure 3 is composed of such accessions which show an association of the following cytolog ical features：low average frequencies（per cell）of univalents （0．0 to 0.9$)$ ，trivalents（ 0.0 to 0.2 ），and quadrivalents $(0.0$ to 0.6 ）at metaphase I ，low percentage of cells（10 to 26）with lagging chromosomes（ 0.0 to 0.4 ）at anaphase I ，and a high average frequency（per cell）of bivalents（ 18.4 to 19．5）at metaphase I。 The cytological index ranged from 0 to 3 for this group（Fig．4）．
（b）Medium irpregular．
The second group occupies the central position in Figure 3. This group is composed of such accessions which have varying comb binations of the cytological features studied．Lagging chromosomes （ 0.4 to 0.7 per cell）were observed in 20 to 60% of the cells at anaphase I。 In general，the average（per cell）frequencies of unic valents（ 0.0 to 1.8 ）and trivalents（ 0.0 to 0.2 ）were low，while those of bivalents（ 18.0 to 18.5 ）and quadrivalents（ 0.4 to 9.9 ） at metaphase I were medium．The cytological index ranged from 3 to 6 for this group（Fig。4）。
（c）Highly irregular：
Four accessions belong to this group，and the cytological index ranged from 8 to 12 ．Since these accessions showed different
patterns of associations of the cytological features studied, the data are presented separately as follows: (a) One (Ac5326) of the four accessions, located near the lower corner on the right side, is characterized by the association of high frequencies (per cell) of univalents (2.0) and bivalents (18.60), low frequencies (per cell) of trivalents (0.06) and quadrivalents (0.16) at metaphase $I_{\text {, }}$ absence of chromosome bridges at anaphase I, and a high frequency of lagging chromosomes (1.24) in medium number (26\%) of cellat at anaphase I. It seems that chromosomal irregularities in this gem cession are because of the presence of a high frequency of univa lents. The cytological index was observed to be 5 in this acceso sion ($A=5326$). (b) The second accession ($A-3182$) is characterized by the association of medium frequencies (per cell) of bivalents (18.20) and quadrivalents (0.68), low frequency of univalents (0.88 per cell) and no trivalents at metaphase I_{0} 目lso, lagging chromosomes $(0.89$ per cell) were observed in 53% of the cells at anaphase I. The cytological index was observed to be 8 in this accession. (c) The third ($\mathrm{A}-3789$), located near the second accession ($\mathrm{A}-3182$), is characterized by the association of a very high frequency (per cell) of univalents (2.20), low frequencies (per cell) of bivalents (18.00) and quadrivalents (0.45), and no trivalent at metaphase I, and high frequency of cells (50\%) with high frequency of lagging chromosomes (0.87 per cell). The cytological index was observed to be 9 for this accession. (d) The fourth accession (Ac5397) is located near the upper comer on the right side of Figure 3. This accession was extremely irregular, and its cytological index was 12. This accession is characterized by the presence of high frequencies
(per cell) of univalents (2.60), trivalents (0.16), and quadriva lents (0.98), very low frequency of bivalents (16.50 per cell) at metaphase I, and a very high frequency of cells (58%) with lagging chromosomes (3.16 per cell) at anaphase I.

Meiotic behavior.
Seven accessions have been found to be hexaploids. All these are of the South African type (D. papillosum Stapf). Five of these were from South Africa, one from Southern Rhodesia and the seventh was a mixture in an accession of Capillipedium parviflorum Stapf from Australia (Appendix A) of these seven accessions only five were studied in dem tail.

The meiotic behavior was extremely irregular in all accessions, consisting principally of univalents and multivalents at diakinesis and metaphase I; bridges, fragments, and lagging chromosomes at anaphases (I and II), and micronuclei at the dyad and tetrad spore stages (Plate II; 16-23).

There was considerable variation in the number of univalents in individual cells of all accessions, but the averages showed some real differences between accessions. The Australian accession (A-4788b) had a very low frequency (0.40 per cell), while one of the South African accessions $(A-2567)$ had considerably more (5.04). The maximum number (ten in a cell) of univalents were observed in $A-2567$.

Trivalents were observed in low frequencies in all accessions except the Southern Rhodesian accession (A-3716), while the highest frequency (0.52 per cell) was found in $\mathrm{A}-4080$.

Quadrivalents were present in all accessions and their frequencies were similar to those observed in the tetraploids except for the

Legend for Plate II

Figs．16－23．
Fig．16．Metaphase I in A＝3716 from Southern Rhodesia with univalents， bivalents and quadrivalents and possibly trivalents（at arrow）．

Fig．17．Metaphase I in A－4788b from Australia with hexavalent at arrow．

Fig．18．Metaphase I in $A=4788 \mathrm{~b}$ with hexavalent at arrow．
Fig．19．Anaphase I in A－3716 with lagging chromosomes and a bridge $\frac{f}{f}$ fragment．

Fig．20．Anaphase I in Aw2567 from South Africa with seven lagging chromosomes．

Fig。21。 Telophase I in A－3716 with several excluded chromosomes and chromatids．

Fig．22．Anaphase I in A－3716 with no obvious disturbances except un－ equal distribution of the chromosomes to the daughter cells．

Fig．23．Telophase I in A－2567 with chromosome bridges that appear to be due to stickiness．

Fig。24．Pollen in $A=3182$ from Israel with both empty and full pollen grains；note the extreme variation in size of the apparently functional grains．

PLATE II

Australion entry ($A=4788 \mathrm{~b}$), which had considerably more (1.65 per cell). No configurations greater than quadrivalents were observed in all acces= sions except the one from Australia, which had a rather high frequency of hexavalents (Plate II; 16wl8). In a few cells as many as three hexas valents were seen.

At anaphase and telophase 1 chromosome bridges and fragments were found in rather low frequencies (Plate II; 23) in all accessions and although lagging chromosomes (Plate II; 19-21) were also observed in all accessions, their frequencies were dissimilar (0.46 to 1.92 per cell). Unequal distribution of chromosomes to daughter cells was also common.

In the second division the frequencies of lagging chromosomes were observed to be variable (0.18 to 0.78 per cell).

Micromuclei were observed at both the dyad and tetrad spore stages in all accessions. The pollen grains were observed to be variable in size (Plate II; 24).

Patterns of chromosome behavior.
Patterns of chromosome behavior were analyzed in these five hexaploid plants. Two rather distinct cytological groups were recognized as follows:

Group I.
This group is characterized, at metaphase I by having many univalents (as many as ten in some cells) with an average per cell frequency between 1.52 to 5.0 , few quadrivalents (less than one per cell), and no greater configurations. Anaphase I and telophase I had approximately 50 per cent cells with lagging chromosomes (between one and two per cell). Included in this group are the four African accessions.

Group II.
This group includes only the Australian accession, and is characterized by few univalents (0.40 per cell), a considerable number of quadrivalents (1.65 per cell), and frequent hexavalents (0.60 per cell). At anaphase and telophase I eighty per cent of the cells were normal and the frequency of lagging chromosomes was only 0.60 per cell. Only nine per cent cells had lagging chromosomes in the second division.

External Morphology

A comparative moxphological investigation was conducted on fiffty three accessions in the Dichanthium annulatum complex.

Seven morphological characters were analyzed in each accession. The average values of these characters are given in Appendix B. The variation of the average values of each character is presented in Fige ure 5. It is seen from Figure 5 that considerable variation occurs in most of the characters studied. The ranges of the mean values of these characters were compared among the diploid, tetraploid, and hexaploid accessions (Table III). It is seen from Table III that, although the ranges for five of these chapacters overlapped in the diploid, tetraploid, and hexaploid accessions, these different polyploid types could be distinguished from each other with fair reliability on the basis of the remaining two characters i.e., the average length of the primary axis and the average length of the longest raceme。

Five morphological characters were used on the metroglyphs, and the pictorialized scatter diagrams were prepared by using the number of racemes and the leagth of the longest raceme as ordinate and

Fig. 5. Frequency Histograms Showing Morphological Variation in the D. annulatum Complex.

TABLE III

COMPARISON OF THE RANGE OF MORPHOLOGICAL VARIATION IN THE DIPLOID, TETRAPLOID, AND HEXAPLOID ACCESSIONS OF THE D。 annulatum COMPLEX

	Diploids	Tetraploids	Hexaploids
1. Length Primary Axis (mm)	8.4-12.1	$\begin{gathered} 12.0-24.6 \\ (32.8 \mathrm{in} A-5397) \end{gathered}$	$\begin{gathered} 23.4=33.0 \\ (19.0 \text { in } A 4788(b)) \end{gathered}$
2. Raceme Number	$4.0-6.0$	$\begin{gathered} 5.2-9.4 \\ (12.6 \text { in } A 5397) \end{gathered}$	$7.0-9.6$
3. Inflorescence Branching Index	$0.00-0.02$	$0.0-6.8$	$\begin{gathered} 2.4-6.0 \\ (0.70 \text { in } A 4788(b)) \end{gathered}$
40 Length Longest Raceme (rm)	30.2040 .2	$47.6-70.0$	71.8-84.0
5. Raceme Width	thick	thick, intermediate or thin	thick
6. GIume Pubescence	hairy	hairy, intermedio ate or glabrous	very hairy
7. Growth Habit	prostrate sometimes decumbent	prostrate, de cumbent or erect	ereet

abscissa respectively (Fig. 6). Each character was measured in five classes and was plotted separately on the scatter diagrams according to the manner outlined in Table IV.

It appears from Figure 6 that the bulk of the accessions fall in to three well marked groups that are associated with the polyploid levels.

Diploids.

The first group consists of the diploid accessions. These plants are of the Tropical type, characterized by the presence of the prow strate or sometimes decumbent forms. These plants have short infloreso cences bearing racemes which are without secondary branches, mostly thick, sometimes medium thick as in 3965 (b), but are shorter in length and fewer in number than most of the tetraploid accessions of the Tropical type. The first glumes of the sessile spikelets in these dio ploids are either highly pubescent like X-98 or medium pubescent, but are never glabrous.

Tetraploids.
The second, the tetraploid group, to which belongs the bulk of the accessions, occupies the central position in Figture 6. The morphoo logical variation exhibits a suggestive pattern. On one side, adjacent to the diploids, are typical Tropical tetraploids. These plants are prostrate or decumbent, and have medium size inflorescences bearing rac cemes which are without secondary branches, mostly thick, but of medium length and number. The first glumes of the sessile spikelets are highly pubescent in most of these plants. On the other side are grouped a few distinct Mediterranean tetraploids which are generally erect plants possessing somewhat longer and more lax inflorescences with longer, and

Fig. 6. Pictorialized scatter diagram illustrating the morphological variation in the Dichanthium annulatum complex.

TABLE IV
CLASS INTERVALS OF THE MORPHOLOGICAL GHARAGTERS STUDIED IN THE D. Ennulatum COMPLEX

more slender racemes bearing more secondary branches than those of the Tropical type. Besides these two distinct types there are present some morphologically variant types which possess most of the characters of one type and one or two characters of the other type. Fairly decumbent types with thick racemes and highly pubescent giumes on the sessile spikelets are recognized among the Mediterranean types, and also Tropim cal types ape recognized possessing certain features (erect habit, slightly hairy glumes on sessile spikelets, and medium thick racemes) of the Mediterranean type.

At a low central position in Figure 6 an accession which represents the Senegal type from French West Africa can be recognized. This type has most of the characteristics of the Mediterranean type, but differs from it because of the presence of almost glabrous giumes on the sessile spikelets. This type differs from the typical Mediterranean type in having shorter inflorescences with fewer and more slender racemes, and no secondary branching.

A group of accessions, located in the upper center of Figure 6, seem to be separable into two distinct types. One of these types is composed of erect plants which have somewhat longer and more lax inco florescences than those of the Tropical type. These plants have longer racemes bearing more secondary branches than those of the Tropical type. These plants resemble the typical Tropical type, because of the presence of medium thick racemes and pubescent glumes on the sessile spikelets. The other type within this group resembles the Mediterranean type, but it has somewhat longer inflorescences possessing racemes which are more slender, longer in length, and with more secondary branches than those of the typical Mediterranean types.

One odd accession，located in the upper center of Figure 6，oc－ cupies an isolated position．This accession is erect growing，and has longer and more lax infloresqences then those of the other tetraploid types described above．The inflorescences in this accession（A－5397） have many racemes（average 12.6 per inflorescence）of medium thickness， bearing more secondary branches than those of the other tetraploid types，but possessing medium pubescent giumes on the sessile spikelets．

The presence of such morphological characters as erect habit，an increase in the length of the primary axis，in the secondary branching， number and length of the racemes，and in the pubescence on the first glumes of the sessile spikelets，in several accessions of the tetra－ ploid types seems to suggest possible introgression with certain species of the genus Bothriochloa（Fig。7）。

The third group comprises erect growing South African types which are all hexaploids．These plants are characterized by their infloresc cences having a much longer primary axis with longer，but thicker and more branched racemes then those of the tetraploid（Tropical， Mediterranean，and Senegal types）types．The glumes on the sessile spikelets in these plants are more pubescent than those of the Trop－ ical type．

A morphological index was prepared for the seven characters studied in fiftyothree gccessions of the Dichenthium annulatum complex， and the data are presented in Figure 8 。 It is seen in Figure 8 that the morphological indices reanged from -2 to 0 in the diploid Tropical types， 1 to 4 for the typical tetraploid Tropical types， 11 to 13 for the typical tetraploid Mediterranean types，and 11 to 14 for the typical South African types．The plants，possessing index values other

Fig. 7. " Píctorialized scatter diagram showing introgression between the D. annulatum complex and the B. intermedia complex.

Fig. 8. Histogram illustrating the frequency distrim bution of morphological index values in fifty-three accessions of the D. annulatum complex.
than those of the typical types, seem to be the product of introgreso sion between the Tropical and Mediterranean types or between these two types and certain species of the genus Bothriochloa.

Cytogeography and Morphological Variation

A cytological and morphological survey was conducted in fortyofour accessions of the Dichanthium annulatum complex, and the data are plotted on a geographical map (Fig。9). The degree of ploidy, meiotic behavior, and the morphological appearance of each accession is indicated in Figure 9。

From the map (Fig. 9) it is seen that all the diploids are of the Tropical type, and seem to be restricted to the Gangetic plain of northern India and adjacent Buma. All plants show regular meiotic behavior.

The hexaploids are all of the South African type (D. papillosum Stapf), restricted perhaps to southern Africa. Ail are extremely irregular in meiotic behavior.

The tetraploids, distributed almost throughout the range of the geographical distribution of the complex, show at least five recognizable types, as follows:

1. Tropical type
2.. Tropical type, showing evidence of introgression with Bothrio chlos
2. Intergrading types between the Tropical and the Mediterranean type
3. Mediterranean type
4. Mediterranean type, showing evidence of introgression from Bothriochloa

Legend for Figure 9

Figure 9. Cytogeography and morphological variation in the D_{0}.
annulatum complex.

Morphology

Tetraploid Tropical type -
Tetraploid intergrading type - (1)
Tetraploid Mediterranean type - ©
Tetraploid Tropical type showing evidence of introgression withthe genus Bothriochloa
Tetraploid Mediterranean type
showing evidence of introgression with the genus Bothriochloa
Hexaploid South African type - \square

Meiotic Behavior
Slightly irregulay-O
Medium irregular
Highly irregular

The Tropical type, distributed in India and West Pakistan, shows medium or slightly irregular meiotic behavior. Also, in India and West Pakistan there are types which seem to suggest evidence of introo gression from the Mediterranean type and from Bothriochloa intermedia 0 . Kuntze, and are medium or extremely irregular during meiosis.

The Mediterranean type seems to be distributed from French West Africa through Tunisia, Egypt, Iraq, Saudi Arabia to Afghanistan, and northwestern West Pakistan. These plants are medium irregular during meiosis. Certain types from Iraq show evidence of introgression from the Tropical type and from the genus Bothriochloa. These types, showing introgression with the genus Bothriochloa, are more irregular during meiosis than typical types. In general, the tetraploids show both cytological and morphological differentiation characteristic of polyploids and closely related species hybrids.

Relationships of the Tropical and Mediterranean Types

F_{1} Hybrids

A preliminary cytological and morphological study was conducted in twelve hybrids involving the Tropical and Mediterranean tetraploid types. Of these twelve hybrids one is a hexaploid and the rest are tetraploids. The hexaploid hybrid looks morphologically like Diohan thium papillosum, and it shall be discussed separately. The details on the tetraploid hybrids are given, as follows:

The tetraploid hybrids were intermediate between the Tropical and Mediterranean types with respect to several morphological and cytological features (Appendix A, Table I; Appendix B). All these
hybrids were slightly irregular in meiosis. Cytological irregulara ities in these hybrids were of the same kind as those of their ree spective parents, but were in low frequencies. At metaphase I univalents, bivalents, trivalents, and quadrivalents were observed in all these hybrids. Successive stages of meiosis were observed to show lagging chromosomes at anaphase I and II and micronuclei at both the dyad and tetrad spore stages. In general, these tetraploid F_{I} hybrids were either slightly irregular or medium iro regular, but were never extremely irregular.

F_{2} Population

Out of the eleven F_{I} hybrids only one was selfed, involving X o 98 (female) X A-4390 (male), and $144 F_{2}$ plants were obtained. Detailed morphological notes were recorded for 211 of these, and cytological studies were conducted on 13 plants.

Cytology.

The chromosome numbers wexe determined for thirteen plants, bec longing to this population (Appendix A, Table I)。 Of these thirteen plants six have a somatic chromosome number $2 n=20$, and seem to be polyhaploids. The rest of the seven plants are tetraploids. Meiotic behavior was studied in all these plents, and the results were as follows:

Polyhaploids.
At diakinesis and metaphase I ten bivalents were observed, and at anaphase I there was a normal $10: 10$ distribution of the chromosomes to the daughter cells. The second division was also observed to be regular.

In general, except for occasional precocious disjunction of one bivalent in a few cells, all polyhaploids seem to be fairly normal (for details see Appendix A; Table I). Tetraploids.

A preliminary cytological study was conducted on seven tetra ploid plants. The meiotic behavior seemed to be intermediate be tween the parents. The cytological irregularities were like the parents and F_{1} hybrids. In general, these plants were either medium irregular or slightly irregular during meiosis, but never extremely irregular (at least in the F2 plants, studied to date (for details see Appendix A, Table I).

Morphology.

The morphology of one hundred and forty f four F_{2} plants was studied in detail. Seven morphological characters were analyzed and the data were recorded in five classes (Table IV). The range of variation of the suerage values of these characters is presented in Figure 10, and the data are compared with those obtained from the parents and the F_{1} hybrid (Table V).

It is seen from Figure 10 that considerable variation occurs in all of the characters studied. The average values for most of these characo ters ranged from very low values (lower in comparison to the lower paro ent) to very high values (higher than those of the higher parent).

Patterns of morphological variation were analyzed in these F_{2} plants by using the pictorialized scatter diagram method. The data are prem sented in Figure 11A. Seven morphological characters used in this study are the same as those used for the analysis of the morphological variation of the accessions (for details see Table IV). Also, in the

Lengend for Figure 10
Frequency Histograms Showing Morphological Variation in the F_{2} Plants Obtained by Selfing the $4 n \mathrm{~F}_{1}$ Hybrid beo tween the Tropical and the Mediterranean Type

TABLE V

COMPARISON OF THE MORPHOLOGIGAL CHARACTERS IN THE PARENTS,

F_{1} HYBRIDS, AND F_{2} POPULATIONS OF
THE D. annulatum COMPLEX

Accession or Hybrid Number	Material	Length Primary Axis (mm)	Raceme Number	Inflores cence Branching Index	Length Longest Raceme	Raceme Width	Glume Pubes $=$ cence	Growth Habit
X-98	Tropical Type	15.0	4.8	0.0	64.8	7	7	D*
A-4390	Mediterranean Type	20.4	6.6	2.0	69.6	477	$\frac{77}{7}$	E
57-X-1171-1	$\begin{aligned} & \mathrm{X}-98 \times 4390,2 \mathrm{n} 860 \\ & \text { (South African Troel } \end{aligned}$	25.2	8.2	2.0	89.4	7	\cdots	E
57-X-1172-1	X-98 X 4390, $2 \mathrm{n}=40$	19.6	7.2	0.4	70.6	$\stackrel{7}{7}$	$\frac{7}{T T}$	E
57-X-1171-1-7	Selfed Plants from 57-X-1171-1	3.0-25.0**	3.5-12.2	$0.0-9.0$	20.0-90.0	$0, \frac{1}{4,7 t}$	$\begin{aligned} & 6 i t \\ & \hline 1+1 \end{aligned}$	$\mathrm{P}, \mathrm{D}, \mathrm{E}$
57-X-1172-10 \%	$\begin{aligned} & \text { Selfed Plants from } \\ & 57-X-1172-1 \end{aligned}$	5.0-24.0	3.5-8.8	0.0-7.0	20.0-78.8	$\begin{aligned} & \text { It } \\ & \text { It } \end{aligned}$	A1	P, D, E

* Decumbent (D), Prostrate (P) and Erect (E).
** The data for the F_{2} population represent the ranges of the mean values of these characters.

Legend for Figure 11.

Morohological analysis of the Fz population, obtained by selfing the 4 n FI hybrid between the Tropical and Mediterranean types of the Diohanthirm annulatum complex.
A Pictorialized scatter diagram.

The plants show near the arrows are polyhaploids (Gxoup I), and tetrapioids (Group II) respectively.
(B) $=x-98$,
(B) $=A-4390$ and
(C) $=F_{1}$ hybrid ($x-98 \times A-4390$).
B and C Frequency histograms of the rarphological indies for the plants in Group I and Group II of the scatter diagram respectively.

Figure IlA the metroglyphs are plotted for the parents and the F_{1} hybrid.

Although considerable variation exists in the patterns of associam tion of these morphological characters, the population seems to fall into two well marked groups, as follows:

Group I.
This group consists of eleven dwarf plants. All these plants have short inflorescences, bearing few racemes (3.5 to 6.5 per inflorescence) which are also short in length (20 to 50 mm). Chromom some numbers were determined for six of these plants. All these were polyhaploids ($2 \mathrm{n}=20$), and it is likely that the rest are also polyhaploids. Character association analysis revealed the presence of three distinct types within this group, as follows: Type I.

Two plants, located near the separation line, belong to this type, and are polyhaploids. These two plants show the association of the following morphological characters: Proo strate or decumbent growth, short primary axis, few racemes, little or no secondary branching of the racemes, short ras cemes, thick racemes, and highly pubescent glumes of the ses sile spikelets. The morphological indices of these plants are either -1 or $0(F i g, 11 B)$. These plants look like the Tropical type accessions, but are usually weaker in comparim son to the naturally occurring diploid Tropicel type plants. Type II。

One plant belongs to this type. This plant is shown higher up on the chart, but in the center of the Group I.

Character association analysis revealed the presence of the following characters: erect habit, short primary axis, medium number of short racemes with secondary branches, thin racemes, and almost glabrous first glumes of the sessile spikelets. This plant resembles the Mediterranean type with respect to four morphologicel characters i.e., erect habit, thin racemes (thinner than the typical Mediterranean type) bearing secondary branches, and almost glabrous first glumes of the sese sile spikelets. Although no diploid Mediterranean types are reported in the literature, it seems likely that this plant would resemble a diploid Mediterranean type. The morphoo logical index is eight for this plant (Fig. llB). Type III.

This type is composed of eight plants. These plants show varying combinations of the characteristics of the Tropical and Mediterranean types. Character association analysis revealed the presence of the following features: prostrate, decumbent or erect growth, short primary axis, few racemes, with or without secondary branches, thin or medium thick, but short racemes, and medium or highly pubese cent first glumes of the sessile spikelets. The morphom logical indices range from 1 to 6 (Fig. 11B). Three out of these eight plants are polyhaploids, and it seems likely that the same chromosome number may also be present in the rest of the plants.

Group II.
One hundred and thirtyothree plants belong to this group. It is seen from Figure 11A that considerable morphological variation occurs in these plants. Morphological analysis shows that most of these F_{2} plants have thick racemes and pugescent glumes on the sessile spikelets. Morphological survey shows that different plants represent varying degrees of recombination of the charo acteristics of each parent. Most of the possible recombinant types are seen in Figure llA.

In the lower one third of Figure 11 A there are a number of plants which have the same class intervals for most of the chare acters as those of the Tropical type, but possess one or more characters of the Mediterranean type. Similarly, there are a number of plants in the population which have the same class in tervals for most of the characters as those of the Mediterranean type, but possess one or more characters of the Tropical type. In the center of Figure lla there are a number of plants in the population which possess varying recombinations of different characters (or of different class intervals of these characters) of each parent. In the upper part of Figure lla there are a number of plants which have an association of the following morphological characters: long primary axis, many racemes which are longer, and have more secondary branches than those of the Mediterranean type ($\mathrm{A}=4390$), and thick racemes, the glumes of which possess more hair than those of the Tropical type. These plants are all tetraploids, and a few of them resemble D. papillo sum Stapf。

The morphological indices of these tetraploid plants range from - 2 to 11 , but most of them had index values between those of the parents (Fig. IIC).

Origin of Dichanthium papillosum Stapf

F_{1} Hybroids
On of the hybrids involving the Tropical type and the Mediterramean type was hexaploid, and it resembled the South African type (D. papillo sum Stapf) both cytologically and morphologically (Table V, for details see Appendix A and B) Nine accessions of the South African type used in the morphological study are obligate apomicts or at least very strongly apomictic, but this hybrid is sexual.
F_{2} Population
The morphology of one hundred and twenty-five F_{2} plents was studied in detail. Seven morphological characters were analyzed, and the data were recorded in five class intervals (Table IV). The range of variation of the average values of these characters is presented in Figure 12, and the data are compared with those obtained from the parents and the F_{1} hybrid (Table V)。

It is seen from Figure 12 that considerable variation occurs in all of the characters studied. The average values for most of the charace ters ranged from very low values (lower than the lower parent or hybrid) to very high values (higher than those of the higher parent or hybrid)。

Patterns of morphological variation of the parents, F_{1} hybrid, and F2 population were analyzed by using the pictorialized scatter diagram

Legend for Figure 12

Frequency Histograms Showing Morphological Variation in the F_{2} Plants Obtained by Selfing the $6 \mathrm{n}_{1}$ Hybrid be tween the Tropical and the Mediterranean Type

Fig. 13. Morphological analysis of the F2 population, obtained by selfing the 6n Fl hybrid between the Tropical and Mediterranean types of the Dichanthium annulatum complex.
A. Frequency histogram for the morphological indices.
B. Pictorialized scatter diagram.
method, and the data are presented in Figure 13B. Morphological in dices were prepared for these plants according to the hybrid index method (Fig。13A).

Character association analysis of this population seems to suggest that there are four fairly recognizable groups, as follows: Group I.

This group is composed of two erect plants and two decumbent plants. All these plants are short,bearing short inflorescences with few racemes which are short in length. Furthermore, three of these plants have thin racemes, while the fourth has medium thick racemes. The presence of erect habit and thin racemes in two of these plants seems to indicate a resemblance to the Mediterranean type. One of these plants has medium thick, unbranched, and short racemes which are fewer in number, and it looks like the diploid Tropical type. The fourth plant is decumbent, and it has very thin racemes (thinner than the Mediterranean type) which have medium pubescent glumes on its sessile spikelets. This plant seems to have a combination of the characters of the Tropical and Mediterranean types. The morphological indices of these four plants show a range from - 2 to 2 .

Group II.
The second group, located at the lower side of the Figure 13B is composed of thixty plants. Most of these plants have few unc branched racemes on a short primary axis. These plants show vare iation in growth habit (prostrate, decumbent, or erect), the width and the length of the racemes, and the amount of hair on the first glumes of the sessile spikelets. Different plants seem to
have varying combinations of these characters (or their class in tervals). One of these plants is decumbent, and it has thin racemes, the glumes of which are medium pubescent. In general, several plants belonging to this group seem to have the same class intervals of several characters studied as those of X-98. The morphological indices show a range from -i to 4. Group III。

The bulk of the plants belong to this group. The following morphological types were recognized as follows:

Type A.
This type is composed of three plants which seem to have the same class intervals of several morphological characters as those of $A=4390$ (Mediterranean type). All these plants are erect and have thin racemes. The morphological indices renge from 8 to 12 .

Type B.
This type is composed of four plants which seem to have the same class intervals of several characters as those of the F_{1} hybrid. All these plants have the following characo ters: erect habit, long primary axis, long racemes which are thick, bearing secondary branches (except in one) and more in number than $\mathrm{A}-4390$, and very pubescent glumes of the sessile spikelets.

Type C.
This type is composed of several plants which possess varying combinations of the characters (or class intervals of characters) of the parents and the FI hybrid. In
general, many intergrading types are seen, and their respecom tive morphological indices show a wide range (3-01) of variation.

Group IV.
Eight plants belong to this group. These plants have, in general, the following characters: many racemes which are thick and have many secondary brenches.

Morphological analysis reveals that these plants seem to have an assaciation (or a tendency of association of the following characters: very long inflorescences with many secondary branches, thick racemes, and pubescent glumes of the sessile spikelets. All these characters show higher index values in these plants than those in the F_{1} hybrid and the naturally occurring D papillosum Stapf. The morphological indices range from 10 to 12.

In general, it seems that several combinations of the chare acters of the Tropical, Mediterranean, and South African types are represented in this population.

The problem of the origin and evolutionary mechanics of the Dichan thium annulatum complex has been approached from the point of view of experimental taxonomy, including comparative morphology and geographic distribution, as well as from the points of view of genetics and cytom logy. It is, therefore, appropriate to examine the findings from this complex in the light of the entire series of investigations.

The Dichanthium annulatum complex consists of a polyploid series with the basic building material of $n=10$. As mentioned previously, although five may be the basic number for the tribe, ten is probably the basic building material in some groups, and those with $2 n=20$ should be considered as functional diploids (Celarier, 1957; Celarier and Harlan, 1957; Celarier et al., 1958). Cytological investigation has revealed that diploids, tetraploids, and hexaploids are common, triploids, and probably others may occur oceasionally, but there is no indication of aneuploidy in nature. The diploids and hexaploids seem to be fairly well correlated with geographical distribution and morphoo logical appearance, but the tetraploids show no such obvious correlac tion.

Detailed studies of meiosis in the tetraploid and hexaploid types have shown that some of the chromosomes in them can associate to gether to form multivalents. This would indicate that some of the chromosomes (or segments of chromosomes) are homologous. The question arises whether such polyploid types would have arisen by segmental
allopolyploidy or by auto-allopolyploidy or by autopolyploidy followed by a long period of chromosome and genetic differentiation. Stebbins (1947, 1950) has described in great detail the occurance and charo acteristics of polyploids, and has also pointed out the difficulties in classifying them. Chromosome associations at the first division of meiosis are the usual source of information concerning type of polyploidy in a given plant. The presence of multivalents is considered as an indication of autopolyploidy and their absence allopolyploidy (Stebbins, 1950). However, Muntzing and Prakken (1940) and Giles and Randolph (1951) have proposed, for two different reasons, that the absence of multivalents should not be treated as an evidence of allopolyploidy. The former authors found a genotypically controiled ten dency to form only bivalents in an autopolyploid Phleum. The latter authors conducted a detailed study of the frequency of quadrivalents in a strain of autotetraploid maize at the beginning and end of a ten year period. They found that there were fewer quadrivalents and more bivalents at the end of the period than those at the beginning. The meiotic behavior of the chromosomes in most of the tetraploids is slightly irregular, with low frequencies of univalents and quadrivelents at metaphase I, a condition which suggests that they are segmental allow polypioids. The presence of chromosore bridges and fragments suggests structural hybridity, but it does not, however, prevent synapsis. Some of these quadrivalents may be the result of translocation. Besides, some accessions were characterized by the presence of a high frequency of univalents (sometimes also multivalents), a low frequency of bic valents, and a high frequency of lagging chromosomes at anaphase I. Such a condition may be due to polyploidy and hybridization.

Harlan and Celarier (1957) have shown that apomixis is the prew dominant method of reproduction in the tetraploids and hexaploids, and that the diploids are apparently completely sexual. Although the hexam ploids may be obligate apomicts, the tetraploids are facultative with the percent sexuality ranging from possibly 10 down to less than one

Pollen fertility studies have demonstrated the presence of a high percentage of stainable (with acetocarmine) pollen even in the cytologic cally irregular types of $\mathrm{D}_{\text {。 annulatum. (Celarier et al., 1958). It }}$ has been shown previously that the pollen is needed to stimulate seed production even though the materials are apomicts and the pollen does not function in the fertilization of the egg (Celarier and Harlan, 1957).

All of the available evidence suggests that the D。annulatum complex is primarily agamic. This situation is somewhat similar to the polyploid complex as described by Babcock and Stebbins (1938) in Crepis. The diploids studied are all of one morphological type, but because of the limited collections available for study, it seems likely that diploids may also be found in the other morphological types. There is another possibility that diploids were in abundance in the long past, but now they occus as polyhaploids among the otherwise tetraploid populations where they are not easily distinguishable from the tetraploids. Polyhaploids (2 n 9 20) have been recovered among the segregating populations of hybrids involving the Tropical and Mediterranean tetraploids. Diploids seem to form the foundation for the genome building processes, since it has been demonstrated that dio ploids occasionally produce sexual tetraploids, and these in turn can be crossed readily with other tetraploids. The tetraploid compliment of this complex is in several respects the most unstable, and is
likely to be still in very active state of evolution. Hexaploids studied in the present investigation were all of one morphological type, the South African type, and were very similar with respect to several morphological characters.

In the light of the present investigation a working hypothesis (Fig. 15) concerning the origin of the various types and their present activities is proposed, as follows:

The Tropical tetraploids having the same morphological apo pearance as the diploids, they probably arose as a result of crossing between two genetically somewhat different Tropical die ploids followed by chromosome doubling. This would, therefore, be a segmental allotetraploid, and it is also assumed that it would still be sexual. As explained by Stebbins (1950) such a polyploid has the ability for genetic segregation, in respect to both the morphological differences between the parental types and the chromosomal differences which formed the sterility barriers between the parents.

Natural selection would be continually operating in such polyo ploids, especially in relation to fertility. Although the direce tion of evolutionary trend would depend on the constitution of the individual chromosomes, it is likely that reproductive isolating mechanisms shall eventually develop among the different ecotypes. Some isolation could be expected because of self fertilization or apomixis. In any event, during this period an extremely polyo morphic population would be expected and it might well have covered the major portion of the range of the geographical dise tribution of the complex, even though the parental types may have

Fig. 15. The origin and evolution of the Dichanthium annulatum complex. (V) Introgression between the two taxa)
been distinct morphological units with restricted ranges. It is further to be expected that if at this stage the genetic mechanism for facultative apomixis was developed, it would be easy to visc ualize how swarms of quite heterozygous clones might have become established in nature. It is also known that facultative apomixis can still exhibit some amount of crossing and recombinations (Clausen, 1954; Celarier and Harlan, 1957). The observed morphoo logical variation in the tetraploids appears to be very similar to what would be expected if such a condition existed in them. The morphological differences between the Mediterranean and Tropical types are slight and somewhat obscured by a few accessions which are intermediate between the two. Nevertheless the Mediterranean type seems to be slightly more irregular cytologe ically and most of the differences found in the Mediterranean type (the thinness of the racemes, less pubescence on the glumes, long racemes with secondary branches, and erect habit) are in the direction of the closely related genus Bothriochlog. It is likely that the Meditermanean type may be the product of the introgression of genes from one or more Bothriochlog species into the Tropical type.

It is also noted that one accession of this complex that did not easily fit into either the Tropical or Mediterranean types was extremely irregular cytologically. Harlan (1960 in press) has pointed out the morphological evidence of introgression between Bothriochloa intermedia and Do annulatum through B. intermedia gangetica type. This accession is intermediate between the gangetica type B. intermedia and D. annulatum with respect to
several morphological characters, and it may represent further evidence of introgression between Dichanthium annulatum and Bothriochloa intermedia. Such introgression is probably occurring at the present time, especially in those areas where several species of Dichanthium and of closely related genera occur side by side, and where there is considerable environmental variation.

Relationships of the Tropical and Mediterranean Types

Cytological studies of the F_{1} hybrids involving these types rem vealed that most of the chromosomes (36 to 40) pair as bivalents. The average chromosome configurations were analyzed in all hybrids separately, and these were observed to be similar to those of their respective parents. The question axises as to whether the pairing was between the compliments of the two parents or whether it was partially or completely by autosyndesis i.e., pairing within each of the parental compliments. Since these plants are tetraploids and their chromosomes are extremely similar in their morphology, no direct distinction is possible, therem fore only indirect evidence may be used in determining the nature of pairing. The possibility cannot be overlooked, nevertheless that the two genomes in a particular species might have some homology, which due to differential affinity between the chromosomes (Darlington, 1937), is not expressed in the multivalent formation. Also, the formation of bic valents in the parents may be genotypically controlled as in Phleum (Muntzing and Prakken, 1940).

It does not seem to be likely that autosyndesis occurs in the F_{1} hybríds, since firstly the quadrivalents were observed to have very low frequencies, and these were simple rings or chains, characteristic of
configurations resulting from structural hybridity, and secondly a considerable amount of recombinations between parental characters was obo served in the F_{2} populations, indicating segregation and crossing over between some of the chromosomes of the two parental types. Furthermore, although back cross progeny of this hybrid was not obtained, a back cross progeny involving the same female parent (recurrent parent), but D. fecundum S. T. Blake as a male parent was analyzed cytologically (Borgaonkar, unpublished). All of the plants analyzed in this cross were observed to be slightly irregular with a lack of high frequencies of trivalents, but a regular formation of $18=20$ bivalents at metaphase I. Thus, it seems more likely that these two morphological types (Tropical and Mediterranean) are very closely related, and that the chromosome pairing observed was due to allosyndesis.

Morphological analysis of the F_{2} population has revealed the prem sence of a considerable amount of segregation and almost all possible recombinations of the characteristics of these types. Some plants were observed to be dwarf, and these were polyhapioids ($2 \mathrm{n}=20$). These polyhaploids were of the Tropical type, Mediterranean type, and intermediates between these two types. Also, some plants were recovered in this population which showed a close resemblance to D. papillosum with respect to most of the morphological characters studied, while some other plants seemed to have a tendency to vary more towards the direce tion of the genus Bothriochloa than either of the parental types. Some of the F_{2} plants showed hybrid vigor and transgressive segregation with respect to several morphological characters. Nothing is known about the mode of reproduction of these F_{2} plants, but the fact to be emphasized about such an F_{2} population is that segregation in it is very complex
due first to the large number of gene pairs which are segregating simultaneously; second to the degree of sexuality; and third to the presence of probable introgression from Bothriochloa. As a result a genotype exactly like the parents shall be recovered rarely, but a cono siderable number of new gene recombinations will be formed. The obw served morphological variation of the plants from this F_{2} population seems to be similar to what has been demonstrated experimentally in the progeny of artificial hybrids between the subspecies of plants (Clausen and Hiesey, 1958.

The Origin of D. papillosum Stapf

Although all of the hexaploids studied were of one morphological type i.e., South African type, they seem to have two cytological types. One group, including the entries from South Africa, is characterized by the presence of many univalents and few quadrivalents at metaphase I. There is a noticeable increase in univalents and a decrease in quadrivalents as compared to the tetrapioids. This condition might be explained as the result of increased differentiation in the chromosomes of the hexaploids in comparison to those of the tetraploids. These cytological results are similar to those obtained from hexaploid X hexaploid hybrids in which four genomes are involved (Brown and Menzel, 1952). It is assumed that in this hexaploid type two genomes are represented twice and that their chromosomes pair with fair rega ularity, whereas the other two genomes are represented only once and pairing between them is poor. It might be represented as follows:

$$
\begin{gathered}
A A A_{1} A_{1} A_{2} A_{2} \times A A A_{1} A_{1} A_{3} A_{3} \\
A A A_{1} A_{1} A_{2} A_{3}
\end{gathered}
$$

The other hexaploid type，including the Australian accession，is characterized by the presence of few univalents，a considerable number of quadrivalents，and frequent hexavalents at metaphase I．This accesco sion seems to have lesser differentation of chromosomes than the South African accessions．Fertilization of an unreduced gamete of one tetrac ploid type by a reduced gamete of a closely related tetraploid type would be expected to produce something similar to this type．The genomes involved might well be AAAAAA․ It seems likely that the genomes involved in both cases are closely related，but probably differ in the degree of differentiation of their respective chromosomes．

Morphological studies of these hexaploids revealed that they have a combination of the characters of the Tropical（thick racemes and pubescent glumes）and Mediterranean types（long primary axis，long ram cemes with secondary branches，and erect habit）．In many respects they seem to represent extreme values of the characters of the Tropical and Mediterranean types．

Celarier et al．（1958）proposed that the South African type might be the product of the fertilization of an unreduced egg of the Tropical type of D ．annulatum by a normal gamete of a closely related South African species Do aristatum or vice versa。

In a personal commuication to Dr。R。P。Celarier，the Chief Divie sion of Botany，Department of Agriculture，Pretoria，South Africa has expressed his suggestions and criticisms about the proposed（Celarier et al．，1958）mode of origin of the South African type，i。e．，D． papillosum（for details see Appendix D）．Part of the letter reads， as follows：
...I also noticed that you have considered the possibility of the D. annulatum hexaploid originating as a result of hyo bridization of the latter with D. aristatum C. E. Hubbard. This, however, is highly unlikely since D. aristatum is, as far as I know, an Australian species and its occurance in South Africa is of a local nature ${ }_{\text {d }}$ In my opinion, it is certainly introduced and occurs except for one other locality/ only at Onderstepoort just North of Pretoria, where it maintains itself, being common in some years and probably absent in others. It does not seem to have spread in ten years, I have observed it. One other record is known from Natal, but again the plant was growing not very far from an agricultural research station. I am sending you this information to clear up the wrong impression that might have been created when these specimens of D. aristatum were sent to you. I suppose that no note to say that it was introduced accompanied the specimens.......

One of the F_{I} hybrids involving the Tropical and Mediterranean types turned out to be 2 n 960 . It is very likely that an unreduced egg of the Tropical type was fertilized by the reduced gamete of the Mediterranean type. This hybrid was sexual, and it was observed to be very similar in moxphological appearance and meiotic behavior to the African Do papillosum (South African type) used in the present investigation.

Harlan et al. (1958) have pointed out that the faculty for the production of functional unreduced eggs is probably widespread in the Bothriochloeae, especially among the $4 n X 4 n$ crosses. They have shown that in the cross involving Bointermedia gangetica 2655 X D. annulatum 4099 a number of hybrids were obtained, about two thirds of which had the 6 n number of chromosomes. Also, Celarier (unpublished) obtained a similar situation in crosses involving D. caricosum X D. aristatum.

An analysis of the F_{2} plents obtained by selfing the synthesized D. papillosum showed that considerable variation exists in them with respect to the morphological character studied. In general, several combinations of the characters of the Tropical, Mediterranean, and

South African types were represented in this population.
Cytological studies are still to be conducted in this population, and it does seem likely that types with less than $2 \mathrm{n} \cong 60$ (also more than $2 \mathrm{n}=60$), may be recovered in this population.

As mentioned already, a few individuals from the F_{2} population ob tained by selfing $4 n F_{1}$ hybrids showed transgressive variation which in some characters exceeded the limits of both parents. Some of these plants showed much resemblance to the South African type, and it is likely that this might be a beginning of something like the South African type. Furthermore, it seems that a double dosage of the Tropis cal type may be required to produce the hexaploid South African type. It should also be pointed out that the Australian hexaploid with a high frequency of quadrivalents and hexavalents might be the product of the fertilization of an unreduced gamete of the Tropical type by a normal gamete of another type of the D. annulatum complex which is more closely related to the Tropical type than the Mediterranean type.

SUMMARY

The problem of the origin and evolutionary mechanics of the Dichan thium annulatum complex has been approached from the point of view of experimental taxonomy.

A detailed cytological and morphological study of the Do annulatum complex was conducted from samples collected from almost all of its range of geographical distribution. In this study nintyoseven acceso sions were analyzed cytologically and fiftyothree morphologically.

Assuming ten to be the basic number, eight diploids, eightymtwo tetraploids, and seven hexaploids were examined.

In general four morphological types could be recognized (Tropical, Mediterranean, French West African, and South African), but there were a few accessions that did not fit very well into any of these categories. Some of these types seem to show evidente of introgression from the genus Bothriochloa.

The diploids were all of the Tropical type and found only in the Gangetic plain of northern India, the hexaploids were all of the South African type and seemed to be restricted in southern Africa, but the tetraploids were of several morphological types and distributed throughout the tropics from French West Africa to the Fiji Islands.

During meiosis the diploids were completely regular, and the hexam ploids were extremely irregular. The tetraploids showed almost all intermediate degrees of irregularịties.

The irregularities commonly observed were the presence of univalents and multivalents besides bivalents at metaphase 1 , lagging chromoo somes and chromosome bridges with fragments at anaphase I and telophase I, lagging chromosomes at anaphase II, and micronuclei at both the dyad and tetrad spore stages. These irregularities were the same in all accessions which differed from one another only in the frequencies of these irregularities.

For the most part, the chromosomal irregularities encountered are those commonly associated with polyploidy and hybridization, and both of these have evidently played a part in the evolution of the complex.

Morphological evidence seemed to suggest possible introgression of this complex with species of the genus Bothriochloa. Also, further evidence was obtained for the possible introgression between the Tropical and Mediterranean types.

Morphological and cytological studies of the F_{1} hybrids involving the Tropical and Mediterranean types revealed that the pairing of the chromosomes in them was normal, and that these hybrids were intermediate between the parents with respect to several morphological characters. The morphological analysis of the F_{2} progeny showed considerable amount of recombinations between the parental characters, thus indicating that these types are very closely related.

In one of the hybrids an unreduced egg of the Tropical type appears to have been fertilized by a reduced gamete of the Mediterranean type. This hybrid looked very much like the South African type, and its F_{2} progeny showed considerable variation in the direction of the South African type, Tropical type, and to some extent the Mediterranean type.

Taking ail these factors into account a working hypothesis of the origin of the various components of the complex and their respective present activities wes proposed.

SELECTED BIBLIOGRAPHY

Anderson, E., 1936. Hybridization in American Tradescentias: Ann. Mo. Bot. Gard. 23: 457-509.
, 1949. Introgressive hybridization. New York.
=, 1957. A semigraphical method for the analysis of com plex problems. Proc. Nati.Acad. Sci. Vol. 43: 923-927.

Andrews, Fo. W., 1956. The flowering plants of the AnglowEyptian Sudan. Vol. 3. Scotland.

Ascherson, P. and G. Schweinfurth, 1887. Illustration de la Florae D Egypte. Le Caire: 24-259.

Babcock, E. D. and G. L. Stebbins, 1938. The American species of Crepis; their relationships and distribution as affected by polyploidy and apomixis. Carnegie Inst. Washington, Pabl. No. 504.

Ball, J., 1877. Spicilegium florae Moroccanae. Morocco.
Battandier, J.A. and L. Trabut, 1895. Floriae de LioAlgerie. Vol 2: 1-25b. Alger.
, 1902-04. Florae analytique et synoptique de L^{0} Algerie et de la Tunisie. I-40b. Alger.

Bews, J. W., 1929. The world's grasses. London.
Blake, S. F. and A. C.Atwood, 1942. Geographical guide to the floras of the world. Part I. U.S.D.A. Mis. Publ. No. 407: l-33b. Washington, D。C.
, 1944. Monographic studies in the Australian Andropogoneae I. Univ. of Queensland Papers. Dept. of Biology 2: l-62.

Blatter, E_{0}, 1936. Florae Arabica. Records of Botanical survey of India. Vol. 8: 465-496.
and C. McCann, 1935. Bombay grasses. Delhi, India.
Boissier, E., 1884. Flora orientalis. Genevae。
Bor, N. L., 1940. Flora of Assam. Vol. 5. Calcutta, India.

Bor, N. L., 1947. Common grasses of the United Provinces. Indian Forest Records. Vol. 2: 1-220.

Borgaonkar, D.S., 1960. Relationships of Dichanthium fecundum with D. annulatum. (unpublished).

Broun, A. F. and R.E. Massey, 1929. Flora of the Sudan. pp. 1-502. Iondon.

Brown, M. S. and M. Y. Menzel, 1952. Polygenomic hybrids in Gossypium I. Cytology of hexaploids, pentaploids, and hexaploid combinations. Genetics 37: 242-263.

Burkill, I. Ho, 1909. A working list of the flowering plants of Baluchistan. pp. I-136. Calcutta, India.

Camus, A., 1951. Le genre Dichanthium a Madagascar et dans les iles Mascariegnes. Bull. du Mus. 23: 310-312.
and A. Camus, 1922. Gramineae. In le Comte, H. "Flora de L^{8} IndomChina ${ }^{19}$. Vol. I: Paris.

Celarier, R. Po, 1956. Tertiary butyl alcohol dehydration of chromosome smears. Stain Tech. 31: 155=157.
, 1956. Additional evidence for five as the basic chromosome number of the Andropogoneae. Rhodora 21: 272-291.
\qquad 195\%. The cytogeography of the Bothriochloa ischaemum complex II. Chromosome behavior. Amer.Jour. Bot. $44(9): 729=$ 738.
, 199%. Elyonurus argenteus, a South African grass with five chromosome pairs. Bull. Torr. Bot. Club 84: 157-162.
and J. R. Harlan, 1955. Studies on Old world Bluesstems. 0kla.Agrio. Exp. Sta. Tech. Bull. T-58: 1-31。
, 1956. An Andropogoneae garden in Oklahoma. Taxon. 5: 183-186.
, 1957. Apomixis in Bothriochloa,
Dichanthium, and Capillipedium. Phytomorph. 7: 93-102.
1958. The cytogeography of the

Bothriochlog ischaemum complex I_{0} Taxonomy and geographic distribution. Joux. Linn. Soc. (Bot.). LV: 755-760.
and K. L. Mehra, 1958. Determination of polyploidy from herbarium specimens. Rhodora 60: 89-97.

Celarier, R. P. and K. L. Mehra, 1959. Desynapsis in the Andropogoneae. Phyton. 12(2): 131-138.
and M. L. Wulf, 1958. Cytogeography of the Dichanthium annulatum complex. Brittonia 10: 59-72.

Chippindall, L.K.A., 1955. A guide to the identification of grasses in South Africa. Grasses and pastures of South Africa Part I: 1-527. Parow, Cape Province.

Clausen, J., 1954. Partial apomixis as an equilibrium system in evolution. Caryologia 21: 1-10.
, D.D.Keck, and W. M. Hiesey, 1945. Experimental studies on the nature of species II. Carn. Inst. Wash. Fubl. No. 564. and W. M. Hiesey, 1958. Experimental studies on the nature of species. IV. Carnegie Inst. Wash. Pub. 615.

Collett, Ho, 1902. Flora Simlensis. Simla, India.
Cooke, T_{0} 1908. Flora of the Presidency of Bombay. pp. I-183. London.

Crowfort, G. M., 1928. Flowering plants of the northern and central Sudan. Leominster.

Cuenod, A., 1954. Florae analytique et synoptique de la Tunisie. Tunisia.

Darlington, C. D., 1937. Recent advances in cytology. Ed.2. London. and A. P. Wylie, 1955. Chromosome atlas of flowering plants. London.

De Wet, J.M.J., 1954. Chromosome numbers of a few South African grasses. Cytologia 19: 97-103.
and L.J.Anderson, 1956. Chromosome numbers in
Transvaal grasses. Cytologia 21: 1-10.
Dinsmore, J. E., 1911。 Die Pflanzen Palastinas. pp. 1wi22. Leipzing.

Durand, T. and H. Schinz, 1892-94. Conspectus Florae Africae. Vol. 5. Monocotyledoneae \& Gymnospermeae. Bruxelles. pp. l-977.

Ewart, A. J., 1917. The flora of the Northern Territory. Melbourne.
Forskal, Po, 1775. Flora Aegyptiaco - Arobica sive descriptiones plantarum. Houniae. pp. 1-220.

Gamble，J．S．，1934．Flora of the presidency of Madras．Part X． Gramineae．London．

Gardner，C．Ao，1952．Flora of Western Australia．Vol l：Pt．I． 297－344．

Giles，A．and L．F．Randolph，1951．Reduction of quadrivalents freo quency in autotetraploid maize during a pexiod of ten years． Aner．Joux．Bot．38：12－17．

Gould， F_{o} W．，1956．Chromosome counts and cytotaxonomic notes on grasses of the tribe Andropogonege．Amer．Jour．Bot．43：395－ 404。

Govindu，H．C．and M．J．Thirumalachar，1952．Grass flora of Mysore． Tech．Bull．I．Coll．Agri．Bangalore，India．

Hackel，E．，1889．Andropogoneae in De Candolle＇s，A Monagraphiae Phanerogamarum．Vol．6．Paris．

Haines，H．H．，1924．The botany of Behar and Orissa．London．
Handel－Mazzetti，Ho，1936．Symbolae Sinicae．Vol．VII．Austria．
Harlan，J．Ro，1960．The genetic basis for polymorphism in Bothriochloa intermedia A ．Camus．（in press）．
，R．P．Celarier，W．L．Richardson，M．H．Brooks，and K．L． Mehra，1958．Studies on Old World Bluestems．Okla．Agri．Expt． Sta．Tech．Bull．T－72．pp．1－23．

Henard，J．To，1940．Notes on the nomenclature of some grasses． Blumea 3：411－480．

Hitchcock，A．So，1929．Grasses of Canton and vicinity．Lingnan Science Jour．Vol 7：177－188．

1935．Manual of the grasses of the United States． Washington，D．S．

Hooker，J。 $\mathrm{D}_{\mathrm{g}}, 1897$ ．Flora of British India。 Vol．7．London．
Hubbard，C．E．，1934．Gramineae Australienses II．Kew Bull．LIV： 444－451．
and R．E．Vaughan，1940．Grasses of Mauritius and Rodrigues．London．

Hutchinson，J．and J．M．Dalziel，1927．Flora of West Tropical Africa． Vol．2．London．

Janaki－Ammal，E．Ko，1945．In Darlington and Janaki－Ammal．＂Chromo－ some atlas of cultivated plantsm．London。

Karper，R．E．and A．T．Chisholm，1936．Chromosome numbers in Sorghum． Amer．Jour．Bot．23：369－374．

Keng，Yo Lo，1933．The grassea of China。 Ph．D．Dissertation at George Washington University，Wash．，D．C．

Komarov，V．L．，1934－1945．Flora Unionis Rerumpublicarum Sovieticarum Socialisticarum．Moscow．

Krishnaswamy， N_{o} ，1941。 Untersuchungen zur cytologie und symtematik der Gramineen．Beih．Bot．Centro Blatt 60：1－56．

Marloth， R_{\circ} ，1915．The flora of South Africa．Vol．IV：1－208． Capetown．

Mehra，K．L．，1955．Chromosome numbers in the tribe Andropogoneae， Gramineae．Ind．Jour．Gen．\＆Pt．Breed．15：144．
and R．Po Celarier，1958．Cytotaxonomic notes on the Dichanthium annulatum complex．Proc．Okla．Acad．Sci．38：22－25．
\Rightarrow and J．RoHarlan，1959．Effect of environment on selected morphologicel characters in the Dichanthium annulatum complex．Proc．Okla．Acad．Sci．Vol． 40 （in press）．

Muntzing，A and R．Prakken，1940．The mode of chromosome pairing in Phieum twins with 63 chromosomes and its cytogenetic consequences． Hereditas．26：463－501．

Muschler，Ro，1912。A mamual flora of Egypt．Vol 1s lab72。Berlin．
Nees，A．，1841．The Botany of captain Beechey＇s voyage．Iondon．
Oke，J．G．，1950．Chromosome numbers in some species of Dichanthium Willemet and Bothriochioa 0．Kuntze．Proc．Ind．Acad．Sci．32： $227-230$ 。

Pandeya，S．C．，1953．Studies on the morphology and ecology of three species of Dichanthium．Jour．Ind．Bot．Soc．32：86－99．

Parsa，A．，1952．Flore de L＇Iran．VoI。V．Andropogoneae：pp．529＝ 549．Teheran，Iran．

Post，G。E．，1933．Flora of Syria，Palestine，and Sinai。 Vol．2：lo 928．Beirut．

Prain，Do，1903．Bengal plants．Vol．I．Londono

Rangachaxiyar，K．，1921．A handbook of some South Indian grasses． Madras．

Rendle，A．B．，1906．Gramineae．London．
Rhind，Do，1945．The grasses of Burma．Calcutta，India．
Richardson，W．L．，1958．A technique of emasculating small grass florets．Vol．18：69－73．

Roxburgh，Wo，1874．Flora indica．pp．1－763．Calcutta．
Sauer，G．F．，1947。A list of plants growing in the Lingnan University campus and vicinity．Canton，China．

Sikka，S．M．and K．L．Mehra，1956．Cytological investigations in the tribe Andropogoneae，Gramineae I．Prac． 43 rd Ind．Sci。Cong．Part IV：18－19．

Stapf，O．，1917－19．Gramineae in Prain＇s Flora of Tropical Africa． Vol．9．London．

Stebbins，G。L．Jro，1947．Types of polyploids：their classification and significance．Adv．Genetics．1：403－429．
，1950．Variation and evolution in plants． Columbia Univ．Press，New York．

Stewart，R．R．，1945．The grasses of Northwest India。 Brittonia 5： $404=468$ 。

Sturgeon，K．E．，1954。 A revised list of the grasses of Southern Rhodesia．Rhod．Agri。Jour．15：12－27．

Sumerhayes，V．S．and C．E．Eubbard，1927．The grasses of the Fiji Islands．Bull．Mis．Info pp．18－44．

Swallen，J．Ro，1950．Some introduced forage grasses of the genus Andropogon and related species．Contr．Texas Res．Found．I：15－19．

Tackholm，Vo，G。Tackholm and Mo Drasoi，1941．Flora of Egypt．Vol．I。 Cairo，Egypt．

Trimen，H．，1900．Handbook of the flora of Ceylon．London．
Trochain，Jo 1940。Contribution A Lietude de la vegetation du Senegal．Memoires de L＇institut Francais D＇Afrique Noire．No． 2 pp．l－433．Paris．

Willemet，1796．Usteri，Ann．Bot．XVIII．
Zohary，M_{c} ，1946－50．The flora of Iraq and its phytogeographical sub－ division．Bull．31：1－20，162－189．Iraq．

APEOLIES

APPENDIX A

TABLE I

GHROMOSOME CONFIGURATIONS OF D。 annulatum COMPLEX AT DIAKINESIS AND METAPHASE I

					Average per cell				No. of Cells Studied
A No.	Collector	Location	2 n	Range	I	II	III	IV	
		Diploids							
3242	K. Biswas	Calcutta, India	20	1011		10			50
$3965(\mathrm{~b})$	K. Biswas	Calcutta, India	20	1011		10			50
6180	K. I. Mehra	Calcutta, India	20	1011		10			25
5396	K. L, Mehra	Belatal, India	20	0-2I, 9-10II	0.32	9.84			50
6224	F.W. Gould	New Delhi, India	20	10II		10			25
6577	Crop Res. Br.	Delhi, India	20	IOII		10			25
6792	K. L. Mehra	Burma	20	10II		10			25
1526(b)	J. Smith =	South Texas	20	10II		10			50
		Tetraploids							

| 3182 | A. Kamm | N. Gallilea, Israel | 40 | $0=4 I, 15=20 I I, 0-2 I V$ | 0.88 | 18.20 | 0.68 | 38 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3789 | H. Said | Giza, Egypt | 40 | $0=7 I, 10=20 I I, 0=3 I V$ | 2.20 | 18.00 | 0.45 | 50 |
| 94 | | Moroceo | 40 | $0-4 I, 14-20 I I, 0=1 I I I, 0.64$ | 18.44 | 0.08 | 0.56 | 50 |

TABLE I (Cont ${ }^{\text {d }}$)

TABLE I (Cont ${ }^{\text {d }}$ d)

A No.	Collector	Location	2 n	Range	Average per Cell			IV	No. of Cells Studied
5128	H. W. Springfield	Baghdad, Iraq	40	$\begin{array}{r} 0-2 I, 17-201 I, 0=1 I \\ 0=1 I V \end{array}$	0.45	18.70	0.05	0.50	20
5131	\%	*	40	0-4I, 17-20II, 0 -1III 0 -	0.68	19.12	0.12	0.18	50
5134	* 11	\%	40	$\begin{array}{r} 0-3 I, 16-20 I I, 0=1 I I I \\ 0=2 I V \end{array}$	0.52	18.60	0.12	0.48	25
5136	¢ m	*	40	$\begin{array}{r} 0=4 I, 15-20 I I, 0=1 I I I \\ 0=2 I V \end{array}$	1.10	18.20	0.10	0.55	20
5139	88	\because	40	$\begin{array}{r} 0-2 I, 16-20 I I, 0=1 I I I \\ 0=2 I V \end{array}$	0.42	18.98	0.06	0.36	50
5143	\% ${ }^{\text {n }}$	®	40	$\begin{array}{r} 0-2 I, 16=20 I I, 0=1 \text { III } \\ 0=2 I V \end{array}$	0.32	18.60	0.16	0.50	60
5145	118	"	40	$\begin{array}{r} 0-2 I, 15-20 I I, 0=1 I I I \\ 0=2 I V \end{array}$	0.68	18.72	0.04	0.44	25
5146	\% \quad "	\because	40						10
4099	J. E. Smith	Punjab, India	40	$\begin{array}{r} 0=2 I, 16-20 I I, 0-1 I I I \\ 0-2 I V \end{array}$	0.24	19.08	0.08	0.34	50
4636	Fodder Res. Sta.	Sargodah, West Pakistan	40	$\begin{array}{r} 0-2 I, 16-20 I I, 0-1 I I I \\ 0=2 I V \end{array}$	0.80	18.52	0.16	0.42	50
6575	Crops Res. Br.	Bannu, Pakistan	40	$\begin{array}{r} 0-4 \mathrm{I}, 16=20 I \mathrm{I}, 0=1 \text { III } \\ 0=2 I V \end{array}$	0.58	18.36	0.10	0.60	35
6073	JoJ。Norris	Tando Jam, West Pakistan	40	$0=2 I, 16-20 I I, 0 \sim 2 I I I$	0.50	19.0	0.10	0.30	30
6225	Gould	Kandahar, Afghanistan	40	$\begin{array}{r} 0-7 I, 15-20 I I, 0=1 \text { III } \\ 0=1 I V \end{array}$	1.78	18.72	0.18	0.06	50
6573	Gould		40	$\begin{gathered} 0=4 \mathrm{I}, 16-20 I I, 0-2 I I I \\ 0=2 \mathrm{IV} \\ 0-4 \mathrm{I}, 16-20 I I, 0=2 \mathrm{IV} \end{gathered}$	$\begin{aligned} & 0.74 \\ & 0.52 \end{aligned}$	18.30	0.22	0.50	50
2564	B. P. Pal	New Delhi, India	40			19.00		0.37	50

TABLE I (Cont ${ }^{\circ} \mathrm{d}$)

A No.	Collector	Location	2 n	Range	I	II	III	IV	No. of Cells Studied
2568	C. R. Mudaliar	Madras, India	40	$\begin{array}{r} 0-4 I, 14-20 I I, 0=1 I I I \\ 0=3 I V \end{array}$	0.30	18.20	0.06	0.78	48
2654	\%	Coimbatore, India	40	$\begin{array}{r} 0-4 \mathrm{I}, 14=20 I I, 0=1 I I I \\ 0=3 I V \end{array}$	0.52	18.62	0.16	0.44	50
3227	T. A. Koshy	Allahbad, India	40	$0=2 I, 16-20 I I, 0-2 I V$	0.12	18.90		0.52	50
3713	\% 8	Allahbad, India	40	$\begin{array}{r} 0=3 I, 12-20 I I, 0-1 I I I \\ 0-4 I V \end{array}$	0.50	17.64	0.18	0.92	50
4019	M. S. Pawar	Hydrabad, India	40	0-2I, 16-20II, 0-2IV	0.82	18.96		0.32	25
4393	M. B. Raizada	Dehradun, India	40						10
4565	S. K. Mukherjee	Nadia, West Bengal India	40	$\begin{array}{r} 0-4 \mathrm{I}, 16-20 I I, 0-1 \text { IIII } \\ 0-2 I V \end{array}$	0.64	18.90	0.12	0.30	50
4600	D. Harper	Iucknow, India	40	$\begin{array}{r} 0=4 I, 14=20 I I, 0=1 I I I \\ 0=3 I V \end{array}$	0.58	18.34	0.14	0.58	50
5288	K. L. Mehra	Delhi, India	40	$\begin{array}{r} 0=4 I, I 6-20 I I, 0-1 I I I \\ 0=2 I V \end{array}$	0.64	18.86	0.12	0.32	50
5295	\% »	Coimbatore, India	40	$0 \sim 4 \mathrm{I}, 14 \sim 20 \mathrm{II}, 0-3 \mathrm{IV}$	0.40	18.56		0.62	50
5296	๗ »	Dharwar, India	40	0-2I, 13-20II, $0=3$ IV					
5302	S. M. Sikka	Karnal, India	40	$\begin{array}{r} 0-3 I, 16=20 I I, 0=1 I I I \\ 0=2 I V \end{array}$	0.36	18.74	0.08	0.48	50
5326	Bhola Nath	Indore, India	40	$\begin{array}{r} 0-6 I, 15-20 I I, 0-2 I I I \\ 0-1 I V \end{array}$	2.0	18.60	0.06	0.16	50
5397	K. L. Mehra	Mathura, India	40	$\begin{array}{r} 0-6 \mathrm{I}, 13-20 I I, 0-2 \mathrm{III} \\ 0=3 I V \end{array}$	2.60	16.50	0.15	0.98	50
5398	11%	Karnal, India	40	$\begin{array}{r} 0=4 \mathrm{I}, 12-20 I I, 0-1 \text { III } \\ 0-3 I V \end{array}$	0.46	18.34	0.18	0.58	50

TABLE I (Cont ${ }^{3}$ d)

TABLE I (Cont ${ }^{\circ} \mathrm{d}$)

A No.	Collec	tor	Location	2 n	Range	I	$\begin{aligned} & \text { Average per } \\ & \text { II } \end{aligned}$	$\begin{gathered} \text { Cell } \\ \text { III } \end{gathered}$	IV	No. of Cells Studied
4395			Cuba	40	O-2I, 17-20II, $0=1 \mathrm{IV}$	0.28	19.10		0.38	50
6263	J. L.	Spencer	Puerto Rico	40						10
5798	\%	\%	\% ${ }^{8}$	40	0-2I,16-20II, 0-2IV	0.32	19.16		0.34	50
5602	L.W.	Parham	Suva, Fiji Islands	40						10
5593	$8{ }^{8}$	$*$	\%	40	$\begin{array}{r} 0-2 I, 16-20 I I, 0-1 I I I \\ 0-2 I V \end{array}$	0.38	18.42	0.10	0.62	50
1526(a)	J. Smi		South Texas	40	0-2I, 15-20II, 0-2IV	0.24	18.44		0.72	50
2566	Trew		South Texas	40	0-2I,16-20II, 0-2IV	0.48	18.60		0.58	20
6373	F.W.	Gould	College Station, Texas	40	-0-2I,18-20II, 0-1IV	0.20	19.38		0.26	50
6375	\because	8	i \quad \%	40	$\begin{array}{r} 0 \sim 4 \mathrm{I}, 14-20 I \mathrm{I}, 0-1 I I I \\ 0=2 I V \end{array}$	0.68	18.60	0.04	0.50	50
6574	Crops	Res. Bro		40	$\begin{array}{r} 0-2 I, 18-20 I I, 0=1 I I I \\ 0-1 I V \end{array}$	0.18	19.32	0.02	0.28	50
6576	"	\% i		40		0.56	18.62	0.12	0.46	
6896	8	8 \%		40						
6981	*	$\because \%$		40						
7034	*	18		40	0-2I,15-20II, 0-2IV	0.20	18.54		0.66	50
7035	\%	$\because 1$		40	0-4I,17-20II, $0=1$ III	0.43	19.32	0.07	0.18	32
7036	"	* *		40	0-2I,18-20II, $0=1 \mathrm{IV}$	0.36	19.40		0.21	32

TABLE I (Cont ${ }^{\text {d }}$ d)

A No.	Collector	Location	2 n	Range	I	II	III	IV	No. of Cells Studied
7037	Crops Res. Br.		40	0-11,16-2011, $0=2 \mathrm{IV}$	0.08	18.76		0.60	25
7039	318		40	O-2I, 16-20II, 0-2IV	0.16	18.76		0.58	50
Hexaploids									
2567	J. Smith	South Africa	60	$\begin{aligned} & \text { O-10I, } 22=30 I I, \\ & 0=1 I I I, 0=2 I V \end{aligned}$	$\begin{aligned} & 5.04 \\ & 5.04 \end{aligned}$	$\begin{aligned} & 26.10 \\ & 26.10 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.20 \end{aligned}$	$\begin{aligned} & 0.54 \\ & 0.54 \end{aligned}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$
4080	J. E. Smith	South Africa	. 60	$\begin{array}{r} 0 \sim 5 I, 23-30 I I, 0-2 I I I \\ 0 \sim 3 I V \end{array}$	1.52	27.26	0.52	0.60	50
4081	J.E.Smith	South Africa	60						
4083	J. E. Smith	South Africa	60	$\begin{array}{r} 0=6 I, 24-30 I I, 0=2 I I I \\ 0-2 I V \end{array}$	2.05	27.25	0.35	0.60	40
4106	J. Eo Smith	South Africa	60						
3716	K.E.Sturgeon	Southern Rhodesia	60	0-8I,21-301I, 0-4IV	1.68	27.60		0.78	50
4788(b)	W. Hartley	Rodds Bay, Australia	60	$\begin{array}{r} 0 \infty 3 \mathrm{I}, 19 \propto 28 \mathrm{II}, 0 \propto 1 \mathrm{III} \\ 0=3 \mathrm{IV}, 0 \propto 3 \mathrm{VI} \end{array}$	0.40	24.55	0.10	1.65	50

TABLE I (Cont'd)

A No.			Average per cell			
	2 n	Range	I		III	IV
Synthetic Tetraploid						
X -98	40	0-6I, 15-20II, 0-1III, 0-3IV	1.24	17.08	0.12	1.06
Tropical Type X Mediterranean Type						
F_{1} Hybrids Artificial Hybrids						
56-X-22-1	40	0-4I, 16-20II, $0-1$ III, 0-2IV				
56-x-112-1	40	0-2I, 16-20II, 0 -2IV				
$56=x-116-1$	40	$0=2 I, 18=20 I I, 0=1 I I T, 0-1 I V$				
56-X-116-2	40	0-4I, 16-20II, 0-1III, 0-2IV				
57-X-1171-1	60	0-4I, 22-26II, 0-2III, 0-2IV				
57-X-1172-1	40	0-4I, 14-20II, 0-1III, $0=3$ IV				
		Natural fybrids				
55-X-98-1-0.P.-1	40	0-4I, 13-20II, 0-1III, 0-3IV	1.46	17.08	0.02	1.08
55-X-98-1-0. $\mathrm{P}_{0}-2$	40	0-4I, 13-20II, 0-11, 0-3IV	1.08	18.57	0.18	0.31
55-X - 98-1-0. $\mathrm{P}_{0}=3$	40	0-4I, 12-20II, 0-1I, $0-2 \mathrm{IV}$	1.18	17.60	0.22	0.74

TABLE I (Cont ${ }^{8}$ d)

A $=$ No.	2 n	Range	Average per cellIIIII			IV
$55-\mathrm{X}-98-1-0.40-5$	40	0-7I, 14-201I, $0-1 \mathrm{III}, 0-3 \mathrm{IV}$	1.94	17.42	0.14	0.70
$55-\mathrm{X}-98-1-0 . \mathrm{P}_{0}=6$	40	0-4I,16-20II, 0-2IV	1.60	17.80		0.70
$55-\mathrm{X}-98-1=0.5 \mathrm{Fa}$. 7	40	0=6I, 15-20II, 0-1III, 0-2IV	1.70	17.88	0.02	0.62
		F2 Progeny of 57-X-1172-1				

Polyhaploids
Six Plants*

Seven Plants*
20 0-2I, 9=10II
Tetraploids
$400=4 \mathrm{I}, 16=20 I I, 0=1 I I I, 0-2 I V$

* These plants are shown near the arrows in Figure 11, Group I (polyhaploids), Group II (tetraploids)。

APPENDIX A

TABLE II
CHROMOSOME BEHAVIOR AT ANAPHASE AND TELOPHASE IN THE D。anmulatum COMPLEX

Accession Number	$\begin{aligned} & \text { AT }-T I \\ & \text { age per Cell } \end{aligned}$						AII = TII Avergge per Cell			
	\% Normal	Lag. Ch	\div Lag	no \ddagger Lag	Bridges	Frag.	of Normal	Laggers	- 1ag.	no = Lag.
Diploids										
3242	100					*	100			
3965 (b)	100						7.00			
5396	100						100			
1526(b)	100						100			
Tetraploids										
3182	47	0.89	0.37	0.54	0.14	0.05	52	0.61	0.06	0.55
3789	50	0.87	0.15	0.72	0.04	0.03	37	0.88	0.06	0.82
94	74	0.50	0.38	0.12			81	0.44	0.06	0.38
4390	80	0.28	0.18	0.10			84	0.18	0.05	0.13
4391	81	0.24	0.18	0.06			90	0.11	0.02	0.09
4830	82	0.20	0.14	0.06			89	0.18	0.02	0.16
5430	65	0.55	0.35	0.20			83	0.15	0.11	0.04
3903	80	0.26	0.24	0.02			88	0.17	0.03	0.14
5123	78	0.32	0.26	0.06			81	0.27	0.13	0.14
5143	80	0.20	0.16	0.04	0.04	0.04	89	0.13	0.01	0.12
5145	86	0.14	0.08	0.06	0.04	0.04				
4099	75	0.27	0.26	0.01			84	0.17	0.03	0.14
4636	91	0.22	0.20	0.02			90	0.15	0.03	0.12
6225	76	0.46	0.40	0.06			85	0.41	0.03	0.38

TABLE II (Cont ${ }^{\text {d }}$)

Accession Number	AI -TIAverage per Cell						AII - TIIAverage per Cell			
	\% Normal Las. Chr \% Lag. no Lag.				Bridges	Frag.		aggers	Lag.	-
2568	65	0.41	0.21	0.20	0.04	0.02	95	0.03	0.01	0.02
2654	80	0.19	0.16	0.03			89	0.12	0.01	0.11
3713	76	0.52	0.36	0.16			91	0.19	0.07	0.12
							95	0.27	0.09	0.18
4600	82	0.22	0.10	0.12			90	0.11	0.03	0.08
5288	80	0.22	0.14	0.08	0.02	0.02	75	0.38	0.08	0.30
5295	72	0.45	0.40	0.05	0.16	0.16	84	0.34	0.04	0.30
5302	70	0.36	0.24	0.12			85	0.19	0.04	0.15
5326	74	1. 24	1.14	0.08			84	0.52	0.05	0.47
5397	42	3.16	2.56	0.60	0.04	0.04	56	1.52	0.48	1.04
5399	76	0.36	0.30	0.06			88	0.19	0.01	0.18
5408	80	0.20	0.16	0.04	0.04	0.04	87	0.13	0.02	0.11
5411	78	0.28	0.20	0.08	0.04		90	0.15	0.05	0.10
5437	80	0.26	0.14	0.12			90	0.15	0.05	0.10
6090	78	0.64	0.58	0.06	0.02	0.02	73	0.28	0.02	0.26
4395	85	0.26	0.17	0.09	0.01	0.01	91	0.19	0.04	0.15
5593	78	0.30	0.26	0.04			89	0.18	0.03	0.15
1526(a)	80	0.36	0.24	0.12			89	0.13	0.03	0.10
2566	62	0.59	0.21	0.38	0.05	0.03	85	0.14		0.14
6375	84	0.30	0.22	0.08			76	0.50	0.06	0.44
6574	76	0.40	0.34	0.06			82	0.18	0.02	0.16

TABLE II (Cont'd)

Accession Number	\% Normal	$A I=T I$ Average pex Cell			Bridges	Frag.	AII - TII Average per Cell			$n_{0}=\operatorname{Lag}$
		Lag. Chr.	\div Lag。	no $\dot{\square}$ Lag.			\% Normal	Laggers	\therefore Lag.	
6576	82	0.20	0.20				85	0.19		0.19
6896	74	0.48	0.44	0.04			80	0.21	0.04	0.17
6981	80	0.36	0.24	0.12			88	0.16	0.04	0.12
7035	84	0.28	0.28				89	0.14	0.01	0.13
7036	82	0.26	0.26							
					Hexaploi					
2567	30	1.92	0.45	1.47	0.12	0.03	83	0.16	0.01	0.16
4080	70	0.46	0.28	0.18	0.06	0.01	84	0.25	0.05	0.20
4083	52	1.88	1.54	0.34	0.02	0.02	70	0.48	0.08	0.40
3716	28	1.12	0.16	0.96	0.03	0.02	46	0.49	0.07	0.42
4788 (b)	80	0.60	0.44	0.16	0.02	0.02	91	0.18	0.07	0.11

APPENDIX A
TABLE III
CHROMOSOME BEHAVIOR AT THE DYAD AND TETRAD SPORE
STAGES IN THE D。 annulatum COMPLEX

	Dyad Spore Stage		Tetrad Spore Stage		
	Mecession	Percent	Micronuclei	Percent	Micronuclei
Number	Nornal Cells	per Cell	Normal Cells	per Cell	

Diploids

3242	100	100
3965	100	100
5396	100	100
$1526(b)$	100	100

Tetraploids

3182	80	0.25	73	0.11
3789	92	0.11	86	0.04
94	86	0.10	84	0.06
4390	82	0.11	86	0.04
4391	80	0.13	85	0.05
4830	90	0.05	86	0.04
3903	74	0.16	76	0.08
5123	80	0.12	82	0.06
5143	92	0.04	88	0.03
4099	92	0.04	88	0.02
4636	82	0.11	86	0.04
6225	84	0.11	80	0.07
2568	97	0.02	98	0.02
2654	84	0.06	76	0.09
3713	88	0.06	92	0.02
4600	90	0.06	94	0.02
5288	76	0.23	70	0.11
5302	82	0.11	80	0.07
5399	90	0.05	86	0.04
5411	90	0.05	88	0.03
5437	80	0.13	79	0.08
6090	80	0.12	74	0.05
5593	88	0.08	84	0.06
$1526(a)$	88	0.10	84	0.06
2566	93	0.06	92	0.02

TABLE III (Cont ${ }^{\circ}$ d)

Accession Number	Dyad Spore Stage		Tetrad Spore Stage	
	Percent Normal Cells	Micronuclei per Cell	Percent Normel Cells	Micronuclei per Cell
6375	80	0.13	82	0.26
6574	84	0.11	78	0.07
6576	84	0.10	82	0.06
6896	82	0.12	78	0.07
6981	78	0.15	80	0.06
7035	82	0.10	84	0.06
	Hexaploids			
2567	77	0.17	67	0.12
4080	76	0.19	74	0.10
3716	61	0.30	79	0.09

APPENDIX B

TABLE I
MORPHOLOGICAL ANALYSIS OF THE D. annulatum COMPLEX

Accession Number	Length Primary Axis (mm)	Raceme Number	Inflorescence Branching Index	Length Longest Raceme	Raceme Width	Pubescence First Glume	Growth Habit
			Diploids				
1. 3242	10.2	5.6	0.00	36.8	t	t	P^{*}
2. 3965(b)	10.0	4.0	0.00	30.2	17	16	P
3. 6180	10.1	5.4	0.02	40.2	7	1	P
4. 5396	12.1	6.0	0.02	38.0	1	14	P
5. 6224	9.2	5.1	0.00	40.2	t	7	D
6. 6577	8.5	4.2	0.00	38.6	4	4	P
7. 6192	9.6	5.2	0.00	38.0	$\frac{1}{7}$	4	P
			Tetraploids				
8. 3182	20.8	7.2	4.0	56.0	4tt	181	E
9. 3789	18.0	6.6	1.2	62.8	+14	714	E
10. 4390	20.4	6.6	2.0	69.6	$1+6$	7	E
11. 4391	20.2	6.5	3.0	65.0	t7	4	E
12. 4830	21.8	7.8	1.6	69.6	4tb	174	E
13. 5430	11.8	5.2	0.4	66.2	+17	1714	E
14. 3903	21.2	8.2	1.2	68.2	$1+4$	14	D
15. 5114	20.4	8.0	2.0	65.6	7	7	E
16. 5116	19.8	8.6	1.6	67.0	+16	74	E
17. 5119	18.8	7.8	0.8	70.0	4	146	E
18. 5120	21.6	7.8	2.8	69.8	46	74	D
19. 5123	23.8	9.4	1.6	70.0	14	46	D
20. 5125	24.0	8.8	2.0	68.8	+1t	A	E

* Prostrate (P), decumbent (D), and erect (E)

TABLE I (Gont ${ }^{1}$ d)

TABLE I (Cont ${ }^{\circ} \mathrm{d}$)

| Accession | Length Primary
 Axis (rm) | Raceme
 Number | Inflorescence
 Branching
 Index | Length
 Longest
 Raceme | Raceme
 Number | Width | Pubescence
 First
 Glume |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Growth |
| :---: |
| Habit |

* Prostrate (P), decumbent (D), and erect (E).

APPENDIX C

Taxonomic description of the genus Dichanthium according to Stapf
(1917) Gramineae. In Prain, D.Flora of Tropical Africa. Vol. 9: 177a180.

London.
-.. 36. DICHANTHIUM, Willemet in Usteri, Ann. xviii. (1796), 11.
Spikelets 2 nate, one sessile, the other pedicelled, similar in shape, different in sex, except the lowermost 1 or 2 pairs of each raceme which are (with occasional exceptions in Do annulatum) homogamous ($\hat{\delta}$ or neuter), in many-jointed shortly peduncled subdigitate, rarely subpanicled or racemosely arranged, racemes; joints and pedicels filiform, solid, diso articulating subhorizontally except the lowest barren pairs; fertile sessile and pedicelled spikelets deciduous, the former with the adjacent joint and pedicel. Florets 2 in the fertile sessile spikelets (lower reduced to an empty valve, upper \nsucc), 1 in the barren sessile and all the pedicelled spikelets, or neuter, or suppressed. Sessile spikelet dorsally compressed, awned (except the basal homogamous ones); callus small, shortly bearded. Glumes equal, thinly chartaceous; lower usually very obtuse, 2okeeled with narrow sharply inflexed margins; upper boat-shaped, 3onerved, acutely keeled. Valve of lower floret hyaline, nerveless, of upper floret reduced to a hyaline upwards firmer linear stipe, passing into a slender awn (very rarely finely $2=$ toothed with the awn from the sinus in a doubtful or aberrant Indian species). Valvule 0 or minute. Lodicules 2, minute, glabrous. Stamens 3. Stigmas exserted laterally at or above the middle or near the tips. Grain ob= long, obtuse, dorsally compressed; embryo rather more than half the length of the grain. Pedicelled spikelet awnless; valve if present hyaline, nerveless ooperennial, very rarely annual, grasses with simple or branches usually many-noded culms, bearded or beardless at the nodes. Panicles usually subdigitate with a short or very short primary axis, rarely the latter elongated; racemes always shortly peduncled. Spike. lets small, raxely the mole somewhat larger.

Species 8, in the tropical and warmotemperate regions of the Old World.
Lower glume of sessile \dagger spikelets without a semilunar row of long tuberolembased cilia below the hyaline tip; blade margins not revolute l. D. annulatum.

Lower glume of sessile \nmid row of long tubercle based cilia below the hyaline tip; blade margins at length revolute 2 . D. papillosum.

APPENDIX 0 (Cont ${ }^{8}$ d)

1. Do annulatum, Stapf Perennial, densely caespitose, innovations extras and intreavaginal. Gulms up to over 3 ft. high, subeerect or geniculatewascending, usually slender, terete, grooved on alternate sides of internodes, simple or very frequently branched, smooth. Leaf-sheaths terete, tight, striate, glabrous, mostly bearded at the nodes; ligules firmly scarious, oblong, obtuse, up to over l lin. long; blades linear, tapering to a fine point, slightly contracted at the base, up to 1 ft. (usually much less) by l $\frac{1}{2} \propto 2$ (rarely 3) lin., glaucous, more or less rigidly glabrous or sparingly hairy often from tubercles, smooth below, more or less rough above, margins cartilaginous and scaberulous upwards, midrib whitish above; lateral nerves 304 on each side, firm. Inflorescence subdigitate, erect; common rhachis foiliform, 3-8 (rarely 12) lin。long, shortly bearded at the branch axils; branches solitary, usually simple, naked up to 3 (raxely 4) lino, quite glabrous. Racemes $3 \infty 9$, farely only 1 or more than 12 (up to over 20), slender, smoewhat flaccid, up to over 2 in . long, pale or flushed with purple; joints and pedicels finely filiform, solid, $\frac{1}{2}$ to almost 1 lin. long, ciliate (sometimes on one side only) or the lowest almost glabrous, uppermost cilia ofter as long as the joint. Sessile spikelets subimbricate, oblong, obtuse, $1 \frac{1}{2}-2$ lin. long, usually that of the lowest pair $\hat{\delta}$ or neuter and awnless; callus very small, shortly bearded. Lower glume thinly chartaceous, often with purplish tips, slightly concave, at least above the middle, sharply ciliolate from the middle upwards, otherwise with (rarely without in the African specimens) some long very fine spreading haixs from near the keels, particularly in the upper part, glabrous or sparingly pubescent on the back; upper glume acute, minutely ciliate, glahrous. Valve of lower floret linear to oblong, hyaline, flabrous or ciliow late; awn of upper floret $8-10$ lin. long, very fine. Anthers $\frac{1}{2}$ lin. long. Grain oblong, 1 lin. long, dorsally compressed; scutellum over $\frac{1}{2}$ lin. long. Pedicelled spikelet about as long as the sessile, \hat{f} or neuter, usually darker. Lower glume semiconvolute, up to l3merved; lower glume and value as in the sessile or more or less reduced.
2. D. papillosum, Stapfo Perennial, innovations extrac and intravaginal. Gulms up to over 3 ft 。high, erect or slightly geniculatewascending, somewhat robust, terete, more or less wiry below, 7ognoded, sparingly branched, brenches suberect. Leafmsheaths terete, tight, strongly striate, bearded at the nodes, and sometimes ciliate towards the mouth, otherwise glabrous; ligules up to 1 lin. long, truncate or rounded, ciliate; blades linear, tapering to a long fine point, scarcely contracted at the base, up to over 6 in . by $1 \frac{1}{2}$ w $2 \frac{1}{2}$ lin.,

APPENDIX C (Cont ${ }^{\circ} \mathrm{d}$)
rather rigid, glaucous, flat, at length revolute, somewhat rough on the upper side from minute tuberclemased hairs, margins cartilaginous, scaberulous upwards, midrib slender, lateral nerves $3-4$ on each side, fine. Inflorescence subs digitate, erect; common rhachis filiform, about 9 lin. long, shortly bearded at the branch axils; branches solitary, simple, naked up to 4 lins, quite glabrous. Racemes $3-5$ (or 7 according to Hackel), rather stout, more or less flexuous, about 2 in. long, purplish-grey; joints and pedicels finely filiform, solid, $3 / 4=1$ lin. long, ciliate on both or only on one side, upper cilia longer than the joint or pedicel. Sessile spikelets imbricate, broadmoblong, very obtuse, $2 \infty 2 \frac{1}{2}$ lin. long; callus very small, shortly bearded. Lower glume thinly chartaceous with tips hyaline and whitish be tween the keel ends, obscurely concave on the back, minutely asperulous on the keels, longeciliate from small tubercles placed along the margins and in a semilunar row across the glume just below the hyaline tip, hairy on the back, in tracarinal nerves above 5, more marked upwards, upper glume minutely truncate, glabrous. Valve of lower floret linear to oblong, hyaline, glabrous or ciliolate; awn of upper floret up to 9 lin. long, column puberulous. Anthers 1 linolong. Stigmas exserted terminally or subterminally. Pedicelled spikelet of , very similar to the sessile. Lower glume longゅhairy all over, up to 13 nerved, upper 3 on to subs 5-nerved, ciliolate upwards. Valve oblong, ciliate at the obtuse top. .

Dr. Robert P. Celarier,
Botany Departinent,
Oklahoma State University,
Stiliwater,
Oklahoma,
UNITED STATES OF AMERICA.

Dear Dr. Celarier,
I must thank you very much for the reprints of the reports of the work done in Old Word Bluestems by you and your co-workers. I have found them most interesting. I must also apologise for not acknowledging some of the other pamphlets received in the past, but I can assure you that they have all been appreciated.

I notice that in your studies you do not mention Bothriochloa glabra or B. radicans. Would you like to receive seed of these as well? If you want more collections of the other species and of Dichantium anmulatum I will try to get it for you.

I also noticed that you have considered the possibility of the D. annulatum hexaphloid orizenating as a result of hybridisation of the latter with D. aristatum C.E. HBbb. This however is hiehly unlikely since D. arisgatum is, as far as I know, an Australian species and its occurence in S. Africa. of a very local nature. In my opinion it is certainly introduced and occurs (except for one other locality) only at Onderstepoort just North of Pretoria, where it just maintains itself, being common in some years and practically absent in others. It does not seen to have spread much in the 10 years I have observed it. One other record is known from Natal, but afain the plant was growing not very far from an agricultural research station.. I am sending you this information to clear up the wrong impression that might have been created when these specimens of D. aristatum weresent to you. I suppose that no note to say that it was introduced accompanied the specimens.

I am very interested in the method of detecting polyploids in complex species by measuring pollen grains and stornata. Do you think that there is a possibility that it will also be useful in the investigation of closely allied spemes? I realise that it is to be used with great caution however.

Candidate for the Degree of

Doctor of Philosophy

Thesis: GYTOTAXONOMIC STUDY OF THE Dichanthium arnulatum COMPLEX
Major Field: Plant Breeding and Genetics
Biographical:
Personal data: Born in Lahore, West Pakistan, April 15, 1930, the son of the Late Mani Ram Mehre and Nand Rani Mehra.

Education: Graduated from S. D. High School, Lahore, W. Pakistan in 1946; received the Bachelor of Science (Hons.) degree from Delhi University, Delhi, India, with a major in Botany in 1952; received the Naster of Science degree from Deihi University with a special paper in Economic Botany in 1954; attended graduate school at Washington University in St. Louis, Missouri, spring, 1958; completed requirements for the Doctor of Philosophy degree in May, 1960.

Professional experience: Research assistant in the Botany Division, Indian Agricultural Research Institute, New Delhi, India, 1955-56; xesearch assistant to Dr. Edgar Anderson, St. Louis, Missouri, spring, 1958; research assistant to Dr. W. L. Brown, Pioneer Hibred Corn Co., Johnston, Iowa, summer, 1959; research assistant in the Agronomy Department, Oklahoma State University, Stillwater, Oklahoma, 1956-59; research assistant to Dro. Bo Bo Hyde, Oklahoma University, Norman, Oklahoma, fall, 1959.

Professional organizations:
Member: Oklahoma Academy of Sciences, Sigma Xi, Indian Society of Genetics and Plant Breeding, International Society of Plant Morphologists.

Ordinary associate: The Linnean Society of London.

