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PREFACE 

Conversioa of electrical energy into or from mechanical energy by the 

use of magnetic energy is the basis of operation of all electromechanical 

transducers. The method of accomplishing this conversion is dependent upon 

the particular transducer. The conversion may be achieved by utilizing 

one of the following types of phenomena: (a) the force reaction between 

two current-carrying conductors, (b) the force reaction between a current

carrying conductor and a magnetic field, or (c) the force reaction result

ing from that property of a magnetic field which causes it to always tend 

to conform itself so that the maximum amount of flux is attained. The 

definition of the singly excited electromechanical transducer requires 

that the principle of operation involve the phenomenon listed in either 

(b) or ( c). 

Devices utilizing the phenomenon listed in (b) include the· 

dynamic loudspeaker, the velocity and dynamic microphones and vibration 

pick-up transducers. The transient response of these devices has been 

investigated, and the results are available in the books and journals in 

the field of electroacoustics. 

Devices using the phenomenon listed in (c) include solenoids, magnetic 

brakes, magnetic clutch es and relays. The transient response of these 

devices has not been investigated to any great extent because of the 

complexity of solving the equations which must be used to describe their 

response. In addition, the final condition of operation of the device 

was usually considered to be the only important thing. Recently, however, 
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additional requirements have be~n :placed on these transducers. Therefore., 

it is important that additional knowledge be obtained ab6ut the transient 

response of this type of electromechanical transducer. 

This thesis contains the following: the procedure of setting up the 

nonlinear differential equations which best describe the system under 

study, an explanation of the necessity of.s:electing; certain independent 

variables, tlhe development of the particular form of the phase-plane method 

necessary to solve the two simultaneous nonlinear differential equations, 

the process of setting up the logical steps in programming the solution 

on the IBM 650 computer~ and the comparbJon of the computed and experi

mental results" The particular form of the transducer used to evaluate 

the technique presented was the electromagnetic relay, Thfa technique is 

applicable to other types of transducers in this category. 

An expression of appreciation is e~tended to: Dr. Clark A. Dunn 9 

Dr. L. Wayne Johnson 9 Dr. Herbert L, Jones and Professor H. G. Thuesen, 

members of my advisory committee, for their encouragement, help and 

prompt comdderation. l am especially indebted to Professor Charles 

F, Cameron 9 chairman of my committee 9 for his supervision, guidance, 

encouragement and help throughout ~y doctoral program. It has been through 

lhi.s efforts that research work on electromagnetic relays was possible. 

My special thanks go t.o my wife, who typed the first draft of this 

thesis ~nd who had the job of setting up the equations on the typewriter. 

'I'o the secretaries: Mrs, Walker, who typed the final form of this 

thesis 9 and Mrs. Giddens, who proof-read the first draft, I express my 

appreciation. 
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CHAPTER I 
I 

INTRODUCTION 

Conversion of (:!lectrical energy to mechanical energy by the medium 

of a magne~ic field has existed for at least a a~:t;:ury. One of the first 

electromecha"11ical energy converters was the ·telegraph repeater. This 

device is better classif\ed as ·a singly excited electromechanical trans-

ducer. The singly exctted ele~tromechanical transducer consists of a 

single excttation coil, an associated magnetic circuit and the mechani-

cal system, 

Considerable. progress has been µtade in singly excited transducers 

since the ;first ~elegraph repeater, One of the present day counter-

parts of t.he telegraph repeater is the electromechanical relay (generally 

called relay), Outwardly, the relay i.s a simp1e device consisting of a 

coil of wire on a magnetic circuit which closes when the coil is energized 

and opens when deenergized. 'rhe relay has played an important part .in 
I 

this peri.od of automation, and as a consequence has been used in many new 
' 

and different applications. Before the new and different applications, 

the relay performs its function reasonably well. Consequently, at that 

time, littfe needed to be known about the basic behavior of the singly 

excited ele~.tromechanical transducer in order to produce a relay that 

served its purpose, In recent years relays have been used in applications 

where certain environmental, weight and space requirements had to be 

satisfied. Since relay manufacturing has been more of an art than a 
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science, considerable difficulty has been encountered in propucing relays 

which will satisfy the requirements now being placed upon them. Part of 

the difficulty encountered has been caused by inaccurate or insufficient 

information about the environment in which the relay is expected to 

perform. In addition the weight, space, power and environmental require-

ments produce conflicting constraints on the relay design. 

More basic knowledge must be determined about the behavior of the 

singly excited electromechanical transducer if these new requirements 

on relays are to be satisfied, Even though the relay appears simple in 

its operation, the prediction of i ts response to certain conditions of 

excitation is extremely difficult, if not impossible. I n general, electro-

mechanical energy conversion devices are descri bed by nonlinear differential 

equations. At the present time, 'no general analytical methods exist for 

solving nonlinear equations; consequently, a separate solution is 

required for each set of excitation conditions of interest."1 

Some information is known about the steady state condition of the 

relay in its energ i zed or deenergized state . However, the transient 

condition of the relay i s not as well understood even though it is this 

condit i on that primarily determines the relay ' s performance. The transient 

condition exis t s during t hat period of t ime from the i ns t ant the coi l i s 

energized, or deene rgized, t o the t i me the current reaches i ts steady 

stat e value. During t his i nterval the mechani cal sys t em should have 

changed from a condit i on of armature open or closed to a condit i on of 

armature closed or open . The solutions of the nonlinear differential 

equations describing the response of the single excited electromechanical 

transducer should result in being able to predict the performance of this 

1 
White, David C and Herbert H. Woodson, Electromechanical Energy 

Conversion , ~New York, 1959), p. 158. 



device. The effect of certain parameters of each particular part of 

the device can be determined from a study of the solutions of the non

linear differential equations. 

3 

In this type of problem, where the principle of superposition does 

not apply because of the nonlinear form of the differential equations, 

it was necessary to use the experimental information along with the 

theoretical or analytical information. From experimental observations 

it was pos ·sible to arrive at certain facts needed to determine the 

analytical relations . By a combined approach, using both experimental 

knowledge and analytical results, the solution to a particular set of 

describing relations was obtained. Even though the analytical or mathe

matical approach was separated from the experimental observation in this 

paper for purposes of clarity, the actual process of arriving at a solu

tion to this problem was an integrated effort using experimental and 

analytical knowledge. At every ~tep in the process, experimental 

observations were used to verify or to disprove the results arrived at 

by reasoning . In this manner, misleading concepts could be corrected 

or at least re-evaluated in the light of this nonlinear device . 

Some information is available about the design of electromechanical 

transducers but there is only a limited amount of inf>nn~tion about the 

transient response. Probably the first comprehensive coverage of design 

was published in The Bell System Technical J ournal of J anuary 1954, later 

published in book form. (R. L. Peek and H, N. Wagar, 1955), However, 

little was presented directly about the transient response of the trans

ducer except for the contact system. The contact system affects the 

transducer response only in the fact that additional spring forces are 

applied to the mechanical system. Some information about the dynamic 
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response of the electromechanical transducer is given in the text by 

Peek and Wagar. 

One of the first articles published which ga1e ~ome treatment of 

the transient response of the transducer was "Re lay Characteristics 

and Uses", by Professor Charles F. Cameron, 1955, This article showed 

the results of recording the transient coil current as a function of 

time. It was indicated that the transien.t coil current could be used to 

determine some informat ion about the response of the mechanical system. 

The transient response of solenoids and other magnetic coils had been 

2 
investigated, but the articl~ by C. F. Cameron was one of the first to 

suggest using the transient coil current as a means of det ermining the 

response of the mechanical system of the transducer. 

In 1953, in connect i on with a contract with the Bureau of Ships, 

U. S. Navy, Professor C. F. Cameron initiated and held the first Symposium 

on Electro-magnetic Relays at Oklahoma State University (then Oklahoma 

A & M College). A number of papers where presented dealing with the 

problems involved with electromagnetic relays or electromechanical trans-

ducers . However, the transient response of the transducer received little 

attention the first several years the Symposium was held. In 1956 

Professor C. F. Cameron and the author presented a paper, "Relay Character-

istics," that dealt spec ifically with the transient response of electro-

mechanical transducers . That paper presented experimental records of the 

transient coil current and the transient displacement of the armature 

simultaneously . The simultaneous presentation of the transient coil 

current and armature displacement has been used very effectively 

2Rudenbur& Reinhold, Transient Performance of Electric~ Systems, 
( New York 1950). 
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in the experimental analysis to obtain insight and knowledge about the 

response of the transducer. Additional papers have been presented 

by Professor C. F. Cameron and the author, showing experimental evidence 

of the fact that the transient coil current can be used to analyze the 

d 3, 4, 5 
response of the mechanical system of the trans ucer. 

The equations of motion of the transducer have been developed by 

other authors, 6 but the dependent variables selected usually have been 

the coil current and armature displacement. In addition, the coupling 

term usually has involved the inductanc e as a function of the coil 

current and armature displacement. It is shown in this thesis that, by 

selecting the magnetic flux instead of the coil current as the dependent 

variable, much simpler relations result. Also the need to use the induc-

tance was eliminated. The coil current can be computed after the flux and 

armature displacement relations are determined, thereby giving the same 

final variables as the other methods. 

These simplified but simultaneous nonlinear differential equations 

were then solved by using the phase-plane or phase-space method. The 

phase-space method is essentially a graphical procedure but the solution 

was obtained by numerical means. I n order to obtain sufficient data by 

this method, a computer program was written for the IBM 650 using the 

3cameron, C. F. and D. D. Lingelbach, "Evaluation of Relay Transient", 
6th Symposium on Electromagnetic Relays, (1958), p. 51-52. 

4cameron, C. F. and D. D. Lingelbach, "Transient Characteristics of 
Electromagnetic Relays", fil Symposium on Electromagnetic Relays, (1957) 
p. 67-78. 

5cameron, C. F. and D. D. Lingelbach, "Transient Coil Current as a 
Means of Relay Evaluation", Proceedings of the ..!.22.§. Electronic Component 
Conference, p . 129-137. 

6white, D. C. and H. H. Woodson, Electromechanical Energy Conversion, 
(New York, 1959), p. 64-69, 90 - 100, 159-157. 
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Fortran language. Selected variables were changed, and the corre~pond-

ing calculated response was obtained by the use of the computer program. 

These computed transient response curves were then compared with the 

experimental transient response curves taken from similar transducers. 

The theoretical analysis was confined mainly to the energization of 

the transducer to a step function of voltage. Other types of voltage 

driving functions can be handled, with slight modification, by the 

nrethod explained in this thesis. Since the experimental observations 

were confined to a step voltage because of power source restrictions, 

it was not considered in the scope of this thesis to solve for the 

response to other voltage driving functions. 

The response of the transducer to the removal of the voltage 

driving function is not too complicated and can be solved by making 

certain assumptions wnich do not significantly reduce the accuracy 

of the results.7, 8 Some informat i on about the performance of the 

transducer can be determined by studying the coil current decay. This 

thesis will show some experimental observations of the response of the 

transducer to the removal of the voltage driving function. However, 

since the theoretical analysis of the release case can be treated 

essentially the same way as the operate case, rto attempt will be 

made in this thesis to show the compl ete procedure. 

7cameron, C. F.and Allen, E. F. , "Analysis of Armature Motion During 
Release", Symposium on Electromagnet i c Relays, (1956), ,pp. 39~41. 

Bcameron, C, F. and Lingelbach, D. D., "Trans ien t Characteristics of 
Electro-magnetic Relays", 5th Symposium on Electromagnetic Relays, (1957) , 
pp. 67-78. 



CHAPTER II 

'I'HEORETICAL ANALYSIS 

Introduction 

There are essentially two approaches that may be used to determine 

the dynamic equations of motion of electromechanical transducers when 

represented by lumped parameters, One method employs the known force 

laws such as D1Alembert 1 s pdnciple for the mechanical system and 

Kirchhoff's laws for the electrical system, The secortd method is 

obtained from variational principles applied to certain energy functions, 

In detetmining .the coupling terms by this first method, one of two 

-ways may be used, One way uses·the concept of an arbitrary displacement 

and conservatio·n of e.nergy to obtain the mechanical forces of electrical 

origin, and Faradayus law and Coulomb 1s law to obtain the electrical 

terms of mechanical origin, The other way to obtain the coupling terms 

is by integrating .the force densities obtained from electromagnetic field 

theory, This way is not necessary in the case of the lumped parameter 

system, The application of this first method requires a considerable 

amount of judgment and insight in determining the relative actions of 

the terms, especially in complicated systems containing many variables, 

The second method is obtained from variational principles applied 

to certain energy functions, By the application of Hamilton I s principle, 

the dynamic equations o;f motion of the system, including the coupling 

terms, can be obtained, This procedure is more sophisticated mathematically, 

7 
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but insight into the physical system can be lost. This method is 

1 considered to be one of the most powetful techniques in dynamics. However, 

there is one major weakness in the variational system and this is the 

2 
difficulty of determining the set of generalized variables or coordinates. 

The application of Hamilton's principle to the selected energy functions 

results in the Euler-Lagrange equation (often called Lagrange ' s equation). 

A brief discussion of the force laws mentioned previously will be 

given here since some of these will be applied later in the chapter to 

develop the dynamic equations of mdtion of the transducer. Kirchhoff's 

laws include two relations involving electrical circuits. Actually they 

are based upon the conservation of energy and mass but are stated in 

electrical terms that are generaliy used to describe an electrical circuit. 

Kirchhoff 's emf law may be stated in several ways. One way is that 

the sum of the voltage drops taken in a given direction around a loop 

(j th loop) equals zero. This is given as 

s 

I (2 .1) 
q • 1 

where ejq • the qth voltage drop in the jth loop . 

The other Kirchhoff's law sta t es t hat no charge can accumu l ate at 

a poin.t i n a circuit or that the algebrai c sum of the charge flow at a 

point must be zero, From the definition of current, this is expressed 

by stating that the algebraic sum of the currents at a node (jth node) 

must be zero. 

1white, D. C. and H. H. Woodson, Electromechanical Energy Conversion, 
Chapter I, (New York, 1959). 

2Koenig, H. ~. and W. A. Blackwell, "On the Codification of Lagrangian 
Formulation," Proc. IRE, (New York, 1958), p. 1428-29. 



This is given as: 

p 

L 
q = 1 

io = 0 
Jq 

where ijq = the qth current in the J th node. 

... ·--si 

(2.2) 

Because of the analogous nature of systems, whether they be composed 

of electrical, mechanical, hydraulic or other components, the types of 

force laws must involves loops and nodes. In the case of the mechanical 

parts D1 Alembert 1 s principle gives the relation existing at a mechanical 

node in a system, This principle states that the sum of all the fo11ces 

at a node (j th node) must be zero. These forces must include the inertial, 

applied and constraint forces, One way to represent D1Alembert 1 s princi.ple 

is given as: 

r L (•Jq _ fJql = o 

q = 1 

(2,3) 

where: ajq = d/dt (mjq Xjq) the qth inertial force at the j th node. 

mjq XJq = the momentum of the qth mass at tlhe jth node. 

fjq = the q th applied or con~trai1£'1.t forces: at the j th node. 

The other law similar to Kirchhoff 1 s voltage around the loop 

states that the sum of the displacements around a loop (j th loop) must 

be zero. This is gi Vert as 

u 

L (2.4) 

q = 1 

where Xjq = the q th displacement in the j th loop, 

The coupling terms, as indicated previously, must be determined by 

the concept of an arbitrary displacement and the conservation of energy, 
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The first step in the determination of the coupling terms is to simplify 

the procedure by extracting all of the purely electrical terms and the 

purely mechanical terms, including the loss termso This separation leaves 

only the terms of one set that are also functions of the other set. This 

procedure also makes the remaining system a conservative electromechanical 
\ 

network. Thereforej the total stored energy (w) in the coupling network 

is given by 

(2.5) 

where Wm is the stored energy in the magnetic fieldsj 

We is the stored energy in the electric fields. 

The energy functions are defined to be state functions. This means 

the energy is a function of the instantaneous configuration of the system 

and not dependent upon the past history or the dyanmic state. Therefore, 

such energy losses caused by hysteresis or eddy currents must be treated 

in some manner outside of the coupling network. Defining the energy func-

tions as state functions causes the energy to be a single valued function 

of the system variables~ independent of the derivatives and integrals of 

the variables. This procedure is used later in the chapter to develop 

the electromechanical coupling term. 

Development of the Electrical Equation of the 
Transducer Based on a Traditional Approach 

The application of Kirchhoff 1 s Voltage Law to the coil of the trans-

ducer when supplied with a step input of voltage (E), gives equation (206). 

E = iR + N d(Zl 
dt 

where:d(Zl/dt = time rate of change of magnetic flux linking N turns 

E = supply voltage 

R = coil circuit resistance 

N = turns on the coil. 

(2. 6) 
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Since the flux(©) is a function of the coil current (i) and the 

armature position (x), and both i and x are £unctions of time (t), then 

N d(/J/dt must be expressed as ·follows: 

N d(/J = N [~ di d(/J d~ 
dt di dt + dX d€J . (2.7) 

A relation which expresses the flux ((/))as a function of the coil 

current (i) and the armature position (x) may be developed as follows: 

where: '} = magnetomotive force 

Ol= reluctance of total magnetic circuit 

N = turns on coil carrying current (i) 

i = coil current 

01a = reluctance of the air gap 

Oli = reluctance of the ferromagnetic or iron portion of the 

magnetic circuit, 

The reluctanceOl.a and Oli may be represented as follows: 

Ola = x/µA =0-x 

O{ = ~ - ~·-s=
i µc - r + ai' 

where: A= cross sectional area of magnetic circuit at the 

working air gap 

x = armature position 

µ=permeability of free space 

U= 1/µA 

(2.8) 

(2.9) 

(2.10) 

s = ratio of the effective length of the iron portion of the 

magnetic circuit to its effective cross sectional area 

µc = permeability of the iron portion of the magnetic circuit 

r + ai = approximation of µcover a given range of i. 
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Substituting the relations given in equations (2.9) and (2.10) 

into equation (2.8) results in the following form: 

© = Ni (2.11) 
Ox+ ai + r 

Equation (2.7) requires the first partial derivative of the flux 

(©) with respect to the coil current (i) and the first partial derivative 

of the flux ( ©) with respect to the armature displacement (x). These 

partial derivatives are obtained by performi ng the indicated operations 

upon equation (2.11) as follows: 

d¢ = 
di 

(Ox + ai + r) N - Ni ( a ) 
(Ox + ai + r)2 

N (CTx + r) 
= (Ox + ai + r )2 

d© -Ni (Qj 
dx = (Ox + ai + r )2 

( 2. 12) 

( 2. 13) 

Substituting equations (2 .12 ) and ( 2.13) into equation (2.7) and 

then substituting equation (2.7) into equation (2 .6) gives the electrical 

equation of the transducer in terms of the two dependen t variables. These 

dependent variables being the coil current (i) and the armature displacement 

(x). The complete electrical equation of the transducer is shown by 

equation (2.14). 

E = i R + [ N2 ( CTx + r ~ ] 
~Ox+ ai + r ~ 

di 
dt + [ - N2 iCT ] 

~(Tx + a i + r )2J 
dx 
dt (2.14) 

Equation (2. 14) is a non-linear di fferent i al equation in terms of 

two dependent variables, the coil current ( i ) and the armature displace-

ment (x) and the id~ependen t variable, time (t ). The symbols in equation 

(2.14) have been defined i n several previous equations, but will be 

repeated here for convenience . 

Symbols used in equation (2. 14): 

E step voltage applied t o the transducer coil 

i coil current 



R = coil circuit resistance 

N = coil turns 

0-= 1/µA 

µ=magnetic permeability of free space 

A= cross sectional area of the magnetic circuit at the working 

air gap 

ai + r = approximation of the permeability of the ferromagnetic 

portion of the magnetic circuit, over a given range of 

the current (i) 

x armature position or displacement 

Development of the Equation of the Mechanical System 

The development of the mechanical equation of the transducer may 

13 

be approached by using rectangular or cylindrical coordinates. Possibly 

the use of cylindrical coordinates would be more representative of the 

system usually encountered in the electromechanical transducer, but 

because of the methods of measurement used in mechanical systems» it is 

more convenient to solve the system in rectangular coordinates. The 

general form of the equation in both systems will be developed. Also the 

transformation from one to the other will be shown to show that the 

solution could have been attempted in either set of coordinates. The 

general form of the mechanical equation in cylindrical coordinates is 

based on the schematic diagram of the transducer shown in Figure 2.1. 



Non-magnetic 
back stop 

Magnetic 
Fram~ 

Figure 2.1 

Core 

Coil 

Since (e) is the angular displacement~ the dEJ/dt is the angular 

velopity, and d2e/dt2 is the angular acceleration. The sum of the 
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forces causin,g the armature to accelerate are shown as follows and are 

set equal to the angular inertial force. 

T - T0 - y (f3 - e) - )-.(- d9/dt) ,= J (- a2e/dt2) ( 2. 15) 

where~ T =1 the magnetic torque 

T0 = initial torque caused by the restoring spring 

y (B - e) = torque resulting from extending the restoring 

spring 

). = angular damping coefficient 

J = polar mass· moment of inertia of the armature about the 

pivot point 

f3 value of e when armature is against the back stop. 



Note: The minus signs involved withe are caused by the motion being 

opposite to the indicated positive direction of 8 
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The conversion to rectangular coordinates is based upon the fact 

that any torque, by definition, is equal to some force times a moment 

arm, As shown in Figure 2, 1, the iength of the moment arm is ( S), which 

is the distance from the center of the pivot to the center of the core 

when the armature is closed, This mea.ns the driving torque ( T) is equal 

to the magnetic pull (F) times the lertgth (S), Likewise the torque (T0 ) 

caused by the restoring sprirt$ can be referred to an initial pull (P0 ) 

times the length (S). All torque values can be represented by some 

effective force times the length (s). The polar ma~s moment of inertia 

(J) also can be represented by the square of the length (s) times an 

effective mass (M). With these conversions, the mechanical system 

shown in Figure 2.1 can be converted to the one shown in Figure 2.2. 

In Figure 2.2 the coordinate system is rectangular where the components 

of the transducer are the effective values derived from the model of 

the transducer in cylindrical coordinates. 

Since e1will be small, the total opening shown by the angle~ in 

Figure 2.1 can be written as G = S~. Likewise :x can be written as 

x = S8 in which the transformation from the cylindrical coordinate system 

to the rectangular coordinate system is S. In other words, in order 

to obtain the quantity in rectangular coordinates, the quantity in 

cylindrical coordinates is operated upon by the length (s). 
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This procedure will give the following transformations: 

F = T/S 

G = S:/3 

X = S:9 

dx = Sd9 

dx2 = SdS2 

k = y/S2 

h2 = A./S2 

M = J /S2 • 

16 

= 0 

If these transformations are substituted into equation (2.15) and some 

manipulations made, the following relation in rectangular coordinates 
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results: 

F - P0 - k (G - x) - h2 (- dx/dt) = M (- d2x/dt2). (2.16) 

Possibly a more standard form of equation (2.16) is given by 

equation (2.17). 

F = -Md2 x/dt2 - h2dx/dt + k (G - x) + P0 

where: F = pull caused by the magnetic flux 

(2.17) 

P0 = effective value of the restoring spring force refei,red 

to the center of the core (pull center) 

M = effective mass determined by dividing the polar mass 

moment of inertia (J) by the moment arm length squared 

h2 = effective damping coefficient referred to the pull 

center (center of core) 

k = effective spring constant referred to the pull center 

G - total distance between the center of the core and the 

armature at that point where the armature is against 

the back stop 

x = distance measured from the surface of the pole face 

(called displacement). 

To use equation (2.17) in attempting a solution to the problem, 

the pull (F) must be eJ11pressed as a function of the variable (x) and 

the coil current (i), To develop this pull (F) as functions of i and 

x, it is necessary to go back to the definition of work. By using the 

concept of virtual displacement on the function giving the magnetic 

energy in the air gap, a relationship for the pull (F) in terms of 

x and i can be obtained. With reference to Figure 2o2, the magnetic 

pull ( F) tends to shorten the air g.ap. Consider the air gap to be 

shortened by a differential amount, -dx. The mechanical work involved 
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is -Fdx. If -dx is considered to be the virtual displacement, 

under the constraint of constant flux(~), then there is no energy 

exchanged with the electric .circuit exciting the coil. Therefore 

the mechanical work - Fdx comes from a change in the stored magnetic 

energy (Wm),, Thh is expressed by equation (2.18). 

·F d.x = - d Wm Constant (/J (2.18) 

Therefore: 

(/J = constant. (2, 19) 

,Since Wm is a function of several variables, equation (2.19) should 

be written in the form shown in equation (2,20) 

(2.20) 

The energy stored in the magnetic field is determined by the time 

integration of the power supplied to the magnetic field, The power 

supplied to the magnetic field is given by equation (2.21), 

, , N d(/J Ii d(/) 
p = ei = l. - = .::r -dt dt (2.21) 

where: g. = magnetomotive force or Ni. 

Since energy is the time integration of power, the following 

expression may be written: 

t (/) 

1 Wm = J p dt = J '1 d(/) u = (/) i dQl i 

0 0 

(2.22) 

Wm (/)2 (Q1-) 
2 

(2.23) 

where: primes are used to indicate the variable of integration, 

6\. = magnetic reluctance and is equal to s/(/). 
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The magnetic reluctance (CR.) is a function of the armature dis-

placement (x) and the coil current (i). This relation was developed 

previously and is given by equations (2.9) and (2.10) which is 

repeated as equation (2.24). 

6t. = (fa + r + ai (2.24) 

where: 0-= 1/µA 

µ = pe.rmeability of free space 

A= cross sectional area of the magnetic circuit in the 

air gap 

r +.ai =--r.elation which approximates the relationship between 

the flux and mmf of the iron portion of the magnetic 

circuit. 

If the operation indicated by equation (2.20) is performed on 

equation (2.23), the following results: 

(2.25) 

The flux squared (¢2 ) can also be written as shown in equation 

(2.26) by using equation (2.24) 

(Ni)2 

(0-x + r + ai) 2 
(2.26) 

The d<Pt./dx can be obtained from ~quation (2.24) and gives 

equation (2.27). 

(2.27) 

Substituting equations (2.29) and (2.27) into equation (2.25) 

gives: 

(2.28) 



The relation given by equation (2.28) can be substituted into equation 

(2.17) giving~ 

2 (ox + r + ai) 2 
= - M d2x - h2dx + k (G - x) + Po 

dt2 dt 
(2.29) 

Rearranging equation (2.29) into a more standard form gives the 

followin.g: 

d2x dx . N2i 20-
M dt2 + h2 dt - k (G. x) - po+ 2 (Ox+ ai + r)2 = 0 (2.30) 

where: N = coil turns carrying the current (i) 

M = effective mass of movable part and is determined by 

dividing the pol4r mass moment of inertia (J) by the 

moment arm length squared 

h2 "" effective dampi.ng coefficient of the movable part 

referred to the pull ceri.t,er 

k = effective spring constant referred to the pull center 

G = length of open air gap which is the maximum value of 

the variable (x) 

x = distance the movable part or armature is from the 

surfac~ of the pole or pole face 

i = the coil current 

r + ai = the relation which approximates the relationship 

between the flux and the magnetomotive force 

of the iron portion of the magnetic circuit 

0-= 1/µA 

µ=permeability of free space 

A cross sectional area of the magnetic circuit in the region 

of the air gl:!-J? 
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P0 = back tension or force acting .on the back stop 

because of the restoring spring. 

The previous equation is nonlinear in the two dependent variables 

x and i and would have to be solved simultaneously with equation (2.14) 

to obtain the coil current (i) and the armature displacement (x) as 

functions of time (t). 

CN2 (Ox+ r) ] 
E ,-iR~ (Ox+ ai + r)~ 

di 
dt + 

Equation (2,14) is repeated here for clarity. 

dx 
= 0 

dt 

Development of the Electrical Equation Ultimately 
Used to Determine the Transducer Response 

(2.14) 

The application of Kirchhoff's Voltage Law to the coil of the trans-

ducer, when the coil is energized by a step voltage of E, gives 

equation (2.31), 

E = iR + N:: (2.31) 

The coil current (i) and the magnetic flux(©) are related in a 

fashion determined by the magnetic circuit (including air gaps) of the 

transducer. The relationship between i and (/J is given by equation 

(2,32). 

(2.32) 

where: 3 magnetomotive force 

CR. = total magnetic reluctance 

(Jli = reluctance of ferromagnetic portion of the magnetic circuit 

CR.a = reluctance of the air portion of the magnetic circuit. 
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The reluctance (@,a) of the air gap is shown by equation (2.33)0 

CR a 
X 

µA 

where: x = length of the air gap 

0-= 1/µA 

::::(Tx 

µ = perme.ability of free space 

(2.33) 

A= cross sectional area of magnetic circuit in this region. 

The reluctance (tJ(i) of the ferromagnetic or iron portion of the magne.tic 

circuit must be represented in the form shown by equation (2o34) in 

order to reduce the complexity of the final electrical equation, and 

still include the effect of magnetic saturation. 

CJ\ '51 
. i = ·v'i = r + ai 

or 
ffi = (Tx + ai + r 

where: :.h = magnetomotive force of the iron portion 

0i magnetic flux in the iron portion resulting 

from 1::h 

r = a parameter determined such that r + ai approximates 

the non-linear relationship between81 and 0i over 

some d,esired section 

a (see definition of r above)o 

(2.34) 

(2o35) 

Substituting equation (2.35) into (2.32) results in equation (2036): 

At this point in the development of the electrical equation, instead 

of substituting for d©/dt as was done in the previous developments, i 

will be Written in terms of 0 artd Xo 
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where: b = a/N. 

r +O-x 
N 

From equation (2,31) a,nd equation (2.37) it follows that 

E ( rr. ) ( r/J ) _R + N d(/J • = r +vx 
1 - br/J, N dt 
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(2.37) 

(2.38) 

Equation (2.39) is a rearrangement of equation (2.38) into the 

standard differential equation form, 

dQI + .!L ( r +ux) ( (/J ) = _NE, 
dt N2 1 - b0 

(2.39) 

Equation (2,39) is one of the two non-linear differential equations 

that will be solved simultaneously to obtain (/J and x as functions of time. 

Mechanical Equation Ultimately Used 
to Determine the Transducer Response 

By the use of D'Alembert's Principle or, on a general basis, 

Euler-Lagrange Equations, the following equation results. 

M d2x + h2 dx + k (x - G) - p + K¢2 = 0 
dt2 dt 0 

where: M = effective mass of ~nh&ture 

h2 = viscous damping coef£i~i~nt 

k = spring constant of restoring spring 

P0 = initial pull caused by restoring spring opposite to 

the magnetic force 

K~2 i f 3· w = magnet c orce 

K = E/A 

E = pull constant determined by units used for (/J and A 

(2.40) 

3see any standard text dealing with static magnetic .fields such as 
"Introductory Electrical Engineering", Reed and Corcoran, (New York 19·57) p. 304. 
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A= cross sectional area of the magnetic circuit at the air 

gap. 

Equation (2,40) is the second of the two simultaneous differential 

equations that will be used to determine 0 and x as functions of time. 

Once the values of (/) and x are determined, equation (2.37) will be 

used to determine the corresponding values of i. 

Inspection of equations (2.39) and (2.40) in comparison to equations 

(2.14) and (2,30) in the previous section, indicate the simp}-icity 

obtained by selecting (/) as a dependent variable instead of i. 
" 
Actually, 

equation (2,40) is not non-linear in x any more, ~lthough it i@ non

linear in the variable 0. One possible method of •ttpck would be to 

combine the two equations into a third~order non-linear dif~erenti~l 

equation in 0o This could be accompUs.bed by solving for x from 

equation (2o39) and substituting x and the first and second derivatives 

of x into equation (2o40), However, in this particular case, it is 

considered desirable to solve the two equations (2.39) and (2.40) 

simultaneouslyo 

This decision resulted from the fact that the solution of the response 

is divided into three intervals, These three intervals are distinctive 

because of the values of x, dx/dt arud dx2 /dt2 that exist. 

In the use of one combined equation in the variable 0, the identity 

of x would be lost thereby considerably complicating the calculating 

procedure, 

The simultaneous solution of equations (2.39) and (2,40) is based 

on a method that is mo:re fully developed in the book Analysis and 

Control of Nonlin.e,_ar Systems by Y. H, Ku than in most other sources. 

The background for thi~ method is discussed in Chapter III. 



Equati9ns of Motion Developed Using 
the Euler-Lagrange Equation 
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The second method mentioned in th~ introductiqn to this chapter is 

commonly referred to as Lagr!3-nge's equations of motion. Because of 

the general nature of this method a brief discussion will be given, 

and then this method will be u~ed to develop the equations of motion 

of the transducer. 

The simplest form of Lagrange's equation involves only conserva-

tive systems with fixed constraints. However, an ~xtension can be made 

to nonconservative systems to obtain an alternate form of Lagrange's 

equations. 

To account for the nonconservative dissipative forces, a velocity 

dependent function D, called Rayleigh's dissipation function, is used. 
4 

This results in the modified form of Lagrange's equation as is shown in 

equati~n (2.41)~ 5 

i_ [ d!J • dD + F. = O 
dt L~j dCI~ J 

(2.41) 

where: qj and qj are the generalized corrdinates and generalized 

velocities, respectively, of the system at the j th terminal 

pair. 

(j = 1, 2, ... , FD 

· 4White, n;.c., and H. H. Woodson, Electromechanical Energy Conversion, 
(New York 1959), p. 61. 

'.5 The notation of usi:p.g L for Lagrange's function and qJ, CJ.j as the 
as the j th generali~ed coordinate and velocity is fairly standard, so it 
will be used in this treatment. A. number of texts have used this notation 
covering a long period of time of which the following two are examples. 
Higher Mathematics, Burington; R,.; S., and C; C. · Torrance, (New York, 1939), 
Electromechanical Energy Conversic;m, tvhite; b~ ·c., and H. H. Woodson, (New York, 
1959). 
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L = the conservative Lagrangian and is equal to the 

difference petween the k1,.netic coenergy Tc and 

the potential energy V 

D = Rayleigh's dissipation function and is defined as: 

(2,42) 

rj = j th dissipative element 

Fj = nonconservative force acting on the j th coordinate qj. 

The kinetic coenergy T instead of the energy r is used in the 
. C 

Lagrangian in order for it to be valid for nonlinear cases. One of 

the common nonlinear cases encounte~ed in electromechanical transducers 
. . 

is the relation between flux linkages (A) and the magnetomotive force 

( i). The magnetic stored energy (w) is determined as follows: . Ill 

.J ! 
0 j = 1 

( h = 1, 2, , . , , H and g = 1, 2, .•. , G) 

w·here the primes denote variables of integration and w1here Wm is evaluated 

as the integral of idA for any fixed spacing (xg 1 s are constant). Figure 

2.3 shows a graphical representation of the magnetic stored energy for 

k = 1. 
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Figure 2.3 
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From Figure 2.3 or by integrating by parts the integral of id:l , the 

magnetic coenergy Wmc (unshaded area), is related to the magnetic energy 

Wm ( shaded areaJ by the following: 

Wm = i.1 A.1 - wmc' (2. l.~4) 

A:i. it l 

ii A:i. f =J 
"\ 

(2.45) w = - · 'dA, ;\ J,di j_ me l, 1. 1 

~ 0 

To obtain the L,agrangian L which is also valid for nonlinear 

systems the Lagrangian defined as follows must be studied, 

(j = 1,2, ... ,H) 
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'Ihe differential of equation (2.46) is: 

H dL H dL 
dL = L dqj dq. + L (3qj d' + dL dt. (2.47) 

J qj dt 
j -= 1 j = 1 

The ]Path of integration i.s arbitrary since L :i.s a state function, A 

state function by deffo.ition. is only a function of the i.nstantaneous ( or 

final) values independent of the dynamic state or pa~t history, Therefore 

the path of integration is so selected that all the q's are constant when 

integrating with respect to the q's, and correspondingly the q's are 

constant when integrating with respect to the q 1 s. Furthermore, these 

integrations are performed for a specific value of time t. Therefore, 

Lis determined from the integral of equation (2.47) as: 

L = 

q.;O;t \J 
j 
O;O;t 

(j = 1.,2,,,,,,B) 

dL( q : , ;;.; . , t) + 
J ..,'J 

By substituting the value of ,clL(qj,qj,,t) from equation (2,4T) into 

6 
equation (2.48) the following resultg are obtained. 

q, H 

L (qj,qj,t) 
rJ ) JL (qJ~O,t) 

= \ d. 1 + j dq ! qj 
L_J 

0 ~~ = 1 J 
-· Ij H 

L c:)L (9J•9j,t) dqJ 
dClj 

0 j = 1 

(j = 1,2, ... ,H) 

6The primed quantitie.s are the variables of integration. 

(2.48) 

(2.49) 
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This particular procedure results in separating the Lagrangian into two 

functions. The first of these functions is: 

H 

L dL (q'.,O,t) 
J V 

do· 
dq! 

•J 
j = 1 J 

(2.50) 

(j = 1,2, ... ,H) 

and is only a function of the coordinates q. and t, and is independent 
J 

of the velocities qj· No restrictions of linearity were made in the 

development of equation ( 2. 49), and therefore equation ( 2. 50) holds for 

the nonlinear case. Since the Lagrangian (L) is an energy function, then 

the partial of (L) with respect to the j th coordinate (qj) is the force 

function (fj} Then fj is given as: 

dL( q. , 0, t) 
J • 

Jqj 

This makes the potential energy Vas follows: 
q, H 

V 

V = (~f j ( q j , t) dq .. 
J 

,/ L__) 

0 j = 1 

(2.51) 

(2.52) 

The second term of equation (2.49) is a function of the final values 

of the qj coordinates but is a function of the velocities CJ.j and time 

t, This term is as follows: 

q· H 
(J 

L dL ( q j. . ' t) J qj' d • I (2.53) 
d' V 

qj 

0 j !:i:: 1 qj 

(j = 1,2, ... ,H) 
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In mechanics this is the kinetic energy which, for the linear case, 

is also the kinetic coenergy, since the curve in Figure 2. 3 would be a 

straight diagonal line between (0,0) and (A 1 ,i1 ). This is evident by 

letting i 1 = 41 • With this substitution in equation (2.53) the following 

results, 

j1 dL (q,fl,t) d', 
l.1 

dil 
(2.54) 

0 

Magnetic coenergy was defined by equation (2.45) and is given as 

i1. 

Wmc = J A1 (ii,x1 ) diJ. 

0 

(2.55) 

Therefore it follows that equation (2,54) has the form of coenergy, In 

mechanics this is the kinetic coenergy, The partial of the Lagrangian ( L) 

wi.th respect to the velocity ( CJ.j) is a momentum function ( p,) because the 
J 

Lagrangian is an energy function, Therefore the kinetic coenergy (Tc) is 

given as 

t 
H 

Tc L dL ( qj ~ Clj ~ t) . 
= dq' d I qj j 

0 j i: 1 

(2,56) 

(j = 1,2,,.,,H) 

or 

l 
H 

'I' = L . ' 
C Pjdqj ( 2 0 57) 

0 j ~ 1 

(j = 1,2,,,,,H) 



With the two right=hand terms of equation (2.49) now defined, then the 

Lagrangian for linear or nonlinear ~ystems becomes: 

L (qj, qj' t) = potential energy V - kinetic coenergy Tc. 

The procedure for using Lagrange's equation to determine the equations 

of motion becomes that of determining the functions V, Tc, D and Fin 

terms of qj and CJ.j. In the mechanical system the variables qj and qj are 

generally the displacement (x)and the velocity(~ respectively. However, 

in the electrical system, qj may be the charge q or the flux linkages { :l ) . 

If qj is charge q, then qj is current (i), but if qj is flux linkages(A) 

then CJ.j is voltage (e). The selection of qj then determines whether the 

system is considered to have a current driving source or a voltage drlving 

source. 

The equations of motion of the system represented by Figure 2.1 and 

2.2 will new be obtained by using Lagrange's equation of motion. For 

the electrical system with j = 1, let q1 = q and q1 = i. With q1 ~ q 

(charge)s then potential energy is the energy associated with a charge 

and therefore has dimensions of q2 /2C. This makes -f1 equal to the voltage 

( e). 1'he kinetic electrical energy is the energy associated with i and 

therefore has dimensions of L i 2 /2, making the momentum function p1 

become the flux linkages (A.). 

For the electr...cal system the potential energy (V) is 

q 2 __ q 
dq - -

C 2C 
(2.59) 

Since there is no capacitance in the electrical circuit of the 

transducer, then Ve= O. 



The kinetic coenergy fo+ the electrical system is 

i i 

Tee = J A ''di' = f N© 1di'. (2.60) 

0 0 

In order to show that the use of Lagrange 1 s equations will give the 

same equations of motion of the transducer as were obtained by force 

laws, the coupling term of mechanical origin in the electrical equation 

must be examined. This term was developed in final form in equation (2.25), 

The operation involved to obtain equation (2.25) was based upon maintaining 

the flux ( c/J) or flux linkages (A.) not a function of x. This condition 

will also have to be imposed in this development to obtain a result that 

can be compared with that obtained by the traditional approach . 

. 
For the mechanical system, let j = 2, q2 = x, q2 = x, -f2 = P0 + 

k (G - x), and P2 
.• 7 

= - Mxo Ther~fore the potential energy (v) of the 
. m 

mechanical system is 

0 kx2 
+ ( G - Xi .J dx u = p O X + kGx - 2 (2.61) 

0 

The kinetic coenergy of the mechanical system :i.s 

X 

J . 
- Mx'dx' = 

M;x2 -2 
(2.62) 

G) 

The dissipative function Dis 

(2.63) 

7see Figure 2.2. The minus sign associated with x and xis 
caused by x being opposite to the displacement from the equilibrium 
position. 
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The function F1 for the electrical system is E while for the mechanical 

system it is zero, since no extern~l driving function is considered. 

Combining the state functions for the electrical and mechanical sy~tem 

gives the Lagrangian Las follows: 

i 

L • T0 - V • ~ N0di' -

0 

- P x - kGx + kx2 

0 2 

The equation of motion of the electrical system is determined 

from equation (2.41) with j = 1, or 

dD Ji+ F1 = 0. 

Since L is not a function of q, then 6L/ a q = 0. The CL/ di 

from equation (2.64) is 

where the flux is assumed constant. 

The dD/ ch from equation (2.63) is 

dD - + iR di - . 

Substituting equations (2.66) and (2.67) into (2.65) and with 

F1 = E gives 

d: [ N~ - iR + E = 0. 

Since N is constant, equation (2.68) becomes 

d(/; 
N dt + iR = E. 

(~.64) 

(2.65) 

(2.66) 

(2.67) 

(2.68) 

(2.t69) 



Equation (2.69) is ide·ntic~l to equation (2.6); therefore, this 

procedures gives the same result for the electrical system. 

The equation of motion for the mechanical system is determined 

from equation (2.41) with j = 2, or 

: - d! (t) -: + Fa = 0, 

The dL/ clx from equation (2.64) becomes 

i 

J 
0 

N©di' - P - kG + kx. 
0 

(2.70) 

(2.71) 

The flux (©) is equal to 1:Jj(R, where '3 = Ni. Substituting these 

relations in the first term on the right hand side of equation (2.71) 

gives 

i 

d J N2 i 1 d' i 

Ji -- 1. 
CR 

(2.72) 

0 

The constraints used in developing the magnetic pull as given by 

equation (2.28) were; the reluctance (IJ\) is constant when the current ( :!.) 

or flux(~) increases from zero, and the flux(©) is constant when xis 

given a virtual change. Performing the operation indicated in equation 

(2.72) gives 

i 

J i 1 di 1 
d = dX (2.73) 

0 

Since flux(©) is equal to Ni/6/.. then equation (2.73) may be 

written as 

(2.74) 
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Performing the operation indi.cated in equation (2, 74) gives 

r/i2 dffi. = (/)2 ( CT ) 
2 dx 2 

(2.75) 

Reluctance<R is given by equation (2.24) as 

CR = CTx + ai + r (2.24) 

Therefore the partial of Gt. with respect to x isO-, and 

equation (2.71) becomes 

ddxL -- .N2i2,.., V - p - kG + kx. 
2 (0-x + ai + r) 2 0 

(2,76) 

The second term of equation (2.70) is determined from equation 

(2.64) as 

Md:ic 
= - """cit'"" = 

The third term of equation (2,'70) is determined from equation 

(2,63) as 

dD 
Ji = - h2~ = 

h2 dx 
dt 

Since F2 = O, then the equation of motion of the mechanical system 

is deter.mined by substituting equations (2.76), (2.77), an9, (2.78) into 

equation (2.70), giving 

N2i2(Y r) 2 - p - kG + kx + Md2x + h2dx = 0 
2 {<Yx + ai + 0 dt2 dt ' 

Rearrangement of equation (2.79) will show that it is identical to 

equation (2.30). Equation (2.30) was developed using D7Alembert's principle 

while equation (2.79) was developed using the Euler-Lagrange equation for 



nonconservative systems. 

Either approach ~ppears to involve a certain amount of insight or 

jqdgment when dealing with c:but,\ed systems. The Euler-Lagrange approach 

is more general, being based upon the determination of energy or state 

functions in terms of generalized coordinates. However, this approach 

has the disadvantage that insight into th• physical phenomena ma~ be 

lost by the more formal mathematical procedures. Also, in applying 

this energy approach to non~on~ervative systems, a dissipation function 

must be defined. In order for the dissipation term to be consistent 

with the force relationships, only one-half of the power loss in that 

element must be used. PllysicaHy J:his is not understood, but it is 

required in or~er to extend this Euler-Lagrange equation to nonconservative 

systems. H. E. ~oenig. and W. i. Blackwell have indicated that one major 

weakness of this approach is the lack of a general procedure for estab-

lishing a relation13hip between the variables of the energy function and 
. 6 

the generalized coordina~e. 

The approach using D'Alembert's principle is very satisfactory even 

though it may require more attention to the details of the directions in 

the which the forces act. It appears that, with moderate care in 

selecting reference points, the amount of work or the accuracy of the 

force method is comparable with that of the energy method even for 

complicated coupled systems. 

\oenig,: H. B., and W. A,, Blackwell, _i'On the Codification of Lagrangian 
Formulation" , ,m_ Proceedings, July 1958, pp. 1428-1429. 
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CHAPTER III 

D!SCUSSION OF A METHOD FOR NUMERICALLY SOLVING 

SIMULTANEOUS NONLINEAR DIFFERENTIAL EQUATIONS 

The method under consideration is called the phase-plane or phase 

or space trajectory method. It is probably more fully developed for 

nonlinear systems ,in the book Analysis and Control of Nonlinear Systems 

by Y. H. Ku than in any other source. Apparently no one individual 

was responsible for the development of the method as no reference is given 

as to the origin. It appears to be an adaptation of the isoline method, 

but this is listed separately in Ku's book, thus suggesting the two 

methods are different. The original basis for this phase or space 

trajectory method seems to be the direction field method discussed 

formerly in Ford's Differential Equations and again more recently in 

Differential Equations with Applications by Betz, Burcham and Ewing. 

However, there are other recent texts that also disucss the direction 

field procedure as a graphical or numerical method. Since the direction 

field method seems to be a logical beginning of the phase-plane and space 

trajectory methods, this will be used as the starting point in the 

development of this space trajectory method, 

Direction Field Method 

The first-order differential equation, whether it be linear or 

nonlinear of the form given in equation (3.1), can be written in the 
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form shown in equation (3.2). 

A (x,t) £!. + B(x,t) = c(x,t). 
dt 

where: x = dx/dt, 

dx 
dt = .f (x,t) 

. 
= X 

It is assumed that f(x,t) is a single valued function in the 

(3.1) 

(3.2) 

region of the x,t plane under consideration. This means that for each 

point (x0 , t 0 ) of that region there is associated with it a value of 

dx/dt defined by equation (3.2) that is unique. Let the value of 

dx/dt when x = x0 and t = t 0 be represented by x0 • Thus the three numbers 

x0 , t 0 , 1t0 define a line element in the x,t plane which is located by the 

values of (x0 , t 0 ) and whose slope is determined by the differential equa

tion (3.2) and represented by x0 • The differential equation then defines 

a field of line elements called a direction field. A solution of the 

differential equation is any function x = f(t) whose graphical representa-

tion matches this direction field. This means a curve which has a slope 

which fits the direction field at each of the points. Such a curve is 

called an integral curve. Since ',I: (x, t) is single-valued,- then there 

passes a unique integral curve alc:,ng these line elements which is a 

solution to the differential equation. This concept is probably best 

illustrated by considering a numerical example. 

A simple example is the solution to the R-L circuit with a unit 

step as the driving emf, Consider the following numerical case. 

10 - lOi + 1 di 
dt 

(3.3) 



Rearranging: 

di 
dt = 10 lOL (3.4) 

The direction field is obtained by determining the value of di/dt 

at a number of points in the i-t plane. Since in this case, the value 

of di/dt is not a function o.f t then the direction of the line elements 

depends only on i .as is shown in Figure 3.1. Therefore, when i = 0, di/dt 

= 10; when i = 0.1, di/dt = 9, etc. until i = 1 then di/dt = 0. The line 

elements shown in Figure 3,1 determine the direction field of the relation 

given in equation (3.4). The shape of the integral curve may be approxi-

mated by constructing a polygonal line. This polygonal line is obtained 

by commencing at some point (x0 , y0 ) and drawing a'.line segment that 

coincides with the line element at that point. Then at the upper extremity 

of that line segment, say at point (x1 , y1 ), draw another line segment 

that coincides with the line element at the point (x1 , y 1 ). By proceeding 

in this manner to more and more points, all inside the region defined, a 

series of connected line segments . is, obtained which form a polygonal line. 

If the line segments are made shorter and shortet by using more points, 

than a better approximation is obtained of the integral curve. To 

illustrate this procedure, suppose that the initial values of i and t 

are zero. This causes the integral curire to start at the point (a) in 

Figure 3.1. If only ten line segments are taken, then line a-bis 

obtained. It is noticed that the line a-b approximates the integral curve 

reasonably well until point (b) is approached. This was caused by the 

fact that the slope of the line elements changed rapidly as the value of 

i approached one. If at the point where i = 0.8, smaller increments were 

taken, such as i = 0.04, then the line a-c would result. It is seen that 

this gives a better approx4mation. The greatest error occured when the 
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the slope of the line element changes from 1 to O, since the ratio of 

these two values is ·infinite. The exact solution to equation (3.4) 

is given by equation (3.5) anp, is shown by the dashed line in Figure 

3.1. 

-lOt 
i = 1 (1 • € ). (3.5) 

The polygonal line is a f;~ir approximation of the solution up to 

the value of i = o.6. Smaller increments have to be taken to keep. the 
.. /\, 

same accuracy, especially as the value of i approaches 1. 0. The initial 

conditions determine the starting point of the integral curve. If the 

initial value of i a~ t = 0 had been 0.4, then the integral curve would 

have started at that point with di/dt = 6. This simple example illus-

trates the procedure and some of the limitations that must be considered. 

Phase-Plane Method Applied to a Second-Order Differential 
Equation 

The discussion up to this point has been confined to a first-

order differential equation, linear or nonlinear. '!'his method is not 

restricted to first-order equations. It may be applied to a second

order nonlinear differential equation of the form shown in equation (3.6): 

. ( , ) d2 x ( ) dx ( ) ( ) M x, x, t dt.2 +Ax, t dt +Bx, t =ft (3.6) 

. 
where: x ~ dx/dt. 

Equation. (3.6) is much more general than is usualiy required but 

it is shown as an example to show the generality of the phase-plane 

metqod. Rearranging equation (3.6) in the form of equation (3.7) gives 

the starting point of this method. 



2 
d X + C dx + Dx = E 
dt2 dt 

where: C = A (x,t)/M (i,x,t) 

D B (x,t)/M (x,x,t) 

E = f(t)/M (~,x,t). 

Let d2x/dt2 •wand dx/dt = v, then equation (3.7) becomes: 

w = E - Cv - D:x:. 
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(3.7) 

(3.8) 

Since w = dv/dt "'(dv/dx) (dx/dt) = v (dv/dx), then equation (3.8) 

becomes: 

dv 
v dx = w = E - Cv - Dx, (3,9) 

or 

dv = ~ = E - C:v - Dx 
dx V. V 

(3.10) 

Equation (3,10) gives the slope of the line element in the v-x 

plane, This means that the change in v with a change in xis determined 

by the values of v and x. Usually the solution desired is x as a function 

oft, If the direction field is obtained for equation (3.10) then the 

integral curve can be approximated or a phase-plane plot made of equation 

(3.10). Since dv/dt = v dv/dx, then dt = dx/v. 

therefore: 

dx 
V 

(3.11) 

Equation (3.11) is used to determine the time (t) as a function of 

x. Therefore a plot of time (t) versus displacement (x) is obtained or 

the displacement (x) may be determined as a function of time (t). 



To help clarify the details of the phase-plane method the following 

numerical example will be considered. 

d2 x + 12 dx + 2Qx = 100. 
dt2 dt 

(3.12) 

Putting equation (3.12) into the standard phase-plane form gives: 

W + 12v + 20 X = 100, (3.13) 

or 

dv w 100 - 12v - 20x 
-- = - = ------------~ 
dx V V 

(3.14) 

The initial values at t = 0 are x = O, v = 6, and from equation 

(3.13), w = 28. Equation (3.14) gives the initial value of dv/dx as 4.67 

or the initial slope of the v-x curve is + 4.67 as shown in Figure 3.2 

Let x = 0 .1, then from equation ( 3 .14) 6v may be obtai. ned as: 

6v = 100 - 12 ~6 + 6v) - 20 (.1) 
.1 + 6v ( 3. 15) 

2 
giving 6v + 7,21:::,.v - 2.6 = 0 or 6v = .345. 

The negative root makes no physical sense in this case. The value 

of 6v can also be determined from equation (3.14) by using the inttial 

value of dv/dx and solving for 6v as follows: 

6v 4 tsx. = , 67 

when !::,;x = 0.1, 6v .467. 

In this case the difference is about 30% since the value of tsx. is 

large. If the value of t:,;x had been 0.01, then the value of 6v by the 

quadradic method would be 0.4125, compared to o.467 determined from the 

slope. The difference has been reduced to about 11%, If the initial 
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Figure 3.2. Phase-Plane Plot of Equation (3.12) 



values of v and x are denoted 'as v0 , :x:0 and the values at the next 

point as vi, xi, then the values at the new points are defined as 

vi= v0 + 6.v0 and Xi= x0 + 6x0 • The value of 6..Vi0 is determined from 

equation (3.14) from the values of v0 , x0 and 6x0 • The value of 6x0 is 

selected by considering the accuracy desired. At the point vi, x 1 a 

new slope is computed which is used to determine 6.vi in the.next interval. 

It is not necessary that 6x1 = 6x0 , since the value of increments 6x is 

not dependent upon the values of v ot x. In some cases it is desirable 

to change the value of bx depending upon the accuracy desired. ~f the 

value of dv/dx i~ large, then small values of 6x are desirable. For the 

general case the value of v and x at any point is determined as: 

and 
= X + 6x n n 

where xn and vn are determined as follows: 

n - 1 

Vn • Vo + L /\.vk 

k = 0 

n - 1 

xn = "b + L 
k = 0 

!:sx • 
k 

The values of 6xk are selected, while the value of 6.vk is 

determined from equation (3.16). 

6.vk _ 100 - 12 (vk + 6.vk) - 20 (xk + 6xk). 

6xk vk ( 3. 16) 
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The phase-plape plot of equation (3.12) in the v-x plane, deter-

mined by the procedure outlined, will give the curve as shown in 

Figure 3.2. The final values of v and x are O and 5 respectively, 

Equation (3.11) gives the value oft in terms of the values of x and v. 

The value oft can be determined graphically as the area under a curve of 

1/v versus x. This relation is shown in Figure 3,3. Since the value 

of v approaches zero, then the value of 1/v approaches infinity which 

makes the value oft approach infinity as x approaches 5. 

A plot oft versus x, determined from measuring the area under 

the curve of Figure 3,3 by counting squares, is shown in Figure 3.4 

by the triangular points. The circled points are a plot oft versus 

x computed from an exact solution of equation (3.12). The close 

comparison of the plot of the exact solution and the numerical solution 

by the phase-plane method indicates the validity of such a procedure. 

Phase-Plane Method Applied to Higher-Order 
Differential Equations 

This procedure may be extended to higher-order differential equations. 

If a third-order differential equation were assumed, then a three 

dimensional phase space with coordinates of w, v, and x could be used. 

However, because of the difficulty in drawing and computing in three 

dimensions, it is desirable to use the projection of the curve on the 

three planes w - v, w - x and v - x. This interpretation follows from 

an examination of the third-orqer differential equation. Let the relation 

given in equation (3.17) be used for discussion. 

(3.17) 
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Let dx/dt = v, d2x/dt2 =wand d3x/dt3 = w. From the definition 

then: 

or 

or 

or 

· dw · dw dv dw w=-----w-, 
dt dv dt dv 

dw _ w 
dv - w 

dv w 
_..__, = -
dx V 

· dw dw dx w=-=--= 
dt dx dt 

dw = w 
di V 

dw v-
dx 

(3.20) 

(3.21) 

(3.22) 

The relations lead to the statement that the slope of the projection 

of the space curve in thew - x plane is equal to the ratio of w to v. 

Also the slope of the projection of the space curve ih .the v - x plane is 

equal to the ratio of w to v, and the slope of the projection of the 

space curve in thew - v plane is equal to the ratio of~ tow. 

Note that equation (3'.23) can be obtained from equations (3.19) 

and (3.21). In general any two of the equations (3.19), (3.21), or 

(3.23) will suffice to determine the slope of the space curve. 

Equation (3.17) can be rearranged to give e:i:ruation (3.24). 

w = F - aw - bv - ex, (·3.24) 

or 

dw w F - aw - bv - ex. 
~ = - = ~~~----~ 
dv w w 
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The reciprocal of equation (3.21) gives: 

dx 
dv 

V 
= -

w 
.. ( 3 ,26) 

~quations (3.25) and (3.26) can be considered as two simultaneous 

phase-space equations where v becomes the independent variable and x 

and w the two dependent variables. Thus, a third-order differential 

equation can be replaced by two phase-space equations. In the case of 

__ a_ single phase-space equation a small change in x gives a change in v. 

For the case of two phase-space equations (given by equation (3.25) and 

(3.26)) a small change 6v, will simultaneously give a change, 6x and 6w. 

The procedure can be continued h~re as was explained in the case of the 

one phase-spa:~e equation. The new values of w, v, and x s,uch as w1 , v1 

and x1 are determined from the initial values of w0 , v0 and x0 as 

follows~ 

The value of 6x0 is determined from equation (3.26) with v = v0 , 

w = w0 and dv = 6v0 , while the value of 6w0 is determined from equation 

(3.25) with the additional relations of x = x0 and dw = 6w0 • This type 

of calculation requires that 6v0 be small. A larger value of 6,v0 may be 

used if the relation in equation (3.26) is substituted in equation (3.25), 

reducing it to two variables either wand v or x and v. This results in 

equation (3.25) being a quadradic in 6w0 or 6x0 , and complicates the 

process. It appears that several computations could be made by the 

simpler procedure in the same time required to solve the quadradic form. 

Even though the quadradic form is more accurate, it appears that by using 

a smaller value of 6v in the simpler.procedure, the same accuracy may be 



obtained in the same computation time. In other words, it takes about 

the same time to obtain fl. given accuracy regardless of the two forms used, 

If the quadradic form is used, computing the slope at the middle of the 

interval results in greater accuracy especially when the initial slope 

is infinite. 

Solution of Simultaneous Differential Equations 
by the Phase-Plane Method 

The extension of this phase-plane method to simultaneous differential 

equations is similar to the procedure used to handle differential equations 

above the second-order. In fact, it is theoretically possible to reduce 

the simultaneous differential equations to a single differential equation, 

whose order is less than or equal to the sum of the orders of the original 

set. However, the resulting single equation is sometimes so complicated 

that it is practically impossible to solve. Likewise the significance of 

the initial conditions is lost, complicating the solution. 

Consider the case of two simultaneous second-order differential 

equations given as follows: 

d2x dx;i d2x2 d dx2 __ J. + 
a1 + b1XJ. + CJ. dt2 dt ~+ J. dt 

d2x2 + a2~ + b2X2 + _d2x1 + d2 dx1 C2-
dt2 dt dt2 dt 

Then equations (3.27) and (3.28) become: 

+ e1X2 = 

+ e2x1 = 

F1, 

F2, 

(3.27) 

(3.28) 

(3.29) 

(3.30) 



52 

In a number of physil=!al systems some of the values of a 1 , b1 , 

... a2 , b2 , ... will be zero, simplifying the equations. This procedure 

applies to nonlinear systems. Also the coefficients of each order of 

the derivative of the variable can be a combination of any lower order 

of the derivative of that variable, or of the other variables in the 

case of simultaneous differential equations. 

Equation (3.30) should be rearranged so that the variable with 

the 1 subscript is first as in equation (3.29). 

(3,89) 

(3.20) 

The procedure fot handling simultaneous differential equations 

will be demonstrated by th.e use of equations (3.29) and (3.30). From 
\ 

the definitations w1 : dv1 /dt and w2 = dv2 /dt, the following results 

can be obtained, 

w,, dv1 /dt dv1 
= = (3.31) 

W2 dv2 /dt dv2 

Likewise~ since v1 dx1 /dt and V2 = dx2 /dt, then 

VJ. dx1 /dt dx1 

·-
v2 dx2 /dt dx2 

(3.32) 

Equations (3.31) and (3.32) give the changes in the one subscripted 

variable in terms of the two subscripted variable, or vice versa. Two 

additional equations are needed to give the relations between time 

derivatives of the same variable, as was shown in the case of a single 

differential equation. These two additional equations are: 

(3.33) 
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and 

(3.34) 

To illustrate the procedure, a numerical example will be considered. 

Let the two simultaneous differential equations be as follows: 

W1 + 2v1 + 4x1 + 3v2 = 6, 

Therefore: 

dxi V1 
~=~ 

dx.2 v2 

- = ........ = ------------

The regularly required initial conditions for a second-order 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

differential equation are all that are needed to determine the initial 

values of equations (,.37) through (3.40). In this example, let v1 = 

2, x1 = 1, v2 = 4 and x2 = 0 when t = 0 then the initial slopes are: 

dv1 W1 6 ~ 4 ~ 4 ~ 12 ~ 14 7 - = ~ = ______ ...., "" -- =-
dv2 W2 - 12 - 0 - 4 - 16 8 

(3.41) 

(3.42) 

dv1 WJ. -14 
-7 (3.42) dx1 VJ. 2 

_)--, 
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dv2 W2 -16 -4 = = = (3.44) 
4 dx2 V2 

In this case all the initial slopes are well defined; that is, the 

values are finite. Starting with a small change in v1 , as 6v1 , then 

from equation (3.43) the change in x1 as 6x1 is determined from the 

initial slope of -7. For a given 6v1 , there is a corresponding ~v2 

from equation (3.41). This 6v2 Qan then be used to determine 6x2 by 

equation ( 3. 44). The changes in all four coordinates have been determined 

by the use of only three of the four equations. This leaves the fourth, 

or equation (3.42) in this case, as a check, since 6x1 /6x2 is now known. 

As a check of the initial conditions, the following relation can be 

obtained: 

dx1 = dx1 /dv1 

dx2 dx2/dv2 

For this example, tpis becomes: 

-1/7 
:....__ 

-1/4 (3.46) 

which checks equation (3.42). !t should be pointed out that there are 

changes in all the variables with this change of 6v1 , and that the slopes 

should be t.i<en at the middle of the interval involving 6v1 if small 

increments are not possible. The complication of this type of procedure 

may make it desirable to use small values of ~v1 . 

The procedure then becomes a process of selecting values of v10 such 

as 6v10 , and computing the changes in the other variables as 6x~ 0 , 6v20 

and 6x20 • These changes added to the original values of v10 , x10 , v20 and 

X2o determine new values of the variables as v11 , x11 , v21 and x21 . These 

new values are used to determine the slopes at the new points;·then another 
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change in v1 is assumed as .6.v11 , and the process is repeated. The 

result is eight phase-plane plots of which only four or two are usually 

desired. These two plots desired are usually the v2 - x2 and v1 - x1 

plot, From these the v2 - t, x2 - t, v1 - t and x1 - tare obtained, 

which is generally the solution desired. 

This section has shown how the phase-plane method may be applied 

to solve differential equations whether they are linear or nonlinear. 

Also the application of this method to solve simultaneous nonlinear 

differential equations bas been shown. Because of the large number of 

computations involved in the phase-plane method, it has been practical 

only recently. The use of the digital computer is almost a necessity 

in the solution of a problem using the phase-plane method. 

Solution of the Transducer Equation 
by, the Phase-Space Method 

The two particular nonlinear differential equations that are used 

to de~cribe the response of the electromagnetic tra~~ducer were 

developed in Chapter II. These two nonlinear differential eqU.ations 

are repeated here for convenience. Equation (3.47)was derived from 

the electrical system, and equation (3.48) was derived from the mechanical 

system. 

d(/J + .~ ( r + 0-x) 
dt N2 

0. (3.48) 

The desired solutions are the coil current (i) and the armature 

position (x) as functions of time {t). To determine the coil current 

(i) as a function of time (t), a third equation is necessahr and is 



shown in equation (3,49). 

i = 
r +CTx 

N 

To simplify the writing of the equations the following 

notations will be used: 

<ti= d(ill/dt 

0 

dx/dt X = 

h1 = h2 /M 

k1 = k/M 

K1. ·- K/M 

With these notatioq;i equations (3.47) and (3,48) become 

~ = ! _ R ( r +CTx) 
N N2 

and 

(3.49) 

(3.50) 

(3,51) 

In the use of the phase-plane method for simultaneous differential 

equations it is necessary that the equations be of the same order. Since 

equation (3,50) 1.s of the first-order and equation (3.51) is of the 

second-order, then the time derivative must be taken of equation (3.50) 

giving equation (3,52), 

R [( r + ux) ~ u(/J ] 
N2 ( 1 - b(/)) 2 + 1 - b(/) j (3.52) 
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There are four phase-plane equations needed and these are: ·, 

~ ij R 
~( r + Ox) , + ~ G(/J ) ~] d~ = (/J = - Na ( 1 - b(/J) 2 1 - b(/J 

(3.53) 

. 
l= 

R GI~~~,! +(1 ~(/Jb0)~ d(/J - 'N2 
di = 

X - h1 x - k1x - Ki (/)2 + Hi (3.54) 

.. . . 
tix X h ·k1x I{, Ql2 !!i = . = + d:,c .x 1--.- •· x X X 

(3.56) 

o-.· 
The initial conditions for this set of equations are x = O, x = O, 

x =· G, ~=RE (r +0-G)/N3 , ~ = E/N and (/J = residual flux (W). These 

initial conditions determine the initial slopes of the phase-plane curves. 

Equation (3.53) determines the slope of the curve in the~ (/J plane, 

equation (3.54) determines the slope of the curve in the-~ - x plane, 

equation (3.55) determ:ines the slope of the curve in the x - X plane, 

equation (3.56) determines the slope of the curve in the (/) - X plane. 

The flux ( (/J) is assumed to be the independent variable, and increments 

and 

of 

(/J such as 6{/J will be a13sumed. Since the ultimate result is to determine 

the variables as functions of time (t), then the time (t) must be compu4ed. 

In this case the value oft may be computed from the changes in flux(¢) 

or the changes in armature displacement (x). The appropriate equatiQns 

to use are given as follows: 

dx (3.58) 



or 

1 
t = 

~ 
d0 (3.59) 

For every increment of flux (60) there is a change of 6x in x, 

' . 
6x in x, 60 in~' and 6t int, so usually the change 6t is computed 

for each increment and then the value of time (t) becomes the sum of 

the 6t 1 s. 

In the solution of these simultaneous nonlinear differential 

equations by this method the time interval must be divided into three 

parts. This division is necessary because of the types of retraints 

existing on the mechanical systeq;1. The restraints are in the form of 

limited travel of the armature and an initial force holding the armature 

against a stop. Tqese three intervals consist of the time the armature 

remains stationary after the step voltage has been applied to the coil, 

the time required for the armature to move from the backstop to the 

residual stop, and the time after the armature closes until the current 

reaches its final value. 

The first interval exists until the magnetic pull becomes equal 

to the back tension, During this interval the following conditions 

exist: x = G, i = O, and x = 0, The end of the second interval 

occurs when the value of x has decreased to a value equal to the residual 

gap. During this second interval both x and 0 are changing. The third 

interval exists until the flux has reached the final value. This is 

characterized by the following conditions: x = D, x d 0, and x = 0. 

The solutions of the four phase-~lane equations (3.53) through (3.56) 

results in obtaining numerically x and 0 as functions oft, The numerical 



solutidn was obtainld b:y writing a progl,'am for the IBM 650 digital 

computer, The program was written in the Fortran language because of 

the close similiarity to the language of mathematics. Figure 3.5 shows 

a flow chart which gives the basic steps used in setting up the program. 

A listing of the program in Fortran language is given in Appendix A. 

The resulting machine language program compiled from the Fortran program 

was used with numerical data to check the accuracy of the program and 

to obtain _some data showing the effect of chahging some of the parameters. 

The details of setting up equation (3.53) through (3.56) in the proper 

form, with the correct numerical coefficients for the set of units selected 

and the special notation that was used in the Fortran program, is given 

next. The validity of the mathematical solution is shown by comparing 

the numerical solut:iDn with the experimental results. This is given 

in the following chapters. 

Development of the Equations to Program the 
Solution on the IBM 650 Digital Computer 

Measurements made in the use of the electromechanical tr~nsducer, 

and especially the relay, involve a m:Lxed set of units. Distances are 

measured in inche~ or thousandths of an inch, current is measured in 

amperes;·. force in grams and emf in volts. Therefore, it was necessary 

to select a consistent set of units, The set that most nearly seemed 

to represent the majority of the units used is the English or foot-

pound second system. Therefore equations (3.53) through (3.56) must be 

modified to take into account the units. The equations in final form 

are the following: 

[ ( r +CTx) 
[l - b(~ - w)]2 + CT( Ql - w) i] 

[_T - b ( Ql - w }}$J (3.60) 
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~ All 

Not 
Check to see if all 

Start all 
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been made 

T t t 
Read in data - Punch existing values . 
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1 t N 
Check to see if N ', Not 

\ calculations have Compute constants '\\, N been made 

t ! + t t 
Punch existing values 

Set initial conditions 
of selected 
variables 
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··-· 

Not 
-::: Check .to see .if 

Punch constants Closed armature now closed 
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of t:i/) accel~ratibn '= 0 change of bl/) 
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' armature closed 
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is first time through first 
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the loop of selected variables 

T First t 

Figure 3.5. Logic Chart of Computer Program 



~ Cl 
dx = •... 

X' 

© = 108E 
N 

I 

-108R [n (r+vx)© v{© - w}x j 
N2 ..rbr(b - w)J2 + 1 -b r(b - w~ 

= -hi x - ki x·- Ki (b2 + Hi 

. 
dx X X -=- = - hi - ki ":" 

KJ (b2 !h x + x dx 

1 = 

x 

d(l} ~ 
dx = i 

lOSR ( r +vx) 
N2 

t +0-x 

N 

X 

[1 ¢ - w 
w~ - b((b -

··q1 

(3.61) 

(3.62) 

(3.64) 

(3.65) 

Where: x = armature displacement in feet 

(b = air ~ap flux in maxwells 

R = coil circuit resistance in ohms 

N = coil turns 

h2 = effective damping coefficient in pounds per foot per second 

M = effective armature mass in slugs 

k = effective spring constant in pounds per foot 

K = coefficient of magnetic pull equation and is equal 

to 8.86 x 10-8/(µA) in pounds per square root maxwells 

A= cross sectional area of the air gap in square inches 

Hi= (P0 + kG)/M 

P0 = initial back tension in pounds 

G = initial value of arm.ature displacement or open air gap in feet 
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r + ai = approximation of the reluctance of the iron part 

of the magnetic circuit over a limited range of 

values of i 

i = coil current through the N turns ih amperes 

E = supply voltage in volts 

b = a/N 

0-= 12/µA (12 caused by x being in feet) 

µ=permeability of free space and equals 3019 for 

English system of units 

X = dx/dt 

X"' d2x/dt2 

0 = d0dt 

W = value of residual flux in maxwells. 

Equations (3060) through (3.65) are used in the Fortram program 

to obtain x, 0 and i as functions oft. To obtain the valtie oft the 

following equations were used: 

6t. = ~.!~.-' 
J J J 

(j 0, 1, 2 ... n) (3.66) 

N 

t = L 6t, 
J 

'j = 0 

when t = O, j = O. 

As a check during the second interval, the values of 6tj were also 

computed as 6xj/~j and printed along with the values computed from 

equation (3.66). Because of the restrictions in the symbols used in 

the Fortran program, some of the symbols used in equations (3060) through 
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(3.65) had to be changed. There are several constants that are 

computed in the program and- that are used to determine the value of 

the increment bl/J. This required that the maximum value of the flux ( 0) 

must be known since flux is selected as the independent variable. This 
. 

is determined from equation (3.64) by setting 0 = 0 and x ~ D and 

solving of 0, The value of the maximum flux (0m) is given by the 

following equation: 

EN (3.68) R (r +Ol)) + ENb 

where all the symbols were defined at the beginning of this section 

except D. The symbol Dis the residual gap or the value of the closed 

air gap. To keep the armature from sticking to the core when the coil 

is deenergized, a small non-magnetic shim (called a residual pin) is 

used resulting in a small air gap when the armature is closed. 

-The input data necessary for the program to compute the solution 

consists of eighteen variables. Most of the variables are involved 

with the transducer parameters except three variables which are used 

to change the program. The symbols used will be listed with the Fortran 

flrst, then the symbols used in the equation, then a brief definition. 

The eighteen input variables are listed in the order required by th_e 

program. 

A= A= cross sectional area of the air gap in square inches 

HI= h2 = damping coefficient in lbs/ft/sec. 

GR= M = effective armature mass in slugs 

S:I = k = effective spring constant in lbs/ft 

PO= P0 = initial back tension in lbs. 

R = R = coil circuit resistance in ohms 
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TN= N = coil turns 

E = E = supply v~ltage in volts 

G = G = initial value of armature displacement or open air gap in ft. 

D = D = .residual· g_ap in feet 

B = b = coefficient in magnetic reluctance equation 

Q = r = coefficient in magnetic reluctance equation 

w = w = initial value of residual flux in maxwells j 

V = 108 = units constant 

UO =µ=permeability of free space. Equals 3.19 in English units 

ERR= the number used to keep a check on the calculating er~or 

INC-= total number of increments of the; flux 

NO= number of ca~culation loops made before punching values. 

Those listed Qelow are the symbols used in the program for 

computation purposes. 

CUR= i = coil current 

Y = (/) = flux 

X = X = armature 

C = CY= 12/( µA) 

H = hi .,. h/M 

s = ki = k/M 

'p = K1 = K/* 

RN= R/N2 

EN= E/N 

XD = x = dx/dt 

XDD = i = d2x/dt2 

position or displacement 

U =Hi= (P0 + kG)/M 

BM = c/Jm = EN/ l}l( r +OD) + EN~ 



DLY = !:::.(/; = (0m - W)/ nµmber of increments (INC) 

LP= total nµmber of times calculations printed to complete 

program 

YDA = l08E/N 

DI = r +0-x 

DE= 1 - p(¢ - w) 

YDB = 108 R ( r + 0-x) ( ¢ - w) 
N2 [1 - b( ¢ - w )] 

8 
YD=~= d¢ = 10 E 

dt N 
108 R ( r +0-x) ( ~ - w} 

Na [ - b ( (/; - w TI 

- 108R (r +O-x) 0 
YDDA = ---. -----

N2 (1 - b (¢ - ~a 

- 108 RO-(¢ - w) :it 
YDDB = 2 r, · ( r1. °')l 

N J - b w - w.LJ 

YDD ·= ·r1.· = aar1.1a. t2 = 108 ~ r +O"x)¢ + CY(¢ - w) ~ l 
w w - Na [Li - b( ¢ - w)] 2 [1 - b( ¢ - w)]J 

YRA = ¢/(/; 
< 

DLYD = !:::.</J = (Ar/J) ~·/~ 

INC 

YD2 = ~ = I . . 
!:J/Jn + 0o 

n = 0 

INC 

TI= t = I !:::. t n 

n = O 

CUR• i = (r +(J'x) (¢ - w) 
N ~ - b (¢ -w]] 

BIAS= P0 - !:::.P = value of pull at which armature starts to move 

PYY = K¢2/M = magnetic pull 
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XYRA = ;,i 
DLXD = 6.x 

() •• 0 0 

= (6r/J) x/(/J 

INC 

XD = X = L 6x n 

n = 0 

xRA = x/x 

DLX = 6x = (6.x) °x/i,' 

INC 

X = X = L 6x + G. n 

n = 0 

The program was arranged to punch out the values of the 

coil current (i), time (t), flux (r/J), pull, d2x/dt2 , d(/J/dt and d2 (/J/dt2 

when the armature started to move, and the values of coil current (i), 

time (t), armature position (x), flux(~), pull, dx/dt, d2 x/dt2 , dr/J/dt, 

d2 r/J/dt2 , t 1 and t 2 after n loop caicu1ations. Also built into the 

program were three errdr-check:i.rtg procedures that could be used to check 

the magnitude of an error. These ~rt6rs were determined by computing a 

given variable two ways. The first error-checking calculation is based 

upon computing$ two ways. Because of the nature of this problem,© 

was available directly from equation (3.64). Also,(/) could be computed 

by adding the successive value of!'::,.~ to the initial value (~o) of~-

A ratio of these two values of© was then computed and compared to some 

value such as 1.01 which represents a 1% error. If the computed ratio 

exceeded the allowable deviation the excess was punched out. The value 

of i used in computing the other variables was always computed from the 

equation, so that there was no err.l)r d~rectly caused by summing. 



The second error-checking scheme was to use equation (3.63). In 

this equation the ratio of 0 to x existing in all intervals was compared 

to the ratio of 0 to x. Actually the total product (t:,,,0) x/(tsx.) © derived 

from equation (3.63) should be equal to 1.0 if there is no error. This 

product then was compared to some allowable deviation. If the product 

exceeded the allowable value then the excess was punched out. If there 

was rio need to sense these errors, then a large value of ERR could be 

read in, and no error values would be punched out. The third error-

sensing arrangem~nt was to compute !:,,.t two ways. The value of a 6t1 was 
,, 

computed from ~/0, while the value of a 6t2 was computed fro~ x/x. In 

this case both values of 6t ~ere punched each time a punch operation 

occured in the normal loop. Since 6t2 only existed during the interval 

when the armature was moving, the comparison is only valid during that 

interval. The time (t) was computed for the values of 6t1 since the 

fluxwas changing all of the time. A Ejample of the ,Frotr·an'program 

is given in Appendix A. 

The actual data obtained from this program is presented in Chapters 

IV and V which show a comparison of the results obtained by calculation 

and by experiment. It took the computer, on the average, about ten 

minutes to compute until the value of the armature displacement became 

equal to the closed or residual value. To make a complete calculation, 

of 56 points in this case, the time required was approximately 15 minutes 

for each set of input data. The program is optimized because of the 

built-in SOAP progra~ used to obtain the final output program. High 

speed storage is not used by the program but the three index registers 

and the floating point unit are. 



CHAPTER IV 

QUALITATIVE DISCUSSION OF THE EXPERIMENTAL 

AND COMPUTED DATA 

Experimental information was used in two ways in the solution of 

the problem of determining the transient response of the singly excited 

electromechanical transducer. A certain amount of experimental data had 

to be obtained in order to gain insight into and familiarity with the 

details of the problem. This information was used to determine the 

method of approach and the conditions involved in the analytical 

solution. The results of the analytical solution were then studied 

in relation to the experimental results to evaluate the accuracy of 

the mathematical model and the procedure used to arrive at the solution. 

In a4dition~ in this case, considerable experimental results will 

be presented to show the feasibility of using the response of one system 
1 

in evaluating the response of a coupled second system. In most electrical 

measuring devices this is the basic principle used to obtain some type 

of results which can be perceived by an individual. For example, the body 

is incapable of directly sensing the presence of a magnetic field. However, 

consid~rable information is obtained about magnetic fields by observing 

the response of devices that do respond to magnetic fields. In fact, the 

transie~t response of a magnetic field is somewhat unknown because of 

1cameron, C,, F. and D. D. Lingelbach, i'Oscilloscopic Analysis of 
Relay Performance 11 , Automatic Control, (New York, 1958), pp. 10-11. 
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the inability to make reasonable direct measurements of the field under 

transient conditions, Just recently new devices have been made which 

have possibilities of studying transient magnetic fields by using a 

different principle. As indicated in Chapter I, the scope of this thesis 

has been.limited to the response of a singly excited electromechanical 

transducer to a step input of voltage. However, the technique presented 

in this thesis can be applied to other conditions by using certain 

modifications. 

. 
Transient Coil Current Build-up 

The transient coil current build-up is the instantaneous value of 

the coil current from the instant the coil is energized until the current 

reaches it steady state value, or until another switching action takes 

place in the coil circuit. 

Inspection of equations (2.39) and (2.40) indicates that a change 

in any of the terms in these two equations would give some change in the 

instantaneous value of the coil current. It is possible that a change 

in some of the terms or variables would give less change than others in 

the coil current. Likewise, the condition of any one variable to cause 

a change in the coil current is based upon the values of the other 

variables existing at any given time. This condition is caused by the 

nonlinearity of the transducer. Experimentally, there are some variables 

that may be changed more conveniently than others. These will be varied, 

and the effect on .the coil current will be observed, The details of 

the experimental setup are presented in Appendix B. In general, the 

coil current was obtained by a photographic record being made of the 



trace presented by the electron beam on the face of a cathode ray tube, 

Since dhly transient conditions were being recorded, the shutter of the 

camera ~as held open while the electron beam was swept across the face 

of the tube. In the case of simultaneous traces, the two beams of the 
1,' 

dual osli:illoscope were used. The use of simultaneous traces are a 

necessity for comparison purposes because of the difficulty of obtaining 

consistency in the transient operation of a mechanical device. With 

simultaneous traces there is no question as to whether each one existed 

under identical conditions. 

The variables which are convenient to change are the initial value 

of the spring force called back tension, the open value of the armature 

called air gap, the closed value of the armature called residual gap, 

applied voltage, the coil circuit resistance, the constant of the spring, 

and a separate circuit electromagnetically coupled to the coil circuit 

2 
called a slug or sleeve.· 

The influence of a change in the back tension on the transient 

coil current build-up is shown by the traces in Figures 4.1 and 4.2. 

In order to explain the changes that take place in the transient 

coil current build-up with a change in the variables, it is desirable 

to take the general shape of the traces in Figure 4,1 and define some 

particular prints. The points to be primarily used in f~ure discussions 

are located on a sketch ih Figure 4.3 showing the general shape of 

the coil current. 

2cameron~ C,- F., D. D. Lingelbach and Douglas Jeng, "Transient 
Analysis of Relays with Slugs and Sleeves,ri Sixth Symposium EE. Electro
magnetic Relays, (Princeton, Indiana, 1958). pp, 90-93. 



Tre.ces: 

( a, b, c, d) Coil Current IJuild-up 

( a) Back tension 40 grama 

( b) Back tension 60 grams 

( C) Back tension 90 grams 

( d) Back tension 140 grams 

( e, f, g, h) Coil current decay 

Oscillogram Data 

Time scale: 5 milliseconds per division (horizontal) 

Current scale: 19. 75 milliamperes per division (vertical) 

Turns: 5840 

Air gap: 0.027 inches 

Coil circuit resistance: 467 ohms 

Voltage: 36 volts de 
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Figure 4.1. Coil Current Build-up and Decay for Variable Back Tension 



Traces: 

( a, o , c, d) Coil current build-up 

( a) Back tension 195 grams 

( b ) Back tension 230 grams 

(c) Back tension 255 grams 

( d) Back tension 320 grams 

( e, f, g, h) Coil current decay 

Osc illogram Data 

Time scale: 5 milliseconds per division except trace (d) which is 

10 milliseconds (horizontal) 

Current scale: 19. 75 milliamperes per division (vertical) 

Turns: 5840 

Air gap : 0 . 027 i nches 

Coil circuit resistance: 467 ohms 

Voltage: 36 volts de 
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Figure 4.2. Coil Current Build-up and Decay for Variable Back Tension 
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There are usually four values of the coil current (i) that are of 
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use in describing the transient coil current build-up trace. Associated 

with these four current values are three finite time values. Commencing 

with the lowest current value marked is the value called ip. This is 

defined as the pick-up value of current and is that value of current at 

which the magnetic pull becomes just equal to the total force holding th€ 

armature open. The next current point is ic and is the value of the 

current at the lowest point on what is called the cusp in the current 

trace, The point im is next and is the value of the current at which 

the time rate of change of the current is zero. The final current value 

marked is the steady state value of the current and is noted as Iss· 



The three time va11tes g;enerally used are: first, tp which is cafled 

the pick-up time and is defined as the time interval from the instant 

the coil is energized to the instant the magnetic pull becomes equal to 

the restoring force on the armature; the second time value is tm and is 

the time at which the time rate of change of the current is zero; the 

last time value is ts and is called the seating time. It is at this 

point {ts) that the annature reaches the end of its travel as it 

closes. This poin~ is determined experimentally be observing simultaneously 

the transient coil current and the armature motion. 

Careful examinatiqn of the traces in Figure 4.1 and 4.2 will reveal 

that certain conditions exist in the trace for a change in the value of 

the back tension. At the point where t = 0, and i = O, it will be found 

that the time rate of change of the coil current is the same for all 

values of back tension. In addition, the shape of the instantaneous value 

of the coil current is the same for all values of back tension for 

values of the coil current less than .the smallest value of pick-up current 

in the group. 

Increases in the back tension increase the value of ip and the 

corresponding tp. The values oft~ or ip have been indicated by 

causing a blanking. pulse to blank the electron beam at the instant 

the armature starts to move. The beginning of the blank in the coil 

current trace is caused by the breaking of a contact mounted on the 

armature so that movement of the armature breaks an electrical circuit, 

causing a blanking pulse. Therefore, the values of ip and tp exist at 

the beginning of the blank. 

Increasing back tension also increases the time interval of ts 

minus tp. This time int~rval is referred to as the armature travel 



time or transit time. The time interval ts minus tm also increases 

with an increase in the back tension, 

Associated with the increases in the time intervals are the increases 

in the current, Increasing the back tension increases the current 

increment of im minus ic. The reason for presenting time intervals 

and current increments in describing the changes caused by changing a 

variable is to help differentiate between the types of changes. For 

example, if only the change in the magnitude of ic were used to describe 

the effect of a change in back tension, one would not know whether the 

change was only a reflection of the change in i or a change directly 
' p 

related to back tension. Actually, nQt only should the magnitudes of 

the current and time be examined, but the time rate of change of the 

current should be checked. However, if small enough time increments 

were involved, then the data would give essentially the same results as 

examining the slope of the trace. 

Figure 4.4 shows a plot of the calculated coil current build-up 

for a transducer in which the back tension was varied. Only the plots 

of coil current for three values of back tension are shown. Comparison 

of Figure 4.4 with Figure 4,1 shows that the computed results give the 

same changes as those exhibited experimentally. The relays used in 

obtaining the data for Figures 4.1 and 4.4 are not the same. In 

selecting the values of the parameters to compute the response, represen-

tative values were used whenever they were known. In some cases, such 

as the magnetic circuit pa:rameters, the values had to be calculated 

since the exact relation between the flux and the magnetomotive force 

was not known. Also, a simple series magnetic circuit was used in the 

mathematical model. This kept the computer program from being more 
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complicated than necessary to obtain the desired results in the time 

available. There are a number of places where additional refinements 

in the computer program would be necessary in order to be able to 

obtain a given response. The objective here was to show that a reasonable 

solution could be obtained by this method. If the solution obtained 

showed the same trends as the experimental results, then it was 

considered to be entirely satisfactory since definite limitations existed 

in the mathematical model used. One definite advantage of this type of 

solution is that added refinements can be made without having to 

completely revise the procedure. 

To observe the effect of air gap on the coil current build-up, the 

traces presented in Figure 4.5 and 4.6 were obtained. Each coil current 

build-up trace was taken for a different value of the air gap and with 

constant back tension. Careful inspection will show that the slope of 

the trace at t = 0 is different .f·or each of the values of air gap. The 

slope at t = 0 should increase with an increase in air gap. Because of 

the switching problem and coupling factors, it is difficult experimentally 

to obtain a well defined trace at t = 0. Therefore it is desirable to 

observe the change caused by changing the air gap by selecting some value 

of time between the values of zero and tp and determining the current. 

By using the same value of time for all the traces under consideration, 

a comparison can be made from the values of coil current (existing at 

that value of time)to·detect the change in air gap. If the slope is 

greater, then the current at a fixed time would also be greater. This 

difference in slope is about the only significant thing that can be used 

to distinguish between the changes caused by changing back tension, and 

those caused by changing air gap. 



Traces : 

( a, b, c, d) Coil current build-up 

( a) Air gap: 0.008 inches 

( b) Air gap : 0.013 inches 

( C) Air gap: 0.018 inches 

( d) Air gap: 0.023 inches 

(e, f, g, h) Coil current decay 

Oscillogram Data 

Time scale: 5 milliseconds per division (horizontal) 

Current scale: 16 milliamperes per division (vertical) 

Back tension: 65 grams 

Turns: 5840 

Voltage: 36 volts de 

Coil circuit resistance: 562 ohms 

Figure 4.5. Coil Current Build-up and Decay for Variable Air Gap 



Traces: 

( a, b, c, d) Coil current build-up 

( a) Air gap: 0.028 inches 

( b) Air gap: 0.033 inches 

(c) Air gap: 0.038 inches 

( d) Air gap: 0.043 inches 

(e, f, g, h) Coil current decay 

Oscil log ram Data 

Time scale: 5 milliseconds per division (horizontal) 

Current scale: 16 milliamperes per division (vertical) 

Back tension: 65 grams 

Turns: 5840 

Voltage: 36 volts de 

Coil circuit resistance: 562 ohms 

Figure 4.6. Coil Current Build-up and Decay for Variable Air Gap 
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The data taken to determine whether the change is one of air 

gap or of back tension is obtained during the time interval that the 

armature is not moving. This means that the value of xis G and that 

X and·x are zero. If magnetic saturation can be neglected, then it is 

possible to obtain approximate relations that can be used to predict 

the pick-up time if certain parameters are known. The parameters which 

determine the pick-up time are the supply voltage (E), the coil circuit 

resistance (R), the coil turns (N), the pick-up flux (0p) and the 

magnetic circuit reluctance (Cl\p). It was shown in a previous chapter 

that the magnetic pall is proportional to the square of the magnetic 

flux in the air gap. Also the reluctance (Gip) is determined, in part, 

by the length of the air gap. With these conditions existing, then 

the following voltage equation may be written for the transducer coil 

circuit, 

E 
di, 

iR + J i <_ ip , dt' ( 4.1) 

The solution to equation (4.1) for the coil current (i) is 

i 
E 

( 1 -Rt/J'); i ip = - E < R 
(4.2) 

Solving equation ( 4, 2) for the time (t) gives 

J' 
ln 

lss 
t = t < tp R Iss - i ' (4.3) 

where Iss = E/R = steaqy state current 

J = effective inductance of the coil when the armat4re is open. 

The effective inductance J' can be shown from its definition to be 

equal to N2 /R. Substituting this relation into equation (4.3) gives 

t = N2 ln __ I=s=s~ 
OtR Iss - i 

( 4. 4) 
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Equation (4.4) shows that for a given value of i, the time (t) 

varies inversely with the reluctance, or ·convers,ely that for a fixed 

value oft the current i varies dtrectly with the(R. Therefore, in 

the examination of the coil current build-up traces it is possible to 

detect the changes in the air gap by comparing the instantaneous values 

of current at the same value of time (t). Attention should be called 

to the fact that equations (4.1) through (4.4), are accurate for 

t < tp and i $ ip, 

Equation (4.4) can be rearranged so that the magnitude of the 

reluctance(R may be calculated by obtaining a pair of values of time 

(t) and the corresponding value of current (i) from a transient coil 

current build-up trace, If this pair of values is (t1 , i 1 ) then the 

reluctance Q\1 can be calc.ulated from equation ( 4. 5) as 

When .the value of (R1 has been determined, the value of flux 

existing at this time can be obtained from equation (4.6). 

If the pair of values of current and time are selected as the 

pick-up values then the pick-up flux 0p and the reluctancecJ\..p are 

determined when using equations (4.5) and (4.6) 

By substituting equation ( 4. 6). .. into equation ( 4. 4) a relation 

( 4. 5) 

(4.6) 

is obtained which shows the effect of varying the back tension upon 

the pick-up time tp• This relation is given in equation (4.7). 

Niss 
ln 

Niss - ©p(P..p 
(:-4. 7) 
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Since r/Jp varies as the. square root of the back tension, increasing 

back tension will increase the value of r/J • Fl:'om equation ( 4. 7) it is 
p 

seen that an increase in the value of r/Jp will increase the pick-up time 

( tp) in a logarithmic manner. 

With fixed values of the internal parameters such as back tension 

and air gap, it is stiP possible to change the transient coil current 

build-up by changing the external conditions. The magnitude of the 

supply voltage may be changed with constant coil circuit resistance, or 

both the resistance and voltage may be changed or only the resistance 

changed. These three types of input conditions influence the transient 

response differently. 

The influence of different values of supply voltage on the transient 

-eoil current build-up is shown by the trace in Figures 4.7 and 4.8. 

Some definite changes in the shape of the trace may be noted. The slope 

of the trace at t = ·o increases with an increase in the voltage. This 

result can be predicted by taking the derivative of e~uation (4.2) with 

respect to time. This results in the following equation. 

-Rt 
di E T = -E dt J ( 4.8) 

At t = 0 the slop~ of t~e transient coil current build-up trace 

is E/J. This shows t;:hat the slope varies directly with E. Since di/dt 

at t = 0 is greater with a larger E, then the time required for the 

coil current to reach a given value decr'eases. This is shown by the time 

interval from zero to the beginning of the blanking pulse. In addition, 

the time required for the armature to move from the open to the closed 

position increases with a decrease in the applied voltage. 



Traces: 

( a, b, C, d) Coil current build-up 

( a) Voltage: 36.0 volts de 

( b) Voltage: 26.7 volts de 

(e) Voltage: 21.2 volts de 

( d) Voltage: 17.7 volts de 

(e, f, g, h) Coil current decay 

Oseillogram Data 

Time scale: 5 millis econds per division ( horizontal) 

Current scale: 19.5 milliamperes per divis ion (vertical) 

Turns: 5840 

Back tension: 40 grams 

Coil circuit resistance : 467 ohms 

Air gap: 0.027 inches 

Figure 4.7. Coil Current Build-up and Decay for Variable Voltage 
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Traces: 

( a, b, C) Coil current build-up 

( a) Voltage: 15 .o volts de 

( b) Voltage : 12.5 volts de 

(c) Voltage: 10.8 volts de 

(d, e, f) Coil current decay 

_. __ '. - !---

+~-t™· _· §--1~ lffl+- ' ...... , 
:· .. ·'.····:.. .. ~ ... ) ... < .... ·• . ' 

.. : 

Oscillogram Data 

Time scale: 5 milliseconds per division (horizontal) except trace (c) 

which is 10 milliseconds 

Current scale: 8.25 milliamperes per division (vertical) 

Turns: 5840 

Back tension: 40 grams 

Coil circuit resistance: 467 ohms 

Air gap: 0.027 inches 

Figure 4.8. Coil Current Build-up and Decay for Variable Voltage 
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The effect of changing the coil circuit resistance on the transient 

coil current build-up is shown by the traces in Figures 4.9 and 4.10. In 

this case there is not change in the initial slope of the coil current 

build-up. This is indicated by equation (4.8) since at t = 0, R does not 

appear. Inspection of the traces will show that the pick-up time (tp) 

increases with an increase in the coil circuit resistance. Rearrangement 

of equation ( 4. 4) by substituting E/R = Iss will give equation ( 4. 9): 

N2 E 
t = ln --~~ 

R6?.. E - iR 
( 4. 9) 

Since the variable R occurs in both factors of equation (4,9) it 

is awkward to see the effect of changing R. In one factor, increasing 

R decreases the value of the factor while in the other factor the opposite 

change occurs. At first thought it might appear that there is a finite 

value of R that results in the pick-up time (:tp) being a minimum. However, 

taking the derivative of equation (4.9) with respect to R, and setting 

that equal to zero, shows this is not true. 

The armature travel time also increases with an increase in the coil 

circuit resistance. Inspection of the traces in Figures 4.9 and 4.10 shows 

that the increase in the pick-up time is smaller than the increase in the 

armature travel time. 

If the supply voltage (E) and the coil circuit resistance (R) ate 

changed together such that the ratio remains constant, certain unique things 

result. By definition the steady state current (Iss) is fixed. The traces 

in Figure 4.11 show the result of changing E and R together but keeping 

their ratio constant. Examination of the traces shows that the slop~ of 

the trace at t = 0 increases with an increase in the supply voltage. A 

check with equation (4.8) shows that at t = 0 the value of di/dt depends 



Traces: 

( a, b, c, d) Coil current build-up 

( a) Coil circuit resistance: 467 ohms 

( b) Coil circuit resistance: 564 ohms 

(c) Coil circuit resistance: 735 ohms 

( d) Coil circuit resistance: 880 ohms 

(e, f, g, h) Coil current decay 

Oscillogram Data 

Time scale: 5 milliseconds per division (horizontal) 

Current scale: 19.75 milliamperes per division (vertical) 

Air gap: 0.027 inches 

Back tension: 40 grams 

Voltage: 36 volts de 

Turns 5840 

Figure 4.9. Coil Current Build-up and Decay for Variable Coil 
Circuit Resistance 
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Traces: 

( a, b, C, d) Coil current build-up 

( a) Coil circuit resistance: 1000 ohms 

( b) Coil circuit resistance: 1000 ohms 

( C) Coil circuit resistance: 1220 ohms 

( d) Coil circuit resistance: 1364 ohms 

(e, f, g, h) Coil current decay 

Oscillogram Data 

Time scale: 5 milliseconds per division (horizontal) 

Current scale: 19.75 milliamperes per division (vertical) 

Air gap: 0.027 inches 

Back tension : 40 grams 

Voltage: 36 volts de 

Turns: 5840 

Figure 4.10. Coil Current Build-up and Decay for Variable Coil 
Circuit Resistance 
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Traces: Coil current build-up 

(a) Voltage: 24.6 volts 

Coil circuit resistance: 214 ohms 

(b) Voltage: 49.2 volts 

Coil circuit resistance: 428 ohms 

(c) Voltage: 70.0 volts 

Coil circuit resistance: 610 ohms 

(d) Voltage: 95 volts 

Coil circuit resistance: 825 ohms 

Time scale: 1 millisecond per small division (horizontal) 

Current scale: 5.7 milliamperes per small division (vertical) 

Figure 4.11. Coil Current Build-up for Constant Steady State Current 
but Variable Voltage and Resistance 



only on E and J and not R. Therefore, increasing E increases the slope. 

The rate of change of i with time increases with an increase in E; there

fore, the pick-up time (tp) decreases with an increase in E. Since 

increasing E decreases the pick-up time, and increasing R increases the 

pick-up time, the result of increasing both E and R together reduces the 

effect of each. Examination of equation (4.4) shows that the pick-up 

time varies inversely with the coil circuit resistance since Iss is 

constant. The traces in Figure 4.11 also. show that the armature travel 

time decreases with an increase in the coil circuit resistance when both 

E and Rare increased together. However, the change in the armature travel 

time is less than the change in the pick-up time when both E and Rare 

changed, 

The parameters discussed previously have been those that are either 

part of the electrical system o~ part of the mechanical system that 

affects the electrical system before the·armature moves. There are two 

parameters, the mass artd the spring constant, which influence the response 

only when the armature is moving. Actually there is a third parameter, 

the damping, which is involved with the mechanical system, but this one 

is difficult to change. Experimentally these two parameters are hard to 

change without changing another parameter. The traces shown in Figure 

4.12 show the effect of changing only the spring constant. Because the 

spring constant does not become effective until the armature moves, the 

pick-up time does not change with a change in the spring constant. Experi

mentally, it is difficult to change springs without changing the back 

tension even when the back tension is adjusted to be constant. Measure

ment of the back tension by the standard hand type gram gauge is not 

very accurate, 



Traces: Coil current build-up 

(a) Spring constant 55.8 lbs/ft. 

(b) Spring constant 25.l lbs/ft. 

(c) Spring constant 10.0 lbs/ft. 

Osci llogram Data: 

Time scale: 2 milliseconds per division (horizontal l 

Pick-up current: 10.4 milliamperes 

Steady state current: 29 milliamperes 

Supply voltage: 36 volts de 

Figure 4.12. Coil Current Build-up for Variable Spring Constant 
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The armature travel time does change with the spr:i.ng coqstant. An 

increase in the spring constant increases the armature travel time. How

ever, the spring constant times the total ~rmature displacement must be 

of the same order of magnitude as the back tension before the spring 

constant gives much change. It will be shown in the next chapter that, 

even with a spring constant of zero, the armature travel time is not 

zero. The effect of a change in the spring constant on 'the transient 

coil current build-up is shown by the traces in Figure 4.12. The 

shape of the cusp is the primary change associated with a change in the 

spring constants. The computed effect of a change in the spring constant, 

from the computer program, is shown by the curves in Figure 4.13. Figure 

4.13 shows the computed transient coil current build-up and the computed 

armature motion for two values of the spring constant. It was considered 

desirable in this case to show both the coil current build-up anc;l the 

armature motion, because of the peculiar shape of the coil current when 

the spring constant was large. The curves shown by the solid lines are 

for the case of a large spring constant. Comparison of both the coil 

current and the armature motion shows why the coil current had a slight 

dip and why the cusp is so long. The armature velocity increased at 

first, then decreased before reach}ng its final closure value. This 

is one example of the use of the transient coil current to detect 

unusual changes in the armature motion. The dashed curves represent 

the response when the spring constant is smaller and more normal. 

The second mechanical variable that influences the armature 

travel time is the armature mass. If the back tension is kept constant 

when the mass is changed, then the mass does not directly influence the 

pick-up time. Whether the armature mass can influence the pick-up time 
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at all depends on how the mass is changed. If the reluctance of the 

magnetic circuit is changed when the mass is changed, then the pick-up 

time is changed. If the mass is changed without changing the magnetic 

reluctance, then the only change is in the armature travel time. The 

assumption made in this discussion is that the mass does not change the 

reluctance of the magnetic circuit; therefore, pick-up time is not 

changed. The effect of changing armature mass on the ~r.ansient coil 

current build-up is shown by the traces in Figure 4.14. The armature 

travel time increases with an increase in armature mass. The largest 

change occurs when the total mass is small, and the change approaches 

a fairly constartt value when the mass becomes larger. If the damping 

term in the mechanical system equation is negligible, then the travel 

time approaches zero as the mass approaches zero. Figures 4.15, 4.16 

and 4.17 show the computed results of a change in mass on the transient 

coil current build-up and the armature motion. The smallest mass was 

used to obtain the data used to plot the curves in Figure 4.15, and the 

succeeding Figures 4.16 and 4.17 are the results obtained by increas

ing the mass. The increased mass resulted in a smaller velocity, 

therefore increasing the length of the coil current cusp. 

A aomewhat comprehensive discussion was given of the influence 

of various parameters on the transient coil current build-up because 

this is the only quantity that can be recorded on all types of trans

ducers, including the hermetically sealed types. In hermetically 

sealed types, the amount and kind of information that can be obtained/ 

about the response is very limited. Therefore, if it can be shown that 

a particular quantity can be used to study the response of the transducer, 

then this information is of considerable value in evaluating a particular 



Traces: Coil current build-up 

( a) Armature mass 10. 5 grams total 

( b) Armature mass 34.5 grams total 

(c) Armature mass 47.5 grams total 

( d) Armature mass 62.5 grams total 

Oscillogram Data: 

Time scale: 5 milliseconds per division (horizontal) 

Pick-up current: 21.8 milliamperes 

Steady state current: 33 milliamperes 

Supply voltage: 36 volts de 

Figure 4.14. Coil Current Build-up for Variable Armature Mass 
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transducer as to its reliability in a certain application. 3 In modern 

applications of transducers~ even though the unit itself is not sealed, 

it may be a part of a sealed package. Then the transi,ent coil current 

build-up becomes important in determining whether the response of the 

transducer has changed during its assembly or packaging. 

Transient Armature Motion 

The transient armature motion shows the response of the mechanical 

system to the electrical driving function. There are several ways to 

obtain an electrical signal that is proportional to the armature position. 

A number of the methods require some attachment of a sensing device to 

detect the position. This attachment of another device to the armature 

creates the problem of changing the effective mass of the armature, 

especially when the size of the transducer under study is small. The 

method that was used in obtaining data for this thesis involved the use 

of a light beam and photosensitive pick-up. By this procedure no mechan-

ical attachments were made to the armature, so no changes could occur in 

the effective mass. (Some additional details of the experimental setup 

are given in Appendix B.) Since the armatu.re motion can be obtained 

only on open type tran~ducers, this discussion will not be as comprehensive 

as that for the transient coil current build-up. 

The effect of changes in back tension on the armature motion is shown 

in Figure 4.18. Increasing back tension, when the pick-up value of current 

is small, results in little change in the armature travel time. Therefore, 

3cameron, C. F, and D, D. Lingelbach, "The Dynamics of Relays", 
Electronic Industries, (1959), Part I, Sept., pp. 70-76; Part II, Oct., 
pp, 86-90; Part III, Nov., pp. 96-lOlo 



Traces: 

( a, C, e) Armature motion 

( a) Back tension 75 grams 

(c) Back tension 50 grams 

( e) Back tension 25 grams 

( b, d, f) Coil current build-up 

( b) Back tension 75 grams 

( d) Back tension 50 grams 

( f) Back tension 25 grams 

Oscillogram Data: 

Time scale : 4 millis econds per sma l l divi sion (horizontal) 

Current scale: 2,4 milliamperes per small division (vertical) 

Air gap: 0.021 inches 

Figure 4.18. Armature Motion and Coil Current Build-up for Variable 
Back Tension 
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the armature motion curve has the same shape once the armature starts 

moving" However) when the back tension becomes large enough to cause 

the pick""up current to app~pach the steady state value of the current, 

then a change in back tension gives a change in the armature travel 

time" As stated in the discussion of transient coil current, increas

ing the back tension increases the pick-up time. The computed results 

of the change in the armature motion with a change in back tension 

are shown by Figures 4, 19, 4.20 and 4.21. Figures 4.19 and 4.20 show 

the results when the back tension is small and is changed. Figure 

4,21 shows the results when the back tension is changed to a large 

value, Comparison of Figures 4"20 and 4.21 show the changes that exist 

when the value of the back tension used causes the value of pick-up 

current: to approach the steady sta,te value of current. 

The effect of the value of the air gap on the armature motion is 

shown by the traces in Figure 4"22. The armature travel time increases 

with an increase in air gap for two reasons. One reason is that the 

armature has to travel further~ and second, the reluctance of the mag

netic circuit iJcreases. Therefore, increasing the air gap causes the 

armature travel time to increase rapidly, especially at the larger 

values of ai.r gap. The :incre.ase in the armature travel time results in 

a decrease in the impact velocity of armature" 

The value of the supply voltage affects the armature motion as 

shown by the traces in Figure 4.23. The armature travel time increases 

with a decrease in the value of the supply voltage. Associated with 

this increase in armature travel time is a decrease in the. armature 

impact velocity. 
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Traces: 

( a, c, e) Armature motion 

( a) Air gap 0.052 inches 

( C) Air gap 0.031 inches 

( e) Air gap 0.021 inches 

( b, d, f) Coil current build-up 

( b) Air gap 0.052 inches 

( d) Air gap 0.031 inches 

(f) Air gap 0.021 inches 

Oscillogram Data: 

Time scale: 4 milliseconds per small divis i on (horizontal) 

Current scale: 2.4 milliamperes per small division (vertical) 

Back tension: 50 grams 

Figure 4.22. Armature Motion and Coil Current Build-up for Variable 
Air Gap 
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Traces: 

( a, C, e) Coil current build-up 

(a) Voltage: 24 volts 

(c) Voltage: 28 volts 

( e) Voltage: 32 volts 

( b, d, f) Armature motion 

( b) Voltage: 24 volts 

( d) Voltage: 28 volts 

( f) Voltage: 32 volts 

Oscillogram Data 

Time scale: 5 milliseconds per division (horizontal) 

Current scale: 12.8 milliamperes per division (vertical) 

Air gap: 0.046 inches 

Residual gap: 0.002 inches 

Figure 4.23. Armature Motion and Coil Current Build-up for Variable 
Voltage 



1U6 

Increasing the coil circuit resistance changes the shape of the 

armature motion trace in a manner similar to decreasing the supply 

voltage, This effect is shown by the traces in Figure 4.24. Increasing 

the coil circuit resistance increases the armature travel time and 

decreases the armature impact velocity. 

If both the supply voltage (E) and the coil circuit resistance 

(R) are increased such that the ratio E/R is constant, then only a slight 

change in the armature travel time results with a change in the coil 

resistance when the value of R is less than twice t;he value of the 

coil res is tan.re. As the coil circuit resistance ( R) becomes more than 

twice the coil resistance, then' a noticeable increase in armature travel 

time occurs when the coil resistance is changed. This effect is shown 

by the traces in Figure 4.25. 

Normally the armature mass or the spring constant of a given relay 

doe.s not change a great deal. However, it is of interest to know the 

particular effect that each of the two variables, mass and the spring 

constant, have on the transducer response. Figures 4.15, 4.16 and 

4.17 show the computed response of the armature motion and the coil 

current, Increasing the mass decreases the armature impact velocity 

and increases the armature travel time, 

The effect of a stiff spring is shown by the computed armature 

motion and coil current curves in Figure 4.26. The effect of a 

stiff spring, for the case computed in Figure 4.26, was that of 

causing the armature to slow down during its closure. This is shown by 

the decrease in the slope .of the armature motion curve in Figure 4,26. 

Figure 4.13 also shows the effect of a stiff spring and a w~aker sp:ting 

on the armature motion and coil current. 



Traces: Armature Motion 

( a) Coil circuit resistance 3790 ohms 

( b) Coil circuit resistance 3680 ohms 

(c) Coil circuit resistance 3460 ohms 

( d) Coil circuit resistance 3080 ohms 

( e) Coil circuit resistance 1930 ohms 

( f) Coil circuit resistance 1465 ohms 

(g) Coil circuit resistance 1250 ohms 

Oscillogram Data: 

Time scale: 5 milliseconds per division (horizontal) 

Supply voltage: 36 volts de 

Figure 4.24. Armature Motion for Variable Coil Circuit Resistance 
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Trace~ 

(a, c) Armature motion 

(a) Voltage: 49.2 volts 

Coil circuit resistance: 470 ohms 

(c) Voltage: 95 volts 

Coil circuit resistance: 825 ohms 

(b, d) Coil current build-up 

(b) Voltage: 49.2 volts 

Coil circuit resistance: 470 ohms 

(d) Voltage: 95 volts 

Coil circuit resistance: 825 ohms 

Oscillogram Data 

Time scale: 1 millisecond per small division (horizontal) 

Current scale: 5.7 milliamperes per small division (vertical) 

Figure 4.25. Armature Motion and Coil Current Build-up for Constant 
Steady State Current but Variable Voltage and 
Resistance 
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As explained in Chapter ui, compqtations were inade of s~\i.eral 

other vE].riables in addition to the arm~ture motion and coil current. 

Figure 4.28 shows a plot of some of the other quantities associated 

with the mechanical system. The variables plotted in Figure 4.2$ 

are armature motion, armature velocity, armature acceleration and 

magnetic pull, all as functions of time. Figure 4.27 shows the 

variables associated with the electrical system. These variables 

are coil current, flux a~d time rate of change of flux, all as functions 

of time. 

The magnitude of the rate of change of flux is seen to be 

essentially the mirror image of the transient coil current to a 

different scale. The mirror image effect is caused by the fact that 

rate of change of flux obtained from the emf equation of the coil 

circuit can be expressed as follows: 

d© 
dt = (E - iR)/N 

This equation shows that, for constant values of N, E and R, the 

( 4.10) 

value of d©/dt is proportional to (1 - i), thereby causing the mirror 

image result as shown by the© curve in Figure 4.27. The flux curve 

follows the current curve, as it should, until the armature moves, 

then it becomes somewhat quadradic in form until the armature closes. 

The flux then again follows the current curve with a different scale 

factor. 

Figure 4.28 indicates that the velocity is continually increasing 

as the armature closes. Also, the acceleration is continually·increas-

ing as the armature closes. The pull curve could almost be represented 

as two straight lines. One straight lin~ could be drawn from near the 

origin to a time where the armature has completed about half of its 
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travel and the other straight line of approximately twice the slope 

from that point on, 

A qualitative discussion has been given in this chapter which 

presents the changes that take place primarily in the transient coil 

current build-up and the armature motion, It was brought out that 

a change in any variable resulted in some change existing in the 

transient coil current. In some cases two variables gave some of 

the same general changes~ but in most cases at lease one phase of the 

4 
effect was unique. Not all of the parameters affecting the transient 

coil current were changed because of the difficulty in physically 

making a change. It is possible, but highly improbable, that any two 

variables would. result in giving identical changes in the transient 

coil current because of the nonlinear characteristic of the transducer. 

This behavior is desirable from an evaluation standpoint but is 

undesirable when a general solution to the response to other types of 

driving function is attempted, since the superposition theorem can 

not be used.5 

4cameron, C. F. and D. D. Lingelbach, "Relay Chatacteri.stics," 
Symposium.£!!: Electromagnetic Rela~s, (1956), pp. 41-48. 

5 ' IT Cameron, C. F., D. D. Lingelbach i;m.d C, C. Freeny, Armature 
Overtravel in Relays," Seventh Symposium .2!! Electromagnetic Relays," 
(1959), pp. 67-70. 



CHl\PTER V 

QUANTITATIVE DISCUSSION OF THE EXPERIMENTAL 

AND COMP~TED RESULTS 

The previous chapter presented a qualitative discussion of the 

comparison of the experimental and computed results. Only general trends 

or changes were presented as they affected the transient coil current 

build-up and armature motion, Additional data was obtained from the 

experimental and computed results which show quantitatively the effect 

of the variables on the performance of the transducer. Instead of 

expr,essing the change in pick-up time or transit time as a function of 

the magnitude of the variable itself~ a more general non-dimensional 

quantity will be used, This non-dimensional quantity, defined as the 

ratio of the pick--up current to the steady state current and called r' 
has certain desirable properties. For one thing, it expresses the 

changes of five of the variables in a common form. Also, the values 

of f by definition can vary only between zero and one, This means that 

the use of such a parameter gives more uniformity to the use of curves 

to express the results, Since the mass (M) and the spring constant (K) 

do not directly affect the pick-up current, then the quantity r can not 

be used to show the effect of these two variables. 

The mathematical model of the transducer used in the computational 

procedure is not identical to a known transducer; however, the values 

used are representative of the 10-cubic inch size. A set of values 

114 
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was selected which was used to represent an average or normal operating 

point, Whenever the influence of a variable upon the transient response 

was desired, only the variable under study was allowed to vary. Therefore, 

unless otherwise specified, the following values of the variables were 

used to obtain the response of the transducer. 

Voltage: 24, volts ( step input) 

Turns: 11,000 

Coil circuit resistance: 1000 ohms 

Back tension: 0.22 pounds: or 100 grams 

Armature mass: 0000205 slugs or 30 grams 

apring constant: 10,53 lbs/in. or 400 gms/in. 

Damping constant: 0,1 lbs/ft/sec. 

Cross sectional area of air gap: 0.1104 sq. inches 

Open air gap: 0,0025 feet or 0,030 inches 

Closed air gap: 0,00031 feet or 0.00375 inches. 

JP'robably the most important characteristics of the performance that 

can be shoW!l1 on a quant~tative basis are the pick-up time and the armature 

travel ti.me. Since these quant:l..ties are plotted versus the per unit pick-

up current (f), the effect of a change of the variable upon the pick-up 

current is indirectly shown,, The variables which determine the value 

of f can be obtained from the definition of the pick;-up flux. Let r/Jp 

be the pick-up flux, Tb.e1n the following relation exists, 

(5,1) 

By definition f = ip/I86 and Iss = E/R. With these relations: available, 

equation ( 5 ,2) can_ be written, 
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ROl © 
f=· PP 

EN 

(5.2) 

The effect of f upon the pick-up t:!!~e (tp) and the armature travel 

time (k) when fis changed by changing back tension is shown in 

Figures 5.1 and 5.2. Figure 5.l shows the computed values, and Figure 

5.2 shows the measured values from a relay of the same class. The 

close comparison of the curves in Figures 5.1 and 5.2 leaves no doubt 

that the procedure used to compute the response is correct. In fact, 

the existence of a minimum value of k, as the back tension is varied, 

was Jirst shown by the computed results. It was later that experimental 

data was obtained which verified that such a minimum existed. The reason 

that such a minimum was not suspected is that :i,~ is difficult or almost 

impossible to visualize that decreasing the back tension would result 

in the travel time being longer. Since the experimental data in Figure 

5.2 only went to a value of r == 0.3, additional experimental data was 

taken to prove that the travel time had a minimum when the back tension 

was varied. To obtain experimental data for r < 0,3 requires that some 

of the other variables be changed; thereforej the absolute comparison 

of the two sets of experimental data can not be made. The additional 

experimental data is shown in Figure 5.3. The minimum seems to occur 

for a r of approximately 0. 5; however, this appears to be a function of 

the values of the other variables existing when this data was obtained. 

Considerable other experimental data is available from the figures 

in Chapter IV showing the effect of the change in supply voltage, coil 

resistance, air gap and other variables. Because of a iackof time, 

and because of the desire to obtain additional information about the 

response of the relay which is difficult to obtain experimentally, 
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only computed information showing the effect of the spring constant 

and the armature mass was obtained. Experimental information showing 

the effect of the armature mass and spring constant was obtained for 

some limited values, but obtaining such information is difficulto It 

is difficult to change the spring constant of a spring, and therefore 

experimental information can only be obtained by using a set of different 

springso The problem arises in resetting the back tension to the same 

value each time, especially if the armature is held in place by the 

springo Also the range of the values of the spring constant in springs 

is limited so that the range of the computed results and experimental 

results is different. 

The computed effect on the armature travel time of a change in the 

spring constant is shown by the curve in Figure 5.4. The range of 

values of the spring constant is larger than usual in order to show 

the effect outside the normal range. This is the advantage of an 

analytical approach~ in that it allows for investigation in the so

called "fringe" areas, 

Figure 5.5 shows the measured or experimental results on the 

armature travel time for a change in the spring constanto Because 

of the limited range, the scale on the abscissa is ten times larger 

in Figure 5o5 than in Figure 5,4, The scale on the ordinate is two and 

one-half times larger in Figure 5.5 than in Figure 5.4. The results 

indicated by each figure compare favorably. 

Another variable which is difficult to accurately vary experi

mentally is the armature mass. Thereforej two sets of computed results 

were obtained in order to gain additional insight into the response of 

the transducer to a change in armature mass. Figure 5.6 shows the 
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computed effect on the armature travel time of a change in armature mass 

for two values of back tension. The effect of back tension seems to be 

primarily that of shifting the time inversely with a change in back 

tension. Also, as the mass approaches zero, the armature travel time 

approaches approximately the same value for all values of back tension. 

It appears that theoretically at same negative value of mass the armature 

travel time is zero for all values of back tension. At first, it might 

appear that with zero mass, the armature travel time would be zero. This 

is not true when mechanical damping is present. This condition is realized 

by examining equation (5.3). 

where x = d2x/dt2 

x = dx/dt. 

Mi + h2 x + lKx = F (5.3) 

If the mass approaches zero in equation (5.3) it will still take 

the armature some finite time to close because of the xterm. If the 

damping term (h2 ) is negligible, then as the mass approaches zero so will 

the armature travel time. 

The experimental results of the effect of a change in armature mass 

on the armature travel time is shown by the curve in Figure 5. 7. The 

range of mass values covered in tne experimental data is about one

nineth of the range covered in the computed results, The comparison 

between the computed and experimental results in this case is also favorable, 

The quantitative comparison between the computed and experimental 

values was very good in all the cases shown. The computed procedure 

has the advantage that controlled variations may be made in any of the 

variables, and al.so that the fringe areas can be investigated that 

otherwise are difficult to do exp~rimentally. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

The ~quations which are needed to describe the singly excited 

electromechanical transducer are referred to as nonlinear differential 

equations. There are several ways the equations may be written, depend

ing upon the variables which are selected as independent. Also the 

equations may be written using the force laws (such as D1Alembert's 

principle) or the variational approach (using Lagrange's equations). 

The first part of the thesis described the procedure and the approxi

mations used to set up the equations representing the electrical system 

and the mechanical system. The main difficulty was involved in determin

ing the particular form of the coupling term of mechanical origin in the 

electrical equation and the coupling term of electrical origin in the 

~~chanical equation. Naturally, the form of the coupling term depended 

up~n the variables selected as independent. It was shown that by 

sel~cting the flux, instead of the current, as an independent variable 

simpler equations result. 

The solution of the nonlinear differential equations was obtained 

by a numerical procedure using the phase-plane method. Increment.s of 

flux were selected, and the corresponding increments of armature dis

placement and time were computed. The current was computed from the 

flux and the computed values of the armature displacement. In the 

computational procedure the values of a number of other variables had 
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to be calculated. These included the first and second time rates of 

change of the flux, the velocity and acceleration of the armature, and 

the magnetic pull. 

A computer program was written for the IBM 650 Computer using the 

Fortran language. This was necessary in order to obtain a sufficient 

amount of accurate results to compare with the experimental results. 

Because of the nature of the original differential equations and the 

type of solution used, several error sensing calculations were incorporated 

into the program. The overall computational error was less than one-half 

of one percent for the increments used in the first and third computational 

intervals, The computations had to be divided into three intervals 

because of the conditions existing for the armature. In the first and 

third intervals the armature velocity and acceleration was zero. However, 

the armature displacement was the open value in the first interval and 

was the closed value in the third interval. The second interval was 

characterized by the fact that the armature was in a transient condition. 

During the second interval the second time rate of change of the flux 

took on large positive and negative values in co~secuti~e increments. 

This caused the one error check to show a deviation of as much as si.x 

percent for certain modes of operation, However, the error on the time 

calculations was zero up to one hundredth of a millisecond or about a 

one percent .error. 

Conclusions 

The close comparison of the computed transient response with the 

experimental transient response indicated that the method of solution 

.u·sed was accurate. The model used to represent the electromechanical 
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transducer was accurate in that the effect of mechanical damping and 

magnetic saturation was included. These two effects are not considered 

in most solutions because of the increased complication resulting from 

their consideration. In the particular mathematical model used, the 

effect of magnetic leakage flux was not considered because of the 

extra time required to obtain the desired amount of computed values. 

The effect of the leakage flux can be considered by adding some extra 

terms in the term involving the resistance in the electrical equation. 

Additional refinements could be made in the computer program such 

as changing the flux increment size for different computational intervals. 

Also the variables could be stepped a certain percentage over some fixed 

range. It appears that it would be possible to write a program to solve 

two or more general second order nonlinear differential equations. However, 

if the system described by the equations contained spring loaded components 

with initial values, then special arrangements would have to be made to 

detect the particular intervals. 

The program that was written was used to determine the effect of 

some of the variables on the transient response of the electromechanical 

transducer. Provisions were even made to determine the effect of different 

values of residual flux existing in the magnetic circuit when the coil 

was energized. The result from the computer program that was especially 

valuable was the instantaneous value of the magnetic flux. This allowed 

the calculation of the instantaneous magnetic pull which can not be measured 

on an experimental model. The magnetic flux is practically impo~sible to 

measure directly, especially on transducers with small air gaps. 



The results accomplished by the procedure given in this thesis 

make it pbssible to accurately predict, for the first time, the response 

of a singly excited electromechanical transducer without actually having 

to construct a model. 
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APPENDIX A 

LISTlNG OF COMPUTER PROGRAM IN FORTRAN LANGUAGE 

()OCO 0 
0000 ,•, 

'' ,, 
uouo " '-J 

'.J (:,co 0 
1 0 
1 1 

0 000 0 
O:JOO " ~) 

0000 0 
0000 0 

0000 0 
0000 C 
0000 C 

()()()(.) n 
cooo 0 

D. D• LINGELBACH, SOLUTION OF 
ELECTROMECHANICAL TRANSDUCER 

EQUATIONS. TWO SIMULTANEOUS 
NONLINEAR DIFFERENTIAL Eos. 
READ,A,HI,GR,SI,POtR,TN,E,G,b, 
B,Q,W,V,UO,ERR,INC,NO 

CUR= COIL CURRENT, Y= FLUX 
X = ARMATURE POSITION 
CALCULATION OF EO. CONSTANTS 
AND SET DELTA y. 

(=12.0/(3.19-l~A) 
H=HI/GR 
S=SI/GR 
P=8e86E-8/(3el9*A*GR) 
RN=R/ ( TNi,·TN) 
EN=E/TN 
X=G 
XD=O.O 
XDD=:·.O 
Tl=C.O 
DLT;?=OoO 
MOVE: =l 
U= ( PO+S I 0~G ). /GR 
BM=E*TN/(R*(O+C*D)+E*TN*Bl 
Y=\1/ 
DLY=(BM-Wl/FLOTF( INC) 
PUNCH,C,H,S,P,U,BM,DLY 
LP=INC/r'W 

TWO LOOPS, K LOOP MAKES N 
CALCULATIONS, J LOOP PUNCHES 

EVERY N-TH CALC. 
DO 11.J = l t LP 
DO 10 K=l tJ\10 

TIME AND CURRENT CALCULATIONS 
BEFORE ARM6 STARTS TO MOVE 

YDl\=V·lcEN 
DI =Q+C 1-x 
DE= 1. 0-B·lt( Y-.lv) 
YDB=V*RN*DI*(Y-W)/DE 
YD=YDA-YDB 
YDDA=-V*RN*DI*YD/(DE*DEl 
YDDR=-V*RN*C*(Y-Wl*XD/DE 
YD f) =YD D/1 +YD.DB 
YRt,=YDD/YD 
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DLYD=YRA*DLY 
YD2=YD+DLYD 
Y=Y+DLY 
DE=l~O~B*(Y-Wl 
Y0G=V*RN*DI*(Y-Wl/D~ 
YJ=YDA-YDB 
TSTl=YD2/YD 
IF!TST1-ERR)4,4,5 

5 0 OV=TSTl-ERR 
PUNCH,OV 

4 0 DLTl=DLY/YD 
Tl=Tl+DLTl 
CUR=DI*IY-W)/(TN*DEl 

DIAS=PO/GR-P*DLY*DLY 
PYY=P*Y*Y 
IF(PYY-BIAS)l0,10,13 

C OGJO 0 
C 0000 0 
C DOLIO 0 

PULL= BACK TENSION. ARM. 
STARTS TO MOVE• ARM. MOTION 
CALCULATIONS. 

C 
C 

13 
14 

0 IF(MOVE-1)3,14,3 
C PUNCH,CUR,Tl,Y,PYY,XDD,YD,YDD 

MOVE =MOVE + NO 
3 0 IF(D-Xlb,9,9 
6 D YDDA=-V*RN*DI*YD/(DE*DEl 

YDDB=-V*RN*C*(Y-Wl*XD/DE 
YDD=YDDA+YDDB 
YRA=YDD/YD 
DLYD=YRA*DLY 
XDD=-H*XD-S*X-PYY+U 
XYRA=XDD/YDD 
DLXD=XYRA*DLYD 
XD=XD+DLXD 
IF(XDD12,7,7 

2 0 XRA=XD/XDD 
DLX=XRA*DLXD 
X=X+DLX 
DLT2=DLX/XD 
CKl=DLY/DLX 
CK2=YD/XD 
TST2=CK1/CK2 
IF(TST2-ERR)7,7,2 

8 0 

7 0 
12 0 

0000 0 
0000 0 

9 0 

10 0 
1 1 0 
1 1 1 

OV2=TST2-ERR 
PUNCH,OV2 
IF!D-X)l0,12,12 
PUNCH,CUR,Tl,X,Y,PYY,XD,XDD,YD 

ARM. CLOSED. DX AND DV = 0 
TIME AND CURRENT CALCo CONT. 

XD=O.O 
XDD=O.O 
CONTINUE 
PUNCH,CUR,Tl,X,Y,PYY,XD,XDD,YD 
,YDD,DLT1,DLT2 
GO TO 1 
END 
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APPENDIX B 

TEST PROCEDURES AND EQUIP}{ENT 

In the study of transients, the instantaneous variation of a parameter 

is observed. The most desirable piece of equipment for this kind of 

measurement is the cathode-ray oscillograph or oscilloscope. The next .most 

important consideration is a means of obtaining a record of the event in 

a minimum time. The advent of the l'Polaroid" camera has made this possible. 

In a minute or so the record of the transient response in the form of 

traces on a photographic print can be obtained by the use of a "Polaroid" 

camera attached to ~he front of the oscilloscope. This short time inter

val allows another chance to obt&in the required data if the previous trys 

are not: successful. 

In order to simplify the procedure and to short.en the time required 

to set up the necessary ci+cuit conditions to obtain the transient coil 

current, the switching circuit shown in Figure B.l was used. This shows 

a complete circ~it diagram of the switching scheme used. The main things 

accomplished by this pap.el cari be more clearly shown by referr1.ing to the 

simplified diagram in .Figure B,2. One requirement was that a voltage 

be obtained from the coil current of sufficient magnitude to drive the 

ospilloscope Y input. This was obtained by providing a small resistance 

in series with the coil of tlµe test relay. This resistance is called a 

shunt~ One side of the resistan6e was connected to the oscilloscope Y 

input and the other side was grounded. Since coil resistances vary in 
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magnitude some arrangement was prbvided to keep the shunt resistance 

approximately one percent 6f the coil resistance. Another requirerhent 

was some means of starting tbe horizontal motion of the cathode-ray 

li7 

beam before the voltage signal is applied to the Y input of the oscillo

scope. This delay of the voitAge signal was accomplished PY the use of 

a relay called a sync relay. The sync relay supplied a signal to the 

trigger input of the oscilloscope, causing the beam to move horizontally. 

At some time latE)r ( approximately .3 milliseconds) the relay unde:i;: test 

was energized. '!'his procedure prbttided the clean break in the change 

in the shape of the trace at the instant the test relay was energized. 

The definite location of this point on the trace was necessary in order 

to obtain accurate values of the pick-up and seating time. 

When the relay is d~-energized, then some means must be provided 

for obtaining a fixed resistance as the current decays to zero. This 

was accomplished by placing a resistance in parallel with the coil of 

the test relay. This resistance, called the discharge resistance, was 

arranged to be variable in value to accomodate the various values of 

coil resistance. 

Since the switching panel was designed to test a particular 

form of the electromechanical transducerj the relay, a circuit was 

provided for obtaining data about the operation of the contacts. 

To obtain the response of the mechanical system a device developed 

by Professor Cameron's research team was used. This device operates on 

the sensing of a change in the intensity of a light beam and therefore 

makes no mechanical connections with the transducer. Since the device 

has no moving parts and is an ope~ loop type electronic system, its 

response to high spred changes, such as armature bounce, is very accurate. 



There are some commercial devices on the market which perform the function 

of converting motion to an electrical signal. However, most of these are 

closed loop electronic systems with feedback which may be subject to hunting 

at high frequencies of mechanical vibration or require some attachment of 

the device to the armature. The results obtained by Professor Cameron 1 s 

light beam device are as accurate as the oscilldscope. The accuracy of 

the oscilloscope is about 3% when careful measurements are made using the 

photographic records. 

Possibly the most inaccurate measurements were involved with the 

mechanical measurements such as force and distance. The mechanical force 

was measured using a hand operated gram gauge. An accuracy of five percent 

was considered good :lnthese measurements. The air gap values were measured 

using thickness gauges. Because of the cramped conditions involved in 

measuring the air gap, accuracies of five percent were considered good for 

values below twenty thousandths and above ten thousandths. Below t;en 

thousandths an accuracy of± one thousandths was feasible. Current and 

voltage measurements had accuracies of about one percent, depending upon 

the magnitude involved. 
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