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PREFACE

Conversion of electrical energy into or from mechanical energy by the
use of magnetic energy is the basis of operation of all electromechanical
transducers. The method of accomplishing this conversion is dependent upon
the particular transducer. The conversion may be achieved by utilizing
one of the following types of phenomena: (a) the force reaction between
two current-carrying conductors, (b) the force reaction between a current-
carrying conductor and a magnetic field, or (c) the force reaction result-
ing from that property of a magnetic field which causes it to always tend
to conform itself so that the maximum amount of flux is attained. The
definition of the singly excited electromechanical transducer requires
that the principle of operation involve the phenomenon listed in either
(b) or (e).

Devices utilizing the phenomenon listed in (b) include the
dynamic loudspeaker, the velocity and dynamic microphones and vibration
pick-up transducers. The transient response of these devices has been
investigated, and the results are available in the books and journals in
the field of electroacoustics.

Devices using the phenomenon listed in (c) include solenoids, magnetic
brakes, magnetic clutches and relays. The transient response of these
devices has not been investigated to any great extent becausé of the
complexity of solving the equations which must be used to describe their
response. In addition, the final condition of operation of the device

was usually considered to be the only important thing. Recently, however,
iii



additional requirements have been placed on these transducers. Therefore,
it is important that additional knowledge be obtained about the transient
response of this type of electr@mechanical transducer.

This thesis contains the following: the procedure of setting up the
nonlinear differential equations which best describe the system under
study, an explanation of the necessity of selecting certain independent
variables, the development of the particular form of the phase-plane methed
necessary to solve the two simultaneocus nonlinear differential equations,
the process of setting up the logical steps inm programming the solution
on the IBM 650 computer, and the comparison of the computed and experi-
mental results. The particular form of the tramsducer used to evaluate
the technique presented was the electromagnetic relay. This technique is
applicable to other types of tramsducers Iin this category,
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CHAPTER I

T

INTRODUCTION

Conversion of electrical energy to mechanical energy by the medium
of a magnetic field has exiéted for at least a ceptury. Ome of the first
electromechanical energy converters was the telegraph repeater. This
device is better classified as a singly excited electromechanical trans-
ducer. The singly excited electromechanical tramsducer consists of a
single excitation coil, an associated magnetic circuit amd the mechani-
cal system.

Congiderable progress has been made in singly eﬁcited transducers
since the first telegraph repeater. One of the presenmt day counter-
parts of the telegraph repeater is the electromechanical relay (generally
called relay). Outwardly, the rela& is a simple device consisting of a
coil of wire on a magnetic circuit which closes when the coil is emergized
and opens when deenergizede The relay has played an important part in
this period of automation, and as a coﬂseﬁuence has been used in many new
and different applications. Before the new and different applications,
the relay performs its function reasomably well. Consequently, at that
time, little needed to be known aboug the basic behavior of the singly
excited elegtromechanical transducer in order to pf@duce a relay that
served its purpose. In recent years relays have been used iﬁ applications
where certain environmentél, weight and space requirements had to be
satisfied. Since relay manufacturing has been more of an art tham a

1



science, considerable difficulty has been encountered in producing relays
which will satisfy the requirements now being placed upon them. Part of
the difficulty encountered has been caused by inaccurate or insufficient
information about the environment in which the relay is expected to
perform. In addition the weight, space, power and environmental require-
ments produce conflicting constraints on the relay design.
More basic knowledge must be determined about the behavior of the
singly excited electromechanical transducer if these new requirements
cn relays are to be satisfied., Even though the relay appears simple in
its operation, the prediction of its response to certain conditions of
excitation ig extremely difficult, if not impossible. In general, electro-
mechanical energy conversion devices are described by nonlinear differential
equations. At the present time, 'no general analytical methods exist for
solving nonlinear equations; consequently, a separate solution is
required for each set of excitation conditions of interest."1
Some information is known about the steady state condition of the
relay in its energized or deenergized state. However, the transient
condition of the relay 1s not as well understood even though it is this
condition that primarily determines the relay's performance. The transient
condition exists during that period of time from the instant the coil is
energized, or deenergized, to the time the current reaches its steady
state value, During this interval the mechanical system should have
changed from a condition of armature open or closed to a condition of
armature closed or open. The solutions of the nonlinear differential
equations describing the response of the single excited electromechanical

transducer should result in being able to predict the performance of this

ik
White, David C and Herbert H. Woodson, Electromechanical Energy

Conversion, (New York, 1959), p. 158.




device. The effect of certain parameters of each particular part of
the device can be determined from a study of the solutions of the non-
linear differential equations.

In this type of problem, where the principle of superposition does
not apply because of the nonlinear form of the differential equationms,
it was necessary to use the experimental information along with the
theoretical or analytical information. From experimental observations
it was possible to arrive at certain facts needed to determine the
analytical relations. By a combined approach, using both experimental
knowledge and analytical results, the solution to a particular set of
describing relations was obtained. Even though the analytical or mathe-
matical approach was separated from the experimental observation in this
paper for purposes of clarity, the actual process of arriving at a solu-
tion to this problem was an integrated effort using experimental and
analytical knowledge. At every step in the process, experimental
observations were used to verify or to disprove the results arrived at
by reasoning. 1In this manner, misleading concepts could be corrected
or at least re-evaluated in the light of this nonlinear device.

Some information is available about the design of electromechanical
transducers but there is only a limited amount of infmﬁation about the
transient response. Probably the first comprehensive coverage of design

was published in The Bell System Technical Journal of January 1954, later

published in book form. (R. L. Peek and H, N. Wagar, 1955). However,
little was presented directly about the transient response of the trans-
ducer except for the contact system. The contact system affects the
transducer response only in the fact that additional spring forces are

applied to the mechanical system. Some information about the dynamic



response of the electromechanical transducer is given in the text by
Peek and Wagar.

One of the first articles published which gave some treatment of
the transient response of the transducer was "Relay Characteristics
and Uses", by Professor Charles F. Cameron, 1955. This article showed
the results of recording the transient coil current as a function of
time. It was indicated that the transient coil current could be used to
determine some information about the response of the mechanical system.
The transient response of solenoids and other magnetic coils had been
investigated,2 but the article by C. F. Cameron was one of the first to
suggest using the transient coil current as a means of determining the
response of the mechanical system of the transducer.

In 1953, in connection with a contract with the Bureau of Ships,
U. S. Navy, Professor C. F. Cameron initiated and held the first Symposium
on Electro-magnetic Relays at Oklahoma State University (then Oklahoma
A & M College). A number of papers where presented dealing with the
problems involved with electromagnetic relays or electromechanical trans-
ducers. However, the transient response of the transducer received little
attention the first several years the Symposium was held. In 1956
Professor C. F. Cameron and the author presented a paper, "Relay Character-
istics," that dealt specifically with the transient response of electro-
mechanical transducers, That paper presented experimental records of the
transient coil current and the transient displacement of the armature
simultaneously. The simultaneous presentation of the transient coil

current and armature displacement has been used very effectively

2Rudenburg Reinhold, Transient Performance of Electric Power Systems,
(New York 1950).




in the experimental analysis to obtain insight and knowledge about the
response of the transducer. Additional papers have been presented

by Professor C. F. Cameron and the author, showing experimental evidence
of the fact that the transient coil current can be used to analyze the
response of the mechanical system of the transducer. 30 4 5

The equations of motion of the transducer have been developed by
other authors,6 but the dependent variables selected usually have been
the coil current and armature displacement. In addition, the coupling
term usually has involved the inductance as a function of the coil
current and armature displacement. It is shown in this thesis that, by
selecting the magnetic flux instead of the coil current as the dependent
variable, much simpler relations result. Also the need to use the induc-
tance was eliminated. The coil current can be computed after the flux and
armature displacement relations are determined, thereby giving the same
final variables as the other methods.

These simplified but simultaneous nonlinear differential equations
were then solved by using the phase-plane or phase-space method. The
phase-space method is essentially a graphical procedure but the solution
was obtained by numerical means. In order to obtain sufficient data by

this method, a computer program was written for the IBM 650 using the

5Cameron, C. F. and D. D. Lingelbach, "Evaluation of Relay Transient",
6th Symposium on Electromagnetic Relays, (1958), p. 51-52.

hCameron, C. F. and D. D. Lingelbach, "Transient Characteristics of
Electromagnetic Relays", 5th Symposium on Electromagnetic Relays, (1957)

p. 67-78.

5Cameron, C. F. and D. D. Lingelbach, "Transient Coil Current as a
Means of Relay Evaluation", Proceedings of the 1958 Electronic Component
Conference, p. 129-137.

6white, D. C. and H. H. Woodson, Electromechanical Energy Conversion,
(New York, 1959), p. 64-69, 90-100, 159-157.




Fortran language. Selected variables were changed, and the correspond-
ing calculated response was obtained by the use of the computer program.
These computed transient response curves were then compared with the
experimental transient response curves taken from similar transducers.

The theoretical analysis was confined mainly to the energization of
the transducer to a step function of voltage. Other types of voltage
driving functions can be handled, with slight modification, by the
method explained in this thesis. Since the experimental observations
were confined to a step voltage because of power source restrictions,
it was not considered in the scope of this thesis to solve for the
response to other voltage driving functionms.

The response of the transducer to the removal of the voltage
driving function is not too complicated and can be solved by making
certain assumptions which do not significantly reduce the accuracy

7, 8

of the results. Some information about the performance of the
transducer can be determined by studying the coil current decay. This
thesis will show some experimental observations of the response of the
transducer to the removal of the voltage driving function. However,
since the theoretical analysis of the release case can be treated

essentially the same way as the operate case, no attempt will be

made in this thesis to show the complete procedure.

7Cameron, C. F.and Allen, E. F., "Analysis of Armature Motion During
Release", Symposium on Electromagnetic Relays, (1956), pp. 39-k41.

8cameron, C. F. and Lingelbach, D. D., "Transient Characteristics of
Electro-magnetic Relays", 5th Symposium on Electromagnetic Relays, (1957),
pp. 67-78.




CHAPTER II
THEORETTCAL ANALYSIS
Introduction

There are essentially two approaches that may be used to determine
the dynamic equatioms of motion of electromechanical transducers when
represented by lumped parameters. One method employs the known force
laws such as D'Alembert’s principle for the mechanical system and
Kirchhoff's laws for the electrical system, The second method is
obtained from variational principles applied to certain energy functionms.

in determining the coupling terms by this first method, ome of two
‘ways may be used. One way uses the concept of am arbitrary displacement
and conservation of energy to obtain the mechanical forces of electrical
origin, and Faraday's law and Coulomb’s law to obtain the electrical
terms of mechanical origin. The other way to obtain the coupling terms
is by integrating. the force densities obtained from electromagnetic field
theory. This way is not necessary in the case of the lumped parameter
system., The application of this first method requires a considerable
amount of judgment and insight in determining the relative actiomns of
the terms, especially in complicated systems containing many variables,

The second method is obtained from variational principles applied
to certain energy functions. By the application of Hamilton's principle,
the dynamic equations ofvmotion of the system, including the coupling
terms, can be obtaimed. This procedure is more sophisticated mathematically,

!



but insight into the physical system can be lost. This method is
considered to be one of the most powerful techniques in dynamics.1 However,
there is one major weakness in the variational system and this is the
difficulty of determining the set of generalized variables or coordinates.
The application of Hamilton's principle to the selected energy functions
results in the Euler-Lagrange equation (often called Lagrange's equation).

A brief discussion of the force laws mentioned previously will be
given here since some of these will be applied later in the chapter to
develop the dynamic equations of mdtion of the transducer. Kirchhoff's
laws include two relations involving electrical circuits. Actually they
are based upon the conservation of energy and mass but are stated in
electrical terms that are generally used to describe an electrical circuit.

Kirchhoff's emf law may be stated in several ways. One way is that
the sum of the voltage drops taken in a given direction around a loop

(3 th loop) equals zero. This ie given as

e, =0 (241
q-l jq

where ejq " the qth voltage drop in the jth loop.

The other Kirchhoff's law states that no charge can accumulate at
a point in a circuit or that the algebraic sum of the charge flow at a
point must be zero. From the definition of current, this is expressed
by stating that the algebraic sum of the currents at a node (jth node)

must be zero,

1White, D. C. and H. H. Woodson, Electromechanical Energy Conversion,
Chapter I, (New York, 1959).

2Koenig, H. E. and W, A. Blackwell, "On the Codification of Lagrangian
Formulation," Proc. IRE, (New York, 1958), p. 1428-29,



This is given as:
i. =20 (2.2)

where ijq = the gqth current in the j th node.

Because of the analogous nature of systems, whether they be composed
of electrical, mechanical, hydraulic or other compounents, the types of
force laws must involves loops and nodes. In the case of the mechanical
parts D'Alembert’s principle gives the relation existing at a mechanical
node in a system. This principle states that the sum of all the forxces
at a node {j th node) must be zero. These forces must include the inertial,
applied and constraint forces. One way to represent D'Alembert'’s principle
is given as:

T
—
(ajq - f3q) =0 (2.3)

q=1

where: ajq = d/dt (qu %jq) the qth inertial force at the j th node.
mjq qu = the momentum of the qth mass at the jth node.

qu = the q th applied or constraint forces at the j th node.
The other law similar to Kirchhoff's voltage around the loop

states that the sum of the displacements around a loop (j th loop) must

be zero. This is given as
x: =0 (2.4)

where Xjq = the g th displacement in the j th loop.

The coupling terms, as indicated previously, must be determined by

the concept of an arbifrary displacement and the conservation of energy.
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The first step in the determination of the coupling terms is to simplify
the procedure by extracting all of the purely electrical terms and the
purely mechanical terms, including the loss terms. This separation leaves
only the terms of ome set that are also functions of the other set. This
procedure also makes the remaining sys?em a comservative electromechanical
network. Therefore, the total stored énergy (W) in the coupling network
is given by
W= Wy + We (2.5)

where Wy, is the stored energy in the magnetic fields,

We is the stored energy in the electric fields.

The energy functions are defined to be state functions. This means
the energy is a function of the instantaneous configuration of the system
and not dependemt upon the past history or the dyanmic state. Therefore,
such emergy losses caused by hysteresis or eddy currents must be treated
in some manner outside of the coupling network. Defining the energy func-
tions as state functions causes the energy to be a single valued function
of the system variables, independent of the derivatives and integrals of
the variables., This procedure is used later in the chapter to develop

the electromechanical coupling term.

Development of the Electrical Equation of the
Transducer Based on a Traditiomal Approach

The application of Kirchhoff's Voltage Law to the coil of the trans-

ducer when supplied with a step input of voltage {E), gives equation (2.6).

E=iR+ N (2.6)
dt

where: df/dt = time rate of change of magnetic flux linking N turns

E = supply voltage
R = coil circuit resistance
N = turns on the coil.



Tl

Since the flux (¢} is a function of the coil current (i) and the
armature position (x), and both i and x are functions of time (t), then

N d@/dt must be expressed as follows:

ag ¢ di  o¢ d )
N - N [52 3 T ox g%} (2.7)

A relation which expresses the flux (@)as a function of the coil

current (i) and the armature position (x) may be developed as follows:

6§~ Cagren (2.8)

a © 1
where: F= magnetomotive force

(= reluctance of total magnetic circuit

N = turns on coil carrying current (i)

i = coil current

G% = reluctance of the air gap

R; = reluctance of the ferromagnetic or irom portion of the

magnetic circuit.

The reluctance Oly and(ﬁi may be represented as follows:

Fa = x/uh =COx (2.9)
R i (2.10)

where; A = cross sectional area of magnetic circuit at the

working air gap

x = armature position

n = permeability of free space

O=1/pA

s = ratio of the effective length of the iron portiom of the
magnetic circuit to its effective cross sectiomal area

pc = permeability of the iron portion of the magnetic circuit

r + ai = approximation of pc over a given range of 1.
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Substituting the relations given in equations (2.9) and (2.10)

into equation (2.8) results in the following form:

Ni
b PR (2.31)

Equation (2.7) requires the first partial derivative of the flux
(@) with respect to the coil current (i) and the first partial derivative
of the flux (@) with respect to the armature displacement (x). These
partial derivatives are obtained by performing the indicated operations
upon equation (2.11) as follows:

8@ Ox + ai + r) N-NL (a) ___N(Ox + r)
Ox + ai + 1)z “"Ox + ai + r)2

(2.12)

% -Ni_(O)

“(Cx + at + r)2 (2.13)
Substituting equations (2.12) and (2.13) into equation (2.7) and

then substituting equation (2.7) into equation (2.6) gives the electrical

equation of the transducer in terms of the two dependent variables. These

dependent variables being the coil current (i) and the armature displacement

(x). The complete electrical equation of the transducer is shown by

equation (2.14).

. [N2 (Ox + r)] di [ -N® 1O d
EsE [(Ox + af + ;)gj a * (Ox + ai + r)%] E% (2.1%)

Equation (2.14) is a non-linear differential equation in terms of
two dependent variables, the coil current (i) and the armature displace-
ment (x) and the iddependent variable, time (t). The symbols in equation
(2.14) have been defined in several previocus equations, but will be
repeated here for convenience.

Symbols used in equation (2.1%):

E = step voltage applied to the transducer coil

i = coil current
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R = coil circuit resistance

N = ceil turms

O= 1/uA

i = magnetic permeability of free space

A = cross sectional area of the magnetic circuit at the working

air gap

ai + r = approximation of the permeability of the ferromagnetic
portion of the magnetic circuit, over a given range of
the current (i)

¥ = armature position or displacement
Development of the Equation of the Mechanical System

The development of the mechanical equation of the transducer may
be approached by using rectasngular or cylindrical coordinates. Possibly
the use of cylindrical coordinates would be more representative of the
system usually encountered in the electromechanical transducer, but
because of the methods of measurement used in mechanical systems, it is
more convenient to solve the system in rectangular coordinates. The
general form of the equation in both systems will be developed. Also the
transformation from ome to the other will be shown to show that the
solution could have been attempted in either set of ccordinates. The
general form of the mechanical equation in cylindrical coordinates is

based on the schematic diagram of the transducer shown in Figure 2.1.
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back stop
Restoriné/;zr
Spring
Magneti
] En alc Coil
Frame
///f7
Figure 2.1

Since (®) is the angular displacement, the de/dt is the angular
velogpity, and d2@/dt2 is the angular acceleration. The sum of the
forces causing the armature to accelerate are shown as follows and are
set equal to the amgular inertial force.

T -To -7 (B ~-0) - A{- do/dt) =J (- d3s/dt2) (2.15)
where: T = the magnetic torque

T, = initial torque caused by the restoring spring

v (B = @) = torque resulting from extending the restoring
spring
)\ = angular damping coefficient
J = polar mass moment of inertia of the armature about the
pivot point

B = value of © when armature is against the back stop.
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Note: The minus signs involved with © are caused by the motion being
opposite to the indicated positive direction of ©

The conversion to rectangular codrdinates is based upon the fact
that any torque, by definition, is equal to some force times a moment
arm. As shown in Figure 2.1, the lenéth of the moment arm is (S), which
is the distance from the centér 6f the pivot to the center of the core
when the armature is closed. This means the driving torque (T) is equal
to the magnetic pull (F) times the length (S). Likewise the torque (T)
caused by the restoring spriﬁg can be referred to an imitial pull (Po)
times the lemgth (S). All torque values can be represented by some
effective force times the length (S). The polar mass moment of imertia
(J) also can be represented by the square of the length (S) times an
effective mass (M). With these conversions, the mechanical system
shown in Figure 2.1 can be converted to the one shown in Figure 2.2,
In Figure 2.2 the coordinate system is rectangular where the compoments
of the transducer are the effective values derived from the model of
the transducer in cylindrical cocordinates.

Since © will be small, the total opening shown by the angle B in
Figure 2,1 can be written as ¢ = S8, Likewise x can be written as
¥ = 8¢ in which the transformation from the gylindrical coordinate system
to the rectangular coordinate system is S. In other words, in order
to obtain the quantity in rectangular coordinates, the quantity in

cylindrical coordinates is operated upon by the lemgth (S).



16

(i

Damping Restoring
Element “Spring

2
-] &

O\ -
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Figure 2.2

This procedure will give the following transformations:

F = T/S
Py = T,/
G = SB
x = S6
dx = Sde

k = v/8%
h2 - NSZ
M =J/s°,

If these transformations are substituted into equation (2.15) and some

manipulations made, the following relation in rectangular coordinates
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results:

F-P,-k(¢-x)-0%(-dx/dt) =M (- d2x/dt2), (2.16)
Possibly a more standard form of equation {2.16) is given by
equation (2.17).

F = -Md®x/dt® - h2dx/dt + k (¢ - x) + B, (2.17)

where: F = pull caused by the magnetic flux
P, = effective value of the restoring spring force referred

to the center of the core (pull center)
M = effective mass determined by dividing the polar mass

moment of inmertia {J) by the moment arm length squared

h2 = effective damping coefficient referred to the pull

center {center of core)

k = effective spring constant referred to the pull center

G = total distance between the center of the core and the
armature at that point where the armature is against
the back stop

¥ = distance measured from the surface of the pole face

(called displacement).

To use equation (2.17) in attempting a solution te the problem,
the pull {F) must be expressed as a function of the variable (x) and
the coil current (i). To develop this pull (F) as functions of i and
%, it is necessary to go back to the definition of work. By using the
concept of virtual displacement on the function giving the magnetic
energy in the air gap, a relationship for the pull (F) in terms of
% and i can be obtained. With reference to Figure 2.2, the magnetic
pull (F) tends to shorten the air gap. Consider the air gap to be

shortened by a differential amount, -dx. The mechanical work involved
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is -Fdx., If -dx is considered to be the virtual displacement,
under the constraint of constant flux (@), then there is no energy
exchanged with the electric circuit exciting the coil., Therefore
the mechanical work - Fdx comes from a change in the stored magnetic
energy (Wy). This is expressed by equation (2,18).

-F dx = - d W, Constant @ (2.18)
Therefore:

p=+ifm g

dx

= constant (2.19)

Since Wy is a function of several variables, equation {2.19) should

be written in the form shown in equation (2.20)

ox

The energy stored im the magnetic field is determined by the time

F =+ Om (2.20)

integration of the power supplied to the magnetic field. The power

supplied to the magnetic field is given by equation (2.21).

T« (R
p=ei=41iN3F= E—E% (2.21)
where: & = magnetomotive force or Ni.
Since energy is the time integration of power, the following

expression may be written:

t ) @

Wy = fp it = f F dp* = Gi( gt ag: {2.22)
° o s}

Wy = 6% () (2.23)

where; primes are used to indicate the variable of integrationm,

R = magnetic reluctance and is equal to F/@.
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The magnetic reluctance {R) is a function of the armature dis-
placement {x) and the coil current {i). This relation was developed
previously and is given by equations {2.9) and {(2.10) which is
repeated as equation (2.24).

R =0% +r + ai ‘ (2.24)

if

where: U= 1/uA
u = permeability of free space
A = cross sectional area of the magnetic circuit in the
air gap
r + ai = relation which approximates the relationship between
the flux and mmf of the iron portion of the magnetic
circuit.
If the operationm indicated by equation (2.20) is performed on
equation (2.23), the following results:
F= 9'm- Qf,@@) (2.25)
Jx 2 \0%
The flux squared (¢*) can also be written as shown in equation

(2.26) by using equation {2.24)

= 2
2 g )7 (W)® ,
v o2 (Ox+r+ail)” ° (2.26)

The O®/Jx can be obtained from équation (2.24) and gives

equation (2.27).
OR ;
Jx = T (2.27)
Substituting equations (2.26) and {(2.27) into equation {2.25)
gives:

N2i2("
2 (Ox + r + ai)®

- (2.28)
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The relation given by equation (2.28) can be substituted into equation

(2.17) giving:

N2 {0 d®x _ h2dx . + 3
= - M&E - CX - P 2.2
Z2Ox +r + aL)" M ae2 e k(6 - x) o (2.29)

Rearranging equation (2.29) into a more standard form gives the

following:
d?x dx | N2i2C
comcratinn 2 == A - =
M de2 *+h dt k(6 - x) Po + 2 (Ox + ai + r)E 0 (2.30)
where: N = coil turms carrying the current (i)
M = effective mass of movable part and is determined by

dividing the polar mass moment of inertia (J) by ;he
moment arm length squared
h® a effective damping coefficient of the movable part
referred to the pull ceﬂﬁer
k = effective spring constant referred to the pull center
G = length of open air gap which is the maximum value of
the variable (x)
x = distance the movable part or armature is from the
surface of the pole or pole face
i = the coil current
r + ali = the relation which approximates the relationship
between the flux and the magnetométive force
of the iron portion of the magnetic circuit
O= 1/uA
i = permeability of free space
A = cross sectioﬁal area of the magnetic circuit in the region

of the air gap
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P, = back tension or force acting on the back stop
because of the restoring spring.
The previous equation is nonlinear in the two dependent variables
%x and i and would have to be solved simultanecusly with equation (2.14)
to obtain the coil current (i} and the armature displacement (x) as

functions of time (t).

N° Ox+r) T di _Ngi T dx
(O + ai + r)°| dt (0% + ai + )% at

E ~iR- =0 (2.14)

‘Equation (2.14) is repeated here for clarity.

Development of the Electrical Equation Ultimately
Used to Determine the Transducer Response
The application of Kirchhoff's Voltage Law to the coil of the trans-
ducer, when the coil is energized by a step voltage of E, gives
equation (2.31).
dg

E = + [ 2.
iR th {2.31)

The coil current (1) and the magnetic flux (@) are related in a
fashion determined by the magnetic circuit (including air gaps) of the

transducer. The relationship between i and @ is given by equation

(2.32).
g N /
b~ =5 +om (2.52)

where: F = magnetomotive force

R = total magnetic reluctance
(i = reluctance of ferromagnetic portion of the magnetic circuit
(Ra = reluctance of the air portion of the magnetic circuit.
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The reluctance (Ra} of the air gap is shown by equation (2.33).

Ra = -ﬁ =O% (2.33)

where: x = length of the air gap
O= 1/pA
u = permeabllity of free space
A = cross sectional area of magnetic circuit in this region,
The reluctance (Ri) of the ferromagnetic or iron portion of the magnetic
circuit must be represented in the form shown by equation (2.34) in
order to reduce the complexity of the fimal electrical equation, and

still include the effect of magmetic saturatiocun.

'34
R (2.34)
Py
or
Q=0% + ai + r (2.35)
where: J1i = magunetomotive force of the irom portion

@5 = magnetic flux in the iron portion resulting
from Fi

r = a parameter determined such that r + ai approximates
the non-linear relationship between &; and @ over

some desired section

o]
il

{see definition of r above).
Substituting equation (2.35) into (2.32) results in equation (2.36):

. N1
D= ¥ ar o (2.36)

At this point in the development of the electrical equation, instead
of substituting for df/dt as was done in the previous developments, i

will be written in terms of ¢ and x.
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= BEOX ( ¢ ) (2.37)

where: b = a/N.
From equation (2.31) and equation (2.37) it follows that

= (¢ R ~£ :
E = (r +0%) (= bﬁ) 3 + N & (2.38)

Equation (2.39) is a rearrangement of equation (2.38) into the

standard differential equation form.

L+ & (x +0%) (L) = & (2.39)

Equation {2.39) is one of the two non-linear differential equations
that will be solved simultaneously to obtain ¢ and x as functions of time.
Mechanical Equation Ultimately Used
to Determine the Transducer Response

By the use of D'Alembert's Principle or, on a general basis,

Euler~-Lagrange Equations, the following equation results.

w X 2 &
de2 dt

+k(x~¢) - P+ KPE = 0 (2.50)
where: M = effective mass of armatufé
h® = viscous damping coeffitient
k = spring constant of restoring spring
Py, = initial pull caused by restoring spring opposite to
the magnetic force

Xg© = magnetic force

K = €/A

m
[]

pull constant determined by units used for @ and A

35 ee any standard text dealing with static magnetic fields such as
"Introductory Electrical Engineering”, Reed and Corcoran, {New York 1957) p.30k.
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A = gross sectional area of the magnetic circuit at the air
gap.

Equation (2.40) is the second of the two simultaneous differential
equations that will be used to determine ¢ and x as functions of time.
Once the values of ¢ and x are determined, equation (2.37) will be
used to determine the corresponding values of i.

Inspection of equations (2.39) and (2.40) in comparison to equations
(2.14) and {2.30) in the previous section, indicate the simplicity
obtained by selecting ¢ as a dependent variable instead of 1i. ”Actually,
equation {2.40) is not non-linear in % any more, qlthough it-ig non~-
linear in the variable . One possible method of attgck would be to
combine the two equatioms into a third-order non-linear differéntial
equation in ¢. This could be accomplished by solving for x from
equation (2.29) and substituting x and the first and second derivatives
of x into equation (2.40). However, in this particular case, it is
considered desirable to solve the two equatioms (2.39) and (2.L40)
simultaneously.

This decision resulted from the fact that the solution of the response
is divided into three intervals. These three intervals are distinctive
because of the values of x, dk/dt and dx®/dt? that exist.

In the use of one combined equation in the variable ¢, the identity
of % would be lost thereby considerably gomplicating the calculating
procedure.

The simultaneous solution of equations (2.39) and (2.40) is based

on a method that is more fully developed in the book Analysis and

Control of Nonlinear Systems by Y. H. Ku than in most other sources,

The background for this method is discussed in Chapter IILI.
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Equations of Motion Developed Using
the Euler-Lagrange Equation

The second method mentioned in the introduction to this chapter is
commonly referred to as Lagrange's equations of motion. Because of
the general nature of this method a brief discussion will be given,
and then this method will be used to develop the equations of motion
of the transducer.

The simplest form of Lagrange's equation involves only conserva-
tive systems with fixed constraints, However, an extension can be made
to nonconservative systems to ;Btain an alternate form of Lagrange's
equations.

To account for the nonconservative dissipative forces, a velocity
dependent function D, called Rayleigh's dissipation function, is used.
This Yesults in the modified form of Lagrange's equation as is shown in

equation (2.&1);5

oL _ 4 [J1] . D . w. - |
Eﬁ; s [éﬁ}’ SEE + Fy 0 | (2.41)

where: q3 and qj are the generalized corrdinates and generalized
velocities, respectively, of the system'at the j th terminal
pair.

(J = 1, 29 oo 0y H)

'4White, D.C., and H. H. Woodson, Electromechanical Energy Conversion,

(New York 1959), p. 61.

'5The notation of using L for Lagrange's function and q:, ﬁf as the
as the j th generalized coordinate and velocity is fairly standard, so it
will be used in this treatment. A number of texts have used this notation
covering a long period of time of which the following two are examples.
Higher Mathematics, Burington, R. S., and C. C. Torrance, (New York, 1939),
Electromechanical Energy Conversiom, White, D. C., and H. H. Woodson, (New York,

1959).




26

L = the conservative Lagrangian and is equal to the
difference between the kinetic coenergy Tc and
the potential energy V

D = Rayleigh's dissipation function and is defimed as:

H
1 2 32 (2. h2)
e T N L&
Z = 1y (&)
j=1
ry = j th dissipative elément
Fy = nonconservative force acting om the j th coordinate qj°

The kinetic ccenergy Tc instead of the emergy T is used in the
Lagraﬁgian in order for it to be valid for nonlinear cases. One of
the common nonlinear cases encountered in electromechanical transducers
is the relation between flux 1iﬁkagés (A) and the magnetomotive force

(i). The magnetic stored energy (Wm) is determined as follows:

Ly xg) df\J R

=
=]
N
cl
S
@
i
K”\
o
[T,
o

(h=1,2,...,Hand g = 1,2,...,G)

Where the primes demote variables of integration and where Wy, is evaluated
as the integral of id\ for any fixed spacing <Xg“s are comstant;. Figure
2.3 shows a graphical representation of the magnetic stored emergy for

k = 1,
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Figure 2.3

From Figure 2.3 or by integrating by parts the integral of idlS the
magnetié coenergy Wpe (unshaded area), is related to the magnetic emergy

Wy (shaded area, by the following:

Wm = il ,11 - Wmcw (Qo)-ﬁ-ll—)
Ax Ly

W= i1As - f £3d A4 =f Addil . (2.45)
o ko

To obtain the Lagrangian L which is also valid for noalinear
systems the Lagrangian defined as follows must be studied,
L=1 (g5 &, ¢). (2.46)

1,2,...,H)

—
.
i
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The differeatial of equation (2.46) is:

H N H
F - < dq. + dg, + &= de. {2.47)
dL, N 0dy ; 015 %3 e L
— Lr/
j=1 j=1

The path of integration is arbltrary since L Is a state fumction, A

state function by definition is only a function of the imstantaneous [or
final) values independent of the dynamic state or past history. Therefore
the path of integration is so selected that all the a”S are congtant when
integrating with respect to the q's, and correspondingly the égs are
congtant when Integrating with respect to the g's. Furthermore, these

integrations are performed for a specific value of time t. Therefore,

L is determined from the integral of equation {2.47) as:

94305 433433t
!
= 1L q!, ¢ = i L (q,,4s° (2.48)
L ( dL(qj, qj,t) + ) dL {qquj N3N (2.48)
0305t “q.;03t

(3 =1,2,...,H)

By substituting the value of dL(qj,djmt} from equation (2.47) into

6
equation (2.48) the following results are obtaimed,
6
. [ NI oL (g1,0,¢)
L (q5,q5,t) = ) oL (4},0,8) d_ 1 g
j*1] J N s T
o £ oql 93
0 i =1 J
q4 H
I
f _) 2 °
oL (g5,98,%) 40
! \ th{fq.,s dqj (2.1;_9)
. g 4
0 j=1

6 . .
The primed quantities are the variables of integration.
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This particular procedure results in separating the Lagrangian into two

functions. The first of these functions is:

Qj H

Jf E% JL (a},0,t) .
. Sqr ] (2.50)
0 j=1 ]

(3 = 1,2,...,H)

and is only a function of the coordinates qj and £, and is independent

of the velocities &jn No restrictions of linearity were made in the
development of equation (2,&9), and therefore equation (2.50) holds for
the nenlinear case. Since the Lagrangian (L) is an emergy fuactiom, then
the partial of (L) with respect to the j th coordinate (qj) is the force

function (fj} Then f; is given as:

BL(qj,O,t).

£5 (g5.t) = (2.51)
BqJ'
This makes the poténtial energy V as follows:
qj H
Vo= (ijj (aj,t) dcvlj' (2.52)

The second term of equation (2.49) is a function of the final values
of the qj coordinates but is a function of the velocities ﬁj and time

t. This term is as follows:

qj  _H

f 9 'g
J L (g5, 9§, t) ag (2.53)
0 JE1 aqj

(3

1,2,...,H)
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In mechanics this is the kinetic energy which, for the linear case,
is also the kinetic coenergy, since the curve in Figure 2.3 would be a
straight diagonal line between (0,0) and {A;,i;). This is evident by
letting i, = &1. With this substitution in equation (2.53) the following

results,

L iq
o1

[

i;
j éml—l——l’i"t.dii . (2.5%)
0
Magnetic coenergy was defined by equation (2.45) and is given as
iz
wmc=f Ay (if,%;) dif . (2.55)
0

Therefore it follows that equation (2.54) has the form of coenergy. In
mechanics this is the kinetic coenergy. The partial of the Lagrangian {L)
with respect to the velocity (ﬁj) is a momentum function (pj> because the

Lagrangian is an energy function. Therefore the kinetic coenergy (Tc) is

given as
q; H
: oL (q,4t)
T, = 303 aq (2.56)
- £ aqj J
0 =1
(j = 1929°-°9H)
or
qj lLﬁ
T, = f pjdaJI : (2.57)
o) j=1l

(j = 1923=-°3H)
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With the two right-hand terms of equation {2.49) now defined, then the

Lagrangian for linear or nonlinear systems becomes:

L (qj, é t) = potential energy V - kinetic coenergy Tc. (2.58)

i’

The procedure for using Lagrange's equation to determine the equatioms
of motion becomes that of determining the functions V, T , D and F in
terms of qj and §j. In the mechanical system the variables q and ﬁj are
generally the displacement (x) and the velocity (v) respectively. However,
in the electrical system, qj may be the charge q or the flux linkages ( 1 ).
If q5 is charge g, then &j is eurrent (i), but if a3 is flux linkages{\)
then ﬁj is voltage (e). The selection of a3 then determines whether the
system 1s considered to have a current driving source or a voltage driving
source,

The equations of motion of the system represented by Figure 2.1 and
2.2 will now be obtained by using Lagrange's equation of motion., For
the electrical system with j = 1, let q; = q and §; = 1. With q; = ¢q
(charge), then potential energy is the energy associated with a charge
and therefore has dimensions of q2/26. This makes ~f; equal to the voltage
(e). The kinetic electrical energy is the energy associated with i and
therefore has dimensions of L i2/2, making the momentum function p;
become the flux limkages (A ).

For the electrical system the potential energy (V) is

q g

v

q
v = - Edq b - E dq == o (2"59)

q
2C
o o]

.8ince there is no capacitance in the electrical circuit of the

transducer, then V, = O,
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The kinetic coenergy for the electrical system is
i i
Tee = f X-‘di' = NG dic. (2.60)
0 0
In order to show that the use of Lagrange’s equations will give the
same equations of motion of the transducer as were obtained by force
laws, the coupling term of mechanical origin in the electrical equation
must be examined. This term was developed in final form in equation {2.25),
The operation involved to obtain equation (2.25) was based upon maintaining
the flux (@) or flux linkages { ) ) not a function of x. This condition
will also have to be imposed in this development to obtain a result that
can be compared with that obtained by the traditiomnal approach.
For the mechanical system, let j =2, g2 = X, Qo = X, ~fs = P+
k (¢ - x), and ps = = MX°7 Therpfore the potential energy (Vm) of the
mechanical system is
X
kx~
Vo= %o + (¢ - x°§} dx' = P x + kGx - 7 . (2.61)
0

The kinetic coenergy of the mechanical system is

X
Co Mx2
Tem = (-Mx’dx' = = . (2.62)
¥, 2
®)
The dissipative function D is
i2p  woxS o,
D=3 -7 . (2.63)

Tsee Figure 2.2. The minus sign associated with x and x is
caused by x being opposite to the displacement from the equilibrium
position.
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The function F, for the electrical system is E while for the mechanical
system it is zero, since no external driving function is considered.
Combining the state functions for the electrical and mechanical system
gives the Lagrangian L as follows:

-1

« D2 2
L=T -V-= f Ngdi' - MX -Pox-ka+1—<2L. (2.64)
2

0
The equation of motion of the electrical system is determined

from equation (2.41) with j =1, or

Sod (- @emeo &

Since L is not a function of q, then OL/ Jdq = 0. The JL/ 31

from équation (2.64) is

%];» = N@ . ‘ (2.66)

where the flux is assumed constant.

The OD/ d1 from equation (2.63) is
%% = + iR. (2.67)

Substituting equations (2.66) and (2.67) into (2.65) and with

Fi = E gives
-d
T [N(i] - iR + E = 0, (2.68)

Since N is constant, equation (2.68) becomes

N j—f + iR = E. (2.69)
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Equation (2.69) is identical to equation (2.6); therefore, this
procedures gives the same result for the electrical system.

The equation of motion for the mechanical system is determined

from equation (2.41) with j = 2, or

oL . _d (3L _2dp i | ‘
3 at (ax> Ty T (2.70)

The JL/ Ox from equation (2.64) becomes

i
g% =E§% J[. Ngdi' - P - kG + kx. (2.71)
0

The flux (¢) is equal to F/R where F = Ni. Substituting these
relations in the first term on the right hand side of equation (2.71)
gives

i

2.,
§% ,f. N(;h div . (2.72)

0

The constraints used in developing the magnetic pull as given by
equation (2.28) were; the reluctance (R) is constant when the current (i)
or flux (@) increases from zero, and the flux (@) is comstant when x is
given a virtual change. Performing the operation indicated in equation

(2.72) gives

i
N2
9%51_ J 11dit = g-; [%E-;f-] ) (2.73)
)

Since flux (@) is equal to Wi/® then equation (2.73) may be

written as

S ah® & (2.74)
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Performing the operation indicated inequation (2.74) gives

P° R _ ge
< & 5 0) (2.75)

Reluctance R is given by equation (2.24) as
R=Cx +ail +r (2.24)

Therefore the partial of R with respect to x is(J, and

equation (2.71) becomes

oL = NZiZ0
5; 2(O0x + ai + 1)@

- B, - kG + kx. (276)

The second term of equation (2.70) is determined from equation

(2.64) as
d4,dL. 4 , Mdx Md®x ,
& (JF) =3 |Mk| =-"q =--g3z= - (2.77)

The third term of equation (2.70) is determined from equation

(2.63) as

. hZd
Jo = K¥x = - “zzé‘ (2.78)

Since Fs = O, then the equation of motion of the mechanical system
is determined by substituting equations (2.76), (2.77), and (2.78) into

equation (2.70), giving

Ne2i2

Md2x | hZdx
2 O0x + ai + r) =

de= dt

(2.79)

i
O

Rearrangement of equation (2.79) will show that it is identical to
equation (2.30}). Equation (2.30) was developed using D'Alembert’s principle

while equation (2.79) was developed using the Euleeragrangé equation for
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nonconservative systems. .

Either approach appears to involve a certain amount of insight or
judgment when dealing with cbup%ed systems. The Euler-Lagrange approidch
is more general, being baéed upon the determination of energy or state
functions in terms of generalized coordinates. However, this approach
has the disadvantage that insight into the physical phenomena may be
lost by the more fofmal mathematicél procedures. Also, in applying
this energy approach to nonconservative systems, 4 dissipation function
must be defined. 1In order for the dissipation term to Be consistent
with the force relationships, only one-half of the power loss in that
element must be used.‘ Physically this is not understood, but it is
required in ordervto extend this Fuler-Lagrange equation to nonconservative
systems. H. E. Koenig and W. A. Blackwell have indicated that one major
weakness of this approach is the léck of a general procedure for estab-
lishing a relationghip. between the variables of the energy function and
the generalizéd coordinate,

The approach using D'Alembert's principle is very satisfactory even
though it may require more attention to the details of the directions in
the which the forces act. It appears that, with moderate care in
selecting reference points, the amount of work or the accuracy of the
force method is comparable with that of the energy method even for

complicated coupled systems,

8Koenig,LH,aE;,and W. A, Blackwell, ‘On the Codification of Lagrangian
Formulation' , IRE Proceedings, July 1958, pp. 1428-1429.




CHAPTER III

DISCUSSION OF A METHOD FOR NUMERICALLY SOLVING

SIMULTANEOUS NONLINEAR DIFFERENTIAL EQUATIONS

The metheod under consideration is called the phase-plane or phase
or space trajectory method. It is probably more fully developed for

nonlinear systems in the book Analysis and Control of Nonlinear Systems

by Y. H. Ku than in any other source. Apparently no one individual

was responsible for the development of the method as no reference is given
as to the origin. It appears to be an adaptation of the isoline method,
but this is listed separately in Ku's book, thus suggesting the two
methods are different. The original basis for this phase or space
trajectory method seems to be the direction field method discussed

~ formerly in Ford's Differential Equations and again more recently in

Differential Equations with Applications by Betz, Burcham and Ewing.

However, there are other recent texts that also disucss the direction
field procedure as a graphical or numerical method. Since the direction
field method seems to be a logical beginning of the phase-plane and space
trajectory methods, this will be used as the starting point in the

development of this space trajectory method,

Direction Field Method

The first-order differential equation, whether it be linear or

nonlinear of the form given in equation (3.1), can be written in the

37
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form shown in equation (3.2).

A (x,t) g-’f + B(x,t) = c(x,t). (3.1)
dx :
5+ = f (x,t) = x (3.2)

where: X = dx/dt.

It is assumed that f(x,t) is a single valued function in the
region of the x,t plane under consideration. This means that for each
point (xo, to) of that region there is assoclated with it a value of
dx/dt defined by equation (3.2) that is unique. Let the value of
dx/dt when x = Xy and t = t, be represented by io- Thus the three numbers
Xos tg ié define a line element in the x,t plane which is located by the
values of (xo, to) and whose slope is determined by the differential equa-
tion (3.2) and represented by %Xo. The differential equation then defines
a field of line elements called a direction field. A solution of the
differential equation is any function x = f(t) whose graphical representa-
tion. matches fhis direction field. This means a curve which has a slope
which fits the direction field at each of the pointé. Such a curve is
called an integral curve. Since f (x,t) is single-valued, then there
passes a unique integral curve along these line elements which is a
solution to the differential equation. This concept is probably best
illustrated by consideriﬁg a numerical example,

A simple example is the solution to the R-L circuit with a unit

step as the driving emf. Consider the following numerical case.

di
10 = 10i + 1 — .
i . (3.3)



Rearranging:

g_i_ .
dt ¥ 10 = 101. (3.)4_)

The direction field is obtained by determining the value of di/dt
at a number of points in the i-t piane, Since in this case, the value
of di/dt is not a function o.f t‘;fhen the direction of the line elements
depends only on i .as is shown in Figure 3.1. Therefore, when i = 0, di/dt
= 10; when i = 0.1, di/dt = 9, etc. until i = 1 then di/dt = 0. The line
elements shown in Figure 3.1 determine the direction field of the relation
given in equation (3.4). The shape of the integral curve may be approxi-
mated by constructing a polygonal line. Tﬁis polygonal line is obtained
by commencing at some point (x,, y,) and drawing a line segment thét
coincides with the line element at that point. Then at the upper extremity
of that line segment, say at point (x;, y;), draw another line segment
that coincides with the line element at the point (x;, y;). By proceeding
in this manner to more and more points, all inside the region defined, a
series of connected line segments ..is obtained wﬁich form a polygonal line.
If the line segments are made shorter and shortetrby/using more points,
than a better approximation is obtained of the intégral curve, To
illustrate this procedure, suppose that the initial values of i and t
are zero. This causes the integral curwe to start at the point (a) in
Figure 3.1. If only ten line segments are taken, then line a-b is
obtained. It is noticed that the iine a-b approximates the integral curve
reasonably well until point (b) is approached. This was caused by the
fact that the élope of the line elements changed fapidly as the value of
i approached one. If at the point where i = 0.8, smaller increments were
taken, such as i = 0.04, then the line a-c would result., It is seen that

this gives a better approximation. The greatest error occured when the
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the slope of the line element changes from 1 to O, since the ratio of
these two values is-infinite. The exact solution to equation (3.4)
is given by equation (3.5) and is shown by the dashed line in Figufe

3.1.

i=1¢(1- e-IOt). .(5-5)

The polygonal line is a fair approximation of the solution up to
the value of i = 0.6. Smaller increments have to be taken to keepﬁghe
same accuracy, especially as the value of i approaches 1.0. The initial
conditions determine the starting point of the integral curve. If the
initial value of i at t = O had been 0.4, then the integral curve would
have started at that point with di/dt = 6. This simple example illus-
trates the procedure and some of the limitations that must be considered.

Phase-Plane Method Applied to a Second-Order Differential
Equation

The discussion up to this point has been confined to & first-
order differential equation, linear or nonlinear. This method is not
restricted to first-order equations. It may be applied to a second-

order nonlinear differential equation of the form shown in equation (3.6):

o d3x dx
M (X, X, t) dt2 + A(X, t) EE'"' B(X, t) = f(t) (3-6)
where: x = dx/dt.
Equation.(3.6) is much more general than is usualiy required but
it is shown as an example to show the generality of the phase-plane
method. Rearranging equation (3.6) in the form of equation (3.7) gives

the starting point of this method.
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dx 4, 49X 4+px ==& (3.7)
dt=2 dt

A (x,t)/M (x,x,t)

where: C

D

B (x,t)/M (x,x,t)

E = £(t)/M (%,x,t).

Let d®x/dt® = w and dx/dt = v, then equation (3.7) becomes:

w=E - Cv ~ Dx, (3.8)

Since w = dv/dt =(dv/dx) (dx/dt) = v (dv/dx), then equation (3.8)

becomes:
dv
Vi =w=E-=-Cv - Dx, (3.9)
or
dv - Cy =
L. %‘= E Vv Dx (3.10)

Equation (3.10) gives the slope of the line element in the v-x
plane. This means that the change in v with a change in x is determinea
by the values of v and x. Usually the solution desired is x as a function
of t. If the direction field i1s obtained for equation (3.10) then the
integral curve can be approximated or a phase-plane plot made of equation

(3.10). Since dv/dt = v dv/dx, then dt = dx/v.

t = Vfﬂ Q% (3.11)

Equation (3.11) is used to determine the time (t) as a function of

therefore:

x. Therefore a plot of time (t) versus displacement (x) is obtained or

the displacement (x) may be determined as a function of time (t).
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To help clarify the details of the phase-plane method the following

numerical example will be considered.

d2x dx .
—" 4+ 12 == + 20x = 100. .12
Pr 1129 4 oo (5.12)

Putting equation (3.12) into the standard phase-plane form gives:

w+ 12v + 20 x = 100, (3.13)
or

i\_{=y_=loo-12v~20x (5 1)+>

dx v v

The initial values at t = 0 are x = 0, v = 6, and from equation
(3.1%3), w = 28, Equation (3.14) gives the initial value of dv/dx as 467
or the initial slope of the v-x curve is + 4,67 as shown in Figure 3.2

Let x = 0.1, then from equation (3.14) Av may be obtained as:

Lv _ 100 - 12 (6 + Av) - 20 (.1)
.1 6 + Av >

(3.15)

giving AvE + 7.2Av - 2.6 = 0 or Av = .345,

The negative root makes no physical sense in this case, The value
of Av can also be determined from equation (3.14) by using the initial
value of dv/dx and solving for Av as follows:

& - w67
when Ax = 0.1, Av = L7,

In this case the difference is about 30% since the value of Ax is
large. If the value of Ax had been 0.01, then the value of Av by the
quadradic method would be 0.4125, compared to 0.467 determined from the

slope. The difference has been reduced to about 11%. If the initial



Figure 3.2. Phase-Plane Plot of Equation (3.12)
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values of v and x are denoted as vé; X, and thebvalues at the next

point as vy, x5, then the’values at the new points are defined as

vy = vy + Avy and x; = X, + Ax,. The value of Aw, is determined from
equation (3.14) from the values of vo, Xo and Axo. The value of Ax, is
selected by considering the accuracy desired. At the point vy, x; a

new slope 1is computed which is used to determine Av, in the.next interval,
It is not necessary that Ax; = Ax,, since the value of increments Ax is
not dependent upon the values of v or ®x, In some cases it 1s desirable
to change the value of Ax depending upon the accuracy desired. If the
value of dv/dx is large, then small values of Ax are desirable. For the

general case the value of v and x at any point is determined as:

Vp 41 = vy + AV,
and
xn + 2 = xn + Axn
where Xn and v, are determined as follows:
n-1
Vp = Vo * Ayk
k=0
n -1
X =X, + AN SN
n k
k=20

The values of Ax;, are selected, while the value of Avy is

determined from equation (3,16).

Avig 100 - 12 (vg + Avy) - 20 (xp + Axg).
Axy Vi | (3.16)
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The phase-plane plot of equation (3.12) in the v-x plane, detef-
mined by the procedure outlined, will give the curve as shown in
Figure 3.2. The final values of v and x are O and 5 fespectively.
Equation (3,11) gives the value of t in terms of the values of x and v.
The value of t can be deteérmined graphically as the afea under a curve of
1/v versus x. This relation is shown in Figure 3.3. Since the value
of v approaches zero, then the value of 1/v approaches infinity which
makes the value of t‘approach ihfinity as x apprpaches 5.

A plot of t versus x, determined from measu;ing the area under
the curve of Figure 3.3 by counting sqﬁares, is shown in Figure 3.k4
by the triangular points, The circled points are a plot of t versus
x computed from an exact solution of equation (3.12). The close
comparison of the plot of the exact solution and the numerical séiution
by the phase-plane method indicates the validity of such a procedure,

Phase-Plane Method Applied to Higher-Order
Differential Equations

This procedure may be extended to higher-order differential équations.
If a third-order differential equation were assumed, then a three
dimensional phase space with coordinates of w, v, and x could be used.
However, because of the difficulty in drawing and computing in three
dimensions, it is desirable to use the projection of the curve on the
three planes w - v, w - x and v - x, This interpretation follows from
an examination of the third-order differential equation. ©Let the relation

given in equation (3.17) be used for discussion.

a%x a®x dx
s tagEt b g+ dx =T ‘_ (3.17)
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Let dx/dt = v, d2x/dt® = w and d3x/dt3 = w. From the definition

then:
. dw dw dv dw
we=H _ WA _ ¥ (3.1
at  dv dt " av 8)
or -
dwv ¥ (3.19)
dv A
_dv  dvdx @ dv (3.2
V=4t T dx dac -V dx 3.20)
or
v _= | (3.21)
dg v
w=9w _dwdx dv (3.22)
dt  dx dt dx
or .
dw = w
x v . (3.23)

The relatioms lead to the statement that the slope of the projection
of the space curve in the w -~ x plane is equal to the ratio of w to v.
Also the slope of the projection of the space curve in the v - x plane is
equal to the ratio of w to v, and the slope of the projection of the
space curve in the w - v plane is equal to the ratio of W to w.

Note that equation {%.2%) can be obtained from equations (3.19)
and (3.21). 1In general any two of the equations (3.19), (3.21), or
(3.23) will suffice to determine the slope of the space curve.

Equation (%.17) can be rearranged to give equation (3.24).

w=F - aw - by - ex, (3.24)

or

v _

- ﬁ - F - aw - bv - ex .
v w

- (3.25)
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The reciprocal of equation (3.21) gives:

dx
dv

g |«

(3.26)

Equations (3.25) and (3.26) can be considered as two simultaneous
phase-space equations where v becomes the independent variable and x
and w the two dependent variables. Thus, a third-order differential
equation can be replaced by two phase-space equations. In the case of
a single phase-space equation a small change in x gives a change in v.
For the case of two phase-space equations (given by equation (3.25) and
(3.26)) a small change Av, will simultaneously give a change, Ax and Aw.
The procedure can be continued hére as was explained in the case of the
one phase-spaﬁe equation. The new values of w, v, and x such as w;, v
and x; are determined from the initial values of wy, v, and x, as

follows:

Wi Wy T Awg

]

vy Vo T+ Avo

X3 = Xg + &%y |
The value of Ax, is determined from equation (3.26) with v = Voo
w=w_  and dv = ANO, while the value of Awy is determined from equation
(3.25) with the additional relations of x = Xo and dw = Aws. This type
of calculation requires that Avg be small. A larger value of Avgo may be
used if the relation in equation (3.26) is substituted in equation (5095),
reducing it to two variables either w and v or x and v. This resuits in
equation (3.25) being a quadradic in Aw, or Axgy, and coyplicétes the
process. It appears that several computations could be made by the
simpler procedure in the same time required to solve the quadradic form.

Even though the quadradic form is more accurate, it appears that by using

a smaller value of Av in the simpler procedure, the same accuracy may be
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cbtained in the same computation time. In other words, it takes about
the same time to obtain a given accuracy regardless of the two forms used.
If the quadradic form is used, computing the slope at the middle of the
interval results in greater accuracy especially when the initial slope
is infinite.
Solution of Simultaneous Differential Equations
by the Phase-Plane Method

The extension of this phase-plane method to simultaneous differential
equations 1s similar to the procedure used to handle differential équations
above the second—order. In fact, it is theoretically possible to reduce
the simultaneous differential equations to a single differential equation,
whose order is less than or equal to the sum of the orders of the original
set. However, the resulting single equation is sometimes so complicated
that it is practically impossible to solve. Likewise the significance of
the initial conditions is lost, complicating the solution.

Consider the case of two simultaneous second-order differential

equations given as follows:

d®x dx =

4 o d X dx

Fre s + bixy + ¢y T + dy E??: + eyxs = Fyq, (3.27)
2 2

S—Eg + a» Sﬁ& + boxs + Cg’d X1 + ds gﬁl + eoxy = Fo, (5028)
dt2 dt ‘ dt2 dt

Let wy = d2x,/dt2, v, = dx;/dt, ws = d®x5/dt® and ve = dxp/dt.

Then equations (%.27) and (3.28) become:

(3.29)

W1 + ayvy + blxl + CyWo + d1V2 + eoXo =

I
2
B

Wo + ao=Vo + ngg + CoWq + d2Vl + eoXq = F2 (3.50)
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In a number of physigal systems some of the values of a;, b,
«..82, bs, ...will be zero, simplifying the equations, This procedure
applies to nonlinear systems. Also the coefficients of each order of
the derivative of the variable can be a combination of any lower order
of the derivative of that variable, or of the other variables in the
case of simultaneous differential equations,

Equation (3.30) should be rearranged so that the variable with
the 1 subscript is first as in equation (3.29).

wy + a;vy + byx, + €iws + dyve + eyxs = Fq, (3.29)

cewy + dovy + esxq + wo + asvs + boxs = Fao. (3.20)

The procedure for handling simultaneous differential equations
will be demonstgated gy the use of equations (3.29) and (3.30). From
the definitatioﬁs wy = dvy/dt and ws = dvp/dt, the following results

can be obtained.

w, dvy/dt  dvy (3.31)

we  dva/dt  dvs

Likewise, since vy = dx,/dt and vs = dxs/dt, then

AR dxl/dt dxl

il el (3.32)

Equations (3.31) and (3.%2) give the changes in the one subscripted
variable in terms of the two subscripted variable, or vice versa. Two
additional equations are needed to give the relaticns between time
derivatives of the same variable, as was éhown in the case of a single

differential equation. These two additional equations are:

d
T2 2 (3.33)

dX2 Vo
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and
dVl W3
— 2. (3.34)
Xm Vl

To illustrate the procedure, a numerical example will be considered.
Let the two simultaneous differential equations be as follows:
6, (3.35)
0. (3.36)

Wy + 2vy + LUx; + 3ve

Wo + 5V2 + 5X2 + 2Vl
Therefore:

dVl Wl 6 .=, 2Vl - Ll"xl = 5V2 5

dve  wo - 3Vvs = 5%Xs - 2v; (BfBY)
dxl N Vi . .
5y ve (3.38)
dvy wy 6 - 2vy - bxy - 3vo
PR - 5 (3.39)
dV2 W2 - 5V2 - 5X2 = 2V1 :
- = = . (3.40)
dxs Vo Vo

The regularly required initial conditions for a second-order
differential equation are all that are needed to determine the initial

values of equations (%.37) through {3.40). In this example, let v; =

2, X3 =1, v = 4 and x» O when t = O then the initial slopes are:

dVl Wy 6 -~ 4 ok o112 = 1h 7
—— ED ek I3 v = = ’ .Ll- X
dvo we -12-0-% -168 (3.41)
dxl 2 1 :
dX2 - l# - 2 (55L1-2)
dVl Wi “"11"
e e T, ST (3.42)
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dve _ w2.= -16 -l

dxo vz L (5.40)

In this case all the initial slopes are well defined; that is, the
values are finite., Starting with a small change in v;, as Avy, then
from equation (3.43) the éhange in x, as Ax; is determined from the
initial slope of -7. For a given Av,;, there is a corresponding A;z
from equation (3.41). This Avs qan then be used to determine Axp by
equation (3.44). The changes in all four coordinates have been determineﬁ
by the use of only three of the four equations. This leaves the fourth, .
or equation (3.42) in this case, as a check, since Ax;/Axs is now known.
As a check of the initial conditions, the following relation can be
obtained:

Xm = dxl/dvl dVl

dX2 dX2/dV2 (dV2) : (5')4'5)
For this examplé, this becomes:

idx_l.=_..__.-1/7 (Z)= 1

dzz -1/4 8 2 (3.46)

which checks equation (3.42). It should be pointed out that there are
changes in all the variables with this change of Av;, and that the slopes
should be tdken at the middle of the interval involving Av; if small
increments are not possible. The complication of this type of procedure
may make it desirable to use small values of Av;.

The procedure then becomes a process of selecting values of vip such
as Avyp, and computing the’changes in the other variables as AX%O, Avog
and Axso. These changes added to the original values of v;g5, X310, Voo and
Xoo determine new values of the variables as vy3;, X131, Vep and Xs;. These

new values are used to determine the slopes at the new points;‘then another
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change in v, 1s assumed as Av,;, and the process is repeated. The
result is eight phase-plane plots of which only four or two are usually
desired. These two plots desired are usually the veo - xp and vy, - Xy
plot. From these the vo - t, X - t, vy - t and x; -~ t are obtained,
which is generally the solution desired.

This section has shown how the phase-plane method may be applied
to solve differenfial equations whether they are linear or nonlinear.
Also the application of this method to solve simultaneous nonlinear
differential equations has been shown. Because of the large number of
computations involved in the phase-plane method, it has been practical
only recently. The use of the digital computer is almost a necessity
in the solution of a problem using the phase-plane method.

Solution of the Transducer Equation
by:the Phase-Space Method

The two particular nonlinear differential equations that are used
to degcribe the response of the electromagnetic traﬂsﬂucer were
developed in Chaptgr II. These two nonlinear differentiai equations
are repeated here Eor convenience. Hquation (3.47)was derived from
the electrical system, and equation (%.48) was derived from the mechanical

system,

48 . R (r +0%) ¢ |_E _
ac T N2 {:1 - bQ]_ x=-0- (3.47)

955-+Efﬂ dx k(x-06) Py K2 _ (3.48)

dt2 M dt M M M

The desired solutions are the coil current (i) and the armature
position (x) as functions of time (t). To determine the coil current

(i) as a function of time (t), a third equation is necessary and is
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shown in equation (3.49).

. r +Ox )
i= - [; _ bé} . (3.49)

To simplify the writing of the equations the following

notations will be used:

¢ = a3/dc®
§ = do/de
X = d%x/dt®
x = dx/dt
h; = b&/M
ky = k/M
Ky = K/M

Hy = (Pg + kG)/M.

With these notatioms equatioms (3.47) and (3.48) become

e}

5-E_R(xr+0%) [(b] (5.50)
N& 1 = b

and

¥ = - hyk - kyx = Ky@° + Hy. (3.51)
In the use of the phase-plane method for simultaneous differentiél
equations it is necessary that the equations be of the same order. Since
equatién (3550).15 of the first-order and equation (3.51) is of the
second-order, then the time derivative must be taken of equation (3.50)

giving equation (5052)5

¢ - ££_f£221__ + 00 4 . : (3.52)

N2 (1 - b¢ 1 - b@
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There are four phase-plane equations needed and these are:

i e ] —_— il s 5-53)
a3 g w2 [(1 - bg) 2 +<1 - b®> @5]
. ., R [(r +0x) 6 | UQSJJ
@ _ ¢ .-F LU0 - bg)2 b
le.}'{ .x. - hl X - klx - K-| ¢2 + Hl : (3'5)4')
¥ N |
T - oam-omelE HE L ’ (3.55)
a8 _ ¢
dx - < (5-56)

The initial conditions for this set of equations are iy= 0, x = 0,
x=G, § =RE (r +0C)/N2, ¢ = E/N and ¢ = residual flux (W). These
initial conditions determine the initial slopes of the phase-plane curves.

Equation (3.53) determines the slope of the curve in the ¢

¢ plane,

equation (3.54%) determines the slope of the curve in the @ x plane,

3.56) determines the slope of the curve in the ¢ - x plane.

(

(
equation (3.55) determines the slope of the curve in the % - x plane, and

equation (

(

The flux (@) is assumed to be the independent variable, and increments of
@ such as AP will be assumed. Since the ultimate result is to determine
the variables as functions of time (t), then the time (t) must be computed.
In this case the value of t may be computed from the changes in flux ()
or the changes in armature displacement (x). The appropriate equations
to use are given as follows:

Xz

-

X3

dx ' (3.58)

R
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or
¢
ag . (3.59)

S [

1

For every increment of flux (A¢) there is a change of Ax in x,
Ax in X, A@ in $, and At in t, so usually the change At is computed
for each increment and then the value of time (t) becomes the sum of
the At's,

In the solution of these simultaneous nonlinear differential
equations by this method the time interval must be divided into three
parts. This division is necessary because of the types of retraints
existing on the mechanical system. The restraints are in the form of
limited travel of the armature and an initial force helding the armature
against a stop. These three intervals consist of the time the armature
remains stationary after the step voltage has been applied to the coil,
the time required for the armature to move from the backstop to the
residual stop, and the time after the armature closes until the current
reaches its final value.

The first interval exists until the magnetic pull becomes equal
to the back temsion. During this interval the following conditions
exist: x = G, x = 0, and X = 0. The end of the second interval
occurs‘when the value of x has decreased to a value equal to the residual
gap. During this second interval both x and ¢ are changing. The third
interval exists until the flux has reached the final value. This 1is
characterized by the following conditions: =x =I); X = 0, and X = 0.

The solutions of the four phasewﬁiane equations (3.53) through (3.56)

results in obtaining numerically x and ¢ as functions of t. The numerical
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solutidn was obtainéavby writing a program for the IBM 650 digital
computer, The program was writtgn in the Fo:tran language because of
the close similiarity to the language of mathematics. Figure 3.5 shows
a flow chart which gives the Basic steps used in setting up the program.
A listing of the program in Fortran language is given in Appendix A.‘
The resulting machine language program compiled from the Fortran program
was used with numerical data to check the accuracy of the program and
to obtalin some data showing the effect of chahging some of the parameters,
The details of setting up equation (3.5%) through (3.56) in the proper
form, with the correct numerical coefficients for the set of units selected
and the special notation that was used in the Fortran program, is given
next. The validity of the mathematical solution is shown by comparing
the numerical solution with the experimental results. This is given
in the following chapters.
Development of the Equations to Program the
Solution on the IBM 650 Digital Computer

Measurements made in the use of the electromechanical transducer,
and especially the relay, involve a mixed set of units. Distances are
measured in Inches or thousandths of am fnch, current is measured in
amperesy. force in grams and emf im volts, Therefore, it was ﬁecessary
to select‘a consistent set of units. The set that most nearly seemed
to represent the majority of the units used is the English or foot-
pound second system. Therefore equations (3.53) through {3.56) must be
modified to take into account the units. The equations in final form

are the following:

°

a _ 3
agd = &

10° r +0Jx (g - w) x
~ [[1(-, 53 2 WE T _(b<¢ -)wm (3.60)
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4 All
: Check to see if all
Not leulations h
Start all calculations have
been made
Read in data Punch existing values
' of variables
N .
Check to see if N
Not lculations have
Compute constants = N calculations hav
. . been made
-4 4
Punch existing values
s o of selected
Set initial conditions variables
Closed
Not .
‘ o e Check .to see if
Punch constants a Glosed| armature now closed
* : .
Compute flux and v Compute armature
current for a change Set velocity = 0 position for the
of AP ’ acceleration = O change of AP
Not Closed
Checkaif mégnetic Not Closed Check to see if
pull is greater ot ' armature closed
equal to back tension Greater
Greater y
Check to see if this Not .
is first time through T Punch existing values
the loop irst of selected variables
First

Figure 3.5. Logic Chart of Computer Program
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T T [ (xr +0%) T8 - wk
4 ¢ _ _® [ -p(@-wi2 *T1-5(F-w_ (3.61)
di{=3!-.— ‘hl}.{-klx-Kl¢2+Hi i )
dx _x _ _ Sk X _K 02 Hy
m=: - "h-kg e , (3.62)
a6 _ ¢
X X ’ (5,63)
8 8
@ - WE 10°R (r +0%) ¢ - w (3.64)
N N2 1 - b(d - w) ’ 3.
r+O_x ¢ - W
1 =" : . (3.65
N [1 - b(® - W):} )
|
Where: =x = armature displacement in feet
¢ = air gap flux in maxwells
R = coll circuit resistance in ohms
N = coil turns
hy = hZ/M
h2 = effective damping coefficient in pounds per foot per second

M = effective armature mass in slugs

ky = k/M

k = effective spring constant in pounds per foot
K; = K/M

K

coefficient of magnetic pull equation and is equal

to 8.86 x 10-8/(uA) in pounds per square root maxwells

A = cross sectional area of the air gap in square inches
Hy = (Py + kG)/M
P, = initial back tension in pounds

G = initial value of armature displacement or open air gap in feet
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r + al = approximation of the reluctance of the iron part
of the magnetic circuit over a limited range of
values of i

i = coil current through the N turns in amperes

E = supply voltage in volts

b = a/N

O= 12/pA (12 caused by x being in feet)

1 = permeability of free space and equals 3.19 for

English system of units

% = dx/dt
X = d2x/dt2
¢ = dgdt
6 = a2g/de?

W = value of residual flux in maxwells.
Equations (3.60) through (3.65) are used in the Fortram program
to obtain x, @ and i as functions of t. To obtain the value of t the

following equations were used:

ey = A@j/@j, (j =0, 1, 2...n) (3.66)

t = At . (3.67)

when t = 0, j = O.

As a check during the second interval, the values of Atj were also
computed as ij/gj and printed along with the values computed from
equation (3.66). Because of the restrictions in the symbols used in

the Fortran program, some of the symbols used in equations (3.60) through
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(3.65) had to be changed., There are several constants that are
computed in the program and that .are used to determine the value of

the incremeht Af. This required that the maximum value of the flux (@)
must be known since flux is selected as the independent variable. This"
is determined from equation (3.64) by setting é = 0 and x = D and

solving of ¢, The value of the maximum flux (¢m) is given by the

following equation:

"= 73 +c§g) ¥ END (5.68)
where all the symbols were defined at the beginning of this section
except D. The symbol D is the residual gap or the value of the closed
air gap. To keep the armature from sticking to the core when the coil
is deenergized, a small non-magnetic shim (called a residual pin) is
used resulting in a small air gap when the armature is closed.

‘The input data necessary for the program to compute the soiution
consists of eighteen variables. Most of the variables are involved
with the transducer parameters except three variables which are used
to change the program. The symbols used will be listed with the Fortrah
first, then the symbols used in the equation, then a brief definition.
The eighteen input variables are listed in the order required by the
program,

A = A = cross sectional area of the air gap in squaré inches

HI = b® = damping coefficient in lbs/ft/sec.

GR = M = effective armature mass in slugs
SI = k = effective spring constant in 1lbs/ft
PO = P, = initial back tension in lbs.

R = R = coil circuit resistance in ohms
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IN = N = coll turns

E = E = supply voltage in volts

G = G = initial value of armature displacement or open air gap in ft.
D=D= résidual;gap in feet

B =b = coefficient in magnetic reluctance equation

Q = r = coefficient in magnetic reluctance equation

W =W = initial value of residual flux in maxwells

]
—
@]

1 = units constant
U0 =p = permeability of free space. Equals 3.19 in English units
ERR = the number used to keep a check on the calculating error
INC = total number of increments of the;flux
NO = number of calculation loops made before punching values.
Those listed below are the symbols used in the program for
computation purposés.
CUR = i = coil current

Y=0¢ = flux

X = x = armature position or displacement
C =0=12/(pA)

H=hl'—‘h/M

S = ky; = k/M
P =Ry =K/M
RN = R/N®

EN = E/N

X0 = x = dx/dt

XDD = x = d2x/dt2
U =H; = (P, + kG)/M

BM = ¢ = EN/ [R(r +0D) + ENb]
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DLY = A¢ = (@, - W)/ number of increments (INC)

LP = total number of times calculations printed to complete

program
8

YDA = 10 E/N

DI = r +Ox

DE =1 - b(¢ - w)

18R (riox) (- w)

YDB —
N2 [1 - (8 - w)]
8 8 . ,
=g 90 _ 0F 10 R(r+0x) (¢ -w)
dt N ) N2E_b(¢_wﬂ
8 .
vopa = O R (r +Ox%) ¢
N2 @-b(ﬁ-w]z
- 10° RO(4 - w) &
YDDB = -

NZ B -b (¢ - wﬂ

. 8 iy .
= = 2 2 = o 1 . (r +GX)¢ O-(¢ - W) X
YDD = @ d=@/dt _ [[1 508 - w7 + IPET)

YRA = ¢/¢

DLYD = A8 = (&8) §/¢

S INC
02 = ¢ = Z 28, + Bo
n=0
INC
TI =t = ZE{Z A tn
n =20

-y = (r +0%) (¢ - w)
N 1-b(¢-w_5j

CUR

BIAS = P, - AP = valye of pull at which armature starts to move

(o]

- PYY = K@2/M = magnetic pull
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XDD = X = -hyx - kyx ~ Ky¢° + H,

XYRA = x/@
DIXD = Ak = (A0) x/8
INC
XD = x = ZEZZ S
n =0
XRA = %/X
DIX = Ax = (Ai) x/x
INC
X =x = 'ZEE:Z Ax, + G
n=290

The program was arranged to punch out the values of the
coil current (i), time (t), flux (@), pull, d2x/dt®, d¢/dt and a2 /de®
when the armature started to move, and the values of coil current (i),
time (t}, armature position (x), flux (@), pull, dx/dt, d%x/dtZ2, d¢/dt,
d5¢/dt®, t; and ts after n 1oopvcéiCu1ations. Also built into the
program were three errdf-checkiﬁg procedures that could be used to check
the magnitude of an error. Theésé errérs were determined by computing a
given variable two ways. The fitrst error-checking calculation is based
upon computing @~two ways. Because of the nature of this probiém, ¢
was available directly from equation (3.64). Also, é could be computed
by adding the successive value of AJ to the initial value (@o) of @.

A ratio of these two values of $ was then computed and compared to some

value such as 1.01 which represents a 1% error. If the computed ratio

exceeded the allowable deviation the excess was punched out., The value

)

of ¥ used in computing the other variables was always computed from the

equation, so that there was no ernbr directly caused by summing.
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The second errqr-checkiﬁg scheﬁe was to use equation (3.63). In
this equation the ratio of @ to x existing in all intervals was compared
to the ratio of {§ to X. Actually tﬁe total product {(A¢) x/(Ax) ¢ derived
from equation (3.63) should be equal to 1.0 if there is no error. This
product then was compared to some allowable deviation. If the product
exceeded the allowable value then the excess was punched out, TIf there

vwas no fieed to sense these errors, then a large value of ERR could be
read in, and no error values would be punched out. The third error-

sensing arrangement was to compute At two ways. The value of a At; was

. [
)

computed from ¢/é, while the value of a Aty was computed from‘x/k. In
this case both values of At were punched éach time a punch operation
occured in the normal loop. Since Atz only existed during the interval
when the armature was moving, the comparison is only valid during that
interval. The time (t) was computed for the values of At; since the
flux was changing all of the time. A gample of therérotran’prog%am
is given in Appendix A.

The actual data obtained from this program is presented in Chapters
IV and V which show a comparison of the results obtained by calculation
and by experiment. It took the computer, on the average, about ten
minutes.to compute until the value of the armature displacement became
equal to the closed or residual value. To make a complete calculation,
of 56 points in this case, the time required was approximately 15 minutes
for each set of input data. _The program is optimized because of the
built-in SOAP program used to obtain the final output program. High
speed storage is ndt used by the program but the three index registers

and the floating point unit are.



CHAPTER IV

QUALITATIVE DISCUSSION OF THE EXPERIMENTAL

AND COMPUTED DATA

Expe;imental information was used in two ways in the solution of
the problem of determining the traﬁsient response of the singly excited
electromechanical transducer. A certain amount of experimental data had
to be obtained in order to gain insight into and familiarity with the
details of the problem. This information was used to determine the
method of approach and the conditions involve& in the analytical
solution, The results of the analytical solution were then studied
in relation to the experimental results to evaluate the accuracy of
the mathematical model and the procedure used to arrive at the solutionm.

In addition, in this case, considerable experimental results will
be presented to show the feasibility of using the response of one system
in evaluating the response of a coupled second system.l In most electrical
measuring devices this is the basic principle used to obtain some type
of results which can be perceived by an individual. For eXampie, the body
is incapable of directly sensing the presence of a magnetic field. However,
considerable informat ion is obtained about magnetic fields by observing
the response of devices that do respond to magnetic fields. In fact, the

transient response of a magnetic field is somewhat unknown because of

lCameron, C. F. and D. D. Lingelbach, "Oscilloscopic Analysis of
Relay Performance"”, Automatic Control, (New York, 1958), pp. 10-11.
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the inability to make reasonable direct measurements of the field under
transient conditions. Just recently new devices have been made which
have possibilities of studying transient magnetic fields by using a
different principle. As indicated in Chapter I, the scope of this thesis
has been limited to the response of a singly excited electromechanical
transducer to a step input of voltage. However, the technique presented
in this thesis can be applied to other conditions by using certain

modifications.
Transient Coil Current Build~-up

The transient coil current build-up is the instantaneous value of
the coil current from the instant the coll is energized until the current
reaches it steady statevvalue, or until another switching action takes
place in the coil circuit,

Inspection of equations (2.39) and (2.40) indicates that a change
in any of the terms in these two equations would give some change in the
instantaneous value éf the coil current, It is possible that a change
in some of the terms or variables would give less change than others in
the coil current. Likewise, the condition of any one variable to cause
a change In the coil current is based upon the values of the other
variables existing at any given time, This condition is caused by the
nonlinearity of the transducer. Experimentally, there are some Qariables
that may be changed more conveniently than others. These will be varied,
and the effect on the coil current will be observed. The details of
the experimental setup are presented in Appendix B. In general, the

coil current was obtaimned by a photographic record being made of the
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trace presented by the electron beah on the face of a cathode ray tube,
Since dhly transient conditions were being recorded, the shutter of the
camera %as held open while the electron beam was swept across the face
of the tube. In the case of simultaneous traces, the two beams of the
dual oséilloscope were used. The use of simultaneous traces are a
necessity for comparison purposes because of the difficulty of obtaining
consistency in the transient operation of a méchanical device. With
simultaneous traces there is no question as to whether each one existed
under identical conditions.

The variables which are convenient to change are the initial value
of the spring force called back tension; the open value of the armature
called air gap, the closed value of the armature called residual gap,
applied voltage, the coil circuit resistance, the constant of the spring,
and a separate circuit electromagnetically coupled to the coil circuit
called a slug or sleeve.-

The influence of a change in the back tension on the transient
coil current build-up is shown by the traces in Figures 4.1 and 4.2,

In order to explain the changes that take élace in the transient

coil current build-up with a change in the variables, it is desirable

to take the general shape of the traces im Figure L4.1 and define some
particular prints. The points to be primarily used in future discussions
are located on a sketch in Figure 4.3 showing the general shape of

the coil current.

2 ' '
Cameron, C,.-F., D. D. Lingelbach and Douglas Jeng, "Transient

Analysis of Relays with Slugs and Sleeves,” Sixth Symposium on Electro-
magnetic Relays, (Princeton, Indiama, 1958). pp, 90-93.
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Treces:

(a, b, ¢, d) Coil Current build-up
(a) Back tension 40 grams

(b) Back tension 60 grams

(c) Back temsion 90 grams

(d) Back tension 140 grams

(e, £, g, h) Coil current decay

Oscillogram Data

Time scale: 5 milliseconds per division (horizontal)
Current scale: 19.75 milliamperes per division (vertical)
Turns: 5840

Air gap: 0.027 inches

Coil circuit resistance: U67 ohms

Voltage: 36 volts dc

Figure 4.1. Coil Current Build-up and Decay for Variable Back Tension
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Traces:

(a, o, ¢, d) Coil current build-up
(a) Back tension 195 grams

(b) Back tension 230 grams

(c¢) Back tension 255 grams

(d) Back tension 320 grams

(e, f, g, h) Coil current decay

Oscillogram Data

Time scale: 5 milliseconds per division except trace (d) which is
10 milliseconds (horizontal)

Current scale: 19.75 milliamperes per division (vertical)

Turns: 58L0

Air gap: 0.027 inches

Coil circuit resistance: U67 ohms

Voltage: 36 volts dc

Figure 4,2, Coil Current Build-up and Decay for Variable Back Tension
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Figure 4.3

There are usually four values of the coil current (i) that are of
use in describing the transient coil current build-up trace. Associated
with these four current values are three finite time values, Commencing
‘with the lowest current value marked is the value called i_. This is
defined as the pick-up value of current and is that value of current ét
which the magnetic pull becomes just equal to the total force holding the
armature open. The néxt current point is i, and is the value of the
current at the lowest point on what is called the cusp in the current
trace. The point i is next and is the value of the current at which
the time rate of change of the current is zero. The final current value

marked is the steady state value of the current and is noted as Igg.
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The three time valqes generally used are: first, tp which is called
the pick-up time and is defined as the time interval from the instant
the coil is energized to the instant the magnetic pull becomes equal to
the restoring force on the armature; the second time value is t, and is
the time at which the time rate of change of the current is zero; the
last time value is tg and is called the seating time. It is at this
point (ts) that the armature reaches the end of its travel as it
closes. This point is determined experimentally be observing simultaneously
the transient coil current and the armature motion.

Careful examinatign of the traces in Figure 4.1 and 4.2 will reveal
that certain conditions exist in the trace for a change in the value of
the back tension. At the point where t = 0, and 1 = 0, it will be found
that the time rate of change of the coil current is the same for all
values of back tension. In addition, the shape of the instantaneous value
of the coil current is the same for all values of back temsion for
values of the coil current less than .the smallest wvalue of pick-up current
in the group.

Increases in the back tension increase the value of ip and the
corresponding tp. The values of ty or ip have been indicated by
causing a blanking‘pulse toiblénk the electron beam at the instant
the armature starts to move, The beginning of the blank in the coil
current trace is caused by the breaking of a contact mounted on the
armature so that movement of the armature breaks an electrical circuit,
causing a blanking pulse. Therefore, the values of ip and tp exist at
the beginning of the blank.

Increasing back tension also increases the time interval of tg

minus tpe This time interval is referred to as the armature travel



time or transit time., The time interval tg minus tp also increases
with an increase in the back tension,

Associated with the increases in the time intervals are the increases
in the current. Increasing the back tension increases the current
increment of iy minus i.. The reason for presenting time intervals
and current increments in describing the changes caused by changing a
variable is to help differentiate between the types of changes. For
example, if only the change in the magnitude of i, were used to describe
the effect of a change in back tension, one would not know whether the
change was only a reflection of the change in ip or a change directly
related to back tension. Actually, not only should the magnitudes of
the current and time be examined, but the time rate of change of the
current should be checked. However, if small enough time increments
were involved, then the data would give essentially the same results as
examining the slope of the trace.

Figure 4.4 shows a plot of the calculated coil current build-up
for a transducer in which the back tension was varied. Only the plots
of coil current for three values of back tension are shown. Comparison
of Figure 4.4 with Figure 4.1 shows that the computed results give the
same changes as those exhibited experimentally. The relays used in
obtaining the data for Figures 4.1 and 4.4 are not the same. 1In
selecting the values of the parameters to compute the response, represen=
tative values were used whenever they were known. In some cases, such
as the magnetic circuit parameters, the values had to be calculated
since the exact relation between the flux and the magnetomotive force
was not known. Also, a simple series magnetic circuit was used in the

mathematical model. This kept the computer program from being more



Coil Current =- 5 Milliamperes per Major Division

z/
A A
]
'/ hY
‘/
\
-1\
7 \ 0.638 1bs
\ A
A LA
L
y
P! N
g d N
/l A
A
/| \ |
Y.l
F \ 0,400 1ibs
V4
/1
/
/V
,l
/ 0.210 1bs
\
Vi
/
/i
0 5 10 15 20 55

Time in Milliseconds

Figure 4.4, Computed Coil Current Build-up for Three Values
of Back Tension

76



T

complicated than necessary to obtain the desired results in the time
available, There are a number of places where additional refinements

in the computer program would be necessary in order to be able to

obtain a given response. The objective here was to show that a reasonable
solution could be obtained by this method. If the solution obtained
showed the same trends as the experimental results, then it was

considered to be entirely satisfactory since definite limitations existed
in the mathematical model used. One definite advantage of this type of
solution is that added refinements can be made without having to
completely revise the procedure.

To observe the effect of air gap on the coil current build-up, the
traces presented in Figure 4.5 and 4.6 were obtained. Each coil current
build-up trace was taken for a different value of the air gap and with
constant back tension. Careful inspection will show that the slope of
the trace at t = O is different for each of the values of air gap. The
slope at t = 0 should increase with an increase in air gap. Because of
the switching problem and coupling factors, it is difficult experimentally
to obtain a well defined trace at t = 0. Therefore it is desirable to
observe the change caused by changing the air gap by selecting some value
of time between the values of zero and to and determining the current.

By using the same value of time for all the traces under consideration,
a comparison can be made from the values of coil current (existing at
that value of time)to detect the change in air gap. If the slope is
greater, then the current at a fixed time would also be greater. This
difference in slope is about the only significant thing that can be used
to distinguish between the changes caused by changing back tension, and

those caused by changing air gap.
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Traces:

(a, b, ¢, d) Coil current build-up
(a) Air gap: 0.008 inches

(b) Air gap: 0.013 inches

(c) Air gap: 0.018 inches

(d) Air gap: 0.023 inches

(e, £, g, h) Coil current decay

Oscillogram Data

Time scale: 5 milliseconds per division (horizontal)
Current scale: 16 milliamperes per division (vertical)
Back tension: 65 grams

Turns: 5840

Voltage: 36 volts dc

Coil circuit resistance: 562 ohms

Figure 4.5. Coil Current Build-up and Decay for Variable Air Gap
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Traces:

(a, b, ¢, d) Coil current build-up
(a) Air gap: 0.028 inches

(b) Air gap: 0.033 inches

(c) Air gap: 0.038 inches

(d) Air gap: 0.043 inches

(e, f, g, h) Coil current decay

Oscillogram Data

Time scale: 5 milliseconds per division (horizontal)
Current scale: 16 milliamperes per division (vertical)
Back tension: 65 grams

Turns: 5840

Voltage: 36 volts dc

Coil circuit resistance: 562 ohms

Figure 4.6. Coil Current Build-up and Decay for Variable Air Gap
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The data taken to determine whether the change is one of air
gap or of back tension is obtained during the time interval that the
armature is not moving. This means that the value of x is G and that
x and X are zero, If magnetic saturation can be neglected, then it is
possible to obtain approximate relations that can be used to predict
the pick-up time if certain parameters are known. The parameters which
determine the pick-up time are the supply voltage (E), the coil circuit
resistance (R), the coil turns (N), the pick-up flux (@p) and the
magnetic circuit reluctance «Rp). It was shown in a previous chapter
that the magnetic pull is proportional to the square of the magnetic
flux in the air gap. Also the reluctance {(Rp) is determined, in part,
by the length of the air gap. With these conditions existing, then
the following voltage equation may be written for the transducer coil

circuit,

N T
E=iR+J 55 1<y (%.1)

The solution to equation (4.1) for the coil current (i) is

, _ B _ . -Re/Iy. o _
i=3 (1 - ¢ ); i<, (k.2)
Solving equation {4.2) for the time (t) gives
J Lgs
t = R In Tom -1 t<tp, (4.3)

where I, = E/R = steady state current
J = effective inductance of the coill when the armature is open.
The effective inductance J can be shown from its definition to be

equal to N®/R. Substituting this relation into equation (4.3) gives

a2
£ % In 88 t <t (h.1)
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Equation (4.4) shows that for a given value of 1, the time (t)
varies inversely with the reluctance, orzcénversely that for a fixed
value of t the current i varies directly with the R. Therefore, in
the examination of the coil current build-up traces 1t is possible to
detect the changes in the alr gap by comparing the instantaneous values
of current at the same value of time (t). Attention should be called
to the fact that equations (4.1) through (4.4) are accurate for
t < tp and i < ip.

Equation (4.4) can be rearranged so that the magnitude of the
reluctance R may be calculated by obtaining a pair of values of time
(t) and the corresponding value of current (i) from a transient coil
current build-up trace., If this pair of values is (tp, i;) then the

reluctance ®&; can be calculated from equation (4.5) as

N2
Ry = — In_1ss ip <1, (k.5)
Rtl ISS - il R

When the value of R, has been determined, the value of flux

existing at this time can be obtained from equation (4.6).

N

3, = ildi: 3 12 <1 (4.6)

= 1p -
If the pair of values of current and time are selected as the
pick-up values then the pick-up flux ¢p and the reluctance(RP are
determined when using equations (4.5) and (4.6)
By substituting equation (4.6) into equation (4.4) a relation
is obtained which shows the effect of varying the back tension upon

the pick-up time tp. This relation is given in equation (L.7).

N2 YNIss

tp = &, In Nos - Oy (4. 7)
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Since ®p varies as the square root of the back tension, increasing
back tension will increase the value of %p. From equation (4.7) it is
seen that an increase in the value of ®p will increase the pick-up time
(tp) in a logarithmic manner.

With fixed values of the internal parameters such as back tension
and air gap, it is still possible to change the transient coil current
build-up by changing the extérnal conditions. The magnitude of the
supply voltage may be changed with constant coil circuit resistance, or
both the resistance and voltage may be changed or only the resistance
changed. These three types of input conditions influence the transient
response differently.

The influence of different values of supply voltage on the transient
coil current build-up is shown by the trace in Figures 4.7 and 4.8.

Some definite changes in the shape of the trace may be noted. The slope
of the trace at t = O increases with an increase in the voltage. This
result can be predicted by taking the derivative of equation (4.2) with
respect to time. This results in the following equation.

-Rt
di E_J . ,
‘d—f=3'€ 3 t< 5 . (4.8)

At t = O the slope of the transient coil current build-up trace
is E/J. This shows that the slope varies directly with E. Since di/dt
at t = O is greater with a larger E, then the time required for the
coil current to reach a given value decreases. This is shown by the time
interval from zero to the beginﬁing of the blanking pulse. In addition,
the time required for the armature to move from the open to the closed

position increases with a decrease in the applied voltage.
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Traces:

(a, b, ¢, d) Coil current build-up
(a) Voltage: 36.0 volts dc

(b) Voltage: 26.7 volts dc

(c) Voltage: 21.2 volts dc

(d) Voltage: 17.7 volts dc

(e, £, g, h) Coil current decay

Oscillogram Data

Time scale: 5 milliseconds per division (horizontal)
Current scale: 19.5 milliamperes per division (vertical)
Turns: 5840

Back tension: 4O grams

Coil circuit resistance: U467 ohms

Air gap: 0.027 inches

Figure 4.7. Coil Current Build-up and Decay for Variable Voltage
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Traces:

(a, b, ¢) Coil current build-up
(a) Voltage: 15.0 volts dc

(b) Voltage: 12,5 volts dc

(c) Voltage: 10.8 volts dc

(d, e, f) Coil current decay

Oscillogram Data

Time scale: 5 milliseconds per division (horizontal) except trace (c)
which is 10 milliseconds

Current scale: 8.25 milliamperes per division (vertical)

Turns: 5840

Back tension: 40 grams

Coil circuit resistance: U467 ohms

Air gap: 0.027 inches

Figure 4.8, Coil Current Build-up and Decay for Variable Voltage
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The effect of changing the coil circuit resistance on the transient
coil current build-up is shown by the traces in Figures 4.9 and h.ld. In
this case there is not change in the initial élope of the coil current |
build-up. This is indicated by equation (4.8) since at t = O, R does not
appear. Inspection of the traces will show that the pick-up time (tp)
increases with an increase in the coil circuit resistance. Rearrangement

of equation (4.4) by substituting E/R= I o will give equation (4.9):

t="" In —— ; 1i<i, (4.9)

Since the variable R occurs in both factors of equation (4.9) it
is awkward to see the effect of changing R. 1In one factor, increasing
R decreases the value of the factor while in the other factor the opposite
change occurs. At first thought it might appear that there is a finite
value of R that results in the pick-up time Ctp) being a minimum. However,
taking the derivative of equation (4.9) with respect to R, and setting
that equal to zero, shows this is not true.

The armature travel time also increaées with an increase in the coil
circuit resistance. Inspection of the traces in Figures 4.9 and 4.10 shows
that the increase in the pick-up time is smaller than the increase in the
armature travel time.

If the supply voltage (E) and the coil circuit resistance (R) are
changed together such that the ratio remains constant, certain unique things

result. By defirition the steady state current (I is fixed. The traces

ss)
in Figure 4.11 show the result of changing E and R together but keeping
their ratio constant. Examination of the traces shows that the slopé of

the trace at t = 0 1increases with an increase in the supply voltage. A

check with equation (L4.8) shows that at t = O the value of di/dt depends



86

Traces:

(a, b, ¢, d) Coil current build-up

(a) Coil circuit resistance: L6T ohms
(b) Coil circuit resistance: 564 ohms
(¢) Coil circuit resistance: 735 ohms

(d) Coil circuit resistance: 880 ohms

(e, £, g, h) Coil current decay

Oscillogram Data

Time scale: 5 milliseconds per division (horizontal)
Current scale: 19.75 milliamperes per division (vertical)
Air gap: 0.027 inches

Back tension: 40 grams

Voltage: 36 volts dc

Turns 5840

Figure 4.9. Coil Current Build-up and Decay for Variable Coil
Circuit Resistance
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Traces:

(a, b, ¢, d) Coil current build-up

(a) Coil circuit resistance: 1000 ohms
(b) Coil circuit resistance: 1000 ohms
(c¢) Coil circuit resistance: 1220 ohms

(d) Coil circuit resistance: 1364 ohms

(e, f, g, h) Coil current decay

Oscillogram Data

Time scale: 5 milliseconds per division (horizontal)
Current scale: 19.75 milliamperes per division (vertical)
Air gap: 0.027 inches

Back tension: LO grams

Voltage: 36 volts dc

Turns: 5840

Figure 4,10. Coil Current Build-up and Decay for Variable Coil
Circuit Resistance



Traces: Coil current build-up
(a) Voltage: 24,6 volts

Coil circuit resistance: 214 ohms
(b) Voltage: L49.2 volts

Coil circuit resistance: U428 ohms
(c) Voltage: 70.0 volts

Coil circuit resistance: 610 ohms
(d) Voltage: 95 volts

Coil circuit resistance: 825 ohms

Time scale: 1 millisecond per small division (horizontal)

Current scale: 5.7 milliamperes per small division (vertical)

Figure 4.11. Coil Current Build-up for Constant Steady State Current
but Variable Voltage and Resistance
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only on E and J and not R, Therefore, increasing E increases the slope.
The rate of change of i with time increases with an increase in E; there-

fore, the pick-up time (t decreases with an increase in E. Since

o)
increasing E decreases the pick-up time, and increasing R increases the
pick-up time, the result of increasing both E and R together reduces the
effect of each. Examination of equation (4.4) shows that the pick-up

time varies inversely with the coil circuit resistance since I g is
constant. The traces in Figure 4.11 also show that the armature travel
time decreases with an increase in the coil circuit resistance when both

E and R are increased together. However, the change in the armature travel
time is less than the change in the pick-up time when both E and R are
changed.

The parameters discussed previcusly have been those that are either
part of the electrical system or part of the mechanical system that
affects the electrical system before the -armature moves. There are two
parameters, the mass and the spring constant, which influence the response
only when the armature is moving. Actually there is a third parameter,
the damping, which is involved with the mechanical system, but this one
is difficult to change. Experimeﬁtally these two parameters are hard to
change without changing another parameter. The traces shown in Figure
L,12 show the effect of changing only the spring constant. Because the
spring constant does not become effective until the armature moves, the
pick-up time does notchange with a change in the spring constant. Experi-
mentally, it is difficult to change springs without changing the back
tension even when the back temsion is adjusted to be constant. Measure-
ment of the back tension by the standard hand type gram gauge is not

very accurate.
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Traces: Coil current build-up

(a) Spring constant 55.8 1lbs/ft.
(b) Spring constant 25.1 1lbs/ft.

(c) Spring constant 10.0 lbs/ft.

Oscillogram Data:

Time scale: 2 milliseconds per division (horizontal!
Pick-up current: 10.4 milliamperes

Steady state current: 29 milliamperes

Supply voltage: 36 volts dc

Figure 4.12. Coil Current Build-up for Variable Spring Constant
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"+ The armature travel time does change with the spring coﬁstant. An
increase in the spring constant increases the armature travel time. How-
ever, the spring constant times the total armature displacement must be
of the same order of magnitude as the back tension before the spring
constant gives much change. It will be shqwn‘in the next chapter that,
even with a spring constant of zero, the aémature travel time is not
zero. The effect of a change in the spring constant 'on:.the transient
coil current build-up is shown by the traces in Figure 4.12. The
shape of the cusp is the primary change associated with a change in the
spring constants. The computed effect of a change in the spring constant,
from the computer program, is shown by the curves in Figure 4.13. Figure
4,13 shows the computed transient coil current build-up and the computed
armature motion for two values of the spring comnstant. It was considered
desirable in this case to show both the coil current build-up and the
armature motion, because of the peculiar shape of the coil current when
the spring constant was large. The curves shown by the solid lines are
for the case of a large spring constant., Comparison of both the coil
current and the armature motion shows why the coil current had a slight
dip and why the cusp is so long. The armature velocity increased‘at
first, then decreased befqre reaching its final closure value. This
is one example of the use of the t%ansient coil current to detect
unusual changes in the armature motion. The dashed curves represent
the response when the spring constant is smaller and more normal.

The second mechénical variable that influences the armature
travel time is the armature mass., If the back tension is kept constant
when the mass is changed, then the mass does not directly influence the

pick-up time. Whether the armature mass can influence the pick-up time
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at all depends on how the mass is changed. If the reluctance of the
magnetic circuit is changed when the mass is changed, then the pick-up
time is changed. If the mass is changed without changing the magnetic
reluctance, then the only change is in the armature travel time. The
assumption made in this discussion is that the mass does not change the
reluctance of the magnetic circuit; therefore, pick-up time is not
changed. The effect of changing armature mass on the transient coil
current build-up is shown by the traces in Figure 4,14%. The armature
travel time increases with an increase in armature mass. The largest
change occurs when the total mass is small, and the change approaches
a fairly constant value when the mass becomes larger. If the damping
term in the mechanical system equation is negligible, then the travel
time approaches zero as the mass approaches zero. Figures 4.15, 4.16
and 4.17 show the computed results of a change in mass on the transient
coil current build-up and the armature motion. The smallest mass was
used to obtain the data used to plot the curves in Figure 4.15, and the
succeeding Figures 4.16 and 4.17 are the results obtained by increas-
ing the mass. The increased mass resulted in a smaller velocity,
therefore increasing the length of the coll current cusp.

A domewhat comprehensive.discussion was given of the influence
of various parameters on the transient coil current build-up because
this is the only quantity that can be recorded on all types of trans-
ducers, including the hermetically sealed types. In hermetically
sealed types, the amount and kind of information that can be obtained
about the response is very limited. Therefore, if it can be shown that
a particular quantity can be used to study the response of the transducer,

then this information is of considerable value in evaluating a particular



Traces: Coil current build-up

(a) Armature mass 10.5 grams total
(b) Armature mass 34.5 grams total
(c) Armature mass 47.5 grams total

(d) Armature mass 62.5 grams total

Oscillogram Data:

Time scale: 5 milliseconds per division (horizontal)
Pick-up current: 21,8 milli amperes

Steady state current: 33 milliamperes

Supply voltage: 36 volts dc

Figure 4.14. Coil Current Build-up for Variable Armature Mass

ol



-h

Armature Motion (x) in Feet x 10

Current (i) in Milliamperes.

26
2
b.4
2 = A\
\
= AY
A
1 \
p WA
i
2 X
% v
A \
\
15 \
4 A
\
Vi
AVEA =
\ %
LA
7 b
i
¥
7 ¥
7
. I
I
i
/
0 L 8 12 16 20 2k 2t 52
| f | |
i ! | 1
Time in Milliseconds
Figure 4.15. Computed Curves of Coil Current Build-up and Armature Motion for a Mass

of 0.00205 Slugs

c6



Armature Motion {x) in feet x 107t

Current (i) in Milliamperes.

26
24

20

16

12

16 20

NEEEE

32
5
1

bt AN

Figure k. 16.

Time in Milliseconds

Computed Curves of Coil Current Build-up and Armature Motion for a Mass

of 0.01025 Slugs

96



no
o

N )
- O =

=2
o

o

=

Current (i) in Milliamperes., Armature Motion {x) in Feet x 10~%
i—d
o M

AY

N

Figure 4.17.

Time in Milliseconds

Computed Curves of Coil Current Build-up and Armature Motion for a Mass
of 0.0205 .Slugs

L6



98

transducer as to its reliability in 8 certain application.5 In modern
applications of tramsducers, even though the unit itself is not sealed,
it may be a part of a sealéd package. Then the transient coll current
build-up becomes important in determining whether the response of the

transducer has changed during its assembly or packaging.
Transient Armature Motion

The transient armature motion shows the response of the mechanical
system to the electrical driving function. There are several ways to
obtain an electrical signal that is proportional to the armature position.
A number of the methods require some attachment of a sensing device to
detect the position. This attachment of another device to the armature
creates the problem of changing the effective mass of the armature,
especially when the size of the transducer umder study is small., The
method that was used in cbtaining data for this thesis involved the use
of a light beam and photosensitive pick-up. By this procedure no mechan-
ical attachments were made to the armature, so no changes could occur in
the effectivé mass. (Some additional details of the experimental setup
are given in Appendix B.) Since the armature motion can be obtained
only on open type transducers, this discussion will not be as comprehemsive
as that for the transient coil current build-up.

The effect of éhanges in back tension on the armature motion is shown
in Figure 4.18. 1Increasing back tension, when the pick-up value of current

is small, results in little change in the armature travel time. Therefore,

BGameron, C. F. and D. D. Lingelbach, "The Dynamics of Relays",
Electronic Industries, (1959), Part I, Sept., pp. 70-76; Part IL, Oct.,
Pp. 86-90; Part ILI, Nov., pp. 96-101.
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Traces:

(a, c, e) Armature motion
(a) Back tension 75 grams
(c) Back tension 50 grams

(e) Back tension 25 grams

(b, d, £f) Coil current build-up
(b) Back tension 75 grams
(d) Back tension 50 grams

(£f) Back tension 25 grams

Oscillogram Data:

Time scale: U4 milliseconds per small division (horizontal)
Current scale: 2.4 milliamperes per small division (vertical)

Air gap: 0.021 inches

Figure 4.18. Armature Motion and Coil Current Build-up for Variable
Back Tension
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the armature motion curve has the same shape once the armature starts
moving. However, when the Eack tension becomes large enough to cause
the pickau% current to appﬁpach the steady state value of the current,
then a change in back tension gives a change in the armature trével
time, As stated in the discussion of transient coil current, increas-
ing the back tension increases the pick-up time. The computed results
of the change in the armature motion with a change in back tension

are shown by Figures 4.19, 4.20 and %.21. Figures 4.19 and 4.20 show
the results when the back temsion is small and is changed. Figure
k.21 shows the results when the back tension is changed to a large
value. Comparison of Figures 4,20 and 4.21 show the changes that exist
when the value of the back tension used causes the value of pick-up
current to approach the steady state value of current.

The effect of the value of the air gap on the armature motion is
shown by the traces in Figure 4.22, The armature travel time increases
with an increase In air gap for two reasons. One reason is that the
armature has to travel further,‘and second, the reluctance of the mag-
netic circuit iﬂcreases, Therefore, increasing the air gap causes the
armature travel time to Increase rapidly, especially at the larger
values of air gap. The increase in the armature travel time results in
a decrease in the impact veloeilty of armature.

The value of the supply voltage affects the armature motion as
shown by the traces in Figure 4.23. The armature travel time increases
with a decrease in the value pf the supply voltage. Associated with
this increase in armature travel time iIs a decrease in the armature

impact velocity.
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Traces:

(a, c, e) Armature motion
(a) Air gap 0.052 inches
(c) Air gap 0.031 inches

(e) Air gap 0.021 inches

(b, d, f) Coil current build-up
(b) Air gap 0.052 inches
(d) Air gap 0.031 inches

(£) Air gap 0.021 inches

Oscillogram Data:

Time scale: U4 milliseconds per small division (horizontal)
Current scale: 2.4 milliamperes per small division (vertical)

Back tension: 50 grams

Figure 4.22, Armature Motion and Coil Current Build-up for Variable
Air Gap
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Traces:

(a, ¢, e) Coil current build-up
(a) Voltage: 24 volts

(c) Voltage: 28 volts

(e) Voltage: 32 volts

(b, d, f) Armature motion
(b) Voltage: 24 volts
(d) Voltage: 28 volts

(£) Voltage: 32 volts

Oscillogram Data

Time scale: 5 milliseconds per division (horizontal)
Current scale: 12,8 milliamperes per division (vertical)
Air gap: 0.046 inches

Residual gap: 0.002 inches

Figure 4.23, Armature Motion and Coil Current Build-up for Variable
Voltage



106

Increasing the coll circult resistance changes the shape of the
armature motion trace in a manner similar to decreasing the supply
voltage. This effect is shown by the traces in Figure L. 24, Increasing
the coil circuit resistance increases the armature travel time and
decreases the armature impact velocity,

If both the supply voltage (E) and the coil circuit resistance
(R) are increased such that the ratio E/R is constant, then only a slight
change in the amature travel time resuits with a change in the coil

resistance when the value of R is less than twice the value of the

coll resistance., A8 the coil circuit resistance (R) becomes more than

twice the coil resistance, then' a noticeable increase in armature travel
time occurs when the coil resistance is changed. This effect is shown
by the traces in Figure 4,25,

Normally the armature mass or the spring constant of a given relay
does mnot change a great deal. However, it is of interest to know the
particular effect that each of the two variables, mass and the spring
constant, have on the transducer response. Figures 4,15, 4,16 and
.17 show the computed response of thé armature motion and the coil
current, Imncreasing the mass décreasés the armature impact velocity
and increases the armature travel time,

The effect of a stiff spring is shown by the computed armature
motion and coll current curves in Figure 4.26. The effect of a
stiff spring, for the case computed in Figure b, 26, was that of
causing the armature to slow down during its closure. This is shown by
the decrease in the slope of the armature motion curve in Figure k4,26,
Figure 4,13 also shows the effect of a stiff spring and a waaker spring

on the armature motion and coil current.



Traces:

Oscillogram Data:

Time scale:

Coil

Coil

Coil

Coil
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Coil

Coil

Supply voltage:

Figure 4.2k,

Armature Motion for Variable Coil Circuit Resistance
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Traces:
(a, ¢) Armature motion
(a) Voltage: U49.2 volts

Coil circuit resistance: U470 ohms
(c) Voltage: 95 volts

Coil circuit resistance: 825 ohms
(b, d) Coil current build-up
(b) Voltage: Uu9.2 volts

Coil circuit resistance: 470 ohms

(d) Voltage: 95 volts

Coil circuit resistance: 825 ohms

Oscillogram Data

Time scale: 1 millisecond per small division (horizontal)

Current scale: 5.7 milliamperes per small division (vertical)

Figure 4,25, Armature Motion and Coil Current Build-up for Constant
Steady State Current but Variable Voltage and
Resistance
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As explained in Chapter III, computations were made of sé@eral
other variables in addition to the armature motion and coil current.
Figure 4.28 shows a plot of some of the other quantities associated
with the mechanical system. The variables plotted in Figure 4,20
are armature motion, armature velo¢ity, armature acceleration and
magnetic pull, all as functions of time. Figure 4.27 shows the
variables associated with the electrical system. These variables
are coil current, flux and time rate of change of flux, all as functions
of time.

The magn@tude‘of the rate of change of flux is seen to be
essentially the mirror image of the transient coil current to a
different scale. The mirror image effect is caused by the fact that
rate of change of flux obtained from the emf equation of the coil

circuit can be expressed as follows:

ag
dt

= (E - iR)/N (+.10)
This equation shows that, for constant values of N, E and R, the
value of d@/dt is proportional to (1 - i), thereby causing the mirror
image result as shown by the ¢ curve in Figure 4.27. The flux curve
follows the current curve, as it should, until the armature moves,
then it becomes somewhat quadradic in form until the armature closes.
The flux then again follows the cufrent curve with a different scale
factor.

Figure L4.28 indicates that the velocity is continually increasing
as the armature closes, Also, the acceleration is continually increas-
ing as the armature closes. The pull curve could almost be represented

as two straight lines. One straight line could be drawn from near the

origin to a time where the armature has completed about half of its
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travel and the other straight line of approximately twice the slope
from that point on.

A qualitative discussion has been given in this chapter which
presents the changes that take place primarily in the transient coil
current bulld-up and the armature motion. It was brought out that
a change in any variable resulted im some change existing in the
transient coil current. In some cases two variables gave scme of
the same gemeral changes, but in most cases aﬁ lease one phase of the
effect was uniquecer Not all of the parameters affecting the transient
coil current were changed because of the difficulty in physically
making a change. It is possible, but highly improbable, that any two
variables would result in giving idemtical changes in the tramsient
coil current because of the nonlimear characteristic of the transducer,
This behavior is desirable from an evaluation standpoint but is
undesirable when a general solution to the response to other types of
driving function is attempted, since the superposition theorem can

not be useda5

! | _
*Cameron, C. F. and D. D, Lingelbach, "Relay Chatacteristics,”

Symposium om Electromagmetic Relays, (1956), pp. 41-48,

5Cameron9 ¢. F., D, D. Lingelbach and C. C. Freemy, "Armature
Overtravel in Relays," Seventh Symposium on Electromagnetic Relays,"”

{1959}, pp. 67-T70.




CHAPTER V

QUANTLITATIVE DISCUSSION OF THE EXPERIMENTAL

AND COMPUTED RESULTS

The previous chapter presented a qualitative discussion of the
comparison of the experimental and computed results. Only general trends
or changes were presented as they affected the tramsient coil current
build-up and armature motion. Additional data was obtained from the
experimental and computed results which show quantitatively the effect
of the variables on the performance of the transducer. Instead of
expressing the change in pick-up time or transit time as a function of
the magnitude of the variable itself, a more general non-dimensional
quantity will be used. This non-dimensional quantity, defined as the
ratio of the pick-up current to the steady state current and called Ij,
has certain desirable properties. For one thing, it expresses the
changes of five of the variables in a common form. Also, the values
of Ijby definition can vary only between zero and one. This means that
the use of such a parameter gives more uniformity to the use of curves
to express the results. Since the mass (M) and the spring constant (K)
do not directiy affect the pick-up current, then the quantity [ can not
be used to show the effect of these two variables.

The mathematical model of the transducer used in the computational
procedure is not identical to a known transducer; however, the values
used are representative of the 10-cubic inch size. A set of values

11k
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was selected which was used to represent an average or normal operating
point., Whenever the influence of a variable upon the transient response
was desired, omnly the variable under study was allowed to vary. Therefore,
unless otherwise specified, the following values of the variables were
used to obtain the response of the tramsducer.

Voltage: 2k volts {step imput)

Turns: 11,000

Coil circuit resistance: 1000 ohms

Back tension: O0.22 pounds or 100 grams

Armature mass: 0.00205 slugs or 30 grams

Spring comstant: 10.53% 1bs/in. or 400 gms/in.

Damping comstant: 0.1 1lbs/ft/sec.

Cross sectional area of air gap: 0.110L4 sq. inches

Open air gap: 0.0025 feet or 0.030 inches

Closed air gap: 0.0003%31 feet or 0.00375 inches.

Probably the most important characteristics of the performance that
can be shown on a quantitative basis are the pick-up time and the armature
travel time. Since these quantities are plotted versus the per unit pick-
up current (] ), the effect of a change of the variable upon the pick-up
current is inmdirectly shown, The variables which determine the value
of chan be obtained from the definition of the pickrup flux, Let ¢P

be the pick~up flux. Then the following relation exists.
_ N
¢P = ip &p - (51)

By definition | = ip/Iss and Igg = E/R. With these relations available,

equation (5.2) cam be written.
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Rag, (5.2)

The effect of Iﬂupon the pick-up fﬂpe (tp) and the armature travel
time (k) when ['is changed by changing back tension is shown in
Figures 5.1 and 5.2. Figure 5.1 shows the computed values, and Figure
5.2 shows the measured values from a relay of the same class. The
close comparison of the curves in Figures 5.1 and 5.2 leaves no doubt
that the procedure used to compute the response is correct. In fact,
the existence of a minimum value of'k, as the back tension is varied,
was .first shown by the computed results. It was later that experimental
data was obtained which verified that such a minimum existed. The reason
that such a minimum was not suspected is that i% is difficult or almost
impossible to visualize that decreasing the back tension would result
in the travel time being longer. Since the experimental data in Figure
5.2 only went to a value of ['= 0.3, additional experimental data was
taken to prove that the travel time had a minimum when the back tension
was varied. To obtain experimental data for [< 0.3 requires that some
of the other variables be changed; therefore, the absolute comparison
of the two sets of experimental data can not be made. The additional
experimental data is shown in Figure 5.3. The minimum seems to occur
for a | of approximately 0.5; however, this appears to be a function of
the values of the other variables existing when this data was obtained.
Considerable other experimental data is available from the figures
in Chapter IV showing the effect of the change in supply voltage, coil
resistance, air gap and other variables. Because of a lack of time,
and because of the desire to obtain additional information about the

response of the relay which is difficult to obtain,experimentally,



117

uaxin)y dn-yoT

!

9TqBTIBA B SB UOISUDJ
yoed YIIM SWT]L [9ABI] 9injeuway pue oswl] dn-¥d2Tg Jo senjep poindwo)d

Tun a9

*1°G 2an814g

I

@

0

01

a1

a7

0c

0¢

R e

SPUOSSSTTTTH UT () SWLL [°ARI] 2IN3PWIy pue (dn) auyl], dn-}oT1g



Pick-up Time (tp> and Armature Travel Time (k) im Milliseconds
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Armature Travel Time in M{lliseconds
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only computed information showing the effect of the spring constant

and the armature mass was obtained. Experimental information showing
the effect of the armature mass and spring constant was obtained for
some limited values, but obtaining such information is difficult. It
is difficult to change the spring constant of a spring, and therefore
experimental information can only be obtained by using a set of different
springs. The problem arises in resettimg the back tension to the same
value each time, especially if the armature is held in place by the
spring. Also the range of the values of the spring comnstant in springs
is limited so that the range of the computed results and experimental
results is different.

The computed effect on the armature travel time of a change in the
spring constant is shown by the curve in Figure 5.%4. The range of
values of the spring conmstant is larger than usual in order to show
the effect outside the mnormal range. This is the advantage of an
analytical approach, in that it allows for investigation in the so-
called "fringe" areas.

Figure 5.5 shows the measured or experimental results on the
armature travel time for a change in the spring constant, Because
of the limited range, the scale on the‘abscissa is ten times larger
in Figure 5.5 than in Figure 5.4. The scale on the ordinate is two and
one-half times larger in Figure 5.5 than in Figure 5.4, >The results
indicated by each figure compare favorably.

Another variable which is difficult to accurately vary experi-
mentally is the armature mass. Therefore, two sets of computed results
were obtained in order to gain additional insight into the response of

the transducer to a change in armature mass. TFigure 5.6 shows the
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computed effect om the armature travel time of a change in armature mass
for two values of back tension, The effect of back tension seems to be
primarily that of shifting the time inmversely with a change in back
tension. Also, as the mass approaches zero, the armature travel time
approaches approximately the same value for all values of back tension.
It appears that theoretically at same negative value of mass the armature
travel time is zero for all values of back temsion. At first, it might
appear that with zero mass, the armature travel time would be zero., This
is not true when mechanical damping is present. This condition is realized
by examining equation {5.3).

Mk + h%% + Kx = F (5.3)

oa

where x

d2x/de2

]

% = dx/dt.

If the mass approaches zero in equatiom {(5.3) it will still take
the armature some finite time to close because of the x term. If the
damping term (h®} is negligible, then as the mass approaches zero so will
the armature travel time,

The experimental results of the effect of a change in armature mass
on the armature travel time is shown by the curve in Figure 5.7. The
range of mass values covered in the experimental data is about one-
nineth of the range covered in the computed results. The comparison
between the computed and experimental results in this case is also favorable,

The quantitative comparison between the computed and experimental
values was very good im all the cases shown. The computed procedure
has the advantage that controlled variations may be made in any of the

variables, and also that the fringe areas can be investigated that

otherwise are difficult to do experimentally.:



Armature Travel Time in Milliseconds

20

15

10))

Armature Mass in Grams

Figure 5.7. Measured Values of Armature Travel Time With Mass as a Variable

G2t



CHAPTER VI
SUMMARY AND CONCLUSIONS

The eﬁpations which are needed to describe the singly excited
electromechanical transducer are referred to as nonlinear differential
equations., There are several ways the equations may be written, depend-
ing upon the variables which are selected as independent. Also the
equations may be writtenm using the force laws {such as D'Alembert's
principle) or the variational approach (using Lagrange's equations).

The first part of the thesis described the procedure and the approxi-
mations used to set up the equations representing the electrical system
and the mechanical system., The main difficulty was involved in determin=-
ing the particular form of the coupling term of mechanical origin in the
electrical equation and the coupling term of electrical origin in the
mechanical equation. Naturally, the form of the coupling term depended
upbn the variables selected as independent. It was shown that by
selécting the flux, instead of the current, as an independent variable
simpler equations result.

The solution of the nonlinear differential equations was obtained
by a numerical procedure using the phase-plane method. Increments of
flux were selected; and the corresponding increments of armature dis-
placement and time were computed. ‘The current was computed from the
flug and the computed values of the armature displacement., In the
computational procedure the values of a number of other variables had

126
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to be calculated. These included the first and second time rates of
change of the flux, the velocity and acceleration of the armature, and
the magnetic pull,

A computer program was written for the IBM 650 Computer using the
Fortran language. This was necessary in order to obtain a sufficient
amount of accurate results to compare with the experimental results.
Because of the nature of the original differential equations and the
type of solution used, several error sensing calculations were incorporated
into the prégrama The overall computational error was less than one-half
of one percent for the increments used in the first and third computational
intervals. The computations had to be divided into fhree intervals
because of the conditions existing for the armature. In the first and
third intervals the armature velocity and acceleration was zero. However,
the armature displacement was the open value in the first interval and
was the closed value in the third interval. The second interval was
characterized by the fact that the armature was in a transient condition.
During the second interval the second time rate of change of the flux
took on large positive and negative values in conSecuti&e increments,

This caused the one error check to show a deviation of as much as six
percent for certain modes of operation. However, the error on the time
calculations was zero up to one hundredth of a millisecond or about a

one percent error.
Conclusions

The close comparison of the computed transient response with the
experimental transient response indicated that the method of solution

~used was accurate, The model used to represent the electromechanical
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transducer was accurate in that the effect of mechanical damping and
magnetic saturation was included. These two effects are not considered
in most solutions because of the increased complication resulting from
their consideration. In the particular mathematical model used, the
effect of magnetic leakage flux was not considered because of the
extra time required to obtain the desired amount of computed values.
Tﬁe effect of the leakage flux can be considered by adding some extra
terms in the term involving the resistance in the electrical equation.
Additional refinements could be made in the computer program such
as changing the flux increment size for different computational intervals.
Also the wvariables could be stepped a certain percentage over some fixed
range. It appears that it would be possible to write a program to solve
two or more general second order nonlinear differential equations. However,
if the system described by the equations contained spring loaded components
with‘initiai values, then special arrangements would have to be made to
detect the particular intervals.
The program that was written was used to determine the effect of
some of the variables on the transient response of the electromechanical
transduceru‘ Provisions were even madé to determine the effect of different
values of residual fluxbexisting in the magnetic circuit when the coil
was energized. The result from the computer program that was especially
valuable was the instantaneous value of the magnetic flux. This allowed
the calculation of the instantaneous magnetic pull which can not be measured
on an experimental model. The magnetic flux is practically impogsible to

measure directly, especially on transducers with small air gaps.
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The results accomplished by the procedure given in this thesis
make it possible to accurately predict, for the first time, the response
of a singly excited electromechanical transducer without actually having

to construct a model.
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APPENDIX A

LISTING OF COMPUTER PROGRAM IN FORTRAN LANGUAGE

20C0
0000
PIORVAS.
D660

1

1
0000
0000

0000

G000

CCOo
0O0DGo
OGGCo

0aoo

C Ca0o0

~
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w
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De De LINGELBACHs SOLUTION OF
ELECTROMECHANICAL TRANSDUCER
EQUATIONSe TWO SIMULTANEQUS
MONLINEAR DIFFERENTIAL EQSe
READ o AsHIsGCRsST sPOsRsTNIEIGID
BsQsi/sVsUOSERRs INCsNO
CUR= COIL CURRENT»s Y= FLUKX
X = ARMATURE POSITION
CALCULATION OF EQs CONSTANTS
AND SET DELTA Y
C=1240/(3419%A)
H=HI/GR
5=$1/6GR
P=8eB6E~8/(3s19%A%GR)
RN=R/ (TN*TN)
EN=E/TN
X=G
XD:0.0
XDD=3e 0
T1=0e0
DLT?2=0,0
MOVE =1
Us=(PO+SI%G)/GR
BM=E%¥TN/ (R¥(Q+CH*D)+EXTN®B)
Y=y .
DLY=(BM=W)/FLOTF(INC)
PUNCHsCsHsSsPsUsBMDLY
LP=INC/MO _
TWO. LOOPSs K LOOP MAKES N
CALCULATIONSs J LLOOP PUNCHES
EVERY N=TH CALCe
DO11J=1sLP
DO 10 K=1sMNO ' : ~
TIME AND CURRENT CALCULATIONS
BEFORE ARMs STARTS TO MOVE
YDA=YVHEN
DI=Q+C¥*X
DE=140~5%(Y=W)
YOB=VHRN*DI* (Y~ ) /DE
YD=YDA=YDB _ -
YDDA==V#RN¥DI%YD/ (DEXDE)
YODR==Y*RN#C* (Y= )#XD/DE
YOR=YDDA+YDDR
YRA=SYDD/YD
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DLYD=YRA*DLY
YD2=YD+DLYD

Y=Y+DLY
DE=140=B%*(Y=-W)
YOR=VH#RN#DI* (Y-W) /DF
YD=YDA~YDB
TST1=YD2/YD
IF(TST1-ERR)4 9445

5 Q0 OV=TST1-ERR
PUNCH OV ‘

4 O DLT1=DLY/YD
T1=T1+4DLT1
CUR=DI*(Y=W)/(TN*DE)
BIAS=PO/GR=P*DLY*DLY
PYY=Dk*Ys3tyY
IF{PYY~-BIAS)10510513

C 000C 0 PULL = BACK TEMSIONe ARMs
C 0000O O STARTS TO MOVEe ARMe MOTION
C G0UC C CALCULATIONS.

13 0 IF(MOVE=1)3s14s3

14 C PUNCHsCURsT1sYsPYYsXDDsYDsYDD

MOVE =MOVE + NO
3 0 IF(D=X)69999
6 O YDDA==VERN*¥DI*YD/(DE¥*DE)
YDDR==VYXRN*CH{ Y=W)*XD/DF
YOD=YDPRA+YDDR
YRA=YDD/YD
DLYD=YRAH®DLY
XDD=—H¥XD=S#X=PYY+U
XYRA=XDD/YDD
DLXD=XYRA#DLYD
AD=XD+DL XD
IF(XDD)2sTs7
2 O XRA=XD/XDD
DLX=XRA#DLXD
X=X+DLX
DLT2=DLX/XD
CR1=DLY/DLX
CK2=YD/XD
TST2=CK1/CK2
IF(TST2~ERR)Y 7978
8 0 QV2=TST2-ERR
PUNCHsOVZ
7 ¢ IF(D-X)110912912
12 O PUNCHICURSTL1aXsYsPYYsXDaXDDsYD
C D000 O ARMe CLOSEDs DX AMD DV = 0
C 0000 O TIME AND CURRENT CALCe CONT.
9 0 XC=0.0 :
XDD=0e 0
C CONTINUE
O PUNCHsCURST1sXsYsPYYsXDsXDDsYD
1 sYDDsDLTLsDLT2
GO TO 1
END
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APPENDIX B
TEST PROCEDURES AND EQUIPMENT

In the study of transients, the instantaneous variation of a parameter
is observed. The most desirable piece of equipment for this kind of
measurement is the cathode-ray oscillograph or oscilloscope. The next most
important consideration is a means of obtaining a record of the event in
a minimum time; The advent of the "Polaroid” camera has made this possible.
In a minute or so the record of the transient response in the form of
traces on a photographic print can be obtained by the use of a "Polaroid"
camera attached to the front of the oscilloscope, This short time inter-
val allows another chance to obtain the required data if the previous trys
afe not:successful.'

In order to simplify the procedure and to shorten the time required
to set up the necessary circuit conditions to obtain the transient coil
current, the switching circuit shown in Figure B,l1 was used. This shows
a complete circuit diagram of the switching scheme used. The mailn things
accomplished by thié panel can be ﬁore clearly shown by referging to the
simplified diagrém in Figure B;2. One requirement was that a voltage
be obtained from the coil current of sufficient magnitude to drive the
osgcilloscope Y input. This was obtained by providing a small resistance
in series with the coil of the test relay. This resistance is called a
shunt. One side of the résistancé was connected to the oscilloscope Y
input and the other side wds gfounded. Since coil resistances vary in

13k
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magnitude some arrangement wWas p;éﬁided to keep the shunt feéistaﬁce
approximately one percent of the céil fesistance. Another requirement
was some means of startiné'the horizontal motion of the cathode-ray
beam before the voltage siéﬁal is applied to the Y input of the oscillo-
scope. This delay of the volfégé signal was accomplished\by the use of
a relay called a sync relay. Tﬁe sync relay supplied a signal to the
trigger input of the oscillOscbpé, causing the beam to move horizontélly.
At some time later (apprbximéteiy 3 millisegonds) the relay under test
was energized. This prOceduré provided the clean break in the chénge

in the shape of the trace éﬁ thé_instant the test relay was energized.
The definife location of this point on the trace was necessary in order
to obtain accurate values of thé pick-up and seating time.

When the relay is de-energized, then some means must be provided
for obtaining a fixed resistance as the current decays to zero. This
was accomplished by placing a resistance in parallel with the coil of
the test relay. This resistance, called the discharge resistance, was
arranged to be variable in value to accomodate the various values of
coll resistance.

Since the switching panel was designed to test a particular
form of the electromechanical transducer, the relay, a circuit was
provided for obtaining data about the operation of the contacts.

To obtain the response of the mechanical system a device developed
by Professor Cameron's research team was used. This device operates on
the sensing of a change in the intensity of a light beam and therefore
makes no mechanical connections with the transducer. Since the device
has no moving parts and is an opeh loop type electronic system, its

response to high spFed changes, such as armature bounce, is very accurate.
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There are some commercial devices on the market which perform the function
of converting motion to an electrical signal. However, most of these are
closed loop electronic systems with feedback which may be subject to hunting
at high frequencies of mechanical vibration or require some attachment of
the device to the armature. The results obtained by Professor Cameron's
light beam device are as accurate as the oscilldscope. The accuracy of

the oscilloscope is about 3% when careful measurements are made using the
photographic records.

Possibly the most inaccurate measurements were involved with the
mechanical measurements such as force and distance. The mechanical force
was measured using a hand operated gram gauge. An accuracy of five percent
was considered good inthese measurements. The air gap values were measured
using thickness gauges. Because of the cramped conditions involved in
measuring the air gap, accuracies of five percent were considered good for
values below twenty thousandths and above tem thousandths. Below ten
thousandths an accuracy of + one thousandths was feasible. Current and
voltage measurements had accuracies of about one percent, depending upomn

the magnitude involved.
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