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CHAPTER I
INTRODUCTION

In the last few years much effort has been applied to the study
of nonlinear systems. Perhaps much of this has been due to the
present space race, Prior to that time efforts in this country have,
to a great extent, avoided analyses of systems nonlinear in nature
or have linearized those systems if an analysis was absolutely ne-
cessary., There has been good reason for this generally, since there
are no exact solutions to nonlinear differential equations except
in very few cases. One of the most powerful prdpositions for the
solution of linear systems, the superposition principal, is of no
value in nonlinear systems. These properties and others such as en-
trainment, frequency demultiplication and multiplication, and dis-
continuous jump resonance, peculiar to nonlinear systems alocne, have
to a certain extent hindered the growth of the field,

The parficular property lknown as jump resonance, alsc referred
to as ferrorescnance by some writers, is the subject of this thesis,
The phenomena of juwp resonance cap occur in a pbysical system when-
ever the resonance curve for the system can be made to be skewed to
the right or the left by the addition of a nonlinearity into the
system, The skewing of the resonance curve will produce multiple-
valued amplitudes for a @imgle'frequency, An example of this type

of multi-valuedness is shown in Figure 1. Duffing (1), an early

writer in the field, first published his work in 1918, In his

1
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Figure 1, Resonance in Linear and Nonlinear Systems

disclosure he discusses the various ramifications of the equation

y" +wﬁy + ays =G sinw t. I-1

Solutions to this equation exhibit jump resonance,

A later report by Appleton (2) gives a detailed analysis of the
phenomena in a second order dissipative system., Appleton observed
the occurrence of jumps in a vibration galvanometer. In a more re-
cent work, Klotter (3) makes a general analysis of second order vi-
bration systems.

Discontinuous jump resonance has also been studied in second
order control systems (4,5). In a paper by Hopkin and Ogata (6) a
: |

third order system is studied in which it is assumed that linear
modes of operation exist at low frequencies and nonlinear modes at
high frequencies. Many other higher ordered systems have been

studied and reported, however, very little mention is made of



discontinuous jumps.

In this paper an investigation is reported that has been made
to detefmine conditions required to produce jump resonance in a ty-
pical third order control system having only real negative poles in
the forward transfer function. The conditions, input amplitude and
frequency, have been found to be related tg system parameters by
simple relationships. Restriction of the study to control systems
whose forward transfer function has only real negative poles (the
possibility of one at the origin is not excluded) is a weak re-
striction and should be no deterrent of application to systems with
complex poles. A novel method of graphical solution is presented;}
though laborious in its construction, it gives an insight into so-

lutions in the neighborhood of phase angles of 90 degrees.



CHAPTER II
SYSTEM ANALYSIS

The system under iﬁvestigation will be analyzed by assuming
that the solution to the system equatinn is a fingle harmonic term
having the same freguency as the forcing function., That this is
only an approximation is recognized, and it will be shown that such
an approximation is sufficiently accurate for many engineering ap-
plications., It must be remembered that many harmonics are present;
however, the higher ordered terms are relatively small,

A graphical method of analysis is utilized in this chapter and

its relation with the fundamental frequency response curve presented.
System BEqguation

The system investigated in this research is an elementary con-

trol system of the type shown diagrammatically in Figure 2. It is
a system with a control element, h, in the feedback path, This

element, h, is a nonlinear device that converts ¥y, the output or

response into fly).

£ ) —{ ) a(s) y

h

Figure 2. Nonlinear Control System
A ¥
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: L : ji-v .
The forward transfer function, G(s), for the sydtem is defined

in the following way:

Y(5) K

&) = G(s) = S(Tls+1)(Tgs+l) Ti-l

Y(s) is the Laplace transform of the time variable output or re-
sponsey; E(s) is the Laplace transform of the time variable error

signal e; and K and Tl and T, are the usual gain and time delay

2
constants, respectively, for the system, The block labeled h in
Figure 2 is not representable as a transfer function since it is
the nonlinear element., It is a time invariant element whose output

and input is related as follows:

f(y) =y + cy3 I1-2

Since Eguation II-1 relates the output to the input for the
block G(s), it may be written

Y(s) s(T1s +1)(Tas +1) = KE(s). 11-3
This equation becomes, after transformation into the time domain,
T1Toy ! + (Tp +T2)y" + y' = Ke, 11-4

In this equation the primes are used to denote time derivatives.
With reference to Figure 2, the following may also be written

e = £(t) - £(y). 1I-5

It must be remembered that y and e are both functions of time
although they are not so explicitly written., Substitution of II-2
and II-5 into II-4 yields

T1Toy" + (Tp +To)y"™ +y° + Ky-+Kcy3 = Kf(t). II-6
After division by T1T2g there is obtained

RELUN [(Tl +T2)/(T1T2)] y" +(1/T1Tg) ¥y + (K/T1T2)y

-a-(Kc:/‘I‘sz)y;3 = (K/T1T2) f(t). 1I-7



FPor ease in writing, Equation II-7 will be written as

oMy o+ Yy 4+ By’ +ay + ByS = Fcos (Wt -9) 11-8
in which
w=1, | 11-9
¥ = (Ty +Tg)/T1Tg , I1-10
6 = 1/T1Ta, 11-11
a = K/T3Tg , II-12
B = Ke/T1Ts , I1-13
and F cos (Wt -¢) = (K/T1T5) £(1), | I1-14

The constants defined above are all real positive guantities. The
input to the system, f£(t), is a time variable cosine function of an-
gular frequency () and amplitude F. It is the forcing function for
the system. The phase angle ¢ is the angle between the forcing
function and the fundamentai amplitude response. function y of the
system, So that the solution will be in its simplest form, the

forcing function Fcos (Wt -¢) is written

Fcos (Wt =9) = vecos wt + usin wt, II-15
in which
v = Fceso , 11-16
ua = Fsing , I1-17
p = arc tan u/v, I1-18
and 2 2 2

F~ = v + u. II-19

In the subsequent analysis it is required that ]F[ be a fixed
value for any given range of freguency . The angle ¢ , as previocus-
ly defined above, will not be fixed and it constitutes an unknown

quantity. The fundamental amplitude respense is unknown in magnitudej

however, its phase position is taken as the reference phasor,



First Approximation Solution

Eguation I1-8 has no known exact‘solutions; however, a number
of approximafe solutions may be obtained. Klotter (3) uses theRitz
Averaging Method for obtaining a solution to a second order forced
vibration equation and it is the method to be used in this thesis .
to obtéin a solution which includes the third harmonic components,
For the first approximation a simpler technique is more useful (7)o
The solution desired is the steady state value and is assumed in this
approximation to be |

y = A cos wt | | 1I-20

in which A1>-O is the fundamenfal amplitude that is to be evaluated.
Upon substitution of JII-20 into Eguation II-8 and if the forcing
function is written as given by fhe right hand term of Eqguation

I1-15, Equation II-8 becomes

Alw(szob) sin Wt + (OL»-YLL)2 + 3/4BAf ) Aj cos Wt + 1/4BAi’ cos 3ut =

vees wt +usin wt, I1-21

In this approximation the third harmonic term is assumed to be small.

Thus for equality it is necessary that

<
i

(a0 -vw? + 3/4BA9)A, 11-22

and
u

A(ne® -8 ). I1-23

.Upon substitution of Equations IX-22 and II-23 into Equation II-19,
there is obtained

2
)

(a-Tw2 +3/4 8a8)%4% ¢ A% P(uw? - 6)2 - F2, I1-24

A graphical analysis will be used to study this equation more fully.



1. The u~v Plane

Al of Equation II-24 may be determined for variable & through
the use of a digital computer, but more of an insight may be ob-
tained by plotting w and v in a u~v plane, u and v are then coordi-

nates of a point for some value of A, and W, For @ fixed and vari-

1

able Al, a locus of constant W is obtained., This is illustrated in

Figure'Sa
v
wy
N LV
We F '
Wy | ¢
wa !
1
|
l
uz !
} Uls Ullé U
) |
} |
l )
1 }
] !
! ;
i
1
—_—— l— — Va2

Figure 3. The u-~v Plane and Loci

of Constant <
Wi < Wy e Wy < vy

Illustrated on this figure also is a circle of radius F, Equa-~
tion II-19 is the equation of this circle, Values of u and v pre-~
scribed by the intersection of the circle of radius F with the loci
of constant (W are solutions for the forcing fumetion of amplitude F.
The angle ¢ is measured in a counterclockwise direction from the

vertical to the radius vector F, A, is used as the reference phasor.

1

It lies along v and is directed in the positive v direction. The

magnitude of A, is calculated using Equation II-23,

1
u

A s
wWipw? - 6)

1= II-25



The solution thus obtained represents the amplitude of the fundamen-
tal response for the applied forcing function of magnitude F at the
frequency W, The forcing function leads the respomse function by an

angle ¢, If the freguency is now changed, new values of A, and ¢

1
will be obtained. A set of data for a fundamental amplitude fre-
quency response curve may thus be determined. This curve will re-
semble the B> 0 curve of Figure 1. It may be observed from Figure 3
that, for values of F sufficiently large, three intersections of a

constant w locus are possible in the left half plane. Intersections

in the right half plane for the curves drawn yield values of A

<0,
1 0
These values of A, are not defined for it is reguired that A > 0,

1 1

There are solutions possible for Al>-0 in the fourih guadrant; how-
ever, the amplitudes are very small and are for the most part out of
the range of interest. Solutions for the assumed conditions are not
physically realizable in the first quadrant. (The phase angle for

a third order system approaches 270 degrees as (W approaches infini-

ty.)

The shape of the comstant (W loci suggests writing an egquation

for these curves, This may be accomplished by eliminating Al in
Eguations 1I-22 and II-23., The result is
3
v = au + bu I11-26
in which
2
2 = e—— e I1-27
W (uuf - 8)
and
b = /4B = . I1-28
w3 (pw? - 6)

In Equation I1I-27, a is positive for %;<ufa<£% . This is the range
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of interest in this study. For this range of W, b is negative. In
Equation II-26, if |ul is small and u is negative, the cubic term is
small relative to the linear term for W near the value of VE7%T.
For larger values of lu|, the cubic term is more prominent and for
gome negative value of u, v=0., As w is increased, |ul for v=0 he-
comes larger and approaches a limiting value. This maximum value of
lu| may be established by differentiating w of Eguation 1I-23 with
respect to W and equating the result to zero. The details are per-
formed in Appendix A and the results are given here., The angular

frequency for maximum ju| is given by Equation A-39 and is

2 1

The amplitude for maximum [u] may be found by using Equation A-46,

' 2
Ay, = 2%‘/ Y(é'ﬂz“‘ ) I1-30
3B(3 W= - 8)
The value of maximum |u] is
2
lulmax = %w% Q‘*w{% - 6)‘/T(6 ')‘kwu ) " 11”31
. 3B(3 M - ©)

The constant W locus, for the W, as determined by II-29, inter-
sects the u-axis at -hﬂ . The value of |u is given by II-31.
max max

The constant W locus for W>Wu will intersect the u-axis at

a value of |u|< |yl . For this w , a is greater than a_. (a_is
max ‘ u 13}

the a corresponding to the w, angular frequency.) The constant
w locus lies below the Wy locus for values of u bhetween the
origin and the point at which the two loci intersect. This inter-

section occurs at negative values of v,

The constant <« locus forw<wy, will intersect the u-axis at
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Iul<]u|max, For this ¢J,a is less than a, and its locus lies above
the comstant (Jy locus for values of u between the origin and the
point of intersection., This intersection occurs at a positive value
of v,

A circle of radius F‘:lu]max drawn on the u-v plane will pass

through the point (- lul 0). This F circle can intersect con-

max’
stant W loci only in the second guadrant, or if ¢ is sufficiently
larger than 90 degrees, it can intersect constant (0 loci in the
third guadrant., (Sufficiently larger means in the general neighbor-
hood of 150 degrees.) For this forcing function, F‘z]ulmax , the
aﬂgle ¢ increases as the freguency increases. The angle ¢ is 90 de-
grees at the value of W=, . As the frequency is increased (2 >Wy)
the angle ¢ may become smaller or a sudden jump to a wuch larger
value of ¢ may occur., The first harmonic approximation does not pre-
dict this Jjump in phase.

For values of F‘>‘ulmax" the angle ¢ is always less than 90 de-
grees or much larger than 80 degrees., No real solutions exist in
the neighborhood of 80 degrees. The solutions which exist are il-
lustrated by (ug , vg) and (u3z , vz) of Figure 3, The point (ug , vg)
is not physically realizable,

No general formula can be given specifying this region of no
real solutionsj but numerical solutions to Eguation I1I-24, in the
neighborhood of ¢ = 90 degrees for F sufficiently large, will yield

complex values for A These are unacceptable for the physical

10

problem. The real solutions for A such as determined by (ug , va),

15
are not physically realizable and are within regions of instability.

Such a region is defined in the Aj -W plane and has its counterpart
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in the u-~v plane, Appendix C describes it in the u-v plane,
The point (uz , vz) in Figure 3 is both stable and realizable,

2. The Ay - (W Plane

The Al-u)plane, Figure 1, is partially reproduced as Figure 4.
The skewing to the right of vertical is a consequence of B>0,
(B}<0 causes a skewing to the left.) The various components of im-
portance in this figure are the backbone curve, locus of_vgntical
tangents, and the lopus of horizontal tangents. The,backbone curve

is the curve defined for v=0, It is the condition for which a

)
s
3
ey
o
i
g
~ 7 | Locus of
£ F‘:Fj"/ _ T Vertical Tangents
(]
= I
3
© Locus of
5 Horizontal
= Tangents
Backbone Curve \\\\\\\\
Va/ v

Angular Frequency

Figure 4. Aj; -wPlane Showing the General Region
of Instability , o
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90 degree phase angle exists‘between the forcing function F and the

fundamental response A Equation II-22 eguated to zero yields the

1 .

backbone curve,
2 2
-TW= 4 3/4BA1 = 0 11-32

This expression may be solved for Al“ Its value is

2

we _

A, =4 |8 -o 11-33
1 3/4 B

and it is shown plotted on Figure 4, The ¢J intercept is<b=+VE7?r
The condition v=0 yields for u,
u=F 11-34

or

Alw(}—lw‘?‘- 8) = F. 11-35
If Al from Equation II-33 is substituted in Equation II-35, the real
value of frequency satisfying this expression is the freguency at
which intersection occurs, Thus

(Y2 - a)

2
W (rw= - 6) 3745

= F . I1-36

If both sides of II-36 are squared there is obtained

Wi (pw? - 5)2 W) -F* = 0. 11-37
This is a fourth degree equation in 0)2 and has no general solution.
An upper bound on F, however, may be determined, Sﬁch a limit on
F was established in the preceding section in the discussion of the
u~-v plane, The Equation II-35 is shown plotted on Figure 4 for
several values of F. The intersection of the backbone curve and F

defines a particular response curve., The value F::F3 corresponds
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to the{u‘max value, It is quite apparent that real positive solu-

tions are not possible for F>F, in a region in the vicinity of 90

3
degrees., F3 is shown tangent to the backbone curve,

The region of instability indicated on Figure 4 is defined by
the locus of vertical tangents.(7). The locus may be determined by

taking the derivative of Equation II-24 with respect to A1 and eguat-

ing the derivative ofc.u2 to zero., The result is
(@ -Yw? +3/4842) (a -Yw?2 + 9/2BA3) + w2 (uw2 - 6)® = 0. 1I-38

This equation defines the region of instability in the Al-w plane.

The expression may be solved for A% and its solution is
Ai‘ = —é%— l_—(on-mz) Va2 - 3} . 11-39

In this expression a is the guantity previously defined in Eguation
I1-27,
For az = 3,

2 8 2
Al = —gﬁ-(‘(w -a) I1I-40

the double root on the extreme left is obtained. Since a is given

by
2
ol I1-27
wpw? - 8)
then, the expression a}ups +7@&3- abw~ o = 0O, I1-41

A solution for the real positive value of W in this cubic yields
the frequency at which Ay has a single value. Substitution of the
numerical value in expression II-40 then leads to the numerical
value of Al.
The locus of horizontal tangents is found by taking the deri-

vative of II-24 with respect to the frequency W, and equating the
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derivatives of Al to zere, The details of this derivation are per-

formed in the appendix and the final result is given by Equation A=32.

The equation is repeated here,

1/2
A =2 {3% [3}@0\# + 202 - 2u8)0% + (82 - 207 )]} I1-42

The equation is shown plotted on Figure 4. It is of interest to note
the effect of a change in parameters on this curve relative to the
backbone curve,

A form of the equation for the locus of horizontal tangents is

2Y(a-1w? +3/484%) = (pu? - 8) (3pw? - 6). I1-43

The left side of the equality is zero for v=0, This defines the
backbone curve. The zeros on the right are w? = 6/ and w? = 6/3 .,
Thus at w2 = 6/+ or w2 = &/3/ the locus of horizontal tangents

intersects the backbone curve. The intersection may be found by

substituting these values of W in the equation

o -Yw2 + 3/48a% = o, 11-32
The results are
r 1/2
AL {-%- -%‘- G{-g_ - 1)] I1-44
w? = 8/u
and
1/2
4 o ’f&
A zl:? F <7«T - 3)} II-45
wz = 5/3}* )

The latter equation is the smaller of the two amplitudes., If
Wo/po = 3, Al is zero., The locus of horizontal tangents lies to
the right of the backbone curve. The backbone curve and the locus

of horizontal tangents intersect at
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1/2 ’
((,U: V6/3}L ,Al =:O) and <(-U= Vb/M ) Al = 2[—%—-%] ) II-46
The locus crosses the W axis for

3B 4 2(T2 - 206)W2 + (62 -2a7) = O, II-47

The solution fof 0)2 is

2_1 |

w = "é’)x‘ZLZ(YZ - 248) £V 4(72 - 3u5)2:212(62 -Zoca’)]- I1-48

; L : s o s . 2
For a real solution to this expression, it is required that 87< 2a7,
This is true in a system in which jump resonance can occur.

The solution for A; for w? - o/ is

\ | 1/2
=L B 2 (X6 (15_ - -
Alu)2= a/é(-— + o [m (Na ) pa l)} ° I1-49



CHAPTER III

FORCING FUNCTION FOR JUMP RESONANCE

In the preceding chapter certain fundamental concepts directly
related to the solution of the system equation were developed.
These concepts will now be used to prescribe conditions necessary
for jump resonance to occur, This chapter will establish the fol-
lowing: (1) the forcing function amplitude required to produce
jump resonancej (2) maximum forcing function for real amplitudes in
the vicinity of 90 degrees phase displacement between forcing func-
tion and response functionj and (3) the frequency at which lower

jump resonance occurs,

Threshold Forcing Function Amplitude

The maximum amplitude of the forcing function, for which no
jump can occur, will be defined to be the threshold forcing function
p - This F, may be found by writing F=f(u), Such a re-

presentation is given by Equation A-~16 in the appendix.

amplitude F

b2u6 i 2abu4 + (1<+a2)u2 = F2 IT1I-1

The maximum and minimum values of F as a function of u are then
given by

-g% = 3b21..l4 + 4abu2 + 1 + a2 = 0, I11-2

Comparison of this equation with Equation A-26 reveals the two to

17
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be identical. The roots of Equation III-2 are

W o= -15 (-2a*Va2-3). ITI1-3
2 . 2
If a© = 3, then the value of u 1is
2 2a
u = - ST I11-4

Neither a maximum nor a minimum occurs at this point. This is also

the point at which the locus of vertical tangents has a single value,

Thus the fundamental response curve is tangent to the locus of ver-

tical tangents for this value of forcing function amplitude. In

Eguation III-4, a = IV73 . The value a = +V3 is to be used for a>0

in the range a/r<<»2-<64p_. Upon substitution of u from Equation
ITI-4 into Equation III-1, the value of FT is

F =

8 V3 ,
T \/‘E'T - TIt=o

Thus for values of F £ FT jump resonance can not occur, This
limit on F is important for it establishes the maximum amplitude
of the input signal that a system may receive. If a given system
is subject to jump resonance, jump can be prevented from occurring
by placing a limit on its input.

A freguency limit is also established for a2 = 3, Rooté to
Eguation II-41,

apws + sz - abw -a = 0 I1-41

will yield the freguency limit, The equation has only one real
positive root for W, This may be found by using the general for-

mula for the cubic.
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Maximum Forcing Function Amplitude For

Solution Near ¢ =90 Degrees

As previously established, values of F exceeding PJmax as

given by Equation II-31,

| 2
LY = |2w? (pu? - 6) ./7(6'}“‘3 ) II-31
max . \/3[3(3}sz _ o)

yield non-real values of A, in the neighborhood of ¢ = 90 degrees.

1

Real solutions do exist for|Fﬂ =|ulmax for ¢ £ 90 degrees. For so-

lutions to be continuous in the region,lFl must be less than.lulmax;
however, no criteria have been established setting a limit onTFﬂ for

continuous real solutions.
Frequency of Lower Jump Resonance

The frequency at which a sudden increase in amplitude occurs
for decreasing frequency is the frequency of lower jump resonance,
This frequency may be found by means of a graphical solution in the
u-v plane, The locus of vertical tangents plotted in the u-v plane,
intersected by the circle of magnitude F, determines the values of
u and v at which jump occurs, The procedure used is presented in

Appendix C.



CHAPTER 1IV
EXPERIMENTAL ANALYSIS

In Chapter II an ahalysis was made to determine the conditions
under. which jump resonance occurred in a thircé order nonlinear con-
trol system, In order to verify the analysis a simulation study was
made of three representative systems governed by the equation pre-
viously analyzed. The systems were simulated on a Donner electronic
analog computer and fundamental aﬁplitﬁde response curves for three
different forcing function amplitudes were obtained, Vaiues of 3,
4, and 5 were used for the ratio 8 ¥/pa. The value of (BT1T2/K) =c
(Equation 11-13) was maintained fixed.

This.chapter will discuss the system simulation anﬁ the experi-

mental procedures used to verify the analysis,
System Simulation

The equation programmed on the analog computer was Equation II-6,
T Ty + (Ty +To)y" «y' +Ky +Key® = K£(y) 11-6

The equation was written in this form in order to experience less
difficulty in the programming ﬁrocédure, A simplified block diagfam
of the system is shown in Figure 5.

The box labeled G,vihe forward transfer function, was simulated
in accordance wifh the usual transfer function techniques (9). A de-

tailed sketch of G that was used is shown in Figure 6. The two

20
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Figure 5. Simplified Block Diagram
of the System

Ry
Va'A's
C C1 Co
b | L
A I ¢ |t
Rio Ryp Rio
O~ A— 0 > AAA L \AAA ——O
Roo
O~vW— ——\/\/\/——(R : a
2
R30
O~AA—
- G, Gy Go

Figure 6, Analog Computer Representation for the
Forward Transfer Function
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summing elements in Figure 5 have been replaced by the summing-
integrating amplifier C. The transfer function for each individual

amplifier was defined as follows:

1
Go " R. Cs
io

R; /Ry3
Gl = m ) Tl = R]_C]_ IV“2

6, - 2/R22 . g
2 % (M1 * T2 = R0 IV-3

fi

The over-all transfer function is the product of the individual

transfer functions

G = GOGIG2 IV-4
- | L R Ry
RioC Rll R2R

G = . IV~5

The purpose of the three resistors at the input to amplifier 1 was
. . : 3
to provide for the three inputs f(t), y, and cy .

The nonlinearity was produced by means of a ten-segment diode
function generator., The complete schematic of the computer circuit
used in the simulation study is shown in Figure 7,

The system scale factors used were 2 and 4. The component
values for the computer are given in Table I. These values were

determined using the usual analog computer techniques (10).
Experimental Procedure

The systems studied were chosen to be representative of sys-
tems normally encountered in practice, Because these systems

generally have time constants Tl and T2 in the order of 1 second,
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|{ | | ¢
I\c ey I\cy
Input / I0utput
O—AA— 0 VIV 1 P<::F—Nﬁv\ff r\\a\‘* O
Rio Ry Ryg [/
mVAYAY, ' "———VNAV<::}
R
20
Diode
' Function 3 /
R3q Generator R

Figure 7. Computer Circuit for Simulation of System Equation

a time scale transformation was made so that no unnecessary delays
would be experienced in waiting for transients to disappeaf, The
time constant Tl was fixed at 0.001 seconds while the constant T2
was given the three values 0.05, 0.0167, and 0,001 seconds. It

would have been desirable to use a fourth value of T, = m§ however,

2
the system is unstable for this value. The gain X was fixed at
400, a value that gave a stable closed locp contrel system for all
values of T2.

The system shown in Figure 7 was simulated on a Donner elec-
tronic analog computer, A Hewlett-Packard sine wave oscillator con-
nected to the input served to produce the forcing function for the
system. A DuMont cathode ray oscilloscope and Hewlett-Fackard a-c
vacuum tube voltmeter Wére connected to the output, A Hewlett-
Packard a-c vacuum tube voltmeter was also connected to the iﬁpmto

A Deltron Company phase meter was connected to the input and the

output and the computer components adjusted to values selected from



TABLE ¥

COMPUTER COMFPONENT VALUES

6T /M
Component
3 4 5
T, seconds 0.001 0.001 0.001
Té seconds 0.05 0.0167 0.001
c 0.35%x10° 0.35x10™° 0.35x107°
X 400 400 400
Ky 0.2 0.6 1,0
K, 6.2 0.6 1.0
K, , 0.7 0.7 0.7
R, 0,250 0.250 0,250
Ry, MO 0.250 0.250 0.250
X ﬂ ' o Y
Ry, M 0.1 0.1 0.1
R, MO 0.1 0.1 c.1
R, MO 0.1 6.1 0.1
c, pta 0.01 0,01 0.01
R, MON 0.1 0.1 0.1
R, MN .1 0.1 0.1
c, pfa 0.01 0.01 0.01
R, MO 0.5 0.5 0.5
R, MO 1.0 1.0 1.0
1 1 1
2 7 7 7
o 8x10 24 x 10 40 % 10
8 5.8 x 10t 8.4 %10 14 x 10%
5 2x10° 6 % 10° 10 x 16°
T 1,2x10° 1.6x10° 2x10°
Vo v 258 387 447
Vo /- 447 774 1000




25

tude frequency response curves were taken for three forcing function
amplitudes. The amplitudes used correséond to the three curves:
1. Response curve for threshold forcing function,
2., Response curve for forcing function equal to 'u,max for
v=0,

3. Response curve for solutions that are discontinuous in the

neighborhood of ¢ =90 degrees.
Experimental Observations

No great difficulty was experienced in obtaining data for the
- three systems examined.‘ Data were taken for the systems for fre-
quencies below the value of W= Vo/f to w = VEQQT. The wave form
was observed throughout a particular run to note any harmonic dis~
tortion that was present., The wave shapes were very nearly sinusoi-
dal. However, some distortion could be obserVed.particularly.at
values of OJ<VE7§7 and in the region of resonance, No attempt was
made to determine the third harmonic components in the system. For
large values of forcing function amplitude a phenomena of some con-
sequence was observed., It was found that forcing amplitudes, for
which no solutions existed in the vicinity of ¢ = 90 degrees, pro-
duced a type of low freguency oscillation. The oscillation appeared
to be of a relaxation type and modulated the fundamental frequency
at a freqﬁency of 1/9 to 1/12 of the fundamental. Decause of the
nature of the wave shape, no data could be obtained when the oscil-
lation occurred,

The Hewlett-Packard Company vacuum tube voltmeters used in the

observations were checked against a 1/2% General Electric Company
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voltmeter and found to be within 1% of full scale on all scales used
in the study. The Hewlett-Packard Company oscillator was checked
against several similar models by the same company and it was found
to track closer than could be read, The computer components are 1%
tolerance components and it was felt that greater precision volt-

meters or frequency checking the oscillators was not justifiable.



CHAPTER V

EXPERIMENTAL AND ANALYTICAL RESULTS

Experimehtal data'weke obtéined from the computer by u@ing the

procedure describéd

in Chapter IV, Three systems were analyzed for

values of ‘B’_é///«m equal to 3, 4, and 5. These systems, subséquently,

will be referred to

as systems 3, 4, and 5. Data were obtained for

three particular forcing function amplitudes: (1) thresheld forcing

~ function amplitude F=Fg §(2) forcing function amplitude F= |ul

max §

and (3) forcing function amplitude F“>[u|m . These particular

& X

forcing amplitudes were chosen to illustirate the analysis,

Threshold Forcing Function Amplitude F=F

T

For a forcing function amplitude FTﬁ_daﬁa are presented in

Figures 8, 9, and 10. The experimental and analytical data are

shown on the curves. Good agreement is obtained between the experi-

mental results and analytical data considering the fact that only a

first harmonic term
variation exists is
near resonance. In

dicating the values

is used in the analysis. The region in which
in the region of 90 degrees phase lag, that is,
each of the three curves, points are labeled in-

of 90 degrees phase lag and maximum amplitudes.

It may be observed'that these do not fall on their respective loci,

the backbone curve and the locus of horizontal tangents., These

curves do, however, have the same general trend, I%t should aglso be

27
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noted that better agreement is obtained for system 3 than for system

5, This is due primarily to the greater harmonic content for the
latter system. The per cent harmonic content for the systems at
maximum amplitude is 0.88% for 3, 1.5% for 4, and 1,6% for 5. These
values were calculated from the aralyesis in Appendix B where consi-
deration is given to third harmonic components. The third harmonic
components change the shape of the constamnt w loci in the u=-v
plane by caueing a displacement of the loci to the right. This af-
fects the actual value of FT for a given system. A smaller value of
FT wounld be reqguired if the third harmonic components were included
in the analysis,

Very good agreement between simulation data and experimental
data is obtained in the region of W= V37§r, This is a region in
which very low observable distortion occurred, 8light discrepancies

hetween the two curves is attributable to instrumentation.

Forcing Function Amplitude F::}u]mwx

Figures 11, 12, and 13 illustrate the response curves obtained
for the three systems for a forcing function of amplitude]u%maxn
The experimental points agree with the analytical curves to a fair
extent everywhere, except at resonance, Figures 12 and 13 particu-
larly indicate the lack of a real solution in the vicinity of 90 de~
greese. The upward curving away from the backbone illustrates this
point, The analytical response is tangent to the backbone whereas
tlie ewperimental curve hends upward away from it, The lack of tan-

gency between the experimental curve and the backbone is attributable

to the third harmonic.
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Figures 14, 15, and 18 show the variation of phase angle with
frequency for the three systems. These figures indicate the approach
of the phase angle to 20 degrees; however, the phase angle iz always
less than 90 degrees. The phase angle's approach to 20 degreezs is
indicative of the response curve's approach to the backbone as dis-
cussed above. The curves indicate the freguency at which jump occurs
for increasing freguency, but the analytical curves of the first
harmonic approximation cannot predict this peoint. The jump point
for decreasing frequency can, however, be determined and the method
used is preseﬁted in Appendix €., Figures 11, 12, and 13 show the
interséction of the locus of vertical tangents and the response
curve., This is the point at which lower jump resonance occurs,

These frequencies for the three systems are:

Calculated Experimental
R/ Lower Jump " Lower Jump
Resonance Frequency Resonance Freguency
338 332
582 571
5 735 722

Forcing Function Amplitude F>|uy

Figures 17, 18, arnd 19 show the response curves for the three

systems for F > |u

max ® These curves only serve to show that for this
U ne _

amplitude of forcing function the response curve is near the back-
bone; however, it is not tangent to it. The lower jump resonance

frequencies are as follows:
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Calculated Experimental
Lower Jump Lower Jump
8/ o Resonance Frequency Resonance Frequency
3 345 339
590 578
5 740 728

Before jump resonance occurs, for increasing frequency, pro-
-nounced oscillations were observed for amplitudes of forcing func-
tion greater than hqmax . The angular frequency at which these

oscillations occurred are labeled on the curves,



CHAPTER VI
SUMMARY AND CONCLUSIONS

An approximate harmonic solution to a sinusoidally forced third
order nonlinéar differential eguation representing a control system
has been obtained and, in view of the approximation, the following
findings have resulted?

1. Solutions to the differential equationbmay be obtained by
utilizing a u=-~v plane in a graphical solution. The u-v plane is
a plane in which components of the forcing function are plotted for
constant angular frequency.

2, Jump resonance may be prevented from occcurring by limiting
the input signals to the system to values leszs than the threshold
forcing function amplitude. This threshold forcing function ampli-
tude is a function of the system parameters and may be calculated in
terms of these parameters. Jump resconance will be prevented for

values of

I'4
F & FT
in which
8 V3
FT = V"5 5 I11-5
with

b = ————L——————— . I1-28

41
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In this equation w 1is the positive real solution to the cubic
VEuS 4 10? YF6w- & = O 1I-41

The positive real valué of w satisfying the equation is a frequency
limitation on the input to the system.

3. Real solutions cannot be obtained in the immediate vicinity
of values of © = 90 degrees for‘values of forcing function greater
than “”max . “”max is a function of the system parameters and it

may be calculated in terms of these parameters, hﬂmax is defined to

be

| = 2uﬁWuﬁ;5)‘/ T (6 -pwR) I1-31

38 (Bpwf - 6)

in which wWe is

wé ""‘T; [2Y5+3ap V(278 +300)2 - 16&67/*} . 1I-29

u=8

4, The frequency at which upper jump resonance occurs for in-
creasing freguency cannot he détermined with a first harmonic approxi-
mation; however, the lower jump resonance frequency for decreasing
frequency can be determined with limited accuracy.

With these findings in mind, future rgsearch must be directed
to solutions which consider subharmonics and superharmonics in the
analysis, An analog computer study in which strip chart recordings
are made of the amplitudes throughout the freguency range of interest
- would be reguired in such an investigation., From these recordings
harmonic content could be determined using a Fourier series analysis.

It is believed by the writer that an analysis considering not

only the third harmonic but also a subharmonic in the solution
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would lead to quantitative data concerning the upper jump resonance

freguency.
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APPENDIX A
DERIVATION OF EQUATIONS FOR THE FIRST HARMONIC ANALYSIS
General First Order Approximation

The system eqguation to be solved is

/\,c.y"'+~('y"+6y'+cxy+ﬁy3 = vcos wt +usin wt A-1
for v2 + u2 = F2 _ A-2
and % = arc tan -‘-‘i— . A-3

For the first approximation y=A1 cos wt is assumed to be a steady
state solution, where w> is the angular velocity of the forcing
function and A1 is the fundamental amplitude response, Upon sub-

stitution of the assumed sclution into Egquation A-1l, there results

)
gy 3Al sin wt -Tw“Al cos wt - éwAl sinwt + chl coswt

3 A-4
BAY

4

+ (cos 3wt +3 coswt) = veoswt +usinwt,

By collecting terms and forming coefficients of the A{s there is ob-

tained

AW (w2 -8) sin wt + (a0 -7TW2 4 —i— BA% )Al cos Wt +
=vcecos wt +usinwt.

If the third harmonic is considered negligible and coefficients
of like terms on either side of the equality are equated, there

result ve=(o=-Tw? 4 T BA% ) Al ; A-6

45



u =w()10\)2=5)A1- A~7

In accordance with Equation A-2, the response function for the sys-
tem may then be written as

'2)2 A2 2

1 1

- 8)% 4% - F2 A-8

2 3 L2
(a=7WwW +TBA N (/u.UJ 1

The parametric representation, A-6 and A-7, may be written in the

functional form v = f(u) by solving A-7 for A and substituting into

1

A-6, Al is given by the expression

u
A, = meie——— A-9
17 w(uw? - 8)
and A3 is
1
3 'u3 0
A, & m———————— A—l
L7 w3 (puw? - 6)3
The expression for v is
2 u 3 u3
V= (0 =PWT) e e B e A-11
wpw2-8) % 3w . p)3
or
3
v = au + bhu. A-12
In this equation the constants a and b are defined as
. - -2
a = ._az‘o’uq,’ A-13
wpws - 8)
and
3 p
b = = - . A-14
4 w2 ~ 8)3
By using Equation A-l12, Equation A-2 becomes
(au+bu>)2 & u® = F° A-15

or

'b,zuﬁ + 2ea.bu4 + (1 +a'2)u2 = an A-16



u=wlhiw2-38)4, . A-7

In accordance with Equation A-2, the response function for the sys-
tem may then be written as

a2, 8 4,252 ,2 202 (.2 2 2
(a -7w +4BA1)A1+uo(}m> 6) A]_«-Fg A-8

The parametric representation, A-6 and A-7, may be written in the

functional form v = f(u) by solving A-7 for A, and substituting into

1
A-B, A’l is given by the expression
u
A, = e A-9
1 w2 .- 5)
and ‘Af is
3 u3
Al = A-10
17 w3 w2 - 8)3
The expression for v 1is
2 u 3 u3
V= (0 =T ) i 4 o B : A-11
Wpw2-5) 4 wIpw2 - 5)3
or
3
v = au + bu . A-12
In this equation the constants a and b are defined as
{ - Y2
a = . azz’uq. : A-13
W pwe - 5)
and
3 B
b T oo cwmecss———————. A“’l4:
4 W3 (uw2 -~ 5)3
By using Equation A-12, Eguation A-2 becomes
(au+bu)? w2 = §2 A-15

or

vbzu6 + 2abu4 ¥ (1 +-a~2;)u2 = on A-=16
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Locus of Vertical Tangents

The locus of vertical tangents may be found by taking the deri-

vative of Equation A-8 with respect to A, and equating dwz/dA1 to

1
zero, The derivative of expression A-8 with respect to Al is
2 2, ‘s )
(o «¥w +-BA )2A +2A (& 7w BA_ )(-f‘rw ZBA )
A=17
+ ZAIwZ(uwz-b)uf[zwz(uw - 8) () +(w»2 b)(wzf]
2 dw? 24
The derivative of W“ with respect to Ay 33 (WT) , is zero, -
1
This equation may be written in the form
(o Hw2 .43 3847 )(a- Th BA ) +wlew?-8)2 20, a8

The solution for Af may then be found by first writing the gquation

4 16 (e-702) 2 16 1 2.2 20,2 2] ‘
‘A1+ T T F A1+17 -B-§ [(a—’f?) )T+ WS (p - 6) =0, A-19

The solutiqn for Ai is 3

2, 922 ' E :
2 - 16 (o -yw?) 16) a-To } 64 1 22 o
AT = - =2 Tl 2] || - = (a2 w2 (w24 5)R), A-20
175 6 \/9 I )

This expression becomes, after algebraic simplification,
= 5B [ (a-7w2) * —-w(uwz-ab)\f ] A-21

The single valued point on the locus of vertical tangents is the

point at which the radical vanishes. This point is

2 _ 8 2 _
Al-gﬁ(m a). A-22

Equation A-18 may also be written in terms of u and v. If Equation



A-18 is divide@ by uoz(Mu)za- 6)2 thé result is

2 3 2

2 9 2
(a-Tw + BAT ) (o -vw™ + —=PBATY)
x -1 71 .1 =0 A-23
w w2 - 5) w w2 .- p)
or , . ‘
2 2 i 2 2
=W Al o -
z » S PA wWe L2 B4 1+1=0.A-24
©pw2-6) 4 wew2-8)| [WMw2-8) 4 wEw2-8)|
The values for a and Af are
2 2
a = ‘—'a—:-q'z'(f)—"— and Ai = —é_ll?—-z.
W (MW < - 8) WeMW - 8)

Therefore Equation A-24 is
[a + buz]{a + 3bu2] + 1

3b%u’ + 4abu® + 1 + a>

Lt}
o

A-25
or '

0. A~26

i}

\'Equation A-18 represents the locus of vertical tangents in the
Alumo plane and Equation A-26 is its representation in the u-v

plane, By writing S = u2, Equation A-26 is written

0 : A-27

it

35252 4 4abS + a> + 1

aﬂa it has the following solution:

s=3173[-2a i\’a2-3:] A-28
or
u=t %[-za i\’a2=3] A-29

Locus of Horizontal Tangents

The locus of horizontal tangents may be found by taking the

derivative of Equation A-8 with respect to w and equating dAj/dw
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to zero, The derivative of A-8 is

2 )2, dA; 2 da)
2A1v(a-‘x‘u)- BA (=290 + = BAldw)+ (@ ~yws2+ 5 BA ) 2dw

A-30

2

+.A1

dA
[zwz M0 2 = 6X20w) + Mw? - 5)2 2u)]+w2(}l.w2 - 6)22‘3-5% =0

or

27 (a-yw2 + 1PAZ) + M2 - 8X3uw2-8) = O, A-31

This equation may be solved for A1 and its solution is

A, = +{ 2 E’wzw‘* +2(%2- 28)w? + (62 -20 -a)B 1/ A-32
15"V 3%8 A ‘ ¢

Maximum Value of u for Variable Frequency and v=0

From Equations A-6 and A-7, u may be written as

o 1/2
u=* [? (lw_s_._)] W (2 - 8) A-33

by solving Equation A-6 for A1 and substituting into Equation A-7,

The positive value must be used to yield a positive value for A

10
It is required that é%%: 0. The derivative of u is
P =-1/2
du 0 w2 - 2wl =) " 8w i 2.
- g o[t g HE= e
A-34

Upon equating the derivative of u with respect to w to zero, there
is obtained

) 1/2
(I..._...._.WB = “)] (34w 2-8) = O A-35

4‘b’uo2(uu)2 6) .\ F
....._.E_.,._

47wl (Mw2-8) + 4(FW2 - o) (Fuw? - 8)

oo |4 e *

or

= Oa A"’36
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The final result is

'zrwz(uwz-a) + (‘o’wz—a)(f’n}sz-b) = 0 A-37
or

4M‘(U04 - (2786 + 3&»)032 + ad = 0, A-38

The solution for-u)2 is

w2 - 5717[216 + 3am V(276 + Sapm)? - 16a67M J . A-39

O is the angular frequency at which a maximum value of u is oh-
tained for v =0,

To find the maximum value of u, the value of W from Eguation
A-39 iz substituted into Equation A-33, Al for maximum u may be
calculated from Equation A-9, A1 may alsc be determined by using

the following procedure:?

- 2 _ : -
u = W (pw 6)A; A-7
dA
du 2 3 1
T = A (W -8) + (T -BW)g— =0 A-40
It is required that
a -yw? 2% -0 A-41
1™
and
3. 94
-2%W +3BA 355 = O A-42
or
dd; 42 4
an = 3 —-A_l_ . A~43

Upon substituting Eguation A-43 into Eqguation A-40, there is obtained

SBA%(C’wwz—b) + (}Aws-bw)tl'rw

5BA7 = 0 A-44
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or

33Af(3,uw2 -8) = 47w? (8 -uw?). A-45

The solution for Al is

2
A = izu)‘[?“a"*w ) . A-46
35(@0)2-6) ‘



APPENDIX B
AN APPROXIMATE SOLUTION FOR FIRST AND THIRD HARMONIC COMPONENTS

The differential equation to be solved is Equation II-8,
3
MY +yy" + 8y +ay + By = Fcos (wt=~o) I7-8

This equation is rewritten as

Bz uy"™ +yy"+ 6y +ay+ By3 ~-vecos Wt-usinwt =0, B-1

A periodic function of the form

y = A1 cos Wt + A3 cos 3wt +B3 sind3wt B-2

is assumed to be a steady-state solution,

The Ritz Averaging Method (3) requires that the following integrals

be .zero:?
2n
j H[y] coswtawt= 0 B-3
0
27
[ Hly] sinwtdwt = 0 B-4
(¢]
-2
f H[y] cos 3wt dwt = O B-5
(¢]
an
f H[y] sin 3wt dwt = 0 B-6

o

These expressions upon evaluation yield the following:

from B-3,
o2+ 3 pa2 1,2, ,l,2 12 7 __. ]
(@ =xw +41BA1)A1+3B[4A1A3+2A3A1+2B3A1]..v, B-7

52
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from B-4 wWiLw? - 5)A +§BA2B = u }
’ - 1737 %3 !
from B-5,

- Oy 4 28a2 . 2 _
(o ~ 97w +4BA3)A3 (27w 36)uJB3

2
B A J: 03 B-9

3 Rl

3
Bay 1.2
+ ~4——+35[:§A1A3 +

and from B-6,

- 9y 4+ 8B 2_
(o - 9w +461?':,’)B3 + (27w 36)qu3

3 2 2 :
+ZB[A3133+ 2A1B3}=0. | B-10
Equation B-9 may be written as
- 97w - 272 103 . 3pa2 4. -
(@ -97w=) A, + (38 - 27pw )u)B3+4BAl+2BA1 A; =0 B-11

if terms such as'Ag and B§A3 are assumed small compared to the other

terms in the equation. Eguation B-10 may then be writtep as

|
(o - 93w2) By - (36 - 27uw2)wA, + 2PATB, = O B-12

3 2

For ease in hanipulating the eguations, the frequency coefficients of

A_ and B, will be written as

3 3
2
Cl = O - OYW B-13
and
3
Cy = 36w - 27w ", B-14
Then the equations become
1,3 3.2
ClA3+CZB3+ZBA1+ §3A1A3=0 | B-15
and
C.B, - C.A, + 2 BA2B, = O B-16
173 23 " 27173 T U7 : -

Equation B-16 may be solved for As,
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1 3., 2
A3 =-é-2-:[cl + 5 BA]. :[Bs . B-17

Upon substitution into Equation B-15, the solution for B, is

B, = . . B-18
5 % 71 ERYERY
T5 (G PAL)T + G

An approximate solution may now be obtained by iteration, In

Equation B~7 and B-8, A3 and B3 are assumedvzero. As a first ap-

proximation, A, may be found using the u-v plane as was done in

1

Chapter II. The value of Al so found is substituted in Equation

B-18 and the resulting value for B, substituted into Equation B-17.

3
These third harmonic components may be used to produce new constant
wloci in a u-~v plane. It may be observed that in Equation B-8
for positive values of B3 the value of u becomes more positive,
The same is true for values of v in Eguation B-7,  Thus, in con-
sideration of the third harmonic components, a point on a locus is
moved up and to the right., In the vicinity of first harmonic re-
sonance the value of hﬂmax is reduced,

In order to illustrate the significance of the third harmonic

and B, determined for

components,; values of A, were chosen, and A3 3

1
three values of angular frequency for the three systems of this
study. Figures 20 through 28 show the variation of the third har-
monic components for the systems. The values of angular frequency
chosen were at wW = VE7§7 y W= %Va73? and near resonance., The value

of F used was F = |u| . The value of u):-%—Va/‘f was a very de-

Titey 3¢

liberate choice, For this value of W the third harmonic cosine

coefficient is zero and the value of BS is negative, It is, how-

ever, to be noted that its magnitude is sufficiently large to
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invalidate one of the assumptions above, (The third harmonic compo-
nents' products are small,)
The approximate third harmonic percentages for F = h”max are
as follows:
Angular Frequéncy

W= -%—V oa/f
w= Va/y ‘ 1.2 3.0 3.6

‘,
5
4

4
4.5 6.0

Near Resonance 2.0 2.0 2.0



APPENDIX C
LOCUS OF VERTICAL TANGENTS IN THE u - v PLANE

In Figures 29, 3C, and 31 are shown the u~v plane constant
lqci for the three systems examined in this research, A part of the
locus of vertical tangents is also plotted on these curves. The lo-
cus of vertical tangents is used to determine the point at which
lower jump resonanée occurs, The three circles drawn on the figures,

which represent the forcing function amplitudes F::FT y F o= h”ma ’

X

and F >hnmax , are used to determime the response curves, The inter-
section of a constant W locus with a circle determines a point

(uyp, vi). The amplitude A, is found by using the equation

1

Ul

Ay =
17w w? -5)

The intersection of a circle with the locus of vertical tangents de-
termines the point at which lower jump resonance occurs. If this
point of intersection is (u2, v2), then the point ug is given by

Equation III-3 and is

u2
2~ 3b

= & [f 2a + Va2 -3 ]- C-1

‘In this expression aand b determine a particular locus on which the

point (uz, vz) lies, The point v5 must satisfy the expression

= au,  + bu3
Vg = aly 2"
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If Equétion C~1 is solved for b, the result is

1
b:—-——{-2a+\’a2-—3 ] c-3

2
3u2

From Eguation C-2 the solution feor a is

"3
Vva = bu
a = ....2._.;.....?:. C=4
2
or
v 9
a = —> - buy, - C-5
Uy

By substituting b from Equation C-3 into Equation C-3, the result

is
v
a2 2 1y3
U2 3 [ I

Upon simplification of the expression, Equation C-6 becomes

2
v
3(52) + 1
a = c-7
o Y2
u-l
or
3 V3 1 Up
a =~§- —u—u: +-?:- -‘-;—?-‘- C-8
The positive real root of the cubic
3 2
auw” +YW" - abw - a = 0O IT-41

is the lower jump resonance angular freguency,.



APPENDIX D
SYMBOLS

Fundamental amplitude response, cosine coefficient
Third harmonic amplitude response, cosine coefficient
Fundamental amplitude at maximum u for v = ©
Capacitance, farads

Nonlinear coefficient

Laplace transform of system error

Instantaneocus system error

Forcing function, Kf(t)/T1Ty

Threshold forcing function

Instantaneous system input

Instantaneous output of nonlimeaf device

Tfansfer function

Differential eguation of Rits Averaging Method

Gain

Resgistance, ohms

Time constant, seconds

Time comnstant, seconds

Horizontal component of forcing function

Maximum value of u for variable freguency and v=0
Vertical compomnent of forcing function

Laplace transform of system response
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Instantaneous system reﬁﬁonse
Coefficient of response funétion, K/T1T2
Coefficient of nonlinear function, Kc/TlT2

Coefficient of second derivative of response function,
(Ty + Tg) /Ty Ta

Coefficient of first derivative of response function,
(1/T1Ts) ’

Coefficient of third derivative of response function
Angle of lag of system response
Angular frequency, radians per second

Angular frequency for maximum u, radiang per Second
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