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CHAPTER I 

INTRODUCTION 

In the last few years much effort has been applied to the study 

of nonlinear systems. Perhaps much of this has been due to the 

present space race. Prior to that time efforts in this country have, 

to a great extent, avoided analyses of systems nonlinear in nature 

or have linearized those systems if an analysis was absolutely ne­

cessary. There has been good reason for this generally, since there 

are no exact solutions to nonlinear differential equations except 

in very few cases. One of the most powerful propositions for the 

solution of linear systems, the superposition principal, is of no 

value in nonlinear systems. These .properties and others such as en­

trainment, frequency demultiplication and multiplication, and dis­

continuous jum]) resonance, p~culiar to nonlinear systems al.one, have 

to a certain extent hindered the growth of the field. 

The particular pro:,perty known as jump resonance, also referred 

to as ferroreson.ance by some writers, is the subject of this thesis. 

The phenomena of jui11p resonance can occur in a J)l~ysical system when­

ever the resonance curve for the system c1:1;n be made to be skewed to 

the right or the left by the addition of a nonlinearity into the 

system. The skewing of the resonance curve will JJroduce multiple­

valued am1Jli tudes for a single frequency. An example of this type 

of multi-valuedness is shown in Figure 1. Duffing (1), an early 

writer in the field, first published his work in 1918. In his 

l 
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Wn 
Angular Frequency 

Figure l. Resonance in Linear and Nonlinear Systems 

disclosure he discusses the various ramifications of: the equation 

2 3 
y" ,+w n y + ay = G sin wt. l-1 

Solutions to this equation exhibit jump resonance. 

2 

A later report by Appleton (2) gives a detailed analysis of the 

phenomena in a second order dissipative system. Appleton observed 

the occurrence of jumps in a vibration galvanometer. In a more re-

cent work~ Klotter (3) makes a general analysis of second order vi-

bration systems. 

Discontinuous jump resonance has also been studied in second 

order control systems (4,5). In a paper by Hopkin and Ogata (6) a 

third order system is studied in which it is assumed that linear 

modes of operation exist at low frequencies and nonlinear modes at 

high frequencies. M~ny other higher ordered systems have been 

studied and reported, however, very little mention is made of 



discontinuous jumps. 

In this paper an investigation is reported that has been made 

to determine conditions required to produce jwnp resonance in a ty­

pical third order control system having only real negative poles in 

the forward transfer function. The conditions,, input amplitude and 

frequency, have been found to be related to system parameters by 

simple relationships. Restriction of the study to control systems 

whose forward transfer function has only real negative poles (the 

possibility of one at the origin is not excluded) is a weak re­

striction and should be no deterrent of application to systems with 

complex pol'es. A novel method of graphical solution is presented; 

though laborious in its construction, it gives an insight into so­

lutions in the neighborhood of phase anglee of 90 degrees. 



CHAP'l'ER I I 

SYSTEM ANALYSIS 

The systeu1 under investigation will be analyzed by assuming 

that the solution to the system equation is a single harmonic term 

having the same frequency as the forcing function. That this is 

only an approximation is recognized, and it will be shown that such 

an approximation is sufficiently accurate for many engineering ap­

plications. It must be ren1embered that many harmonics are present; 

however, the higher ordered terms are relatively small. 

A graphical method of analysis is utilized in this chapter and 

its relation w·i th the fundamental :frequency response curve 1:::iresented. 

System Equation 

The system investigated in this research is an elementary con­

trol system of the type shown diagramnnatically in :F'i11;ure 2. It is 

a syste~ with a control element, h, in the feedback path. This 

element, h, is a nonlinear devtc.e that converts y, the output or 

response into fly). 

f ( t) 
e G(s) 

y 

h 

Figure 2. Nonlinear Control System 

4 
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The forward transfer function, G(s)~ for the sy~iem is defined 

in the following way: 

Y(s) 
E(s) = 

K 
G(s) = ;(T1s+l){T25+l) II-1 

Y(s) is the Laplace transform of the time variable output or re-

sponse y; E( s) .is the Laplace transform of the time variable error 

signal e; and Kand T1 and T2 are the usual gain and time delay 

constants, respectively 1 for the systemo The block labeled h in 

Figure 2 is not representable as a transfer function since it is 

the nonlinear elemento It is a time invariant element whose output 

and input is related as follows: 

3 f(y) = y + cy II-2 

Since Equation II-1 relates the output to the input for the 

block G(s) 9 it may be written 

Y(s) s(T1s + l)(T2s + 1) = KE(s). II-3 

This equation becomes~ after transformation into the time domain, 

II-4 

In this equatio11 the pri1nes are used to denote time derivatives. 

With reference to Figure 2, the following may also be written 

e = f(t) - f(y). II-5 

It must be remembered that y and e are both functions of time 

although they are not so explicitly written" Substitution of II-2 

and II-5 into 1!=4 yields 

After division by T1T2 , there is obtained 

ym + [<T1 + T2)/(T1T2)] Y" + O/T1T2) yo+ (K/T1T2)Y 

+ (Kc/T1T2)i5 = (K/T1T2) f(t) 0 11=7 



For ,ase in writing 9 Equation lI-7 will be wrft:ten as 

)')o:Y ,OQ + Yy oo + 6y D + a.y + J3y3 = F cos (wt - (f)) 

in which 

and 

µ = 1, 

't = ( T1 + T2) /T1 T2 , 

O = l/T1T2 , 

CJ; = K/T1T2 ' 

13 = Kc/T1T2 , 

F cos (wt - <p) = (K/T1T2) f( t) o 

Il-8 

Il-9 

.II-10 

lI;_ll 

ll-12 

11-13 

II-14 

The constants defined above are all real positive quantities. The 

6 

input to the system, f(t), is a time variable cosine function of an-

gular frequency w and amplitude F. It is the forcing. function for 

the system. The phase angle f is the angle between the forcing 

function and the fundamental ampli tud.e response function y of the 

system •. So that the solution will be in its simplest form~ the 

forcing function F cos ( uJt - q,) is written 

in which 

and 

Fcos(Wt-q,)= vcoswt+ usinwt, 

V = F cos (p 

u - F sin (f) 

.tp = arc tan u/v , 

2 2 2 F =v +u, 

11 ... 15 

II-16 

II-17 

11-18 

II-19 

In the subsequent analysis it is required that !Fl be a fixed 

value for any given range of frequency Gu~ The angle,, as previous-

ly defined above, will not be fixed and it constitutes an unknown 

quantity. The fundamental amplitude response is unknown in magnitude§ 

honrever, its phase position is taken as the reference phasor., 
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First Approximation Solution 

Equation II-8 has no known exact solutions; however, a number 

of approximate solutions may be obtained. Klotter ( 3) uses the Ritz 

Averaging Method for obtaining a solution to a second order forced 

vibration equation and it is the method to be used in this thesis. 

to obtain a solution which includes the third harmonic componentso 

For the first approximation a simpler technique is rilo,:-e useful (7). 

The solution desired is the steady state value 11nd is assumed in this 

approximation to be 

II-20 

in which A1 > 0 is the fundamental amplitude that is to be evaluated. 

Upon substitution of II-20 into Equation II-8 and if the forcing 

function is written as given by the right hand term -0f Equation 

II-15 9 Equation II-8 becomes 

AlW(µ.uf-6) sin wt+ (a.-'Cw2 + 3/4(3A~) Al cos wt+ 1/4f3A~ cos 3wt = 

v cos wt + u. sin ,wt. II-21 

In this approximation the third harmonic term is assumed to be small. 

Thus for equality it is necessary that 

II-22 

and 
II-23 

Upon substitution of Equations 11=22 and II-23 into Equation n:-19 9 

there is obtained 

(a. -!'.w2 + 3/4 ~Ai)2:A21 + Af o/,(JA,LJJ2 - 6)2 = y2 • 
~--, . 

II-24 

A graphical analysis will be used to study this equation m.ore f'ullyo 



1. The u - v Plane 

A1 of Equation II-24 may be determined for variable CJ through 

the use of a digital computer, but more of an insight may be ob-

8 

tained by plotting u and v in a u - v plane. u and v are then coordi-

nates of a point for some value of A1 andW. For W fixed and vari­

able A1 , a locus of constant Wis obtained. This is illustrated in 

Figure 3. 
V 

Figure 3. The u - v Plane and Loci 
of Constant (JJ 

W1 < W2. < w~ <. w.._ 

Illustrated on this figure also is a circle of radius F. Equa-

tion II-19 is the equation of this circle. Values of u and. v pre-

scribed by the intersection of the circle of radius F with the loci 

of constant U) are solutions for the forcing function of amplitude F~ 

The angle~ is measured in a counterclockwise direction from the 

vertical to the radius vector F. A1 is used as the reference phasor. 

It· 1ies along v and is directed in the positive v direction. The 

magnitude of A1 is calculated using Equation II-23. 

II-25 
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The solution thus obtained represents the amplitude of the fund.amen-

tal response for the applied forcing function of magnitude Fat the 

frequency uJ. The forcing function leads the response function by an 

angle <p. If the frequency is now changed, new values of A1 and q> 

will be obtained. A set of data for a fundamental amplitude fre-

quency response curve may thus be determiI1ed. Tbis curve will re-

semble the ~> 0 curve of Figure l. It may be obse1"ved. from Figure 3 

that, for values of F sufficiently large, three intersections of a 

constant (,l) locus are possible in the left half plane. Intersections 

in the right half plane for tbe curves drawn yield values of A1 < 0. 

These values of A1 are not defined for it is required that A1>o. 

'fhere are solutions possible for A1> 0 in the fourth quadra.11t; how­

ever, the amplitudes are very small and are for the most part out of 

the range of interest. Solutions for the assumed conditions a.re not 

physically realizable in the first quadrant. (The phase angle for 

a third order system approaches 270 degrees as W approaches infini-

ty.) 

The shape of the constant W loci suggests writing an equation 

for these curves. 'l'his may be accomplished by eliminating A in 
1 

Equations II-22 and II-23. The result is 

in which 

and 

3 
v = au.+ bu 

o:. -:Yw 2 a=-------
w (µuf' - o) 

b 3/4 ~ 
= 0.l'1.µw2 - o)3 

In Equation II-27, a is positive for ; «.02 <_! 

II-26 

II-27 

II-28 

This is the range 
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of interest in this study. ]~'or this range of w, b is negative. In 

Equation II-26, if I~ is small and u is negative, the cubic term is 

sn1all relative to tlle linear term for W near the value of V cx./0 • 

F'or larger values of lul, the cubic term is more pro11111inent and f'or 

some negative value of u, v = 0. As w is increased, iul for v = 01 be-

comes larger and approaches a limiting value. This maxirn1.iun value of 

iu\ may be established by differentiatin&~ u of Equation II-23 with 

respect to Wand equating the result to zero. The details are per-

formed in Appendix A and the results are given here. The angular 

frequency for maxinn:m1 lu j is given by Equation A-39 and is 

w~ = 8 ~y [2r-6 + 3a.,µ !~(2a6 +·30.f-)2-160.60;-t]. II-29 

The amplitude for maximum \uf rnay be found by using; Equation A-46. 

The value of maximum )ul is 

I ' 
2. (,1 2' u = .2Wu 'r'WU max 

. 2 
Y(5 -JJ.Wu ) 

3~(3JJ-W2 - 6) 

_ 6)jy(5 -yw~ ) 
3~(3µ~ - 6) 

II-30 

II-31 

The constant W locus, f'or the Wu. as determined by II-29, inter-

sects the u-axis at -l'ul • The value of \ul is given by II-31. 
1 ma.x max 

The constant W locus for w,.w\A will intersect the u-axis at 

a value of lul <- \ul max • ll'or this W 1 a is g;reater than a • ( a is 
u u 

the a corres]Jionding to the Wu angular frequency.) The constant 

W locus lies below the Wl.l locus for va.luer.;;i of u between the 

origin and the point at which the two loci intersect. This inter-

section occurs at negative values of v. 

The constant w locus for u.><Wu will intersect the u-axis at 
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lul < luj • For this W, a is less than au and its locus lies above max . 

the constant 6Ju locus for values of u between the origin and the 

point of intersection. This intersection occurs at a positive value 

of v. 

A circle of radius F = lul drawn on the u - v plane will pass max 

through the point (- lulmax' 0). This F circle can intersect con­

stant vJ loci only in the second quadrant, or· if cp i,s sufficiently 

larger than 90 degrees, it can intersect constant- w loci in the 

third quadrant. (Sufficiently larger means in the general neighbor­

hood of 150 degrees.) F'or this forcing function, F = iu\ max , the 

angle cp increases as the frequency increases. The angle cp is 90 de-

grees at the value of W = Wu • As the frequency is increased ( W :;;, Wu ) 

the angle cp may become smaller or a sudden jump to a much larger 

value of q, may occur. The first harmonic approximation does not pre-

diet this jump in phase. 

For values of F / lul , the angle q, is always less than 90 de-
xnax 

grees or much larger than 90 degrees. No real solutions exist in 

the neighborhood of 90 degrees. The solutions which exist are il-

is not physically realizable. 

No general formula can be given specifying this region of no 

real solutions; but numerical solutions to Equation II-24, in the 

neighborhood of <p = 90 degrees for F sufficiently large, will yield 

complex values for A1 • _These are unacceptable for the physical 

problem. The real solutions for A1 , such as determined by ( u:;a , v2), 

are not physically realizable and are within regions of instability. 

Such a region is defined in the A1 -W plane and has its counterpart 



12 

in the u - v plane. Appendix C describes it in the u - v plane. 

The point (u3, v3) in Figure 3 is both stable and realizable. 

2. The A1 - (JJ Plane 

The A1 -W plane 1 1'.,igure 1, is partially reproduced as :F'igure 4. 

The skewing to the right of vertical is a consequence of 13 > 0. 

(~ < 0 causes a skewing· to the left.) The various components of im-

portance in this figure are the backbone curve, locus of ve~tical 

tangents, and the locus of horizontal tanti;ents. 'fhe badi.:bone curve 

is the curve defined for v = 0. It is the condi ti<;>n for wb.icb a 

F.• --.1.l' = 3-

Response Curve 

Vertical Tangents 

Backbone Curve 

Angular Frequency 

Figure 4. Ai -w Plane Showing the General Region 
of Instability 
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90 degree phase angle e:idsts between the forcinf; function F andl the 

fundamental reSJlonse A1 • Equation II-22 equated to zero yields the 

backbone curve. 

II-32 

This expression may be solved for A1 • Its value is 

II-33 

and it is shown plotted on Figure 4. The W intercept isw=+Va/o 

The condition v = 0 yields for u, 

II-34 

or 

II-35 

If A1 from Equation II-33 is substituted in Equation II-35, the real 

value of frequency satisfying this expression is the frequency at 

which intersection occurs. Thus 

w (µ.w2 - o) 
(-(w2 _ a.) 

3/4 ~ 
= F 

If both sides of II-36 are squared there is obtained 

w2r,iw2 - o)2 (Yw2 - a.) - F2 = o. 
'r 3/4 ~ 

II-36 

II-37 

T'I. • • f th d t . . 2 d h 1 1 t . t1is is a , our egree equa ion in W an· as no genera so u ion. 

An upper bound on F, ho·ivever, may be determined. Such a limit on 

F was established in the preceding section in the discussion of the 

u - v plane. The Equation II-35 is sholil'n plotted on ].I'igure 4 for 

several values of F. The intersection of the backbone curve and F 

defines a particular response curve. The value F = F 3 corresponds 
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to the lul value. It is quite apparent that real positive solu-max 

tions are not possible for F > F 3 in a region in the vicinity of 90 

degrees. F3 is shown tangent to the backbone curve. 

The region of instability indicated on Figure 4 is d~fined by 

the locus of vertical tangents,(?). The locus may be determined by 

taking the derivative of Equation II-24 with respect to A1 and equat­

ing the derivative ofw2 to zero. The result is 

II-38 

This equation defines the region of instability in the A1 -w plane. 

The expression may be solved for Af and its solution is 

A~ = 9
8

13 [-< a. -Yw2 ) ~ ~ a2 - 3 ] • II-39 

In this expression a is the quantity previously defined in Equation 

11-27. 

2 For a = 3, 

2 8 2 A1 = W {'( W - a.) II-40 

the double root on the extreme left is obtained. Since a is given 

by 

a. -rw2 
a = 

w(f>-w2 - o) 
II-27 

then, the expression aµ.w3 +Yuf' - aow - a. = o. II-41 

A solution for th.,e real 1,osi tive v~lue of W in this cubic yields 

the frequency at which A1 has a single value. Substitution of the 

numerical value in expression II-40 then leads to the numerical 

value of A1 • 

The locus of horizontal tangents is found by taking the deri­

vative of II-24 with respect to the frequency lu, and equating the 
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derivatives of A1 to zeroo The details of this derivation are per­

fo<rmed in the appendix and the final result is given by Equation A-320 

The equation is repeated hereo 

II=42 

The equation is shown plotted on Figure 4o It is of interest to note 

the effect of a change in parameters on this curve relative to the 

backbone curveo 

A form of the equation for the locus of horizontal tangents is 

The left side·. of the equality is zero for v = Oo This defines the 

backbone curve o The zeros on the right are w 2 = 0/p and w 2 = 0/3),J- • 

Th.us at W~ = o/µ or w 2 = 0/3)-J- the locus of horizontal tangents 

intersects the. backbone curveo The intersection may be found by 

substituting these values of~ in the equation 

a. - '(w2 + 3/4~Af = O. 

The results are 

A . -l-.!_~ (l:9.. - 1)~ 
1 w2 = o/µ - 3 p JJ- a. 'J 

and 

1/2 

The latter equation is the smaller of the two amplitudeso If 

11-32 

11=44 

11-45 

oo/µ.a. = 3 9 A1 is zeroo The locus of horizontal tangents lies to 

the right of the backbone curve. The backbone curve and the locus 

of horizontal tangents intersect at 
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II-46 

The locus crosses the lA) axis for 

3~w4 + 2( Y 2 - 2fU';,)W2 + ( o2 - 2a. 1) = o. II-47 

The solution for W 2 is 

II-48 

For a real solution to this expression, it is required that 02.:::. 2a:Y. 

This is true in a system in which jump resonance can occur. 

2 
The solution for A1 for W = a./"( is 

I Id:!:.. [ 2 (Yo ) ( yo )J 1/ 2 
Al uf' =a./(= + .,- 3T[3 µa. - 3 p.a. - 11 • II-49 



CHAPrER III 

FORCING FUNCTION FOR JUMP RESONANCE 

In the preceding chapter certain fundamental concepts directly 

related to the solution of the system equation were developed. 

These concepts will now be used to prescribe conditions necessary 

for jump resonance to occur. This chapter will establish the fol-

lowing: (1) the forcing function amplitude required to produce 

jump resonance; (2) maximum forcing function for real amplitudes in 

the vicinity of 90 degrees phase displacement between forcing func-

tion and response function; and (3) the frequency at which lower 

jump resonance occurs. 

Threshold Forcing Function Amplitude 

The maximum amplitude of the forcing function, for which no 

jump can occur, will be defined to be the threshold forcing function 

amplitude FT. This FT may be found by writing F = f(u). Such a re­

presentation is given by Equation A-16 in the appendix. 

III-1 

The maximum and minimum values of F as a function of u are then 

given by 

dF 2 4 2 2 
du = 3b u + 4abu + 1 + a = o. III-2 

Comparison of this equation with Equation A-26 reveals the two to 

17 
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be identical. The roots of Equation III-2 are 

u2 = if; ( .. 2a :!: V a2 _; 3 ) • III-3 

If a2 = 3, then the value of u2 is 

2 
u = - 2a 

3b • III-4 

Neither a maximum nor a minimum occurs at this point. This is also 

the point at which the locus of vertical tangents has a single value. 

Tlius the fundamental response curve is tangent to the locus of ver-

tical tangents for this value of forcing function amplitude. In 

Equation III-4, a = ! 0 • 'l'he value a = +V3 is to be used for a> 0 

in the range a./r< w2 < 0/JA. • Upon stibsti tution of u from Eq.uation 

III-4 into Equation III-1, the value of .FT is 

FT = J - ~ Vb'J • III-5 

Thus for values of F ~ FT jump resonance can not occur. This 

limit on F is important for it establishes the maximum amplitude 

of the input signal that a system may receive. If a given system 

is subject to jump resonance, jump can be prevented from occurring 

by placing a limit on its input. 

A frequency limit is also established for a 2 = 3. Roots to 

Equation II-41, 

' 'J 2 
aJJ-W + yw - aow - a = o II-41 

will yield!. the frequency limit. The equation has only one real 

positive root for l0. This may be found by using the general for-

mula for the cubic. 



Maximum Forcing Function Amplitude For 

Solution Near cp = 90 Degrees 

As previously established, values of F exceeding jul as max 

given by Equation II-31, 

19 

2w2 (f- w2 - o > . o( o - µ. w2 > II-31 
· 3~(3JJJ.u2 - o) 

yield non-real values of A1 in the neighborhood of <.p = 90 degrees. 

Real solutions do exist for I Fj = iu I for cp ~ 90 degrees. For so-max 

lutions to be continuous in the region, IF! must be less than juj ; max· 

however, no criteria have been established setting a limit on IFI for 

continuous real solutions. 

Frequency of Lower Jtunp Resonance 

The frequency at which a sud.den increase in amplitude occurs 

for decreasing frequency is the frequency of lower jump resonance. 

This frequency may be found by means of a graphical solution in the 

u - v plane. The locus of vertical tangents plotted in the u - v plane 1 

intersected by the circle of magnitude F, determines the values of 

u and v at which jumJJ occurs. The procedure used is presented in 

Appendix C. 



CHAPI'ER IV 

EXPERIMENTAL ANALYSIS 

In Chapter II an analysis was made to determine the conditions 

under which jump resonance occurred in a third order nonlinear con-

trol system. In order to verify the analysis a simulation study was 

made of three representative systems governed by the equation pre-

viously analyzed. The systems were simulated on a Donner electronic 

analog computer and fundamental amplitude response curves for three 

different forcing function amplitudes were obtained. Values of 3, 

4, and 5 were used for the ratio oi/pa.. The value of (~T1T2/K)=c 

(Equation II-13) was maintained fixed. 

This chapter will discuss the system simulation and the experi-

mental procedures used to verify the wialysiso 

System Simulation 

The equation programmed on the analog computer was Equation II-6 o 

3 
T1T2Y'" + (Tl +T2)Y" +y' +Ky +Key = Kf(y) II-6 

The equation was written in this form in order to experience less 

difficulty in the progranuning procedure. A simplified block diagram 

of the system is shown in Figure 5. 

The box labeled G, the forward transfer function, was simulated 

in accordance with the usual transf~r function techniques (9). A de-

tailed sketch of G that was used. is shown in Figure 6. The two 
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Figure 5. Simplified Block Diagram 
of the System 

C 

I 

------>~-- G1 
G 2 

Figure 6. Analog Computer Representation for the 
Forward Transfer li'unction 
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swnming elements in Figure 5 have been replaced by the summin~i;-

integrating amplifier O. The transfer function for each individual 

amplifier was defined as follows: 

G 
1 

i 1,2,3 = R. Cs ' = 0 
IV-1 

l.O 

Gl 
R1/R11 

Tl RlCl = (T1s+l) ' = IV-2 

G2 
R2/R22 

T2 R2C2 = lT2s + l) ' = IV-3 

The over-all transfer function is the product of the individual 

transfer functions 

or 

G = 

1 
R. C 

10 

IV-4 

IV-5 

The purpose of the three resistors at the input to amplifier 1 was 

3 
to provide for the three inputs f(t)~ y, and cy. 

The nonlinearity was produced by means of a ten-segment diode 

function r;enerator. The complete schematic of the computer circuit 

used in the simulation study is shown in fi'igure 7. 

The system scale factors used were 2 and 4. The component 

values for the computer are given in Table I. These values were 

determined using the usual analog computer techniques {10). 

Experimental Procedure 

The systems studied were chosen to be representative of sys-

tems normally encountered in practice. Because these sJrstems 

generally have time constants T1 and T2 in the order of l second, 
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I 

C C1 C2 
Input 

R10 

R1 

R20 

Diode 
Function 
Generator 1?13 

Figure 7. Computer Circuit for Sil)'l~latiQn of System Equation 

a time scale transformation was made so that no unnecessary delays 

would be experienced in waiting for transients to disappear. The 

time constant T1 was fixed at 0.001 seconds while the constant T2 

was given the three values 0.05, 0.0167, and 0.001 seconds. It 

would have been desirable to use a fourth value of, T2 = ex> f however, 

the system is unstable for this value. The gain K was fixed at 

400, a value that gave a stable closed loop control system for all 

values of T2 • 

The system shown in Figure 7 was simulated on a Donner elec-

tronic analog computer. A Hewlett-Packard sine wave oscillator con-

nected to the input served to produce the forcing function for the 

system. A DuMont cathode ray oscilloscope and Hewlett-Packard a-c 

vacuum tube voltmeter were connected to the output. A Hewlett-

Packard a-c vacuum tube voltmeter was also connected to the input. 

A Deltron Company phase meter was connected to the input and the 

output and the computer components adjusted to values selected from 
'.I 



TABLE I 

COMPU'l'EH COMPONENT VALUES 

·-
o Y/µ Cl 

Component --
3 4 5 

Tl seconds 0.001 0.001 0.001 

T2 seconds o.o5 0.0167 0.001 
-3 0 "'"" 10-3 0.35 X 10-3 

C 0.35xl0 000 X 

K 400 400 400 

Kll 0.2 o.6 1.0 

Kl2 0.2 0.6 1.0 

Kl4 o.7 0.7 0.7 

RIO 0.250 0.250 0.250 

R20 M.tl 0.250 0.250 0.250 

R30 Mfi 0.1 0.1 0.1 

Rll Mil 0 .1 0.1 0.1 

Rl Mil 0.1 0.1 0.1 

cl ffd 0.01 0.01 0.01 

Rl2 Mfl. 0.1 0.1 0.1 

R2 M f). 0.1 0.1 0.1 

c2 J)fd 0.01 0.01 0.01 

Hl3 Mn 0.5 0.5 0.5 

R3 Mfi 1.0 1.0 1.0 

jA 1 1 1 

8 X 107 7 7 
Cl 24 X 10 40 X 10 

13 2.8 X 10 
4 

8 .4 X 10 
4 14 X 10 

4 
r,• 5 5 

0 
,) 

2 X 10 6 X 10 10 X 10 

y 1.2 X 10 
3 

1.6 X 10 
3 

2 X 10 
3 

VCl/Y 258 387 4.47 

Vo/µ. 44'7 774 1000 
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Table I. 'With the computer operating, data for fundamental amJ)li-

tude frequency response curves were taken for three forcing function 

amplitudes. The amplitudes used correspond to the three curves: 

1. Response curve for threshold forcing function. 

2. Response curve for forcing function equal to !u I for " max 

V = 0. 

3. Response curve for solutions that are discontinuous in the 

neighborhood of tp = 90 degrees. 

Experimental Observations 

No great difficulty was experienced in obtaining data for the 

three systems examined. Data were taken for the systems for fre-

quencies below the value of lJ = V a./-r- to 0 = V 6/)J- • The wave form 

was observed throughout a particular run to note any harmonic dis-

tortion that was present. The wave shapes were very nearly sinusoi-

dal. However, some distortion could be observed particularly at 

values of W<V a.fa li!.Dd in the region of resonance. No attempt was 

made to determine the third harmonic components in the system. For 

large values of forcing function amJ)li tude a pheno1mena of some con-

sequence was observed. It was found that forcing amplitudes, for 

which no solutions existed in the vicinity of tp = 90 degrees, pro-

duced a type of low frequency oscillation. The oscillation appeared 

to be of a relaxation type and modulated the fundamental frequency 

at a frequency of 1/9 to 1/12 of the fundamental. Because of the 

nature of the wave shape, no data could be obtained when the oscil-

lation occurred. 

The Hewlett-Packard Com]Jany vacuum tube voltmeters used in the 

observations were checked against a 1/2% General Electric Company 
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voltmeter and found to be within 1% of full scale on all scales used 

in the study. The Hewlett-Packard Company oscillator was checked 

against several similar models by the same company and it was found 

to track closer than could be read. The computer components are 1% 

tolerance components and it was felt that greater precision volt­

meters or frequency checking the oscillators was not justifiable. 



ca.PTER V 

EXPERIMENTAL AND ANALYTICAL RESUL'.rS 

Experimental data. were ob.tained from the computer .by using the 

procedure describe(i in Chapter LV. Three systems w.ere analyzed for 

values of "/r 6/p a. equal to 3, 4 ~ and 5. These systems, subsequently, 

will be referred to as systems 3, 4 1 and 5. Data were obtained for 

three particular forcing function amplitudes: (1) threshold forcing 

function amplitude F = FT ; (2) forcing function amplitude F = iu lm~x 9 

and ( 3) forcing function amplitude F,, lu I • These parti~ul ar . .. max 

forcing amplitudes were phosen to illustrate the analysis. 

Threshold Forcing Function Ampli t1,1de F ;,: F '1' 

For a forcing function amplitude FT~. data are presented :in 

Figures 8., 9~ and 10 .. The experimental an~ analyt;ipa.l data are 

shown on the curves. Goo.d agreement is obtained between the exp~.;ri~ 

mental results and analytical data considering the fact that onl;y a 

first harmonic term is used in the analysis. The region in which 

variation exists is in the region of 90 degrees phase lag~ that is, 

near resonanceo In each of the three curves, points are labeled in= 

dicating the values of 90 degrees phase lag and maximwn amplitudes. 

It may be observed· that these do not fall ,on their ::r•especthn~ loci, 

the backbone curve and the locus of horizontal tangents. 

curves do, howeveri have the same general trend. It should also be 
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noted that better agreement is obtained for system 3 than for system 

5. 'fhis is due primarily to the greater harmonic content for the 

latter system. The per cent harmonic content for the systems at 

maximum amplitude is 0.88% for 3, 1.5% for 4 9 and 1.6% for 5. These 

values were calculated from the analysis in Appendix B where consi­

deration is given to third harmonic components. The third harmonic 

components change the shape of the constant w loci in the u - v 

plane by causing a displacement of the loci to the right. This af­

fects the actual value of FT for a given system. A smaller value of 

FT would be required if the third harmonic components were included 

in the analysis. 

Very good agreement between simulation data and. ex:perimental 

data is obtained in the region of w =Vo./'(. This is a region in 

w-hich very low observable distortion occurred. Slight discrep1ancies 

between the two curves is attributable to instrumentation. 

Forcing Function Amplitude F = 1ul max 

Figures 11, 12, and. 13 illustrate the response curves obtained 

for the three systems for a forcing function of amplitude lu I max • 

The experimental points agree with the analytical curves to a fair 

extent everywhere, except at resonance. l<'igures 12 and 13 particu­

larly indicate the lack of a real solution in the vicinity of 90 de­

grees. The upward curving away from the backbone illustrates this 

point. The analytical response i,s tangent to the backbone whereas 

the experimental curve bends upward away from it. The lack of tan­

gency between the experimental curve and the backbone is attributable 

to the third harmonic. 
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Figures 14, 15, and 16 show the variation of J:>hase angle with 

frequency for the three systems. These figures ind.icate the approach 

of the phase angle to 90 degrees; however, the phase angle is always 

less than 90 degrees. The phase angle's approach to 90 degrees is 

indicative of the response curve's approach to the backbone as dis-

cussed above. The curves indicate the frequency at which jump occurs 

for increasing frequency, but the analytical curves of the first 

harmonic approximation cannot predict this point. The jump point 

for decreasing frequency can, however, be determined and the method 

used is presented in Appendix C. Figures 11, 12, and 13 show the 

intersection of the locus of vertical tangents and the response 

curve. This is the point at which lower jump resonance occurs. 

These frequencies for the three systems are: 

3 

4 

5 

Calculated 
Lower Jump 

Resonance Frequency 

338 

582 

735 

Experimental 
' ' Lower Jump 

Resonance Frequency 

33.2 

571 

722 

Forcing Function Amplitude F ,- jujmax 

Figures 17, 18, and 19 show the response curves for the three 

systems for F > 1u1 • These curves only serve to show that for this . · max. 

amplitude of forcing function the response curve is near the back-

bone; however, it is not tangent to it. The lower jump resonance 

frequencies are as follows: 
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4 

5 

Calculated 
Lower Jump 

Resonance Frequency 

345 

590 

740 

Experimental 
Lower Jump 

Resonance Frequency 

339 

578 

728 

Before jump resonance occurs, for increasing frequency, pro-

40 

nounced oscillations were observed for amplitudes of forcing func-

tion greater than juj • The angular frequency at which these max 

oscillations occurred are labeled on the curves. 



CHAPl'ER VI 

SUMMARY AND CONCLUSIONS 

An approximate harmonic solution to a sinusoidally forced third 

order nonlinear differential equation representing a control system 

has been obtained ~nd, in view of the approximation, the following 

findings have resulte4: 

l. Solutions to the differential equation may be obtained by 

utilizing a u - v plane in a graphical solution. The u - v plane is 

a plane in which components of the forcing function are plotted for 

constant angular frequency. 

2. Jump resonance may be prevented from occurring by limiting 

the input signals to the system to values less than the threshold 

forcing function amplitude. This threshold forcing function ampli-

tude is a function of the system parameters and may be calculated in 

terms of these parameters. Jump resonance will be prevented for 

values of 

in which 

III-5 

with 

b 3/4!3 
- w3eµw2 _ o)3 • 

II-28 

41 
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In this equation w is the IJositive real solution to the cubic 

The positive real value of W satisfying the equation is a frequency 

limitation on the input to the system. 

3. Real solutions cannot be obtained in the immediate vicinity 

of values of~ =90 degrees for values of forcing function greater 

than \ul • 1u1 is a function of the system parameters and it max max 

may be calculated in terms of these parameters. lul is defined to max 

be 

II-31 

in which Wu2 is 

II-29 

4. The frequency at which upper jump resonance occurs for in-

creasing frequency cannot be determined with a first harmonic approxi-

mation; however, the lower jump resonance frequency for decreasing 

frequency can be determined with limited accuracy. 

With these findings in mind, future research must be directed 

to solutions which consider subharmonics and superharmonics in the 

analysis. An analog computer study- in vvhich strip chart recordings 

are made of the amplitudes throug;hout the frequency range of interest 

would be required in such an investigation. From these recordings 

harmonic content could be determined using a Fourier series analysis. 

It is believed b;y the writer that an analysis considering not 

only the third harmonic but also a subharmonic in the solution 
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would lead to quantitative data concerninf1; the u11per ju1111, resonance 

frequency. 
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APPENDIX A 

DERIVATION OF EQUATIONS }i'OR TUE }i'IRS'I' HARMONIC ANALYSIS 

General First Order Approximation 

The system equation to be solved is 

/kY "' + yy 11 + oy' + ay + f3y3 = v cos wt + u sin e,ut A-1 

V 
<.p = arc tan - • u 

A-2 

A-3 

li'or the first a])proximation y = A1 cos wt is assumed to be a steady 

state solution, where w is the angular V<i':loci ty of the forcing 

function and A1 is the fundamental amplitude response. Upon sub­

stitution of the assumed solution into Equation A-1, there results 

fa (0 3 A1 sin wt -'lf"w2A1 cos wt - 6wA1 sin wt+ aA1 cos wt 

f3Af 
+ --;r- (cos 31.0t + 3 cos wt)= v cos wt+ u sinwt. 

A-4 

By collecting terms and forming; coefficients of the A{s there is ob-

tained 

3 
A1w (p.w2 - o) sin wt+ (a-~w2 + ! f3Af )A1 cos wt+ f3!l cos 3wt 

= v cos wt + u sin wt. A-5 

If the third harmonic is considered negligible and coefficients 

of like terms on either side of the equality are equated, there 

results A-6 
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A-7 

In accordance with 'Equation A-2, the response function for the sys-

tern may then be written as 

2 
F" 

The parametric representation, A.-6 and A-7, may be.written in the 

functional form v = f(u) by solving A-7 for A1 ~nd substituting into 

A-60 A1 is given by the expression 

A - , u 
l '-: w y.i.w 2 - O ) 

and 

The expre$_,sion for v is 

or 
3 . 

v = au + bu • 

In this equation the constants a anci b are defined as 

and 

By using Equation A-12 1 Equation A-2 becomes 

or 

3 2 2 2 (au+ bu ) + u = F 

A-9 

A-10 

A-12 

A-13 

A-14 

A-15 

A-16 
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A-7 

In accordance with Equation A-2, the response function for the sys-

tern may then be written as 

The parametric representation , A-6 and A-7, may be.written in the 

functional form v = f(u) by solving A-7 for A1 ~nd substituting into 

A-60 A1 is given by the expression 

3 and· A is 
1 

A __ ._. _u,,___ 
1 - w yA,uJ 2 - 6) 

The expres..~ion for v is 

or 

v = ( a. -rw2 ) ; · : 
w VJ-W - o) 

3 . 
v = au + bu • 

3 
3 R U. 

+-1-' 
4 w3 (y.1))2 _ 6 )3 

In this equation the constants a and b are defined as 

ct -ow'~ 
a = 

u) (/A~2 - 6) 

and 

By using Equation A-12, Equation A-2 becomes 

::S 2 !t 2 (au+ bu ) + u = F 

or 

2 6 4 ~· 2 
bu + 2abu ;,, (1 +a"'"')u 

A-9 

A-10 

A-11 

A-12 

A-13 

A-14 

A-15 

A-16 



47 

Locus of Vertical Tangents 

The locus of vertical tangents may be found by taking the deri­

vative of Equation A-8 with respect to A1 and equating dUl2/dA1 to 

zero. The derivative of expression A-8 with respect to A1 is 

2 dw2 2 I 
The derivative of w with respect to A1 , dAl = (W) ,is zero.· 

This equation may be written in the form 

2 3 2 2. 9 2 2 2 2 
(a --f~ ·+ 4 ~A1 )(a -tw.. + 413A1 ) + w ~w - o) = o. A-18 

The solution for 4f may then be found by first writing the ~quation 

4 + ~ ("' -~ui2) A~+~ ~12 [<"' -l'\.02)2 +w2(µW2 - 6)2] = O. A-19 

2 The solution for A1 is 

2 · 2 2 ~ . ···~ . 
116 ) ( cx--r.oo ) 64 1 2 2 2 . a :!: "§" · ~ - 27 . ~- .(a.~rµ.) ) .+LO (llu>2-o ~ • A-20 

This expression becomes, after algebraic simplification, 

The single valued point on the locus of vertical tangents is the 

point at which the radical vanishes. This point is 

A-22 

Equation A-18 may also be written in terms of uand Vo If Equation 



. . 

or 

2 3 2 
{a. -'fw + T 13A1 ) 

w (!A:W 2 - 6 ) 

I_ a. -"r w 2 + .!_ 13Af J la. -rw2 . + .!, 13Af J + l = 
§ (Uw2"". 6.> . 4 L\)(~w2- ·6U ~ (µw2- 6) 4 w01w2- 6il 

2 The values for a and A1 are 

2 a. -lf ()J and 

Therefore Equation A-24 is 

or 

3b2~4 + 4abu2 + 1 + a 2 = O. 
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0 • A-24 

A-25 

A-26 

·-Equation A-18 represents the locus of vertical tangents in the 

A1 '"'C.0 plane and Equation A-26 is its representation in the u - v 

pl'aneo By writing S = u2 , Equation A-26 is written 

3b2S2 + 4abS + a2 + 1 = 0 A-27 

ana it has the following solution: 

A-28 

or 

A-29 

Locus of Horizontal Tangents 

The locus of horizontal tangents may be found by taking the 

derivative of Equation A-8 with respect ·to w and equating dA1/dw 



49 

to zeroo The derivative of A-8 is 

2 2 3 2 6 dA1 2 3 2 2 dA1 
2A1{a.-,w + 4 ~A1 ><- 21u:> + 4 ~A1 d w) t {a. -l"w + 4'3A1 > 2 du> 

4-30 

+ . .t.~ [2u>2 Cv.w 2 -6X2,u.w) + <,,.w2 - 6)2 2.i }1112 <i,w2 - 6~ !°'..!" = o 

or .. 
-21"(a.-Tw2 + ~~A21 > + ~IA.)2- &X~.02- 6) = o. 4 ,. A-31 

This equation may be solved for A1 and its solution is 

Maximum Value of u for Variable Frequency and v = 0 

From Equations ~-6 and A-7, u may be written as 

u = ! [-t r~ -")J 1/2 w (jw.)2- 6) A-33 

by solving Equation A-6 for Al and substituting into E9uation A-7o 

The positive value must be used to yield a positive value for A1 • 

It is required that :: = O. The derivative of u is 

Upon equating the derivative of u with respect to w to zero 9 there 

is obtained 

1/2 r~ (1'u> 2 - a.~l 2 + -~ ~ · ]j (3).lw -6) = 0 A-35 

or 

-= o. 
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The final result is 

A-37 

or 

A-38 

The solution for w 2 is 

W is the angular frequency at which a maximum value of u is ob-

tainecll for v = 0. 

To find the maximum value of u , the value of w from Equation 

A-39 is substituted into Equation A-33. A1 for maximum u may be 

calculated from Equation A-9. A1 may also be determined by using 

the following procedure: 

A-7 

dA1 
~ = A1 (3f1-w2 - o) + (JA-W3 - ow)dlD = o A-40 

It is required that 

A-41 

and 

A-42 

or 

A-43 

Upon substituting Equation A•43 into Equation A-40, there is obtained 

3~A!(3µw 2 -o) + (,u.w 3 -ow)4rw 

3~A1 = 0 A-44 
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or 

A-45 

The solution for A1 is 

A-46 



APPENDIX B 

AN APPROXIMATE SOLUTION fi'OR FIRST AND THIRD HARMONIC COMPONENTS 

The differential equation to be solved is Equation II-8. 

3 
)J..Y.'"+'"!Y"+oy'+a.y + f3y = Fcos(wt-cp) 

This equation is rewritten as 

II-8 

H =)J..Y"' +-rY"+oy' +a.y+f3y3 -vcoswt-usinuJt=0• B-1 

A periodic function of the form 

y = A1 cos W t + A3 cos 31..C)t + B3 sin 3 wt B-2 

is assumed to be a' steady-state solution. 

The Ritz Averaging Method (3) requires that the following integrals 

be .zero: 

B-3 

B-4 

B-5 

J2Tt 

0 
H[y] sin 3wt dwt = 0 

These expressions upon evaluation yield the following: 
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from B-4, 

from B-5, 

and from B-6, 

l 2 ] + 4 B3 A3 = 0; 

( ex - 97w2 + ~~B~ ) B3 + ( 27JA-W 2 - :.Hi )wA3 

+ ~ ~ LA; B3 + 2Ai B3 J = 0 • 

Equation B-9 may be written as 

(ex - 9'1w2) A3 + (36 - 27)AuJ2)w B3 +~~A~+ ~~Ai A3 = 0 
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B-9 

B-10 

B-11 

3 2 if terms such as A3 and B3A3 are assumed small compared to the other 

terms in the equation. Equation B-10 may then be wri tte~1 as 

B-12 

For ease in lmanipulatin[~ the equations, the frequency coefficients of 

A3 and B3 will be written as 

B-13 

and 

B-14 

Then the equations become 

B-15 

and 

B-16 

Equation B-16 may be solved for A3 , 
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B-17 

Upon substitution into Equation B-15, the solution for B3 is 

- !~A3 
4 1 H-18 

An approximate solution may now be obtained by iteration. In 

Equation B-7 and B-8, A3 and B3. are assumed. zero. As a first aJ>-

proximation, A1 may be found using the u - v plane as was done in 

Chapter II. The value of A1 so found is substituted in Equation 

B-18 and the resulting value for B3 substituted into Equation B-17. 

These third harmonic components may be used to :produce nei,v constant 

(A) loci in a. u - v plane. It n1ay be observed tha.t in Equation :8-8 

for IJosi tive values of B3 the value of u becomes more Jposi ti ve. 

The same is true for values of' v in Equation B-7. Thus, in con-

sideration of the third harmonic components, a point on a locus is 

moved up and to the right. In the vicinity of first harmonic re-

sonance the value of [ul. is reduced. 
'max 

In ord.er to illustrate the significance of the third harmonic 

components, values of A1 were chosen, and A0 and B3 determined for 

three values of angular frequency for the three systems of this 

study. Figures 20 through 28 show the variation of the third har-

monic components for the s;yste.!11'ns. The values of fUlfi;ular frequency 

chosen were at w= Va/"{ ,·w= ~\fa./·-( and near resonance. T.lu~ value 

of F used was F = lul The value of w = 1
3 \f a/--r 11vas a Yery de-

max ' 

liberate choice. fl'or this value of w the third harmonic co.sine 

coefficient is zero and the value of B3 is negative. It is, how­

ever, to be noted that its magnitude is sufficiently large to 
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invalidate one of the assumptions above. (The third harmonic compo-

nents' products are small.) 

The approximate third harmonic percentages for F = ~lmax are 

as follows: 

An!jular Freguenci 3 4 5 

W= ! V a./-r 4 4.5 6.0 

W= V a./"f 1.2 3.0 3.6 

Near Resonance 2.0 2.0 2.0 



APPENDIX C 

LOCUS OF VERTICAL TANGENTS IN THE u - v PLANE 

In Figures 29, 30, and 31 are shown the u - v plane constant 

loci for the three systems examined in this research. A part of the 

locus of vertical tangents is also plotted on these curves. The lo-

cus of vertical tangents is used to determine the point at which 

lower jump resonance occurs. The three circles drawn on the figures, 

which represent the forcing function am1~li tudes F = FT , F = lul , . max 

and. F > IUlmax , are used to determine the response curves. The inter-

section of a constant w locus with a circle determines a point 

(u1, v1). The amplitude A1 is found by using the equation 

• 

The intersection of a circle with the locus of vertical tangents de-

termines the point at which lower jump resonance occurs. If this 

point of intersection is (u2 , v2), then the point u~ is given by 

Equation III-3 and is 

C-1 

In this expression a and b determine a particular locus on which the 

point ( u2 , v2 ) lies. The point v2 must satisfy the expression 
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If Equation C-1 is solved for b' the result 

1 
[- 2~ + '1 a 2 - 3 b 

:::: 3u2 
2 

F'rom Equation C-2 the ,solution for a is 

or 

a:::- 2 
- bu • 2 
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is 

l C-3 

C-4 

C-5 

By substituting b from Equation C-3 into Equation C-5, the result 

is 

a = 2a 1 f 2 ---a -3 3 3 . C-6 

Upon simplification of the expression, Equation C-6 becomes 

(v2J 2 1 3 - + 
a = 

u2 
C-7 

2 .!2.. 
u2 

or 

1 u2 
+- -· 2 v2 

C-8 

The positive real root of the cubic 

3 2 
aµuJ +-Yw - aow - a. = o II-41 

is the lower jump resonance angular frequency. 



APPENDIX D 

SYMBOLS 

A1 Fundamental amplitude response, cosine coefficient 

A3 Third harmonic amplitude response, cosine coefficient 

Alu Fundamental amplitude at maximum u for v = O 

C Capacitance, farads 

c Nonlinear coefficient 

E(s) Laplace transform of system error 

e Instantaneous system error 

F Forcing function, Kf(t)/T1T2 

FT Threshold forcing function 

f(t) Instantaneous system input 

f(y) Instantaneous output of nonlinear device 

G(s) Transfer function 

H [y] Differential equation of Ritz Averaging Method 

K Gain 

R Resistance, ohms 

T1 Time constant, seconds 

T2 Time constant, seconds 

u Horizontal component of forcing function 

lul Maximum value of u for variable freq_uency and v = 0 max 

v Vertical component of forcing function 

Y(s) Laplace transform of system response 
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y Instantaneous system reJ~on~e 
I 

~ Coefficient of response function, K/T1T2 

~ Coefficient of nonlinear function, Kc/T1T2 

Y Coefficient of second derivative of response function, 
( T1 + T2) /T1 T2 

6 Coefficient of first derivative of response function, 
(l/T1T2) , 

µ. Coefficient of third derivative of response function 

<p Angle of lag, of system response 

c.J Angular frequency, radians per second 

wu Angular frequency for maximum u, radians !)er second 
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