71-27,648
TATTERSALL, James Joseph, 1941A GENERALIZATION OF CONVEXITY.

The University of Oklahoma, Ph.D., 1971 Mathematics

University Microfilms, A XEROX Company , Ann Arbor, Michigan

THE UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE

A GENERALIZATION OF CONVEXITY

A DISSERTATION
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

BY
JAMES JOSEPH TATTERSALL
Norman, Oklahoma
1971

A GENERALIZATION OF CONVEXITY

TABLE OF CONTENTS

Chapter Page
0. INTRODUCTION 1
I. (M, N) CONVEXITY 3
II. M-CONVEXITY 30
III. 4-CONVEXITY 70
LIST OF REFERENCES 84

ACKNOWLEDGEMENT

I wish to express my sincere thanks to Dr. David C. Kay for his time, assistance, guidance, and patience in the preparation of this thesis. Indebtedness is also acknowledged to the faculty at the University of Virginia for a good foundation in Mathematics. I wish to thank Mrs. Mary E. Stine and Dr. E. Kundert for their wise counsel. Financial assistance from the University of Okiahoma and the National Science Foundation is gratefully acknowledged. Finally, I want to express my deepest appreciation to my parents for their support and encouragement, and especially to my wife, Terry, without whose help I could never have finished my work.

Convex sets were first studied systematically by Brunn [2], in 1887. There has been interest recently in the study of generalizations of converity, the majority of these being algebraic or topological in nature. Several of these are mentioned in [5]. It is the author's opinion that while such examples are sseful in studying the structure of convex sets, they tend to lead one away from the geometric intuition that convexity offers.

In this paper, we study a generalization of converity where one does not require the join of each pair of points in the set to lie in that set, but, instead, one requires some subset of each $m \geq 2$ points to determine joins which belong to the set. This concept is but a special case of an even more generalized converity proposed by J.E. Allen [1].

The precise definition of our generalization of convexity appears in the next chapter along with several necessary basic set theoretic, algebraic, and topological properties.

A Helly order for one class of generalized convex sets is determined and several finite convex covering theorems are proved. By a convex covering of a set S we mean a family of convex sets whose union is S.

In Chapter II, we characterize the kernel of a certain family of m-convex sets, answer a conjecture posed by Danzer, Grünbaum, and Klee, prove a generalized Helly theorem, and introduce the notion of local nonconvexity. The later concept leads us to several representation theorems for m-convex sets.

Valentine's theorem states that a closed, connected 3-convex set in E^{2} is the union of three or fewer closed convex sets. Guay has extended this result in showing that a closed 4-convex set in E^{2}, which is not simply-connected, is the union of five or fewer closed convex sets. In Chapter III, we show that any closed 4 -convex set in E^{2} is the union of nine or fewer closed convex sets.

Except for one or two symbols, the notation used in this paper is consistent with that used by Valentine [18].

CHAPTER I

$$
(M, N) \text { CONVEXITY }
$$

The results of this chapter apply generally to subsets of a linear topological space E, as defined in such sources as Kelley and Namioka [11], while others will apply only to finite dimensional spaces, denoted $E^{d}(d=$ dimension). Some of the more combinatorial results will apply even to subsets of a vector space over an ordered field. The segment, or join, between two points x and y in E is the set of all points in E of the form $\alpha x+(1-\alpha) y$, where $0 \leq \alpha \leq 1$, denoted xy. In order to simplify later notation, we let the symbol C_{m} stand for the number of combinations of m things taken two at a time. That is, $C_{m}=m(m-1) / 2, m \geq 1$. Familiarity with the basic properties of conver sets, as found in [18], is assumed. In this chapter the basic combinatorial, set theoretic, and linear properties of (m, n) convex sets will be developed, the Helly order for the family of (3.¿) convex sets in the plane will be discussed, and several convex covering theorems for (m, n) convex sets will be derived.
1.1. DEFINTTION: A set S is said to be (m, n) convex provided $|s| \geq m$ and if for each m distinct points of s at
least n of the possible C_{m} joins between these m points are contained in S. (It is understood that m and n are nonnegative integers, with $0 \leq n \leq C_{m}$, and $m \geq 2$). A set is said to be exactly (m, n) convex iff it is (m, n) convex but not (m,n + l) convex (a simple combinatorial argument shows that for $n>0$ this is equivalent to saying that a set is exactly (m, n) convex iff it is (m, n) convex but neither (m $-1, n$) nor $(m, n+1$) convex). An (m, l) convex set is referred to simply as an m-convex set, or a set having property P^{m}. An exactly m-convex set is one which is m-convex but not (m - 1)-convex. As in Kay and Guay [9], we make the convention that no nonempty set is l-convex. Thus, a convex set having more than one point is exactly 2-convex.

In considering the preceding definition, we find that $(2,1)$ convexity is ordinary convexity, and more generally any (m, C_{m}) convex set for $m>2$ is convex. It is a straightfoward application of the definition of (m, n) convexity to show that if S is (m, n) convex, then S is also (m, k) convex for $0<k \leq n$, and therefore m-convex.
1.2. PROPOSITION: If S is an (m, n) convex set with $n>C_{m-1}$: then S is connected.

Proof. Suppose that S is not connected: then it has at least two components, say A and B. Choose any m - 1 points In A and a point in B. But there exists at most C_{m-1} joins between these m points, and thus $n \leq C_{m-1}$, a contradiction. 0

By considering a set consisting of a convex set and an
isolated point, we can see that the bound in 1.2 is best possible.

The next proposition shows that the bound used in 1.2 is also large enough to ensure convexity for a closed (m, n) convex set, and thus 1.2 becomes a corollary. For conventence, $\hat{\mathbf{r}}$ will stand for the set $\{1,2, \ldots, r\}$, where r is any natural number.
1.3. PROPOSITION: If S is a closed (m, n) convex set for which $n>C_{m-1}$, then S is convex.

Proof. This result will be immediate if it is estabIlshed that for any integer $m \geq 2$ a closed ($m+1, C_{m}+1$) convex set is $\left(m, C_{m-1}+1\right.$) convex. Let s be a closed $(m+1$, $C_{m}+1$) convex set in E, and select x_{1}, \ldots, x_{m} any m points in S. Suppose that there are not more than C_{m-1} joins determined by these m points. Let y be any other point in S, and suppose there are x joins of the type $y x_{i}$, for $i \in \hat{m}$, in S. We have $r+C_{m-I} \geq C_{m}+1$ by hypothesis, which implies that $r \geq m$. Therefore $y x_{i}$ is in S, for all $1 \in \frac{A}{m}$ and for any y in $S \backslash\left\{x_{1}, \ldots, x_{m}\right\}$. Since S is closed and connected (by 1.2) and we may take y in an arbitrary neighborhood of x_{1}, we have $x_{i} x_{j}$ in S for any i and j in \hat{m}, a contradiction. θ

If S is a closed (m, n) convex set which is also connected, then Kay has shown that if $n>\frac{z}{i}(m-1)^{2}$, then $S 1 s$ convex. It can be seen that this result is best possible by considering two intersecting lines.

In an (m, n) convex set, if $n>C_{m-1}$ then in the proof of 1.3 we see a relationship between the given (m, n) convex-
ity of a closed set and a lower order convexity for the same set. In the direction of higher order converity for an (m, n) convex set we offer the following proposition.
1.4. PROPOSITION: An (m, n) convex set is $(m+k, n+k)$ convex, where $n>0$ and k is any natural number.

Proof. Consider any $m+k$ points $p_{1} \ldots \ldots, p_{m+k}$ in S. Among p_{1}, \ldots, p_{m} there are at least n joins. Suppose that $p_{i} p_{j}$ is one of them, where $1 \leq i<j \leq m$. The points in the set $\left\{p_{1} \ldots \ldots, p_{m+1}\right\} \backslash\left\{p_{i}\right\}$, determine n joins, none of them being the join $p_{1} p_{j}$. Let $p_{r} p_{s}$ denote one of these joins. Now there are at least n joins among the m points $\left\{p_{1} \ldots \ldots, p_{m+2}\right\}$ $\left\{p_{i}, p_{r}\right\}$, none of these joins being $p_{i} p_{j}$ nor $p_{r} p_{s}$. Continuing this process, we obtain $n+k$ joins between the given $m+k$ points in S, and we have shown that S is ($m+k, n+k$) convex. \downarrow

The necessity of the restriction $n>0$ in 1.4 is evident when one considers the set M consisting of four isolated points, M is $(3,0)$ convex and also $(4,0)$ convex, but not $(4,1)$ convex. The subset in E^{2} defined by $m-1$ segments emanating from a single point is an example of a connected set which is (m, I) convex and ($m+k, k+1$) convex but not $(m+k, k+2)$ convex for $k=1, \ldots, m-1$. This shows that 1.4 is best possible for the case when $n=1$.

It is not hard to construct examples to convince oneself that the set of (m, n) convex sets, in E, for fixed m and n is not closed under intersection, union, set differ-
ence, complementation, or cross product in E X E. This is to be expected, since even convex sets in general are not closed under union, set difference, or complementation. However, certain set theoretic properties of (m, n) conver sets are true. In fact, as a consequence of the definition of (m, n) convexity, we have that the union of k disjoint (m, n) convex sets is exactly ($k(m-1$) $+1, n$) convex.

The next result together with Zorn's lemma will be used later to establish the existance of certain maximal m-convex subsets of a set.
1.5. PROPOSITION: The union of the members of a family of (m, n) convex sets which is directed by ∂ (the union of any two members is contained in some third) is an (m, n) convex set.
proof. Let $\mathcal{Z}=\left\{C_{\alpha} ; \alpha \in A\right\}$ be such a family and consider $U\left\{C_{\alpha}, \alpha \in A\right\}=B_{0}$ Select any mpoints in B, say p_{1}, \ldots, p_{m}. Suppose p_{i} is in $C_{\alpha_{i}}$, for if 血. By induction there is a set C_{β} such that $C_{\alpha_{1}} \subset C_{\beta}$ for all i $\varepsilon \hat{m}$. Therefore $p_{1}, \ldots \ldots p_{m}$ are in C_{β}. Now C_{β} is (m, n) convex and hence the p_{1} determine at least n joins in C_{β}; since $C_{\beta} C B$, they determine at least n joins in B. Thus B is an (m, n) conver set. 0

The most singular difference between general (m, n) convex sets and convex sets is closure under intersection. A combinatorial result may be stated, where the underlying assumption is that the intersection under consideration contains at least m points. Here the square brackets will denote
the greatest integer function. An easy preliminary result is that the intersection of two (m, n) convex sets is ($m, 1$) convex if $n \geq\left[\frac{1}{2} C_{m}\right]+1$. By considering the two $(3,2)$ convex sets X and Y indicated in Figure l.l, we see that this result is best possible (dashed Iines indicate the deletion of boundary points).

Figure 1.1
More generally, we have:
1.6 PROPOSITION: FOr each integer $k \geq 2$, the intersection of $k(m, n)$ convex sets is ($m, 1$) convex provided $n \geq$
$\left[C_{m}(k-1) / k\right]+1$.
Proof. Let $C=A_{1} \cap A_{2} \cap \ldots \cap A_{k}$, where A_{1} for $1 \varepsilon \hat{k}$ is an (m, n) convex set with $n \geq\left[C_{m}(k-1) / k\right]+1$. Choose any m distinct points in C. It is obvious that among these m points in A_{1} we can be missing at most $C_{m}-\left(\left[C_{m}(k-1) / k\right]+1\right)$ joins. Regarding this as a matrix, with a column for each set A_{1} and a row for each of the possible C_{m} joins, labeling these joins consecutively from 1 to C_{m}, we put a one in the $a_{i j}$-th position if the i-th join is in the set A_{j} and zero otherwise. We need to show that if we put at most C_{m} -$\left(\left[C_{m}(k-I) / k\right]+1\right)$ zeros arbitrarily in each column, then there is still one row free of zeros, or equivalently that,
$k\left(C_{m}-\left[C_{m}(k-1) / k\right]-1\right)<C_{m} \leq k\left(C_{m}-\left[C_{m}(k-1) / k\right]\right)$. However, this inequality is an immediate consequence of a property of the greatest integer function, namely, $[x] \leq x<[x]+1$. (The value on the right of (1.1) shows that our bound is best possibled. Therefore, under the hypothesis given, the intersection of $k(m, n)$ convex sets is (m, I) convex. \rangle

To establish several basic algebraic properties of (m, n) convex sets we recall the well known result that if A and B are nonempty subsets of E and α and β are scalars then $\operatorname{con} \nabla(\alpha A+\beta B)=\alpha(\operatorname{con} \nabla A)+\beta(\operatorname{con} \nabla B)$, where con \bar{A} denotes the convex hull of A. This result implies that the scalar multiple of a convex set is convex and the sum of two convex sets is convex. If we are careful with the value for n, we have some idea what the sum of two (m, n) convex sets is like. It is straightfoward to show that if A and B are (m, n) convex sets with $n>\left[\frac{1}{2} c_{m}\right]+1$, then the sum $A+B=\{a+b: a \in A, b \in B\}$ is ($m, 1$) convex. However, if we wish to conclude that the sum is (m, n) convex for general values of m and n, then it is sufficient to assume that one of the summands be convex, as the following result shows.
1.2. PROPOSITION: If C is convex and S is (m, n) convex, then for any two scalars α and $\beta, \alpha C+\beta S$ is (m, n) conver.

Proof. Let $A=\alpha C+\beta S$. Choose any m distinct points In A and denote them by $a_{k}=\alpha c_{k}+\beta s_{k}$, where $c_{k} \in C, s_{k} \in S$; and $k \in \hat{m}$. If $s_{i} s_{j}$ is one of the guaranteed joins in S, then
$a_{1} a_{j} \subset A$. Since for $0 \leq \gamma \leq 1$ we have

$$
\begin{aligned}
\gamma a_{1}+(1-\gamma) a_{j} & =\gamma\left(\alpha c_{i}+\beta s_{i}\right)+(1-\gamma)\left(\alpha c_{j}+\beta s_{j}\right) \\
& =\alpha\left(\gamma c_{i}+(1-\gamma) c_{j}\right)+\beta\left(\gamma s_{i}+(1-\gamma) s_{j}\right) \\
& \varepsilon \alpha C+\beta S .
\end{aligned}
$$

Since we have at least n joins in S, we must have at least n joins in A. Hence, A is (m, n) convex. \vee

An immediate consequence of 1.7 is that the translate of an (m, n) convex set is (m, n) convex. This fact together with the next result shows that in any real vector space, (m, n) converity is an affine invariant.
1.8. PROPOSITION: If S is an (m, n) convex set in a real vector space V and T is a Inear transformation over V, then $T(S)$ is (m, n) convex.

Proof. Let J_{1}, \ldots, J_{m} be any m distinct points in $T(S)$. There exist m distinct points x_{1}, \ldots, x_{m} in S such that $y_{i}=$ $T\left(x_{1}\right)$, for if \hat{m}. Since S is (m, n) convex there are at least n joins among the points x_{1}, \ldots, x_{m}. Suppose one of them is $x_{i} x_{j}$, where $1 \leq 1<j \leq m$. Now for $0 \leq \alpha \leq 1$, we have

$$
\begin{aligned}
T\left(\alpha x_{i}+(1-\alpha) x_{j}\right) & =\alpha T\left(x_{i}\right)+(1-\alpha) T\left(x_{j}\right) \\
& =\alpha y_{i}+(1-\alpha) y_{j} .
\end{aligned}
$$

That is, $y_{i} y_{j}$ is contained in $T(S)$. Hence, since there are at least n joins in S, there will be at least n joins in $T(S)$, among the corresponding points. Thus $T(S)$ is (m, n) conver. θ

Using the techniques of the last two propositions it can be shown that the Cartesian product of a convex set and an (m, n) convex set is (m, n) convex, and the intersection of
a convex set with an (m, n) convex set is (m, n) convex.
Several topological properties of (m, n) convex sets, listed below, will be useful in establishing later results. All of these properties are straightfoward for convex sets. Recall that a set S is polygonally connected if for any x and y in S there exists a finite set x_{1}, \ldots, x_{m} of points in S, such that $x_{1}, x_{1} x_{2}, \ldots, x_{m=1} x_{m}, x_{m} y$ are contained in S. Let cl S denote the closure of S in E. The following definition will introduce another concept which will be userul.
1.9. DEFINITION: A set S is said to be relatively (m, n) convex with respect to a set T if for each m points $x_{1} \ldots \ldots x_{m}$ in S there exist n joins $x_{1} x_{j}$ determined by these points such that for each such $1 \neq j$ the open segment $\left(x_{i} x_{j}\right)=x_{i} x_{j}$ $\left\{x_{i}, x_{j}\right\}$ is a subset of T. (We use the term absolute (m, n) convexity to designate ordinary (m, n) convexity of a subset of T independent of T, and relative convexity for relative (2,1) convexity.) S is said to be exactly (m, n) convex with respect to T iff it is (m, n) convex but not $(m, n+1)$ convex with respect to T, and S is exactly m-convex with respect to T iff it is m-convex but not (m-1)-convex with respect to T. (Again, we assume that no nonempty subset of T is l-convex relative to T.)

Observe that if a set S is (m, n) convex it is (m, n) conver relative to any set T containing it, and (m, n) converity for subsets of a convex set T is equivalent to relative (m, n) convexity with respect to T.
1.10. PROPOSITION $1 f$ is an (m, n) convex set in E, then cl S is (m, n) convex with respect to cl S.

Proof. Select any m points x_{1}, \ldots, x_{m} in $c l s$, and suppose that $x_{1} x_{j} \not \subset 01 \mathrm{~S}$ for at least $C_{m}-n+1$ pairs $(1, j)$, where $1<j$. Let $U_{j}\left(x_{1}\right)$ and $U_{1}\left(x_{j}\right)$ be neighborhoods of x_{1} and x_{j} respectfully with the property that for $u \in U_{j}\left(x_{i}\right)$ and $\nabla \in U_{i}\left(x_{j}\right)$ uv $\notin S$. Let $U_{i}=\cap_{j} U_{j}\left(x_{i}\right)$, where j is such that $x_{i} x_{j} \phi c l$ S. Now from the construction of the U_{i}, if y_{i} is a point in $S \cap U_{i}, i \varepsilon \hat{m}$, then $y_{i} y_{j} \notin \mathrm{~S}$. Hence, for at least $C_{m}-n+1$ pairs (i, j) where $i<j, y_{i} y_{j} \notin S$, contradicting the (m, n) convexity of $S .0$

It is natural to ask, if S is an (m, n) convex set in E, whether the topological interior of S is (m, n) convex. At this writing, however, a proof of the conjecture has not been found. The truth of the conjecture $1 s$, of course, well known for convex sets.

Several useful concepts are now introduced.
1.11. DEFINITION: FOT any point x in $S C E$, let $S_{x}=\{y \in S:$ zyCS\}. S_{x} is called the \bar{x} star of S. The kernel of a set S, denoted by ker S, is defined as the set $\left\{z \in S: S_{z}=S\right\}$. A set S in E is called starshaped if there exists a point x in S with the property that $S_{T}=S$. A set S is called locally starshaped iff each point x in S lies in some neighborhood whose intersection with S is starshaped with respect to x.
1.12. DEFINITION: For any point x in $S \in E$, let $S^{x}=\{y \in S:$
$x y \notin S\}$. S^{X} is called the x anti-star of S. (Note that if S is closed then S^{X} is relatively open for any $X E S$ and if S is m-convex then S^{X} is (m - l)-convex with respect to S).

It is shown in [9] that every closed m-convex set is locally starshaped and that in a finite dimensional linear space every connected m-convex set is polygonally connected. Since every (m, n) convex set is k-convex for some $k \geq 2$, we have both of these results valid for (m, n) convex sets.

We frequently have occasion to deal with exactly (m, n) convex sets. One may generate such sets by using the following constructive proposition.
1.13. PROPOSITION: Given the nonnegative integers $m \geq 2$, n, r, and k such that:

1) $0 \leq n \leq C_{m}$,
ii) r is the least nonnegative integer such that $n+r$ is in the set $\left\{C_{s+1}: s=1,2, \ldots\right\}$,
iii) $k=\frac{1}{2}(2 m-1-\sqrt{8(r+n)+1})$,
then the regular ($m-k$)-gon (interior included), with r adjacent open sides removed, together with k isolated points is an exactly (m, n) convex set.

Proof. Consider the regular ($m-k$)-gon M with the k isolated points as described above. To show that this set is exactly (m, n) convex, we must prove it is (m, n) convex and obtain m distinct points which determine exactly n joins in this set. Choose the k isolated points and the $m-k$ vertices of M. The only joins in the set determined by these points cor-
responds to the C_{m-k} joins between the vertices of M, minus the r deleted open sides. Hence, the number of joins in the set determined by these m points is $C_{m-k}-r=$ $\frac{1}{2}(m-k)(m-k-1)-r=n$ (by use of i11). By changing the choice of the m points it is obvious that the number of joins in Mincreases. Thus, m arbitrary points determine at least n joins in the set, and some m determine no more than n. Therefore, the set described is exactly (m, n) convex., $\boldsymbol{\gamma}$

In connection with the hypothesis of the theorem, it is desirable to show that such a choice of integers r and k satisfying (ii) and (iii) is always possible, and that $m-k \geq r$ (and that $m-k \geq 2$ if $r \leq 1$). Choose s the smallest integer such that $n \leq C_{s+1}$; then put $n+r=C_{s+1}$ (thus satisfying the choice of $r \geq 0$ in (ii)). Now we have

$$
n+r=\frac{1}{2} s(s+1)
$$

or

$$
8(n+r)+1=(2 s+1)^{2}
$$

It follows by the definition of k in (iii) that $k=m-s-1$, and thus k is an integer. To show that $k \geq 0$, observe that our choice of s demands that since $n \leq C_{m}, s+1 \leq m$. Finally, to show that $m-k \geq r$ (and ≥ 2) note that $s=$ $m-k-1$ and from the definition of $s, n \geq c_{s}+1$, hence, we have

$$
\begin{aligned}
c_{s+1} & =c_{s}+s \\
n+r & =c_{s}+m-k-1 \\
& \leq(n-1)+m-k-1
\end{aligned}
$$

Or,

$$
r \leq m-k-2
$$

Hence, $m-k \geq r+2$.
Krasnossel'skil's theorem states that if s is a compact, connected set in a normed linear space of dimension n and for each set of $n+1$ points $x_{1} \ldots x_{n+1}$ in S there is at least one point y in S such that $y x_{1}$ is contained in S for 1 in $n+1$, then S is starshaped. A condition that would guarantee a subset of E^{d} to be the union of at most two starshaped sets was given by Koch and Marr [12]. For m-convexity it is easy to show that every m-convex set is the union of $m-1$ or fewer starshaped sets, as in [6]. Given an (m, n) convex set, it too can be represented as a finite union of starshaped subsets. In 1.14 we not only get a bound, but we also get Guay's result for the case $\mathrm{n}=1$.
1.14. PROPOSITION: If S is an (m, n) convex set in a Iinear space with $k=C_{m}-n$, let r be determined by $C_{r} \leq k<C_{r+1}$ for $k \geq 1$. Then S is the union of r or fewer starshaped sets.

Before proceeding with the proof, let us establish a lemma. For convenience, we adopt the terminology that a subset $V=\left\{\nabla_{1}, \ldots, v_{t}\right\}$, of a set S is visually independent relative to \leq if for all 1 and j such that $1 \leq i<j \leq t$, $\nabla_{i} \nabla_{j} \nmid S$. We say that a point x can see a point y via S iff the open segment (xy) belongs to S.
1.15. LEMMA: An $\left(m, C_{m}-1\right)$ convex set S is the union of
two starshaped sets. If $m>3$, then S is the union of two convex sets.

Proof. Let S be an $\left(m, C_{m}-1\right)$ conver set, $m>2$ (the conclusion of the lemma is false if $m=2$). Consider the case where $m=3$. If for any two points x and y in S, we have xyCS, then S is convex, and the result follows. Suppose that there exists x and y in S such that $x y \& s$. For any other point z in S, we have xzCS , for otherwise, the set $\{x, y, z\}$ would consist of three points in S with only one join in S. Hence $S=S_{x} \cup\{y\}$, and the lemma is true for this case.

Let $m>3$, and suppose that S is not convex. Hence, there exist u and v in s such that $u v \$ s$. Suppose that there are points w and z in S such that $w z \phi$, where (w, z) and (u, v) are distinct pairs. Consider the case where the four points are distinct. If we choose u, ∇, w, z, and $m-4$ other points in S, then we have m points in S with at most $c_{m}-2$ joins between them, a contradiction of the ($m, c_{m}-1$) convexity of S. If $w=u$ or v, we get a similar contradiction by considering u, v, z, and $m-3$ other points in S. Similarly if $z=u$ or ∇. Hence, given a pair (u, z) of points in S distinct from (u, ∇), wzeS. For any x in S, therefore, mucs (obviously, uvebd S). Hence $s=S_{u} \cup\{\nabla\}$. From the fact that uv is the only join not contained in S, S_{u} is conver, thus completing the proof. θ

Proof of 1.14. Suppose that r is determined by $C_{r} \leq k<C_{r+1}$. Assume $k \geq 1$. There cannot exist $r+1$
visually independent points in S, for othermise any other m-r - 1 points of S determine with these $r+1$ points a set of m points in S missing at least $C_{r+1}>k$ joins in S, a contradiction to the $\left(m, C_{m}-k\right)$ convexity of S. Therefore, assuming S is not convex there exists a largest positive integer t with $2 \leq t \leq r$, such that there exists a set of t visualiy independent points in S. Let $p_{1} \ldots . . p_{t}$ be such a set. It is a straightfoward application of the maximality of t to see that for any other point x in S, we must have $x p_{i} \subset S$, for at least one value of i in $\hat{t}_{.}$Therefore $s=S_{p_{1}} \cup \cdots \cup S_{p_{t}}$, and the proof is complete. γ

It was pointed out in 1.15 that $\left(m, C_{m}-1\right)$ convex sets are expressible as the union of two convex sets. Sets of this type are also starshaped, since by 1.2 they are connected. In fact, if s is $a(m, n)$ conver set in E^{d} with $n>C_{m-1}$ one can show that int S, core S, and In S are all convex (see Valentine [17, p. 11])。

One useful description of (m, n) convex sets, and most difficult to obtain, is in terms of finite unions of convex sets. For general (m, n) convex sets with n sufficiently large such characterizations are easy to obtain. For example, if S is closed and (m, n) convex with $n>C_{m-1}$. then S is conver (by l.3). However, if S is not closed, then S is still representable as a finite union of conver sets in some cases. Prior to characterizing these (m, n) convex sets with $n>C_{m-1}$, we have the next result, which
exhibits a strong topological property characteristic of such sets.
1.16. PROPOSITION: Let A be an (m, n) convex set with $n>C_{m-1}$. If points x, y, and z in A are such that $x y$ and $x z$ ile in A, then int (conv\{x,y,z\}) A, where the interior is taken relative to the plane of x, y, and z.

Proof. Since there is nothing to prove if x, y, and z are collinear, assume they are not. Choose w in (zy) and u in $(x z)$ and suppose that there is a v in (wu) such that ∇ is not in A. It is clear from the (m, n) convexity of A that there can be at most a finite number of points in (wu) ПA. So choose $m-1$ points in (wu) $\cap C(A)$, where $C(A)$ denotes the complement of A relative to E, say $q_{1} \ldots . . q_{m-1}$. Let $z_{1}=z q_{i} \cap(x w)$, for is m-1. Now $z_{1} z_{1}, \ldots, z_{m-1}$ is a set of m points in A determining at most $C_{m}-(m-1)=C_{m-1}$ joins in A, a contradiction. Hence, there cannot exist such a v in (wu) $\cap C(A)$ and it follows that int (conv\{x,y,z\}) CA. \rangle

It should be mentioned here that in stating 1.16 for $(3,2)$ convex sets, $(3,2)$ convexity implies that xy Uxz \subset A. It should also be pointed out that since the rather large lower bound on $n\left(n>C_{m-1}\right)$ implies that the closure (and therefore the interior) of S is convex, the nonoonvexity characteristics of such a set are derived from properties of the boundary.
1.17. PROPOSITION: A planar, bounded (m, n) convex set
S, with $n>C_{m-1}$, may be expressed as the union of k convex sets, where $k \leq \frac{1}{2}(1+\sqrt{8 m-15})$. The result is best possible.

Proof. We shall make use of a well-known theorem of graph theory: If G is any graph without circuits (that is, a tree), then the vertices of G can be colored with two colors.

The proposition is trivial for all cases except when int $S \neq \varnothing$, and it readily follows that int S is convex and cl $S=c l($ int $S)$. Suppose p and q are points in bd S such that $p q \notin S$. Then $p q C$ bd S. Since S is bounded, let $J=x y$ be the maximal segment in cl s containing $p q$. Thus, xy $\not \subset s$ and hence xyCbd S. Since xy contains no infinite subset of S (by the $\left(m, C_{m-1}+1\right)$ convexity of S), then $x y \cap S$ consists of a finite set of points, say

$$
x_{1}=p, x_{2}=q, x_{3}, \ldots, x_{r}, \quad r \geq 2
$$

Clearly, $r<m$, for otherwise s contains m points none of whose joins belong to S. Choose $m-r$ distinct points x_{r+1}, $\ldots x_{m}$ from int S and consider x_{1}, \ldots, x_{m}. These points determine no more than $C_{m}-C_{r}$ joins belonging to S, so $C_{m-1}+1 \leq$ $n \leq C_{m}-C_{r}$. The inequality $r \leq \frac{1}{2}(1+\sqrt{8 m-15})$ follows. Since this argument applies to all the maximal segments J_{1}, J_{2}, \ldots lying in bd S and containing points not in S we may let. $k \leq$ $\frac{1}{2}(1+\sqrt{8 m-15})$ be the maximal cardinality of the sets $J_{1} \cap s$, $1 \geq 1$.

If $T=b d s \backslash U_{i \geq 1}\left(J_{1}\right)$, where $\left(J_{1}\right)$ denotes the open segment J_{1}, let A_{1}, A_{2}, \ldots denote the components of T since it lies in the boundary of a convex set, each component is either a single point or an arc. There are two cases.

Case 1: At least one component A_{1} is an arc, or there exist infinitely many components A_{i}. If $E\left(A_{1}\right)$ denotes the endpoints of A_{1}, define the graph $G(T)$ having as vertex set $V=S \cap\left[E\left(A_{1}\right) \cup E\left(A_{2}\right) \cup \cdots\right]$ and as edge set those pairs (x, y) in $V X V$ such that $X y \not \subset S$. Suppose $G(T)$ contains a circuit $x_{1}, \ldots, x_{n+1}=x_{1}$, with $\left(x_{1}, x_{1+1}\right), 1 \leq 1 \leq n$, edges in $G(T)$. In this case, the points $x_{1}, \ldots, x_{n+1}=x_{1}$ lie in bd s and determine the joins $x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n} x_{1}$ not in S. Clearly, bd $s=U_{1=1}^{n} x_{1} x_{1+1}$. But then T could have at most n components and none of them is an arc, a contradiction. Hence, $G(T)$ is a tree and can be colored with two colors. Therefore, $V=V_{1} \cup V_{2}$, where V_{1} and V_{2} are the vertices of empty subgraphs of $G(T)$. Define $O\left(A_{1}\right)=A_{1} \backslash E\left(A_{1}\right)$ for $1 \geq 1$ and consider the set

$$
c_{j}=V_{j} \cup(\text { int } s) \cup\left[U_{i \geq 1} O\left(A_{1}\right)\right], \quad j=1,2
$$

We show that each C_{j} is convex. Let $x \in C_{j}$ and $y \in C_{j}$. If $z \varepsilon$ $x y$ nint S, then since each interior point of S can see bd S Via int S, it follows that $(x y)=(x z] \cup[z y) \subset$ int S. Thus, assume $x y C$ bd S. Then if $x y C S, ~ x y ~ l i e s ~ i n ~ o n e ~ o f ~ t h e ~ c o m-~$ ponents A_{1} of T, and $(x y) \subset O\left(A_{1}\right)$ or $x y \subset C_{j}$. Finally, if $x y \not \& S$ then $x y$ belongs to one of the segments J_{1} and $\{x, y\} \cap\left[U_{i \geq 1} O\left(A_{1}\right)\right]=\varnothing$ implies $\{x, y\} \subset V_{j}$ or xyCs, a contradiction.

It remains to consider the points of $\left(J_{1}\right) \cap S$. For convenience, let $J_{l} \cap s$ have maximal cardinality k among the $J_{1} \cap s$, and suppose $\left(J_{1}\right) \cap s=\left\{x_{1} \ldots, x_{k-2}\right\}$. There is an onto mapping $f_{r}:\left(J_{1}\right) \cap S \rightarrow\left(J_{r}\right) \cap S$ for each $r \geq 1$, so define

$$
C_{j+2}=\operatorname{conv}\left(U_{r \geq 1} f_{r}\left(x_{j}\right)\right), \quad j=1,2, \ldots, k-2
$$

Since $x y \notin S$ implies $x y C$ bd S for x and y in C_{j+2}, it follows easily that C_{j+2} is a convex subset of S. Thus, $S=\bigcup_{j=1}^{k}\left(C_{j} \cap s\right)$.

Case 2. There exists finitely many components A_{1}, \ldots, A_{s} and all components are singletons. It follows that there are finitely many maximal segments $J_{1} \ldots ., J_{t}$ and bd $s=U_{i=1}^{t} J_{i}$. Thus, we may suppose that $J_{1} \cap S=\left\{x_{i 1}, \ldots, x_{i k}\right\}$, that $x_{i 1}$ and $x_{i k}$ are the endpoints of $J_{1}(1 \leq i \leq t), x_{i k}=x_{1+1,1}$ ($1 \leq 1 \leq t-1$), and $x_{t k}=x_{11}$. (If $J_{i} \cap S$ has cardinality less than k simply choose arbitrary points on J_{i} to define the $x_{i j}$'s.) We have two subcases:

Case 2.1: t even. Let $t=2 r$ and define the sets

$$
\begin{aligned}
c_{1} & =\text { int } s u\left\{x_{11}, x_{31}, x_{51}, \ldots, x_{2 r-1,1}\right\}, \\
c_{2} & =\text { int } s u\left\{x_{21}, x_{41}, x_{61}, \ldots, x_{2 r, 1}\right\}, \\
c_{j+1} & =\text { int } s \cup\left\{x_{1 j}, x_{2 j}, x_{3 j}, \ldots, x_{2 r, j}\right\}, \quad j=2, \ldots, k-1
\end{aligned}
$$

It is clear that $C_{j} \cap S$ is a convex subset of s, and $s=U_{j=1}^{k}\left(C_{j} \cap S\right)$.
Case 2.2: t odd. Let $t=2 r+1$. Assuming $k \geq 3$, define

$$
\begin{aligned}
& c_{1}=\text { int } s \cup\left\{x_{11}, x_{22}, x_{41}, x_{61}, \ldots, x_{2 r-2,1}, x_{2 r, 1\}},\right. \\
& c_{2}=\text { int } s \cup\left\{x_{12}, x_{23}, x_{32}, x_{42}, \ldots, x_{2 r, 2}, x_{2 r+1,2\}},\right.
\end{aligned}
$$

$$
\begin{aligned}
& c_{j}=\operatorname{int} s \cup\left\{x_{1 j}, x_{2, j+1}, x_{3 j}, x_{4 j}, \ldots, x_{2 r, j}, x_{2 r+1, j}\right\} \\
& \ldots
\end{aligned}
$$

$$
c_{k-1}=\text { int } s \cup\left\{x_{1, k-1}, x_{31}, x_{4, k-1}, x_{5, k-1}, \ldots, x_{2 r+1, k-1}\right\}
$$

$$
c_{k}=\text { int } s \cup\left\{x_{21}, x_{3, k-1}, x_{51}, x_{71}, \ldots, x_{2 x-1,1}, x_{2 r+1,1}\right\}
$$

Again each $C_{j} \cap S$ is a convex subset of s, and $s=U_{j=1}^{k}\left(C_{j} \cap s\right)$.
Finally, if $k=2$ then S consists of a convex polygon and interior, having vertices $x_{1}, \ldots, x_{2 r+1}$, with the open
sides $\left(x_{1} x_{i+1}\right)$ removed. Here, let $C_{1}=\left\{x_{1}\right\}, C_{2}=$ int $S U$ $\left\{x_{2}, x_{4}, x_{6}, \ldots, x_{2 r}\right\}, c_{3}=$ int $s \cup\left\{x_{3}, x_{5}, x_{7}, \ldots, x_{2 r+1}\right\}$, and $s=U_{j=1}^{3}\left(C_{j} \cap s\right)$. It remains to show that in this case, unless the cardinality of $\mathrm{S} \cap\left\{\mathrm{x}_{1}, \ldots, x_{2 r+1}\right\}$ is less than 3 ,

$$
3 \leq \frac{1}{2}(1+\sqrt{8 m-15})
$$

But it is clear that regardless of the value of $r \geq 1, S$ cannot be $\left(3, c_{2}+1\right)=(3,2)$ nor $\left(4, c_{3}+1\right)=(4,4)$ convex; hence, $m \geq 5$ and we have $3=\frac{1}{2}(1+\sqrt{25}) \leq \frac{1}{2}(1+\sqrt{8 m-15})$. The result is best possible as the obvious example shows. \rangle
1.18. COROLLARY: A planar, bounded $(3,2)$ convex set is the union of two convex sets.
1.19. COROLLARY: A planar, bounded (4,4) convex set is the union of two convex sets.

Eduard Helly discovered a theorem in 1913 concerning the intersection of convex sets. The first published proof of this important theorem was given by Radon in 1921. For future reference, we state the theorem.
1.20. HELLY'S THEOREM: Suppose that C is a family of at least $d+1$ convex sets in E^{d}, and ζ is finite or each members of $\mathcal{\zeta}$ is compact. Then if each $d+1$ members of $\boldsymbol{\zeta}$ have a common point, then there is a point common to all members of $\boldsymbol{\zeta}$.

For a compendium on Helly's theorem and its applications, see the excellent paper by Danzer, Grünbaum, and Klee [4]. In that paper several generalizations of Helly's theorem are mentioned. A useful concept
in deriving such theorems is the following definition.
1.21. DEFINITION: Let \mathcal{F} be a family of sets in E^{d}. \mathcal{F} is said to have Helly order n, if n is the smallest cardinal number such that for each finite subfamily α of \mathcal{F} a nonempty intersection of any combination of n sets in implies a nonempty intersection of all sets in \mathbb{N}.

Helly's theorem states that the Helly order of a finite or compact family of convex sets in E^{d} is $d+1$. It is an interesting but somewhat difficult problem to determine the Helly order of the family of (m, n) convex sets in E^{d} for general m and n. We restrict ourselves in this paper to the special cases $m=3$ and $n=1,2$. A series of lemmas will lead us directly not only to the finiteness of the Helly order for the family of $(3,2)$ convex sets in E^{2}, but to an exact value for it. This development will reveal the Helly order for the family of $\left(m, C_{m}-1\right)$ convex sets in E^{2} since it is easy to show that $\left(m, C_{m}-1\right)$ convexity implies (3,2) convexity. We have already shown that a $(3,2)$ convex set is in general a $(3+k, 2+k)$ convex set $(k \geq 0)$. However, due to the strong topological properties of a $(3,2)$ conver set, we get the following result.
1.22. PROPOSITION: $A(3,2)$ convex set B in a linear topological space E is ($m, C_{m}-[m / 2]$) convex, for $m>2$.

Proof. Let $p_{1} \ldots \ldots p_{m}$ be any m distinct points in B, where $m>2$. Note that $\left(p_{i} p_{j}\right)$ and $\left(p_{i} p_{k}\right)$ cannot both have points in common with $C(B)$, for otherwise B would not be
$(3,2)$ convex. We can therefore have at most $[m / 2]$ open segments joining the given m points having a nonempty intersection with $C(B)$ (for example, $\left(p_{i_{1}} p_{i_{2}}\right), \ldots\left(p_{1_{r-1}} p_{1_{r}}\right)$, where (i_{1}, \ldots, i_{r}) is some element of order $[m / 2]$ in $S([m / 2])$, the permutation group on [m/2] objects). Hence in B, we have at least $C_{m}-[m / 2]$ joins between the given m points. Thus, B is $\left(m, C_{m}-[m / 2]\right)$ convex.

An extremely useful result is the following, which is an extension of 1.16 in the plane.
1.23. LEMMA: Given x, y, z, and w in a planar $(3,2)$ convex set A, then int (conv\{ $x, y, z, w\}$) is a subset of A.

Proof. If one of the four points lies in the convex hull of the other three, then the result follows immediately from 1.16 and the application of $(3,2)$ convexity. Consider the case where no one point is in the convex hull of the other three. That is, we have the four points determining a convex quadrilateral. By the previous result, A is $(4,4)$ convex. If one of the four guaranteed joins is a diagonal, then it follows from 1.16 that $\operatorname{int}(\operatorname{conv}\{x, y, z, w\})$ is a subset of A. Suppose on the contrary that the dia-
 boundary of conv\{ $x, y, z, w\}$ is in A. Again by 1.16, we have every point of conv\{x,y,z,w\} in A, except possibly $V=$ $x z \cap y w$. But if \forall is not in A, by considering the set $\{x, z, s\}$, where s is an element of $x V U V z$, we get a contradiction of the $(3,2)$ convexity of A. Therefore
int (conv\{x,y,z,w\}) is a subset of A. \rangle
The next lemma is the main tool in establishing the finite Helly order for the family of $(3,2)$ convex sets in E^{2}. It is an interesting result in itself.
1.24. LEMMA: Any five $(3,2)$ convex sets in E^{2} each four of which intersect have nonempty intersection.

Proof. Let A_{i}, for $1 \in \hat{5}$, be five $(3,2)$ convex sets in E^{2}, each four of which intersect. Denote by p_{i} the point guaranteed in $\bigcap_{j=1}^{5} j \neq 1 A_{j}$. If at least one of the five points is in the interior of the convex hull of the other four, then that point is in all five sets by 1.23. So consider the three remaining cases where no one of the five points is in the interior of the convex hull of the other four. Case 1. No three points are collinear, then the five points are vertices of a convex pentagon. Let $e_{i j}=p_{i} p_{j}, r_{5}=$ $e_{13} \cap e_{24}$, and r_{1}, for $1 \varepsilon \hat{4}$, defined similarly. Let $T=$ $\operatorname{conv}\left(U_{1=1}^{5} r_{1}\right)$. Since int (conv\{ $\left.p_{i}: 1 \in \hat{5}, 1 \neq j\right\}$) is a subset of A_{j}, by 1.23 , we have int T a nonempty subset of A_{j}, for $j \in \hat{5}$. Hence, int T is a subset of $\bigcap_{i=1}^{5} A_{1}$. Case 2. Exactly three of the points are collinear. We may assume without loss of generality that p_{3}, p_{4}, and p_{5} are collinear, with $p_{4} \in p_{3} p_{5}$ (see Figure 1.2). Define the segments $e_{i j}$ and the points r_{k} as before, and let $L=$ conv $\left\{r_{3}, r_{4}, r_{5}, p_{4}\right\}$. Since int (conv $\left\{p_{1}, 1 \quad 5,1 \neq j\right\}$) is a subset of A_{j}, by 1.23, it follows that int L is a nonempty subset of $\bigcap_{i=1}^{5} A_{i}$.

Figure 1.2
Case 3. Exactly four of the points are collinear. Assume that p_{1}, p_{2}, p_{3}, and p_{4} are the four collinear points, taking the order indicated in Figure 1.3.

Figure 1.3
Now p_{1}, p_{3}, and p_{4} are in A_{2}, and it follows that $p_{1} p_{4} C A_{2}$ i for, the existance of a single point of $C\left(A_{2}\right)$ on $p_{1} p_{4}$ denies the $(3,2)$ convexity of A_{2}. Hence $p_{2} \varepsilon A_{2}$ and therefore $p_{2} \varepsilon$ $\bigcap_{i=1}^{5} A_{i} \cdot \theta$

It is straightfoward to see that if x, y, z, and ware any four distinct points in $\bigcap_{i=1}^{r} A_{i}$, where for all ic \hat{r} A_{1} is a. $(3,2)$ convex set in E^{2}, then int $(\operatorname{conv}\{x, y, z, w\})$ is a subset of $\cap_{1=1}^{r} A_{1}$. It follows that if A_{1}, A_{2}, A_{3}, and A_{4} are four $(3,2)$ convex sets in E^{2}, and $A_{5}=\bigcap_{1=1}^{s} B_{1}$: where B_{1} for ic \hat{s} is a planar (3,2) convex set, and if each four of the sets $A_{1}, A_{2}, A_{3}, A_{4}$, and A_{5} have a point in common,
then there is a point common to all five sets (simply apply the argument of the preceding lemma in each of the cases regarding p_{1}, \ldots, p_{5} to $A_{1}, A_{2}, A_{3}, A_{4}$, and any one of the sets B_{1}). 1.25. LEMMA: Given $n-1(3,2)$ convex sets in $E^{2} A_{1}, \ldots$, Λ_{n-1}, and A_{n} a finite intersection of planar $(3,2)$ convex sets, if each four of the sets A_{1}, for $i \in \hat{n}$, have a common point, then $\bigcap_{i=1}^{n} A_{i} \neq \varnothing$.

Proof. The conclusion is true if $n=5$, by the preceding observation. Suppose the lemma is true for $n=k$. Consider the $k+1$ sets A_{1}, \ldots, A_{k+1}, where each A_{1} is $(3,2)$ convex for $1 \in \hat{k}$, and A_{k+1} is a finite intersection of $(3,2)$ convex sets in the plane, such that each four of A_{1}, \ldots, A_{k+1} have nonempty intersection. Let $B_{k}=A_{k} \cap_{A_{k+1}}$. $A_{1}, \ldots, A_{k-1}, B_{k}$ is a collection of k sets the first $k-1$ of which are $(3,2)$ convex, and the $k-t h$, a finite intersection of $(3,2)$ convex sets. Each four of the sets in the collection $A_{1}, \ldots, A_{k-1}, B_{k}$ have a common point. For, consider A_{i}, A_{j}, A_{m} and B_{k}. Each four of the sets $A_{i}, A_{j}, A_{m}, A_{k}$, and A_{k+1} have a common point by hypothesis. Hence, A_{1}, A_{j}, A_{m}, and B_{k} have a point in common by the observation preceding this lemma. Therefore, by the induction hypothesis $\bigcap_{i=1}^{K+1} A_{1} \neq \varnothing$. \downarrow
1.26. LEMMA: Given $n(3,2)$ convex sets in E^{2} each four of which intersect, then they all have a common point, where $\mathrm{n} \geq 5$. Proof. If the number of sets is five, then the result is already true by 1.24. Suppose it is true when $n=k \geq 5$.

Let $A_{1} \ldots, A_{k+1}$ be $k+1(3,2)$ convex sets in E^{2} each four of which have a common point. Consider the collection $A_{1}, \ldots, A_{k=1}, B_{k}$, where $B_{k}=A_{k} \cap A_{k+1}$. Each four of the sets have a point in common. For, consider A_{i}, A_{j}, A_{m}, and B_{k}; each four of the sets $A_{i}, A_{j}, A_{m}, A_{k}$, and A_{k+1} have a point in common, and by 1.24 the intersection of these five sets is nonempty. Thus A_{i}, A_{j}, A_{m}, and B_{k} have a common point. We now have $k-1(3,2)$ convex sets A_{1}, \ldots, A_{k-1}, and B_{k}, where B_{k} is the intersection of two $(3,2)$ convex sets, each four of which have a point in common. By 1.25, we have $\left(\cap_{i=1}^{k-1} A_{i}\right) \cap B_{k} \neq \varnothing$. Thus, $\bigcap_{i=1}^{k+1} A_{1} \neq \varnothing . \vartheta$
1.27. PROPOSITION: The Helly order of the family of $(3,2)$ convex sets in E^{2} is four.

Proof. From the previous lemma we have proved that the Helly order for the family of $(3,2)$ convex sets in the plane is no greater than four. The following example is offered to show that the bound used in 1.24 is best possible, and that the Helly order is exactly four. Example. With the usual coordinatization of E^{2}, let $x=$ $(0,0), y=(1,0), z=(0,1)$, and $w=(1,1)$. Take A as the interior of the triangle formed by x, y, and z, including the sides $x y$ and $x z, B$ the interior of the triangle formed by x, y, and w including the sides $x y$ and $y w, C$ the interior of the triangle formed by y, z, and w including the sides $y w$ and $W Z$, and, finally, D the interior of the triangle formed by x, z, and w together with the sides $X z$ and $2 w$.

We have four $(3,2)$ convex sets A, B, C, and D in E^{2} each three of which have a point in common yet the intersection of all four sets is empty. θ

It would be interesting to know if 1.27 generalizes to E^{d}. That is, if \mathcal{C} is a finite family of at least $d+2(3,2)$ convex sets in E^{d} each $d+2$ of which have a common point, then is there a common point for all the members of ζ ?

M-CUNVEXITY

It is interesting to specialize the concept of (m,n) convexity to (m,1) convexity in order to discover the more basic properties of such sets (every (m, n) convex set is $(k, 1)$ convex, or k-convex, for some $k \geq 2$). In this chapter, therefore, we turn our attention to m-convexity. We will characterize the kernel of a certain family of m-convex sets, give a negative answer to a conjecture of Danzer, Grünbaum, and Klee concerning the Helly order of 3-convex sets, and introduce the notion of local nonconvexity, which will lead us to several convex covering theorems for m-convex sets. In the process, we prove a generalized Helly theorem.

The concept of the kernel of a set was introduced by Brunn [3], when he showed that in E^{d} the kernel of any set is convex, and is closed iff the original set is closed. Toranzos [16] formulated in another connection a preViously unpublished result which has been common knowledge in the theory of convexity for some time, namely that the kernel of a set is the intersection of all its maximal convex subsets. In connection with this, Hare and

Kenelly [7] have shown that the intersection of the maximal starshaped subsets of a compact, simply-connected, planar set is starshaped or empty. For m-convex sets in E^{d}, we obtain the following results. First, we observe that a straightfoward application of the proof of 1.5 implies that the union of a chain of relatively m-convex subsets of a set is relatively m-convex with respect to that set.
2.1. PROPOSITION: For each relatively r-convex subset T in S, where S is any set containing at least k visually independent points, there exists a maximal closed subset of S which is exactly k-convex with respect to S and contains T, where $2 \leq r \leq k$.

Proof. If T is a relatively r-convex subset of S it will be an exactly s-convex subset of S relative to S for some $s \leq r$. Let x_{1}, \ldots, x_{k} be a set of k visually independent points in S. Inductively, consider the sets $T_{0}=T$, $T_{1}=T \cup X_{1}, T_{2}=T \cup x_{1} \cup x_{2}, \ldots, T_{k}=T \cup\left\{U_{i=1}^{k} x_{1}\right\}$. At least one of these sets, say T_{1}, must be exactly k-convex relative to S since T_{o} is relatively exactly s-convex, T_{k} is relatively exactly t-convex for some $t \geq k$, and the addition of a point in S to each T_{j} does not increase the order of the relative, exact m-convexity of T_{j} by more than one. By Zorn's lemma, there is a maximal subset M of S containing $T_{i} \boldsymbol{T}$ which is k-convex relative to S. But since T_{i} is exactly k-convex relative to S, it contains
$k-1$ points y_{1}, \ldots, y_{k-1} which are visually independent relative to S. Since M contains $y_{1}, \ldots, y_{k-1}, M$ itself is exactly k-convex relative to $\mathrm{S} . \bigotimes$
2.2. COROLLARY: If T is any convex subset of an exactly m-convex set S, then there exists for each $k, 2 \leq k \leq m$, a maximal subset of S containing T which is exactly k-convex relative to S.

We shall need the following concept for subsequent results:
2.3. DEFINITION: TCS is said to be weakly relatively convex with respect to S iff for each two points x and y of T such that $(x y) \subset S$, then $x y \subset T$.

Thus, any set is weakly relatively convex with respect to itself while it need not be convex relative to itself (see 1.9). The convexity of a set implies both weak relative convexity and relative convexity with respect to any set containing it, but, unfortunately for the terminology, a relatively convex subset of even a convex set need not be weakly relatively convex. Moreover, it is not necessarily true that a maximal, absolutely k-convex subset of an m-convex set S be weakly convex relative to S, as the following example shows. The set S illustrated in Figure 2.1 consists of two squares (interiors included) and two line segments. S is 5 -convex, but the subset T consisting of $U, p q$, and $r s$ is a maximal 4 -convex subset of S which is not weakly convex relative to S. For, consider
the points x and y, as shown in the figure. (This example also shows that relative convexity does not imply weak relative convexity.)

Figure 2.1
For k-convex subsets which do satisfy weak relative convexity we can establish a positive result.
2.4. PROPOSITION: If S is any set, then the intersection of any collection of (absolutely) k-convex subsets of S (k fixed, $k \geq 2$) which are weakly convex relative to S, where the intersection contains at least k points, is k-convex.

Proof. Let $M=\bigcap\left\{S_{1}: 1 \in I\right\}$, where each S_{1} is a k-convex subset of S which is weakly convex relative to S. Choose any k distinct points in $M x_{1}, \ldots, x_{k}$. Now each x_{j}, for $j \varepsilon \hat{k}$, is in S_{1} for all in in. If for some s and t in \hat{k} and u in $I x_{s} x_{t} \subset S_{u}$, then $x_{s} x_{t}$ is in S, since $S_{u} C S$. Hence, $x_{s} x_{t}$ is in S_{i} for all 1 in I by the weak relative convexity of S_{1}. Therefore $x_{s} x_{t}$ is in M. Since S_{u} is k-convex, it must contain at least one join $X_{s} x_{t}$ determined by these k points. Hence, M contains a join determined by the k given points, and thus M is k-convex. \downarrow
2.5. REMARK: It would be interesting to obtain a direct analogue to the Hare-Kenelly result mentioned earlier, that is, to establish that the intersection of the maximal k-convex subsets of a closed, simply-connected, planar set is k-convex. This assertion remains a conjecture at this time, however.

It is easy to show that the kernel of any m-convex set T is contained in any maximal subset R of T which is k-convex relative to $T, 2 \leq k \leq m$. For if $x \in(k e r T) \backslash B$, then $\{x\} \cup R$ is clearly k-convex relative to T and contains R properly, denying the maximal property of R. A slightly different result is possible when T is not required to be m-convex.
2.6. DEFINITION: The join of X and A is the set $X A=$ $\{\alpha x+(1-\alpha) a:$ a $\in A, 0 \leq \alpha \leq 1\}$. This is sometimes referred to as the cone over A with vertex x.
2.7. PROPOSITION: If B is any maximal absolutely (relatively) k-convex subset of T, then ker TCR.

Proof. We prove this only for absolute k-convexity; the proof for relative k-convexity is similar. Suppose that there is an element x in ker T which is not in R, where R is a maximal k-convex subset of T. Hence, R is a proper subset of XR . Moreover, XR is k-convex. For, if we are to select any k points $p_{1} \ldots \ldots p_{k}$ in $x R$, then there exist points $x_{i} \in R$, for $i \in \hat{k}$, such that $p_{i} \in X x_{i}$. There is an 1 and j in \hat{k} such that $x_{1} x_{j}$ is in R,
since R is k-convex. Hence, $p_{1} p_{j} \subset \operatorname{conv}\left\{x, x_{1}, x_{j}\right\} \subset x R$. But this contradicts the fact that R is a maximal k-convex subset of T. Therefore, ker TCR. $\boldsymbol{\theta}$
2.8. COROLLARY: The kernel of any set T is contained in the intersection of all maximal absolutely (relatively) k-convex subsets of T.

The next result contains Toranzos's theorem in the special case $k=2$.
2.9. PROPOSITION: Suppose T is any set with the property that for some integer $k \geq 2$ and for any $x \in T \backslash$ ker T, T^{X} has at least k - 1 points which are visually independent relative to T. Then ker T is the intersection of all the maximal subsets of T which are exactly k-convex relative to T.

Proof. Let ker $T=K$ and consider x any element of $T \backslash K$. By hypothesis, T^{x} contains $k-1$ points x_{1}, \ldots, x_{k-1} in T^{x} visually independent relative to T (if $k=2$, simply choose any point X_{1} in T^{x}). The set $S=X_{1} K \cup \cdots \cup X_{k-1} K$ is the union of $k-1$ convex subsets of T and hence is relatively k-convex. It is easy to show that S is also exactly k-convex relative to T. There exists a maximal subset M of T containing S which is exactly k-convex relative to T. The point x cannot be an element of M since $x, x_{1}, \ldots, x_{k-1}$ are visually independent relative to T. Therefore x cannot be in the intersection of all maximal k-convex subsets of T. Hence, the intersection of
the maximal k-convex subsets of T is a subset of ker T. By 2.8 the proposition is established. \downarrow
2.10. COROLLARY: If T is any m-convex set, with k a positive integer $2 \leq k \leq m-1$, and T has the property that T^{X} for $x \in T \backslash k e r T$ is exactiy r-convex for some $r \geq k$, then ker T is the intersection of all maximal, relatively exactly k-convex subsets of T.

Proof. Straightfoward, since an exactly r-convex set relative to T for some $r \geq k$ has at least $k-1$ visually independent points. 0

Note that, in the event ker T is not the intersection of all the maximal k-convex subsets of T, then it cannot have the property of T assumed in the theorem. A simple example of this is shown in the figure below.

Here, ker $T=\varnothing$, but the intersection of all maximal 4-convex subsets of T is the point X_{3}. Thus, at least one anti-star T^{X} for $x \in T \backslash k e r T=T$ is 3 -convex $\left(T^{X} 3\right.$ is obviously that set, and the only one). This observation shows that the plausible conjecture

$$
\begin{equation*}
\operatorname{ker} T=\bigcap_{M \in T} M \tag{2.1}
\end{equation*}
$$

where the intersection is taken over all maximal relatively k-convex subsets, is false even for m-convex sets, $m \geq k+1 ;$ some condition similar to that given in the corollary is needed. A more interesting counterexample to (2.1) is indicated in the next figure. This set is compact, simply-connected, and 4-convex, but the kernel

Figure 2.3
is not obtained by intersecting maximal k-convex sets for any $k>2$ (that is, $k=3$). Here, $\operatorname{ker} T=\operatorname{conv}\{x, y, u\}$, but $\bigcap_{M C T} M(M=\operatorname{maximal} 3-c o n v e x$ subsets $)=\operatorname{conv}\{w, x, y, z\}$. Moreover, note that $T^{\boldsymbol{V}}$ is convex relative to T. On the positive side, Figure 2.4 shows an example of a set T in E^{2} which satisfies the property required in 2.9 for each $k \geq 2 ;$ using complex notation, T consists of a small square B centered at the origin, and the union of the cones of the points $z_{2 j}^{n}$ and $z_{2 j+1}^{n}$ over $B, n=1,2, \ldots$, and $j=0,1,2,3$, where $z_{2 j}^{n}=\exp \left(\pi j / 2-\alpha+\alpha / n-\alpha / n^{2}\right) i$ and $z_{2 j+1}^{n}=\exp \left(\pi j / 2+\alpha-\alpha / n+\alpha / n^{2}\right) 1$, with α chosen so that $z_{j}^{1}(j=0, \ldots, 7)$ are the points of intersection of the sides of B and the unit circle $|z|=1$. Here, ker $T=B$, and, according to 2.9, B is obtained by intersecting all maximal, relatively exactly k-convex subsets
of T, for each value of k.

Figure 2.4
Danzer, Grünbaum, and klee have conjectured [4] that the family of all 3-convex subsets of E^{d} has finite Helly order. The next result gives a negative answer to this conjecture.
2.11. PROPOSITION: The Helly order of the family of closed, connected, planar 3-convex sets is infinite.

Proof. It suffices to exhibit a set of k closed, connected, planar 3-convex sets each k - 1 of which have a point in common but with all k of them having empty intersection, for each even integer $k \geq 4$.

Let $z_{1}=(1,0), z_{2}, \ldots, z_{k}$ be the $k-t h$ roots of unity. Let $k=2 m$ and consider for $4 \leq 1 \leq k-1$ the following sets.

$$
A_{1}=\operatorname{conv}\left\{z_{2}, z_{3}, \ldots, z_{m+1}\right\} \cup \operatorname{conv}\left\{z_{m+1}, \ldots, z_{k}\right\}
$$

$$
\begin{gathered}
A_{2}=\operatorname{conv}\left\{z_{3}, z_{4}, \ldots, z_{m+2}\right\} \cup \operatorname{conv}\left\{z_{m+2}, \ldots, z_{k}, z_{1}\right\}, \\
A_{3}=\operatorname{conv}\left\{z_{4}, z_{5}, \ldots, z_{m+3}\right\} \cup \operatorname{conv}\left\{z_{m+3}, \ldots, z_{k}, z_{1}, z_{2}\right\}, \\
\ldots \\
A_{1}=\operatorname{conv}\left\{z_{1+1}, \ldots, z_{m+1}\right\} \cup \operatorname{conv}\left\{z_{m+1} \quad \ldots, \ldots, z_{k}, z_{1}, \ldots, z_{1-1}\right\}, \\
\ldots \\
A_{k}=\operatorname{conv}\left\{z_{1}, z_{2}, \ldots, z_{m}\right\} \cup \operatorname{conv}\left\{z_{m} \ldots, \ldots, z_{k-1}\right\} .
\end{gathered}
$$ By construction, we have $z_{i} \varepsilon \bigcap_{j \neq 1} A_{j}$. Hence, the intersection of any $k-1$ of the given sets is nonempty. Let $c=(0,0)$, every point in conv $\left\{z_{1}, \ldots, z_{k}\right\}$ must, for some j, lie in $B_{j}=\operatorname{int}\left(\operatorname{conv}\left\{c, z_{j-1}, z_{j}, z_{j+1}\right\}\right) \cup\{c\}$. Since B_{j} is a subset of the complement of A_{j}, we have $\bigcap_{1=1}^{k} A_{1}=\varnothing .0$

Thus, a family of sets each of which is closed, connected, and is the union of three or fewer convex sets need not have finite Helly order. The difficulty lies in the fact that the intersection of members of such a family may be more complicated in structure than the members themselves. In [5], Grünbaum and Motzkin considered a modified situation in which \mathcal{F} consists of sets which are expressible as the union of at most n distinct compact conver sets, and which also have the property that the intersection of n or fewer members of \mathcal{F} can be expressed as the union of at most n disjoint compact convex sets. In E^{d}, let $D_{1, ~} d$ denote the collection of those sets which can be expressed as the union of at most i disjoint compact convex sets. Griunbaum and Motzkin were able to establish for the case $1=2$ that if \mathcal{F} is a family of sets in $D_{1, d}$ such that any $1(d+1)$ members have nonempty intersection, and for
$r \leq 1$ the intersection of any r members of \mathcal{F} is a member of $D_{i, d}$, then $\bigcap_{F \varepsilon \xi_{F}} F \neq \varnothing$. Larman in $[14]$ has extended this result for the case when $i=3$.

A different way of obtaining a finite Helly order for a family of sets in E^{d} each of which is the union of k or fewer convex sets is to require that the intersection of members of the family be in the family. One may also require that each set in the family be a special union of k-convex sets. Turning our attention in that direction, we can obtain a generalization of Helly's theorem in E^{d}.
2.12. DEFINITION: A $\mathrm{k}-1$ solated set is a set consisting of a convex set and k or fewer isolated points, for k a nonnegative integer.

Since convex sets are 0-isolated sets, the next result reduces to a form of Helly's theorem when $k=0$.
2.13. PROPOSITION: The Helly order of the family of $k-i s o l a t e d$ sets in E^{d} is no greater than $(d+1)(k+1)$.

Proof. We shall prove the inductive proposition for each integer $r \geq(d+1)(k+1)+1: \operatorname{If}\left\{S_{i}: 1 \in \hat{f}\right\}$ is a family of $r \mathrm{k}$-isolated sets in E^{d} each $\mathrm{r}-\mathrm{l}$ of which have nonempty intersection, then all I sets have nonempty intersection. It is obrious that this will then imply the desired result since by mathematical induction it follows that each family $\left\{S_{1}, 1 \in \hat{r}\right\}$ of r k-isolated sets in E^{d} each $(\alpha+1)(k+1)$ of which intersect have nonempty intersection. Assume that $\left\{S_{1}: i \in \hat{r}\right\}$ is a family of r k-isolated
sets in E^{d} each $r-1$ of which have nonempty intersection, $r \geq(d+l)(k+I)+1$. Let the set of isolated points of S_{1}, \ldots, S_{r} be p_{1}, \ldots, p_{s} thus, each S_{1} has the form $s_{1}=c_{i} \cup\left\{p_{i_{1}}, \ldots, p_{i_{t(1)}}\right\}$,
where each C_{i} is convex and $t(i) \leq k$. Choose q_{j} in $\bigcap_{1 \varepsilon \hat{r}, 1 \neq j} S_{i}$ for each $j \in \hat{r}$ (since each $r-1$ of the sets S_{i} have nonempty intersection), and put $T=\left\{q_{1}, \ldots, q_{r}\right\}$. Note that for any $u \in \hat{r} S_{u}$ contains $r-1$ of the $q_{j}{ }^{\prime} s$. Hence, each C_{u} must contain at least $r-k-1$ of the $q_{j}{ }^{\prime} s$ (of the $\mathbf{r}-1 \mathrm{q}_{j}$'s in $\mathrm{S}_{\mathbf{u}}$ at most k can belong to $S_{u} \backslash \mathrm{C}_{\mathbf{u}}$). Now consider any two sets S_{u} and S_{∇}. Letting A denote the cardinality of A and applying the inclusion-exclusion formula $|A \cap B|=|A|+|B|-|A \cup B|$, it follows that $\left|\left(C_{u} \cap C_{\nabla}\right) \cap T\right| \geq(\mathbf{r}-\mathbf{k}-1)+(\mathbf{r}-\mathbf{k}-1)-r=r-2(k+1)$. Continuing inductively, each intersection of the form $C_{i_{1}} \cap \cdots \cap{C_{1}}^{i_{d+1}}$ contains at least $r-(\alpha+1)(k+1) \geq 1$ of the $q_{j}{ }^{\circ}$ s. Hence, $\left\{C_{i}: i \in \hat{r}\right\}$ is a family of convex sets in E^{d} each $d+1$ of which have a common point. By Helly's theorem, $\bigcap_{i=1}^{r} c_{i} \neq \varnothing$. Therefore $\bigcap_{i=1}^{r} s_{i} \neq \varnothing . \Delta$ We now turn our attention to the concept of m-convexity as a tool in characterizing sets which are the union of finitely many convex sets. The following example, due to Kay, shows that if one attempts to use m-convexity as the only criterion then the restriction to closed sets is necessary.
2.14. EXAMPLE: Let E^{2} be identified with the complex
plane and let C be the unit circle $|z|=1$, with $z_{n}=$ $e^{-\pi i / 2^{n}}$ for $n=0,1,2, \ldots$ Let P be the infinite sided polygon which circumscribes C, touching C at precisely the points $1, e^{-\pi i / 2}$, and z_{n} for n even. The set s is then defined as the set of points on and inside P with those z_{n} deleted for which n is odd. It can then be shown that S is 4 -convex but is not the union of any finite number of convex sets (see [9]).

Many of the convex covering theorems for m-convex sets have been obtained by imposing conditions on certain subsets of S. For example, if one requires that the kernel of a compact m-convex set be empty, then the compact m-convex set is the union of finitely many compact (m - l)-convex sets. Another useful concept for us is the following:
2.15. DEFINITION: A set T is said to be locally convex at a point p in T if there exists a neighborhood N of p such that $T \cap N$ is relatively convex in T. If a set is locally convex at every point, it is said to be locally convex. A point q of T is a point of local nonconvexity (or inc point) if T is not locally convex at q.

It is clear that q is an lnc point of T iff it is a limit point of a pair of nets $\left\{x_{i}: 1 \in D\right\}$ and $\left\{y_{i}: i \in D\right\}$ in T such that for every iED the join $x_{i} y_{i} \notin T$. Knowledge of the set of inc points of a set is useful in determining properties of the set. In [6] it is proved that if $S \subset E^{d}$ and the set Q of inc points of S consists of a single point,
then S is starshaped from Q. A representation theorem appearing in the same paper states that if $|Q|=1$ and s is m-convex, then S is the union of $m-1$ or fewer convex sets. Stamey and Marr [15] have shown that if S is a bounded 3 -convex set with $|Q|>1$ and a point $q \varepsilon$ (ker S) \cap ($b d s$) and S is locally convex at q, then S can be expressed as the union of two closed convex sets.

For the sake of completeness, and to give an indication of the importance of the concept of local converity, we state Tietze's theorem. A proof may be found in [18].
2.16. TIETZE'S THEOREM: A closed, connected set in a linear topological space which is locally convex is convex. Kay and Guay [10] have recently generalized Tletze's theorem by showing that if the set Q of inc points of a closed set T in a linear topological space has finite cardinality $n>0$ and $T \backslash Q$ is connected, then T is planar and is the union of $n+1$ or fewer convex sets.

A result due to Valentine [17] states that if S is a closed, connected, planar 3-convex set, then S is the union of three or fewer closed convex sets. Guay, in his thesis, was able to extract the essence of Valentine's proof and establish a result we shall make use of later. From now on, Q denotes the lnc points of S and K denotes the kernel of S.
2.17. GUAY'S THEOREM, Let SCE ${ }^{2}$ be closed, connected, and have at least two points of local nonconvexity. If

QCK, then S may be expressed as the union of three or fewer closed convex sets.

By considering the five pointed star, one may see that for both Valentine and Guay's results the number three is best possible. Two represenvacion tneorems follow directly from Guay ${ }^{\text {'s }}$ tneorem. We introduce the notation $T_{A}=$ $\{x \in T:$ xaCT for all a $\in A\}$.
2.18. COROLLARY: If S has the property that $Q=U_{i=1}^{n} Q_{i}$ and $s=U_{i=1}^{n} S_{Q_{1}}$, then S is the union $U_{1} 3 n$ or fewer closed convex sets.
2.19. COROLLARY: An (m, n) convex set S with $n>C_{m-2}$ is the union of three or fewer closed convex sets.

Proof. We need to show that if $n>C_{m-2}$, then $Q C K$. Suppose that $q \in Q \backslash K$, and let x be a point in S sucn that qx $\& 5$. Take a sequence $\left\{x_{1}\right\}$ of points in S with the property that $\lim _{i \rightarrow \infty} x_{i}=x$. In addition, there exist two sequen$\operatorname{ces}\left\{y_{i}\right\}$ and $\left\{z_{i}\right\}$ such that $\lim _{i \rightarrow \infty} y_{i}=\lim _{i \rightarrow \infty} z_{i}=q$ and $y_{1} z_{i} \notin s$, for all 1. There exists a positive integer i_{0} such that for $1>1_{0} q x_{i} \not \& S$. Hence, there exists a j_{0} with the property that $y_{j_{0}}$ and $z_{j_{0}}$, together with any $m-1$ elements of $\left\{x_{1}: i>i_{0}\right\}$, form a set of m points in S with at most C_{m-2} joins, a contradiction. Hence, Q is a subset of $K . ~ \nabla$
2.20. DEFINITION: A set T is called an L_{n} set if every pair of points in T can be joined by a polygonal arc in T consisting of at most n segments.

In [8], Horn and Valentine characterize properties of L_{2} sets in the plane. It is straightfoward to see that in a linear space every connected m-conver set is an $L_{2 m-3}$ set, assuming the set is polygonally connected (a result obtained in [9] for finite dimensions). For if $P=$ $x_{0} x_{1} \cup x_{1} x_{2} \cup \cdots \cup x_{n-1} x_{n}\left(x_{0}=x\right.$ and $\left.x_{n}=y\right)$ is a polygonal arc in S joining x and y such that the number of sides is minimal among all such paths joining x and y, and $n>2 m-2$, then $x_{2 i}$ for $1 \varepsilon m-1$ is a set of m visually independent points in S, a contradiction. It can also be shown that any closed m-convex set is an L_{m-1} set.
2.21. PROPOSITION: Every m-convex set T which is an exactly $L_{2 m-3}$ set (an $L_{2 m-3}$ set which is not an $L_{2 m-4}$ set) can be expressed as the union of $2 m-3$ convex sets.

Proof. Let x and y be points in T such that the minimal number of sides of any polygonal arc joining x and y is $2 \mathrm{~m}-3$, and let P be such an arc, with the vertices of P denoted by $x=x_{0}, x_{1}, \ldots, x_{2 m-3}=y$. Denote by L_{1} the set of all points z in T with the property that the minimal number of sides of a polygonal arc joining x and z is 1 , for $1 \in 2 m-3$. It is clear that $T=U_{i=1}^{2 m-3} L_{i} U\{x\}$. Now each L_{i} is convex; for otherwise if there exist p and q in L_{1} with $p q \not \subset T$, then by considering $\left\{x=x_{0}, x_{2}, \ldots, x_{2 k-2}\right.$, $\left.p, q, x_{2 k+2}, \ldots, x_{2 m-2}\right\}$ (even subscripts) if $1=2 k$, or $\left\{x_{1}, x_{3}, \ldots, x_{2 k-3}, p, q, x_{2 k+1}, \ldots, x_{2 m-3}\right\}$ (odd subscripts) if $1=2 k-1$, we see that since P was a minimal polygonal
arc joining x to y, in either case we have a set of m visually independent points in T, a contradiction of the m-convexity of T. Also $L_{1} \cup\{x\}$ is convex since x can see every point in L_{I} and L_{I} itself is convex. Thus, T is the union of $2 m-3$ convex sets. \rangle

Valentine has shown [19] that knowledge of Q in certain cases implies polygonal connectedness. He proves that if T is a closed, connected set in E^{d} with $Q=U_{i=1}^{n} Q_{i}$, where Q_{i} is relatively convex, connected, and closed for all i\& \hat{n}_{1} then T is an $L_{2 n+1}$ set. As a corollary, he shows that a closed, connected set in E^{d} with $|Q|=n$ is an I_{n+1} set.
2.22. LEMMA: Any closed, connected, m-convex set is localIf starshaped.

Proof. Let $x \in S$ and suppose no such neighborhood of x exists. There is a net $N=\left\{x_{n}: n \in D\right\} \subset S$ converging to x such that $x_{n} \notin s$ for frequently many x_{n}. Let $x_{n_{1}}$ be an element of the net such that $x_{n_{1}} \not \& \mathrm{~s}$. There exists a neighborhood $U_{n_{1}}$ about x such that $x_{n_{1}}$ cannot see any point in that neighborhood via S, since s is closed. Let $x_{n_{2}}$ be any point in $N \cap U_{n_{1}}$ such that $x x_{n_{2}} \not \& s$. Thus, $x_{n_{1}} x_{n_{2}} \not \& s$. There is a neighborhood $U_{n_{2}}$ of x such that $U_{n_{2}} C U_{n_{1}}$ and $x_{n_{2}}$ cannot see any point in $U_{n_{2}}$ via S. Select any point in $N \cap U_{n_{2}}$, say $x_{n_{3}}$, then $\left\{x, x_{n_{1}}, x_{n_{2}}, x_{n_{3}}\right\}$ forms a visually independent set with respect to S. There exists a neighborhood $U_{n_{3}}$ of x such that $x_{n_{3}}$ cannot see any point of $U_{n_{3}}$ via s
and $U_{n_{3}} C U_{n_{2}}$. Continuing this process, we obtain a contradiction of the m-convexity of s. γ

A conjecture of Kay [9] that a closed, m-convex set in E^{n} is the union of finitely many convex sets has been established for several special cases, but the conjecture for more general sets remains. We develop here a few tools which might be useful toward establishing the conjecture in E^{2}, which we also use in case of 4 -convexity in the following chapter.

First let S be a closed, m-convex set in E^{2}, and let Q be the set of all lnc points of S. We use the notation $H=\operatorname{conv} Q$, and $\left\{W_{i}: i \in I\right\}$ will denote the collection of connected components of $S \backslash H$ (for the m-convex sets we shall consider, H will be a subset of S). Note that if $H C S$, then $Q \subset b d H ;$ for otherwise, there exists an lnc point $q \in$ int $H \subset$ int S, denying the obvious property $q \in b d S$ for all $q \in Q$.

By m-convexity there can be at most finitely many onedimensional components W_{1} (each such component must be a segment or ray, and thus, for all but possibly one other component, no point in W_{1} can see via S any point of any other component). The remaining components have mutually disjoint interiors. Hence, I is countable, and we shall assume I consists of a subset of the positive integers. For convenience, we shall now assume that s is compact. This will simplify many of the arguments, although many of these results can be established without that assumption.

A simply-connected subset of E^{2} is a set whose complement contains no bounded component. We establish the following result:
2.23. LEMMA: If S is a connected, compact, m-convex subset of E^{2} with conv $Q C S$, then S is simply-connected.

Proof. With $H=$ conv Q, suppose G is a bounded component of $E^{2} \backslash S$, and let $g \varepsilon G$. Since $g \notin H$ and H is compact there is a line l strongly separating g and H, and let the closed half-plane determined by l not containing H be denoted by F. Let $\left\{Z_{j}: j \in J\right\}$, denote the closures of the components of F ns. The m-convexity of S implies that there can be only finitely many components Z_{j}, so we may assume without loss of generality that $J=\{1,2, \ldots, k\}$. Each Z_{j} is a compact, connected subset of F; we can show further that Z_{j} is locally convex, and therefore convex by Tietze's theorem. For, let $x \in Z_{j}$. Since $x \notin H$, there exists a convex neighborhood U of x deviod of points of H, and if $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}, n=1,2, \ldots$ are sequences in $U \cap z_{j}$ converging to x such that $y_{n} z_{n} \phi z_{j}$ then since $y_{n} z_{n} \subset F$, we have $y_{n} z_{n} \notin \mathrm{~s}$, for otherwise points of $y_{n} z_{n}$ belong to different components of F contradiction. Thus, Z_{j} is convex for each j.

It is an obvious (easily proved) property of a compact convex subset of a half-space that its complement relative to that half-space is connected. Hence, for each $j F \backslash Z_{j}$ is connected. Suppose it has been proved that
$F \backslash\left(z_{1} \cup z_{2} \cup \cdots \cup z_{j}\right)$ is an open, connected subset of F. Consider $F \backslash\left(z_{1} \cup z_{2} \cup \cdots \cup z_{j} \cup z_{j+1}\right)$, which will be shown to be connected (it is obviously open in F). There is a sufficiently small circular neighborhood V of 0 such that $z_{j+1}+V$ is disjoint from $z_{1} \cup z_{2} \cup \cdots \cup z_{j}$. since $\left(z_{j+1}+V\right) \backslash z_{j+1}$ is open and connected (the proof is basically the argument for the connectedness of the boundary of a compact convex set), then $\left(z_{j+1}+V\right) \backslash z_{j+1}$ is polygonally connected. Let x and y be any two points of $F \backslash\left(z_{1} \cup z_{2} \cup \cdots \cup z_{j+1}\right) C F \backslash\left(z_{1} \cup z_{2} \cup \cdots \cup z_{j}\right)$. There is a polygonal arc P with consecutive vertices $x=x_{0}, x_{1}, \ldots, x_{n}=y$ in $F \backslash\left(Z_{1} \cup z_{2} \cup \cdots \cup Z_{j}\right)$ joining x and y. If P is disjoint from z_{j+1} then PCF $\backslash\left(z_{1} \cup z_{2} \cup \cdots \cup z_{j+1}\right)$ and we are done. Otherwise P cuts z_{j+1}, and without loss of generality (by the convexity of z_{j+1}) we may assume that $P \cap z_{j+1}=x_{1} x_{1+1}$. But x_{1} and $x_{i+1} \in$ bd z_{j+1} so there exist points x_{i}^{j} and x_{i+1} in $P \cap\left(\left(z_{j+1}+V\right) \backslash z_{j+1}\right)$, and there is a polygonal arc in $\left(z_{j+1}+V\right) \backslash z_{j+1}$ joining x_{i}^{j} and x_{i+1}^{\prime}, say, with consecutive vertices $x_{i}^{\prime}=y_{0}, y_{1}, \ldots, y_{r}=x_{i+1}$. Thus, $x=x_{0}, x_{1}, \ldots, x_{i-1}, y_{0}, y_{1}, \ldots, y_{r}, x_{1+2}, \ldots, x_{n}=y$ are the consecutive vertices of a polygonal arc P^{\prime} in $F \backslash\left(z_{1} \cup z_{2} \cup \cdots \cup z_{j+1}\right)$ joining x and y, so the latter is a connected open subset of F. This proves, by mathematical induction, that $F \backslash \cup_{j=1}^{k} Z_{j}$ is connected. Since $g \& F \cap G$ and G is a maximal connected subset of $E^{2} \backslash S, G$ contains $F \backslash \bigcup_{j=1}^{k} z_{j}$, denying the boundedness of G. Hence, S is simply connected.

In the proof of 2.23 the situation arose where a certain convex set (the half-plane F) disjoint from Q met S. It was then shown that any lnc point of a component of $F \cap S$ is an lnc point of S. The contraaiction thereby establishes the local convexity oi each component of $F \cap S$, and since these components were closed and connected Tletze's theorem implies they are convex. This situation is of sufficient generality and occurs frequently, so we cite a corresponding lemma, the obvious proof of which will be omitted. 2.24. LEMMA: If S is any closed set in E^{d}, with Q the set of lnc points and C any closed convex set disjoint from Q, then any component of $C \cap S$ is convex.

At this point we also state the classical Caratheodory theorem for E^{2}, which will be used frequently.
2.25. LEMMA: If $x \in \operatorname{conv} S$ there exist points y, z, and w in S such that $x \in \operatorname{con} v\{y, z, w\}$.

We prove a result which will be used later to extend any convex covering of S of the form $S=U_{j=1}^{n} C_{j}, c_{j}$ convex, when $|Q|<\infty$, to the case $|Q|=\infty$. The proof uses the concept of the Hausdorff limit and a theorem of C. Kuratowski [13] (Theorem VIII, p. 246) which states that any sequence of subsets of a second countable topological space contains a topologically convergent subsequence. From the definition of the Hausdorff limit, it follows that if the sequence consists of convex sets, then the set to which the sequence converges is convex. We have then, the following
lemma, phrased in the context in which it will be used. 2.26. LEMMA: Each subsequence of convex sets in E^{d} contains a subsequence which converges to a closed convex set.

If $x_{1_{1}}, x_{1_{2}}, \ldots, x_{i_{n}}, \ldots$ represents a subsequence Y of $x_{1}, x_{2}, \ldots, x_{n}, \ldots$, we write $\left.Y=\left\{x_{j} ;\right\} \in I\right\}$, where $I^{\prime}=$ $\left\{i_{1}, i_{2}, \ldots, i_{n}, \ldots\right\}$ (I itself will denote the set of positive integers).
2.27. LEMMA (KAY): If $S=c I\left(U_{i \in I} S_{1}\right)$ and for each $1 \in I$ S_{i} is the union of m convex sets and $S_{1} \subset S_{1+1}$, then S is the union of m convex sets.

Proof. Let $s_{i}=U_{j=1}^{m} c_{i j}$, where $c_{i j}$ is convex for each 1 and j. Apply 2.26 to $\left\{C_{11}: 1 \varepsilon I\right\}$. There exists a convex set C_{1} (perhaps empty) and a subsequence $\left\{C_{11}: 1 \in I_{1}\right\}$ such that $\lim _{i \in I_{1}} C_{i l}=C_{1}$. Consider $\left\{S_{1}: i \in I_{1}\right\}$ and the corresponding $\left\{C_{12}: 1 \in I_{1}\right\}$. Apply 2.26 once again to $\left\{C_{12}: 1 \& I_{1}\right\}$. There exists a subsequence $\left\{C_{12}: 1 \in I_{2}\right\}, I_{2} \subset I_{1}$ and a convex set C_{2} such that $\lim _{1 \in I_{2}} C_{12}=C_{2}$. Assume that C_{k} and I_{k} have been defined and apply 2.26 to $\left\{C_{i, k+1}: 1 \in I_{k}\right\}$. There exists a convex set C_{k+1} and a subsequence $I_{k+1} \subset I_{k}$ such that $\lim _{1 \in I_{k+1}} C_{i, k+1}=C_{k+1}$. Hence $C_{1}, C_{2}, \ldots, C_{m}$ and I_{m} may be defined. Since $\left\{S_{i}, 1 \in I\right\}$ is a nondecreasing family, it is clear that $s=c l\left(U_{1 \in I_{m}} S_{1}\right)$; also $11 \frac{m}{m} C_{i j}=C_{j}$ for each $j \varepsilon$ 血. We claim that $s=U_{j=1}^{m} C_{j}$. Let $x \in U_{j=1}^{m} C_{j}$. Hence, for some $j, x \in C_{j}$. There exists a sequence $\left\{y_{k}: k \in I_{m}\right\}$ of
elements of $C_{k j} C S_{k}$ converging to x. Hence x is a limit point of S, and since S is closed, $x \in S$. On the other hand, if $x \in S$ there exists a j_{0} such that x is contained in infinitely many $C_{i j_{0}}$, $i \in I_{m}$. Therefore $x \in \lim _{i \in I_{m}} C_{i j_{0}}=C_{j_{0}}$, which implies that $x \in \bigcup_{j=1}^{m} C_{j} \cdot \diamond$

A similar proposition may be established for a nonincreasing sequence $\left\{S_{1}: 1 \in I\right\}\left(S_{i} \supset S_{i+1}\right)$; the set $S=$ $\bigcap_{i \in I} c l S_{i}$ is the union of m convex sets if each S_{i} is so expressible.

We continue the study of the structure of closed m-convex sets in E^{2} in a sequence of results. The hypothesis that S is compact, connected and conv QCS (again we write $H=$ conv Q) will be carried throughout.
2.28. LEMMA: Each component W of $S \backslash H$ has at least one member of Q in its closure.

Proof. Certainly there exists xecl W 亿bd H (by connectedness of S). If $x \in Q$, we are finished. Otherwise, since H is closed (S is compact, so Q and thus conv Q is compact), x\&H. By 2.25 there exist points q_{1}, q_{2}, and q_{3} in Q such that $x \in \operatorname{conv}\left\{q_{1}, q_{2}, q_{3}\right\}$. Since $x \notin$ int H, $x \varepsilon$ bd conv $\left\{q_{1}, q_{2}, q_{3}\right\}$ and hence, $x \varepsilon\left(q_{1} q_{2}\right)$, say. Consider the maximal subsegment $x_{1} x_{2}$ of $q_{1} q_{2}$ containing x and belonging to cl W. Again we are finished unless $x_{1} x_{2} \subset\left(q_{1} q_{2}\right)$ Q. Hence, in that case, a disk D centered at x_{1} exists such that $D \cap S$ is convex, and if $D \cap q_{1} q_{2}=y_{1} y_{2}$ and $y_{3} B D W$ then conv\{ $\left.y_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right\}$ CDnscs, so it follows that $x_{1} x_{2} \cup y_{1} y_{2} C$
$q_{1} q_{2} \cap c l W$, denying the maximal property of $x_{1} x_{2}$ as a subset of $q_{1} q_{2} \cap c l W$. Hence, $x_{1} x_{2}=q_{1} q_{2}$ proving that q_{1} and q_{2} belong to cl W.
2.29. LEMMA: If H is two-dimensional, each component W of $S \backslash H$ contains at most two elements of Q in its closure.

Proof. We borrow a consequence of the Jordan closed curve theorem for E^{2}, If A_{1}, A_{2}, and A_{3} are arcs having only endpoints x and y in common, then for some $1=1,2$, or 3 the open arc $A_{1} \backslash\{x, y\}$ lies in the interior of the simple closed curve formed by A_{1+1} and A_{1+2} (cyclic indexing understood). Suppose q_{1}, q_{2}, and q_{3} are points of Q in cl W. Since it is obvious that cl W contains exactly one point in Q if W is one-dimensional, we may assume W is twodimensional. It then follows that $c l W=c l$ int W since cl W is polygonally connected it can be easily proved that int W is also polygonally connected. Hence, since S is locally starshaped, there exist points x_{1}, x_{2}, and x_{3} in int W such that for $1=1,2,3, x_{1} q_{1} \subset S$, with the x_{1} chosen sufficiently close to make $x_{1} q_{1}, x_{2} q_{2}$, and $x_{3} q_{3}$ pairwise disjoint. It follows that points q_{i} exist in Q such that $\left[x_{i} q_{i}^{\prime}\right) \subset W, i=1,2,3$, and hence $\left[x_{i} q_{i}^{\prime}\right) \subset$ int W (we are using here the local convexity of W): for convenience, we drop the primes. Since int W is connected there are polygonal arcs $P_{1} C$ int W and P_{2} Cint W joining the respective pairs $\left(x_{2}, x_{3}\right)$ and $\left(x_{3}, x_{1}\right)$, such that $P_{1} \backslash\left\{x_{3}\right\}$ and $P_{2} \backslash\left\{x_{3}\right\}$ are disjoint from each other and from $q_{1} x_{1}, 1=1,2,3$. But H
is two-dimensional, compact, and convex, so bd H is a simple closed curve and q_{1}, q_{2}, and q_{3} seperate bd H into three arcs B_{1}, B_{2}, and B_{3}, with q_{i} and q_{1+1} the endpoints of B_{1+2} for $1=1,2,3$. Choose $y \in B_{3}$ distinct from q_{1} and q_{2}, separating B_{3} into two subarcs B_{31} and B_{32}, with $q_{1} \in B_{31}$, $1=1,2$. By convexity of $H, \mathrm{yq}_{3} C H$. Hence, the arcs $A_{1}=$ $B_{31} \cup\left(q_{1} x_{1}\right) \cup P_{2}, A_{2}=B_{32} \cup\left(q_{2} x_{2}\right) \cup P_{1}$, and $A_{3}=y q_{3} \cup q_{3} x_{3}$ have only the endpoints x_{3} and y in common. Denoting the interior region determined by the simple closed curve C by $I(C)$, the above-mentioned consequence of the Jordan curve theorem implies that for some 1 ,

$$
A_{1} \backslash\left\{x_{3}, y\right\} \subset I\left(A_{i+1} \cup A_{1+2}\right)
$$

But $q_{1} \in A_{1} \backslash\left\{x_{3}, J\right\}$ and by the simple connectedness of S, $I\left(A_{i+1} \cup A_{1+2}\right) \subset$ int S. That is, $q_{1} \in$ int S, which is impossible, thus establishing the desired result. δ

That the above proof necessarily breaks down if H is not two-dimensional is easily shown by examples, such as that illustrated in the figure below (s is a 6-convex set with $H \subset S$, but W is a component of $S \backslash H$ with all of Q in its closure):
S

Figure 2.5
2.30. LEMMA: If H is two-dimensional, then the closure of each component W of $S \backslash H$ has at most two lnc points.

Proof. Let $x \in c l W$, and suppose $x \notin Q$. Since Q is closed there exists a convex neighborhood U of x disjoint from Q, and by 2.24 any component of UnS is convex. Thus Uncl W is locally convex at x. It follows that if x is an inc point of $\mathrm{cl} W$ then $x \in Q$. Hence, by $2.29 \mathrm{cl} W$ has at most two Inc points. ∇

In the preceding lemma we find that, unless cl W is convex, $S^{\circ} \equiv c l W$ is a set similar to S in that it is a closed, m-convex subset of E^{2} with H^{\prime}, the convex hull of the set of lnc points of S^{\prime}, a subset of S^{\prime}. But in this case, H^{\prime} is a subset of a inne. We then turn our attention to the case when the set H associated with S is a subset of a line, since in that case the problem of covering s by finitely many convex sets can be completely solved.

First, we shall need several concepts involving twodimensional compact, convex subsets of E^{2}. If C is such a set, bd C is a simple closed curve (homeomorphic to a circle) and, as such, permits a cyclic ordering of its points. With x_{0} any point of bd C, this ordering induces a linear ordering $>$ on any arc on bd C containing x_{0} as an interior point. Thus, if A is such an arc, we may consider the two subarcs

$$
A_{x_{0}}^{+}=\left\{x \in A: x>x_{0}\right\}, A_{x_{0}}^{-}=\left\{x \in A: x<x_{0}\right\}
$$

For each $x \in A$, define $R\left(x, x_{0}\right)$ as the ray consisting of the set

$$
\left\{(1-\lambda) x+\lambda x_{0}: \lambda \geq 0, \lambda \text { real }\right\}
$$

As x tends to x_{0} from one side it is well known that $R\left(x, x_{0}\right)$ assumes a limiting position, which we can denote by lim $R\left(x, x_{0}\right)$ (this is also a topological limit). Thus, the one-sided support rays of C at x_{0}.
and

$$
R_{x_{0}}^{+}=\lim _{x \rightarrow x_{0}} R\left(x, x_{0}\right), x \in A_{x_{0}}^{+}
$$

$$
R_{x_{0}}^{-}=\lim _{x \rightarrow x_{0}} R\left(x, x_{0}\right), x \in A_{x_{0}}^{-}
$$

each exist. Note that the Iines containing $R_{X_{0}}^{+}$and $R_{x_{0}}^{-}$ are ordinary lines of support of C at x_{0}. Define further the open half-planes $G_{x_{0}}^{+}$and $G_{x_{0}}^{-}$determined by the support Iines containing $R_{X_{0}}^{+}$and ${R_{x_{0}}^{-}}_{-}^{-}$respectively, and not containing C (thus, $C \subset E^{2}{ }_{G_{x_{0}}^{+}}^{+}$).

The following result will be used quite frequently from this point on.
2.31. LEMMA: If C is a two-dimensional convex subset of the plane and an arc $A C b d C$ which contains a point x_{0} bd C in its interior is ordered by $<$, the open half-planes $G_{X_{0}}^{+}$ and $G_{x_{0}}^{-}$determined by the one-sided support rays $R_{x_{0}}^{+}$and $R_{x_{0}}^{-}$not containing C have the property that given compact subsets $M_{1} \subset G_{X_{0}}^{-}$and $M_{2} \subset G_{x_{0}}^{+}$there exist points $x_{1} \in A, 1=1,2$, such that $x_{1}<x_{0}<x_{2}$ and for any point $u \in M_{1}, u x_{1} \cap C=\left\{x_{i}\right\}$.

Proof. It is only necessary to prove the desired property for M_{1} (see Figure 2.6). For each $x \in A$ define the open half-plane F_{x} determined by $R\left(x, x_{0}\right)$ not containing bd $C \backslash A$, and let F_{x}^{\prime} denote the open hal $f-p l a n e$ whose edge is a support line of C parallel to the edge of F_{x}, with $F_{x} \subset F_{x}$. Elementary properties of convex sets enable one to prove
the topological limit

$$
\lim _{x \rightarrow x_{0}} F_{x}=\lim _{x \rightarrow x_{0}} F_{x}^{\prime}=c l G_{x_{0}}^{-}, x \in A_{x_{0}}^{-}
$$

Now we show that for some $x<x_{0}, M_{1} \subset F_{x}$. First, for any y\& M_{1}, suppose some sequence $\left\{x_{n}\right\}$ of points on bd C, with $x_{1}<x_{2}<\cdots<x_{n}<\cdots$, and converging to x_{0} exists such that $y \nmid F_{X_{n}}$. Let U be a circular neighborhood of y of radius $r>0$ such that $U \subset G_{X_{0}}^{-}$(since $G_{X_{0}}^{-}$is open and $\left.M_{\perp} \subset G_{X_{0}}^{-}\right)$. Since $y \in I I m F_{X_{n}}^{\prime}$ there $1 s$ an n_{0} such that for $n>n_{0} U$ meets $F_{X_{n}}^{\prime}$; since $y \& F_{X_{n}}^{\prime}$ there is a circular neighborhood $V_{n} \subset U$ with center z_{n} of radius $r / 2$ deviod of points of $F_{X_{n}}^{8}$. We may assume without Loss of generality that $\lim z_{n}=z \in U$, with V the circular neighborhood about z of radius $r / 2$, and that for all n sufficientiy large, $V_{n} \cap v$ contains a fixed circular neighborhood V^{\prime} of radius $r / 3$. But V'CUCG \bar{x}_{0}^{-}so for all n sufficiently large $F_{X_{n}}^{\prime}$ meets $V \cdot$ and hence V_{n}, a contradiction. Thus, given $y \in M_{1}$ there is an $x<x_{0}$ such that $y \in F_{i}$ for $x<u<x_{0}$. Suppose $M_{1} \not \subset F_{X}^{\prime}$ for all $x<x_{0}$. Then we may choose a sequence $x_{n} \rightarrow x_{0}$ such that $x_{1}<x_{2}<\cdots<x_{n}<\cdots$, and $y_{n} \in M_{1}$ such that $y_{n} \& F_{x_{n}}$. By compactness of M_{1} we may assume $y_{n} \rightarrow y \in M_{1}$. But y\& F_{n} for all sufficiently large n as was proved, and if $U C F_{X_{n}}^{\prime}$ is a neighborhood of y then some $y_{n} \in U$ or $y_{n} \in F_{X_{n}}^{\prime}$, a contradiction. Hence, for some $x<x_{0}, M_{2} \subset F_{x}^{\prime}$. If L_{x} is the edge of F_{x}^{\prime} it is a support line of C and meets C in some point $\mathrm{p} \leq \mathrm{x}_{0} \cdot$ If $\mathrm{p} \neq \mathrm{x}_{0}$, then set $\mathrm{x}_{1}=\mathrm{p}<\mathrm{x}_{0} ;$ if $\mathrm{p}=\mathrm{x}_{0}$, then by definition of $F_{x}, L_{x} \supset R\left(x, x_{0}\right)$ and hence $x \in I_{x}$, and in this case set $x_{1}=x<x_{0}$. In either case, since I_{x} is a ine
of support of C and $x_{1} \in C$, with M_{1} and C on opposite sides of L_{x}, we have $u x_{1} \cap c=\left\{x_{1}\right\}$ for each $u \in M_{1} \cdot 0$

The figure below illustrates the fact that 2.31 does not follow if M_{1} is merely closed.

Figure 2.7
2.32. PROPOSITION: If S is a compact, m-convex subset of E^{2}, with $H=$ conv QCS and H is one-dimensional or consists of a single point, then S is the union of $m-l$ conver sets.

Proof. Consider the components of $S \backslash I$, where L is a line containing H. The m-convexity of S implies there are at most m - 1 of these on each side of L. If W is any such component, let L_{t} denote a line parallel to L and at a distance t from $1 t, F_{t}$ the closed half-plane determined by L_{t} disjoint from L, and put $W_{t}=W \cap F_{t}$. since for each $t>0$ W_{t} is a component of $F_{t} \cap S$ and F_{t} is disjoint from Q, by $2.24 W_{t}$ is convex and hence, W is convex. Thus, at this point it has been proved that S is the union of $2(m-1)+1=$ 2m - 1 or fewer convex sets. To finish the proof we shall use induction on m.

Two simple cases must be ruled out first: When one or more of the components of $S \backslash H(1)$ are one-dimensional, or (2) contain only one point of L in their closure. For (1). suppose W is a one-dimensional component of $S \backslash L$, and let L^{\prime} be the line containing W, with W^{\prime} the component of $S \cap L^{\prime}$ containing W. Then W^{\prime} is convex and it is clear that cl $\left(S \backslash W^{\prime}\right)$ is (m - l)-convex. Hence, by the induction hypothesis $c l\left(S \backslash W^{\circ}\right) \cup W^{\prime}=S$ is the union of $(m-2)+1=$ m-1 convex sets. For (2), suppose W is a component of $S \backslash I$ such that cl $W \cap I=\{x\}$. By (I) we may assume that W is two-dimensional. Since W is convex, int $W \neq \varnothing$ and there exists a circular disk UCW. Let $x_{1}, x_{2}, \ldots, x_{k}$ be any $k \geq 2$ points of $(S \backslash W) \backslash L$. Since there are only finitely many
lines passing through x and the points $x_{1}, x_{2}, \ldots, x_{k}$ there is obviously a point $x_{0} \in U$ not on any of these lines. Hence, for each $1=1, \ldots, x, x \nmid x_{0} x_{1}$. If x_{1} lies on the same side of L as x_{0} then $x_{0} x_{1} \subset S$ implies $x_{1} \in W$ (since $x_{0} x_{1} \cap L=\varnothing$ and W is a component of $S \backslash I$ containing x_{0}), a contradiction. If x_{i} lies on the opposite side of L as x_{0} then $x_{0} x_{i}$ meets I in a point $y \neq x$ and if $x_{0} x_{1} \subset S$ it follows that ($\left.y x_{0}\right] \subset W$ or y y cl W, a contradiction of $\mathrm{cl} W \cap L=\{x\}$. Finally, if for some 1 and $j, 1 \leq 1<j \leq k, x_{1} x_{j} \subset S$ but $x_{1} x_{j} \notin S \backslash W$ then there exists a $z \in x_{i} x_{j} \cap W$ and hence, by similar reasoning either $x_{i} z$ or $x_{j} z$ belongs to W, a contradiction. Thus, if $x_{1}, x_{2}, \ldots, x_{k}$ are $\nabla 1 s u a l l y$ independent $\nabla i a s \backslash W$ then they are visually independent via S. By m-convexity of S, and since $x_{0} x_{i} \notin S$ for all $1, k \leq m-2$ and hence any $m-1$ points of $S \backslash W \backslash I$ are visually dependent via $S \backslash W$. But cl $(S \backslash W) \backslash L=S \backslash W$, since it may be assumed that no component of $S \backslash H$ lies on L (by (1) above). Therefore, $S \backslash W$ is a closed, (m - 1)-convex set and by the induction hypothesis, $(S \mid W) \cup W=S$ is the union of $(m-2)+1=m-1$ convex sets.

Thus, it may be assumed that each component cl W of $S \backslash I$ is a compact two-dimensional convex set which meets in a nontrivial segment $x y$. We may then designate the components W and the corresponding segments in the order in which they occur on L by

$$
W_{1} \cdot x_{1} y_{1} ; W_{2} \cdot x_{2} y_{2} ; \cdots ; W_{r} \cdot x_{r} y_{r} ;
$$

where W_{1}, \ldots, W_{r} are those components on one side of L, with
$w_{1} \cap L=x_{1} y_{1}$, and

$$
W_{1}^{\prime}, x_{1}^{\prime} y_{1}^{\prime} ; W_{2}^{\prime}, x_{2}^{\prime} y_{2}^{\prime} ; \ldots ; W_{s}^{\prime}, x_{s}^{\prime} y_{s}^{\prime},
$$

where $W_{i}, \ldots . W_{s}^{\prime}$ are those components on the other side of L and $W_{i} \cap_{L}=x_{i} y_{i}$. Thus, if $<$ denotes the natural ordering on L, we may assume that $x_{1}<y_{1} \leq x_{2}<y_{2} \leq \cdots \leq x_{r}<y_{r}$ and $x_{i}^{\prime}<y_{i}^{\prime} \leq x_{2}^{\prime}<y_{i}^{\prime} \leq \cdots \leq x_{s}^{\prime}<y_{s}^{\prime}$. But for notation we have $y_{1} \leq y_{1}$, and either (1) $y_{1} \leq x_{1}$, or (2) $y_{1}>x_{1}$. Figure 2.8 illustrates the various cases in the following argument.

Case 1: $\left(y_{1} \leq x_{1}\right)$ Let < induce an orientation on bd $\left(c l W_{1}\right)$ and let A be any arc on bd(cl W_{1}) containing $x_{1} y_{1}$ in its interior. As previousiy defined, let $\mathrm{R}_{\mathrm{y}_{1}}^{+}$be the one-sided ray at y_{1} and $G_{y_{1}}^{+}=G$ the open half-plane determined by $R_{y_{1}}^{+}$ and not containing ol W_{1}. If L^{\prime} is the line containing $\mathrm{R}_{\mathrm{y}_{1}}^{+}$ consider $z_{1}, z_{2}, \ldots, z_{m-1}$ any $m-1$ points in $S \backslash c l W_{1} \ L^{\prime}$, where $z_{1}, z_{2}, \ldots, z_{k}$ lie in G and z_{k+1}, \ldots, z_{m-1} lie in the opposite open half-plane $G \cdot$ of G. Applying 2.31, with $M=$ $\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$, there is a point $z_{0} \varepsilon b d\left(c l W_{1}\right) \subset$ cl W_{1} such that $z_{0}>y_{1}$ and $z_{0} z_{1} \cap c l W_{1}=\left\{z_{0}\right\}$ for $1=1,2, \ldots, k$. It follows that $z_{0} \notin L ;$ thus $z_{0} z_{i} \phi \mathrm{~S}$, for otherwise, $z_{0} z_{i}$ meets L in a point $w \notin x_{1} y_{1}$ with $z_{0} w C d W_{1}$, a contradiction. For $1=k+1, \ldots, m-1$, we note that z_{1} must either belong to a component W_{u} different from W_{1} or a component W_{V}. In the former case $z_{0} z_{1} \not \subset S$ or else $z_{1} \in c l W_{1}$, and in the latter, $z_{0} z_{i}$ meets L at a point $w<y_{1}$. But $w \in x_{V}^{\prime} y_{v}^{\prime}$ and hence $x_{v}^{\prime}<y_{1}$ for some v, a contradiction that $x_{v}^{\prime} \geq x_{i}^{\prime} \geq y_{1}$. Hence, z_{0} cannot see z_{1} via $S, 1>0$, and hence, for some
$1 \leq 1<j \leq m-1, z_{i} z_{j} C S$ by the m-convexity of S. It remains to show that $z_{i} z_{j} C c l\left(S \backslash c l W_{1}\right)$. But if $z_{i} z_{j} \phi$ $\mathrm{cl}\left(\mathrm{S} \backslash \mathrm{cl} W_{1}\right)$ then there is some point $\mathrm{z} \in \mathrm{z}_{1} \mathrm{z}_{\mathrm{j}}$ not in $\mathrm{cl}\left(\mathrm{s} \backslash \mathrm{cl} \mathrm{w}_{1}\right)$: hence, $\mathrm{z} \nmid \mathrm{S} \backslash \mathrm{cl} \mathrm{W}_{1}$ so $\mathrm{z} \in \mathrm{cl} \mathrm{W}_{1}$. It follows that $z \neq y_{1}$ for $y_{1} \varepsilon c l\left(S \backslash c l W_{1}\right)$. one of the points z_{1} or z_{j}, say z_{i}, must belong to G^{\prime} and, since z_{i} cannot belong to any component $W_{u}, z_{i} z$ meets $x_{1} y_{1}$ at a point $w<y_{1}$, producing a contradiction similar to one observed previaus1y. Hence, $z_{1} z_{j} \subset c l\left(S \backslash c l W_{1}\right)$ and it follows that $\mathrm{cl}\left(\mathrm{S} \mid \mathrm{cl} \mathrm{W}_{1} \backslash \mathrm{~L}\right)=\mathrm{cl}\left(\mathrm{S} \backslash \mathrm{cl} \mathrm{W}_{1}\right)$ is (m-1)-convex. By the induction hypothesis $S=c l\left(S \backslash o l W_{1}\right) \cup c l W_{1}$ is the union of (m-2) $+1=m-1$ convex sets.
Case 2: $\left(y_{1}>x_{1}^{0}\right)$ Again define the line L^{0} containing $X_{y_{1}}^{+}$ and the open half-planes G and G° determined by L'. Consider the closed, connected set $C=c l W_{1} U \mathrm{Cl}\left(W_{i} \cap G^{\prime}\right)$. If C has no lnc points then C is convex by Tletze's theorem, and an argument similar to that given in the preceding case shows that $\mathrm{cl}(\mathrm{S} \backslash \mathrm{C})$ is ($\mathrm{m}-1$)-convex. Thus, $\mathrm{S}=\mathrm{cl}(\mathrm{S} \backslash \mathrm{C}) \mathbf{U C}$ is the union of $(m-2)+1=m-1$ convex sets. Otherwise, C has an lnc point q, and it is clear that $q=x_{1}$ or $q=x_{1}^{j}$ which implies $q<y_{1}$ and $q \in Q$. Let $z_{1}, z_{2}, \ldots, z_{m-2}$ be any $m-2$ points of $s \backslash c l W_{1} \backslash$ cl $W_{i} \backslash$. Then no z_{i} can see q via S since, otherwise, $z_{1} \in W_{1}$ or $z_{1} \varepsilon W_{1}$. Hence, since S is closed, there exists a nelghborhood U of q such that no point of U can see any z_{i} via S if z_{m-1} and z_{m} are points of U such that $z_{m-1} z_{m} \phi S$ then by m-converity there $1 . s$ an $1, j$ with $1 \leq 1<1 \leq m-2$ and $z_{1} z_{j} C S$, and it is obrious again

Figure 2.8
that $z_{i} z_{j}$ cannot meet ol $W_{1} \cup \mathrm{cl} W_{2}$. Thus, $\operatorname{cl}\left(\mathrm{s} \mid \mathrm{cl} W_{1} \backslash \mathrm{cl} W_{1} \backslash L\right)=\operatorname{cl}\left(\mathrm{s} \backslash \operatorname{cl} W_{1} \backslash \operatorname{cl} W_{1}^{\prime}\right)$ is $(m-2)-$ convex. By the induction hypothesis $\mathrm{S}=$ $\mathrm{cl}\left(\mathrm{s} \mid \mathrm{cl} W_{1} \backslash \mathrm{cl} \mathrm{W}_{1}^{\prime}\right) \cup \mathrm{cl} \mathrm{W}_{1} \cup \mathrm{Ul} \mathrm{W}_{1}^{\prime}$ is the union of $(\mathrm{m}-3)+$ $1+1=m-1$ convex sets, completing the proof. \rangle

We note that the above proposition applies to any closed m-convex set s having only one or two lnc points, thus providing the same result that appears in [10]. (The proof of this result given in [10] differs considerably from the one presented here.) In particular, it also shows that the closure of any nonconvex component W of $S \backslash H$, where H is twodimensional, is the union of either two or three convex sets (by 2.30 and certain observations). It is clear that, in our handling of the problem of proving that a closed m-convex set S is the union of finitely many convex sets when HCS and H is two-dimensional, we need to distinguish between the two
cases: (1) The closure of some component of $S \backslash H$ is not convex, or (2) the closures of all components of $S \backslash H$ are convex. We turn our attention to the first of these cases. Suppose the component W of $S \backslash H$ is such that ol W is not convex. Then by 2.30 , cl W has at most two lnc points q_{1} and q_{2}, and by the proof of that lemma, q_{1} and q_{2} belong to Q. Thus, cl W has either one inc point q_{1} or two distinct inc points q_{1} and q_{2} belonging to $Q \subset H$. In either case there is a line L through q_{1} such that $W \backslash I$ has a component W_{i} on one side of L and precisely two components W_{1} and W_{2} on the other side, with W_{i} and H on the opposite side of L (see Figure 2.9). (We may take L to be the line determined by q_{1} and q_{2} in the latter case, and in the former, if $x \in c l W$ and $y \in c l W$ such that $x y \& c l W$ and $q_{1} \& x y$, choose I any line through q_{1} not passing through x or $\left.y.\right)$

(cl W has two lnc points)

As in the proof of the preceding theorem, ol W_{1}, cl W_{2}, and cl W_{j} are each convex sets, and since ol W is necessarily two-dimensional then cl W_{1} is two-dimensional, and since $W \backslash q_{1}$ is connected ol W_{1} must meet L in some point $x_{1} \neq q_{1}$; if < orders the points on L, we may assume $x_{1}<q_{1}$. Taking A any arc on bd $\left(c l W_{1}\right)$ containing $x_{1} q_{1}$ in its interior we may define $\mathrm{R}_{\mathrm{q}_{1}}^{+}$as before and let L^{\prime} be the line containing $\mathrm{R}_{\mathrm{q}_{1}}^{+}$. We note that since H and W_{1} lie on the same side of L, H and W_{1} lie on opposite sides of L^{\prime} (otherwise, it could be shown that W is not maximal as a connected subset of $S \backslash H)$. Thus, it follows that any point $x>q_{1}$ in $A C$ $\mathrm{bd}\left(\mathrm{cl} \mathrm{W}_{1}\right)$ is in bd S . Now it follows, just as in a previous argument, that if G and G^{\prime} are the two open halfplanes determined by L^{\prime} with $W_{1} C o l G^{\prime}$, then $\mathrm{cl} \mathrm{W}^{\mathrm{C}} \mathrm{Cl} \mathrm{G}^{\prime}=\mathrm{C}$ is convex and $\mathrm{cl}(\mathrm{S} \backslash \mathrm{C}$) is ($\mathrm{m}-\mathrm{l}$)-convex. Thus, our problem would be solved by the inductive hypothesis in this case, since $S=c l(S \backslash C) U C$.

Collecting a number of situations in which S can be decomposed into a convex set and an (m - 1)-convex set (by use of previous arguments) we have
2.33. PROPOSITION: If S is any compact m-convex subset of E^{2} such that HCS and H is two-dimensional, then S is the union of a convex set and a compact (m-1)-convex set provided there exists a component W of $S \backslash H$ such that either
(a) W is one-dimensional,
(b) cl W is convex and contains only one point of H , or
(c) cl W is not convex.

Thus, we turn to case (2) mentioned above and to the cases not covered by 2.32 and 2.33. That 1s, we assume that for a compact, m-convex set S, H is two-dimensional and the closure of each component of $S \backslash H$ is a two-dimensional convex set, meeting H in at least two distinct points. Thus, if W is a component of $S \backslash H$ and $C l W \cap H=x y$ it is clear that x and y are points in Q. (However, it is not true that if $W_{1}, W_{2}, \ldots, W_{1}, \ldots$ are the components of $S \backslash H$ then all points of Q belong to $U_{i=1}$ cl W_{1}. A counterexample is provided by the infinite-sided polygon and interior S illustrated in the figure below, which is 3 -conver since it is the union of 2 convex sets, has the properties being discussed, but the point $q \in Q$ shown does not belong to $c l W_{1}$ for any 1.)

But owing to 2.27 if we consider the sets $S_{1}=H U W_{1}$. $S_{2}=H \cup W_{1} \cup W_{2}, \ldots, S_{1}=H \cup\left(\cup_{j=1}^{1} W_{j}\right)$, then $s=U S_{1}$, so it suffices to consider each set S_{1}. If $H_{1}=\operatorname{conv} Q_{1}$, where
Q_{1} is the set of inc points of S_{1}, then there are only finitely many lnc points, and only finitely many components in $S_{1} \backslash H_{1} . S_{1}$ is obviously m-convex, so this means we have only to consider sets having finitely many lnc points.

It is clear that any result giving a bound to the number. of convex sets decomposing a compact m-convex set can also be obtained for closed sets by applying 2.27. Thus, to solve the finite convex covering problem for closed m-convex sets in E^{2} with $H=$ conv QCS, it suffices to consider sets S having the following properties (in addition to HCS):
(1) S is compact.
(2) Q is finite and there are finitely many components $W_{1}, W_{2}, \ldots, W_{n}$ of $S \backslash H$.
(3) H is two-dimensional.
(4) Each set cl W_{i} is convex and two-dimensional.
(5) For each 1 , $c l W_{1} \cap H=q_{1} q_{1}^{1}$, where q_{1} and q_{1}^{1} are distinct lnc points.

For convenience, such sets will be referred to as type W* (W-star).
2.34. REMARK: It was proved in [10] that if such a set has n inc points then it is the union of $n+1$ or fewer convex sets. However, this result is not relevant to the present situation as the example of the infinite-sided polygon and interior given before emphatically shows.

The next two results will enable us to make other assumptions later.
2.35. LEMMA: If S is a compact m-convex set with HCS, then
for any $x \in S, S_{x}$ is also m-convex.
Proof. Since S is simply-connected, if $y_{1} \in S_{x}$ and $y_{2} \in S_{x}$ with $y_{1} y_{2} \subset S$, then $y_{1} x \cup y_{2} \cup y_{1} y_{2} \subset S$ implies conv\{ $\left.x, y_{1}, y_{2}\right\} \subset S$. Hence, for $u \in y_{1} y_{2}$, xucS and $u \in S_{x}$. Therefore, $y_{1} y_{2} \subset S_{x}$. If $y_{1}, y_{2}, \ldots, y_{m}$ be any m points of S_{x}, then by the m-convexity of $S y_{i} y_{j} \subset S$ for some $I \leq 1<j \leq m$. Thus, by the preceding argument, $y_{i} y_{j} C S_{x}$ and $1 t$ follows that S_{X} is m-convex. The fact that S_{X} is compact is a consequence compactness of s. \rangle
2.36. LEMMA: If S is any closed m-convex set the anti-star S^{x} is (m - 1)-convex relative to S for any $x \in S$. If $x=q \in Q$, then S^{q} is (m - 2)-convex relative to S.

Proof. Since S^{X} is the set of all points of S which do not see x via S, then obviously, the m-convexity of S implies that any $m-1$ points of S^{x} must be visually dependent via S. If $x=q \in Q$, suppose y_{1}, \ldots, y_{k} are any k points of S^{x} which are visually independent via S. There is a neighborhood U such that if $u \in U$, uy ${ }_{i} \& S$ for all 1 (since S is closed). In particular, there exist points $\mathbf{y}_{\mathbf{k}+1}$ and $\mathbf{y}_{\mathbf{k}+2}$ in U such that $y_{k+1} y_{k+2} \not \subset S$. Hence, $y_{1} \ldots, y_{k+2}$ are $k+2$ visually independent points. By m-convexity, $k+2 \leq m-1$ and $k \leq m-3$. Hence, s^{q} is $(m-2)$-convex, relative to S. 0

It is not known whether an m-convex set of type W^{*} for values of $m \geq 5$ is the union of even a finite number of convex sets. The following result "localizes" the problem; Q' will denote the set of limit points of lnc points. Note that $Q^{\prime} C$ Q.
2.37. PROPOSITION: A necessary and sufficient condition for a compact m-convex set S in E^{2} to be the union of finitely many closed convex sets is that for each $q \in Q^{\prime} \cap K$ there is a neighborhood N of q such that ol N is the union of finitely many ciosed conver sets.

Proof. The necessity is obvious. For the sufficiency, we apply induction on m. The theorem is obvious if $m=2$. Each member q^{0} of $Q^{\prime} \cap K$ by hypothesis has a neighborhood $N\left(q^{\circ}\right)$ such that cl $N\left(q^{\circ}\right)$ is the union of finitely many closed convex sets. For $q \in(Q \cap K) \backslash Q^{\prime}$, since q is not a limit point of Q there exists a convex neighborhood $N(q)$ devoid of points of $Q \backslash\{q\}$. Then cl $N(q)$ is a compact m-convex set in E^{2} having only one lnc point, namely q, and thus by 2.32, $N(q)$ is the union of $m-1$ closed convex sets. For $q \in Q \backslash K$, there is a point $x(q)$ and a convex neighborhood $N(q)$ which cannot see $x(q)$. Then $N(q)$ is (m - l)-convex, so by the induction hypothesis cl $N(q)$ is the union of finitely many closed convex sets. Finally, for $x \in S \backslash Q$, by definition of local convexity, there exists a convex neighborhood $N(x) \subset S$. Thus, for each $x \in S, N(x)$ is a neighborhood of x whose closure is a finite union of closed conver sets. Since S is compact, there is a finite subcover $N\left(x_{1}\right), \ldots, N\left(x_{n}\right)$ of S, which proves that S itself is the union of finitely many closed, convex sets. \bigcirc

CHAPTER III

4-CONVEXITY

It will be established that a closed, simply-connected 4 -convex subset of E^{2} is the union of 9 or tewn convex sets. It is not known whether the bound on the number of convex sets is best: it is highly probable that it is not. However, up to this time even this bound had not been established, in spite of attempts by several authors to do so. Guay's thesis includes results concerning convex coverings for a 4 -convex set S when S has a cut point, $|Q \cap K|=2,|Q|=1$, $|Q \backslash K| \leq 1, S$ is one-dimensional at some point not in Q, or K is one-dimensional. (As before, K denotes the kernel of S, Q stands for the set of lnc points of S, and $H=c o n v Q_{0}$) In the cases where $|Q \cap K|=2$ or $|Q|=1$, Guay proved that S may be expressed as the union of three or fewer closed convex sets, and in the remaining cases, S is the union of four or fewer closed convex sets. Guay's main result was that a closed 4-convex set in E^{2} which is not simply-connected is the union of five or fewer convex sets. (This result is best possible as illustrated in Figure 3.1; the set S indicated there is compact, 4-convex and not simply-connected, but it is not the union of any four convex sets.) Establishing a
best bound for the remaining case, when S is simply connected, would complete the finite convex covering problem for closed, connected, 4-convex subsets of E^{2}.

Figure 3.1
The following preliminary result reverses a previous one, namely 2.23 , in the case of 4 -convexity.
3.1. LEMMA: For a closed, connected 4-convex subset S of $E^{2}, H C S$ is equivalent to the simple-connectedness of S. Proof. For compact, connected sets in $E^{2} 2.23$ implies the result that S is simply-connected if HCS, and this is clearly enough to establish that result for closed, connected sets. Conversly, suppose S is simply-connected, and let $x \in H$. By 2.25, there exist q_{1}, q_{2}, q_{3} in Q such that $x \in \operatorname{con}\left\{\left\{q_{1}, q_{2}, q_{3}\right\}\right.$. Now if $q_{1} q_{2} \notin S$ there exist neighborhoods U_{1} and U_{2} of q_{1} and q_{2} such that for $u_{i} \in U_{i}, i=1,2$, $u_{1} u_{2} \notin S$. But q_{1} and q_{2} are inc points of s, so there exist points u_{i} and v_{i} in U_{1} such that $u_{1} \nabla_{i} \notin S, 1=1,2$, and hence $\left\{u_{1}, \nabla_{1}, u_{2}, \nabla_{2}\right\}$ is a set of four visually independent points in S, denying 4-convexity. Hence, $q_{1} q_{2} C S$, and in the same manner, $q_{2} q_{3} \subset S$ and $q_{1} q_{3} C S$. By simple-connectedness,
$\operatorname{conv}\left\{q_{1}, q_{2}, q_{3}\right\} \subset S$ and $x \in S$. Therefore, HCS. θ
Thus, is S is a closed, simply-connected, 4-convex subset of E^{2}, HCS; hence inside every disk S is a compact, simply-connected 4 -convex set. By 2.27 we may then restrict our attention to compact, simply-connected 4 -convex sets. All results on m-convexity established in the preceding chapter, therefore, apply here. As pointed out there, the problem has been reduced to the consideration of sets of type W^{*} since Valentine's theorem may be applied to the 3-converity arising from the use of 2.33.

If S is of type W^{*}, suppose $\left\{W_{1}\right\}$ are the closures of the components of $S \backslash H$. Orient the boundary of H counterclockwise, thereby inducing a clockwise orientation of each bd $W_{1}, 1=1, \ldots, n$ (see figure below). Let A be any arc on bd W_{1} containing in its interior the two Inc points of S in $c l W_{1}$, and label those lnc points q_{1} and q_{1}^{\prime}, with $q_{i}<q_{i}^{\prime}$. For convenience, we introduce the further

notation

$$
\begin{aligned}
& R_{1}=R_{q_{1}}^{-}, R_{i}^{\prime}=R_{q_{i}^{\prime}}^{+}, \\
& B_{1}=c l G_{q_{i}}^{-} \cap s, \quad B_{i}^{\prime}=c l G_{q_{i}}^{+} \cap s, \quad C_{i}=c l\left(s \backslash B_{1} \backslash B_{i}^{\prime}\right) .
\end{aligned}
$$

Essentially from 2.31 it follows that the sets B_{i} and B_{1}^{\prime} are compact 3 -convex subsets of S. Also, the set $W_{i} \cup\left(C_{i} \cap H\right)$ is convex, owing to its local convexity. For each i we let p_{i} and p_{i} be the endpoints of the segments $R_{i} \cap H$ and $R_{i}^{\prime} \cap H$ different from q_{i} and q_{i}^{\prime} respectively. The following property of the components W_{1} is a key result to be used later.
3.2. LEMMA: The set $W_{i} \cup W_{j}$ is convex relative to S iff $q_{i} q_{i} \subset C_{j}$ and $q_{j} q_{j} \subset C_{i}$.

Proof. If $q_{i} q_{i}^{\prime} \notin c_{j}$ then there exists a point $x \in q_{i} q_{i} \backslash c_{j}$, which implies $x \in B_{j}$ or $x \in B_{j}^{\prime}$. By 2.31 there exists a point $y \in \operatorname{bd} W_{j} \in W_{j}$ such that $x y \notin S$. Hence, $W_{i} U W_{j}$ is not convex relative to S .

Conversely, assume $q_{i} q_{i}^{\prime} \subset C_{j}$ and $q_{j} q_{j}^{\prime} \subset C_{i}$. Since there is nothing to prove otherwise, assume $x \in W_{i}$ and $y \in W_{j}$.
Since $q_{1} q_{i}^{\prime} C H$ then $q_{1} q_{i}^{\prime} \subset C_{j} \cap H$, and since $W_{j} \cup\left(C_{j} \cap H\right)$ is convex, for each $u \in q_{i} q_{i}^{\prime}$, uy $\subset W_{j} \cup\left(C_{j} \cap H\right) C S$ (see Figure 3.3). Since $u \in W_{1}$ and W_{1} is convex, xuC $W_{1} \subset S$. Hence xu UuyCS. Choose $u \in q_{i} q_{i}^{\prime}$ such that $x u \cup u y C S$ and $e(x, u)+e(u, y)$ is minimal, where e denotes the euclidean metric. since $u \notin W_{j}$, uy cuts bd W_{j} at a point ∇. If $\nabla \not \subset q_{j} q_{j}$ then $\nabla \& H$, and hence there is a neighborhood U of V devoid of points of H. Then UVES implies there is a point on (uv) in another component

Figure 3.3
of $S \backslash H$, which is impossible. Hence $v \varepsilon q_{j} q_{j}^{\prime} \subset C_{i} \cap H$ and $\nabla x \subset W_{1} U\left(C_{1} \cap H\right) C S$, By the same reasoning as before there is a point $w \in \operatorname{Vx} \cap q_{i} q_{i}^{\prime}$. Moreover, $X W \cup W y C W_{1} \cup W_{j} \cup\left(C_{j} \cap H\right) C S$. But

$$
\begin{aligned}
e(x, w)+e(w, y) & \leq e(x, w)+e(w, v)+e(v, y) \\
& =e(x, v)+e(v, y) \\
& \leq e(x, u)+e(u, v)+e(v, y) \\
& =e(x, u)+e(u, y) .
\end{aligned}
$$

By the definition of u as a point on $q_{i} q_{i}^{\prime}$, equallity prevails throughout, and $e(x, u)+e(u, v)=e(x, v)$. Thus $u \in x v$ and $\nabla \varepsilon u y$, or x, u, v, and y are collinear. Hence $x y=$ xu Uuv \cup vy C $W_{i} \cup H \cup W_{j} \subset S$, so $W_{i} \cup W_{j}$ is relatively convex. \forall

We shall now consider a situation which will occur repeatediy throughout the remaining discussion. Suppose x_{0} is a point on bd H and that x_{0} lies in the kernel of S. As before, the removal of x_{0} from bd H results in a set which can be linearly ordered by $<$, with x_{0} as the least element. Using this ordering to produce the notation introduced earlier, we have $x_{0} \& C_{i}$ for all i, and if $x_{0} \& q_{i} q_{i}^{\prime}, p_{i}<q_{i}<q_{i}^{\prime}<p_{i}^{\prime}$
(see Figure 3.4), and it may be assumed that the sets W_{1} have been so labeled that $q_{i}<q_{j}$ whenever $i<j$. Moreover,

Figure 3.4

(int $\left.B_{i}\right) \cap b d H$ consists of those points x on bd H such that $p_{i}<x<q_{1}$, and similarly for int B_{i}^{\prime} (here; the interior is taken relative to S). Thus, we have
(Int $\left.B_{i}\right) \cap$ bd $H=\left\{x \in\right.$ bd $\left.H ; p_{i}<x<q_{i}\right\}$, and
(int $\left.B_{i}^{\prime}\right) \cap$ bd $H=\left\{x \varepsilon\right.$ bd $\left.H_{;} q_{i}^{\prime}<x<p_{i}^{\prime}\right\}$.
It is easy to verify the further relation
$c_{i} \cap$ bd $H=\left\{x \in\right.$ bd $H: q_{i} \leq x \leq q_{i}^{\prime}, x \leq p_{i}$, or $\left.x \geq p_{i}^{\prime}\right\}$. Now consider any two sets W_{i} and W_{j}, for $1<j$. Then $q_{i}<q_{i}^{\prime} \leq q_{j}<q_{j}^{0}$ (see Figure 3.5). Suppose $x \in q_{i} q_{i}^{\prime}$, and therefore $x \in$ bd H and $q_{i} \leq x \leq q_{i}^{\prime}$. It follows that $q_{i}^{\prime} \leq p_{j}$ implies $x \leq p_{j}$ or $x \& C_{j}$. Conversely, if $x \nmid C_{j}$ then $x>p_{j}$ and therefore $p_{j}<q_{i}^{\prime}$. Thus $q_{i} q_{i}^{\prime} \subset C_{j}$ iff $q_{i}^{\prime} \leq p_{j}$. In a similar fashion it can be proved that $q_{j} q_{j} \subset C_{i}$ inf $p_{i} \leq q_{j}$. In view of 3.2 this gives us
3.3. LEMMA: If $x_{0} \varepsilon$ bd H is a point in the kernel of S and < is the linear order on bd H determined by x_{0}, with the points q_{i} ordered accordingly, then for any two integers
$1<j$ such that $x_{0} \notin W_{i} \cup W_{j}, W_{1}$ can see W_{j} via S ff both $q_{i}^{\prime} \leq p_{j}$ and $p_{i}^{\prime} \leq q_{j}$.

Figure 3.5
Another result which will be useful to us is the following:
3.4. LEMMA: If S is any closed, 4-convex subset of E^{2} of type W^{*}, and W_{1} and W_{2} are the closures of any two componets of $S \backslash H$, let \bar{B}_{1} be either one of the sets B_{1} or B_{1}^{\prime} and \bar{B}_{2} either of B_{2} or B_{2}^{\prime}, with \bar{p}_{1}, \bar{q}_{1} and \bar{p}_{2}, \bar{q}_{2} the corvespounding endpoints of $\bar{B}_{1} \cap$ bd H and $\bar{B}_{2} \cap b d H$, respectively. If either
or
then

$$
\begin{aligned}
& \bar{q}_{1} \varepsilon \operatorname{int} \bar{B}_{2} \\
& \bar{q}_{2} \varepsilon \operatorname{int} \overline{\mathrm{~B}}_{1},
\end{aligned}
$$

$$
\text { int } \bar{B}_{1} \cap \operatorname{int} \bar{B}_{2} \cap Q=\varnothing \text {. }
$$

Proof. Suppose $\bar{q}_{1} \varepsilon$ int \bar{B}_{2} and that $q \varepsilon$ int $\bar{B}_{1} \cap$ int $\bar{B}_{2} \cap Q$ (the proof for the case $\bar{q}_{2} \varepsilon$ int \bar{B}_{1} is similar). Let \bar{R}_{1} and \bar{R}_{2} denote the rays R_{1} or R_{1}^{\prime} and R_{2} or R_{2}^{\prime} corresponding to \bar{q}_{1} and \bar{q}_{2}, respectively. Since $\bar{q}_{1} \in$ int \bar{B}_{2} there exists a convex neighborhood U_{1} of \bar{q}_{1} such that $U_{1} C$ int \bar{B}_{2}. Since
q is on the opposite side of \bar{R}_{1} as $W_{1} \cap U_{1}, 2.31$ (with $C=W_{1} \cap U_{1}$ and $M_{1}=\{q\}$) implies the existance of a point $x_{1} \varepsilon W_{1} \cap U_{1}$ such that $x_{1} q \phi s$. Hence both x_{1} and q lie on the opposite side of \bar{R}_{2} as W_{2}, so again applying 2.31 (with $C=W_{2}$ and $M_{1}=\left\{x_{1}, q\right\}$) there exists a point $x_{2} \varepsilon W_{2}$ such that $x_{1} x_{2} \not \subset s$ and $q x_{2} \phi \mathrm{~s}$. Because s is closed there exists a neighborhood V of q such that x_{1} and x_{2} cannot see $V \in V$. Since q is an lnc point there exist points x_{3}, x_{4} in V such that $x_{3} x_{4} \not \subset s$. But then $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ would be a set of four visually independent points of S, denying $4-$ convexity. Hence, we conclude that int $\bar{B}_{1} \cap$ int $\bar{B}_{2} \cap Q=\varnothing$. \diamond We introduce one more concept which will be of use in the proof of the next theorem.
3.5. DEFINITION, If $\mathcal{F}=\left\{W_{i} ;\right.$ i ε I $\}$ is a family of closures of components of $S \backslash H$, then $\left\{\mathcal{F}^{1}, \mathcal{F}^{2}, \ldots, \mathcal{F}^{n}\right\}$ is called a convex partition of \mathcal{F} of order $\underline{\underline{x}}$ iff the sets $\mathcal{F}^{\prime}, \mathcal{F}^{2}, \ldots, \mathcal{F}^{r}$ partition f (they are pairwise disjoint and their union is \mathcal{F}) and for each 1 the set $\bigcup\left\{W_{j}{ }^{\prime} W_{j} \in \mathcal{F}^{i}\right\}$ is a relatively convex subset of s .

It is clear that it is pertinent to our problem to find a convex partition of finite order for the family \mathcal{F} of closures of components of $S \backslash H$, for if $D_{i}=\operatorname{conv}\left\{W_{j}: W_{j} \in \mathcal{F}^{i}\right\}$, $i=1,2, \ldots, r$ it would follow that $D_{i} C S$, and since

$$
S=H U\left(U_{i=1}^{r} D_{i}\right),
$$

S would be the union of $r+1$ convex sets.
3.6. THEOREM: If S is a closed 4 -convex set in E^{2} which has at least one lnc point in the kernel of S, then S is the union of 8 or fewer convex sets.

Proof. By previous observations, we may assume that S is of type W^{*}. By hypothesis, $S=S_{q}$ for some point $q \in Q$. Let < be the linear ordering on bd H induced by q, and, as before, assume that the Inc points occur in the order

$$
q \leq q_{1}<q_{1}^{\prime} \leq q_{2}<q_{2}^{\prime} \leq \cdots<q_{n-1}^{\prime} \leq q_{n}
$$

with $q=q_{n}^{\prime}$. Define inductively the integers $n_{1}, n_{2}, \ldots, n_{k}$ as follows: Let n_{1} be the largest integer such that the family

$$
\mathcal{F}_{1}=\left\{w_{1} ; 1 \leq 1<n_{1}\right\}
$$

has a convex partition $\left\{\mathcal{F}_{1}^{1}, \mathcal{J}_{1}^{2}, \not \mathcal{F}_{1}^{3}\right\}$ of order 3. Let n_{2} be the largest integer such that the family

$$
J_{2}=\left\{W_{1} ; 1 \leq 1<n_{2}\right\} \backslash\left\{w_{n_{1}}\right\}
$$

has a convex partition $\left\{\boldsymbol{J}_{2}^{1}, \mathcal{F}_{2}^{2}, \mathcal{F}_{2}^{3}\right\}$ of order 3. In general, having defined $n_{1}, n_{2}, \ldots, n_{j}$, define n_{j+1} as the largest integer such that the family

$$
\mathcal{F}_{j+1}=\left\{w_{i}: 1 \leq 1<n_{j+1}\right\} \backslash\left\{w_{n_{1}}, w_{n_{2}}, \ldots, w_{n_{j}}\right\}
$$

has a convex partition $\left\{\varlimsup_{j+1}^{1}, \Varangle_{j+1}^{2}, \xi_{j+1}^{3}\right\}$ of order 3 . Since there are only finitely many sets W_{i}, the process ends in a finite number of steps and we let n_{k} denote the last such integer.

We shall prove first that for each $n_{j}<n$ there exist integers $r<s<t$ in the set $\hat{n}_{j} \backslash\left\{n_{1}, \ldots, n_{j}\right\}$ such that $W_{n_{j}}$ cannot see W_{r}, W_{s}, or W_{t} via S (that is, there is a point in $W_{n_{j}}$ which cannot see via S some point in W_{i}, for $i=r, s, t$).

Suppose on the contrary, that given such integers r, s, and $t, W_{n_{j}}$ can see at least one of W_{r}, W_{s}, or W_{t}. Choose the three largest integers $r<s<t$ in the set $\hat{n}_{j} \backslash\left\{n_{1}, \ldots, n_{j}\right\}$; then $W_{n_{j}}$ can see W_{u} via S for either $u=r, u=s$, or $u=t$. If $w_{n_{j}}$ can see w_{t}, we may assume $w_{t} \varepsilon 于_{j}^{l}$, and consider any other set $w_{u} \varepsilon \boldsymbol{F}_{j}{ }_{j}$. Since w_{u} can also see w_{t}, then by 3.3 $q_{u}^{\prime} \leq p_{t}, p_{u}^{\prime} \leq q_{t}, q_{t}^{\prime} \leq p_{n_{j}}$, and $p_{t}^{\prime} \leq q_{n_{j}}$. Therefore, $q_{u}^{\prime}<q_{t}^{\prime} \leq p_{n_{j}}$ and $p_{u}^{\prime} \leq q_{t}<q_{n_{j}}$ so that w_{u} can see $w_{n_{j}}$. That is, $W_{n_{j}}$ can see all the members of $\boldsymbol{\mathcal { F }}_{j}^{1}$ via S. If $W_{n_{j}}$ cannot see W_{t} then we have the cases (1) $W_{n_{j}}$ can see W_{s} and (2) $W_{n_{j}}$ cannot see W_{S} and therefore sees W_{r} via S. In case (1), assume $W_{s} \in \mathcal{F}_{j}^{1}$. At most one W_{u} for $u<s$ exists such that W_{u} cannot see $W_{n_{j}}$, for if $u<v$ and both W_{u} and W_{v} cannot see W_{s} then, since $q_{u}^{\prime}<q_{v}^{\prime}<q_{s}^{\prime} \leq p_{n_{j}}$, we must have both $p_{u}^{\prime}>\dot{q}_{s}$ and $p_{v}^{\prime}>q_{s}$ so that
and

$$
q_{u}^{\prime}<q_{v}^{\prime} \leq q_{r}<q_{s}<p_{u}^{\prime}
$$

$$
q_{V}^{\prime}<q_{s}<p_{V}^{\prime}
$$

which implies that $q_{s} \varepsilon$ int $B_{u}^{\prime} \cap$ int B_{v}^{\prime} and $q_{v}^{\prime} \varepsilon$ int B_{u}^{\prime}, contradicting 3.4. Suppose $W_{u} \varepsilon \mathcal{F}_{j}^{2}$. Then $W_{n_{j}}$ can see all orther W_{v} for $\nabla<s$ and hence, if $W_{t} \varepsilon \mathcal{F}_{j}, W_{n_{j}}$ can see all the members of \mathcal{J}_{j}^{3}; if $W_{t} \neq \boldsymbol{\mathcal { F }}_{j}^{1}$ then W_{t} can see all the members of \mathcal{F}_{j}^{l}. In case (2), our basic assumption regarding $W_{n_{j}}$ implies that since $W_{n_{j}}$ cannot see W_{s} nor W_{t}, it must see all W_{u} for $u \leq r$. Suppose $W_{r} \varepsilon \mathcal{F}_{j}^{l}$. If both W_{s} and W_{t} are members of \mathcal{F}_{j}^{1} then $W_{n_{j}}$ can see all the members of \mathcal{F}_{j}^{2}, and if neither w_{s} nor w_{t} are members of \boldsymbol{f}_{j}^{I} then $w_{n_{j}}$ can see all the members of $\mathcal{F}_{j}^{\frac{1}{j}}$. If either $W_{s} \notin \mathcal{F}_{j}^{\frac{1}{j}}$ or $W_{t} \not \mathcal{F}_{j}^{1}$, then
we may assume W_{s} (or W_{t}) belongs to \mathcal{F}_{j}^{2} and hence $W_{n_{j}}$ can see all the members of \mathcal{F}_{j}^{3}. In all cases, our assumption has led us to the assertion that $W_{n_{j}}$ can see all the members of $\mathcal{J}_{j}^{1}(i=1,2$, or 3). But then it follows that $\left\{\mathcal{F}_{j}^{1} \cup\left\{W_{n_{j}}\right\}, \mathcal{F}_{j}^{1+1}, \mathcal{F}_{j}^{1+2}\right\}$ is a convex partition of order 3 for $\mathcal{F}_{j} \cup\left\{W_{n_{j}}\right\}$, denying the maximal property of n_{j}.

Therefore, given j there exist integers $r<s<t$ in the set $\hat{n}_{j} \backslash\left\{n_{1}, \ldots, n_{j}\right\}$ such that $W_{n_{j}}$ cannot see W_{r}, W_{S}, nor W_{t}. The implication is now that $q_{t} E$ int $B_{n_{j}}$. For, if $q_{s}^{\prime} \leq p_{n_{j}}$ then $q_{r}^{\prime}<q_{s}^{\prime} \leq p_{n_{j}}$ and by 3.3. $p_{r}^{\prime}>q_{n_{j}}$ and $p_{s}^{\prime}>q_{n_{j}}$. Therefore,
and

$$
\begin{gathered}
q_{r}^{\prime}<q_{s}^{\prime}<q_{t}^{\prime} \leq q_{n_{j}}<p_{r}^{\prime} \\
q_{s}^{\prime}<q_{t}^{\prime} \leq q_{n_{j}}<p_{s}^{\prime}
\end{gathered}
$$

which implies that $q_{t}^{\prime} \in$ int $B_{r}^{\prime} \cap$ int B_{S}^{\prime} and $q_{S}^{\prime} \varepsilon$ int B_{r}^{\prime}, denying 3.4. Therefore,

$$
p_{n_{j}}<q_{s}^{\prime} \leq q_{t}<q_{n_{j}}
$$

and hence, $q_{t} \varepsilon$ int $B_{n_{j}}$.
Now it can be proved that for each j such that $n_{j+3}<n$ $W_{n_{j}}$ can see $W_{n_{j+3}}$. Assume otherwise, and that for some $n_{j+3}<n$ either (1) $p_{n_{j}}^{\prime}>q_{n_{j+3}}$, or (2) $p_{n_{j}}^{\prime} \leq q_{n_{j+3}}$ and, by 3.3, $q_{n_{j}}^{0}>p_{n_{j+3}}$.

Case 1: $p_{n_{j}}^{\prime}>q_{n_{j+3}}$. We consider the two subcases (1.1) $p_{n_{j+3}} \geq q_{n_{j}}^{\prime}$ and (1.2) $p_{n_{j+3}}<q_{n_{j}}^{\prime}$.
Case 1.1: $p_{n_{j+3}} \geq q_{n_{j}}^{\prime}$ Let $t \neq n_{i}\left(i=1, \ldots, n_{j+3}\right)$ be such that $q_{t} \varepsilon$ int $B_{n_{j+3}}$. Hence,

$$
q_{n_{j}}^{\prime} \leq p_{n_{j+3}}<q_{t}<q_{n_{j+3}}<p_{n_{j}}^{\prime}
$$

and since $q_{t} \neq q_{n_{j}}^{\prime}$.
$q_{n_{j}}^{\prime}<q_{t}<q_{n_{j+3}}<p_{n_{j}}^{\prime}$
Therefore, $q_{t} \in$ int $B_{n_{j}}^{\prime} \cap$ int $B_{n_{j}+3}$ and $q_{n_{j+3}} \varepsilon$ int $B_{n_{j}}^{\prime}$, denying 3.4.

Case 1.2: $p_{n_{j+3}}<q_{n_{j}}^{\prime}$. Here, we have

$$
p_{n_{j+3}}<q_{n_{j}}^{\prime}<q_{n_{j+1}}^{\prime} \leq q_{n_{j+2}}<q_{n_{j+3}}<p_{n_{j}}^{\prime}
$$

Hence, $q_{n_{j+2}} \varepsilon$ int $B_{n_{j}}^{\prime} \cap$ int $B_{n_{j+3}}$ and $q_{n_{j+3}} \varepsilon$ int $B_{n_{j}}^{\prime}$, denying 3.4.

Case 2: $p_{n_{j}}^{\prime} \leq q_{n_{j+3}}$ and $q_{n_{j}}^{\prime}>p_{n_{j+3}}$. It follows that $p_{n_{j+2}} \geq q_{n_{j}}^{\prime}$ for if $p_{n_{j+2}}<q_{n_{j}}^{\prime}$ then
and

$$
p_{n_{j+2}}<q_{n_{j}}^{\prime}<q_{n_{j+2}}
$$

$$
p_{n_{j+3}}<q_{n_{j}}^{\prime}<q_{n_{j+2}}<q_{n_{j+3}}
$$

which implies $q_{n_{j}}^{\prime} \varepsilon$ int $B_{n_{j+2}} \cap$ int $B_{n_{j+3}}$ and $q_{n_{j+2}} \varepsilon$ int $B_{n_{j+3}}$, a contradiction. Hence $p_{n_{j+2}} \geq q_{n_{j}}^{\prime}>p_{n_{j+3}}$. Let $t \neq n_{1}$ $(1=1, \ldots, j+2)$ be such that $q_{t} \varepsilon$ int $B_{n_{j+2}}$. Then

$$
p_{n_{j+3}}<p_{n_{j+2}}<q_{t}<q_{n_{j+2}}<q_{n_{j+3}}
$$

and therefore $q_{t} \varepsilon$ int $B_{n_{j+2}} \cap$ int $B_{n_{j+3}}$, with $q_{n_{j+2}} \varepsilon$ int $B_{n_{j+3}}$.
Thus, the assumption that $W_{n_{j}}$ cannot see $W_{n_{j+3}}$ via S has led in every case to a denial of 3.4. Therefore, we conclude that $W_{n_{j}}$ can see $W_{n_{j+3}}$ for each j such that $n_{j}<n_{\text {. }}$ It then follows that each of the sets $U\left\{W_{n_{y}}: j \equiv r(\bmod 3)\right.$, $\left.n_{j}<n\right\}$ for $r=0,1$, and 2 (define $W_{n_{0}}=\varnothing$ for this purpose) is relatively convex in S. Since the convex hull of any relatively convex subset of S can easily be shown to lie in S by virtue of the simple-connectedness of S, define:

$$
\begin{array}{ll}
D_{1}=H & D_{3}=\operatorname{conv}\left(U \mathcal{J}_{k}^{2}\right) \\
D_{2}=\operatorname{conv}\left(U \mathcal{F}_{k}^{1}\right) & D_{4}=\operatorname{conv}\left(U \mathcal{J}_{k}^{3}\right)
\end{array}
$$

$$
\begin{array}{ll}
D_{5}=\operatorname{conv}\left(U_{j \equiv 0} W_{n_{j}}\right), n_{j}<n & D_{7}=\operatorname{conv}\left(U_{j \equiv 2} W_{n_{j}}\right), n_{j}<n \\
D_{6}=\operatorname{conv}\left(U_{j \equiv 1} W_{n_{j}}\right), n_{j}<n & D_{8}=W_{n} .
\end{array}
$$

It then follows that $s=\bigcup_{1=1}^{8} D_{i}$.
3.7. COROLLARY: Any closed 4-convex subset S of E^{2} is the union of 9 or fewer convex sets.

Proof. It is obvious that we may assume that S is connected; suppose first that S is simply-connected. If $q \in Q$ consider s^{q} and S_{q}. Then by $2.35 \mathrm{~S}^{\prime}=\mathrm{S}_{\mathrm{q}}$ is a closed, simplyconnected 4 -convex subset of E^{2} with $q \in Q^{\prime} \cap H^{\prime}$, where Q^{\prime} is the set of inc points of $S^{\prime \prime}$ and $K^{\prime \prime}$ is the kernel. By 3.6, S_{q} is the union of 8 convex sets, say D_{1}, \ldots, D_{8}. By 2.36, S^{q} is relatively convex, and since S is simply-connected, $D_{9}=\operatorname{conv} S^{q}$ is a convex subset of S. Then, $S=\bigcup_{i=1}^{9} D_{1}$. In the non-simply-connected case, Guay's result in [6] that S is the union of 5 or fewer convex sets may be invoked. $\boldsymbol{\nabla}$ We note in conclusion that our methods make short work of Valentine's theorem. For, if S is a closed 3-convex subset of E^{2}, it follows that $Q \subset K$ (since $q x \not \subset S$ for $q \in Q$ implies that x cannot see via S any point in some neighborhood U of q, there are two points x_{2} and x_{3} in U such that $x_{2} x_{3} \notin S$ by virtue of q being an inc point, contradicting 3-convexity). Hence, HCS and we may consider the closures of the components $\left\{W_{i}: i \varepsilon I\right\}$ in $S \backslash H$. By 2.33, if one of the W_{i} is not convex then S is the union of two convex sets. As before, we need therefore only consider the case when S is of type W^{*}. Since $Q \subset K$, we select $q \in Q$ at random and
let < order the points of bd H , as before. The previous results 3.3 and 3.4 still apply, so it may be easily proved that for each $1, W_{1}$ can see W_{i+2} via S. For, if either $q_{i}^{j}>p_{i+2}$ or $p_{i}^{j}>q_{i+2}$ then either $p_{i+2}<q_{i} \leq q_{i+1}<q_{i+2}$ or $q_{i}^{\prime} \leq q_{i+1}<q_{i+2}<p_{i}^{\prime}$ and either $q_{i}^{\prime} \varepsilon$ int B_{i+2} or $q_{i+2} \varepsilon$ int B_{i}^{\prime}. But in either case it follows that an lnc point falls outside the kernel. Define $r=[n / 2]$, where $n=|Q|$, and put

$$
\begin{aligned}
& D_{1}^{\prime}=\operatorname{conv}\left(U_{i=1}^{r} W_{21-1}\right) \\
& D_{2}^{\prime}=\operatorname{conv}\left(U_{i=1}^{r} W_{21}\right) \\
& D_{3}^{\prime}=W_{n} .
\end{aligned}
$$

It follows that each D_{j}^{\prime} is a convex subset of S. Then let D_{j} denote any maximal convex subset of s containing D_{j}. Since $Q C K, H=$ conv QCconv $K=K$. Recall that K is the intersection of all maximal convex subsets of S; then $K C D_{j}$ and therefore $H C D_{j}$. Therefore, $S=D_{1} \cup D_{2}$ if n is even and $s=D_{1} \cup D_{2} \cup D_{3}$ if n is odd. That is, s is the union of 3 convex sets (2 if n is even), which is the substance of Valentine's theorem [17]. For, 2.27 extends this result to closed sets and to sets with $|Q|=\infty$ (where S is the union of two convex sets), as in Valentine's theorem.

LIST OF REFERENCES

1. J. E. Allen, Starlike and Inverse Starlike Sets, Ph.D. thesis, Oklahoma State University (1963).
2. H. Brunn, Über Ovale und Eiflächen (Inauguraldiss.), 1-42, Munich (1887).
3. $436-\frac{\ddot{U} \text { ber }}{440 \text { Kerneigebiete, Math. Ann., (1913), }}$
4. L. W. Danzer, B. Gründaum, and V. Klee, Helly's theorem and its relatives, f roc. Symposia in Pure Mathematics, 7 (1963), 101-180.
5. B. Grünbaum and T. S. Motzrin, on components in some families of sets, Proc. Amer. Math. SOc., 12 (1967), 607-613.
6. M. Guay, Planar sets having Property $p^{n}, P h . D$. thesis, Michigan State University (1967).
7. W. R. Hare and J. W. Kenelly, Intersections of Maximal Starshaped Sets, Proc. Amer. Math. Soc., 19 (1968), 1299-1302.
8. A. Horn and F. A. Valentine, Some Properties of I Sets in the Plane, Duke Math. J., 16 (1949), 131-140.
9. D. C. Kay and M. D. Guay, Convexity and a certain Property P_{p}, Israel Journal of Mathematics 8, Number 1, (1970), 39-52.
10. \qquad - On sets having finitely $\frac{m a n y}{P_{m}}$ points of Local $\frac{\text { Nonconvexity }}{}$ and Property \bar{P}_{m} to appear in the Israel Journal of Math.
11. J. L. Kelley and I. Namioka, Linear Topological Spaces, D. Van Nostrand Company, Inc., Princeton, New Jersey, (1963).
12. C. F. Koch and J. M. Marr, A characterization of unions of two starshaped sets, Proc. Amer. SOC. . 17 (1966), 1341-1343.
13. C. Kuratowski, Topologie I, 2-nd ed. Monogr. Mat., 20, P. W. N. Warsaw, (1948).
14. D. G. Larman, Helly type properties of unions of convex sets, Mathematika 15 (1968). 53-59.
15. W. L. Stamey and J. M. Marr, Unions of two convex sets, Canadian J. of Math., 15 (1963), 152-156.
16. F. A. Toranzos, Radial functions of convex and starshaped bodies, Amer. Math. Monthly 74 (1967), 278-280.
17. F. A. Valentine, A three point convexity property, Pacific J. Math., 7 (1957) 1227-1235.
18. \qquad
19. \qquad
