A DIGITAL COMPUTER SOLUTION TO THE TRANSIT

OPERATOR ASSIGNMENT PROBLEM

By

SAMY E. G. ELIAS

Bachelor of Science Cairo University Cairo, Egypt 1955

Master of Science The Agricultural and Mechanical College of Texas College Station, Texas 1958

Submitted to the Faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August, 1960

STATE UNIVERSITY

JAN 3 1961

A DIGITAL COMPUTER SOLUTION TO THE TRANSIT OPERATOR ASSIGNMENT PROBLEM

Thesis Approved:

au ser maan 0 U n

Graduate School of Dean the

PREFACE

In recent years, the transit volume, i.e., intracity bus passenger loadings, has been steadily decreasing. The reasons are numerous, but the decline in the usage of public transit and the ever increasing number of automobiles on the road has not only posed problems for transit organizations but also, for city planners. Various solutions have been suggested to reverse this trend, but time is needed to assess the validity of such solutions. However, even those public transit companies which hold this hopeful outlook are faced with the immediate necessity of staying in business long enough to benefit from any anticipated increase in demand for their service.

Reduction in operating cost, through re-scheduling, has been the aim of such companies seeking to maintain operations on a profitable basis. Yet, the best manual methods fall short of solving the problem because computations cannot be made quickly enough to keep pace with changing conditions. As a result, attention has been directed to the high speed computer as the means to overcome these computational difficulties.

The total problem of transit scheduling is customarily subdivided into:

1. Partitioning the city or town into areas with routes

to service these areas and determining the passenger load, and thus, the vehicle requirements (number of buses needed per route).

- 2. Establishment of headways, i.e., how often should the buses run.
- 3. Run assignments for operators, i.e., the establishment of daily work.

Previous research has been accomplished on the first two phases, using digital computer facilities. Reference to part of this research is made in Appendix C and D.

The study undertaken herein, is on the third phase of scheduling, "Run Assignments for Operators." The difficulty encountered in arranging and scheduling runs for bus operators is brought about by the many variables which go into the make-up of specifying the daily work for each man. Both operating variations in time per trip and the union contract restrictions on what constitutes a run, are the reasons for this situation.

Indebtedness is acknowledged to Professor H. G. Thuesen, Chairman of my Advisory Committee and Professor Wilson J. Bentley, Dean M. R. Lohmann, Professor William Granet, Dr. H. T. Fristoe, and Dr. P. Torgersen, members of my Advisory Committee, for their invaluable guidance and resolution in seeing this thesis through; to Professor Darrell R. Shreve for enabling me to use the facilities of the University Computing Center which include the I.B.M. 650 digital computer, and to the people of Stillwater, Oklahoma, who directly or indirectly made my stay in their town

a pleasant one.

iv

TABLE OF CONTENTS

Chapter		Page
I.	INTRODUCTION	. 1
· ·	Hypothesis Factors Currently Affecting Bus Transit Systems	. 1 . 2 . 3
II.	DIVISION OF THE SCHEDULING PROBLEM	. 8
	Factors in Operations	. 9 12 14 16
III.	PRESENT SCHEDULING METHOD OF A COMPANY	18
IV.	COMPUTER SCHEDULING OF TRANSIT OPERATORS	
	ASSIGNMENTS	31
	Types of Problems	31 34
	Time and Pull-in Time of All Schedule Numbers on a Route	36
	to the Appropriate Form Needed as Input Data for Section II	46 49
	With Those Pieces of Work That Were Not Scheduled in Section II	56

V

Chapter

Page

Section IV, Find the Total Cost of a																								
Schedule															76									
۷.	SUN	MMAR	Y	AN	ID	CC	NC	LU	IS:	ION	IS	•	•	•	•	•	•	•	•	•	•	0	o	86
BIBLIOG	RA I	PHY	•	٠	٠	¢	٥	o	•	•	o	•	0	0	ø	0	•	0	۰	0	o	a	•	90
APPENDI	X	A	•	0	¢	•	٠	•	0	•	0	•	•	•	•	ø	•	•	٥	٠	•	•	•	91
APPENDI	X	В	•	o	•	•	o	•	•	•	0	•	•	٥	•	•	•	٠	o	•	•	o	٥	107
APPENDI	X	С	٥	•	•	•	•	۰	ð	•	ø	٠	٠	•	•,	•	•	•	٥	•	•	•	•	112
APPENDI	X	D	•	•	•	٥	•	•	•	•	٥	¢	•	•	•	0	•	•	•	•	•	•	•	115

LIST OF FIGURES

Figu	re	Page
l.	Automobile Transportation Versus Public Transit .	• 5
2.	A Route	.10
3.	Flow Diagram, Section I - A	.38
4.	Flow Diagram, Section II	51
5.	Flow Diagram, Section III	58
6.	Flow Diagram, Section IV	78

SYMBOLS AND THEIR DEFINITIONS

Symbol	Meaning	Definition
P . W .	Piece of work	A piece of work is an amount of work in the operator as- signment that pays less than 8 hours.
St.R.	Straight run	A straight run is a run so con- structed as to be composed of continuous hours of pay (at least 8.00 hours).
St.R.No.	Straight run number	A straight run number is a specific straight run desig- nated by a specific number.
Sp.R.	Split run	A split run is a run so con- structed to have an unpaid interval or intervals between its pieces of work (at least 8.00 hours).
Sp.R.No.	Split run num- ber	A split run number is a specific split run designated by a specific number.
Wo.Ti.	Working time	Working time is the time the operator is actually operating the bus.
To,Ti.	Total time	The total time for which the operator is paid (could in- clude report time, penalty time, overtime, etc.).
R.T1.	Report time	Report time is a specific amount of time (10 minutes) which the operator receives for every St.R. and each P.W. in his assignment.
Spd.Ti.	Spread time	Spread time is the total working time plus the unpaid time of a split run.
Sch.No.	Schedule number	A schedule number is a bus that goes over a specific route at a certain time designated by a certain number.

 \sim

P/o	Pull-out	Pull-out is the starting time of a piece of work, straight run, split run, or a schedule number.
P/in	Pull-in	Pull-in is the finishing time of a piece of work, straight run, split run, or a schedule number.
Rel.pt.	Relief point	Relief point is a certain loca- tion or locations on each route where operators may be relieved or assigned to the bus.
Term.T.	Terminal time	Terminal time is the driving time between the garage and the first relief point.
Rel.l	Relief 1	Relief 1 is the time between first and second relief points.
Rel.2	Relief 2	Relief 2 is the time between second and first relief points.

ix

CHAPTER I

INTRODUCTION

The Hypothesis

In this dissertation, the use of the I.B.M. 650 digital computer is proposed as a means of solving the transit operator assignment problem. The primary purpose in suggesting the use of the digital computer is the elimination of the necessity for the present lengthy manual calculations. This present manual method seriously curtails an amount of desirable rescheduling which is necessary to meet the ever changing service requirements.

Reduction in operating cost, through rescheduling, has been one of the objectives of transit companies seeking to maintain profitable operations. Yet such reduction in operating costs, if carried too far, may result in less effective service and additional declining revenue. Thus, transit companies require the capability for almost instantaneous rescheduling to maintain effective service. This dissertation will illustrate a method for acquiring the aforementioned capability.

Factors Currently Affecting Bus Transit Systems

It would not take much probing to discover that transit volume has been steadily decreasing since the end of World War II. The reasons are primarily a result of the post-war economy. Increased production and use of private automobiles has been one major factor. Another cause has been the steadily increasing trend to move out of cities, which has resulted in the gradual shifting of population centers from the city to the surrounding, expanding suburbs. This shift has been accompanied by the displacement of major shopping areas from the city to the suburbs, thus decreasing the necessity for resorting to the "downtown" area for consumers' needs.

The "Car Pool", an American institution which was developed to its highest degree during World War II, is now a permanent fixture in transportation, especially in commuting to the work place, and in transporting children to school. As a side effect, the car pool has allowed the housewife the use of the family car for her needs while her husband is at work.

The decline in usage of public transit and the ever increasing number of automobiles on the road has not only posed problems for transit organizations, but also for city planners, who are continually attempting to make the city the center of culture, business, and retail trade. Planners

are constantly vexed as to how to provide for the flow of people in and out of the heart of the city. In the remainder of the chapter, an attempt will be made to discuss various points which show the need for modern efficient transit.

The Case for Modern Rapid Transit

One of the most powerful forces in shaping an American eity is transportation. As a matter of contrast, consider the relative merits of New York City and Los Angeles. New York has one of the most complete transportation systems in the world, utilizing privately owned railroads, and city operated subways and buses. It is a world center of trade, finance, and culture, which serves as a hub for the surrounding metropolitan area. Los Angeles, on the other hand, has never developed an extensive public transit system, nor have the inhabitants indicated any desire for any form other than the automobile. As a result, streets, expressways, and parking facilities have displaced the city to the point where it is a sprawling mass.

Mechanized urban transportation, which began its development in the early 1900's, enabled the city to grow to almost any size that men could manage. Until the latter part of the 1920's, the streetcar was the major vehicle of mass transportation. Although the automobile had made its debut, the Depression and World War II delayed its impact. Apparently, city officials, city planners, and transit

managements continued to believe that city transportation patterns would remain the same after World War II, as it had been for the previous half century. Automobile use was expected to rise with the increased availability; but it was presumed that people with businesses in town would continue to patronize public transportation, yet these people did not conform to this plan. The post war economic boom not only saw automobile production soar, but also people using their cars more and more for trips that were previously made via public transit. As car sales increased, transit riding decreased. The number of transit riders reached a peak in 1945 - the last year that cars were hard to get. Each year since then the transit volume dropped until 1950 when the volume was equivalent to that of the mid-1920's. Since 1950, transit volume has dropped even further, to the point where Americans now spend only \$1.5 billion per year on public transit and rail commuting compared to \$1.8 billion in 1929. During the same period automobile expenditures have increased from \$11 billion to \$27 billion, and approximately one-half that amount is spent on driving within cities. These facts are graphically illustrated in Figure 1. Railroad commuter volume has decreased, and in spite of periodic fare increases, most roads' passenger operations are functioning at a monetary loss, stabilized in some instances by freight revenues.

¹The Editors of Fortune, <u>The Exploding Metropolis</u>, (New York, 1957), p. 34.

BILLIONS OF 1956 DOLLARS

Figure 1

Recent legislation (Federal Aid Highway Act) will provide additional funds to finance a super-highway net that will skirt or enter 90% of all cities of more than 50,000 population. The Bureau of Public Roads believes that the proposed program of expressways will relieve downtown traffic congestion. City planners, however, do not all agree. Some feel the only way to alleviate the situation is to get the people out of cars and into public transit; in other words, move bodies, not vehicles. They also feel that if some of the federal highway funds could be allocated for transit, then systems could be provided which would get people to work faster and cheaper than by car. Suitable systems would reduce traffic congestion which in itself would be a boom to Bus Transit.

In summary, some city planners feel that public transit must be utilized on a much larger scale, or the city will no longer be the center of activity in a metropolitan area. Private transit managements cannot cope with expansion without subsidized aid. Construction of more parking facilities will require the usage of valuable property for less productive purposes. If congestion continues, it is feared that the public will resort to shopping exclusively in suburban centers, in effect, abandoning the city. The trend has already been evidenced by the opening of branches by large renowned city department stores, medical clinics, and banks. It is the belief of many planners, that unless public transit

is vastly improved and patronized, the city will cease to exist as we know it today, and become instead merely a centralized headquarters area for business and industrial staffs.

CHAPTER II

DIVISION OF THE SCHEDULING PROBLEM

Out of a United States working force of sixty-six million, commuters make up a scant ten million. Yet, their daily cycle from home to work accounts for a larger volume of passenger traffic than any other type of weekday travel. Six million of them get to work and back by automobiles, 450,000 by train, and three and one-half million by bus, subway, or rapid transit. In many cities the bus system is the major commercial means of transportation into and within the city. In other cities the bus must compete with the train and the subway system as well as the taxi. The intercity motor bus operation is essential, forming an integral part of the passenger transportation system, linking thousands of communities.

There is a variety of reasons for adoption of buses in transit operations among which are the following: (a) flexibility in traffic, (b) individual power supply, (c) ability to pass each other, (d) through service to off-route locations, (e) ability to combine routes with one vehicle rendering the service, (f) low initial cost, and (g) curb discharge.

. 8

The city bus transit system is usually divided into routes. A route is the street or sequence of streets that a bus follows in order to move between two specified locations; usually between the downtown area and a residential or suburban area. A route may have any number of branches, turnbacks, loops, and end terminals. On each route there will usually be many schedule numbers (see Figure 5). A schedule number is a bus that goes over a specific route at a certain predetermined time.

Factors in Operations

There are operational factors in the transit industry which sometimes present problems. The transit industry is subject to traffic peaks in the morning and in the late afternoon, as well as falling-off of traffic on week ends. To meet these peak traffic demands, it is necessary to maintain equipment in excess of that which otherwise would be needed. Today bus scheduling is a big problem, in fact many transit company executives admit that bus scheduling is their biggest problem. These peak periods add to schedule difficulties. During the peak period, the schedule may call for a transit vehicle over a particular route every two or three minutes, whereas, during the off-peak period, a vehicle every ten or twelve minutes or less often may be adequate. In addition to bus allocation problems, this necessitates a certain amount of split shifts for operators.

.9

who may work, for example, four hours in the morning, with three hours off, and four hours again in the afternoon. The splitting of shifts has always been a matter of contention between transit management and transit employees with the latter contending that there should be extra compensation for the time between shifts.

A factor in transit operations increasingly being used is that of the express run, which has fewer stops and thereby appreciably cuts down on running time. It is estimated that the time for boarding and alighting is about thirteen per cent of scheduled running time,¹ so the elimination of stops can speed up the run. The elimination of a number of stops reduces operational expense. The many stops in urban operations cause a large amount of maintenance of equipment and makes for a much higher consumption of gasoline and oil than is found in intercity passenger operations. But on the other hand, income from such an express run is often low.²

One of the advantages already mentioned in bus city operations is the flexibility of the motor bus. However, its flexibility often makes for many requests for additional routing or rerouting and thus rescheduling. The great postwar exodus to suburbia has scattered commuters through the

¹Charles A. Taff, Ph.D, <u>Commercial Motor Transporta-</u> <u>tion</u> (Illinois, 1955), p. 638.

²Ibid.

United States countryside surrounding cities. When the bus serves outlying areas, residents frequently contact their local city officials to petition that the bus route come down their street. The traffic potential in outlying areas is limited, but it is difficult to convince residents of that fact. But at the same time city transit firms realize that if scheduling could be set up in a really efficient manner, it would offer one of the greatest possibilities for profitable transit operation. The whole problem of scheduling is customarily divided into:

- Partitioning the city or town into areas with routes to service these areas and determining the passenger load, and thus, the vehicle requirements (number of buses needed per route).
- (2) Establishment of headways, i.e., the time in minutes between vehicles.
- (3) Run assignments for operators, i.e., the establishment of daily work.

Determination of Passenger Load And Vehicle Requirements

Information to develop service requirements for a route must first be recorded by trained traffic checkers. These traffic readings are passenger counts taken as vehicles pass strategic points along the line, such as the heaviest hauling points, turnback locations, branching

and transfer points. The men work in shifts around the clock, until all routes are observed. This provides the basic schedule figures needed to regulate the operations. In this manner the entire system is re-checked for complete schedule revision for the fall, spring, and summer traffic conditions.

Without traffic readings, schedules could not be built efficiently nor could it be maintained in order to give the best necessary service with the least amount of equipment and man power.

In assigning checkers,³ according to the preplanned arrangement to completely cover a route survey of passenger loading, some specific recordings are necessary to properly summarize the data collected. These are as follows:

a. Line being read

- b. Location of reading point
- c. Direction of reading
- d. Date of reading
- e. Type of reading arriving or leaving

³J. T. Harman, <u>Scheduling Mass Transportation Vehicles</u> <u>Electronically</u>, (February 20, 1958), A Speech to the American Marketing Association: "A Mechanical device has been patented, which will improve on the manual traffic checking. This portable recorder produces, on tape, time of day and a passenger on-and-off count for each vehicle operated; also totals the accumulation of riders at designated locations. These recordings on the tapes will be fed directly from the vehicle checked to an electronic interpreter.

f. Weather conditions

g. Time of vehicle

h. Number of passengers on each vehicle.

The field checks obtained supply source information for applying loading standards for regulating service. When a load factor - the total number of seats plus standing spaces per vehicle - is divided into the number of bus passengers on a particular route per hour, the result is the number of buses required per hour per route.

As an example in this discussion, it could be assumed that a specific route would require 75 buses during the morning rush periods; 25 in midday; 70 through the afternoon rush period, with 10 vehicles operating in the night service. This variation in the number of vehicles required during these periods creates a very uneconomical use of equipment.

Establishment of Headways

Headways is the time, in minutes, between vehicles. This, in turn, determines the spacing of vehicles (schedule numbers). In order to move vehicles from terminal to terminal on an evenly-spaced headway, proper running time must be provided. The running time is the time necessary to travel between two points on a route. It is the most important time of a schedule as far as operations are concerned. No schedule could operate effectively or without loss of man power unless it had the proper running time. If a line does not have enough running time, all trips might be late, and it would cause some trips to be cut. If a line has too much running time, there would also be a poor operation, for it would be necessary for all vehicles to drag along, "killing time", or else run ahead of schedule and cause uneven spaces in the headway. When an operator runs ahead of schedule, he causes the next operator to be late and haul more passengers than he ordinarily would. This makes the second operator do more than his normal amount of work. Running time should be determined in order that an operator can haul his passengers safely and provide them with the service to which they are entitled.

Running time is compiled through time studies made under actual operating conditions. The resulting figures are applied to new schedules so that the proper time is allocated to each series of trips, providing maximum operating speed with safety.

As arranged, running time varies each hour on a line of 90 minutes in one-way time; a schedule could have up to six intermediate time points. Such points are mainly assigned to check adherence to schedule. They are spaced approximately equal distances apart, along the route.

The daily total and accumulated miles operated per vehicle provide the maintenance department with service

controls, while man-hours as scheduled become the basis for payroll accounting.

The man-hours scheduled are, then broken down into work assignments for each operator; the results being called runs.

Run Assignments for Operators

The difficulty encountered in arranging runs for bus operators is brought about by the many variables which go into the make-up of specifying daily work for each man. Both operating variations in time per trip and the union contract restrictions on what constitutes a run, are the reasons for this situation.

Specifically, difficulties in arranging runs are brought about by the variation in trip lengths. Trips are combined or broken into segments of time in the process of constructing runs.

The labor contract often states that all assigned regular runs must pay a specified number of hours (normally eight hours). The fringes in addition to the operating hours are items such as the following:

Unworked time added to a run to make an eight-hour day Preparation and storage time Distance relief and travel time Waiting time

Spread penalty for constructing a run beyond a certain number of hours (12:25 hour)

Overtime after a basic eight-hour day (at time and a half)

Percentage of straight and split runs Minimum length of a piece of work.

The foregoing explains the difficulty encountered in manual scheduling methods. Rescheduling has been a principal avenue open to transit companies seeking to maintain operations on a profitable basis, especially so in these days when they are confronted with the double-barreled competition of the private automobile and the ever-increasing traffic congestion.

Reduction in operating costs can play an important role, but such reduction if pushed too far; will result in less effective service and another decline in revenue.

Previous studies had been conducted on both (1) determination of passenger load and vehicle requirements and (2) establishment of headways (Appendixes C and D). Run assignments for operators, the third phase of the scheduling problem, will be discussed further in the following chapters.

CHAPTER III

PRESENT SCHEDULING METHOD OF "A" COMPANY

In the following chapter the present scheduling method of "A" company will be introduced.

When "A" company moves into a city to operate a bus transit system, it does so either by taking over from another existing firm or starting as a new concern. In either case, the decision as to which routes the company will operate is finally based upon an agreement between the company and the city commissioners. Changes, in the form of additions or deletions of existing routes, are sometimes undertaken to keep abreast of the city's ever changing needs. A decision is reached after studying present and potential need of the city residents, and the economics of servicing this need.

The first step that the company will take in establishing and/or changing routes is to go into areas that they intend to serve, estimate the number of residents, and then they estimate the number of residents that use public transportation. The latter estimate is based upon several factors, such as the geographic location, the type of residence, the kind of work, the nearby industries, etc. The ultimate estimate is based upon experience

rather than any formal or analytical techniques. Dividing the number of expected passengers by a load factor, which depending on the capacity of the buses, results in the number of buses needed in this special area or for this special route. Ordinarily, in the early hours of the day and late afternoon, there is a rush period during which passengers are going to or coming from work, hence requiring a greater number of buses. Generally, a rush period requires three times as many buses as are needed during normal service periods.

The next step is the determination of the round trip mileage for each route. Dividing this mileage by the average speed of the bus, which is usually about 12 m.p.h., will give the time for a round trip. The headway, which is the time interval between two vehicles on a specific route, is found either by dividing the round trip time by the number of buses or by some related assumption. The headway during the rush periods, is always less than at normal service periods (one-half to one-third the normal headway).

As an example, if some passengers wish to be downtown for work at 7:00 a.m., then the first bus might arrive there at 6:50 (6:50 indicates 6 hours and 50 minutes, 6.50 indicates 6 hours and 50/100 of an hour). If the headway is 15 minutes then the second bus would be there at 7:05, and so on. If eight buses are needed to carry passengers

downtown during the morning rush period, the arrival times are listed on a sheet of paper, and then calculated to determine the pull-out times from the garage. To further clarify this, the following example is given. Assume that on a certain route these data apply:

- (1) Early rush period is until 9:00 a.m.
- (2) Round trip time is one hour
- (3) The desired headway is 10 minutes, then
- (4) Six buses are needed downtown between the hour

of 8:00 a.m. and 9:00 a.m.

On a sheet of paper the timing points on this route are indicated. Scheduling is simplified by including two round trips on one sheet. So if on route "B" the timing points are Main Street, X_1 , X_2 , and X_3 , then this is indicated on a sheet of paper as follows:

Pull Main $X_1 X_2 X_3$ Main $X_1 X_2 X_3$ Main out St. and the six buses will be shown as follows:

x₂ X₁ X₂ X₃ Main Main Pull Main X₁ Xá out St. St. 800 810 820 830 840 Notice the difference in time is the ten (10)minutes headway.

Now calculating the pull-out times of the buses to determine when they will leave the garage, the following data are obtained:

Sch. No.	P u ll Out	Main St.	х ^т	x ₂	Х 3	Main St.	x _l	x ₂	X ₃	Main St.
1	555	600	615	630	645	700	715	730	745	800
2	605	610	625	640	655	710	725	740	755	810
3	615	620	635	650	705	720	735	750	805	820
4	625	630	645	700	715	730	745	800	815	830
5	635	640	655	710	725	740	755	810	825	840
6	645	650 (705	720	735	750 (805	820	835	850)
			750	- 650			85	0 - 750	0	
			-	1 hour	D			- 1 hor	1 70	

Notice the time for a round trip is one hour. Each one of these buses will be given a number called the schedule number as shown above.

All the above steps will be repeated for the normal service periods and the second rush period. During the normal service periods, the headway time will be greater and thus, a lesser number of buses will be required. The buses not needed either have to be sent back to the garage or assigned another route.

Applying this to the above example with previous assumptions of:

- (1) Early rush period is until 9:00 a.m.
- (2) Round trip time is one hour
- (3) The desired rush headway is ten minutes, then
- (4) Six bases are needed downtown between the hour of

8:00 a.m. and 9:00 a.m.

Plus the following assumptions:

820

(5) The desired normal headway is twenty minutes, then

(6) Three buses are needed downtown after the rush period.

Sch. No.	Pull Out	Main St.	Xl	x ₂	x ₃	Main St.	x ₁	x ₂	×3	Main St.	Pull In
1	555	600	615	630	645	700	715	730	745	800	
2	605	610	625	640	655	710	725	740	755	810 -	815
3	615	620	635	650	705	720	735	750	805	820	
4	625	630	645	700	715	730	745	800	815	830-	835
5	635	640	655	710	725	740	755	810	825	840	
6	645	650	705	720	735	750	805	820	835	850-	855
			•	-	•						
1		800	815	830	845	900	915	930	945	1000	

3 835 850 905 920 935 950 1005 1020 840 855 910 925 940 955 1010 1025 1040 5

This will go on until the second rush period, when more buses will have to be inserted in the schedule with the proper headway time. After this period is over, service returns to nor-This route is customarily rescheduled again for mal. Saturdays and Sundays.

Following are actual weekday, Saturday and Sunday schedules on route No. 13 of "A" company; from which is found that:

- (1) Round trip time is between 1:07 and 1:15 hours
- (2) Headway at rush period is 12 minutes and at normal service is 35 minutes

7

۰.,

SCH. NO.	PULL OUT	4TH MAIN	28CT 30ST	21ST YALE	21ST UTIC	4th A main	28ct 30St	21ST YALE	21ST UTIC	4th A Main	28CT 30ST	21ST YALE	21SI UTIC	: 4th a mai n	PULL I IN
282	540		සා ක යා	-		545	615	627	636	652	730	742	752	807	
283	552	e n c# ==	an eo es	een ee eo	49 48 4 8	557	627	639	649	704	742	754	804	819	824
284	604		480 010 68 0	അംഘം ത	an 44 an	609	639	651	701	716	754	806	816	831	836
281	511	516	546	556	606	621	651	703	713	728	806	818	828	843	
285	628	-		මේ කෙ දියි	40 ar 40	633	703	715	725	740	818	830	840	855	900
286	640	æ # @		** += =	100 apr 400	645	715	727	737	752	••• ••• •••			6	hX206
282		807	845	855	905	920	955	1005	1015	1030	1105	1115	1125	1140	
281		843	920	930	940	9 55	1030	1040	1050	1105	1140	1150	1200	1215	
282		1140	1215	1225	1235	1250	125	135	145	200	235	245	255	310	
281		1215	1250	100	110	125	200	210	220	235	310	320	330	345	
282		310	348	400	410	425	503	515	525	540	618	630	640	655	
288 H	rX135	5			000 este 400	437	515	527	537	552	630	642	652	707	712
289 F:	rC263	460 460	#0 #0 C7			452	529	541	551	606	ep - 3 es				611
281		345	425	437	450	505	543	555	605	620	658	710	720	7 35	
290 h	•X353				en 20 40	517	555	607	617	632	** ** **				637
287 B	°X352	415	452	504	514	529	607	619	629	644	40 40 CX				649
282		655	735	745	755	810	845	855	905	920	955	1005	1015	1030	
281		735	810	820	830	845	920	930	94 0	955					1000
282		1030 Rout	1100 E NO.	1108 13 -	1115 WEEK	1130 DAY	 East	 2181	STRE	 ET	EFFEC	TIVE		-	1135

SCH NO.	PULL OUT	4th Main	28CT 1 30ST	21ST YALE	4th Main	28th 30St	21ST YALE	4TH MAIN	28ct 30St	21ST YALE	4TH MAIN	PULL IN
282	610	••••••	an an a	an ** an	615	645	655	720	755	805	830	
281	535	540	610	620	645	720	730	755	830	840	905	
282		830	905	915	940	1015	1025	1050	1125	1135	1200	
281		905	940	950	1015	1050	1100	1125	1200	1210	1235	
282		1200	1235	1245	110	145	155	220	255	305	330	
281		1235	110	120	145	550	230	255	330	340	405	
282		330	405	415	440	515	525	550	625	635	700	
281		405	440	450	515	550	600	625	700	710	735	
282		700	735	745	810	845	855	920	955	1005	1030	
281		735	810	820	. 845	920	930	955			1000 and and .	1000
282		1030	1105	1115	1140		****				** ** -2	1145

ROUTE NO. 13 - SATURDAY EAST 21ST STREET EFFECTIVE. . .

N U

SCĤ NO.	PULL OUT	4th Main	2801 1 3051	' 21ST YALE	4th Main	2801 3081	21ST YALE	4TH MAIN	28ct 30st	21ST YALE	4TH MAIN	PULL IN
281	625	630	700	707	730	800	807	830	900	907	930	
281		930	1000	1007	1030	1100	1107	1130	1200	1207	1230	
281		1230	100	107	130	200	207	230	300	307	330	
281		330	400	407	430	500	507	530	600	607	630	
281		630	700	707	730	800	807	830	900	907	930	
281		930	1000	1007	1030	1100	1107	1130			***	1135

.

ROUTE NO. 13 - SUNDAYS & HOLIDAYS EAST 21ST STREET EFFECTIVE.

The last step in completing the schedule, and that which is probably the most difficult is determining the runs, i.e., the individual operator assignment to a specific bus. This step is partially restricted by the labor contract. The labor contract that "A" company has with its union requires the following: (See Appendix B for a labor management contract on scheduling restrictions.)

All runs pay at least 8 hours.

- Of all runs, at least 35% must be straight runs and at most 65% split runs.
- Overtime work is defined as work in excess of 8 hours and 50 minutes, in case of a straight run, and 9 hours, in case of a split run.
- All overtime work is paid at time and a half of almost

(i.e., 1.5 regular pay).

- Split runs may have a spread time of 12 hours and 25 minutes, and 10% of these runs may have a spread of 13 hours and 25 minutes.
- If the spread time is above that previously stated, then the company pays one-half the excess time as penalty.
- A piece of work should pay at least 2 hours unless it is on the extra board, then it should pay 2 hours and 30 minutes (every piece of work has a report time of ten minutes).

The ideal schedule for a company would be one with all straight runs. However, the variation in service trip lengths
makes this a practical impossibility. A straight run in general costs the company less and is preferred by the employee. Due to the inconvenience in relieving a driver at night if he is on a split run, it is preferred that all split runs be scheduled in the daytime.

As a general rule, transit companies schedule each route independently. This is accomplished as follows:

(1) From the schedule (time table or the "board" as it is customarily called), the scheduling department finds the total time each bus (schedule number) is in service, and the time it pulls-out and pulls-in to the garage.

(2) These service times, depending on their length, are divided into eight hours of work.

(3) Although step 2 is done on a trial and errorbasis, there are two rules which may be used as guides.These are:

- a. Pieces of work will be easier to schedule into runs if they are of about four hours duration.
- Each route should be balanced separately (i.e., number of A.M. pieces of work equals number of P.M. pieces).

(4) After the board has been broken into eight hour straight runs, and pieces of work, the A.M. pieces of work are listed on one side of a sheet of paper and the P.M. on the other side in the order of occurrence. Split runs are constructed by combining A.M. with P.M. pieces of work. While this will take care of most of the pieces of work, not all these pieces will fit well together into split runs; thus, leaving some pieces still unscheduled.

(5) At this point, the percentage of straight runs to split runs is checked. If the number of straight runs is over the minimum specified by the labor contract (and usually is), then some of the straight runs will be broken down to reconstruct, with unscheduled pieces of work, split runs. A straight run is broken only if two split runs would result.

(6) Any piece of work then left unscheduled is added to the extra board. The extra board schedule is constructed on a daily basis, and a sufficient number of employees are carried to adequately take care of these remaining pieces of work plus employees' leave of absences, vacations, sickness, etc.

On the following page an actual run assignment is developed from breaking down Route No. 13.

	RUN NO.	SCH.NO.	TIME ON	TIME OF	ন্ন্	WORK	REPORT	PENALTY	STRAIT	OVER	TOTAL
	1301	281	511A P/out	125P Re	eld	814	10		824		824
St.R.	1351	281	125P Rel	1000P P/	/in	835	10		845		845
	1352	282	310P Rel	1135P P/	/in	825	10		835		835
₽.₩.	1302C 1303X 1304X 1305X 1305X 1306X 1307C	~ 282 283 284 285 286 286 282	540A P/out 552A P/out 604A P/out 628A P/out 640A P/out 1030A Rel	1030P Re 824A P/1 836A P/1 900A P/1 752A Chr 310P Re]	eld in in in ng ld	450 232 232 232 112 440	-				
•	1 <u>35</u> 3X 1354X 1355C 1356X	287 288 289 290	415P Chng 437P Chng 452P Chng 517P Chng	649P P/i 712P P/i 611P P/i 637P P/i	in in in	23年 235 119 120					

ROUTE NO. 13-Week Day Break-Up

.

EFFECTIVE. . .

 $\frac{\omega}{0}$

CHAPTER IV

COMPUTER SCHEDULING OF TRANSIT OPERATORS ' ASSIGNMENT

High-speed digital computers are today helping many small businesses cut operating expenses and handle an increased volume of work. These computers are still so costly that only very large corporations can afford to buy or lease them. But the small businessman can turn to computer service organizations that sell the time of large computers on an hourly basis. The businessman pays only for the time it takes to solve his particular problem. Because a high-speed computer can perform millions of calculations in an hour (from 600-4000 operations per second),¹ a wide range of problems can be economically solved in a relatively short time and by more efficient means than hand calculation.

Types of Problems

Some typical engineering problems that can best be solved by computers include stress analysis, heat and pressure calculations, vibration analysis, and engine design.

¹Francis Bello, "The War of the Computers," <u>Fortune</u>, October, 1955, p. 130.

Digital computers make possible the rapid processing of great amounts of clerical data. They cut down the time and costs spent on functions such as payroll processing, billing, shop-order writing, sales analysis and a large variety of scheduling problems.

Illustrative of these problems is that of a business which operates a fleet of trucks. The manager wanted to find out the most economical routes for them to follow. The factors that had to be considered included among other mileages, traffic congestion, toll roads, and load capacities. In just a few hours a computer analyzed ten million possible route combinations and found the best ones. Without a computer, it was estimated that it would have taken twenty years to solve the above problem. Obviously, during that time the trucker would not have been able to save several thousand dollars per year as he is now doing.²

A problem must be carefully studied in order to determine if it is complex and difficult enough to warrant a computer solution, and still be economical.

The problem of scheduling bus operators is certainly one which lends itself to computer techniques. The problem arises mainly from the restrictions which both the labor

²I. J. Seligsohn, <u>Using Computer Services in Small</u> <u>Business</u>, Management Aids for Small Manufacturers, November, 1959, p. 3.

union's contract and the City Commissioner's regulations place on the operating companies. The wage rate of bus drivers averages \$2.00 per hour while the variable cost of operating a bus approximates \$0.050 per mile or \$0.65 per hour (13 m.p.h.). This ratio of driver to bus cost of about three to one emphasizes the desirability of efficient scheduling.

The program described in this chapter is designed to be processed on the I.B.M. 650. It gives the scheduler a method which practically eliminates clerical work and endless hours of calculation. In the following pages, the reader will find a description of the program with instructions for its use. In general, the program is developed to follow the old manual pattern of scheduling very closely in most respects, doing exactly the same work that people did with pencil and paper, but telescoping weeks of work into a few hours. By a process of simulation, the computer internally traces the motions of a bus. Using a logical model for each line, the computer follows each bus across its own route, making high-speed decisions and calculations on the basis of information supplied. A range of limits such as maximum and minimum hours of work, overtime rates, and points on the route where decision must be made, are established in advance.

The Program

The specific objective of this I.B.M. program is to construct a schedule with as many straight runs as possible and with a minimum number of unscheduled pieces of work. As mentioned previously, pieces of work not scheduled in split runs are undesirable and costly to maintain. To reach this objective, the author has found it more convenient to divide the problem into four sections, due to limitation of storage area on the computer and the complexity of the problem. The process has been arranged so that the output from one section is the input for the succeeding one.

Section I

- A. Straight runs are developed by knowing the pull-out times and pull-in times of all the schedule numbers on a route.
- B. An intermediate step is necessary to change the format by which pieces of work are punched out (Section I - A) to the appropriate form needed as input data for Section II.

Section II

Split runs are constructed by combining pieces of work.

Section III

Split runs are constructed by breaking down straight runs (Section I - A) and combining their pieces with

those pieces of work that were not scheduled in Section II.

Section IV

Find the total cost of a schedule.

The following special devices on the I.B.M. 650 are required: Sixty words IAS (Immediate Access Storage) Three index registers (A, B, and C)

Floating decimal device

I.B.M. 533 read-punch unit and proper control panels

This program does not require any special control panel wiring since the various sections of the program are developed, using either the "SOAP II" or the "FOR TRANSIT" method of programing.

In the pages that follow, the reader will find a description of each section in the program in the following order:

1. Presentation

- a. Assumptions
- b. Flow diagram
- c. Discussion
- 2. Preparation of data
- 3. Starting the program
- 4. Example and remarks

(Appendix A contains a complete listing of the program.)

Section I

- A. Straight runs are developed by knowing the pull-out time and pull-in time of all the schedule numbers on a route.
 - 1. Presentation
 - a. Assumptions

In this section the following assumptions are included in the body of the program:

- (1) (a) A straight run should pay at least eight hours.
 - (b) The operator gets ten minutes for report time at the end of each run.
 - (c) Thus, a straight run can be composed as follows:

7:50 work time7.83 work time0:10 report time or 0.17 report time8:00 Total

- (2) (a) Overtime premium is at one andone-half times the regular rate.
 - (b) Overtime is for work in excess of
 eight hours and fifty minutes.
 8.40 work time
 8.67 work time
- (3) The driving time between the garage and the first relief point is known, and so is the time between the first and the second relief points and backwards

between the second and the first relief points.

All of these assumptions are introduced at the end of the program in the form of "words" (See Appendix A, Section I - A). This makes it very simple to change to fit any special case without any damaging effect to the body of the program.

b. Flow diagram

(See Figure 3, page 38.)

Figure 3

c. Discussion

The program is developed using the "SOAP II" method. It is designed so that the machine will do the following:

- (1) The machine will accept one card (schedule number) at a time. Find the total time of this schedule number and compare it with 7.83 hours (the minimum working time for a straight run.)
- (2) If the total time is less than 7.83 hours, this means that no straight runs can be developed from this schedule number, thus, the machine will print the information about this schedule number in the form of a piece of work.
- (3) If the total time is exactly 7.83 hours, this means that a straight run can be constructed from this schedule number, thus, the machine will add 0.17 hour for report time and print the information about this schedule number as a straight run.
- (4) If the total time is more than 7.83 hours, the machine will do a further check comparing the time with 8.67 hours (the maximum working time before paying overtime premium.)

- (5) If the total time is less than or equal to 8.67 hours, this means that a straight run can be constructed from this schedule number without working overtime, thus, the machine will add 0.17 hour for report time and print the information about this schedule number as a straight run.
- (6) If the total time is more than 8.67 hours, this means that a straight run can be constructed, and that more work is still available on this schedule number to be scheduled. In this case the machine will:
 - (a) Develop a table for all the relief
 points for this schedule number on
 this route.
 - (b) Look up the relief point which will break the total time of this schedule number to exactly eight hours or the nearest relief point larger than eight hours to construct a straight run.
 - (c) Check the following:
 - See if the straight run is exactly eight hours.
 - 2 If there is overtime, finds its value.

- 3 Look up the relief point which is ahead of the one chosen previously (i.e., that which will cause the run to be less than eight hours) and find the penalty time.
- 4 Choose the most economical of the above.
- (d) The machine, in constructing such a run, will oscillate. If the first straight run is developed at the beginning of the schedule number, the second will develop from the end. This is desirable to avoid being left with all pieces of work either A.M. or P.M. pieces, which would create great diffi-

culty in scheduling.

- (7) At this point, the machine will pick up the working time which has not been scheduled in the straight run, and run it through all the previous steps.
- (8) The next schedule number is read into the machine, and the previous steps are repeated.

2. Preparation of Data

Although the data to be processed may be in a form other than standard 8-10, such a handicap can be overcome by board-wiring. If the standard 8-10 board is to be used, then data cards will be in this form:

- a. Columns 1 through 20 are provided for the identification of the schedule number.
- b. Columns 21 through 30 are provided for identification of the pull-out time of the schedule number.
- c. Columns 31 through 40 are provided for identification of the pull-in time of the schedule number.
- d. Columns 41 through 80 are not used.
- 3. Starting the Program

The "SOAP II" method has been used in developing this section, therefore, the steps to follow on the machine are those of any "SOAP" program and can be summarized as follows:

- a. 533 Read-Punch Unit
 - (1) Insert "SOAP II" control panel
 - (2) Ready read feed with assembly deckOrder of assembly deck:

(a) "SOAP II" deck

- (b) Deck to be assembled (the program)
- (3) Ready punch feed with blanks

b. 650 Console

- (1) Set program switch to STOP
- (2) Set half cycle switch to RUN
- (3) Set control switch to RUN
- (4) Set display switch to DISTRIBUTOR
- (5) Set overflow switch to SENSE
- (6) Set error switch to STOP
- (7) Set (70 1951 9999) in storage entry switches
- c. Press computer reset key
- d. Press program start key
- e. When read hopper empties, press end of file key. The "SOAP II" is loaded and the program is translated to the machine language and punched out.

f. 533 Read-Punch Unit

- (1) Insert the 8-10 control panel
- (2) Ready read feed with:
 - (a) The program in machine language
 - (b) A transfer card
 - (c) The data cards
- (3) Ready punch feed with blanks
- g. Repeat steps b through d (For additional information, see I.B.M., "SOAP II" manual, Form 32-7646-2.) The output will be a card for every straight run and one for every piece of work.

4. Example and Remarks

Example:

Input data

Sch.No.	P/o	P/in
1	590	1370
2	610	1010
3	630	1497
<u>)</u> ‡	650	1490
5	670	1870
6	690	1 890
7	500	23 00
8	520	232 0
11	590	1010
12	6 1 0	2230
13	630	1 050
14	650	2270
15	670	1090
16	1390	181 0
17	1430	1850
18	1470	1890

Output data

St.R.No.	Sch.No.	P/o	P/in	To.Ti.
	1	590	1370	780
	2	610	1010	400
1	3	630	1497	884
2	4	650	1490	857
3	5	670	1480	827
	5	148Q	1870	390
4	6	1100	1890	807
	6	690	1100	410
5.	7	500	1310	827
6	7	1445	2300	872
	7	1310	1445	135
7	8	520	1330	827
8	8	1465	2320	872
	8	1330	1465	135
	11	590	1010	420
9	12	610	1420	827
10	12	1420	2230	827
	13	630	1 050	420
11	14	1485	2270	802
12	14	650	1485	852
	15	670	1090	420
	16	1390	1810	420
	17	1430	1850	420
	18	1470	1890	420

Remarks:

- a. In certain cases human judgment is needed, where machine capacity is limited. The total time for schedule number "I" is 7.80 hours. If 0.17 hour for report time is added, the total time would have been 7.97 hours. The scheduler might find it more feasible to construct, from the above schedule, a straight run by paying 0.03 hour in penalty time rather than treating the schedule number as a piece of work.
- b. The reader will notice that the "0.17 hour report time" is added to the working time of each straight run to give the total time.
- c. The reader will notice how the machine, in constructing a straight run, did so on an oscillating basis. If a run is constructed at the beginning of the schedule number (as schedule No. 5), the second is constructed from the end (as schedule No. 6). This procedure will prevent having all pieces of work being concentrated either early in the morning or late at night.
- d. The reader will notice, that for both schedule numbers, 7 and 8, two straight runs and a piece of work are constructed.

Section I

- B. An intermediate step is necessary to change the format by which pieces of work are punched out (Section I A) to the appropriate form needed as input data for Section II.
 - 1. Presentation
 - a. Assumptions None
 - b. Flow diagram None
 - c. Discussion

The program is developed using the "SOAP II" method. It is designed to reduce the storage area needed for each piece of work from four words to two words. Instead of using one card for each piece of work, it will use one card for four pieces of work.

2. Preparation of Data

Since all the input data for this section are the cutput from Section I - A, no further preparation is needed. However, one 8-10 standard card is necessary to show the number of cards to be processed.

a. Columns 1 through 20 are provided to show the number of cards.

b. Columns 21 through 80 are not used.

3. Starting the Program

Same as Section I - A, (see page 42).

4. Example and Remarks

Example:

Input data

No. of cards

Sch.No.	P/o	P/in	To.Ti.
50	900	1 500	600
5 1	500	1100	600
52	500	1700	200
53	550	1850	300
- 54	1600	1 900	300
55	1 550 -	1800	250
56	1 550	1700	1 50
57	1 600	1 850	2 50
58	1625	1 900	275
59	1650	1 875	225
60	1650	1825	175

Output data

Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8
8000530550 8000571600 6000601650	0018500300 0018500250 0018250175	0000520500 0000561550 0000591650	0017000200 0017000150 0018750225	0000510500 0000551550 0000581625	0011000600 0018000250 0019000275	0000500900 0000541600	0015000600 0019000300

(See remarks for further explanation.)

Remarks:

The following is a description of the output card.

- a. Each card having 80 columns could have up to eight words (four pieces of work).
- b. Columns 1 and 2 in each word are not used except in the first word; column 1 is used to show the number of words on the card.
- c. Columns 3 through 6 in word one, three, five, and seven are used to identify the schedule number.
- d. Columns 7 through 10 in word one, three, five, and seven are used to identify the pull-out time.
- e. Columns 3 through 6 in word two, four, six, and eight are used to identify the pull-in time.
- f. Columns 7 through 10 in word two, four, six, and eight are used to identify the total time.

Section II

Split runs are developed by combining pieces of work.

1. Presentation

a. Assumptions

In this section the following assumptions are made and included in the body of the program.

- (1) (a) A split run is composed of two pieces of work and pay at least
 8.00 hours.
 - (b) The operator gets ten minutes for report time for every piece of work.
 - (c) Thus, a split run can be composed as follows:

7:40 work time 7.66 work time 0:20 report time or 0.34 report time 8:00 Total 5.00 Total

(2) (a) Overtime premium is at one and

one-half the regular rate.

(b) Overtime is for work in excess of

nine hours.

- 8:40 work time 0:20 report time or 0.34 report time 9:00 Total 9:00 Total
- (3) Maximum spread time for a split run

is:

12:25 hours or 12.42 hours

All these assumptions are introduced at the end of the program in the form of "words" (See Appendix A, Section II). This makes it very simple to change, to fit any special case without any damage to the body to the program.

b. Flow diagram(See Figure 4, page 51.)

c. Discussion

The program is developed using the "SOAP II" method. It is designed so that the machine will do the following:

- (1) The program will cause the machine to store all pieces of work on the drum.
- (2) Take one piece of work at a time and check it against the others, to find the proper one with which a split run can be constructed. The checks that the machine make:
 - (a) That the pull-out time of the first piece of work is earlier than the pull-out time of the second. (If not reverse the order of the pieces of work and carry on with the rest of the checks.)
 - (b) That the pull-in time of the first piece of work is earlier than the pull-out time of the second piece.
 - (c) That the spread time of the two pieces of work is within the maximum limits.

(d) That the working time of the two
pieces of work is within the two limits.
7.66 h \leftarrow Wo.Ti.1 + Wo.Ti.2 \leftarrow 8.66 h

Spd. Ti. - 12:25 hours

- (3) The two pieces of work which have been found to construct a split run will be punched out under the same split run number (see example).
- (4) Split run numbers begin with "1001", in order to differentiate them from straight run numbers which begin with "1".
- (5) Repeat the previous steps for other pieces of work.
- 2. Preparation of Data

Since all the input data for this section are the output data from Section I - B, no further preparation is required. However, the last card in the program (See Appendix A, Section II) should be changed depending on the number of pieces of work being stored on the drum. A regular "SOAP" card is needed.

- a. Columns 43 through 46 should have the letters "NUMB".
- b. Columns 49, 50, 52, 53, 54, and 55 should have a zero.
- c. Columns 58 through 61 should have a number equal to twice the number of pieces of work to be stored.

3. Starting the Program

Same as Section I - A, (see page 42).

4. Example and Remarks

Example:

Input data

8000020610	10100400	51480	18700390	60690	11000410	71310	14450135
8000081330	14650135	130630	10500420	150670	10900420	161390	18100420
4000171430	18500420	181470	18900420				

(For further clarification see Section I - B, Remarks page 48.)

Output data

Sp.R.No.	Sch.No.	P/o	P/in	Working Time	To.Ti.	
1001	2	610	1010	400	854	
1001	16	1390	1810	420	854	
1002 1002	56	1480 690	1870 1100	390 410	834 834	
1003	13	630	1050	420	874	
1003	17	1430	1850	420	874	
1004	15	670	1090	420	874	
1004	18	1470	1890	420	874	

Remarks:

- a. The Regional Specification Card, the first in the program, reserves 100 locations on the drum for the storage of 50 pieces of work. If more locations are desired, this card should be changed. There are over 1600 locations on the drum that could be used for such storage.
- b. The reader will notice that the two pieces of work, which are combined to construct a split run, are listed with the same split run number.
- c. The reader will notice, that two report time periods (2 x 0.17 = 0.34 hours) are added to the working time of each split run to make up the total time.
- d. Split run number "1002" is an example of Discussion (2) (a) which has been explained previously. The pull-out time of the first piece (Sch. No. 5) is not earlier than that of the second piece (Sch. No. 6). So the machine reversed the order of the pieces (i.e., Sch. No. 6 was considered first piece and Sch. No. 5 was considered second piece), and further checks were applied.

Section III

Split runs are constructed by breaking down straight runs (Section I - A), and combining their pieces with those pieces of work that were not scheduled in Section II.

- 1. Presentation
 - a. Assumptions

In this section the following assumptions are made and included in the body of the program.

- (1) (a) A split run is composed of two piecesof work and pay at least 8.00 hours.
 - (b) The operator gets ten minutes for report time for every piece of work.
- (2) (a) Overtime premium is at one and one-half the regular rate.
 - (b) Overtime is for work in excess of9:00 hours.
- (3) Maximum spread time for a split run is 12:25 hours.
- (4) Terminal times and relief times forevery straight run is known.

All these assumptions are introduced at the end of the program in the form of words (See Appendix A, Section III). This makes it very simple to change, to fit any special case without any damage to the body of the report. Assumption (4) is introduced in the input data.

b. Flow diagram

(See Figure 5, page 58.)

Figure 5

c. Discussion

The program is developed using the "SOAP II" method. It is designed so that the machine will do the following:

- (1) The program will cause the machine to store all pieces of work on the drum.
- (2) The machine will read in one card (straight run) at a time, divide the total time into two (pieces of work) and check the possibility of constructing two split runs by combining these two pieces of work with another two from those stored on the drum.
- (3) The machine will also consider all other possibilities of constructing split runs using other pieces of work stored on the drum and punch out all results.
- (4) Although, there are an infinite number of ways to divide an eight hour straight run, yet, it will not be practical to consider all these possibilities. The scheduler should decide on the number of trials desired. For each trial a card is prepared to show the length of one of the two pieces of work into which the straight run will be divided.

- (5) Although, a card is prepared to show the length of the first piece of work to which the straight run is to be divided, yet, the machine will first develop a table for all the relief points of this run (as explained in Section I - A) and then divide the run at the relief point which best gives the required division.
- (6) The machine will go through the same list of checks mentioned in the discussion of Section II (mainly the length of working time and spread time) when considering split runs constructions.
- (7) The machine will consider a solution only if two split runs can be constructed for every straight run being divided.
- (8) A table is to be constructed manually, to summarize all the different possibilities from which the final solution for this section is to be selected (will be discussed further at the closing of this section).

2. Preparation of Data

The input data to this section is:

a. An 8-10 card to show the number of locations

needed to store, information about, P.W. on the drum.

- b. An 8-10 card to show the number of split runs already constructed in Section II.
- c. The 8-10 cards, each showing the length of one of the two pieces of work into which the straight run is to be divided.
- d. The 8-10 cards having information about pieces of work to be stored on the drum.
- e. The 8-10 cards having straight run information (Section I - A).

Description of input data cards:

- a. An 8-10 card to show the number locations needed to store, information about. P.W. on the drum.
 - (1) Columns 1 through 6 will have zeros.
 - (2) Columns 7 through 10 will have a number equal to twice the number of P.W.
 - (3) Columns 11 through 80 are not used.
- b. An 8-10 card to show the number of split runs already constructed in Section II.
 - (1) Columns 1 through 6 will have zeros.
 - (2) Columns 7 through 10 will have the number of split runs.
 - (3) Columns 11 through 80 are not used.
- c. The 8-10 cards, each showing the length of

one of the two pieces of work to which the straight run is to be divided. In each card: (1) Columns 1 through 6 will be zeros. (2) Columns 7 through 10 will be the

- selected length.
- (3) Columns 11 through 80 are not used.
- d. The 8-10 cards having information about pieces of work to be stored on the drum.
 These are a reproduction of the input data to Section II after elimination of those pieces of work which have been used in that section.
- e. The 8-10 cards having straight run information. These are a reproduction of the output data to Section I - A, after including information about the terminal and relief times of each run.
 - (1) Columns 1 through 6, 11 through 16, 21 through 26, 31 through 36, 41 through 46, 51 through 56, 61 through 66, and 71 through 76, are all zeros.
 - (2) Columns 7 through 10 are for St.R.No.
 - (3) Columns 17 through 20 are for Sch.No.
 - (4) Columns 27 through 30 are for P/o Time.
 - (5) Columns 37 through 40 are for P/in Time.
 - (6) Columns 47 through 50 are for To.Ti.

(7) Columns 57 through 60 are for Term.Ti.

(8) Columns 67 through 70 are for Relief 1.

(9) Columns 77 through 80 are for Relief 2.

3. Starting the Program

Same as Section I - A, (see page 42).
4. Example and Remarks

Example:

Input data

- a. 0000000042
- ь. 0000001005

c. 0000000200 (This card will be changed with every trial.)

d.	8000260800 8000280600 8000580625 8000621700 8000661500 2000701500	14000600 8000200 9000275 19500250 18000300 20000500	460400 481000 590650 631700 671400	6000200 16000600 8750225 18250125 18000400	270900 290700 600650 641600 681300	15000600 9000200 8250175 18500250 17000400	470500 491100 610700 651550 691300	11000600 17000600 8000200 18500300 18000500
e.	St.R.No.	Sch.No.	P/o	P/in	To.Ti.	Term.Ti.	Rel.	Rel.
	57	37	600	1400	817		25	75
	56	36	500	1300	817		25	75
	58	38	700	1 500	817		25	75
	59	39	800	1600	817		25	75
	1	- 3	630	1497	884	10	25	75
	2	4	650	1490	857	10	25	75
	3	5	670	1480	827	10	25	75
	4	6	1100	1890	807		25	75
	5	7	500	1310	827	10	25	75
	6	7	1445	2300	872		25	75
	7	8	520	1330	827	10	25	75
	8	8	1465	2320	872	_	25	75
	9	12	610	1420	827	10	25	7.5
	10	12	1420	2230	827		25	75
	11	14	1485	2270	802		25	75
	12	14	650	1485	852	10	25	75
	20	30	590	1400	810	10	25	75

Jucput	uaca; 000000	00200 (11130	LILAL)			
St.R.No.	Sp.R.No.	Sch.No.	P/o	P/in	To.Tî./P.W.	To.Ti.
57	1006	37	600	800	200	834
	1006	26	800	1400	600	834
57	1007	37	800	1400	600	834
	1007	46	400	600	200	834
57	1008	37	600	800	200	834
	1008	27	900	1 500	600	834
57	1009	37	800	1400	- 600	834
	1009	28	600	800	200	834
57	1010	37	600	800	200	834
	1010	48	1000	1 600	600	834
57	1011	37	800	1400	600	834
	1011	61	700	800	200	834
57	1012	37	600	800	200	834
	1012	49	1100	1700	600	834
57	1013	37	800	1400	600	884
	1013	62	1700	1950	250	884
56	1014	36	500	700	200	834
	1014	26	800	1400	600	834
56	1015	36	700	1300	600	884
	1015	64	1600	1 850	250	884
58	1016	38	700	900	200	834
	1016	27	900	1500	600	834
58	1017	38	900	1500	600	834
	1017	29	700	900	200	834
58	1018	38	700	900	200	834
	1018	47	500	1100	600	834
58	1019	38	900	1 500	600	859
	1019	59	650	875	225	859
58	1020	38	700	900	200	834
	1020	48	1000	1 600	600	834
58	1021	38	900	1 500	600	809
	1021	60	650	825	175	809
1	1022	3	6 3 0	840	210	844
	1022	27	900	1 500	600	884
1	1023	3	840	1 497	657	816
	1023	63	1700	1825	125	816

Output data: 0000000200 (First trial)

6 5

St.R.No.	Sp.R.No.	Sch.No.	P/o	P/in	To.Ti./P.W.	To.Ti.
57	1006	37	600	900	300	837
	1006	69	1300	1800	500	837 837
57	1000	37	900	1000 1400	500	809
	1007	58	625	900	275	809
58	1007	28	700	1000	300	831
)(1000	50	1200	1800	500	83h
58	1000	28	1000	1500	500	ອງ າ ສາມ
50	1009	50	1000	1850	300	82)
1	1009	09	1990 6a0	1090	300	811
· 1	1010	5	1200	940 1800	510	8111
1	1010	09	1300	1000	500	044 816
· L	1011	3	940	149 (221	816
	1011	59	650	- 0(5	227	010
2	1012	4	1200	960	310	044
0	1012	69	1300	1000	500	044
2	1013	4	960	1490	530	014
-	1013	62	1700	1950	250	814
3	1014	5	670	. 980	310	844
	1014	69	1300	1800	500	844
3	1015	5	980	1480	500	834
	1015	66	1500	1800	300	834
12	1016	14	650	960	310	844
	1016	69	1300	1800	500	844
12	1017	14	960	1485	525	809
	1017	64	1600	1850	250	809
0000000300 (Ano	ther trial)					
57	1006	37	600	900	300	834
	1006	69	1300	1800	500	834
57	1007	37	900	1400	500	809
	1007	58	625	900	275	809
58	1008	3 8	700	1000	300	834
	1008	69	13 00	1800	500	834
58	1009	38	1000	1 500	500	834
:	1009	65	1 550	1 850	300	834

.

·	St.R.No.	Sp.R.No.	Sch.No.	P/o	P/in	To.Ti./P.W.	To.Ti.
	L	1010	3	630	940	310	844
	*	1010	69	1300	1800	500	844
	L		_3	940	1497	557	816
	0	1011	59	650	875	225	010
	2	1012	4	650 1 2 00	96 0	310	044
	0	1012	69	1300	1800	500	844
	2	1013	4	960	1490	530	814
	2	1013	62	1700	1950	250	014
	3	1014	5	670	980	310	844
	•	1014	69	1300	1800	500	844 8 2 1
	3	1015	5	980	1480	500	834
	••	1015	66	1500	1800	300	834
	12	1016	14	650	960	310	844
	5.0	1016	69	1300	1800	500	844
	12	1017	14	960	1485	525	809
		1017	64	1600	1850	250	809
	0000000350 (And	ther trial)					
	57	1006	37	600	1000	400	834
	~ 1	1006	68	1300	1700	400	834
	57	1007	37	1000	1400	400	834
	~ 1	1007	67	1400	1800	400	834
		,	- 1				-0-
	0000000400 (And	other trial)					
	57	1006	37	600	1000	400	834
		1006	68	1300	1700	400	834
	57	1007	37	1000	1400	400	834
		1007	67	1400	1800	400	834
	0000000450 (And	other trial)					
	57	1006	37	600	1100	500	834
	~ 1	1006	66	1500	1800	300	834
	57	1007	37	1100	1400	300	834
	~ 1	1007	70	1500	2000	500	834
			1 -	-,		<i>y</i>	- 0 .

0000000500 (A 57	nother trial)						
57	1004						
	TOOD	37	600	1100	500	834	
	1006	66	1500	1800	300	834	
57	1007	37	1100	1400	300	834	
	1007	70	1 500	2000	500	834	
0000000550 (A	nother trial)						
57	1006	37	600	1200	600	834	
	1006	46	400	600	200	834	
57	1007	37	1200	1400	200	834	
	1007	47	500	1100	600	834	
59	1008	39	800	1 400	600	834	
1	1008	46	-400	600	200	834	
59	1009	39	1400	16 00	200	834	
	1009	26	800	400	600	834	
4	1010	6	11 00	1 700	600	834	
	1010	28	600	800	200	834	
4	1011	6	1700	1 890	190	824	
	1011	27	900	1 500	600	824	
· 4	1012	6	11 00	1 700	600	834	
	1012	29	700	900	200	834	
4	1013	6	1700	1 890	190	824	
	1013	48	1000	1 600	600	824	
4	1014	6	1100	1700	600	859	
	1014	59	650	875	225	859	
4	1015	6	1700	1 890	190	824	
	1015	49	1100	1700	600	824	
000000600 (A	nother trial)						
57	1006	37	600	1200	600	834	
~ 1	1006	<u>4</u> 6	400	600	200	834	
57	1007	37	12 00	1 400	200	834	
~ 1		1. 	FOO	1100	600	821	

St.R.No.	Sp.R.No.	Sch.No.	P/o	P/in	To.Tí./P.W.	To.Ti.
59	1008	39	800	1400	600	834
	1008	46	400	600	200	834
59	1009	39	1400	1600	200	834
	1009	26	800	1400	600	834
4	1010	6	1100	1700	600	834
	1010	28	600	800	200	834
4	1011	6	1700	1 890	190	824
	1011	27	900	1500	600	824
<u>}</u>	1012	6	1100	1700	600	834
	1012	29	700	900	200	834
4	1013	6	1700	1890	190	824
	1013	48	1000	1600	600	824
4	$101\overline{4}$	6	1100	1700	600	859
	1 014	59	650	875	225	859
4	1015	6	1700	1890	190	824
	1015	49	1100	1700	600	824

Remarks:

a. The reader will notice that when a straight run is divided into two pieces of work, the 0.17 hour report time which was added to the straight run, previously is subtracted. To.Ti. for St.R.No. 57, Sch.No. 37 is 8.17 hours.

When divided into:

St.R.No. 57 Sp.R.No. 1006 Sch.No. 37 is 2.00 h " " 1007 Sch.No. 37 is <u>6.00</u> h The Total Time is 8.00 h

b. The reader will notice that there are several ways of dividing a straight run (Example: St.R. 57), and even when only one trial is considered, there are several combinations leading to several possible split runs. To find the most desirable solution, the following table is constructed:

Horizontally: Schedule numbers of

pieces of work

Vertically: Straight run numbers The same two numbers in each row in the matrix as the number "4" in cell (57, 49) and cell (57, 62) indicates that if straight run "57" is being divided into two pieces of work, and if piece of work "49" is considered to construct a split run, then the piece of work "62" must be also used for the second split run. (A straight run is only divided if two split runs can be constructed.) The vertical column titled "Total" shows the number of times a straight run was divided and used to construct split runs. The horizontal row titled "Total" shows the number of times a piece of work was used to construct split runs.

The Method for the Tabular Solution

Since the objective of this section is to schedule as many pieces of work as possible, thus, it is logical to start by considering those pieces of work that could only be scheduled once. The last row in the table shows the number of times a piece of work could be scheduled (according to the program). Therefore, start by considering those cells which have the number "1" (in the last row). But since this solution requires that pieces of work be used in pairs, then when choosing one piece, which could be used once, look for its companion and check the number of times it could be scheduled. If both could only be scheduled once, then this is the only possible schedule for them. Example:

(1) (a) Piece of work "68" is used once,

(P.W	06	46	07	11000	00	10		hà	<u> </u>	50	60	67	60	62	GI	65	66	677	60	60	70	- m-
ST.R.	20	40	27	47	20	40	29	49	50	59	60	01	02	03	04	02	00	01	00	09	10	TO.
57	1	-8	2	-8	2	3		4	5		\vdash	3	4	4	<u> </u>		17	6	5	-5-		<u></u> 8
56	1			-											1	<u></u>			$\left \right\rangle$			1
58		- Distance	1	2		3	1			2	3					4		$\left \right\rangle$		4		4
- 1			ł							2									\rangle	2		2
2					2 · ·								.1						$\left \right\rangle$	1		1
3							÷.									,	1	$\left \right\rangle$	(1		1
12															1			(7	1		1
59	1	1		·													1	7	$\left \right\rangle$			1
4		1		1	2	2		3		3	****							$\left \right\rangle$	5			3
Fotal	3	4	- 3-	3	2	3	1	2	1	3	1	1	2	þ	2	1	2	7	1	6	1	
	(A)	(5)	7 a1 7 a1	nd 6 nd 6	8) 7) d	ivid	er	3.50) ho	urs	(Sp. (Sp.	R.No R.No	5. 10	006) 007)		.		X	X	I	·	·
Total	2	2	2 ×	2	ì	5	1	1	0	3	1	0	1		2	1	1	X	X	5	0	

ST.R.	26	46	27	47	28	48	29	49	58	59	60	61	62	63	64	65	66	67	68	69	70	То
57	\sum					((<u> </u>		+	0
56	1					7				I .	$\overline{\left(\right)}$				1							1
58				2		F				12	R					14			1	4		3
1										I I	\rangle											0
2						$\left \right\rangle$		r I					1	7						1		1
3											$\left \right\rangle$	-		. X			1	-		1		1
12						2		1					-		1	:				1		1
59	1	1		-																		1
-4-				+ +	2-	<u> </u>		- 3		3	4						 					- 3
Tota	1 2	2	x	2	1	ķ	0		0	2	¢	0	1	X	2	ļļ	1	x	x	4	0	
• <u>·</u> ····	(C)		58 a1 58 a1	nd 4 nd 6	8) 0) d	X ivid	ler 2	2.00	hou	ırs (X Sp.I Sp.H	R.No R.No	. 10 . 10	20) 21)	• •	I		· .	•	- <i>,</i>	·	L
Total	2	2	Х	1	0	X	0	1 X	0	l X	X	0	1	X	2	0	1	x	Х	3	0	
	(D)			d 59) di	vide	er 5.	.00	hour		p.R.	No.	101	4) 5\								

and also its companion piece of work "67" with straight run "57".

- (b) Eliminate columns 67, 68, and row 57.
- (c) Find the new totals.
- (2) (a) Since no other pair of pieces of work are only used once, pieces of work "63" is chosen which is used once and its companion "27", which is used twice.
 - (b) Eliminate columns 27, 63 and row 1.
 - (c) Cell (58, 29) has to be taken out of the table since its companion cell (58, 27) was eliminated by eliminating column 27.

(d) Find the new totals.

The previous steps are repeated for (3), (4), (5), and (6). Results from this section (Section III), (Section II) and (Section I - A), combined are a solution to a schedule. Section IV is developed to find the cost of operating a schedule with such a solution. Section IV

Find the total cost of a schedule.

- 1. Presentation
 - a. Assumptions

In this section the following assumptions are made and included in the body of the program.

- (1) A run (straight or split) pays at least 8.00 hours.
- (2) The operator gets ten minutes for report time for each run or each piece of work.
- (3) Overtime premium is at one and one-half the regular rate.
- (4) Overtime is for work in excess of 8:50for straight runs and 9:00 for split runs.
- (5) Maximum spread time for a split run is 12.42 hours.
- (6) If the spread time is more than 12.42,the operator is paid one-half the excess time at regular pay.
- (7) In case of an overtime and a spread penalty, the operator gets either of them which ever pays more.

All these assumptions could be changed to fit any special case without any damaging to the body of the program. b. Flow diagram

(See Figure 6, page 78.)

c. Discussion

The program is developed using the "FOR TRANSIT" method. It is designed so that the machine will do the following:

- Check the operator assignment and add ten minutes for report time for every straight run or ten minutes for each piece of work in a split run.
- (2) Check the total time of an assignment for the minimum hours requirement. If less than 8.00 hours, the machine will add a penalty time and pays the operator for 8.00 hours.
- (3) Check the total time of an assignment for an overtime. In case an overtime exists, the machine will figure the pay for both the regular period and the overtime period and add them.
- (4) Check the spread time for the maximum permissible. If the spread time is in excess of the maximum, the machine will add a penalty time of one-half the excess time at regular pay.

(5) Check if both an overtime and a spread

Figure 6

time exists. If so, the machine will compute both, and finds which is

larger and add it to the regular pay. 2. Preparation of Data

Since the "Floating Point" system is used, an 8-10 (eight word load card) standard card is used.

- a. An 8-10 card to show both the number of runs to be evaluated to find their cost and the operators pay rate per hour.
 - (1) Columns 1 through 6 will have zeros.
 - (2) Columns 7 through 10 will have the number of runs.
 - (3) Columns 11 through 18 will show the pay rate.
 - (4) Columns 19 and 20 for decimal point identification.
- b. The 8-10 cards each to show the working time, the number of pieces, and the spread time of each run.
 - (1) Columns 1 through 8 to show the working time.
 - (2) Columns 9 and 10 for decimal point identification.
 - (3) Columns 11 to show number of piecesof work in the run.

time exists. If so, the machine will compute both, and finds which is

larger and add it to the regular pay. 2. Preparation of Data

Since the "Floating Point" system is used, an 8-10 (eight word load card) standard card is used.

- a. An 8-10 card to show both the number of runs to be evaluated to find their cost and the operators pay rate per hour.
 - (1) Columns 1 through 6 will have zeros.
 - (2) Columns 7 through 10 will have the number of runs.
 - (3) Columns 11 through 18 will show the pay rate.
 - (4) Columns 19 and 20 for decimal point identification.
- b. The 8-10 cards each to show the working time, the number of pieces, and the spread time of each run.
 - (1) Columns 1 through 8 to show the working time.
 - (2) Columns 9 and 10 for decimal point identification.
 - (3) Columns 11 to show number of pieces of work in the run.

- (4) Columns 12 through 18 are to have zeros.
- (5) Columns 19 through 20 for decimal point identification.
- (6) Columns 21 through 28 to show spread time.
- (7) Columns 29 and 30 for decimal point identification.

3. Starting the Program

The "FOR TRANSIT" method has been used in developing this section, therefore, the steps to follow on the machine are those of any ordinary For Transit program and may be summarized in the following phases:

Phase I Translation

Phase II Compilation

Phase III Assembly

Phase IV Using the object program (For the switches and console settings and machine operation, see an I.B.M. Reference manual for "FOR TRANSIT".)

4. Example and Remarks

Example:

Input data

	No. of runs	Pay rate		
	000000034	2000000051	·	
	Wo. Tí.	No. of P.W.	Spd. Ti.	
	8470000051	1000000051	8470000051	
	7880000051	1000000051	7880000051	
	8050000051	1000000051	8050000051	
	7700000051	1000000051	770000051	run (a)
,	8100000051	1000000051	8100000051	
	7920000051	1000000051	<u>1920000051</u>	
	7920000051	2000000051	1225000052	
	0300000051	2000000051	9970000051	
	7870000051		1020000052	(h)
	77720000051	2000000051	1108000052	run (b)
	8/120000051	200000000000000000000000000000000000000	9580000051	
	7700000051	20000000051	1267000052	run (c)
	8110000051	2000000051	1215000052	ium (C)
	8110000051	2000000000	1167000052	
	8150000051	20000000051	1070000052	
	8180000051	3000000051	1127000052	
	7970000051	3000000051	1160000052	
	7530000051	2000000051	1225000052	
	8130000051	1000000051	8130000051	
	8320000051	1000000051	8320000051	
	8270000051	100000051	8270000051	
	8030000051	1000000051	8030000051	
	7830000051	1000000051	7830000051	
	7750000051	1000000051	7750000051	
	7700000051	1000000051	7700000051	
	9670000051	2000000051	1100000052	run (đ)
	8670000051	2000000051	1442000052	<i>,</i> , ,
	9670000051	2000000051	1442000052	run (e)
	9670000051	2000000051	1542000052	,
	9670000051	2000000051	1642000052	
	7000000051	2000000051	1100000052	
	700000051	2000000051	1442000052	
Output	data			
Cost in \$	Wo. Ti.	No. of P.W.	Spd. Ti.	
1728000052	8470000051	1000000051	8470000051	
1728000052	,00000/#	200000000		
1610000052	7880000051	1000000051	7880000051	
3338000052	• • • • • • • • • • •	/-		
1644000052	8050000051	1000000051	8050000051	
4982000052	Total c	ost includin	g all previo	ous runs.

Cost in \$	Wo. Ti.	No. of P.W.	Spd. Ti.	
1600000052	7700000051	1000000051	7700000051	run (a)
6582000052		-		• •
1654000052	8100000051	1000000051	8100000051	
8236000052			-	
1758000052	8620000051	1000000051	8620000051	
9994000052				
1618000052	7920000051	1000000051	7920000051	
1161200053	12 200		12	
1652000052	7920000051	2000000051	1225000052	
1326400053	1)=000000)=			
1728000052	8300000051	2000000051	9970000051	
1499200053		2000000000		
1604000052	768000051	200000051	102000052	
1659600052	1000000000	200000000000000000000000000000000000000	1020000072	
16/2000053	787000051	200000051	112800052	run (h)
1802800052	1010000001	200000000000000000000000000000000000000	1120000072	run (b)
1610000053	773000051	00000051	110800050	
1014000052	[[3000031	2000000051	1190000052	
1905200053	01.0000051	0000000	05000051	
1/52000052	0420000051	200000051	950000051	
2160400053	7 70000051	00000051	10(2000000	
1633000052	770000051	2000000051	1267000052	run (c)
2323700053	0			
1690000052	8110000051	2000000051	1215000052	
2492700053				
1690000052	8110000051	2000000051	1167000052	
2661700053				
1698000052	8150000051	2000000051	1070000052	
2831500053		а		
1738000052	8180000051	3000000051	1127000052	
3005300053		•		
1696000052	797000005 1	3000000051	1160000052	
3174900053				
1600000052	7530000051	2000000051	1225000052	
3334900053				
1660000052	8130000051	1000000051	8130000051	
3500900053	·			
1698000052	8320000051	1000000051	8320000051	
3670700053		·		
1688000052	8270000051	1000000051	8270000051	
3839500053		-		
1640000052	8030000051	1000000051	8030000051	
4003500053	0	-	0 /	
1600000052	7830000051	1000000051	7830000051	
4163500053	, 0	*		
160000052	7750000051	1000000051	7750000051	
4323500053				
1600000052	7770000051	1000000051	7770000051	
4483500053				
2103000052	9670000051	2000000051	1100000052	run (d)
4697000053	Total c	ost including	g all previo	us runs.

•

m (e)
runs.
]

.

Remarks:

To further explain this section, the reader is
asked to refer to those runs marked (a, b, c)
on page 81 and their costs on pages 82 and 83.
Run (a) Working time is 7.70 hours plus 0.17
report time equals 7.87 hours which is
less the 8 hour (minimum pay). The
reader will notice that machine eval-
uated the cost of this run on the 8
hours minimum.
Run (b) The reader will notice that two report
time periods of 0.34 hour had been add-
ed to the working time 7.87, and the
run is evaluated to cost \$16.42.
Run (c) The cost was found to be \$16.33. This
is based on:
7.70 working time 0.34 report time (two periods) 0.125 spread penalty (one-half the excess time of 12.67 - 12.42) 8.165 hours at a rate of \$2.00/hour.
= \$16.33
Run (d) The cost was found to be \$21.03. This
is based on:
0 6th standing time

9.67 working time <u>0.34</u> report time (two periods) 10.01 Total

9.00 x 2 = \$18.00 regular pay <u>1.01 x 3 = \$ 3.03</u> (1.5) regular pay \$21.03 Total Run (e) Working time of this run is equal to the working time of (d), but the spread time is beyond the maximum permissible. Evaluating the overtime and the spread penalty, they were found to be \$3.03 and 2.00. The larger was chosen; the run was evaluated to cost \$21.03.

CHAPTER V

SUMMARY AND CONCLUSIONS

The transit operator assignment problem has been divided into four sections. This division has been arranged in a manner that all (or a portion) of the output information from one section is the input information to the succeeding section. This, besides cutting down on almost all clerical work, made it easier and more convenient to study and analyze each section separately from the whole problem.

The four sections are:

Section I

- A. Straight runs are developed by knowing the pull-out times and pull-in times of all the schedule numbers on a route.
- B. An intermediate step is necessary to change the format by which pieces of work are punched out (Section I - A) to the appropriate form needed as input data for Section II.

Section II

Split runs are constructed by combining pieces of work.

Section III

Split runs are constructed by breaking down straight

runs (Section I - A) and combining their pieces with those pieces of work that were not scheduled in Section II.

Section IV

Find the total cost of a schedule.

A program was written for each section which will compute and construct the requirements of each section. Range limits are established in advance and set up as controls in the program. The total man-hours' schedule are first divided on a single route basis; then pieces of work which cannot be arranged in proper order are integrated in other routes. Thus, an operator may work on two different routes in completing a daily run assignment. These four programs would give a solution with as many straight runs as possible and a minimum number of unscheduled pieces of work.

Such questions as, "Now much of a service mileage reduction should be expected?" "Will the staff be reduced (in the existing scheduling department)?" and "How much will the savings in dollars be?", might be raised. Unfortunately, these questions cannot be answered exactly until this new method of scheduling is put to work. However, the author feels that a reduction of five percent could be expected in the service mileage. A staff reduction of approximately 50% might be expected easily. Such a figure has been found to be normal in similar operations in which the digital

computer substituted clerical work.

As to the savings in dollars, the author believes the following calculations could represent closely an actual case.

A city transit company with 100 buses on the road daily, would need about two men for two months to develop the operator assignments.

Two men for two months = $2 \times 2 \times (4 \times 40)$ = 640 man hours

at a \$3.00 average/man hour.

Total cost = 3×640

= 1920 dollars

Using the digital computer, the same firm would need:

Time	I	Machine	Labor	Rate	Total Cost
1 hou 1 hou 1 hou 2 hou	ur Card ur ur urs	punching 650		\$ 1.00 2.50 100.00 4.00	1.00 2.50 100.00 8.00

\$111.50

These rates are based on the college computer facilities rates. On these bases savings are \$1808.50

= 1800.00 dollars.

Industry rates are about three times as much as college rates which would net savings of about \$1580.

If such a firm had three schedules per year, this new method could net a saving of at least \$4740 a year. This does not include the convenience and easiness of scheduling which could result that such firms might increase the number of schedules per year, and the capability of develoing a schedule on a short time notice.

It is the feeling of the author that certain improvements could be applied to this program of scheduling operator assignment, depending on the specific requirements of transit companies and their labor contracts. As an example, some labor contracts would allow constructing a split run from three pieces of work or different spread times.

It is also the belief of the author that a digital computer program could be developed to substitute the tabular solution found in Section III, pages 72, 73, and 74. Further research could show that the techniques of linear programing might apply.

BIBLIOGRAPHY

Beckman, Martin. <u>Studies in the Economic of Transportation</u>. New Haven: Yale University Press, 1956.

Editors of Fortune. The Exploding Metropolis. Garden City, New York: Doubleday and Company, 1957.

Foulkes, J. W. "On Bus Schedules." Management Science, I, 41.

- Gilmore, Welch Harlan. <u>Transportation and the Growth of</u> Cities. Illinois: Free Press, 1953.
- Owen, Wilfred. <u>Automotive Transportation; Trends and Prob-</u> lems. Washington: Brookings Institution, 1949.
- Reck, Franklin Mering. <u>A Car Traveling People</u>. Detroit: Automobile Manufacturers Association, 1945.
- Richardson, E. B. "Evaluation of Bus Requirements for City Service." <u>S.A.E.</u> Journal, (March, 1952), 60-67.

Taff, Charles Albert. <u>Commercial Motor</u> <u>Transportation</u>. Illinois: Richard D. Irwin, 1955.

_____. "The Trials of U.S. Commuters." <u>Time</u>, (January 18, 1960), 74-78.

م د او بید ا

_____. "Data Logging Locates Lost Buses." <u>Control</u> <u>Engineer</u>, (June, 1958), 125.

______. "How Computers Can Simplify Bus Scheduling." Fleet Owner, (October, 1957), 322.

"What Will Transportation Be Like Ten Years In The Future." <u>Bus Transportation</u>, (January, 1956), 28-31.

APPENDIX A

PROGRAM LISTING

Section I

A. Straight runs are developed by knowing the pull-out times and pull-in times of all the schedule numbers on a route.

		BLR	0050	0150
		BLR	0000	0050
1			-	
	START	RCD	9006	
		RAU	8002	the transformer of
		RAU	8002	
		stu	SCHNO	AGAIN
	AGAIN	RAU	9007	
		NZU	EXIT1	START
	EXITI	RAU	9008	
		NZU	EXIT2	START
	EXIT2	SUP	9007	
		STU	9009	
		SUP	WORD1	
		NZU	OUTO2	OUT01
	outo1	A XA	<u> </u>	
		LDD	8005	
		STD	9005	
		RAU	9009	
		AUP	WORD2	
		STU	9009	
_		PCH	9005	START
1	A *8 -- A	575) sh /P #77		orre o lu
	OUTO2	BMI	OUTO3	OUT04
	00103	RAU	8002	
	,	KAU	8002	
		STU	9005	വതകനാണം
7		PCH	9005	STARI.
1	ormok	P7 A CT	0000	
	00104	CHD	9009 NOBD2	
		001 N7H	NURD5	ለከመ∆ገ
.7		IN 44 U	00102	00101
۲.L.	CTATA	PM T	OTTO	оитоб
	mare int	Barris Colo	ar an an an ann	~~~~~~

1				
	outog	RAU SUP NZU	SCHNO 9006 TABLE	GOONE
	TABLE	RAC RAU STU AXC	0000 9007 6000 0001	
	LOOP1	AUP STU SUP	termi 6000 9008	LOOP1
	GOON1 GOON2	BMI NZU AUP AUP AXC STU SUP	GOON1 GOON2 9008 RELF1 0001 6000 9008	CONTI CONTI
	GOON3 GOON4	BMI NZU AUP AUP	GOON3 GOON4 9008 RELF2	CONTI CONTI
1		AUX	0001	LOOP1
	CONT1	ACX LDD STD	0001 NINE 6000	GOON5
1 	GOON5	RAU NZU	8006 0ut80	outo7
1	OUTO7	AXB	0001	
- - -		RAU AUP STU LDD TLU SRT RAC LDD STD STD STD	9007 WORD1 W11 W11 0000 0004 8002 6000 W12 0001 6000 W10	
<u>т</u>		RAU SUP NZU	W12 W11 OUTR2	OUTR1
	OUTR2	SUP	WORD4 OUTB3	OUTB4

	OUTR4	MPY SRD STL RAU SUP SUP BMI	WORD5 0001 X1 W11 W10 X1 OUTR5	OUTR3
1	OUTRI	AXA LDD STD LDD STD LDD STD LDD STD RAU AUP STU PCH LDD STD	0001 8005 9015 9006 9016 9007 9017 W12 9018 WORD1 WORD2 9019 9015 W12 9007	AGAIN
1	OUTR3	AXA LDD STD LDD STD LDD STD RAU STD RAU STD STD LDD STU PCH LDD STD	0001 8005 9015 9006 9016 9007 9017 W12 9018 W12 9007 W0RD2 9019 9015 W12 9007	AGAIN
1	OUTR5	AXA LDD STD LDD STD LDD STD LDD STD RAU	0001 8005 9015 9006 9016 9007 9017 W10 9018 W10	

				х	
	:	SUP AUP STU PCH LDD STD	9007 WORD2 9019 9015 W10 9007	AGAIN	
1	OUT80	SXB RAU SUP STU LDD TLU SRT RAC LDD STD SXC LDD	0001 9008 WORD1 W11 W11 0000 0004 8002 6000 W12 0001 6000		
1		210	WIO		
	outr6	RAU SUP STU NZU RAU SUP	W12 W11 X3 OUTR6 W11 W10	outr7	
	OUTR8	SUP BMI MPY SRD STL RAU	WORD4 OUTR9 WORD5 0001 X4 X4 X4	OUTR8	
	OUTR7	BMI AXA LDD STD LDD STD LDD	A3 OUTR9 0001 8005 9015 9006 9016 W12	OUTRO	
		STD LDD STD RAU AUP STU PCH LDD STD	9017 9008 9018 WORD1 WORD2 9019 9015 W12 9008	AGAIN	
1	OUTRO	ΔΧΔ	<u>6661</u>		

		8,	LDD STD LDD STD LDD STD RAU STD RAU STU PCH LDD STD	9015 9016 9016 W10 9017 9008 9018 9018 9018 W10 W0RD2 9019 9015 W10 9008	AGAIN		
		OUTRO	AXA LDD STD LDD STD LDD STD RAU SUP AUP STU PCH LDD	0001 8005 9015 9006 9016 W12 9017 9008 9018 9008 W12 WORD2 9019 9015 W12	ΔΟΑΤΝ	· · · · · ·	
	1	WORDS TERMI RELF1 RELF2 NINE WORD1 WORD2 WORD3 WORD3 WORD4 WORD5	99	9999 9999 11 11 11 11 11 11 11 11 11 11 11	10 25 75 9999 783 17 867 85 150	Ň.	

Section I

B. An intermediate step is necessary to change the format by which pieces of work are punched out (Section I - A), to the appropriate form needed as input data for Section II.

START	RAA	0000		
	RAC	0009		
	RCD	9001		
	LDD	9001		
	RAB	8001		READ
READ	RCD	9006		
	SXB	0001		
	NZB	out10		out11
outlo	A XA	0002		
	SXA	8000		
	NZA	oul15		out13
out12	AXA	0008		
	RAL	9008		
	slt	0004		
	ALO	9009		
	STL	9010	C	
	SXC	0001		
	RAL	9006		
	slt	0004		
	ALO	9007		
·	STL	9010	С	
	SXC	0001		READ
out13	A XA	0008		out14
out14	RAL	9008		
	SLT	0004		
	ALO	9009		
	STL	9010	C	
	SXC	0001		
	RAL	8005		
	SLT	0005		
	ALO	9006		
	SLT	0004		
	ALO	9007	~	
	STL	9010	C	ምንዋዋ ን ኛ ለ ነዋዋ
ለማጀመር ቀ	RAA	0000		FUNCH
OUTII	AXA	2000	~	00114
FUNCH	PCH	9010	G	1777 A 177
	MAC	0009		read

Section II

Split runs are constructed by combining pieces of work.

		REG	P0100		0200
1					
	BEGIN	RAA	0000		
		RAB	1000		START
	START	rcd	9002		
	·	SET	9002		
		SIB	P0001	А	
		RAL	9002		
		Slt	0001		
		A XA	8003		
		RAU	NUMB		
		SXA	8003		
		nza	outi		out2
-	outl	A XA	8003		START
1		-	0		
	0015	RAU	8005		
		stu	INDEX		out3
	out3	RAL	P0001	A	÷
		NZE	OUT4		out5
	out5	AXA	0002		
		LDD	NUMB		
		SXA	8001		
		NZA	OUT6		START
	00.1.0	LDD	NUMB		* 2700 A
-		AXA	8001		0012
1	owen h	C17 00	0001		
	0014	DAT	0001		
		RAL) OT m	OUUZ		
		olu l' Conti	0005		
		DAT	8000		
		rale Star	0002		
		രണംബ	0004		
		RAT	PAAAA	٨	
		star Star	10006	л	
		RAL.	8002		
		SLT	0005		
		STM	000J		
		RAL.	8002		
		SIP	0004		
		STU	9008		REPET

I RAL POOO1 A NZE OUT8 SLT OO18 REPET OUT8 SLT OO01 A REPET SLT OO05 STU 9015 RAL 8002 SLT OO44 STU 9016 RAL 8002 SLT OO44 STU 9016 RAL 8002 SLT OO55 SLT OO44 STU 9017 RAL 8002 SLT OU55 SLT OU51 REPET OU51 SLT SLT OU51 SLT SLT SLT SLT		REPET OUT7	AXA LDD SXA NZA LDD AXA	0002 NUMB 8001 0UT7 NUMB 8001		BACK
RAL POOO2 A SLT 0001 RAL 8002 SLT 0005 STU 9017 RAL 8002 SLT 0004 STU 9018 1 RAU 9016 SUP 9006 NZU 0UT9 REPET 0UT9 BMI RVERS 0UT10 1 0UT10 RAU 9017 SUP 9006 SUP SPRED NZU 0UT11 GOON1 REPET 1 GOON1 RAU 9016 SUP 9007 BMI REPET 0UT12 RAU 9018 SUP 9007 BMI REPET 0UT12 RAU 9018 SUP 9007 BMI REPET 0UT12 RAU 9018 SUP 9008 AUP 9018 SUP 9018 SUP 9007 BMI REPET 0UT12 RAU 9018 SUP 9018 SUP 9007 BMI REPET 0UT12 RAU 9018 SUP 9017 BMI REPET 0UT12 PUNCH CUT13 BMI REPET 0UT14 SUP WORD1 SUP WORD3 NZU 0UT15 PUNCH REPET	Ŧ	OUT8	RAL NZE SLT RAL SLT SLT SLT	P0001 0UT8 0001 8002 0005 9015 8002 0004 9016	A	REPET
RAU 9016 SUP 9006 NZU OUT9 REPET OUT9 BMI RVERS OUT10 1 OUT10 RAU 9017 SUP 9006 SUP 9006 SUP SPRED NZU OUT11 GOON1 0UT11 BMI GOON1 REPET 1 GOON1 RAU 9016 SUP 9007 BMI REPET OUT12 OUT12 RAU 9008 AUP 9018 SUP WORD1 NZU OUT13 PUNCH OUT13 BMI REPET OUT14 OUT14 AUP WORD1 SUP WORD3 NZU OUT15 PUNCH REPET	7		ral Slt Slt Stu Ral Slt Stu	P0002 0001 8002 0005 9017 8002 0004 9018	A	
OUT9 BMI RVERS OUT10 1 0UT10 RAU 9017 SUP 9006 SUP 9006 SUP SPRED NZU OUT11 OUT11 BMI GOON1 REPET 1 0UT11 BMI GOON1 REPET 1 GOON1 RAU 9016 SUP 0UT12 RAU 9007 BMI REPET 0UT12 RAU 9008 SUP OUT12 OUT12 RAU 9008 SUP WORD1 NZU OUT13 BMI REPET OUT14 OUT14 AUP WORD1 SUP WORD1 NZU OUT15 BMI PUNCH REPET			rau Sup Nzu	9016 9006 0UT9		REPET
1 OUTIO RAU 9017 SUP 9006 SUP SPRED NZU OUT11 GOON1 GOON1 OUT11 BMI GOON1 REPET 1 GOON1 RAU 9016 SUP 9007 BMI REPET 0UT12 RAU 9008 OUT12 OUT12 RAU 9008 SUP OUT12 RAU 9008 SUP OUT13 BMI REPET OUT14 OUT13 BMI REPET OUT14 OUT14 AUP WORD1 SUP NZU OUT15 PUNCH REPET	7	0UT9	BMI	RVERS		out10
NZU OUT11 GOON1 OUT11 BMI GOON1 REPET 1 GOON1 RAU 9016 SUP 9007 BMI REPET OUT12 OUT12 RAU 9008 AUP 9018 SUP WORD1 NZU OUT13 PUNCH OUT13 BMI REPET OUT14 OUT14 AUP WORD1 SUP WORD3 NZU OUT15 PUNCH CUT15 BMI PUNCH REPET	1	outio	RAU SUP SUP	9017 9006 SPRED		
1 GOON1 RAU 9016 SUP 9007 BMI REPET OUT12 OUT12 RAU 9008 AUP 9018 SUP WORD1 NZU OUT13 PUNCH OUT13 BMI REPET OUT14 OUT14 AUP WORD1 SUP WORD3 NZU OUT15 PUNCH OUT15 BMI PUNCH REPET		OUT11	nzu Bmi	OUT11 GOON1		GOON 1 REPET
OUT12 RAU 9008 AUP 9018 SUP WORD1 NZU OUT13 PUNCH OUT13 BMI REPET OUT14 OUT14 AUP WORD1 SUP WORD3 NZU OUT15 PUNCH CUT15 BMI PUNCH REPET]	goon1	RAU SUP BMT	9015 9007 BEPET		011 7 7 9
NZU OUT13 PUNCH OUT13 BMI REPET OUT14 OUT14 AUP WORD1 SUP WORD3 NZU OUT15 PUNCH OUT15 BMI PUNCH REPET		OUT12	RAU AUP SUP	9008 9018 WORD1		VV L L C
NZU OUT15 PUNCH OUT15 BMI PUNCH REPET		OUT13 OUT14	NZU BMI AUP SUP	WORD1 WORD1 WORD3		punch OUT14
	٦	0UT15	nzu Bmi	OUT15 PUNCH		PUNCH REPET
	PUNCH	AXB LDD STD RAU AUP AUP AUP STU PCH STU PCH RAU STL	0001 8006 9004 9014 9008 9018 WORD2 WORD2 WORD2 9009 9009 9004 9019 9014 8002 P0001 #			
----------	---	---	--	--------------------------		
1	BACT	STL	POOO2 A	BACK		
	. DH V L	RAA	1NDEA			
		AXA	0002			
		RAU	8005			
		STU	INDEX	-		
		LDD	NUMB			
		SXA	8001	00150		
	0000000	NZU	OUT18	START		
	WUT10	A VA	NUMD 2001	AUMO		
ı		нлн	OOOT	0010		
مله ا	RVERS	RAU	9007			
		SUP	9016			
		SUP	SPRED			
		nzu	out17	GOON2		
	OUT 17	BMI	goon2	REPET		
	GOON2	RAU	9006			
		SUP	9017	A 87 m 1 A		
7	פתסמש	RWT	REPET	00115		
4	o de los estas estas Estas estas			nala		
	alked Muddi			1242		
	MOBDO			יטט דר		
	MOBDS	NOP	0000	0866		
	NUMB	6V ¥4	~~~~	20		
				20		

v

Section III

Split runs are constructed by breaking straight runs, Section I - A, and combining their pieces with those pieces of work that were not scheduled in Section II.

T				
		BLR	1500	1600
		BLR	0000	0050
		REG	P0100	0199
_		REG	R0200	0299
1		מהם	0000	
	DINAT	r dd T dd	9002	
		LUUU Can	YUUZ	
		di Daa	NUMDA	
		RAA DA D		
		nad Dad	0000	
		AGD T DD	9002	
			9002	onno
	A7109A	AAD	0001	0010
	OUTU	ru <i>d</i> Cem	9002	
		OLT CTD	POOZ A	
		DATO	FUUUI A	
		ra lu Citar	9002	
		Ω <u>Ш</u> Ι Λ ▼Λ	8003	
		d a m	MUMDD	
		n n u C V a	RUMDA 8002	
		M7A	ANAI	പണ്ണം
	ART	n y a	8003	OUTE
ı	6017	man	0003	AATA
فلت	out2	RCD	9002	
		LDD	9002	
		STD	PIECE	READ
Ŧ	BEAD	BOD	0051	
		RAC	9091	
		RAU	0053	
		STU	5000	
		AXC	õõõĩ	
		AUP	9056	LOOP1
	LOOP1	STU	6000	
		SUP	9054	
		1	a or	

GOON1 GOON2 GOON3 GOON4 CONT1	BMI AUP AUP AXC STU SUP BMI NZU AUP AUP AXC AXC LDD STD	G00N1 G00N2 9054 9057 0001 6000 9054 G00N3 G00N4 9054 9058 0001 0001 NINE 6000	CONTI CONTI CONTI CONTI LOOPI
	RAU AUP STU LDU SRTC LDD STD LDD STD LDD STD LDD STD STD STD STD STD STD STD STD STD S	9053 PIECE W11 0000 0004 8002 6000 W12 9051 9013 9055 9015 9056 9056 9056 9056 9056 9056 9056 9016 9016 9018 9037 9016 9036 9038	OUT3
out3 out40 out4	RAA RAL NZE AXA LDD SXA	0000 P0001 A OUT6 0002 NUMBR 8001	out40 out4

	AUD7	NZA	OUT7	READ
	UUT (AXA	8001	OUT40
	out6	SLT	0001	
		KAL SLT	8002	
		STU	9025	
		RAL	8002	
		SLT STU	9026	
		RAL	P0002 A	
		SLT	0001	
		SLT	0005	
		STU	9027	
		RAL SLT	8002 0004	
_		STU	9028	
1		RAN	0026	
		SUP	9016	
	OHEO	NZU	OUT9	OUT4
1	UUTY	DMT	RVERD	OUTIO
	OUT10	RAU	9027	
		SUP	9016 Spred	
		NZU	OUT11	GOON5
ı	OUT11	BMI	GOON5	OUT4
-	GOON5	RAU	9026	
		SUP	9017	ANTE 1 A
1		.DP1 L	0014	WIIZ
	OUT12	RAU	9018	
		SUP	9020 WORD1	
		NZU	OUT13	READY
	оит13 оит14	BMI	OUT4 Wordi	OUT14
	00114	SUP	WORD3	
		NZU	OUT15	READY
1	00113	DMT	READI	0014
	READY	RAU	POOO1 A	
		Stu Stl	P0001 A	
		RAU	P0002 A	
		STU	R0002 A	
		استد الد الدة		

		RAU	8005	
		STU	AAAAA	OUT50
-	OU T50	RAA	0000	OUT51
Ŧ	AN IA 7	۸ ۷ ۸	0002	
	OUTI	TDD	MIMBD	
		G V A	RUMDA ROAI	
		N7A		AUMAI
	otten - C	N ZA I DD	OUTIO	UGIZI
	UUTIO	0 76 0 EDD	NUMBR	AMBC 3
		AXA	DOOD A	00151
	00151	RAL	PUUUI A	
	OTTER O	NZE OT m	UUTIO	OUT17
	OUTIO	SLT DAT	0001 0001	
		RAL OT m	0002	
		SLT Omu	0005	
		DAT	9045	
		RAL	0002	
		o dit O dit		
		DIU	9046	
		RAL CTR	P0002 A	
		DAT	0001	
		RAL	6002 0007	
		SLT OTT	0005	
		STU	9047	
		RAL	6002 0004	
		o dete O de te	0004	
-		STU	9040	
Ŧ		DAH	0046	*
		CHD	9040	
		001 N711	9030	AHIT I 7
	AUMAA	N Z U IDM T	00122	OUTI
٦	00122	DM T	00123	00124
-	out24	RAU	9047	
		SUP	9036	
		SUP	SPRED	
		NZU	OUT25	goon6
	OUT25	BMI	gooné	OUT17
1				
	goong	RAU	9046	
		SUP	9037	
-		BMI	OUT17	OUT26
Ŧ	oumo 4	T⊃ ∧ TT	0029	
	00120	AND	9030 0040	
		AUF QND	3040 MARDI	
		our Moh	MURUI Alimo7	DHNOU
	ATTELAT	N 4 U DM T		TUNUA OHMOQ
			WOTI (00120
	00120	CHD	WORDI	
		du e Nyh	AUROO	DIMOU
		nau	00129	ronon

٦	OUT29	BMI	PUNCH		OUT17
_ _	PUNCH	RAU	8002		
		\mathbf{STL}	P0001	Α	
		\mathbf{STL}	P0002	А	
		RAU	9018		
		AUP	9028		
		AUP	WORD2		
		AUP	WORD2		
		STU	9019		
		STU	9029		
		RAU	9038		
		AUP	9048		
		AUP	WORD2		
		AUP	WORD2		
		STU	9039		
		Stu	9049		
		AXB	0001		
		RAU	8006		
		STU	9014		
		PCH	9013		
		STU	9024		
		РСН	9023		
		AXB			
		RAU	8000		
		STU	9034		
		PCH	9033		
		STU	9044		AMERAI
1		РСП	9043		UUT21
7	AHTO I	BAIT			,
	00121	DV V DV V	8002		
		DAN DAN	8000J	۵	
		Smit	POODI	Δ	
		BAU	R0002	Δ	
		STH	P0002	Δ	оиሞມ
1		010	10000	**	0011
-	RVERS	RAU	9017		
	201 2200	SUP	9026		
		SUP	SPRED		
		NZU	OUT30		OUT31
	OUT30	BMI	OUT31		OUT4
	OUT31	RAU	9016		
		SUP	9027		
		BMI	OUT4		OUT12
1	OUT23				
	out23	RAU	9037		
		SUP	9046		
		SUP	SPRED		
		NZU	out32		OUT33
	OUT32	BMI	OUT33		OUT17

	OUT 33	RAU SUP BMI	9036 9047 0UT17	out26
1	WORDS NINE WORD1 WORD2 WORD3 SPRED	99	9999	9999 766 17 866 1242

÷

•

Section IV

Finding the total cost of a schedule.

c 0000 o

1	0	T=0.00
2	0	DIMENSION $A(150), P(150), S(150)$
2	1	,C(150)
3	0	READ, N, H
4	0	DO 28 I=1,N
5	0	READ, $A(I)$, $P(I)$, $S(I)$
-		IF $(A(I) + P(I) * (.17) - 8.0)6, 6, 11$
6	0	X = (S(1) - 12.42)
		IF(X)7,7.9
7	0	C(1) = (8.0) * H
8	0	GÒ TO 25
9	0	$C(I) = (8.0+(.5) \times X) \times H$
10	0	GO TO 25
11	0	CONTINUE
		IF(A(1)-8.67)12,12,17
12	0	X = (S(I) - 12.42)
		IF(X)13.13.15
13	0	C(1) = (A(1) + P(1) * (.17)) * H
14	0	GO TO 25
15	0	C(I) = (A(I) + P(I) * (.17) + (.5) * X)
15	1	*1
16	0	GO TO 25
17	0	X=(S(I)-12.42)
•		IF(X)18,18,20
18	0	C(I) = ((I.5) * (A(I) + P(I) * (.17))
18	1	-4.5)*H
19	0	GO TO 25
20	0	B = (8.67 + P(I) * (.17) + (.5) * X) * H
21	0	D=((1.5)*(A(I)+P(I)*(.17)))
21	1	-4.5)*H
		IF (B-D)22,22,24
22	0	C(1) = D
23	0	GO TO 25
24	0	C(I)=B
25	0	PUNCH, C(I), A(I), P(I), S(I)
26	0	T=T+C(I)
27	0	PUNCH, T
28	0	CONTINUE

END

APPENDIX B

LABOR MANAGEMENT CONTRACT ON SCHEDULING RESTRICTIONS

The following is a sample of the restrictions that are generally found in a Labor Management Contract that govern the operator assignment in transit operations. As the same labor union represents the operators in most transit companies, these clauses should be nearly identical in most contracts.

- 1. A straight run is defined as a run so constructed as to be composed of continuous hours of pay.
- 2. A split run is defined as a run so constructed as to be composed of two or more pieces of work with an unpaid interval or intervals between such pieces of work.
- All regularly assigned runs shall pay not less than eight (8) hours excluding preparatory time.
- 4. Straight runs as herein defined shall be not less than thirty five percent (35%) of all regularly assigned runs. The company agrees that no schedule will be broken into pieces from which a straight run could be created unless at least two combination or split runs can be made in piece of a straight run.

- 5. Split runs as herein defined may be constructed so as to contain a spread of hours in excess of twelve (12) hours and twenty-five (25) minutes. Ten percent (10%) of all regularly assigned runs may be constructed so as to contain a spread of hours in excess of thirteen (13) hours and twenty five (25) minutes; provided, however, that intervals of fifteen (15) minutes or less shall be paid for and considered time worked, and providing further that each piece of work used in constructing a split run shall pay at least (2) hours pay time, and providing further that time in excess of the spread set forth above shall be paid for at one-half (1/2) of the straight time hourly rate of pay.
- 6. Split runs shall not be constructed so as to contain in excess of two (2) unpaid intervals between pieces of work.
- 7. All motor coach operators on pull-outs or reliefs shall be required to show up at the Dispatcher's Office or relief point ten (10) minutes before their run starts.
- 8. All motor coach operators shall be required to deliver their respective buses to the garage, but shall not be required to wait for the gassing of said buses but shall be relieved of all duties in connection with both the gassing and the parking of said buses.

- 9. If A.M. or P.M. motor coach operators are called for extra work during the day, they will not be required to take their regular runs until they have had eight (8) hours off duty, except in cases of emergency.
- 10.

The extra board shall carry sufficient employees, both white and colored, to adequately take care of the employees; leaves of absence, vacations, and sickness. The extra board shall work first-up and first out, and shall rotate on eight (8) hours received in any one (1) day. All regular and split runs shall be caught off the board according to number. If extra employees sleep in, they shall be placed at the bottom of the extra board. All extra or special runs will be protected by the extra board. If any extra motor coach operator catches a run due to a change of schedule, they will hold that run until the shift is completed.

- 11. If an extra motor coach operator is run around only that motor coach operator shall be paid for any loss of time due to the run around. If used on another piece of work then the pay time of this piece of work shall be used in making up the run around time.
 12. If the extra board operator works a night shift, he
 - shall not be required to work the following day without having had eight (8) hours off duty, except in cases of emergency.

- 13. All motor coach operators shall receive ten (10) minutes preparatory time for each piece of work. Preparatory time as above provided for, or any part thereof, may be included within, and made a part of, any minimum guarantee of pay time provided for in this agreement.
- 14. All motor coach operators who are assigned to extra work shall receive a minimum of two and one-half $(2\frac{1}{2})$ hours of pay time at their regular straight time hourly rate of pay.
- 15. An extra motor coach operator working a regular run shall receive the same pay time, including overtime, that the regular assigned motor coach operator of such run would have received.
- 16. Extra board motor coach operators required to report for duty to protect the board, shall be paid until released or given a work assignment. If the extra man receives no other work assignment during the day in which he performs the protecting assignment or assignments, he shall receive not less than two and one-half (2¹/₂) hours pay time at his regular straight time hourly rate of pay for each assignment.
 17 In the event an operator performs a protecting assignment, and in addition thereto performs other work, he shall be paid for such protecting time at his regular straight time hourly rate of pay, within

a minimum of two and one-half $(2\frac{1}{2})$ hours pay time, and without including such protecting time in the computation of overtime, if any, for that work day.

18. Regular motor coach operators shall be paid at the rate of one and one-half (1¹/₂) times their straight time hourly rate of pay for all work they are required to perform in any one (1) day in excess of their regularly scheduled run, or eight (8) hours and forty (40) minutes, whichever is the lesser.
19. All motor coach operators who are assigned to extra work on their days off shall receive a minimum of two and one-half (2¹/₂) hours pay at the

overtime rates.

- 20. All regular motor coach operators who work extra runs, trippers, charters, specials, etc., in addition to their regular run shall be paid a minimum of two and one-half $(2\frac{1}{2})$ hours or overtime whichever is the greater.
- 21. No time shall be paid for a rate greater than one and one-half $(l\frac{1}{2})$ times the straight time hourly rate of pay.

<u>j</u>jj

APPENDIX C

THE USAGE OF THE DIGITAL COMPUTER FOR DETERMINATION OF PASSENGER LOAD AND VEHICLE REQUIREMENTS AND ESTABLISHMENT OF HEADWAYS

Previous research has been done in these two areas of scheduling. One of the earliest efforts in this field is the research done by the Philadelphia Transportation Company with the cooperation of I.B.M. (International Business Machines Corporation). For many years Philadelphia Transportation Company has recognized the need for increased flexibility in schedule preparation in order to more rapidly meet changing service requirements. In addition, Philadelphia Transportation Company wanted to prepare the best possible schedule with a minimum preparation cost. In order to accomplish these objectives, Philadelphia Transportation Company began seriously investigation the feasibility of automated transit scheduling. After some study, an automatic computer scheduling system was developed and has now been integrated into the operations.

Transit companies operate in the face of changing conditions and changing passenger needs. In addition to the

- 1. Normal working hours
- 2. Morning and evening rush hours
- 3. School days
- 4. Holidays

5. Shopping nights

In order to meet these conditions, schedules must be constantly revised. However, manual methods, which are used throughout most of the transit industry have failed to provide:

1. Optimum scheduling at minimum costs, and

2. Flexibility in meeting changing service requirements. Because of the inability of most companies to economically perform the vast amount of detailed work required within the limited time available, a complete schedule change is only effected after a prolonged period of time. Schedule changes deserving immediate action, such as shopping hours being extended a certain night, cannot be instituted, by manual methods in a short period of time.

Philadelphia Transportation Company has proven that by using I.B.M. 650, it is possible in the limited time between any schedule change to produce more schedules at less cost per schedule, and to make the following possible:

- Rewriting of all schedules requiring change when necessary.
- 2. Considerable savings in time when making a schedule change. This means substantial dollar savings

because the service on a route may be altered to meet actual requirements at an earlier date.

- 3. Direct and assured posting accuracy through the use of the I.B.M 407 Accounting Machine.
- 4. Reduction of clerical work and dollar savings.
- Estimating of costs involving re-routing, extending, or consolidation of routes can be accomplished with greater speed and economy.
- 6. Peak loads for schedule changes are greatly reduced.
- 7. Clerical drudgery taken out of scheduling permitting the scheduler more time to devote to creative thinking and planning.

The procedure used by the Philadelphia Transportation Company to prepare schedules is organized into two phases. Phase I consists of three processing steps and Phase II consists of five processing steps. Each schedule under construction is processed in this manner.

Phase II

A complete explanation of the system maybe obtained from the I.B.M. Library, "Transit Scheduling on the I.B.M. 650 at Philadelphia Transportation Company," (A general information manual).

APPENDIX D

SPACING OF BUSES ON A ROUTE

OR

HEADWAYS

The ideal situation is an equal spacing of buses on each route. In general, this is difficult to achieve because most routes have branches attached to them, each branch requiring a different number of buses. An acceptable compromise solution is usually obtained and requires a considerable length of time and experience on the part of the scheduler.

In an article published in Management Science,¹ the authors developed an equation to find an efficient schedule.

A bus schedule is called efficient if it minimizes the amount of man hours spent in waiting per hour by the passengers throughout the network.

In developing this equation the variation of the number of waiting passengers with time has been considered. However, the rate of passengers arriving at a certain stop was considered to be constant. This assumption is believed

¹J. W. Foulkes, W. Prager, and W. H. Warner, "On Bus Schedules," <u>Management Science</u>, I, p. 41.

to be realistic as long as the intervals between successive buses are sufficiently small.

This equation is associated with each branch in a route, resulting in a set of simultaneous equations. If the number of simultaneous equations exceeds three, it will be more desirable the usage of the digital computer for their solution. Several programs for simultaneous equations' solutions are already developed. It is suggested the use of the one developed by J. H. Schenck.²

²J. H. Schenck, <u>Simultaneous</u> <u>Equations</u> <u>Solutions</u>, 650 Program Library File Number 5.2.019 (International Business Machines Corporation).

VITA

Samy E. G. Elias

Candidate for the Degree of

Doctor of Philosophy

Thesis: A DIGITAL COMPUTER SOLUTION TO THE TRANSIT OPERATOR ASSIGNMENT PROBLEM

Major Field: Engineering

Biographical:

Personal Data: Born at Cairo, Egypt, U.A.R., June 28, 1930, the son of Mr. and Mrs. E. G. Elias

Education: Attended grade school at the English Mission College at Cairo, Egypt; graduated from Asyoit High School in 1949 granted the Bachelor of Science degree from Cairo, Egypt, Cairo University with a major in Aeronautical Engineering in May 1955; granted the Master of Science degree from the Agricultural and Mechanical College of Texas with a major in Aeronautical Engineering in January, 1958; completed requirements for the Doctor of Philosophy degree in August, 1960.

Professional experience: During summers 1952-1953 and 1954, worked at the "Mis-Air" Airlines Workshops, Cairo, Egypt; the 13 months period from July 1955 through August 1956 were spent in various engineering capacities, mainly as a maintenance engineer, in Factory No. 18 Cairo, Egypt, U.A.R.; January 1957 through January 1958 had a graduate teaching assistantship in the Mathematics Department at the Agricultural and Mechanical College of Texas, and during the period from February 1958 through August 1960 worked as a graduate assistant in the School of Industrial Engineering and Management at the Oklahoma State University. A member of Alpha Pi Mu Honorary Society for industrial engineers and the student chapter of the American Institute of Industrial Engineers.