A DIGITAL COMPUTER SOLUTION/TO THE TRANSIT OPERATOR ASSIGNMENT PROBLEM

By
SAMY E. G。EIIAS
Bachelor of Science
Cairo University
Cairo, Egypt
1955
Master of Science
The Agricultural and Mechanical
College of Texas
College Station, Texas
1958

Submitted to the Faculty of the Graduate School of the Oklahoma State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY August, 1960

A DIGITAL COMPUTER SOLUTION TO THE TRANSIT OPERATOR ASSIGNMENT PROBLEM

Thesis Approved:

PREFACE

In recent years, the transit volume, i.e., intracity bus passenger loadings, has been steadily decreasing. The reasons are numerous, but the decline in the usage of public transit and the ever increasing number of automobiles on the road has not only posed problems for transit organizations but also, for city planners. Various solutions have been suggested to reverse this trend, but time is needed to assess the validity of such solutions. However, even those public transit companies which hold this hopeful outlook are faced with the immediate necessity of staying in business long enough to benefit from any anticipated increase in demand for their service.

Reduction in operating cost, through re-scheduling, has been the aim of such companies seeking to maintain operations on a profitable basis. Yet, the best manual methods fall short of solving the problem because computations cannot be made quickly enough to keep pace with changing conditions. As a result, attention has been directed to the high speed computer as the means to overcome these computational difficulties.

The total problem of transit scheduling is customarily subdivided into:

1. Partitioning the city or town into areas with routes
to service these areas and determining the passenger load, and thus, the vehicle requirements (number of buses needed per route).
2. Establishment of headways, i.e., how often should the buses run.
3. Run assignments for operators, i.e., the establishment of daily work.

Previous research has been accomplished on the first two phases, using digital computer facilities. Reference to part of this research is made in Appendix C and D.

The study undertaken herein, is on the third phase of scheduling, "Run Assignments for Operators." The difficulty encountered in arranging and scheduling runs for bus operators is brought about by the many variables which go into the make-up of specifying the daily work for each man. Both operating variations in time per trip and the union contract restrictions on what constitutes a run, are the reasons for this situation.

Indebtedness is acknowledged to Professor H. G. Thuesen, Chairman of my Advisory Committee and Professor Wilson J. Bentley, Dean M. R. Lohmann, Professor William Granet, Dr. H. T. Fristoe, and Dr. Po Torgersen, members of my Advisory Committee, for their invaluable guidance and resolution in seeing this thesis through; to Professor Darrell R. Shreve for enabling me to use the facilities of the University computing center which include the I.B.M. 650 digital computer, and to the people of Stillwater, Oklahoma, who directiy or indirectly made my stay in their town a pleasant one.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Hypothesis 1
Factors Currently Affecting Bus Transit Systems 2
The Case for Modern Rapid Transit 3
II. DIVISION OF THE SCHEDULING PROBLEM 8
Factors in Operations 9
Determination of Passenger Load and Vehicle Requirements 12
Establishment of Headways 14
Run Assignments of Operators 16
III. PRESENT SCHEDULING METHOD OF A COMPANY 18
IV. COMPUTER SCHEDULING OF TRANSIT OPERATORS
ASSIGNMENTS 31
Types of Problems 31
The Program 34
Section I - A, Straight Runs Are
Developed by Knowing the Pull-outTime and Pull-in Time of All ScheduleNumbers on a Route36Section I - B, Intermediate Step Isto Change the Format by Which Piecesof Work Are Punched Out (Section I - A)to the Appropriate Form Needed as InputData for Section II46
Section II, Split Runs Are Developed by Combining Pieces of Work 49
Section III, Split Runs Are Constructedby Breaking Down Straight Runs (Sec-tion I - A) and Combining Their PiecesWith Those Pieces of Work That WereNot Scheduled in Section II 56
Chapter Page
Section IV, Find the Total Cost of a Schedule 76
V. SUMMARY AND CONCLUSIONS 86
BIBLIOGRAPHY 90
APPENDIX A 91
APPENDIX B 107
APPENDIX C 112
APPENDIX D 115

IIST OF FIGURES

Figure Page

1. Automobile Transportation Versus Public Transit . . 5
2. A Route 10
3. Flow Diagram, Section I - A 38
4. Flow Diagram, Section II 51
5. Flow Diagram, Section III 58
6. Flow Diagram, Section IV 78

Symbol	Meanimg	Definition
Pow	Piece of work	A piece of work is an amount of work in the operator as－ signment that pays less than 8 hours．
$S t . R_{0}$	Straight run	A straight run is a run so con－ structed as to be composed of contitywous hours of pay（at least 8.00 hours）．
Storarao	Straight rum number	A straight rum number is a specific straight run desig－ nated by a specific number．
Spor	Split run	A split run is a rum so conm strueted to have an unpald interval or intervals between its pieces of work（at least 8.00 hours）．
Sporono．	Split rum num－ ber	A split run number is a specific split run desigrated by a specific number．
Wo．${ }^{\text {P1 }}$	Working time	Working time is the time the operator is actually operating the bus．
T0．72．	Total time	mhe total time for minich the operator is padd（could in－ clude report time，penalty time，overtime，etcol）。
Rowi。	Report time	Report time is a specific amount of time（ 10 mimutes）which the operator receives for every $S t$ ．R． and each $\mathrm{P}_{0} \mathrm{~W}$ 。 in his assignment．
Spd．tio	Spread time	Spread time is the total working time plus the mpaid time of a split run．
Sch．No．	Schedule number	A schedule number is a bus that goes over a specific route at a certain time designated by a certain oumber．

P／o	Pull－out	Pull－out is the starting time of a piece of work，straight rus，split ran，or a schedule number．
P／in	Pull－in	Pull－in is the finishing time of a piece of work，straight run，split run，or a schedule number．
Relopt。	Relief point	Relief point is a certain loca－ tion or locations on each ronte where operators may be relieved or assigned to the bus．
Term。里。	Terminal time	Terminal time is the driving time between the garage and the first relief point．
Rel． 1	Relief 1	Relief 1 is the time between first and second relief points．
Rel． 2	Relief 2	Relief 2 is the time between second and first relief points．

CHAPTER I

INTRODUCTION

The Hypothesis

In this dissertation, the use of the I.B.M. 650 digital computer is proposed as a means of solving the transit operator assignment problem. The primary purpose in suggesting the use of the digital computer is the elimination of the necessity for the present lengthy manual calculations. This present manual method seriously curtails an amount of desirable rescheduling which is necessary to meet the ever changing service requirements.

Reduction in operating cost, through rescheduling, has been one of the objectives of transit companies seeking to maintain profitable operations. Yet such reduction in operating costs, if carried too far, may result in less effective service and additional declining revenue. Thus, transit companies require the capability for almost instantaneous rescheduling to maintain effective service. This dissertation will illustrate a method for acquiring the aforementioned capability.

Factors Currently Affecting Bus
 Transit Systems

It would not take much probing to discover that transit volume has been steadily decreasing since the end of World War II. The reasons are primarily a result of the post-war economy. Increased production and use of private automobiles has been one major factor. Another cause has been the steadily increasing trend to move out of cities, which has resulted in the gradeal shifting of population centers from the city to the surrounding, expanding suburbs. This shift has been accompanied by the displacement of major shopping areas from the city to the suburbs, thus decreasing the necessity for resorting to the "downtown" area for consumers' needs.

The "Car Pool", an American institution which was developed to its highest degree during World War II, is now a permanent fixture in transportation, especially in commuting to the work place, and in transporting children to school. As a side effect, the car pool has allowed the housewife the use of the family car for her needs while her husband is at work.

The decline in usage of public transit and the ever increasing number of automobiles on the road has not only posed problems for transit organizations, but also for city planners, who are continually attempting to make the city the center of culture, business, and retail trade. Planners
are constantly vexed as to how to provide for the flow of people in and out of the heart of the city. In the remainder of the chapter, an attempt will be made to discuss various points which show the need for modern efficient transit.

The Case for Modern Rapid Transit

One of the most powerful forces in shaping an American city is transportation. As a matter of contrast, consider the relative merits of New York City and Los Angeles. New York has one of the most complete transportation systems in the world, utilizing privately owned railroads, and city operated subways and buses. It is a world center of trade, finance, and culture, which serves as a hub for the surrounding metropolitan area. Los Angeles, on the other hand, has never developed an extensive public transit system, nor have the inhabitants indicated any desire for any form other than the automobile. As a result, streets, expressways, and parking facilities have displaced the city to the point where it is a sprawling mass.

Mechanized urban transportation, which began its development in the early 1900's, enabled the city to grow to almost any size that men could manage. Until the latter part of the 1920's, the streetcar was the major vehicle of mass transportation. Although the automobile had made its debut, the Depression and World War II delayed its impact. Apparently, city officials, city planners, and transit
managements continued to believe that city transportation patterns would remain the same after World War II, as it had been for the previous half century. Automobile use was expected to rise with the increased availability; but it was presumed that people with businesses in town would continue to patronize public transportation, yet these people did not conform to this plan. The post war economic boom not only saw automobile production soar, but also people using their cars more and more for trips that were previously made via public transit. As car sales increased, transit riding decreased. The number of transit riders reached a peak in 1945 - the last year that cars were hard to get. Each year since then the transit volume dropped until 1950 when the volume was equivalent to that of the mid-1920's. Since 1950, transit volume has dropped even further, to the point where Americans now spend only $\$ 1.5$ billion per year on public transit and rail commuting compared to $\$ 1.8$ billion in 1929. ${ }^{1}$ During the same period automobile expenditures have increased from $\$ 11$ billion to $\$ 27$ billion, and approximately one-half that amount is spent on driving within cities. These facts are graphically illustrated in Figure 1. Railroad commuter volume has decreased, and in spite of periodic fare increases, most roads' passenger operations are functioning at a monetary loss, stabilized in some instances by freight revenues.

[^0]BILLIONS OF 1956 DOLLARS

Figure 1

Recent legislation (Federal Aid Highway Act) will provide additional funds to finance a super-highway net that will skirt or enter 90% of all cities of more than 50,000 population. The Bureau of Public Roads believes that the proposed program of expressways will relieve downtown traffic congestion. City planners, however, do not all agree. Some feel the only way to alleviate the situation is to get the people out of cars and into public transit; in other words, move bodies, not vehicles. They also feel that if some of the federal highway funds could be allocated for transit, then systems could be provided which would get people to work faster and cheaper than by car. Suitable systems would reduce traffic congestion which in itself would be a boom to Bus Transit.

In summary, some city planners feel that public transit must be utilized on a much larger scale, or the city will no longer be the center of activity in a metropolitan area. Private transit managements cannot cope with expansion without subsidized aid. Construction of more parking facilities will require the usage of valuable property for less productive purposes. If congestion continues, it is feared that the public will resort to shopping exclusively in suburban centers, in effect, abandoning the city. The trend has already been evidenced by the opening of branches by large renowned city department stores, medical clinics, and banks. It is the belief of many planners, that unless public transit
is vastly improved and patronized, the city will cease to exist as we know it today, and become instead merely a centralized headquarters area for business and industrial staffs.

GKAPTER II

DIVISION OF THE SCHEDULING PROBLEM

Out of a United States working force of sixty-six million, commaters make up seant ten million. Yet, their daily cycle from nome to work accounts for a larger volume of passenger traffic than any other type of weekday travel. Six million of them get to work and back by automobiles, 450,000 by train, and three and ome-half million by bus, subway, or rapid transit. In many cities the bus system is the mafor commercial means of transportation 1 nto and within the city. In other cities the bus mast compete with the train and the subway systerm as well as the taxi. The intercity motor bus operation is essential, forming an integral part of the passenger transportation system, linking thousamds of communities.

There is a variety of reasons for adoption of buses in transit operations among which are the following: (a)flexibility in traftic, (b) individual power supply, (c) ability to pass each other, (d) through service to off-route locations, (e) ability to combine routes with one vekicle rendering the sexvice, (f) low initial cost, and (g) curb discharge.

The city bus transit system is usually divided into routes. A route is the street or sequence of streets that a bus follows in order to move between two specified locations; usually between the downtown area and a residential or suburban area. A route may have any number of branches, turnbacks, loops, and end terminals. On each route there will usually be many schedule numbers (see Figure 5) 。 A schedule number is a bus that goes over a specific route at a certain predetermined time.

Factors in Operations

There are operational factors in the transit industry which sometimes present problems. The transit industry is subject to traffic peaks in the morning and in the late afternoon, as well as falling-off of traffic on week ends. To meet these peak traffic demands, it is necessary to maintain equipment in excess of that which otherwise would be needed. Today bus scheduling is a big problem, in fact many transit company executives admit that bus scheduling is their biggest problem. These peak periods add to schedule difficulties. During the peak period, the schedule may call for a transit vehicle over a particular route every two or three minutes, whereas, during the off-peak period, a vehicle every ten or twelve minutes or less often may be adequate. In addition to bus allocation problems, this necessitates a certain amount of split shifts for operators,

Figure 2
who may work, for example, four hours in the morning, with three hours off, and four hours again in the afternoon. The splitting of shifts has always been a matter of contention between transit management and transit employees with the latter contending that there should be extra compensation for the time between shifts.

A factor in transit operations increasingly being used is that of the express run, which has fewer stops and thereby appreciably cuts down on running time. It is estimated that the time for boarding and alighting is about thirteen per cent of scheduled running time, ${ }^{1}$ so'the elimination of stops can speed up the run. The elimination of a number of stops reduces operational expense. The many stops in urban operations cause a large amount of maintenance of equipment and makes for a much higher consumption of gasoline and 011 than is found in intercity passenger operations. But on the other hand, income from such an express run is often low. ${ }^{2}$

One of the advantages already mentioned in bus city operations is the flexibility of the motor bus. However, its flexibility often makes for many requests for additional routing or rerouting and thus rescheduling. The great postwar exodus to suburbia has scattered commuters through the

[^1]United States countryside surrounding cities. When the bus serves outlying areas, residents frequently contact their local city officials to petition that the bus route come down their street. The traffic potential in outlying areas is limited, but it is difficult to convince residents of that fact. But at the same time city transit firms realize that if scheduling could be set up in a really efficient manner, it would offer one of the greatest possibilities for profitable transit operation. The whole problem of scheduling is customarily divided into:
(1) Partitioniag the city or town into areas with routes to service these areas and determining the passenger load, and thus, the vehicle requirements (number of buses needed per route).
(2) Establishment of headways, i.e., the time in minutes between vehicles.
(3) Run assignments for operators, i.e., the establishment of daily work. Determination of Passenger Load And Vebicle Requirements

Information to develop service requirements for a route must first be recorded by trained traffic checkers. These traffic readings are passenger counts taken as vehicles pass strategic points along the line, such as the heaviest hauling points, turnback locations, branching
and transfer points. The men work in shifts around the clock, until all routes are observed. This provides the basic schedule figures needed to regulate the operations. In this manner the entire system is re-checked for complete schedule revision for the fall, spring, and summer traffic conditions.

Without traffic readings, schedules could not be built efficiently nor could it be maimtained in order to give the best mecessary service with the least amount of equipment and man power.

In assigning checkers, ${ }^{3}$ according to the preplanned arrangement to completely cover a route survey of passenger loading, some specific recordings are necessary to properly summarize the data collected. These are as follows:
a. Line being read
b. Location of reading point
c. Direction of reading
d. Date of reading
e. Type of reading - arriving or leaving

[^2]f. Weather conditions
g. Time of vehicle
h. Number of passengers on each vehicle.

The field checks obtained supply source information for applying loading standards for regulating service. When a load factor - the total number of seats plus standing spaces per vehicle - is divided into the number of bus passengers on a particular route per hour, the result is the number of buses required per hour per route.

As an example in this discussion, it could be assumed that a specific route would require 75 buses during the morning rush periods; 25 in midday; 70 through the afternoon rush period, with 10 vehicles operating in the night service. This variation in the number of vehicles required during these periods creates a very uneconomical use of equipment.

Establishment of Headways

Headways is the time, in minutes, between vehicles. This, in turn, determines the spacing of vehicles (schedule numbers). In order to move vehicles from terminal to terminal on an evenly-spaced headway, proper running time must be provided. The running time is the time necessary to travel between two points on a route. It is the most important time of a schedule as far as operations are concerned. No schedule could operate effectively or without
loss of man power unless it had the proper running time. If a lise does not have enough running time, all trips might be late, and it would cause some trips to be cut. If a line has too much running time, there would also be a poor operation, for it would be necessary for all vehicles to drag along, "killing time", or else run ahead of schedule and cause uneven spaces in the headway. When an operator runs ahead of schedule, he causes the next operator to be late and haul more passengers than he ordinarily would. This makes the second operator do more than his normal amount of work. Running time should be determined in order that an operator can haul his passengers safely and provide them with the service to which they are entitled.

Running time is compiled through time studies made under actual operating conditions. The resulting figures are applied to new schedules so that the proper time is allocated to each series of trips, providing maximum operating speed with safety.

As arranged, running time varies each hour on a line of 90 minutes in one-way time; a schedule could have up to six intermediate time points. Such points are mainly assigned to check adherence to schedule. They are spaced approximately equal distances apart, along the route.

The daily total and accumulated miles operated per vehicle provide the maintenance department with service
controls, while man-hours as scheduled become the basis for payroll accounting.

The man-hours scheduled are then broken down into work assigments for each operator; the results being called runs.

Run Assignments for Operators

The difficulty encountered in arranging runs for bas operators is brought about by the many variables which go into the make-up of specifying daily work for each man. Both operating variations in time per trip and the union contract restrictions on what constitutes a run, are the reasons for this situation.

Specifically, difficulties in arranging runs are brought about by the variation in trip lenethe. Trips are combimed or broken into segments of time in the process of constructing runs.

The labor contract often states that all assigned regular rums must pay a specified number of hours (normally eight hours). The fringes in addition to the operating hours are items such as the following:

Woworked time added to a run to make an eight-hour day
Preparation and storage time
Distance relief and travel time
Wasting time
Spread penalty for constructing a run beyond a certain number of hours (12:25 hours)

Overtime after a basie eight-hour day (at time and a malf)

Percentage of straight and split rums
Manimum leagth of a plece of work.
The foregoing explains the difficulty encountered in manual soheduling methods. Rescheduling has been a principal avenue open to transit companies seeking to maintain operations on a profitable basis, especially so in these days when they are confronted with the double-barreled competition of the private automoble and the ever-increasing traffic congestion.

Reduction in operating costs can play an important role, but such reduction if pushed too far; will result in less effective service and another decinne in revenue.

Previous studies had been condueted on both (1) determination of passenger load and vehicle requirements and (2) establishment of headways (Appendixes C and D)。 Run assigments for operators, the third phase of the scheduling problem, will be discussed further in the following chapters.

PRESENT SCHEDULING METHOD OF "A" COMPANY

In the following chapter the present scheduling method of "A" company will be introduced.
When "A" company moves into a city to operate a bus transit system, it does so either by taking over from another existing firm or starting as a new concern. In either case, the decision as to which routes the company will operate is finally based upon an agreement between the company and the City commissioners. Changes, in the form of additions or deletions of existing routes, are sometimes undertaken to keep abreast of the qity's ever changing needs. A decision is reached after studying present and potential need of the City residents, and the economics of servicing this need.
The first step that the company wil take in establishing and/or changing rowtes is to go into areas that they intend to serve, estimate the numer of residents, and then they estimate the number of residents that use pubise transportation. The latter estimate is based upon several factors, such as the geographic location, the type of fesidence, the kind of work, the nearby industries, etc. phe ultmate estimate is based upon experience
rather than any formal or analytical techniques. Dividing the number of expected passengers by a load factor, which depending on the capacity of the buses, results in the number of buses needed in this special area or for this special route. Ordinarily, in the early hours of the day and late afternoon, there is a rush period during which passengers are going to or coming from work, herice requiring a greater number of buses. Generally, a rush period requires three times as many buses as are needed during normal service periods.

The next step is the determination of the round trip mileage for each route. Dividing this mileage by the average speed of the bus, which is usually about $12 \mathrm{mop} \mathrm{p}_{\mathrm{o}}$, will give the time for a round trip. The headway, which is the time interval between two vehicles on a specific route, is found either by dividing the round trip time by the number of buses or by some related assumption. The headway during the rush periods, is always less than at normal service periods (one-kalf to one-third the normal headway).

As an example, if some passengers wish to be downtown for work at $7: 00 \mathrm{a}_{0} \mathrm{~m}_{\circ}$, ther the first bus might arrive there at $6: 50$ (6:50 indicates 6 hours and 50 minutes, 6.50 indicates 6 hours and 50/100 of an houry. If the headway is 15 minutes them the second bua would be there at $7: 05$, and so on. If eight buses are needed to carry passengers
downtown during the morning rush period, the arrival times are listed on a sheet of paper, and then calculated to determine the pull-out times from the garage. To further clarify this, the following example is given. Assume that on a certain route these data apply:
(1) Early rush period is until 9:00 a.m.
(2) Round trip time is one hour
(3) The desired headway is 10 minutes, then
(4) Six buses are needed downtown between the hour of 8:00 a.m. and 9:00 $\mathrm{a} . \mathrm{m}$ 。

On a sheet of paper the timing points on this route are indicated. Scheduling is simplified by including two round trips on one sheet. So if on rowte "B" the timing points are Main Street, X_{1}, X_{2}, and X_{3}, then this, is indicated on a sheet of paper as follows:
$\begin{array}{lcllllllll}\text { Pull Main } \\ \text { out } & X_{1} & X_{2} & X_{3} & \text { Main } & X_{1} & X_{2} & X_{3} & \text { Main } \\ \text { St. }\end{array}$
and the six buses will be shown as follows:

$\begin{array}{lcllllllll}\text { Pull } \\ \text { out } & \begin{array}{c}\text { Main } \\ S t .\end{array} & X_{1} & X_{2} & X_{3} & \begin{array}{c}\text { Main } \\ \text { St。 }\end{array} & X_{1} & X_{2} & X_{3} & \begin{array}{c}\text { Main } \\ S t .\end{array}\end{array}$ | 800 |
| :--- |
| |
| |
| 810 |
| 820 |
| 830 |
| Notice the difference in time is the ten $(10)-\left(\begin{array}{ll}840 \\ \text { minutes headway. }\end{array}\right.$ |
| 850 |

Now calculating the pull-out times of the buses to determine when they will leave the garage, the following data are obtaimed:

1	555	600	615	630	645	700	715	730	745	800
2	605	610	625	640	655	710	725	740	755	810
3	615	620	635	650	705	720	735	750	805	820
4	625	630	645	700	715	730	745	800	815	830
5	635	640	655	710	725	740	755	810	825	840
6	645	650	705	720	735	750	805	820	835	850

Notice the time for a round trip is one hour.
Each one of these buses will be given a number called the schedule number as show above.

All the above steps will be repeated for the normal service periods and the second rush period. During the normal service periods, the beadway time will be greater anid thus, a lesser mamber of buses will be required. The buses not. needed either have to be sent back to the garage or assigned arother route.

Applying this to the above example with previous assumptions of:
(I) Early rush period is until 9:00 2.om。
(2) Round trip time is one houx
(3) The desired rush headway is ten minutes, then
(4) Six buses are needed downtown between the hour of 8:00 a.m. and 9:00 a.m.

Plus the following assumptions:
(5) The desired normal headway is twenty minutes, then
(6) Three buses are needed downtown after the rush period.
 $\begin{array}{lllllllllll}1 & 555 & 600 & 615 & 630 & 645 & 700 & 715 & 730 & 745 & 800\end{array}$

2	605	610	625	640	655	710	725	740	755	$810-815$

| 3 | 615 | 620 | 635 | 650 | 705 | 780 | 735 | 750 | 805 | 820 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllllll}4 & 625 & 630 & 645 & 700 & 715 & 730 & 745 & 800 & 815 & 830-835\end{array}$
$\begin{array}{lllllllllll}5 & 635 & 640 & 655 & 710 & 725 & 740 & 755 & 810 & 825 & 840\end{array}$
$\begin{array}{llllllllllll}6 & 645 & 650 & 705 & 720 & 735 & 750 & 805 & 820 & 835 & 850 & 855\end{array}$
$1 \begin{array}{llllllllll}1 & 800 & 815 & 830 & 845 & 900 & 915 & 930 & 945 & 1000\end{array}$
$38 \quad 820 \quad 835 \quad 850 \quad 905 \quad 920 \quad 935 \quad 950.10051020$
$5 \quad 8 \quad 840 \quad 855 \quad 910 \quad 925 \quad 940 \quad 955101010251040$
This will go on until the second rast period, when more buses will have to be inserted in the schedule with the proper headway time. After this period is over, service returns to normal. This route is customarily rescheduled again for Saturdays and Sundays.

Following are actwal weekday, Saturday and Sunday schedules on route No. 13 of "A" company; from which is found that:
(1) Rowd trip time is between $1: 07$ and $1: 15$ hours
(2) Headway at rush period is 12 mimutes and at mormal service is 35 mimates
(3) Five buses were needed downtown (4th and Main) between the hour of $8: 00$ and 9:00.

SCH.	PULL	4 HT	28cx	21ST	2151	4TE	28cT	21ST	21ST	4TH	286T	2159	21ST	4 TH	PUEL
NO.	OUS	MAIN	30S里	YALE	छ¢ICA	CA MAIN	30S\%	YAIE	UFICA	A MAIN	30ST	yALE	BTICA	A MAIN	IN
282	540	---	--		-	545	615	627	636	652	730	742	752	807	
283	552	---				557	627	639	649	704	742	754	804	819	824
284	604	---				609	639	651	701	716	754	806	816	831	836
281	511	516	546	556	606	621	651	703	713	728	806	818	828	843	
285	628	--s	---	---		633	703	715	725	740	818	830	840	855	900
286	640	--0	---	---	---	645	715	727	737	752			---	$--\mathrm{Ch}$	hX206
28 e		807	845	855	905	920	9551	1005	10151	1030	1105	1115	11251	1140	
281		843	920	930	940	9551	1030	1040	10501	1105	1140	1150	1200	1215	
282		1140	1215	1925	1235	1250	185	135	145	200	235	245	255	310	
281		1215	1250	100	110	125	200	210	220	235	310	320	330	345	
288		310	348	400	410	425	503	515	525	540	618	630	640	655	
288	1355	5	--0	--	---	437	515	527	537	552	630	642	652	707	712
289	rce63	--	---	--0		452	529	541	551	606		---	---	---	611
281		345	425	437	450	505	543	555	605	620	658	710	720	735	
290 Fr	X353	--	+->	---	--	517	555	607	617	632	---	---	---	---	637
2875	X358	415	458	504	514	529	607	619	629	644	--®	---		---	649
282		655	735	745	755	810	845	855	905	920	955	1005	10151	1030	\cdots
281		735	810	820	830	845	920	930	940	955	--	---	---	---	1000
282		$\begin{gathered} 10301 \\ \text { ROUTE } \end{gathered}$	$\begin{aligned} & 1100 \\ & \text { NE } \end{aligned}$	$\begin{gathered} 11081 \\ 13- \end{gathered}$	1115 WEEKD	$\begin{aligned} & 1130 \\ & \text { CDAY } \end{aligned}$	EAST	T	STREE	$E^{-\infty}$	EFFEC	CTIVE		---	1135

```
SCH PUTL 4TQ 28CT 2IST 4TH 28TK 21ST 4TH S8CT O1STS 4TH PULI 
```



```
881
282 830 905 915 940 1015 1085 1050 1125 1135 1200
281 905 940 950 1015 1050 1100 1125 1200 1210 1235
282 1200 1235 1245 110 145 1255
281 1235 110
288
281 405 440 450
282 [llllllllllllllll
281 735 810 820 .845 920 930 955 <-0 
282 10301105 1115 1140 _-\infty --0 --0 --0 --- --- 1145
    ROUTE NO. 13 - SATURDAY EAST 2IST STREET EFEECTPTVE. . .
```

Sck	PULT	4TH	2809	21sT	4 T	28cm	21ST	4 4T3	28cm	21ST	$4 \mathrm{4TH}$	PGIL
\$0.	O69\%	MAIN	30S\%	YATE	MA I ${ }_{\text {M }}$	3087	YAIE	MAI甚	30S\%	YALE	MAIT	IN
881	685	630	700	707	730	800	807	830	900	907	930	
281		930	1000	1007	1030	1100	1107	1130	1200	1807	1230	
281		1230	100	107	130	200	807	230	300	307	330	
281		330	400	407	430	500	507	530	600	607	630	
281		630	700	707	730	800	807	830	900	907	930	
281		930	1000	1007	1030	1100	1107	1130	---	--0	-- 1	1135

ROUTE NO. 13 - SUNDAYS HOLIDAYS EAST 21ST STREET EFFECTIVE。. .

Phe last step in completing the schedule, and that which is propabiy the mose difficult is determining the runs, 1.e., the individual operator assignment to a specific bus. This step is partially restricted by the labor contract. iThe labor contract that " A " company has with its union requires the following: (See Appendix B for a labor management contract on scheduling restrictions.)

All puns pay at least howrs.
Or all runs, at least 35% mast be straight runs and at most 65% split runs.

Owertime work is defined as ork in excess of 8 hours and 50 mutes, in case of a straight rum, and 9 hours, in case of a split sun.

All overtime mork is paid at time awd a half
(1.e.g 1. 5 regwar pay).

Split runs may have a spread time of 12 hours and 25 minutes, and 10% of these runs may have a spread of 13 howrs and 25 mimises.

If the spread time is above thet previousIy stated, then the company payn one-half the exeess time as pemalty.

A piece of work should pay at least nowrs unless it is or the extra board, then it sould pay hours and 30 minutes (every piece of work has a report time of ten minutes)。

The ldeal schedule for a company would be ome with all straight runs. However, the variation in service trip lengths
makes this a practical impossibility. A straight run in general costs the company less and is preferred by the employee. Due to the inconvenience in relieving a driver at oight if he is on a split run, it is preferred that all split runs be scheduled in the daytime.

As a general rule, transit companies schedule each route independently. This is accomplished as follows:
(1) From the schedule (time table or the "board" as it is customarily called), the scheduling department finds the total time each bus (schedule number) is in service, and the time it pullswout and pulls-in to the garage.
(2) These service times, depending on their length, are divided into eight hours of work.
(3) Although step 2 is done on a trial and error basis, there are two rules which may be used as guides. These are:
a. Pleces of work will be easier to schedule into rums if they are of about four hours duration.
b. Each route should be balanced separately (i.e.s number of $A . M$. pieces of work equals number of PoM. pleces).
(4) After the board has been broken into eight hour straight runs, and pleces of work, the $A_{0} M_{0}$ pleces of work are listed on one side of a sheet of paper and the $\mathrm{P}_{\mathrm{o}} \mathrm{M}_{0}$ on the other side in the order of occurrence. Split runs are constructed y combining $A_{0} M$. with $P_{0} M$. pieces of work.

While this will take care of most of the pieces of work, not all these pieces will fit well together into split runs; thus, leaving some pieces still umscheduled.
(5) At this point, the percentage of straight runs to split runs is checked. If the number of straight runs is over the minimum specified by the labor contract (and usually is), then some of the straight runs will be broken down to reconstruct, with umscheduled pieces of work, split rans. A straight rum is broken only if two split rums would result。
(6) Any piece of work then left unscheduled is added to the extra board. The extra board schedule is constructed on a daily basis, and a sufficient number of employees are carried to adequately take care of these remaining pieces of work plus employees' leave of absences, vacations, sickmess, etc.

On the following page an actual run assignment is developed from breakirg down Route No. 13.

	RUN MO．	SCH．Mo．	TIME ON	TIME OFF	WORK	REPORT PENALTY	STRAIT OVER	TOTAL
	1301	281	$511 \mathrm{~A} \mathrm{P/out}$	3SSP Reld	814	10	824	884
$S t .8$	1351	281	1258 Rel	$1000 \mathrm{P} / \mathrm{In}$	835	10	8445	845
	1352	282	3108 Rel	1135P P／in	885	10	835	835
	13026	288	540 P ／Out	1030P Reld	450			
	1303x	283	$5524 \mathrm{P} /$ out	824A P／in	232			
	$1304 x$	2884	604A P／out	836A P／in	232			
	1305 x	885	Ge8A P／out	900A P／in	238			
P．W．	1306 x	286	$640 \mathrm{~A} P /$ Out	752 A Cung	112			
	1307 c	28	1030A Rell	3109 Reld	440			
	1353x	\％87	415 P Chag	649P P／in	234			
	$1354 \times$	288	437 P Chng	712 P P／in	235			
	13556	289	452 P Chng	$611 P \mathrm{P} / \mathrm{in}$	119			
	1356x	290	517 Pc Cug	637 P P／in	120			

ROUTE 10.13 －Week Day Break－Wp
EFFEGTIVE。。。

GHAPTER IV

GOMPUTER SCHEDULING OF TRANSIT
OPERATORS ' ASSIGNMENT

High-speed digital compaters are today helping many small businesses cut operating expenses and handie an increased volume of work. These computers are still so costly that only very large corporations can afford to buy or lease them. But the small busimessman can turn to computer serviee organizations that sell the time of large computers on an hourly basis. The businessman pays only for the time it takes to solve his particular problem. Because a high-speed computer can perform millions of calculations in an hour (from 600-4000 operations per second), 1 a wide range of problems can be ecomomically solved in a relatively short time and by more efficient means than hand calculation.

Types of Problems

Some typical engineering problems that can best be solved by computers include stress analysis, heat and pressure calculations, vibration analysis, and engine design.

[^3]Digital computers make possible the rapid processing of great amounts of clerical data. They cut down the time and costs spent on functions such as payroll processing, billing, shop-order writing, sales analysis and a large variety of scheduling problems.

Illustrative of these problems is that of a business which operates a fleet of trucks. The manager wanted to find out the most economical routes for them to follow. The factors that had to be considered included among other mileages, traffic congestion, toll roads, and load capacities. In just a few hours a computer analyzed ten million possible route combinations and found the best ones. Without a compater, it was estimated that it would have taken twenty years to solve the above problem. Obviously, during that time the trucker would not have been able to save several thousand dollars per year as he is now doing. ${ }^{2}$

A problem mast be carefully studied in order to determine if it is complex and difficult enough to warrant a computer solution and still be economical.

The problem of scheduling bus operators is certainly one which lemds itself to computer techniques. The problem arises mainly from the restrictions which both the labor

[^4]union's contract and the City Commissioner's regulations place on the operating companies. The wage rate of bus drivers averages $\$ 2.00$ per hour while the variable cost of operating a bus approximates $\$ 0.050$ per mile or $\$ 0.65$ per hour ($13 \mathrm{~m}_{\circ} \mathrm{p}_{\mathrm{o}} \mathrm{h}_{\mathrm{o}}$). This ratio of driver to bus cost of about three to one emphasizes the desirability of efficient scheduling。

The program described in this chapter is designed to be processed on the I. B.M. 650. It gives the scheduler a method which practically eliminates clerical work and endless hours of calculation. In the following pages, the reader will find a description of the program with instructions for 1 ts use. In general, the program is developed to follow the old manual pattern of scheduling very closely in most respects, doing exactly the same work that people did with pencil and papers but telescoping weeks of work into a few hours. By a process of simulation, the computer internally traces the motions of a bus. Using a logical model for each line, the computer follows each bus across its own route, making high-speed decisions and calculations on the basis of information supplied. A range of limits such as maximum and minimum hours of work, overtime rates, and points on the route where decision must be made, are established in advance.

The Program

The specific objective of this $I_{0} B_{0} M$. program is to construct a schedule with as many straight runs as possible and with a minimum number of unsoheduled pieces of work. As mentioned previously, pieces of work not scheduled in split runs are undesirable and costiy to maintain. To reach this objective, the author has found it more convenient to divide the problem into four sections, due to limitation of storage area on the computer and the complexity of the problem. The process has been arranged so that the output from one section is the imput for the succeeding one.

Section I

A. Straight runs are developed by knowing the pull-out times and pull-in times of all the schedule numbers on a route.
B. An intermediate step is necessary to change the format by which pleces of work are punched out (Section I - A) to the appropriate form needed as input data for Section II'。

Section II

Split runs are constructed by combining pieces of work.

Section III

Split runs are constructed by breaking down straight runs (Section I - A) and combining their pieces with
those pieces of work that were not scheduled in
Section II.
Section IV
Find the total cost of a schedule.
The following special devices on the I.B.M. 650 are required:
Sixty words IAS (Immediate Access Storage)
Three index registers (A, B, and C)
Floating decimal device
I.B.M. 533 read-punch unit and proper control panels

This program does not require amy special control panel wiring since the various sections of the program are developed, using either the "SOAP II" or the "FOR TRANSIT" method of programing.

In the pages that follow, the reader will find a description of eash section in the program in the following order:

1. Presentation
a. Assumptions
b. Flow diagram C. Discussion
2. Preparation of data
3. Starting the program
4. Example and remarks
(Appendix A contains a complete listing of the program.)
A. Straight runs are developed by knowing the pull-out time and pull-in time of all the schedule numbers on a route.

1. Presentation

a. Assumptions

In this section the following assumptions are included in the body of the program:
(I) (a) A straight run should pay at least eight hours.
(b) The operator gets ten minutes for report time at the end of each run.
(c) Thus, a straight run can be composed as follows:

7:50 work time \quad \%. 83 work time 0:10 report time or 0.17 report time 8.00 Total B.00 Total
(2) (a) Overtime premium is at one and one-half times the regular rate.
(b) Overtime is for work in exess of eight hours and fifty minutes.

(3) The driving time between the garage and the first relief point is knowns and so is the time between the first and the second rellef points and backwards
between the second and the first relief points.

All of these assumptions are introduced at the eod of the program in the form of "words" (See Appendix A, Section I - A). This makes it very simple to change to fit any spesial case without any damaging effect to the body of the program.
b. Flow diagram
(See Figure 3, page 38.)

C. Discussion

The program is developed using the "SOAP II" method. It is designed so that the machine will do the following:
(1) The machine will aecept one card (schedule number) at a time. Find the total time of this schedule number and compare it with 7.83 hours the minimum working time for a straight run.)
(2) If the total time is less than 7.83 hours, this means that no straight rums can be developed from this schedule number, thus, the machine will print the information about this schedule number in the form of a piece of work.
(3) If the total time is exactly 7.83 hours, this means that a straight run an be construeted from this schedule mumber, thus, the machine will add 0.17 hour for report time and print the information about this schedule number as a straight run.
(4) If the total time is more than 7.83 hoursa, the machine will do a further check comparing the time with 8.67 hours (the maximum working time before paying overtime premiam.)
(5) If the total time is less than or equal to 8.67 hours, this means that a straight run ean be constructed from this schedule number without working overtime, thus, the machine will add 0.17 hour for report time and print the information about this schedule number as a straight run.
(6) If the total time is more than 8.67 hours, this means that a straight run can be constructed, and that more work is still available on this schedule number to be scheduled. In this case the machine will:
(a) Develop a table for all the relief points for this schedule number on this route.
(b) Look up the relief point which will break the total time of this schedule number to exactly eight hours or the nearest pelief point larger than eight hours to construct a straight run。
(c) Check the following:

1 - See if the straight rum is exactly eight hours.
c- If there is overtime, finds its value.

3 - Look up the relief point which 1: ahead of the one chosen previously (i.e., that which will cause the run to be less than eight hours) and find the penalty time。

4 - Choose the most economical of the above.
(d) The machine, in constructing such a run, will oscillate. If the first straight run is developed at the beginning of the schedule aumber, the second will develop from the end. This is desirable to avoid beimg left with all pieces of work either $A . M$. or P.M. pleces, whath moun ereate prot torme
culty in scheduling.
(7) At fintre point, the machine will pick up the working time which has not been scheduled in the straight run, and run it through all the previous steps.
(8) The next schedule number is read into the machine, and the previous steps are repeatew.

2. Preparation of Data

Although the data to be processed may be in a form other than standard 8-10, such a handicap can be overcome by board-wiring. If the standard 8-10 board is to be used, then data cards will be in this form:
a. Columns 1 through 20 are provided for the identification of the schedule maber.
b. Columns 21 through 30 are provided for identification of the pull-out time of the schedule number.
c. Columns 31 through 40 are provided for identificatio of the pall-in time of the schedule number.
d. Columns 41 through 80 are not used.
3. Starting the Program

The "SOAP II" method has been wsed in developing this section, therefore, the steps to follow on the machine are those of any "SOAP" program and cav be summarized as follows:
a. 533 Read-Pumer Nit
(1) Insert "SOAP II" control panel
(2) Ready read feed with assembly deck Order of assemily deck:
(a) "SOAP II" deck
(b) Deck to be assembled (the program)
(3) Ready pumch feed with blanks
b. 650 Console
(1) Set program switch to STOP
(2) Set half cycle switch to RUN
(3) Set control switch to RUN
(4) Set display switch to DISTRIBUTOR
(5) Set overflow switch to SENSE
(6) Set error switch to STOP
(7) Set (70 1951 9999) in storage entry switches
c. Press computer - reset key
d. Press program - start key
e. When read hopper empties, press end of file key. The "SOAP II" is loaded and the program is translated to the machine language and punched out.
f. 533 Read-Punch Unit
(1) Insert the 8-10 control panel
(2) Ready read feed with:
(a) The program in machine language
(b) A transfer card.
(c) The data cards
(3) Ready punch feed with blanks
g. Repeat steps b through d (For additional
information, see I.B.M., "SOAP II" manual, Form 32-7646-2.) The output will be a card for every straight run and one for every piece of work.
4. Example and Remarks

Example:

Input data

Sch. No.	P/o	P/in
1	590	1370
2	610	1010
3	630	1497
4	650	1490
5	670	1870
6	690	1890
7	500	2300
8	520	2320
11	590	1010
12	610	2230
13	630	1050
14	650	2270
15	670	1090
16	1390	1810
17	1430	1850
18	1470	1890

Output data

St.R.NO.	Sch.No.	P/o	P/in	To.Ti.
	1	590	1370	780
	2	610	1010	400
1	3	630	1497	884
2	4	650	1490	857
3	5	6770	1480	827
4	5	1489	1870	390
	6	1100	1890	807
5	6	690	1100	410
6	7	500	1310	827
	7	1445	2300	872
7	7	1310	1445	135
8	8	520	1330	827
	8	1465	2320	8772
	8	1330	1465	135
9	11	590	1010	420
10	12	610	1420	827
	12	1420	2230	827
11	13	630	1050	420
12	14	1485	2270	802
	14	650	1485	852
	15	670	1090	420
	16	1390	1810	420
	17	1430	1850	4200
	18	1470	1890	420

Remarks:

a. In certain cases human judgment is needed, where machine capacity is limited. The total time for schedule number "I" is 7.80 hours. If 0.17 hour for report time is added, the total time would have been 7.97 hours. The scheduler might find it more feasible to construct, from the above schedule, a straight run by paying 0.03 hour in penalty time rather than treating the schedule number as a plece of work.
b. The reader will motice that the "0.17 hour repart time" is added to the working time of each straight run to give the total time.
C. The reader will notice how the machine, in constructing a sitraight run, did so on an oscillating basis. If a Irun is construeted at the beginning of the schedule number (as schedule No. 5), the second is constructed from the end (as schedule No. 6). This procedure will prevent having all pieces of work being concemtrated either early in the morning or late at night。
d. The reader will notice, that for both schedule numbers, 7 and 8, two straight runs and a piece of work are constructed.
B. An intermediate step is necessary to change the format by which pieces of work are punched out (Section I - A) to the appropriate form needed as input data for Section II.

1. Presentation
a. Assumptions - None
b. Flow diagram - None
C. Discussion

The program is developed using the "SOAP II" method. It is designed to reduce the storage area meeded for each plece of work from four words to two words. Instead of using one card for each plece of work, it will use one card for four pleces of work.
2. Preparation of Data

Since all the input data for this section are the output from Section I - As no further preparation is needed. However, one 8-10 standard
card is necessary to show the number of cards
to be proceased.
a. Columns I through 20 are provided to show the number of cards.
b. Columns 21 through 80 are not used.
3. Starting the Program

Same as Section I - A, (see page 42).
4. Example and Remarks

Example:
Input data
No. of cards

Sch. No.	P/o	P/in	To.Ti.
50	900	1500	600
51	500	1100	600
52	500	1700	200
53	550	1850	300
54	1600	1900	300
55	1550	1800	250
56	1550	1700	150
77	1600	1850	250
58	1625	1900	275
59	1650	1875	225
60	1650	1825	175

Output data

Word 1	Word 2	Word 3	Word 4	Word 5	Word 6	Word 7	Word 8
8000530550	0018500300	0000520500	0017000200	0000510500	0011000600	0000500900	0015000600
8000571600	0018500250	0000561550	0017000150	0000551550	0018000250	0000541600	0019000300
6000601650	0018250175	0000591650	0018750225	0000581625	0019000275		

(See remarks for further explanation.)

Remarks:

The following is a description of the output card.
a. Each card having 80 columns cold have up to eigint words (four pieces of work).

- Colmmos I and 2 in each word are not used except in the first word; column is used to show the number of words on the card.
C. Columms 3 through 6 in word one, three, five, and seven are used to identify the schedule number.
d. Colums through 10 in word one, three, five, and seven are used to identify the pull-out time。
e. Columns 3 through 6 in word two, four, six, and eight are used to identify the pull-in time.
f. Columns through 10 in word two, four, six, and eight are used to identify the total time。

Split runs are developed by combining pieces of work.

1. Presentation
a. Assumptions

In this section the following assumptions are made and included in the body of the program.
(1) (a) A split run is composed of two pieces of work and pay at least 8.00 hours.
(b) The operator gets ten minutes for report time for every piece of work.
(c) Thus, a split run can be composed as follows:
7.40 work time $\quad 7.66$ work time 0.20 report time or 0.34 report time 8:00 Total 8.00 total
(2) (a) Overtime premium is at one and one-half the regular rate.
(b) Overtime is for work in excess of nime hours.

8:40 work time 8.66 work time 0:20 report time or 0.34 report time 9:00 Total 9.00 Total
(3) Maximum spread time for a split run is:

12:25 hours or 12.42 hours

All these assumptions are introduced at the end of the program in the form of "words" (See Appendix A, Section II). This makes it very simple to change, to fit any special case without any damage to the body to the program.
b. Flow diagram
(See Figure 4, page 51.)

FLOW DIAGRAM
SECTION II
©. Discmssion
The program is developed using the "SOAP II" method. It is designed so that the machine will do the following:
(1) The program will cause the machine to store all pleces of work on the drum.
(2) Take one piece of work at a time and check it against the others, to find the proper one. with which a split run can be constructed. The checks that the macinne make:
(a) That the puli-out time of the first piece of ork is earlier than the pual-out time of the second. (If not reverse the order of the pieces of work and carry on with the rest of the checks.)
(b) What the pull-in time of the first piece of ork is eardier than the puld-ant time of the second piece.
(c) That the spread time of the two pieces of work is whthin the maximum limits.

Spa. Pi. - $18: 25$ nowss
(d) What the womking time of the two pieces of work is within the two limits.
(3) The two pleces of work which have been found to construct a split run will be punched out under the same split run number (see example).
(4) Split rum numbers begin with "1001", in order to differentiate them from straight run numbers wioh begin with "I"。
(5) Repeat the previous steps for other pleces of work.
2. Preparation of Data Since all the input data for this section are the output data from Section I - B, no further preparation is required. However, the last card in the program (See Appendix A, Section II) should be thanged depending on the number of pieces of work being stored on the drum. A regular "SOAP" caxd is needed.
a. Columns 43 through 46 should have the letters "NUMB"。
b. Colums 49, 50,52,53,54, and 55 should have a zero.
8. Columns 58 through 61 should have a number equal to twice the number of pieses of work to be stored.
3. Starting the Program

Same as Section I - As (see page 42).
4. Example and Remariss

Esample:
Input data

Remarks:

a. The Regional Specification Card, the first in the program, reserves 100 locations on the drum for the storage of 50 pieces of work. If more locations are desired, this card should te changed. There are over 1600 locations on the drum that could be used for such storage.
W. The reader will notice that the two pieces of work wich are combined to construct a split russ, are listed with the same split run number.
©. The reader will notice, that two report time periods ($2 \times 0.17=0.34$ hours) are added to the working time of each split run to make up the total time.
d. Split rum muxber "1002" is an example of DIscuasion (2) (a) which kas been explained previpuisi土. The pull-out time of the inst plece (seh. No.5) is not earilier than that of the second piece (Sch. No. 6). So the machine reversed the order of the pieces (1.e., Soh. No. 6 was considered first piece and Soh. No. 5 was considered second piecel, and further checks were applied.

Split runs are constructed by breaking down straight runs (Section I - A), and combining their pieces with those pieces of work that were not scheduled in Section II.

1. Presentation
a. Assumptions

In this section the following assumptions are made and included in the body of the program.
(1) (a) A split run is composed of two pieces of work and pay at least 8.00 hours.
(b) The operator gets tem minutes for report time for every piece of work.
(2) (a) Overtime premium is at one and one-half the regular rate.
(b) Overtime is for work in excess of 9.00 hours.
(3) Maximum spread time for a split run is $12: 25$ hours.
(4) Terminal times and relief times for every straight rum is known.

All these assumptions are introduced at the end of the program in the form of words (See Appendix A, Section III)。 This makes it very simple to change, to fit amy special
case without any damage to the body of the report. Assumption (4) is introduced in the input data.
b. Flow diagram
(See Figure 5, page 58,)

C. Discussion

The program is developed using the "SOAP II" method. It is designed so that the machine will do the following:
(1) The program will cause the machine to store all pieces of work on the drum.
(2) The mactine will read in one card (straight run) at a time, divide the total time into two (pieces of work) and check the possibility of constructing two split runs by combining these two pieces of work with another two from those stored on the drum.
(3) The machine will also consider all other possibilities of constructing split runs using other pieces of works stored on the drum and punch out all results.
(4) Although, there are an infinite number of ways to divide an eight hour straight run, yet, it will not be practical to consider all these possibilities. The scheduler showld decide on the number of trials desired. For each trial a card is prepared to show the lemgth of one of the two pieces of work into which the straight run will be divided.
(5) Although, a card is prepared to show the length of the first piece of work to which the straight rua is to be divided. yet, the machine will first develop a table for all the relief points of this run (as explained in section I - A) and then divide the run at the relief point which best gives the required division.
(6) The machine will go through the same list of checks mentioned in the discussion of Section II (mainly the length of working time and spread time) when considering split rums constructions.
(7) The macnine will consider a solution only if two split runs can be constructed for evesy straight ran being divided.
(8) A table is to be conimpucted manually. to sumayize all the different possibilities from which the inal solution for this section is to be selected (will be discussed fusther at the closing of this section)。

2. Preparation of Data

The imput data to this section is:
a. An 8-10 care to shom the number of locations
needed to store information about. P.W. on the drum.
b. An 8-10 card to show the number of split runs already constructed in Section II.
C. The 8-10 cards each showing the length of one of the two pieces of work into which the straight rum is to be divided.
d. Whe 8-10 cards luaving information about pieces of mork to be stored on the drum.
e. The 8-10 cards maving straight run information (Section I - A).

Descriptiow of imput data cards:
a. A 8-10 eard to show the number locations needed to store information about. $P_{0} W$. on the drum.
(1) Colums 1 through 6 will have zeros.
(2) Colums through 10 wi.11 have a mumber equel to thice the mumber of P_{0}.
(3) Colums 11 through 80 are not used.
b. An 8-10 carm to show the number of split
rusu already construeted in Section II.
(1) Coluws 1 through 6 wll have zeros.
(2) Colums of through 10 will have the num-

(3) Columis 11 through 80 are not used.
Q. The 8-10 carem each showing the length of
one of the two pieces of work to which the straight ran is to be divided. In each card:
(I) Columas 1 through 6 will be zeros.
(2) Columns 7 through 10 will be the selected lemgth.
(3) Columns 11 through 80 are not used.

ब. The 8-10 cards having information about pieces of work to be stored on the drum. These are a reproduction of the input data to Sestion II after elimimation of those pieces of work which have been used in, that section.
e. The 8-10 cards having straight rum information. These are a reproduction of the output data to Section I - A, after including information about the terminal and relief times of each rum.
(1) Colums 1 through 6, 11 through 16, 21 through 26, 31 through 36, 41 through 46, 51 through 56, 61 through 66, and 71 through 76, are all zeros.
(2) Columns th throgh 10 are for St.R.No.
(3) Columns 17 through 20 are for Sela.No.
(4) Columms eq through 30 are for $P / 0$ pime.
(5) Colums 37 through 40 are for P / in Time.
(6) Columns 47 trough 50 are for To. Ti.
(7) Columns 57 through 60 are for Term.Ti.
(8) Columns 67 through 70 are for Relief 1.
(9) Columns 77 through 80 are for Relief 2.

3. Starting the Program

Same as Section I - A, (see page 42).
4. Example and Remarks

Example:

Input data

a. 0000000042
b. 0000001005
c. 0000000200 (This card will be changed with every trial.)
d. $8000260800 \quad 14000600 \quad 46040067000000$ 8000280600 8000580625 8000621700 8000661500 2000701500 8000200 9000275 19500250 18000300 20000500
e.

O.	Sch. No.	P/o	P/in
57	37	600	1400
56	36	500	1300
58	38	700	1500
59	39	800	1600
1	3	630	1497
2	4	650	1490
3	5	670	1480
4	6	1100	1890
5	7	500	1310
6	7	1445	2300
7	8	520	1330
8	8	1465	2320
9	12	610	1420
10	12	1420	2230
11	14	1485	2270
12	14	650	1485
20	30	590	1400

To.Ti.	Term. Ti.
817	
817	
817	
817	
884	10
857	10
827	10
807	
827	10
872	10
827	
872	10
827	
827	10
802	10

Rel.	Rel
25	75
25	75
25	75
25	75
25	75
25	75
25	75
25	75
25	75
25	75
25	75
25	75
25	75
25	75
25	75
25	75
25	75

[^5]Output data: 0000000200 (First trial)

St.R.No.	Sp.R.No.	Sch. No.	P/o	P/in
57	1006	37	600	800
	1006	26	800	1400
57	1007	37	800	1400
	1007	46	400	600
57	1008	37	600	800
	1008	27	900	1500
57	1009	37	800	1400
	1009	28	600	800
57	1010	37	600	800
	1010	48	1000	1600
57	1011	37	800	1400
	1011	61	700	800
57	1012	37	600	800
	1012	49	1100	1700
57	1013	37	800	1400
	1013	62	1700	1950
56	1014	36	500	700
	1014	26	800	1400
56	1015	36	700	1300
	1015	64	1600	1850
58	1016	38	700	900
	1016	27	900	1500
58	1017	38	900	1500
	1017	29	700	900
58	1018	38	700	900
	1018	47	500	1100
58	1019	38	900	1500
5	1019	59	650	875
58	1020	38	700	900
	1020	48	1000	1600
58	1021	38	900	1500
	1021	60	650	825
1	1022	3	630	8440
	1022	27	900	1500
1	1023	3	840	1497
	1023	63	1700	1825

To.Ti. /P.W.	To.Ti.
200	834
600	834
600	834
200	834
200	834
600	834
600	834
200	834
200	834
600	834
600	834
200	834
200	834
600	834
600	884
250	884
200	834
500	834
600	884
250	884
200	834
600	834
600	834
200	834
200	834
600	834
600	859
225	859
200	834
600	834
600	809
175	809
210	844
600	884
657	816
125	816
	8

$\begin{aligned} & \text { St.R.No. } \\ & 0000000250(\mathrm{~A} \end{aligned}$	S.R.No. trial)	Sch. No.	P/o	P/in	To.Ti./P.W.	To.Ti.
57	1006	37	600	900	300	834
	1006	69	1300	1800	500	834
57	1007	37	900	1400	500	809
	1007	58	625	900	275	809
58	1008	38	700	1000	300	834
	1008	69	1300	1800	500	834
58	1009	38	1000	1500	500	834
	1009	65	1550	1850	300	834
1	1010	3	630	940	310	844
	1010	69	1300	1800	500	844
1	1011	3	940	1497	557	816
	1011	59	650	875	225	816
2	1012	4	650	960	310	844
	1012	69	1300	1800	500	844
2	1013	4	960	1490	530	814
	1013	62	1700	1950	250	814
3	1014	5	670	980	310	844
	1014	69	1300	1800	500	844
3	1015	5	980	1480	500	834
	1015	66	1500	1800	300	834
12	1016	14	650	960	310	844
	1016	69	1300	1800	500	844
12	1017	14	960	1485	525	809
	1017	64	1600	1850	250	809
57	1006	37	600	900	300	834
	1006	69	1300	1800	500	834
57	1007	37	900	1400	500	809
	1007	58	625	900	275	809
58	1008	38	700	1000	300	834
	1008	69	1300	1800	500	834
58	1009	38	1000	1500	500	834
	1009	65	1550	1850	300	834

$\underset{1}{\text { St.R.No. }}$	Sp.R.No.	Sch.No.	P/o	P / in	To. Ti./E.W.	To. Ti.
	1010	3	630	940	310	844
	1010	69	1300	1800	500	844
1	1011	3	940	1497	557	816
	1011	59	650	875	225	816
2	1012	4	650	960	310	844
	1012	69	1300	1800	500	844
2	1013	4	960	1490	530	814
	1013	62	1700	1950	250	814
3	1014	5	670	980	310	844
	1014	69	1300	1800	500	844
3	1015	5	980	1480	500	834
	1015	66	1500	1800	300	834
12	1016	14	650	950	310	844
	1016	69	1300	1800	500	844
12	1017	14	960	1485	525	809
	1017	64	1600	1850	250	809
0000000350 (Another trial)						
57	1006	37	600	1000	400	834
	1006	68	1300	1700	400	834
57	$100 \cdot 7$	37	1000	1400	400	834
	1007	67	1400	1800	400	834
000000400 (Another trial)						
57	1006	37	600	1000	400	834
	1006	68	1300	1700	400	834
57	1007	37	1000	1400	400	834
	1007	67	1400	1800	400	834
0000000450 (Another trial)						
57	1006	37	600	1100	500	834
	1006	66	1500	1800	300	834
57	1007	37	1100	1400	300	834
	1007	70	1500	2000	500	834

St. R.No.	Sp.R.No.	Sch. No.	P/o	P / ln	To.Ti./P.W.	To.Ti.
59	1008	39	800	1400	600	834
	1008	46	400	600	200	834
59	1009	39	1400	1600	200	834
	1009	26	800	1400	600	834
4	1010	6	1100	1700	600	834
	1010	28	600	800	200	834
4	1011	6	1700	1890	190	824
	1011	27	900	1500	600	824
4	1012	6	1100	1700	600	834
	1012	29	700	900	200	834
4	1013	6	1700	1890	190	824
	1013	48	1000	1600	600	82 ${ }^{\frac{1}{4}}$
4	1014	6	1100	1700	600	859
	1014	59	650	875	225	859
4	1015	6	1700	1890	190	824
	1015	49	1100	1700	600	824

Remarks:

a. The reader will notice that when a straight run is divided into two pieces of work, the 0. 17 howr report time which was added to the straight run, previously is subtracted. To. Wi。for St.R.NO. 57, Sch.No. 37 is 8.17 hours.

When divided into:
St.R.NO. 57
" SpoRoNo. 1006 Sch.No. 37 is 2.00 h
" $\quad 1007$ Sch.No。 37 is $\frac{6.00 \mathrm{~h}}{8.00 \mathrm{~h}}$
b. The reader will notice that there are several ways of dividing a straight run (Example: St.R. 57), and even when oniy one trial is considered, there are several combinations leading to several possible split runs. To find the most desirable solution, the following table is constructed:

Horizontally: Schedule numbers of pieces of work Vertically: Stroight rus numbers The same two numbers in each row in the matrix as the number "4" in cell (57, 49) and cell (57, 62) indicates that if straight rum " 57 " is beimg divided into two pieces of works and if piece of work "49" is considered to construct a split run, then the piece of
work "62" mast be also used for the second split run. (A straight run is only divided if two split runs can be constructed.) The vertical colum titled "Total" shows the number of times a straight run was divided and used to construct split runs. The norizontal row titled "Total" shows the number of times a piece of work was used to construct split runs.

The Method for the Tabular Solution

Since the objective of this section is to schedule as maxy pieces of work as possible, thus, it is logical to start by considering those pieces of work that could oniy be scheduled once. The last row in the table shows the number of times a piece of work could be scheduled (according to the program). Therefore, start by considering those, cells which have the number "1" (in the last row) . But since this solution requires that pieces of work be used in pairs, then when choosing one piece, which could be used once, look for its companion and check the number of times it could be schedaled. If both could only be scheduled once, then this is the only possible schedule for them. Example:
(1) (a) Piece of work "68" is used once,

ST.R.	26	46	27	47	28	48	29.	49	58	59	60	61	62	63	64	65	66	67	68	69	70	To.
57		${ }^{1} 8$	2	8	2	3		4	5	-		-3		1			8	6	¢	5	7	8
56	1														1			5				1
58			1	2		3	(1)			2	3			1		4			(4		4
1			1							2				1				1)	2		2
2			1										1	1.)	(1		1
3			1														1	\bigcirc	(1		1
12														\dagger	1			\%	7	1		1
59	1	1	$+$											4				\%	\bigcirc			1
4		1.	1	1	2	2		3		3				1				\rangle	\bigcirc			3
Rotal	3	4	1	3	2	3	1	2	1	3	1	1	2	1	2	1	2	7	$\frac{1}{7}$	6	1	
	(A)	$\left\{\begin{array}{l} 5 \\ 5 \end{array}\right.$	$\begin{aligned} & 7 \mathrm{ar} \\ & 7 \mathrm{ar} \end{aligned}$	ad 68	7)	vid	r	3.50	0 ho			R.N	. 1	067)				X				
Total	2 (B)	2	$\stackrel{2}{x}$ and and	$\begin{array}{r} 2 \\ d \\ d \\ d \end{array} \quad 63$	1	2 vide	$\begin{aligned} & 1 \\ & : 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 00 h \end{aligned}$	0 hour	3	$\begin{array}{r} 1 \\ \mathbf{p}_{\circ}, \mathrm{R} \\ \mathrm{p}, \mathrm{R} \end{array}$	0 No. No.	$\begin{gathered} 1 \\ 102 \\ 102 \end{gathered}$			1	1	X	X	5	0	
Total	2	2	X	2	1	2	0	1	0	2	1	0	1	X	2	1	1	X	X	4	0	

ST.R.	26	46	27	47	28	48	29	49	58	59	60	61	62	63	64	65	66	67	68	69	70	To.
57						<		1		1	δ											0
56	1					1		!		1	\%				1							1
58				2						5						4				4		3
1						1				$\begin{aligned} & 1 \\ & i \end{aligned}$												0
2						5		$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$		\square	,		1							1		1
3						1				1	\bigcirc						1			1		1
12						I		1		1	\bigcirc				1	:				1		1
59	1	1		-)					\bigcirc											1
-4		1		\pm		$\frac{6}{5}$		-1		$\frac{1}{3}$	t			-			-	-				3
Total	2	2	X	2	1	16	0	1 1 1	0	2	t	0	1	X	2	1	1	X	X	4	0	
Total	2	2	X	1	0	X	0	$\begin{aligned} & 1 \\ & X \end{aligned}$		$\begin{aligned} & 1 \\ & \mathrm{X} \end{aligned}$	x		1	X	2	0	1	X	X	3	0	

(D) $\binom{4$ and 59 }{4 and 49} divider 5.00 hours $\binom{$ Sp.R.No. 1014 }{ Sp.R.No. 1015 }

and also its comparion piece of work "67" with straight run "57"。
(b) Eliminate columns 67, 68, and row 57 .
(0) Find the new totals.
(2) (a) Since no other pair of pieces of work are only used once, pieces of work "63" is chosen which is used onee and its companion "eq", which is used twice.
(b) Eliminate columas 27, 63 and row 1 .
(c) Cell $(58,29)$ has to be taken out of the table simge its companion cell (58, eq) was elimimated by eliminating column
(d) Find the sew totals.

The previous steps are repeated for (3), (4), (5). and (6). Results from this section (Section III), (Section II) and (Section I - A), combined are a solution to a sehedule Section IV is developed to find the cost of operating a scinedule with such a solution.

Section IV
Find the total cost of a schedule.

1. Presentation
a. Assumptions

In this section the following assumptions are made and included in the body of the program.
(1) A rum (straight or split) pays at least 8.00 hours.
(2) The operator gets tem minutes for report time for each run or each piece of work.
(3) Overtime premium is at one and one-half the regular rate.
(4.) Overtime is for work in excess of $8: 50$ for straight rums and 9:00 for split runs.
(5) Maximum spread time for a split run is. 12.48 hours.
(6) If the spread time is more than 12.42, the operator is paid one-half the excess time at regulat pay.
(7) In case of an overtime and a spread penalty, the operator gets either of them which ever pays more.

All these assumptions could be changed to fit any special case without any damaging to the body of the program.
b。 Fiow diagram
(See Figure 6, page 78.)
C. Discussion

The program is developed using the "FOR TRANSIT" method. It is designed so that the mathime will do the following:
(1) Check the operator assignment and add ten minutes for report time for every straight rum or ten minutes for each piece of work in a split rum.
(2) Check the total time of an assigmment for the minimum hours requirement. If less than 8.00 hours, the machine will add a penalty time and pays the operator 10r 8.00 hours.
(3) Check the total time of an assignment for an overtime. In case an overtime exists, the macrine will figure the pay for both the regular period and the overtime period and add them.
(4) Check the spread time for the maximum permissivle. If the spread time is in excess of the maximum, the machine will add a penalty time of one-half the excess time at regular pay.
(5) Check 1 荗 both an oyertime and a spread

FLOW DIAGRAM
SECTION IV

Figure 6
time exists. If so, the machine will compute both, and finds which is larger and add it to the regular pay.
2. Preparation Da§a

Since the "Floating Point" system is used, an 8 -10 (eight word load eard) standard card is used.
a. An 8-10 card to show both the number of rums to be evaluated to find their cost and the oparators pay rate per howr.
(1) Columes 1 through 6 will have zeros.
(2) Columes through 10 will have the number oif runs.
(3) Columns il through 18 will show the pay zrata.
(4) Colums 19 and 20 for decimel point idmbification.
b. mine 8-10 cards each to show the working time, the number of pleces, and the spread time of cach run.
(1) Columsis i through 8 to show the working time.
(2) Colums 9 and 10 for decimal point 1dentilication.
(3) Colums il to show number of pieces of work fia the rum.
time existis. If so, the machine will compute bothe and finds which is larger and add it to the regular pay.
2. Preparation of Data

Since the "Floating Point" system is used, an $8-10$ (eight word load eard) stamdard eard is used.
a. An 8-10 card to show both the number of rums to bevalwated to find their cost and the operators pay rate per hour.
(1) Columns 1 through 6 will have zeros.
(2) Columens of through 10 will have the number of runs.
(3) Columns 11 through 18 will show the pay sate.
(4) Columns 19 and 20 for decimel point 1dentifleation。
b. grise 8-10 card each to show the working tiwe the mumber of pleces, and the spread time of each zum.
(1) Columas 1 through 8 to show the working time.
(3) Colums 9 and 10 sor decimal point 1dentifleation.
(3) Colums il to show number of pleces Of Work in tive rum.
(4) Columns 12 through 18 are to have zeros.
(5) Columns 19 through 20 for decimal point idextification.
(6) Columns 21 through 28 to show spread time.
(7) Columbs 29 and 30 for decimal point 1dentification.
3. Starting the Program

The "POR TRAMSIT" method has been used in developing this section, therefore, the steps to follow on the machine are those of any ordinary For Transit program and may be summarized in the following phases:

Pbase I Translation
Phase II Compilation
Pbase III Assembly
Phase IV Wising the object program (For the switehes and console settings and machine operationa see an I.B.M. Reference manual for "FOR TRNNSIT".)

4. Example and Remarks

Example:

Input data
No. of runs Pay rate
$0000000034 \quad 2000000051$
Wo. Ti. No. of P.W. Spd. Ti.
$84700000511000000051 \quad 8470000051$
788000005110000000517880000051
805000005110000000518050000051
770000005110000000517700000051 run (a)
810000005110000000518100000051
792000005110000000519920000051
7920000051 2000000051 1225000052
830000005120000000519970000051
$7680000051 \cdot 20000000511020000052$
$7870000051 \quad 2000000051 \quad 1128000052$
$77300000512000000051 \quad 1198000052$
842000005120000000519580000051
770000005120000000511267000052
run (b)

811000005120000000511215000052
811000005120000000511167000052
815000005120000000511070000052
818000005130000000511127000052
797000005130000000511160000052
753000005120000000511225000052
813000005110000000518130000051
832000005110000000518320000051
827000005110000000518270000051
803000005110000000518030000051
$7830000051 \quad 1000000051 \quad 7830000051$
7750000051 1000000051 7750000051
$77000000511000000051 \quad 7700000051$
967000005120000000511100000052
$\operatorname{run}(d)$
867000005120000000511442000052
967000005120000000511442000052
run (e)
967000005120000000511542000052
967000005120000000511642000052
700000005120000000511100000052
700000005120000000511442000052
Dutput data

Cost in $\$$	Wo. Ti.	No. of P.W.	Spd. Ti.
1728000052	8470000051	1000000051	8470000051
1728000052			
1610000052	7880000051	1000000051	7880000051
3338000052			
1644000052	8050000051	1000000051	8050000051
4982000052	Total cost including all previous runs.		

Cost in $\$$ 1600000052	Wo. Ti. 7700000051	No. of P.W. 1000000051	Spd. Ti. 7700000051	(a)
6582000052				
1654000052	8100000051	1000000051	8100000051	
8236000052				
1758000052	8620000051	1000000051	8620000051	
9994000052				
1618000052	7920000051	1000000051	7920000051	
1161200053				
1652000052	7920000051	2000000051	1225000052	
1326400053				
1728000052	8300000051	2000000051	9970000051	
1499200053				
1604000052	7680000051	2000000051	1020000052	
1659600053				
1642000052	7870000051	2000000051	1128000052	run (b)
1823800053				
1614000052	7730000051	2000000051	1198000052	
1985200053				
1752000052	8420000051	2000000051	9580000051	
2160400053				
1633000052	7700000051	2000000051	1267000052	run (c)
2323700053				
1690000052	8110000051	2000000051	1215000052	
2492700053				
1690000052	8110000051	2000000051	1167000052	
2661700053				
1698000052	8150000051	2000000051	1070000052	
2831500053				
1738000052	8180000051	3000000051	1127000052	
3005300053				
1696000052	7970000051	3000000051	1160000052	
3174900053				
1600000052	7530000051	2000000051	1225000052	
3334900053				
1660000052	8130000051	1000000051	8130000051	
3500900053				
1698000052	8320000051	1000000051	8320000051	
3670700053				
1688000052	8270000051	1000000051	8270000051	
3839500053				
1640000052	8030000051	1000000051	8030000051	
4003500053				
1600000052	7830000051	1000000051	7830000051	
4163500053				
1600000052	7750000051	1000000051	7750000051	
4323500053				
1600000052	7770000051	1000000051	7770000051	
4483500053				
2103000052	9670000051	2000000051	1100000052	run (d)
4697000053	- Total c	ost including	all previo	us runs.

```
Cost in $ Wo. Ti. No. of P.W. Spd. Ti.
2002000052 8670000051 2000000051 14420000052
4 8 9 7 2 0 0 0 5 3
2103000052
5110700053
2103000052
5324200053
2202000052
5544400053
16000000052
5704400053
1800000052 7000000051 2000000051 1442000052
5884400053_-Tota1 cost including al1 previous runs.
```


Remarks:

To further explain this section, the reader is asked to refer to those runs marked ($a, b, c . .$.) on page 81 and their costs on pages 82 and 83. Run (a) Working time is 7.70 hours plus 0.17 report time equals 7.87 hours which is less the 8 hour (minimum pay). The reader will notice that machine evaluated the cost of this run on the 8 hours minimum.

Ren (b) The reader will notice that two report time periods of 0.34 hour had been added to the working time 7.87 , and the sun is evaluated to cost $\$ 16.42$.

Run (c) The cost was found to be $\$ 16.33$. This
is based on:
7.70 working time
0.34 report time (two periods)
0.125 spread penalty fone-half the 8.165 hours at a rate of $\$ 2.00 /$ hour.

$$
=\$ 16.33
$$

Run (d) The cost was found to be \$21.03. This is based on:
9.67 working time
0. 34 report time (two periods)
10.01 Total

$$
\begin{aligned}
& 9.00 \times 2=\$ 18.00 \text { regular pay } \\
& 1.01 \times 3=\$ 3.03(1.5) \text { regelar pay }
\end{aligned}
$$

Run (e) Working time of this run is equal to the . working time of (d), but the spread time is beyond the maximum permissible. Evaluating the overtime and the spread penalty, they were found to be $\$ 3.03$ and 2.00. The larger was chosen; the run was evaluated to cost \$21.03.

CRAPTER V

SUMMARY AND OONGLUSIONS

The transit operator asignment problem bas been divided into four sections. Mif division has been arranged in a manner that all (or a portion) of the output intomation from one section is the input information to the succeeding section. miss. oesides cutting down on almost all clerical work made it easier ain more convenient to study and analyze each section separately from the whole problem.

The sour sections are:
Section I
A. Stroight rams are developed by knowing the pall-out times and pull-in times of all the schedule numbers on a route.
B. An intermealate step is mecessary to change the format by winco preces of work are punched out (Section I A) to the appropriate form needed as input datz for Section II.

Section II
Splet rums are constructed by combinimg pieces of work.

Section IdI
Split runs are constructed by breaking down straight
pruns (Section I A) and combining their pieces with those pleces of work that were not scheduled in Section II.

Section IV

Find the totel cost of a schedule.

A program was writter for each section which will compute and construct the reguirement of each section. Range limits are estabished in advance and set up as controls in the program. The total man-hours' sohedule are first divided on a single route basis; then pieces of work which cannot be arranged in proper order are integrated in other routes. Thew, an operator may work on two different routes in completing a dalily rum assigmment. These four programs would give a solution with man straight runs as possible and a minimum muber of mascheduled pieces of work.

Sweh questions as. "How mach of a gervice mileage reduction should be expected?" "Will the staff be reduced (in the existing eheduing department)?" and "How much will the savirgs lia dolars be?", might be raised. Unform tunatelys these questions canot ae amsered exactly until this new method of scheduling is put to work. However, the author feels that a reduction of five percent could be expected in the service mileage. A staff reduction of approximately 50% might expected easily. Such a figure has been found to be normal in similar operations in which the digital
compater substituted clerical work.
As to the savings in dollars, the author believes the following calculations could represent closely an actual case.

A city transit company with 100 buses on the road daily, would meed about two men for two months to develop the operator assignments.

Two men for two months $=2 \times 2 \times(4 \times 40)$
$=640$ man hours
at a $\$ 3.00$ avetage/man hour.

$$
\begin{aligned}
\text { Total cost } & =3 x 640 \\
& =2920 \text { dollars }
\end{aligned}
$$

Tising the digital computer, the same firm would need:

Time	Machime	Labor	Rate	Total Cost
1 bour	Card punching	-	\$ 1.00	1.00
1 hour	-	"	2.50	2.50
1 hour	650	$\bar{\square}$	100.00	100.00
2 bours	-	"	4.00	8.00
				\$111.50

These rates are based on the college computer facilities rates. On these bases savings are $\$ 1808.50$

$$
=1800.00 \text { dollaris. }
$$

Industry rates are about three times as much as college rates which would met savings of about $\$ 1580$.

If such a firm had three schedules per year, this new method could net a saving of at least $\$ 4740$ a year. phis does not include the convenience and easiness of seheduling which could result that such firms might inerease the rumber of schedules per year, and the capability of develping a
schedule on a short time notice.
It in the feeling of the anthor that certain improvements could be applied to this program of seheduling operator assignment, depending on the specific requirements of transit comperses and their labor ontracts. As an example, some
 thre pieter of whe or afficrent spreat trmes.

It is ado the bely of the muthor that a digitad computer program could be develaped to wubtitute the tabe
 Further wegemeh oond show that the techniques of IInear

BIBLIOGRAPHY

Beckman. Martin. Studies in the Economic of Transportation. New Haven: Yale University Press. 1956.

Editors of Fortune. The Exploding Metropolis. Garden City, New York: Doubleday and Company, 1957.

Foulkes, J.W. "On But Schedules." Management Science. I, 4I.
Gilmore, Welch Harlan. Pransportation and the Growth of Clifies. Illinois: Fpee Press. 1953.

Ower, Wilfred. Automotive rpansportation; Prends and Problems. Washington: Erookings Institution, 1949.

Reck, Franklin Mering. A Car Traveling People. Detroit: Automobile Manufacturers Association, 1945.

Richardson, $E_{\text {o }} B_{\text {. }}$ "Evaluation of Bus Requirements for City Service." S.A.E. Joumal, (March, 1952), 60-67.

Taff. Charles Albert。 Commereial Motor Transportation. Illinois: Richard D. Irwim. $\overline{1955}$. - "The Trials of U.S.Commuters." Time, (January 18, 1960), 74-78. - "Data Logging Locates Lost Busess." Control Engineer, (June, 1958), 125.
"How Computerw Can Simplify Bus Scheduling。" Fleet owner, (October, 1957), 322.
"What Will Transportation Be Ioike Tem Years In The Future." Bus Transportation, (January, 1956). 28-31.

APPENDIX A

PROGRAM LISTING

Section I

A. Straight runs are developed by knowing the pull-out times and pull-in times of all the schedule numbers on a route.

OUTR4 MPY WORD5
SRD 0001
STL XI
RAU Wll
SUP W10
SUP X1
BMI OUTR5 OUTR3
1
OUTR1 AXA 0001
LDD 8005
STD 9015
IDD 9006
STD 9016
LDD 9007
STD 901 \%
LDD W12
STD 9018
RAU WORDI
AUP WORDE
STU 9019
PCH 9015
LDD W12
STD 9007 AGAIN
1
OUTR3 AXA 0001
LDD 8005
STD 9015
LDD 9006
STD 9016
LDD 9007
STD 9017
LDD W18
STD 9018
RAU W18
SUP 9007
AUP WORDE
STU 9019
PCH 9015
InD W12
STD 9007 AGAIN
1

OUTR4	MPY	WORD5	
	SRD	0001	
	STL	XI	
	RAU	W11	
	SUP	W10	
	SUP	X1	
	BMI	OUTR5	OUTR3
OUTR1	A XA	0001	
	LDD	8005	
	STD	9015	
	LDD	9006	
	STD	9016	
	LDD	9007	
	STD	9017	
	EDD	W12	
	STD	9018	
	RAU	WORD1	
	AUP	WORDE	
	STY	9019	
	PCH	9015	
	LDD	W12	
	STD	9007	AGAIN
OUTR3	AXA	0001	
	LDD	8005	
	STD	9015	
	L.DD	9006	
	STD	9016	
	LDD	9007	
	STD	9017	
	LDD	W12	
	STD	9018	
	RAJ	W12	
	SUP	9007	
	AUP	WORDE	
	STU	9019	
	PCH	9015	
	IDD	W12	
	STD	9007	AGAIN
OUTR5	AXA	0001	
	LDD	8005	
	STD	9015	
	LDD	9006	
	STD	9016	
	LDD	9007	
	STD	9017	
	LDD	W10	
	STD	9018	
	RAU	W10	

		SUP	9007	
		AUP	WORD2	
		STU	9019	
		PCH	9015	
		LDD	W10	
		STD	9007	AGAIN
1	OUT80			
		SXB	0001	
		RAU	9008	
		SUP	WORD1	
		STU	Wll	
		LDD	W11	
		TLU	0000	
		SRT	0004	
		RAC	8002	
		LDD	6000	
		STD	W12	
		SXC	0001	
		LDD	6000	
		STD	W10	
1				
		RAU	W12	
		SUP	W11	
		STU	X3	
		NZU	OUTR6	OUTR7
	OUTR6	RAU	W11	
		SUP	W10	
		SUP	WORD 4	
		BMI	OUTR9	OUTR8
	OUTR8	MPY	WORD5	
		SRD	0001	
		STL	X 4	
		RAU	$\times 4$	
		SUP	X3	
		BMI	OUTR9	OUTRO
	OUTR7	AXA	0001	
		LDD	8005	
		STD	9015	
		LDD	9006	
		STD	9016	
		LDD	W12	
		STD	9017	
		LDD	9008	
		STD	9018	
		RAU	WORD1	
		AUP	WORD2	
		STU	9019	
		PCH	9015	
		LDD	W12	
		STD	9008	AGAIN
1				
	OfTR9	AXA	0001	

Section I

Bo An intermediate giep is mecessary to change the format by whleh pieces of work are panched out
(Section I A), to the appropriate form needed
as input data for section II。

START	RAA	0000	
	RAC	0009	
	RCD	9001	
	TSDD	9001.	
	RAB	8001	READ
READ	HGD	9006	
	SXB	0001	
	NZB	OUT10	OUT11
0 OT10	AXA	0002	
	SXA	0008	
	NZA	0\%Wde	OWT13
OUM12	AXA	0008	
	RAL	9008	
	STW	0004	
	Al0	9009	
	STL	9020	C
	SXC	0001	
	RAL	9006	
	STM	0004	
	ALO	9007	
	STL	9010	0
	SXC	0001	READ
O『TM 13	AXA	0008	00 TL 4
0vT1 4	RAT	9008	
	SILT?	0004	
	ALO	9009	
	STL	9010	C
	SxC	0001	
	RAL	8005	
	SITL	0005	
	ALO	9006	
	SLIT	0004	
	ALO	9007	
	STM	9010	C
	RAA	0000	PUNGH
OWTy 1	AXA	0002	OUT14
PUNGH	PGI	9010	c
	Rac	0009	READ

Section II
Split runs are constructed by combining pieces of work.

		REG	P0100	0200
1	BEGIN	RAA	0000	
		RAE	1000	START
	START	RCD	9002	
		SETI	9002	
		SIB	P0001 A	
		RAL	9002	
		STT	0001	
		AXA	8003	
		RAU	NTMB	
		SXA	8003	
		NZA	OUTI	OUTz
	OUT1	AXA	8003	START
1	0072	RA才	8005	
		SWy	INDEX	OUT3
	OUT3	RAL	P0001 A	
		2JZE	Oum4	OUT5
	OUT5	AXA	0002	
		IDD	NOMB	
		SXA	8001	
		NZA	O314	START
	0u96	ITi	NUMB	
		AXA	8001	O4T2
1				
	079\% 4	SITP	0001	
		RAL	8002	
		SLT	0005	
		Squt	9005	
		RAL	8002	
		SETT	0004	
		STET	9006	
		RAL	P0002 A	
		SIT	0001	
		RAL	8002	
		SITP	0005	
		SIM	9007	
		Raid	8008	
		SLT	0004	
		STM	9008	REPET

1

1

REPET	AXA	0002	BACK
	I,DD	NUMB	
	SXA	8001	
	NZA	0897	
0 OTT	$\underline{I D D}$	NUMB	
	AXA	8001	
	RAI	P0001 A	REPET
	NZE	Oणु\%	
OUTS	SLem	0001	
	RAL	8002	
	SLTM	0005	
	STHT	9015	
	RAI	8002	
		0004	
	STPU	9016	
	RAI	P0002 A	
	SLT	0001	
	RAL	8002	
	SLIT	0005	
	STH	9017	
	RAL	8002	
	STMT	0004	
	STE	9018	
	RATJ	9016	
	Sep	9006	
	$\mathbb{N Z}$	OTM9	REPET
OUT9	BMIL	RVERS	OWT10
0010	RA	9017	
	STP	9006	
	STP	SPRED	
	NZ	OUT1 1	900N1
OUM11	BMI	GOONI	REPET
COON]	RAD	9016	
	SUP	9007	
	BMI	REPET	OUTl2
Ommic	RAU	9008	
	AUP	9018	
	STP	WORD1	
	NZW	OTTP 13	Prxacm
OUT13	BMI	REPET	OUT] 4
OUT1 4	AUP	WORDI	
	SUP	HORD3	
	NZU	OUTH 4	PUNCH
OUT15	BMI	PUNCH	REPET

	PUNCH	AXB	0001	
		LDD	8006	
		STD	9004	
		STD	9014	
		RAU	9008	
		AUP	9018	
		AUP	WORD2	
		AUP	WORD2	
		STU	9009	
		PGH	9004	
		STU	9019	
		PGE	9014	
		RATI	8002	
		STL	P0001 A	
		STR	P0002 A	BACK
1	BACK	RA]	INDEX	
		RAA.	8003	
		AXA	0002	
		RAT	8005	
		STU	INDEX	
		IDD	NUMB	
		SXA	8001	
		MZU	OU118	START
	04118	LDD	NQMB	
		AXA	8001	OUT3
1				
	RVERS	RAU	9007	
		SUP	9016	
		SUS	SPRED	
		$\mathbb{N W}$	OUTC	GOON2
	00127	BMI	GOONE	REPET
	G00N2	RATE	9006	
		S ${ }_{\text {S }} \mathrm{P}$	9017	
		BMI	RWPET	OTT12
1	WORDS			
	SPRED			1242
	WORDI			766
	WORD2			17
	WORD3	$\mathbb{N O P}$	0000	0866
	MTM			20

Section III

Split runs are constructed by breaking straight runs, Section I - A_{s} and combining theis pieces with those pleces of work that were not scheduled in Section II。

1				
		B10	1500	1600
		BLR	0000	0050
		REG	P0100	0199
		REC	80200	0299
1	STRAT			
		RCD	9002	
		IDD	9002	
		STD	NUMBR	
		RAA	0000	
		RAB	0000	
		RGD	9002	
		LDD	9002	
		AXB	8001	OUTO
	Ourc	RCD	9002	
		SEF	9002	
		SIB	P0001 A	
		RAL	9002	
		SLTM	0001	
		AXA	8003	
		RAU	MUMBR	
		SXA	8003	
		WZA	OUT1	OUT2
	0uT1.	AXA	8003	OvTO
1				
	OuTe	RGD	9002	
		LDD	9002	
		STx	PIEGE	READ
1	READ			
		RCD	9051	
		RAC	0000	
		RAU	9053	
		STTV	6000	
		AXC	0001	
		AUP	9056	LOORI
	L00P1	STE	6000	
		\$UP	9054	

		BMI	GOON1	CONT1
	$\begin{aligned} & \text { G00N1 } \\ & \text { GOON2 } \end{aligned}$	NZU	GOON2	CONT1
		AUP	9054	
		AUP	9057	
		AXC	0001	
		STU	6000	
		SUP	9054	
		BMI	GOON3	CONT1
	GOON3 GOON4	NZU	GOON4	CONT1
		AUP	9054	
		AUP	9058	
		AXC	0001	LOOP1
	CONT1	AXC	0001	
		LDD	NINE	
		STD	6000	
1		RAU	9053	
		AUP	PIECE	
		STU	W11	
		LDD	Wll	
		TLU	0000	
		SRT	0004	
		RAC	8002	
		LDD	6000	
		STD	W12	
		LDD	9051	
		STD	9013	
		STD	9033	
		LDD	9052	
		STD	9015	
		STD	9035	
		LDD	9053	
		STD	9016	
		LDD	W12	
		STD	9017	
		STD	9036	
		LDD	9054	
		STD	9037	
		RAU	9017	
		SUP	9016	
		STU	9018	
		RAU	9037	
		SUP	9036	
		STU	9038	OUT3
1	OUT3	RAA	0000	OUT40
	OUT40	RAL	P0001 A	
		NZE	0UT6	OUT4
	OUT4	AXA	0002	
		LDD	NUMBR	
		SXA	8001	

		NZA.	OUT7	READ
	OUT7	LDD	NUMBR	
		AXA	8001	OUT40
	OUT6	SLT	0001	
		RAL	8002	
		SLT	0005	
		STU	9025	
		RAL	8002	
		SLT	0004	
		STU	9026	
		RAL	P0002	
		SLT	0001	
		RAL	8002	
		SLT	0005	
		STU	9027	
		RAL	8002	
		SLT	0004	
		STU	9028	
1				
		RAU	9026	
		SUP	9016	
		NZU	OUT9	OUT4
	OUT9	BMI	RVERS	OUT10
1	OUT10	RAU	9027	
		SUP	9016	
		SUP	SPRED	
		AZU	OUT11	G00N5
	OUT11	BMI	GOON5	OUT4
1	GOON5	RAU	9026	
		SUP	9017	
		BMI	OUT4	OUT12
1				
	OUT12	RAU	9018	
		AUP	9028	
		SUP	WORD1	
		NZU	OUT13	READY
	OUT13	BMI	OUT4	OUT14
	OUT14	AUP	WORD1	
		SUP	WORD3	
		NZU	OUT15	READY
	00115	BMI	READY	OUT4
1				
	READY	RAU	P0001	
		STU	R0001	
		STL	P0001	
		RAU	P0002	
		STU	R0002	
		STL	P0002	

		$\begin{aligned} & \text { RAU } \\ & \text { STU } \end{aligned}$	$\begin{array}{r} 8005 \\ \text { AAAAA } \end{array}$	OUT50
	OUT50	RAA	0000	0 OT51
1	$0 \mathrm{OTl7}$	AXA	0002	
		LDD	NUMBR	
		SXA	8001	
		NZA	OUT16	OUT21
	OUT16	LDD	NUMBR	
		AXA	8001	OUT51
	OUT51	RAL	P0001 A	
		NZE	OUT18	OUT17
	OUT18	SLT	0001	
		RAL	8002	
		SLT	0005	
		STU	9045	
		RAL	8002	
		SLT	0004	
		STU	9046	
		RAL	P0002 A	
		SLT	0001	
		RAL	8002	
		SLT	0005	
		STU	9047	
		RAL	8002	
		SLT	0004	
		STU	9048	
1				
		RAU	9046	
		SUP	9036	
		NZU	OUT22	OUT17
	OUT22	BMI	OUT23	OUT24
1				
	OUT24	RAU SUP	$\begin{aligned} & 9047 \\ & 9036 \end{aligned}$	
		SUP	9036 SPRED	
		NZU	OUT25	GOON6
	OUT25	BMI	GOON6	OUT17
1				
	GOON6	RAU	9046	
		SUP	9037	
		BMI	0 OT17	0UT26
1	OUT26	RAU	9038	
		AUP	9048	
		SUP	WORD1	
		NZU	OUT27	PUNCH
	OUT27	BMI	OUT17	OUT28
	0UT28	AUP	WORD1	
		SUP	WORD3	
		NZU	OUT29	PUNCH

	OUT29	BMI	PUNCH	OUT17
1	PUNCH	RAU	8002	
		STL	P0001 A	
		STL	P0002 A	
		RAU	9018	
		AUP	9028	
		AUP	WORD2	
		AUP	WORD2	
		STU	9019	
		STU	9029	
		RAU	9038	
		AUP	9048	
		AUP	WORD2	
		AUP	WORD2	
		STU	9039	
		STU	9049	
		AXB	0001	
		RAU	8006	
		STU	9014	
		PCH	9013	
		STU	9024	
		PCH	9023	
		A XB	0001	
		RAU	8006	
		STU	9034	
		PCH	9033	
		STU	9044	
		PCH	9043	OUT21
1	OUT21			
		RAU	AAAAA	
		RAU	R0001 A	
		STU	P0001 A	
		RAU	R0002 A	
		STU	P0002 A	0um4
1	RVERS			
	RVERS	SUP	$\begin{aligned} & 9017 \\ & 9026 \end{aligned}$	
		SUP	SPRED	
		NZU	OUT30	OUT31
	OUT30	BMI	OUT31	OUT4
	OUT31	RAU	9016	
		SUP	9027	
		BMI	OUT4	OUT12
1	OUT23			
	OUT23	RAU	9037	
		SUP	9046	
		SUP	SPRED	
		NZU	OUT32	OUT33
	OUT32	BMI	OUT33	OUT17

	OUT33	RAU	9036	
		SUP	9047	
		BMI	OUT17	OUT26
	WORDS			
	NINE	99	9999	9999
	WORD1			766
	WORD2			17
	WORD3			866
	SPRED			1242

Section IV

Finding the total cost of a schedule.

```
C 0000 0
    10 T=0.00
    2 O DIMENSION A(150),P(150),S(150)
    2 1,C(150)
    O READ,N,H
    40 DO 28 I=1,N
    50 READ,A(I),P(I),S(I)
            IF (A(I)+P(I)*(.17)-8.0)6,6,11
    60 X=(S(I)-12.42)
            IF(X)7,7,9
    70C(I)=(8.0)*H
    80GO TO 25
    90C(I)=(8.0+(.5)*X)*H
    10 0 GO TO 25
    11 0 CONTINUE
            IF(A}(I)-8.67)12,12,1
    120 X=(S S I )-12.42)
            IF(x) 13,13,15
    130C(I)=(A(I)+P(I)*(.17))*H
    14 0 GO TO 25
    150 C(I)=(A(I)+P(I)*(.17)+(.5)*X)
    15 1 *H
    16 0 G0 T0 25
    170 X=(S(I)-12.42)
    180C(I)=((1.5)*(A(I)+P(I)*(.17))
    18 1-4.5)*H
    19 0 GO TO 25
    20 0 B = { 8.67+P(I)*(.17) +(.5)*X)*H
    210 D = ((1.5)*(A(I) +P(I)*(.17))
    21 1 -4.5)*H
            IF (B-D)22,22,24
    220 C(I)=D
    230 GO TO 25
    240 C(I)=B
    250 PUNCH,C(I),A(I),P(I),S(I)
    260 T=T+C(I)
    27.0 PUNCH,T
    28 O CONTINUE
END
```


APPENDIX B

LABOR MANAGEMENT CONTRACT ON SCHEDULING RESTRICTIONS

The following is a sample of the restrictions that are generally found in a Labor Management Contract that govern the operator assignment in transit operations. As the same labor union represents the operators in most transit companies, these clauses should be nearly identical in most contracts.

1. A straight run is defined as a run so constructed as to be composed of continuous hours of pay.
2. A split run is defined as a run so constructed as to be composed of two or more pleces of work with an unpaid interval or intervals between such pieces of work.
3. All regularly assigned runs shall pay not less than eight (8) hours excluding preparatory time.
4. Straight runs as herein defined shall be not less than thirty five percent (35\%) of all regularly assigned runs. The company agrees that no schedule will be broken into pieces from which a straight run could be created unless at least two combination or split runs can be made in piece of a straight run.
5. Split runs as herein defined may be constructed so as to contain a spread of hours in excess of twelve (12) hours and twenty-five (25) minutes. Ten percent (10\%) of all regularly assigned runs may be constructed so as to contain a spread of hours in excess of thirteen (13) hours and twenty five (25) minutes; provided, however, that intervals of fifteen (15) minutes or less shall be paid for and considered time worked, and providing further that each piece of work used in constructing a split run shall pay at least (2) hours pay time, and providing further that time in excess of the spread set forth above shall be paid for at one-half ($1 / 2$) of the straight time hourly rate of pay.
6. Split runs shall not be constructed so as to contain in excess of two (2) unpaid intervals between pieces of work.
7. All motor coach operators on pull-outs or reliefs shall be required to show up at the Dispatcher's Office or relief point ten (10) minutes before their run starts.
8. All motor coach operators shall be required to deliver their respective buses to the garage, but shall not be required to wait for the gassing of said buses but shall be relieved of all duties in connection with both the gassing and the parking of said buses.
9. If A.M. or P.M. motor coach operators are called for extra work during the day, they will not be required to take their regular runs until they have had eight (8) hours off duty, except in cases of emergency.
10. The extra board shall carry sufficient employees, both white and colored, to adequately take care of the employees; leaves of absence, vacations, and sickness. The extra board shall work first-up and first out, and shall rotate on eight (8) hours received in any one (l) day. All regular and split runs shall be caught off the board according to number. If extra employees sleep in, they shall be placed at the bottom of the extra board. All extra or special runs will be protected by the extra board. If any extra motor coach operator catches a run due to a change of schedule, they will hold that run until the shift is completed.
11. If an extra motor coach operator is run around only that motor coach operator shall be paid for any loss of time due to the run around. If used on another piece of work then the pay time of this piece of work shall be used in making up the run around time.
12. If the extra board operator works a night shift, he shall not be required to work the following day without having had eight (8) hours off duty, except in cases of emergency.
13. All motor coach operators shall receive ten (10) minutes preparatory time for each piece of work. Preparatory time as above provided for, or any part thereof, may be included within, and made a part of, any minimum guarantee of pay time provided for in this agreement.
14. All motor coach operators who are assigned to extra work shall receive a minimum of two and one-half ($2 \frac{1}{2}$) hours of pay time at their regular straight time hourly rate of pay.
15. An extra motor coach operator working a regular run shall receive the same pay time, including overtime, that the regular assigned motor coach operator of such run would have received.
16. Extra board motor coach operators required to report for duty to protect the board, shall be paid until released or given a work assigmment. If the extra man receives no other work assignment during the day in which he performs the protecting assignment or assignments, he shall receive not less than two and one-half ($2 \frac{1}{2}$) hours pay time at his regular straight time hourly rate of pay for each assignment.

17 In the event an operator performs a protecting assignment, and in addition thereto performs other work, he shall be paid for such protecting time at his regular straight time hourly rate of pay, within
a minimum of two and one-half ($2 \frac{1}{2}$) hours pay time, and without including such protecting time in the computation of overtime, if any, for that work day.
18. Regular motor coach operators shall be paid at the rate of one and one-half ($1 \frac{1}{2}$) times their straight time hourly rate of pay for all work they are required to perform in any one (1) day in excess of their regularly scheduled run, or eight (8) hours and forty (40) minutes, whichever is the lesser.
19. All motor coach operators who are assigned to extra work on their days off shall receive a minImum of two and one-half ($2 \frac{1}{2}$) hours pay at the overtime rates.
20. All regular motor coach operators who work extra runs, trippers, charters, specials, etc., in addition to their regular run shall be paid a minimum of two and one-half ($2 \frac{1}{2}$) hours or overtime whichever is the greater.
21. No time shall be paid for a rate greater than one and one-half ($1 \frac{1}{2}$) times the straight time hourly rate of pay.

APPENDIX C
THE USAGE OF THE DIGITAL COMPUTER FOR DETERMINATION OF PASSENGER LOAD AND VEHICLE REQUIREMENTS AND ESTABLISHMENT OF HEADWAYS

Previous research has been done in these two areas of scheduling. One of the earliest efforts in this field is the research done by the Philadelphia Transportation Company with the cooperation of I.B.M. (International Business Machines Corporation). For many years Philadelphia Transportation Company has recognized the need for increased flexibility in schedule preparation in order to more rapidly meet changing service requirements. In addition, Philadelphia Transportation Company wanted to prepare the best possible schedule with a minimum preparation cost. In order to accomplish these objectives, Philadelphia Transportation Company began seriously investigation the feasibility of automated transit scheduling. After some study, an automatic computer scheduling system was developed and has now been integrated into the operations.

Transit companies operate in the face of changing conditions and changing passenger needs. In addition to the
unexpected changes, a given route must be prepared for:

1. Normal working hours
2. Morning and evening rush hours
3. School days
4. Holidays
5. Shopping nights

In order to meet these conditions, schedules must be constantly revised. However, manual methods, which are used throughout most of the transit industry have failed to provide:

1. Optimum scheduling at minimum costs, and
2. Flexibility in meeting changing service requirements. Because of the inability of most companies to economically perform the vast amount of detailed work required within the limited time available, a complete schedule change is only effected after a prolonged period of time. Schedule changes deserving immediate action, such as shopping hours being extended a certain night, cannot be instituted, by manual methods in a short period of time.

Philadelphia Transportation Company has proven that by using I.B.M. 650, it is possible in the limited time between any schedule change to produce more schedules at less cost per schedule, and to make the following possible:

1. Rewriting of all schedules requiring change when necessary.
2. Considerable savings in time when making a schedule change. This means substantial dollar savings
because the service on a route may be altered to meet actual requirements at an earlier date.
3. Direct and assured posting accuracy through the use of the I.B.M 407 Accounting Machine.
4. Reduction of clerical work and dollar savings.
5. Estimating of costs involving re-routing, extending, or consolidation of routes can be accomplished with greater speed and economy.
6. Peak loads for schedule changes are greatly reduced.
7. Clerical drudgery taken out of scheduling permitting the scheduler more time to devote to creative thinking and planning.

The procedure used by the Philadelphia Transportation Company to prepare schedules is organized into two phases. Phase I consists of three processing steps and Phase II consists of five processing steps. Each schedule under construction is processed in this manner.

Phase I

Phase II

A complete explanation of the system maybe obtained from the I,B.M. Library, "Transit. Scheduling on the I.B.M. 650 at Philadelphia Transportation Company," (A general information manual).

APPENDIX D
 SPACING OF BUSES ON A ROUTE OR

HEADWAYS

The ideal situation is an equal spacing of buses on each route. In general, this is difficult to achieve because most routes have branches attached to them, each branch requiring a different number of buses. An acceptable compromise solution is usually obtained and requires a considerable length of time and experience on the part of the scheduler.

In an article published in Management Science, ${ }^{l}$ the authors developed an equation to find an efficient schedule.

A bus schedule is called efficient if it minimizes the amount of man hours spent in waiting per hour by the passengers throughout the network.

In developing this equation the variation of the number of waiting passengers with time has been considered. However, the rate of passengers arriving at a certain stop was considered to be constant. This assumption is believed
${ }^{1} J . W . F o u l k e s, W$. Prager, and W. H. Warner, "On Bus Schedules," Management Science, I, p. 41.
to be realistic as long as the intervals between successive buses are sufficiently small.

This equation is associated with each branch in a route, resulting in a set of simultaneous equations. If the number of simultaneous equations exceeds three, it will be more desirable the usage of the digital computer for their solution. Several programs for simultaneous equations' solutions are already developed. It is suggested the use of the one developed by J. H. Schenck. ${ }^{2}$
${ }^{2}$ J. H. Schenck, Simultaneous Equations Solutions, 650 Program Library File Number 5.2.019 (International Business Machines Corporation).

VITA

Samy E. G. Elias
Candidate for the Degree of
Doctor of Philosophy

Thesis: A DIGITAL COMPUTER SOLUTION TO THE TRANSIT OPERATOR ASSIGNMENT PROBLEM

Major Field: Engineering
Biographical:
Personal Data: Born at Cairo, Egypt, U.A.R., June 28, 1930, the son of Mr. and Mrs. E. G. Elias

Education: Attended grade school at the English Mission College at Cairo, Egypt; graduated from Asyoit High School in 1949 granted the Bachelor of Science degree from Cairo, Egypt, Cairo University with a major in Aeronautical Engineering in May 1955; granted the Master of Science degree from the x, Agricultural and Mechanical College of Texas with a major in Aeronautical Engineering in January, 1958; completed requirements for the Doctor of Philosophy degree in August, 1960.

Professional experience: During summers 1952-1953 and 1954, worked at the "Mis-Air" Airlines Workshops, Cairo, Egypt; the 13 months period from July 1955 through August 1956 were spent in various engineering capacities, mainly as a maintenance engineer, in Factory No. 18 Cairo, Egypt, U.A.R.; January 1957 through January 1958 had a graduate teaching assistantship in the Mathematics Department at the Agricultural and Mechanical College of Texas, and during the period from February 1958 through August 1960 worked as a graduate assistant in the School of Industrial Engineering and Management at the Oklahoma State University. A member of Alpha Pi Mu Honorary Society for industrial engineers and the student chapter of the American Institute of Industrial Engineers.

[^0]: $1_{\text {The Editors }}$ of Fortune, The Exploding Metropolis, (New York, 1957), p. 34.

[^1]: ${ }^{1}$ Charles A 。Taff, $\mathrm{Ph}_{8} \mathrm{D}$, Commercial Motor Transportation (Illinois, 1955), p. 638.
 ${ }^{2}$ Ibid.

[^2]: 3y. T. Harman, Scheduling Mass Transportation Vehicles Electronically, (February 20, 1958), A Speech to the American Marketing Association: "A Mechanical device has been patented, which will improve on the manual traffic checking. This portable recorder produces, on tape, time of day and a passenger on-and-off count for each vehicle operated; also totals the accumulation of riders at designated locations. These recordings on the tapes will be fed directly from the vehicle checked to an electronic interpreter.

[^3]: ${ }^{1}$ Franeis Bello, "The War of the Computers," Fortune, October, 1955. p. 130.

[^4]: 2I. J. Seligsohn, Using Computer Services in Small Business, Management Aids for Small Manufacturers, November, 1959, p. 3.

[^5]: 75

