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I INTRODUCTION

This work cn & gemeralized derivative was motivated by the absence
of strong technigues for numerical differentiation. It is clear that the
process of differentiation is ome which inherently magnifies errors
vhether they are errors in empirical data or interpolation errors. One
technique for numerical differentiation of a fumction, £, is to fit ¢
with a polynomial and then differentiate the polymomial. However, & small
fitting error may not at all reflect a larger error in a derivative. Hence,
it seems effective to define a derivative in terms of an integral, vhich
is fundamentally & smoothing process and which, in the case of a finite
approximation, give an approximate derivative of f wvhich depends on the
nature of £ on an entire interval instead of Just at the end points. Such
an integral might well be put in a form to vhich one could apply a standard
numerical integration techmique. It also seems likely that in specific
applications one could establish criteris, perhaps statistical, to de-
termine & "best" interval for the approximation. A study of such criteria
seems to be a logical and possibly frultful sequel to this paper.

Some work has been done on generalized derivatives and the term has
been used to describe several concepts in addition to the one described
here. For example, Kassimatis [5] defines the n'the generalized Riemann
derivative of a measurable fumction, f, at x by

n:r(;) = lin (a)"i (-1)“4(’;)r(x+m) forh>0, n=1, 2, + « .

In the case of



D%¢(x) = im (20) [ 2(x-2n) - 26(x) + £(xs2n)]
this is the same as Hobson's [4] definition of the generalized second de-
rivative. These definitions provide generalized derivatives for some
functions which do not have derivatives in the ordinary sense.

The n'th Peano derivative [3] of a continmucus function, f, is 8 if
rmhwwr(cm)-aoa-;lha-. v b +_'_‘§_n
Un e(nn® = o '

Iaurent Schwartz has proposed the idea of a distribution as a gener-

+ €(h)h® vhere

alization cn the idea of & point function. His distribution is a functional
defined on & set of testing functions which have the properties that each
has derivatives of all orders which, as well as the testing functicn itself,
venishes at the ends of the interval [a,b]. Then each functicn, f, deter-
mines the functicnal

b
P(b) = I £(x)0(x)ax

vhere § ranges over the set of testing fumctioms. Integration by parts
shows that

b b
-F(Q') = [ £ (x)(x)x = = [ £(x)Q" (x)ax

and we can define F'(§) = -F(§'). This is a generalized derivative in the
sense that it is the derivative of a distribution which is a generaliza-
tion on the idea of a point function. However, the approach of Schvartz
is not amenable to smoothing noisy data by numerical approximaticn.

In this paper we use the following procedure for defining a gener-
alized derivative. If a fumction, £, is fit on some interval [x-h,x+h]
by & straight line in the sense that

x+h

[£(¢) - at - b)7as
h



is a minimum, we obtain the line
h h
y' = ig [h !ﬂxﬂhtsx‘-x) +-in- j; ffxﬁ)de-

We define the generalized derivative

pe(x) = M ;:5 j; ?f(.xﬂ )a

uthtmumummupnm}g%l?(xﬂm-!(x)
also exists. Conditions necessary for the convergence of Df are much
veaker than for the existence of the ordinary derivative and, in fact,
Df(x) = £'(x) if the latter exists.

 One can stete some interesting theorems vhich have analogles in the
theory of ordinary derivatives. For example, we show that if $(x) exists,
then D :(gm = ¥(x). Ve can determine some conditions under vhich
D(2(x)a(x)] = F(x)Dg(x) + Ex)DL(x). In sddition, there ave mean value
thném;smth:}tofhcmﬁm-m. We can also discuss convergence
of Df in terms of right and left-hand generalized derivatives and integral
means which are defined to be, as the name implies, the parameters of the
limiting lines of best fit on the intervals to the right and left of any
point. These are designated by D'f,07f, ¥ and . Ve show, for example,
that wder some conditions M{x)-&%{ﬁ‘x)-ﬁ‘x)]ﬂn%n&cﬂpﬁn
indicate integral means over s finite interval.

Finally, in a manner similar to that used to develop the generalized
derivative, we may define a generalized n'th derivative. To facllitate
this development we generalize the Legendre polynomials to the interval
[xeh,x+h] and examine the best fit n'th degree polynomial in the limit as
h approaches zerc, Ve are able to state, in particular, some relationships
between this generalized n'th derivative and the generalized first deriva=-
tive iterated n times.



II. A FIRST ORDER GENERALIZED DERIVATIVE

Consider a function f£(x) defined on the real mumbers and Lebesgue
squere integrable on the imberval [x -h,x +i]. We may sssociate with
the function at the point x & straight line which, over the interval
[x,*h,x +a] is the line of best fit by the least square criterion. That
is, we know that it is possible to find a wnique pair a,b such that

x+h
(2] = L [#(x) =a(ax ) = b)%x

is a minimm,. unmamumx-xo+;,wom
the simpler expression

h
(=] = L [2(x +¢) - ot = v)° at.

Ve take partial derivatives with respect to & and b and set them equal to

Zero.
h
[.[ﬂxom-ss-bm-o
h
[ 1etx) = ot < vlsat = o,

These equations are linear ix a and b and can be written

ul;:zu +5L:dl-l:llf(!oﬂ)dl

GI;:H +'h[:dt -‘&hﬂxoﬂMo

integrating and solving for a and b, we obtain



3 h
%- -Lcr(xuﬂm

or 8= éﬁtﬂx"ﬂ Jag.
2hd = L;(xo-btm

h
or b= %L‘(zoﬂ)dh'

We had a familiar alternative approach available to us for finding the
best £it line. Ve ean comsider the fumctdons 1, (x-x ), (+x)% ...,
(Mo)", . « » to e the basis elements of the space of all functions
iebesgue square W’buon[:b-rh, ‘a"“" If ve define an inmer product
in the following manner

(£8] = L:t‘(x}s(x}ﬂx

h
- [h (x4t )a(x 4 )as,

the Hilbert axioms arve satisfied and the space is & Hilbert space. Comsider
nov an arbitrary element, f, of the space and the subspace spanned by the
vectors 1, and x~x, It is vell known that the projection of £ onto the
subspace is precisely that linear combinaticn of the base vectors,
a(xx ) + b, vhich mininizes the distance to £, The distance in tems of
the Hilbert norms is given by
3 h 2 ‘

(2(x) = ez = by ) = aliomy) = 1" = | [ Lotxgor) - o8 < vifat]
Thus, the distance from £ to the subspace is the least square error exw
. pression. The eriterion by vhich we determine a and b follovs as a result
of the fact that the difference between f and its projection on the subspace



is orthogonal to every element in the subspace, in particular the base
vectors. That is,

h
[ et < ot - vlaas = 0

n
[ [t(:o-ri) - &t - blag = 0.
Lh

Thus we arrive at the same set of linear equations in a and b.

Several things are immediately clcar. Mnmiur-‘nyx?m
on a general interval. Furthermore, we have a diiferent space for each
x, and b, end as & result, & different best fit lime. Our objective is
to treat

o = 3 ["tetx o)

and b= g ‘[‘:(xaﬂ)dl

as operators on a space of functions and so we will change our designation
of the variables by dropping the subscript. It is still necessary to
distinguish between the independent variable in the coefficients, & and b,
and in the btase elements of the subspace. We will prime the latter.
Hence, for a given x and h the best it line is

y = [h (e Yo (b + i[; st at.

We will also use the following notation:

h x+h
200 = =5 [ geanias = 5 [ Gamnisceres

%,(x) = 5 [}cmm -2 L:'?um

and when we wish to emphasize the operator aspect of the latter, i.e.,



mmm&mtmtw nvuzmrh;mrhr-!h.
Whenever ve wish to use the derivative of £(x), we will write £'(x) or
*

%JM, !h(:)ummwmouuwmme
sbout x. A great deal has been published on the subject of integral
means [6] and a few of the theovems below differ from kmown work ocnly in
notation or point of view.

mmmm«mmmgnummg
is absolutely comtimuous. If, for all p such that <h {p<h, f(x+p) is
bounded, that is, there exist m and M such that m < f(x4p) <M, then by the
first mean velue theorem

3 (x) = ﬁ‘[:t(w)ao = K, where m <K< M.

If £ is conbtinuous on this interval, then there exists a p, such that
“h¢p<h and 3 (x) = £(x+p). From these properties we obtain the followe
ing.

Theorem I: If £(x4p)> 0 for «h<p<h and £ is integrable on this
interval, then %, (x)>0.

Corollavy: If £(x+p)> glx+p) for «h<p<h and £ and g are integrable
on this interval, then 3 (x)> &(x).

wwnnmmgmmumwu
linearity associated with its operstor chavacter. ihemever we use T, &s
an operator, we need require not only integrability, which will be assuued
hereafter, but if the domain of the operator is a set of finctions defined,
for example, on & closed interval, [a,b], ve must devise some method of
taking care of what happens at the end of the imterval. Ome possidility
is to ask that the functions operated on by T, be defined and integrable



on the interval [~h+a,b+h] in order that the result of the operation be
defined on [a,b], or ve might assume that all the functions are identically
zero outside the interval. In practice it might be more comvenient to
handle this difficulty in some other way, but at least in the above two
cases we may show that the cperator is linear and continuous in the sense
thnt';g_rn-gmn_m!hth !hsm'emuuintmorn
sup norm.

nhtmamdmm“. It is absolutely con=
tmmnham;mmm,mmwummm
appropriate set of fumctions. If, as bvefore, m < £(x+£) <M in the interval
in question, we obtain by the mean value theorem :

;éné-;slll‘f(xﬂm S
ey [esoias <= g

and adding

,éﬁr{mha]%%-

The following theorems establish an important relationship between
mmmmnhmmommmmaw. Ve know that if £'(x) > g'(x)
for all x in some interval, them f-g is monotone increasing in the interval.

Lemma 1: If £(x+f) is monotone increasing for -h <& <h, mnhr(x)m.

Proof: Suppose that f£{x+f) is monotone increasing for ~h <t <h. Then
wmum“mmmm.g'm&t-hsg'shm

By£(x) = 5 j:i'r(mm

- 3 o [t [
- £, o H,



- [halt(#h) - 2{xn)] - £2(2(xom) = 2(n)]

. -dg [2(x+n) = £(x-h)1[n" - £+2),
It is clear that (1) £(x+h) > £(x-h) because of the monotonicity of f, and
(2) %> §1° since ¢ is Mnterior to the interval and h is the end point.
Hence B, £(x) > 0.

Ve have now established the following theorem.

Theorem II: If £9(x+£)> g'(x+¢) for all ~h¢ £ <h, then D, £(x)> D, g(x).

Theorem IIT: If £'(x+4) hes & maximm end & mintmm on ~B<Esh,
then min £*(x+£)¢ D, £(x)< nax £9(x+¢).

Proof: Consider the line, g(x) = [max £'(x+t)]x + b. Obviously
g'(x48)3 £*(x4¢) in the interval. Then by the previous theorem
Bhg'(xpnhﬂxj. But g 15 a straight line and cperating on it with D,
yield simply its slope, D g(x) = max £(x+g). Hence, D, g(x)< max £'(x+t).
The proof for the other inequality is similar, : ;

Corollaxy: If £'(x+%) 1s continuous for «h < g<h, then there exists
a p such that ~h<p<h and nht(x) = £'(x4p).

It is clear that there is an intimate relationship between £'(x) and
B, (x) and elso between £(x) and T, (x). In fact, if #(x) hms & continuous
derivative, from the mean value theovenm discussed above, it is clear that
wmuhsf‘(x)-nhf(x)umuuwmwmmsnsmm
small h. Intmmmmhum}‘iﬁbht(x)-nf(x),mm?h(x)-?(x).
Ve see that under the conditions mentioned above Df(x) = £*(x). This is
an importent result, but the same result can be obtained wnder weaker
conditions,

Theorem IV: Iet £'(x) exist and £(x+f) be integrable cn scme interval
containing ¢ = 0, Then Df(x) = £*(x).

Proof: Differentiability implies that there exists a K such that for



every €> 0 there exists a ©>0 such that |£'] < & implies

lw-x<e

This is also true on some interval on which I is integrable. Then

'
1.6<W‘u< K+€,

292 € ) BV [2(x447) - 2(xeg?)] <28'%(K+ €)

By the mean value theorem, for h in the interval,
3 h h 3
4'93-- (_x-e) <[hu(m)¢l- Lu(_xam<%- fme).
and finally

H, L:rgmm K I«:.

A proof similar to that of theorem IV would suffice to show that if

£(x) is continmucus, them ¥(x) = £(x).
. heorem Vi xr‘l'(z)m, *&-DI 2(t)ag = T(x)
Proof: Ry definition

 [“eees = yam 2y L‘:‘ [”’itu)m

-mJg Lh PI?"’“‘]“
{[; 2R [“Hwada +[ ft [ Huafar)
i, [ o [Fooafe « [0 [“oraa)
"![ of [ swna

By hypothesis, P%‘Lhﬂ“w = ¥(x). Hence, for every ¢)O there exists

H—



a 0 such that O<E<h<® implies

[Fo ¥ PR e |3 [,

and

|3 [s! E L:“rcum] @ - Fapke,

The last two statements by the first wean value theorem.

leme 2: Suppose T exists on scme imbtervel comtaining x end for all
points, =, umm&g%{hﬂx'ﬂm-ggﬁf:r'(mm-?(x).
Then f is continuous &t x.

Proof: In the above interval there is a 50 for every €>0 such that
O<h<S implies

HESIRE S

(€

|§[hﬂmm - Fxex) l(e

vhere x+k+h is also in the interval. mmow(-g.
Then the folloving are true for O<h, and k<&'.

i[kr(mm - 'f(x)|<ea

k
{[ £(x+¢)ag - Flxek)|<E,

and F(x) - ?(x-l-k),<&.
In particular, ve may shov that

hu:ﬁ[:mm) - F(x)lat = o,



-’;Irrtm)-!(x)m-o

nro

&%\[?ﬂm) - I‘(_x)m = 0.

lemma 3t If £ is contimuous in some imterval and Df(x)> 0 for all x
in the interval, them f is momotome increasing. )

Proof: Since f is continuous, it is non-increasing on some interval
if it is non-increesing st all. But if there were some intervel in vhich
£ vere noneincreasing, mnhr(x)mmmmm.mm-m
x in the limit, |

Theorem VI: If T and Df exist in en interval, [x-h,x+h], and
:&fﬁﬁrﬂxm) - £(x')}at = 0 and DE(x') >0 for all x' in the imterval,
mn.t(x)m.

Proof: Clearly Df(x) = DE(x). But by lems 2, !(x)nm
Then the conclusion follows by lemme 3 and lemma 1.

Mm: 1f ¥ and Df exist in an interval [xeh,x+h] and if
P%L[ﬂx‘ﬂ) - ?(x')l af = 0 and -ur(x')ﬁu for all x' in the
mm-&nht(:)sx.

Proof: This follows immediately from theorem VI.

mvms If ¥ and Df exist in an interval, [x+h,xeh], and if
lin [.[r(x'a)-r(x')]u-ommummumm
mnhﬂx)-nf(m)m-mkmm-hck<h.

Proof: This follows imedistely from theorem VII.

Theorem IX: Iet F(x), Df(x), &(x) and Dg(x) exist and let

gﬁ&?ﬂm) . I't_x)l’u =0



thvo h

TP f [e(et) = E601%5 = o,

BlE(x)e(x)] = Hudbglx) + Bl=)DL{x). |

Prooft

e R e T COREOHECO R O

+ %{3&}3&@@3@) + é{:ﬁ)f{i‘i}@

6{1 E;l

g0t} - fwm@w) « E{x)lae

How
&’h “’é&

3
< “‘?"‘; ji&lm.m - B 1Pas f] liﬁ;(w?,) - g( )1 aﬁ}

. ph PR
=351 |a|mm~§} - Sl : =5 [leltst) - {,{)z%]

However, l %[ |&]£{xst) » i(x}} ﬁ%‘ < *-*;;[ if{eﬂg) - i:"‘(:&}} k.

Then Lim <% f,ii.fiwl - Hx))% = 0
_ ' ;B -l

LS 1)

and, henes, Yin =5 | 8l#(x8) - B)llglast) « Bx)lag = 0

and, Eﬁizf‘(:x} (x)l = ﬁxm@m & E%(K)ﬂfw)

£inel dmportent property of these operators ic that if
f&‘:g&g} s ‘”iﬁ-}«ﬁ)
E!f(}ﬁ & ”h@(h}n

It ie daw

ot everyviere for ~h Sp<hy then % i‘*’m} = T glx)

srecting to nobtes et operating with ii‘h is o sopthing



ik

process. I maps arbitzary integreble funchicns into conblnvous cues and

copbinuons funcbicns into diffeventiable cnes. Furthermore, g,? BEDS aXpde
nentinls into oxponentisls, sines into sines, and n'th degres polynomjals

inte ntth degries polynomials. Fov omumple,

(1)

{2} ?ﬁiﬁ - -%1 gin h gin :B:,
an . v%n‘

%

"'*.i LU X a5 J »’i o gy e i
(3) ”‘?ﬁj{ . w.~ IIIII ,,‘; {@..3’%“1:)«’ ﬂ*ﬁs)‘ }» Z l noxe GV@H; m

"%

% -g:zl ..*. " n"ag ?.3 & 4 Ao s
h?am = fﬂg {&‘36‘}‘13 ¥ (ﬁ“ﬁaé) [} X h ii 31 hz-ﬂ-é m'

Hote thet the Lirst term is "f‘. The rest is s polynomiel of degres n~% in

% and 1 0P el da ke  Honee,

n
z"“-;

z, Z_*_’@rfa s gﬁ‘ + olun)
120 ' fneil

o ‘ -

vhere pla,h) ic & polynomisl of degres ns2 in X sad B or n=1 in h.

g wilh n,ﬁ is sinidar Yo a differentiatbing process as might be
deduced fron the properiles already descelbed, I, maps oxponentisals into

exponentiols, sines into cosines, and n'th degree polyncpisls inlto n-l'st

degree polynomials. Tor exauple,

(1) Bhe = ih(ae ) - (h h)iré;

%3

B{hc:@s b+ sin hicos x,

s 5%‘

»

ﬂmﬁbg N ) ; 3 »
,““‘é"’ (nwzé*l)!fi’fuvfl’}é e Y

i
;‘ \,a""iw

3
L
"
0z

-y l:-
e
ek

é""l ':*cj i

n is even,

1

- "
% (n-r%:}wl?’(?é S

(52
,r
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¥ P, d A Rasdriy i n& v 2
¥ ‘%5 N »*:&:“‘ m!;w& ,,,(; s

¢ playh) 48 g polynondal of dogree w3 dn 2 end B oop el i B
swpepde 1i Lot £(x) = 1 for usy

= wk for 2>0, ond et k= 1,

%

Wi D, #{x) = O for n$-l

woEl ] dor ~1¢ Bl

& :

Pusrthermors, ;xﬁfcx;m & B This do the fmobion of valcs

wrdinayy dorbvebive.

=

T, ¥z} » o1 for uS -1

= 4 for u>de

Phis B2} w28 w 2] S «3$m <
iy ;
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& wl ?;Gx‘ x2 s
" 7 5 v

x for x<=1

7

for »L<x <k

i’(x}

i

= ey O X2 4.

Given in Table T arve sose additlonal propevties of

e operators Tn
avd D, which might be wseful, These fadl into two catopories, differens
tiation of ftfhi’ and T’%}f’-‘?’ asid itemtiw ‘@mmmcm; with Th aof Dh



TABIE
SOi ADDTITONAT FROPERTIES OF T, sud D

1. Z% P{mep) has o contipuous derdvative for ~ < p<h, then

LREO E:Thf* w)y ME(x) = & f;m;} for some w such thet -b <u Sh, and

::ti.mhf“t) = P Mw} Por the p above.

&, 1 Fiuep) boo a derivative for ail p such that «h <p<h, and

o€ {xen) S ¥ on this inberwal, then T FHx) = = é’

% ftx), m €, £{x) $H,

ol

Ly
-
b=t
By
¥

o

@

i
¥
L

16 comtizmous for +h<p<h, then T,2(x) 4s dafferentiabile
and, in ﬁnﬂﬁ, ’IC fa.@.) ® &i‘m&ﬂ w flaen)l.

o If £lmwp) heo s contiouous second derivative for all o such that
»h<p Sh,, then %ﬁ"h:&} = §'{xep) for come i vuch that ~h<ush, apd
Sp plx) = §"{s4n) for the p whove.

del

5. If 20 4:;:;} s o second depivative for all p such that ~h <p<sh, and
% P (xep) € U dn this intervel, them ﬁhi’"'(zfa) = %—-ﬁfx), : w:h:{"{x% s
and s m}‘rh #u) € H,

6. If ¥{mip) i combinuous for all p cuch that ~hsp Sk, then D 2(x) is
aifferentinilo. | | |

T T, mhmm Ahi T £(x3] and D 5 {x)} = %Eﬁ £(x)].

8.  If #{mdp) o conbinuous for all ¢ such that »he=] Cphrd, then

%{T jiﬂ}] = £{mw) for come p such thot ~hej<p ki, In parbicular,
amhfi g ih{‘?‘ #{:2}] has this propevéy on ithe inmterval [«2h, 7).

g, If theys cwist v and M such that m <f{xsp) €¥ For all p cuch that
*bed Spehng, thon me R (2,00} ] €1

1. IF 2{x) is such that o ¢ ‘,"”i,zs:w)‘% for all p such that ~hel€ g <h4a),
then m_Z) i:ﬁa {3 ﬂ‘iz.



s If f(whp) bae o continuous second derivative for ail p such that

whsJ L pShed, then Ehiﬂ A}l = £ (awe) for some p such that +hej <u Sheds
12« 3IF :?‘(*&:rga} hes o mzﬁshmom n'h derivabive for nll o ouch that
=ah < p Sy then mﬁ&f{x) & i?‘m)égzem} Loy some p such that «nb< pah.

13+ If £ ig such that o f‘{“)(mga) ¥ for 8ll p such thet -nh Sp <oy
ten m s ,E(V%h.

L f(mp} hag o continvows derivetives for all p such Wmb

- ﬁzfzmﬁ}izégﬁéﬁazwai}h; then ninfi‘hz.(x)} = E{n‘)(&m) for soue u ouch that

~(ren ) < € {pendhs .

15 IL £ is | shch that m‘*f‘(n) {xsp) € for all p ovelr hat

»{ken)a € p < {amin, ﬁxen m€ D, E i ’{wg}l Ble



IEL, RIGHD AWD LEFT GERERALIZED DERIVATIVIS

Henes we have defined o lindting process vhich ylelds the derivative

siaen it exiots and vhich converpes under gome civeunstanves when the dew

rivabive doss not exist. An Interesting aspect ic thet vo have defined
the derivetive in tems of an integral. .
1% da

derivative the "gederivabive” and FTx) the ivtegrsl :

ident that continudty of £{z) is mi, necessary for the wwis ber
De(x)s Hence, 4% 45 possible for 1in D, i‘{x) to exist without dmplying
'&he existency of & wigue Iindting 1%

. presofon culeby, L(z) mig

e %a% is, even if the above e

A

& not oxist and thore need not be & line annlos

s ho the tangent ldne for the derivative. Thersfore, we will alter the

definition of the gederivative to include the requirement thst T(x) also
exlet to aseure the existence of the limiting lime y* = DE(x){xt-x) + F(x).
Ve cop algo define right and Jeft hand

and left bend dntogre;

| g-derivatives a5 viok

meense Lo deline

- the gederdvative of £ ve first

expression Jour the best £1% live by the &

terien to :?(xvm) over the interval -h<p<h. Lot us now conoider the best

c3% ine t 1{mp) over the lntesvel ez gy [0k]e For a given velue of

Line dgy of coumsy, dn penorel not the sewe line as before,

2l the slope of dhls Liue m‘% "'{:») and the ovdin

oo "“"éa %{X) @ ‘%mf{x)v

ate of the point

of intersection of this ine sad the Ling

Yo pey shov thab

me(=) = 22 f (f;ﬁ)f(mm
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and
—, . 27
T(x) = b/ olxsg)ag.
I o
(8} X
Tow 2 18 gt the extreme lodlt end of the intervael snd if we let b
approeach zevg, the interval will shrink bo the point x. If is also useful
to define snother integral nean vhich is the ordinate of the point of
intersection of the best it line epd the line ' = ¥. Weo will call this
£,(x) and 1% ic defined iy

" ﬁh
ﬁL { P38 J0{ e JAE .
The best it line is precisely the line
¥y =7 h‘“{ a¥a¥ern) + ?‘; {x)

- '&ﬁﬁilﬁ(x'*”“’ %) ?1:{ &)

te pov define the Limits mhich pive ve the right bhead s-~derivabive
i’m) w m Zi;ﬂl ﬁ‘{:»:}

znd the right hond integrel neses

In the same way in vhich wo defined the right hand gederivative and
integral menns, we pay obtein the left hand counterpavts. Yo have

1 ‘ﬁg
Hetx) = 22 / (g aR)e(xe8 ae,
o veh

L

5y



w2

jm £
#3005

o

3

5

T%

=
T

~h

(ﬁm‘ﬁ@ £ (M‘ﬁ Ity
3‘). Ly

7e(x) = 1gm D, £(x);
£ {x) = liu w)@
- @?(m,}#

RS0

i ]

L

o,
B

O 2(z 3& ) 4 27 (x)
= .ﬁf'fiﬁaiﬁﬁz*»am%%} + T {x).

4
+
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Yo can dvev seic apalogies belbupen the m,:;nu and, lafl-hand mé.emw
tdves sad the rdight ond lefhehand dorivabives in ovdinavy aiffeventintion.
Also the pight apd Jeft-hord integyald mosus beve swglogsies in the wight

and lefb-hond Limibs,

Tor a gives funcbion, flaap), and g

ven values of by, we have written
expreseions Mdentifylog the best 236 lines for three differamt intm&l&
on py {a) [=hl, (b)) [0,h], end {2} [~h,0]. With vespect %o () ve roe

s

vicwed the fach that for a fixed b wo were sioply determining the projecw

tdon of an evbitvary clement of e Hilbvert space on the subspoce cpanned by

b

g oonetand ond & straight 13

ey 1 oand zvex, The same 3o trus of the inbore

ke {B) avd (o}, ‘The following luterssting reletivnship enists belween

rn
=

the theeos et glowp) be any Funebtion whilch is o straisht 1ine oo 0,4}

it {uh,,#} (wwmly discontinueus ab Gl If ds closr that gleep)

: ‘v::a xa) and that, in fack, 5ll possibie sudh fwebions

{straiahs liney on cach of [0k} and i’w&&;,@}'} conprise o Subspace of this
spase {a8). Suppoge we call the Ef.;, gracse on [«B,hl; 8 asd dhe subspace
spormed T o constant and o stesichit line, é‘iﬂ

of a1l possivlo fumcticns of the nature of glwp) desoriled above, By

zad the sybspace comprised

E=3
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s, ooy
straight lipe o [~h,h] is alzo & stenight line on both [#h,0] and [O;h).

Them, as vie stated, 5,C 1, wlc Hy, ond, Swiheriorg, dlc xﬁizg« et

He can show in such a case that the projectivm of an arbitrary vector,
Xy "'”3. is the sae ag the projeetlom 'i‘:i of the projecticn of d on 63

this case the fmplicetion is that 48 #{=p) is $it for p on the interval

y on [»h,0] and & straight

[~b,h] by tae function whidy is o straigh v
line oo [0,1] and vhids fite beot by the loust squares eritericn, sud if
tms post ik fuocticn is then ffiis for p {=n,nl by a s@migm. Tine,

dned gs would be i fﬁfmn) gere fit by

then the sang stmigm Lima is q's"a:

& straight line for p on [~hh]. This ou%aats timh e o wEihe E:eh and
% o terms of thedr right and 1&&)3?‘»?"‘@31% sounterpacie sluply By performing
the abuve @zwxm‘wna.

Lot us conudder & ﬂm&mﬁm sueh *w, a:mmrima ﬁg abwe,
Le’i; S g;{a:’) = Bl *“M") & %I'»r for =12 %

gln') = g, (x fex} # by For 2 x.

Then we have -

hgu&: tY = *ﬁg[i g{al\:z'-w—x} & % ]ﬁ& % gﬂa (kP 4fwn} + ® 1«3@]

%,
i3

';. o - 3 i
‘,‘4_; [ .S [m f,.:'u;zu;:) # hl?,-%» f *..“3 + ia (f*wa} ¥ b r}%{]

u) (x1ex)(a,m8,).

tmpese now et o, ot g;_, gf and t} are the best 21t vight ond left-

X' 4""@" {by

7’;3\

hand pavamebers for ®'s=x for cope i“m@*&:ﬁ:m %, and some h. Thea
ooalmy o= = ‘:"‘,f;_,a- wy o Pt -i'\'“;; - 231,
B0 IZ) £x) + a) #(x)] o+ gplf (s) = L (s3]
:’&r‘a this mm; am;» be :& i‘( ) Ve wgy write o elmils
m@; 3&'{»%} Ei-nﬁ 10 {u’b)v
;;,r'.,,, 3& i :'?w £
B, & ) LK :ﬁ‘{ DRLET IR ”’?y E A

r eapression conbaline



In the fived oxprassion Eﬁ, i’(:a.} %5 expressed in terns of the vight end leoit

r

hand pasamsbors %&f{:z}, B%i{x},, (=), ond *r‘ %) and in the second in torms

!
P ‘"‘s"éf‘w,-'j et oo Lo X ,,';’ o ¥ i
L3 X}h}:(&»}g %&{q\‘hj‘, Th(h) S

41“(2’5

a1t and Jelt band womns and

Yo may deduece pome propertice of rig

gederivatives Lmediately. %fe wildl consider the RS

if #(x) ip contimuous, then T(x) = #{x}. Te con ensily sco thot
Plx) = 202 (x) + P (x)] if these cwist, Purthermore, if emy Lwo of the

el
FQ' f

means are eguals; ol thres are eupal.
I% 1p woeivdl o consider the relabionships exiabing botvess i’} {=);

w5 ?&“ % g qﬁv"f‘wﬁ,': 1 Gy . g B . P s
7Y, sl 98{x).  ¥e ave inbevested i

- relationshise vhilch hewve wm»
gous lefh b eowterparts. The grophical picture i gleavs zzhﬁx) is

the ondinate of the best £it Line st the cepter of the lubervel [,

that 15, ab *z:%, %;;(*@) is the ordinate of this dine ab x3 D *“(;ﬁ:} is the
slops of the lioe. Hopeey, the full mm’a;; relationshiy 1o tous.
AFp. . »+

or

rpe(s) = S5 () - Tl

I8 we koop the graphicad mprwmmmm in wind, some of the results &

3y o enbicipebo.

Sheuren Xt I “f‘;;(a) exitty io the Limdt as b O, then :s;; ( <} ey aob
b wbornded.

Proods  Suppose ;!\.}fg £ f Pl JAb enists. Ve hawe
1y, :
0

. b
£, = «mf (o ~ 38)£(xrt Ak



Smobion. Honoo Yy the socond meon value theoresn

she & posuch thet O0< pdh

5, : 7
h‘x} ® M%";,J i’{x«m}ﬁg e %jﬁ nﬁ’x.’&%}&n

T follews that 1in B (x) = »68 4+ 1in 102 K 4f Lin £ sxiots. In sy ease
It follews thoab %:5."5,0 b } <G Lin 30 = K i Lim § exiots.  In eny emse

0 ‘}% £1 and 5o oven AP ';‘i does nob copverss it 16 bounded by © and 1 ead

"’{3" € < ""\i M,x:.j( ;?*. w € -,

wn

19 {y} empveress a5 b0 and fb‘* ‘) does nolt, then

discontinuity and (2) ﬁhifz} hes ap wbownded fioe-

(1) %g«(m Bas o bounded

1lating dise
contimity. Then & ﬂhi’wc) 18 munﬂeai ond eseillating as b -0 snd pust take
on nopenors vodues for erbitearily senll h's, apd E}hii’f %} is, therefore
wibounded.  IH may nob diverge wroperlky “mmuaes if 4% ddd, %? ﬁhff»z} would

either diverge mmpurly ot have & 1indt and likevise ? { #)s  Tads viclsbes

Ghg EW‘EXE 250



Tacoran X:  I2 Mo ff;f B} = %g(‘*;}j converges, bk not to zevo, Hhee
%‘ﬁx) heq

3 vabownded as h—>0.

Proos: Sinee 3 5 B E(x) = [T0%) = F(5)]. e Lip 3 D
Tt fellous Slas Bhs. %) wuot beoone wbowndad., ,

ldewy: I “’“fs:) and 2 {.u} exist snd are wot egual, then %f{aa}

beeones wisounied a8 >0

- Phoop

o KIT If m ifi‘h{ %)) = 0 and hance 82 Fx) = Fix),

) . F A
then u < D
h PO il 3

B

Bots that thi P{x) exiote, ¥For esanple at

3 does pot luply tha

30
" L 1
x= U 25} = {2)° is such ﬁwa,z? ﬁu} = § x) = O but th‘x} PCeomes o

Toagores ¥IIL:  Suppose linm ﬁ 2{x) axists. Then L !iﬁh R} - %:(x) = .
and ”%gizsﬂ and ’i‘“{aﬁ} converge or diverge Gogesthor. |
Thaoren mh it .s:a;hﬁx) a?.,,zwm@a properly as ha@,, smé:
{al) lm» Bhfx :&) , &, Taen lﬁu {‘“f&) - i ()] = z{ fxidl .ﬁ( :) end

’ fﬂ) wnwrg,u or diverge “@ob»timr. 13"? they vonverss

P ) h 3 & 4 ' ﬁ";’! AT i
(1) Lo 5 h iaﬁ) Giverges, thon &lm E;f* (&K} = iy ()3 Adverges

aod by & provicus lomne sxh.,x) =5 %1%,3%} saeh uimf‘z;ea as by U,

Phooren Wi Suppose D R(E) = I ,ﬁ.; and 7 m} = T'x). Then
thf{x} 2 8x) = (=),

Proof: The hypothesis stabtes thab the right and left hond bost £it

- lpes merge inbe ope dn the Iieds. o conelusicon of the theoren follows
trmedintely from the facts thab |

(1}

L1 the pavenmeters ere

copidmaous Puncbions of by,
e on [~n;0] snd [0,h]
G Jdne on [«h,hl uwnlses they bo the same

(2} the function composed of the best it 1%

*

45 & better £ib than
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J;iﬁuc: expressiong
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L‘" - ol wyi ’i
;hf(,&) + Dh,zw + 1l h
‘and F{x) exist, then T(x) = 2(F(x) + Tl

believe the seme thing about gederivatives, that

00£0-90;
OAY poom

}ﬂsta, it is the aversge of the right aand left-
éver, the First expression above yilelds the infors
wabion thet Dfvx; - o 2{x) + D #{x)] asswdng the existence of all the
T ELE ,,. 3"’*"‘ o w il = O Teawtharnors, 10 #hds $a
Yimits, if and only 4if %1131 muhﬁ}ﬁs; fllsx)] = Q. Furthemmove, if this is
true, some manipulsiion shows that
M‘!?m«) = lim hwhgﬁ)} ffhgza.,)].

It is interesting to note that even if T7{x) = T'(x) and T (x) = ¥ (), in
Vi P " 4 -é: 1 ‘i. -” *_:‘ e % M% ,‘\“‘%"' b’ - T ¥ 1 Wy Tk “W
general, Lim hﬁhf"‘) filsx,)l = Lim m{fhgx) filgx,) ]+ Recell that the
exicstence of D¥{x) implies the exisbence of ?‘(zﬁ) by definition. It is

possible to write th(:s:) in peny fowns of vhich we bave shown tvo,

Another is
ﬁhi’(m‘) = hifh(:&) - :ih(x)] + 3 h{;gh(x) ‘ &hm}l‘

Teorem XVEI: IF P(x+u) is right ond left-hand differentisble av

u=0, then 1im F{21(x) » £(x)] = 0.
Proof: 'There ‘e:xiat"a a K such that for svery >0 there exists a
vfgw“); ggx) » K[KE€. Thers exists an L
such that for every €7 0 there exists a §,)0 such that u> €, w<b, implies
:93(3@} : £ (“"’“} - L '<e . For every €>0 there existe a DY O such thet <8
ﬂra}?liezz} |:€(x-ﬂ;,g) = =) |<6 » ALl these follow from the hypothesis. From
ions wé obbain by the mean value theoren for integrals

8?2 ¢ such thet O Cu< §, inplies

e

these eupress
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ﬂx) & -ﬂ%(xf*ék | #g)ag <ha(x) + 2nlicre),

W b

.

() « 2%:(?’+€)< “:15 J g{met Jag< 31‘(%) + Eh{K+€)s

B o
Subtracting
n{ } e i}-i’lé(** / f{_&v‘«g)ﬁﬁ - »ﬂm gf(;‘q_g)ﬁ§< i( ) &+ l{vhe,
Hp h,

- Apein by the nean va.iue thoopas

, , s e . o o
-Zl(Mé? 2 bp(x)< -;; J[ £t Jag < =2h(I~€) + bi(x),

Bl 1€ = 3{‘(};}(‘ j' (x.;,@ }aﬁ(»'{f’(x) + Zalinele

i&

v & e ,
#{x) « bhetg “(m JE e f g(xet)ag < £(x) + bhe

Ty § oy
B

Combining those tue reﬁums, we obtalin
i (»-?:,:“f,%‘ w) w2 ) ShE
Cne <, 1) 1ni_zﬁ; <&

o

2ex) - £ ()

The last statenant s teue for & = min {5, ,06,,0, ) and 0ensa,

We should nobe that for a Tinite b the right and leftehand memng and
grdoeivatives retoin gl the properiies of L% and Dh.f wihich ave the
resulis of thelr belng the paranetors of thoe best £it line. Thesc
prisarily the c@m;ﬁmiﬁy‘ and differantiobility properties as well a8 the

mean valie thoorass. The facet thab i:*; i‘h and ‘i‘; are smoothing gperators




carrios over %o the lixdbing case. It follows oo

1

said that €' f, for cxauple, is at least as smooth and differentisble as fh

He oould show that 3f, for some B, - p B duplise that relative

E

to o set of neasure Shy, (ki) 15 conbinuous ab p=0, then F{x+p) is cons

b end left-band conbtiymity with

timous ab p=0, The same holds for Figh
E’*{ﬁﬂ? and T (xaple T8 15 8lsc true thad 1f 2{wsp} is aiferentiahle
:c*«:MLWe o such & sehb eﬁ’w&mm 2 at py ~~bhen, ?(wg) is aloo Aiflore
entianle. Ia iz, of mvrcfé,, mﬁ feue that 1f on Ea-h, 1} #{xip) iz conbin
wous @t p=0 velative S0 o oot of neasuwe Sy, shek %) = £(x), neccssarily.
Under these conditions 1% way be ﬁE"("‘&l..;E.’:]J at pe0 ot vhich 2{x4p) 45 dice
comtinuous, Hovever, ve ggy say theb Flx) is eqml to lw* fsen) mumg
p's only foon Hh «serfz of m@aawm 2. ﬁ.":njz goms is frue m{:‘ észm niistion
17 9o make it velative to the set of Mezs.sm e

f(zm"p} o 1imf(x£§j)
: Mmnro

whore p and ¢ are chosen mﬁty from the Seb of meagure 2.  This also

m of T and T velavive to

nolds for viget and I u“hm:‘z, @ifferentisy
guch & seb,

Table 11 given somo addibionsd properties of left and wighb<hand
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TABLE 1T

3041 ADDITIONAL PROPEIITES OF RIGHT HAND GeDERIVATIVES

p'E (%) = 2'2(x).

¢ e(x)] = PITE(R)] = BEn).

If ¥ i right differentisble ot ¥, thes ¥1(x) = D'2(x).
If © is right contluucus of ¥ then T is alse.

If £ 45 right difforentiable ah ¥, then T 18 also.,

If lin

Pwo

If § is vight conbinuous st X, then £(x) = ¥ (x).

Fmip) exiets, then T} eniots an

d they ave sausl.

I L Flaep) exists, 1t 4o equal to Tk}
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® CHDER G-DERIVATIVES

The faet that & wsedul relaticnship hao been established bebvween the

derdvative and the slope of 8 line best DIt over some interval

leant squares crlberion suggests that o sinilar reletionship w

e it guadratico.

betweon the seoond derivative and the be
since the criteydion of best £it is Jedet pquares; one mi‘b anticipate
voadh night be obtained if vo were to f£it

Both lzfx:E*‘ thege are bruss H

wegvery in the same
vay thet we £it the linc over o genersl isterval [weh, z4s) we tuet adept
L thmb v have Ty making

The clementery properties of Legendve polynomials

(1) ey avc orthogoual on e Di-widlt iutervals

(2) The ewpsncicn of an arbitvary lebesque square integpable

function ip Ly in terms of Iegend
{3} Tae orthogonaliiy comd

L of the squave of erwors

fhione imply that sudh on

requires that incrousing the degree of the polymuomisd

by oue necessitades ealowlating cxly cue pey coediiclent.

Pupthernore; the Lege
eguabion and cen be sfa’trﬁame& by orthopooali
b orthogonalization provess end the L, lomer produst.

ing the funchiens 1, % Xy « o «

using tive Selmd

The functions which woe will define &s gonerelized lege

30
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will be cbbaineble by a simple change of varisble in Iopgendre pelynomlals
Llys by orthegomalizgtion by the Sceidd provess using the

lnuer profuct previcusly defived in this maper,

foel = I/M £{;

"31

ovd Yot Yk

Taey will be pelynondals in the primed variatles (x'-x) like the

&

i1t Lime discusped previcusly, ond they will alsc be pormalized.

gteniy

et us "*e‘!}c}’iﬂ Ty 2, the fomilior nth degree legendre polymondial, and

18 the wbh degree generalized legendre polyn
By definition, thoun,

B (},'-‘x) [

ding x and b gives us s I, space on vilch {?i,ﬁéf = Oy vhere the

Ve fora g basis fow the gphot.

&y
=

o

-

R

2

; l

- he ‘”

L@ funcbion £ dn these polyuonials, the n'th coufficient

I we expa
f’:h
is given w o, = {Go l= ] £t )p, (8306
o TR T, T e
In addibion to the properties menbicged above vhich carey over fxom
the bi=-undt dntorvel to the gepersd duberval, we have geversl rocursion

1 Rod

Rodriguent Formils.

vélations in rovised form and also & ney form @

Given in Teble III io & listing of i;he spalogous relations, the foym on

on the general Intsrval.

the bi~unit interval followved by the fowmm



TABLE I1I
RECURSTON FORMLAS

1. FRofrvdgues fommda: 2 (0) = (2Pn1)” 2dl (*:igg,lj
% Y ws&

Ly (wen) = (B o P e [T <)

2. (or)ey 2 (0) = (2a)e (&) +mB (0) = 0

1

s . " - 1‘*""“5 - _;._ ‘
2. (o) iga,y (50-) (mm{ ), (tesd + n(m e
30 B,y00) - BY0) = (m)p,(e)
3 n(&miu {:ﬂ‘»m “ («:'wai (55
he om0} - B2 (9] = mdn{v}
b, (::s'« 3{ }‘n'(::‘s; «:&) - Ex( ‘}‘43* 1(,«‘, ) = (E&ml}%;w(x‘wﬁ,;}
5 B (0] - 21 () = (e (0)

5t gkl (o) - nghaliot | Geres) = (ams)bp (eres)

6r (073)B)(0) = mog (0] - nE_,(0)

e **i)..;lgh(,ﬂ :JL uw(_,. .} = M(‘“»"""N?W)‘ P {%'ex) - .a( L 3%

v

Yot

S = Gty (s

(R

.)‘m{,

{x!.,;g;)



Given below is o comparicon of the first thres Logem

end the first three such polynanials transformed o the genersl ipterval.

5 % ws » u SR R ) 3& %
{1} A@ﬂvﬁﬁﬁ) = Ly ‘pﬁ}{:\i’wéﬂ) = .,.,.] s

then

3¢

mw
o
ke phe
—
Bl
f E—
o
mﬁz“
3
o
:
B
sl
e
&
R g
£
bl

lover cose a's hers to vopresent the legmndre coefficients.

- inberested, hovever, in the coefficient of cadh

e will dntroduce additicnal notation

=" 4 'fe;lﬁ;wé: et %:vi P be the coefficient of f%:‘*@:}‘é in the 4'ih g@@n&i{m
Tegendre polynomial. That s *
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e *

- -

}g%u:'-vx) .y b .;‘s,,} P *@ (wiﬁy_«) ,

ne 2

it . W 3 § P v" o | L !w ’f?fil
153&(}: .31} = %ﬂ l{h -y S S hml,ml 1)

anded in Iegendve pok

amials, the g%:egrzﬁmmm of B,

@ b o a’.b N(K’“R) o & w P E:l %{K'“L)ﬂ

and thae coetficient of {_a«z"wx)‘a in vhidch we are parbiculs

wrly interested e

‘b oy This cow i’iaient 48 & fumotion of x end h., It o olsaw that the

vecursion relotions ldsted gbove serve pimply to esteblish rolations betwoen

the various bij*s end could be weitten in terny of thesc.

W will nov determine vhat happens to this geperalised lagendre exe

o in the ldrdb as b goes o sero. Yhe tern centaining the n'th

: R
{ Vo s | RV ex
oo {xben) = O § & L wat Jag
“i‘l%‘&%x x) 53;;%& P;I( )4 { &)ff%l&’ € Y,

the norralizing fﬁéﬁ:w and infdependent @i“ Be This con be written

o Byl ~%) = f 2 Am{@ wwm 1} t te)
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