TOPICAL CONTENT FOR CERTAIN FIFTH-YEAR
 MATHEMATICS COURSES/FOR MISSOURI
 SECONDARY SCHOOL MATHEMATICS
 TEACHERS

By
Dale Woods
Bachelor of Science in Education Southwest Missouri State College Springfield, Missouri 1944

Master of Science Oklahoma State University Stillwater, Oklahoma 1950

Submitted to the Faculty of the Graduate School of the Oklehome State University
in pertial fulfillment of the requirements
for the degree of
DOCTOR OF EDUCATION
August, 1961

TOPICAL CONTENT FOR CERTAIN FIFTH-YEAR MATHEMATICS COURSES FOR MISSOURI SECONDARY SCHOOL MATHEMATICS TEACHERS

Thesis Approved:

ACKNOWLEDGEMENTS

Abstract

The writer wishes to express his appreciation for the valuable assistence rendered by the many persons cooperating in this study. I am perticulerly indebted to the members of my advisory committee for their velusble guidance and assistence in the pursuit of this study, and especially to Professors J. E. Hoffmen and O. H. Hemilton.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
The Problem 1
The Purpose of this Study 2
Definition of Terms 2
Need for the Study. 3
Scope of the Study 7
Procedure 8
Limitations of the Study 13
Summary and Preview 15
II. THE CRITERIA FOR SELECTING CONTENT TOPICS 17
Introduction. 17
Preliminary Selection and Justification for Selection of Criteria 17
Statement Regarding the Preliminary Selec- tion of Criteria. 26
Selection of a Set of Criteria to be Usedto Select Content Material27
Discriminatory Character of the Set ofCriteria32
Summary 34III. THE FOUR-YEAR PROGRAM FOR SECONDARY SCHOOLMATHEMATICS TEACHERS IN MISSOURI36
Introduction. 36
Requirements for a Major in Mathematics Education 36
Summary 38
IV. SELECTION OF TOPICAL CONTENT FOR THE CERTAINFIFTH-YEAR COURSES40
Introduction. 40
Topical Content for a (six semester hour)Course in Algebra 41Topical Content for a (three semester hour)
Course in Geometry 47
Topical Content for a (six semester hour)
Course in Probability and Statistics 48
Summary 51
V. STMMARY AND CORCLUSIONE 54 SELECTED BLBLIOQRAFHY. 58 APPENDLX A . 62

APPENDIX $3 .$. 65

LIST OF TABLES

Toble PegeI. Peneiists Responses to the Stetementsof Crituria... 30
II. Gepered with 31
III. Penelists Responses to content Topies in Algebre.. 45
IV. Penelists Responses to Content Topics in Geometry. 49
V. Penelists Responsos to Content Topies inProbsbility end Strtistics......................... 52

CHAPTER I

INTRODUCTION

The Problem

The recognition of the importance that in-service sec ondary school mathematics teachers acquire additional education beyond the bachelor's degree has placed upon teacher education institutions an obligation for providing a suitable program. ${ }^{1}$ A college faced with the task of pioneering a fifth-year program, based on a traditional sequence of courses, finds itself confronted with the question of what constitutes the most nearly ideal content at this level of teacher education. The recent advances in mathematics, interest in structure and understanding, and new and spectacular applications of mathematics must necessarily influence the pattern of subject matter content. ${ }^{2}$ Because of the impossibility of including all mathematical topics, selections must be made. This study, therefore, is concerned with the problem: the selection of specific
${ }^{1}$ Kenneth E. Brown, "Inservice Re-Education of Mathematics Teachers," American Mathematical Monthly, LXVII (1960), 918-920.

2Hermann Weyl, "A Hale-Century of Mathematics," American Mathematical Monthly, LVII (1951), 523-553.
mathematical topics.

The Purpose of this Study

The purpose of this study is to determine a selection of content topics that can be used for the mathematical subject matter content of certain fifth-year mathematics courses for education of secondary school mathematics teachers in Missouri.

Definition of Terms

Throughout this study the following definitions of terms are used:

The term "modern secondary school mathematics teacher" refers to the instructor who teaches those sequences that have been recommended by the Commission on Mathematics, the School Mathematics Study Group, the University of Illinois Committee on School Mathematics, or the Ball State Experimental Program in grades nine through twelve.

A set of criteria is "complete" if there is no criterion (not already in the set) such that this criterion is independent of the original set of criteria.

If S is a set of criteria and C is a criterion of the set S, then C is "independent" if S and $S-C$ (i.e. the set S with C deleted) do not discriminate an identical set of mathematical topics.

The term "coefficient of agreement" is used to denote the value of $\left(4 S-n^{2}+n\right) /\left(n^{2}-n\right)$ where n is the total number of
panelists responding to an item on the questionnaire; S is a number whose value is $d^{2}-n d+\frac{1}{2} n^{2}-\frac{1}{2} n$ where d is the number of panelists responding to items three and four on the questionnaire. The coefficient of agreement will be denoted by C_{A}.

The term "weighted response index" is used to denote the value of $(1 / n)\left(C_{a}+2 T_{a}+3 T_{d}-4 C_{d}\right)$ where C_{a}, T_{a}, T_{d}, and C_{d} represent the number of panelists marking number one, two, three, and four respectively, and n is the total number responding to an item on the questionnaire. The weighted response index will be denoted by WRI.

Need for the Study

It is an obvious tautology that the subject matter needs of the teacher are a function of the subject matter he will be expected to teach. If the present trends continue, all sec ondary school mathematics teachers may soon be teaching a modern mathematical sequence. ${ }^{3}$ This implies that the Missouri secondary school mathematics instructor is required to have adequate preparation to teach a modern sequence. Since the set of inadequately prepared teachers is not the null set, and is in fact comparatively large, it is essential that educational
3^{3} College Entrance Examination Board, Commission on Mathematics, Objectives of the Commission on Mathematics of the College Entrance Examination Board (New York, 1957), pp. 1-1 1 .
opportunities be established to provide for this need. ${ }^{4}$
To initiate a course as a part of an educational program, fulfilling the above need, it becomes necessary to select the content material contained in the course. Acceptance of recommendations of leading professional organizations for content topics is a suitable procedure. This procedure, however, is not fruitful since in one instance (American Association for the Advancement of Science) only a specific number of semester hours is suggested. 5 The Commission on Mathematics of the College Entrance Examination Board takes the view that specific recommendations would lead to a stereotyped program. ${ }^{6}$ In another instance (Mathematical Association of America) the recommendations provide a basic outline for an undergraduste program. 7 Because of an absence of recommendations satisfying local conditions, it is, therefore, necessary to select specific content topics.

[^0]Extensions of specific course content for the undergraduate education of secondary school mathematics teachers, to the desired fifth-year education, would be a relatively simple problem if the prospective graduate student had studied these specific undergraduate topics. Local conditions In Missouri lead to the problem of providing adequate course content for needed additional edueation for students with an inadequate background. ${ }^{8}$

It is logical, following the absence of recommendations from professional organizations, to review the literature in the field of mathematics education respective to suggestions for desired content topics. The viewpoints, as expressed in the literature, are quite variable. One group would have students study traditional material. 9,10 Some advocate that the fifth-year be composed of just any mathematical topic. ${ }^{11}$ The majority opinion is that the basic subject matter content should be based upon what is
$8_{\text {Mary Jane Kohlenberg, "A Study of the Qualifications }}$ of Secondary School Mathematics Teachers of Northeast Missouri" (unpub. study, Northeast Missouri State Teachers College, 1954).

9wallace Manheimer, "Some Heratical Thoughts from an Orthodox Teacher," Mathematics Teacher, LIII (1960), 22-26.
${ }^{10}$ D. M. Merrill, "Second Thoughts on Modernizing the $^{\text {Mi }}$ Curriculum," American Mathematical Monthly, LXVII (1960), 76-78.

11"It really is not vital exactly what mathematics courses are taught, provided they are not of the "business mathematics," "mathematics in the home," or "history of mathematics ${ }^{\text {n }}$ type." Letter to the writer from C. Stanley Ogilvy dated December 12, 1960.
generally called modern mathematics. $12,13,14,15$
To select content material based upon the views of one mathematical educator is an approach to this problem. The expert chosen will certainly reflect his philosophy regarding the modern mathematical sequence of h1s choice. Which sequence, or variation of this sequence, will be adopted in Missouri? If the chosen authority plans for a particular sequence, will the training be adaptable to teaching another sequence? If there are differences, or if there is no difference, in the preparation to teach a particular sequence, a method of reconciliation will, in either instance, provide the nucleus for a satisfactory program. Consequently, to provide for a selection of course content, it becomes necessary to study these various viewpoints to establish from this study the basic content material for preparation of Missouri secondary school mathematics teachers.

[^1]The recommendations of the faculty council of a Missouri college for teacher preparation are that the mathematics content of a fifth-year should be a total of 16 seventeen semester hours. ${ }^{16}$ The student is to select, as approved by his adviser, from the following (thirty semester hours): History of Mathematics (three semester hours), Advanced Calculus (six semester hours), Geometry (three semester hours), Algebra (six semester hours), Probability and Statistics (six semester hours). The completion of the seventeen semester hours in mathematics plus an additional five semester hours of electives in education and ten semester hours outside the field of mathematics will lead to the Master of Arts degree.

History of Mathematics and Advanced Calculus are established courses at the college that are of interest in this study. Topics in Mathematics as generally structured in a mathematics program will vary with various groups of students. This study, therefore, will be restricted to content topics for the non-established and non-variable courses.

The boundary conditions with respect to the assumption

16 Minutes of the Faculty Council, Northeast Missouri State Teachers College, December 8, 1959.
of background experiences are those determined by the content of the undergraduate major in mathematics education at a Missouri State Teachers College. Prior to 1960 the requirements are equivalent to: five semester hours in algebre and trigonometry; ten semester hours in calculus; two and onehalf semester hours in college geometry; and an additional seven and one-half semester hours selected from (two and one-half semester hours for each course): arithmetic for teachers, teaching of arithmetic, mathematics of finance, theory of equations, differential equations, elementary statistics and surveying. ${ }^{17}$

It is to be understood that the writer does not necessarily agree that the above set of courses comprise a proper set of courses for pre-service preparation of secondary school mathematics teachers. This set of courses is used to propose a realistic approach to the problem to be investigated.

Procedure

Of the several methods of selection of content material for a given course the job-analysis approach might be considered the most logical, 18 To enelyze the content resonmended to bo teught by 2 modern secondory

[^2]school mathematics teachen is a relatively easy tesk. ${ }^{19}$ But the era is ended when the teacheris gresp of subject matter content consisted of sucessfully completing the courge he is now teaching. What then are the criteria for petecting content topics? To what should a particular topic contribute in order that this topic should be selected for study? This analysia lea the writer to seaxch the isterature for opinions as to what affect the study of a content tople should have upon the student. The first phase of this investigation is the result of this reasoning process.

Phase 2. The selection of a set of criteria to be used for designing the fifth-year program for preparetion of secondary school nathematics teachers in Pissourl has constituted the first phase of this investigation. The Indtal selection of eriteria has been made oy the mriter. It is well-established that the responsibilities and characteristies of the modern secondary school matheratics teacher are different from those of a teacher who teaches a treditional sequence of courses. 20,21 To decide what

19An example of one of the mathematical sequences is cited. "Summary of Content of BMSG Comrses, " American Hetheratical Honthly, LXVIII (1961), 283-285.
$20_{\text {Phathematical Association of Anerica, Committee on }}$ the Undergraduate Prograth in Mothematics, A Survey of Recommendatione for the Eraning of Teachers of Mathematies (Buffalo, 1961), pp. 1-6.
${ }^{21}$ College Entrance Examination Boara, Commission on Mathenatics, The Equcation or Secondary Bchool Mathematios Teachers, pp. 1-16.
topics make maximum contribution to the development of a teecher who cen perform these tasks effectively should be the discriminatory chargeter of the selected set of criteria.

Mathematicel periodicels such as the American Mathematical Monthly, Mathematics Teacher, and School Science and Mathematics report on experimental programs and proposed changes in mathematical education policy. These sources should contain viewpoints with respect to initial selection of criteris. 22 The writer, therefore, surveyed issues of these periodicals.

To validate the set of criteria that has been used in this investigation a panel consisting of carefully selected mathematics education specialists have been asked to give their opinions regerding the selected criteria. A list of these penelists is presented on pages 27-29 for verification of the ebility of these people to act as panelists. Each penelist hes been esked, by means of questionnaire, to respond in one of four ways to each criterion.

The responses to the questionnaire have been analyzed. A coefficient of agreement and weighted response index was computed for eech eriterion. A criterion was considered velid if the coefficient of agreement was above the .500 level and the weighted response index was below the 1.75 level.

$$
{ }^{22} \text { Ibid. p. } 8
$$

Phest ${ }^{\text {E }}$. This phesc of the invostigetion has been simed the salation of tha topicel content for tha orvein coursas in the fipth-year progrem. The fustificetion for selection wes pecording to the offerings in the entologs of saleted institutions of higher learing, contnt meteriel in th Nationel Scisnce Foundetion couraes, methometies toxtbook met riels, intorvizws by the writer with methometicel oducetors, itsreture in the siald of methometics educstion, and personal sporience of the writer with topical content meteriel.

To vaidata the selection of content material a penel consisting of minently quelified methemeticel educetorg hes been chosen. This cless of methematicians deamed quelifisd to velidete the selection of content metaridel were thos: persons chosen by the Notional Scignce Foundetion as directors of the severel (1961) Summer Instituts for Mothemetics Tecchers. Since these parsons are concemed with the educetion of approximotely 5,000 scondery school methametses techers during the summer o. 1961, thos: pople should be in F position to velidete th selsetion of topicel content. Cartein duefors listed es directors of summer institutes were consulted in et lesst one aspect of this study. These persons wre Procesaors Stenlyy J. Bezuszka, Boston Colloges Cliferd Bell, Univarsity of California at Los Angeles; Peul B. Burchem, University of Missouri; Jemas H. Zent, Oklahome Stata University; and Cerl V. Fronaberger.

Southwest dissouri State College. Since these Individuals hed been very helpful in previous phases of this study, they were onitted from the 11st of prospective panelists to validate the selected topical content.

A questionnaire regarding the validation of the selected content topics for probabilaty and statistics was sent to each institute director of institutions offering a course in probability and statistics. After having eliminated from possible selection as panelists those educators who were asked to enswer a questionnaire regarding content topics for probability and statistics, (to validate the topical content material in algebra and geometry) there remained possible selections for sending questionaires regerding content for algebra alone, for geonetry alone, and for algebre or geometry. The mathamaticlans that were asked, by mans of a questionnaire, to valldated content material for algebra consisted of the directors of institutes offering courses in algebra slone and e random sample, using a table of random unita, of directors of institutes who were offering courses in algebra or geometry. 23 A questionnaire regarding content material in geometry was sent to each institute director offering a course in geometry alone and to those remaining on the list developed for selecting panelists.

[^3]Phese 2. The finct phoss op chis investigetion hos consisted o? mekine recmmondetions for the topleal content or the eleth-yav progrem for secondery sehool methemetics techems of Missourt. Thes. recommendations heve been besed on the enelysis of the dete obteined in the seond whese of this Investigetion. From the responses to the qusationnaire the coeficient of correletion and welghted response index wore computed. A content tople wes selscted for the fifth-year progren if thare was positive ceefiolent of egreement with chi-square velues grester then

841 with on cogres of frecom or equivalent veluss so thet the confldence level would ba beyond ninety-flve paresent.

Stetistlos usad in the study. The cosfficient of Preoment es definco by Kendell wes colculeted using the aistinction betwen agroment end disegreament. 24 Po obtein - trend townrd egreement the welghtad rasponse index was usc. Chi-squere velus were computed for esch item on the quastionneless en ecordence with the theory thet is developad by Kencall.

IImitetions of the Study

Inhorent in most studies are some weanesses. This study is no exception to this generel statement. The shorte omings of this study ere primarily tha judguent of

[^4]the writer with respect to the initial selection of the aet of eriteria and selection of content togles. The basio imperfections will be atseussed in this seation of the gtudy.

Intital selection of the eriteria. Now, a prioxi, there is no reanon to belisve that it is even possible to 1 ast act of oniterda that woujd imply the discrimination of all mathematieal toples. Is $1 t$ possible to state all aducational quallties that a teceher must attain? Of course, for the sate of elegance complete get of criterie would be desirable. In this study, however, the set of erdteria is Inocmplete in the sense of the definition of completeness previousiy gtven.

The 1 mithal selections mere validated by a set of mothetaticians whose opiniong are respected on the netional level. While thia, ix mo way, implies an idea on completeness, it dees incicate the authenticity of thoge selected.

Instlal zelection of content topies. Fhe mitial selection of content topies for eourse content was to be velidated by aninent methemeticians. If, therefore, the jucgmant of the writer was not correct, the beale course eontent for proposec coursea wns not eltered. Wift respect to this metter the writgr purposely selected a variety of content material so that valudated topics could be used to constitute the nucleus of a onve.

Use of the moil queationnatre. The nati questionnaine is widely used as a method of data collection in survey work. Ashortcoming of the moil questionnare is the high
proportion of non-responze. The response of this quastionnaire wes seventy-two prrcent in phase one, and rifty-one percent in phese two of the study. Although there are oth r disedventeges to the uae of mell questionnaire, this should not constitute great factor in this study since:

> The ousstionnaire can be most fruitfully us for highly solect respondents with a strong int rast in the subloct metter, greatar educetion, and socioeconomic stetus. 5 ,

Sumpry and Provicut

The purpose of this study is the identification of sub bet mettry content for certain fifth-yen eourses in methemetics so thet Missouri secondery school teschers ere prepered to toeh modern secondery school sequence. The need for the study was validated with refarence to loopl conditions and the referance to severel haporvay netionel orgenizations of the urgency that teachers, with inedequats backround experiances, be adequately prepered to teach modarn sequence. The bisence of recommended content fopics, with respect to local conditions and the verious viewpoints of mathemetical ducators, pointad out tho desirgility of the study. Attention was eiven to the procedure and the limitetions with respect to this Cremwork within which the invastigetion was mede.

25 W. J. Coode and P. K. Hett, Methods of Sociel Research, (Now York, 195e), D. 182.

The study now proceeds with selaction of eriterle and fustificetion for selaction in Chepter II. Chaptar III contoins detailed onetysis of the four-your program, as Is aistont in spopile locility, to sarve es a bosis for th firth-yser courses. Cheptor IV conteins the dete regraing the selgetion of ontent topics as well es Justifleetion for aelection of content toples. Chepter V gives the conelusions and recomendetions.

CHAPTER II

THE CRETERTA FOR SELECTLNG CONTENT TOPICS

Introduction

In orcer to arrive at an andysia of the thiniding of the matheratics comunity in regards to the problem of selection of criteria, the writer surveyed issues of those periodicals which report on the subject matter, teaching of mathematies, experimental prograns and curricular proposals. Although a great deal of information was gleaned from this ilterature, only the discussions pertinent to the selected criteria will be noted.

In this chapter there are the preliminary selection of a set of axitemia, the fustification por this preliminary selection, the selection of a valic aet of criteria according to the opinions of mathenatical cauctors, and a ciscussion of this validated set of criteria.

Preliminary Selection and Justification for Selection of Criteria

The preliminary selected eriteria are in three sroups of criteria. The esst nine selected are concerned with the contributions that a content topic should nake to develop an effective teacher of modem secondary school mathemstics.

The next two criteria are related to the previous mathematios preparation of the student and the sequential nature of mathematies. The final eriterion is concerned with strueturing the fifth-year to provide continuity with the traditional four-year program. The stetements of eriteria will be construeted with respect to the three groups.

From the preliminary analysis of the opinions of the methematical community, o mathematical topic that is included in the fifth-year of program designed for Missouri secondary school mathematics teachers should: 1. Contribute to the understanding of aecondary school mathematics charactaristic of the present and future. 2. Contribute to depth and breadth of preparation beyond the mathematics of the secondary school and four year college. 3. Contribute to the development of the ability to further the apprectation of the broad interrelationship of the secondery school mathematios with a general scheme of the unity of thought.
4. Contribute to relating mathematics to other fields of knowledge.
5. Contribute to the application of mathematics to other fields of knowledge.
6. Contributa to the development of the ability to learn new mathematios by self-instruction.
7. Contribute to the development of the ability to apply high standards of proof to a variety of mathematical problems. 8. Contribute to the development of the ability to create minor mathematical research and problem-3olving.
9. Contribut to an understmeing of mathmetheal ropios teaght on the tementery or collage lava.
10. Contributs to tha deveiopant of metarial op appopriate diploulty.
11. Contribut to the firch-yar in the promom is basis
for on ingortent methometicel topie.
12. Contribute to the comeletion with the properetion of
the cur-yere mathometies duction progrem.
Justipicetion for seloction of exiterson number ons.
In discussion of cha geometry thet is to be roquired for preperetion of the modern socondsry school teschen, Meserve points out that:

Any comments upon the geometry which teachers should study must be basad upon some essunptions regerding the point of visw and the contents of the geometry thet thay will teech.-

On of the criteria histed by Kinsila, in vegerds to a good progrow of mathometios taecher praparation, wes thet the tescher should heve ε "mestery of secondery school methometics ohrpetaristio of the yaps $1960+\mathrm{x} .{ }^{42}$ Thes statemat en ba wheld by discussions op The Comrission on Wothmetics of the Collge Entrenco Exeminetion Boerd, ${ }^{3}$ the Penel
1_{B}. E. Wos rye, "The Educetion of Methemtios Teechers: Gaon try, Ampricen Mathmeticel Monthly, LXVI (1959), 909. ${ }^{2} J$. J. Kingilie. "Preparetion in Methemeties of Mathemethes Tachors, Wighometios Teecher, Lill (1960), 20.

College Erterenua Exeminetion Boorc, commsion on Methanatios, The Eduation or Socondary Sohool Methemetios Tachers. pe. 1-2.

On Teacher Training of the Mathematical Association of America Committe on the Undergraduete Progran, ${ }^{4}$ and individual educators who heve presented their viows on teacker education. Justification for the seloction of opiterion number two. Basic to the selection of any criterion is the fundemental objectives of the institution of higher learming of which a given progrem is pert. She atetad fundamental objectives of the college of interest is that the fifth-yegr of study "should be broad, thorough, and based upon genuino scholarship." 5 A further clarification is the statement that the mathematics teacher "must heve depth and breadth of understanding or that which he wishes to teach. "6 Processional orgenizations and individuals also have streased the necessity of the selection of this criterion.

Justification for the selection of criterion number three. The college or interest in this study asserts, in its stotement of the fundamental objectives of the college, thet the secondery school mathematics teacher neads "an appreciation of the broad intervelationships of that which he teaches with a genergl schome of the unity of thought. "'

[^5]Justification Sox the salaction of critarion number Sour. Tha sacondary sohool teacher will bg tagehtug students whose aslas of intasest are verise. To pexform this tesk effectively he must be etpeble of presenting verious peletionshivs mong the meny other disciplines. Kinselle ramertez thet in has meny yers op tadehing the obove stetcmants re corrot. H further 3 tates: "thet the lamine process of most odolssents requixes contect with the world os tongibles, or fethest relevency to ether plalds or humen mowladge. "8 The ingtructor who oxpets to motevets his pupils only by his personal knowledeg and love of the subject, and detests, or 4 unawere of, the connection or the subject metter he 13 teschirg to the various aress of knowledge is e "displeced person."

The recommendations of the Mothematicel Association of Americe sre that the secondary school teacher "must be abla to convey to our students a new ingight into the nature of methematicel thought ond of its role in our culture."9 This impliss the selection of toples thet contribute to relating methematies to other rialds of knowlodge.

Justicicetion sor the salection of critamion number
five. The increcse in the number of oprlicetions or methemetion hos pleced more demnond on the secondery school taecher.

9 Mothempticel Association of Americe, Committee on the Undergraduets Progrem, p. 4.

Word of new advances spreads by newspapers, magazines, public lectures, and television. This stimulates the curiosity of students who then seek answers to many questions. Teachers must be prepered to stimulate further the interest in such questiona, to provide sound answers for them, and to direct effective reading at the level of the student's backeround. The course work taken by the teachers should prepare them to keep abreast of the new developments which are often highly complex, to answer questions about them and to direct discussion of them. 10

Justificetion for the aelection of oriterion number six. Since growth is very likely to continue in mathematics, it is impossible to develop breadth of understandine of all developed mathematics topics in the short span of one year. ${ }^{11}$ It is impossible to predict the changes that will cocur in the topics taught in the secondary school as a result of present and future developments in mathematios. 12 It then becomes necessary that the teacher be able to learn new methematics without the guidanes of a professor. 13 Hence, topics studied by the teacher in the fifth-year should contribute to the develoment of the ability to learn new mathematies by self-instruction.

Justificetion for the gelection of eriterion numbex seven. Interest in atructure and understanding on the
${ }^{10}$ Gerrett, p. 288.
$11_{\text {Mathematical Association of Auerica, Committee on }}$ the Undergraduate Program, 0.6 .
${ }^{12}$ Andre Weil, "A Half-Century of hathemacios," American Mathematical Monthly. LVIII (1951), 523-553.

13 Mathematical Association of America, Commttee on the Undergraduate Frogram, p. 4 .
secondery genooi lavel forees the teacher te present rigorwus proons. Intuitivs prsots axe to ba mepleced, where pessibje, in the sechary school socunce. The tnetruetor must, $e s$ e consequence, be familex with whet conatitutes high stendarda ot proot. Euschan acye that "mocerr methemetios is too sovenced or intrieste rop intuition. 14 This implies that the teacher ahould hove the ability to epply miek standende of proci to varisty of wathonatical proviems.

Justicicetion for the selection ci criterion number gight. The mathomatics tacher is not completely educated unless ho otn do more then prifork operotions and recoll proors.

Poincrov once seid "...it ia by logic we prove, by intuition thet we discover. To know how to exiticize is good, but to know how to ereste is bettor." His stetements heve been pehoed by aksinguishod methometigians liks Hedemerd, Felix Klein, and Polys. 15

Cons quantly the toecher is insdequat 1 ly prepered to pess on to secondery school students the education thoy deserve If his methemeticel meturity is inedequete. The present secondery school progrom demands that the atudents be chellenged to discover the structure of mathematicss the repetition or proors is inadequats. If the instructor hes had little experience in methods of discovery, that is
${ }^{14}$ Hewhert Buamenat, "The Bole of Goomotry oop the Methametias Stwant, " Anerven Mothematical Monthiy, LxVI, (1960). 204.

$$
\text { 15mnat1*. } p .29
$$

Gevelogment is lost what othor manvidual s proofa end
croblomg tre tho nole ahollange to gtudy le
Tustifectacn gon the selection of criterion mumber

De I Inder this paroon must know the bsologround axperiences
हnd the future experiences thet may be gnoountared oy the
student This raquines thet the teacher must heva abundant
experiances with elomentray and college mathemetics.
Similer Arguments require the 3econdery 3chool teroher' 5 grasp o? methematiog to poxed both the lyval ft which he eustomerily terehes End the 1 vel ot which his treining hes Erequentiy cenes. It hes been moly demonstreted in mumorous zxporimentel ourpiculm thet high senool stuoents can study suceesstully certain mpthometict metorial which 13 now comonly postponed until colleg. Thet meny high school students should study 30 m s of thla meterlal follows rrom our ecrins diseussion or the rola of mpthometies in ous oulture. Thus. WIthin the next decede it is expected thet tocehars will ba ssiked to tapch metominl whíh many ot our pressent typehers heve never studied. The tesehan's megtsry of methemetwent ldeas must substantlally oxeepd thet represented by his taxt book if ha is to tatch with apirit of enthusiest and inquiry which atimulates his stadents to explora both fundamantel ideas and thest applieations. 27
$16_{\text {Toic. }}$
17 Mathemeticai Association of Amarica, Committee on the Jndergredueta Progrem. p. 5-6.

Justicicetion fox the salection of ertterion number sen. Dougles diseussed the pettems and requiremarts of eradueta study for the equetion of tochers. 18 He pointed out thet the greduste progrem should bs buile firgt upon the paevious cducetion and expertences of the indivicuel.

Those pergona with whom the writer hed personal contact suggested thet meny parsons wlll be enrolled in the fifthe year progren with insuepicient backeround or with background courses thet heva bean taken sevarel yoters prior to their anrollment. Tharefore, it is wise to choose moterial that will be of oppropriate difflculty. The progrem mast atart from the beckground expartancas of the teachers in the area. Then it must develop these teacher's mathemetical maturity as fer as possible in the time ellotted.

Justiricetion for the gelection of eriter on number pleven. Decpuge of the saquentinl nature of methemeties, it becomes essentifl to lrelude topics thet are essential to the develoment of other toples. For exemple, the enginaer would aeldom solve quedretle aquetion by completion of the squere nethod; however, tha study of this method is assentiel to the understanding or the quedrotic formule-in rect it is the besis or the quadretic formule. One could very well heve e student who excels in grinding out solutions for the quedretic equetion but who has no understanding of

[^6]the quadretic equetion. Theretore, there mey be certein topies thet should be studiad for understandice of other essential topics.

Justiplection for the selaction of eriterion number twely. The firth-yers program must ba plenned with the Sour-year program teken into consiceration. This view is expressed by the Commission on Mathemstics of the College Entrance Examinetion Board. 19 Mention specifically is made by Jones. He says:

Undergrecuate and gradueto programs must be planned with eech other in mind. Thet is, the undergreduete student should be cerried fer enough so thet he mey continue with some greduste study in methematics. At the seme time, greduete progrems should begin at a leval 3uch thet e well-prepered teecher mey continue with some methmetics at the graduate 1ovel, and gredurtw offerings should nweys be plonned to offer a veried sequance of courses fapropriste for the seondery school tencher.

Stetwant Regordine the Preiminery Balecton of Criteria

Wention should be mede of the diserimatory charecter, independence, end compleness of this set of criterig. The discriminetory chereetex is discussed with regard to the vilideted set of criterie thet will be used in selecting contont material. Completeness was discuased on page Pourtien.

[^7]It is to bs notad thet the prelininery got of ariterie is not indapondent, Ir the sense on mutuel axclusiveness, and, hence, the rinel selaction will not necessarily be indeperdent.

$$
\begin{gathered}
\text { Selocton os set of cmperio to bs used } \\
\text { to Selsety content hetoried }
\end{gathered}
$$

In onder to obtein es valld a sot of orsterie as possib20 panal of twenty-itve mathmaticel educators wes chosen. Tho educatom who were selected as panclists were aked to respond to the stetemanta of the preliminary ardterte. The statements wo empanged so that the penelists could give ona of soms optrions regerding e critarion.

The response of thase penelista wos very gretifying sinco eighten roturned correctly marked rasponsea. The following persons mey be identiplad with responses to the questionmene:

Phillis. S. Jones
Unevaratty of Michiepen
H. P. Froscett

Ondo Stet? Untvaratty
H. T. Kerna

Louiaifne Stets Univergity
B. W. Jones

University of coloredo
Honry Ven Engen
University of Wigcongin
J. Houston Benks

George Paabody College for Teachers
F. Lynwood Wren

Ser Pernendo (Californita) Velley Stete College

Gilbert Ulmer
University of Kansas
Clifford Bell
University of Californa at Lor Angeles
John J. Kemeny
Dartmouth College

Stanley J. Bezuszka, S.J. Boston College

H. M. Gelder

Western Washington College of Education
H. C. Trimble

Iowe State Teachers College
H. C. Permish

North Texes State College
One of the replies specifically asked not to be identified.
The other ten panelists, four of whom retwmed correctly
marked reaponses, ere:
\&. G. Begle
Tale University
H. M. Cox

University of Nebraska
J. C. Eaves

University of Kentucky
P. D. Edwards

Ball (Indana) State
W. H. Hausdoerffer

Trenton (New Jersey) State College
N. H. Mewaldt

Morthern (South Dakota) Teechers College
I. A. Ringenberg

Eastem Illinols Univarstby
W. J. Thomsen

Nankato (Minnesota) State College
Edith F. Whitmer
Henderson (Arkanses) stata College
C. K. Wilson

Eastern New Mexico University
A copy of the letter and questionnaire sent to each panelist is given in Appendix A.

The opinion responses of the panelists are presented In Table I. Colum one (marked ROW) gives the rank order with respect to the weighted response index. Column two (marked CN) gives the number of the criterion as presented on pages eighteen and nineteen. Colum four (marked RO ${ }_{c}$) gives the rank order with respect to the coefficient of agreement. Colum five (marked C_{A}) gives the coefficient of agreement. Columns six, seven, eight and nine (uarked C_{a}, T_{a}, T_{d}, and C_{d}) give the number or panelists marking colums one, two, three, and four respectively, on the questionnaire. Column ten (marked n) indicates the total number of panelists indicating an opinion on a criterion. Column eleven (marked d) gives the total of columns eight end nine. Column twelve (marked X^{2}) gives the chi-square values for the coaficient of agreement. Column thirteen (morked m) gives the degrees of freedom for the chi-square values. Colum fourteen (marked p) indicates the opproximate confidence intervel. 21

21Rendall, p. 446.

A further enalysis of the responses is given in Table II. The peired eomarisons are betweem complote zereenent and tendIng toword agreement or complete agreement. Symbols for Table II are similar to those used in Table I. In Table II the n^{*} represents the total mesponses to the items O_{s}, ma, and Od.

TABLE II
c_{g} MARED WITH

CH	C_{4}	0	T ${ }^{\text {a }}$	C_{0}	d	n*	x^{2}	M	\underline{P}
9	1.00	17	0	0	0	27	29.48	3.2	93
1	2.00	16	0	\square	9	16	18.37	3.8	99
6	.75	15	2	0	2	16	14.90	1.2	99
2	.69	te	1	0	1	13	8.53	2.	98
10	. 4 年	11	1	1	2	13	7.47	2.	95
3	. 34	9	2	0	2	11	5.58	1.3	95
12	. 34	9	1	1	2	11	5.58	1.	95
4	.29	8	2	0	2	10	4.66	1.4	95
7	.29	8	2	0	2	10	4.66	1.4	95
8	.07	7	3	0	3	10	2.16	2.4	75
5	.32	5	1	0	1	6	4.36	1.7	78
11	+ 18	9	2	1	3	12	3.72	1.3	90

It may be seen from the gata presented that eriteria regarding the apolication of mathemetios to other fields of Knowledge (number five), the ability to create minor mathematical reseerch and problem-solving (number eight), and the znclusion of a topic as a prerequisite topic (number aleven) should not be considered valid criteria. Table 11 indicates the values of P fall below the standard (ninetyfive percent) acceptance level for these criteria. Although the values of P in Table I are above the acceptance level, the weighted response index indicates tha trend is toward agrement (T_{a}) but not to complete agrement (C_{a}).

Discriminatory Character of the Set of Criteria

A criterion is redundant if it discriminates vacuousiy. Each salected criterion will be shown to diseriminate at least one content topie as to exclusion for the proposed program in this portion of the study. The discrimination as to inclusion of at laast one topic will be noted in the section of the study devoted to the choice of content topics.

Number one. Fundamental adaltion of natural numbers is normally stucied in elementary school. This topic certainly would not contribute to understanding of secondary school mathematies characteristic of the future since this topic should be thoroughly understood before the student enters secondary school.

Mumber tho. Any toplo studied prior to seoondary school W111 not contribute to depth ena breadth of proparction beyond the mathematies of the secondary sohool ard four-year college.

Number theee. Study of the revuetion of Hemitian metrices Does not contribute to the development of the ability to further the appreciation of the broad interrelationship of the secondary sthool mathenatics with a general scheme of the untity of thought.

Number four. A study of Peano eurves would not contribute to relating methematies to other fielas of knowledge.

Mumber six. Topios that are omputational in nature as a mathod of finding the area under a portion of a normel curve do not contribute to the development of the ability to learn now mathematics by sele-instruetion.

Mumber geven. Topics of a computational nature such as the procedure for aleulating the standare deviation of a nomal distribution do not contributa to the development of the ability to apply high atandards of proof to a variety of mathematioal problems.

Number nine. Generalized covariant differentiation is nomelly atudied in acivenced differential geonetry courses. Therefore, this topio would not contribute to an understanding of mathematical topies tought on the elementary or college level.

Number ter. A salected topic must be of appropriate dipficulty. This was pointed out to the writer in an interVisw with Profegsor Paul Rosenbloom of the Unsveraity of

Winnesota. For example a study of Finsler speces would not be of appopriate diffeulty and henee would not satisfy the criterion that a selected topic should be of appropriate difficulty.

Mumber twelve. Many mathematical topics do not easily correlate with the preparation of the four year mathematics program of given institution. Certainly a discussion of the fundamental theorem of algebra using complex variables would not correlate easily with the preparation of the student who has had no undergraduate preparation in complex variables.

Summery

A preliminery selection and justification for this aelection of a set of criteria has been made in this chaptex. From on analysis of the responses of a panel of educators there was an omission of three criteria from the preliminary selection. This omission was based on the coefficient of agreement as defined by Kendall.

The set of criteria that will be used in the selection of content topica will be designated as the validated set of criteria. This set of eriteria is discriminatory in that a mathematieal topic that is included in the fifth-year should be in the union of the cless of mathemetieal topics that:

1. Contribute to on understanding of secondery school methemetio chrrecteristic of the present and future.
2. Contribute to depth and Dreadth of preperition beyond the methemetics of the aecondary sehool and Pour year college. 3. Contribute to the dovelopmant of the abilaty to further the pprecietion of the broed interreletionship of the secondery sehool mathemeties with the generel scheme of the undty of thought.
3. Contribute to releting methemetios to other fields of knowloder.
4. Contribute to the developmont of the fbility to leam new methemetios by saltinstruction.
5. Contribute to tha devalopment of the abillty to bpply high stenderds of proof to e veriety of methemeticel problems. 7. Contribut to on understending of mathemeticel topics trught on the elementery or eollagg iovel.
6. Contribute to the devalopmont of motarial of eppopriets diepleulty.
7. Contribute to the correlation with the preperation of the four-yaer methematics education program.

It was shown that sech criterion of this set of eriteria did not discriminate vacuously with respect to exclusion of methemeticel toples. Also a discussion was mede with respect to independence and complateness and in this discussion it wes noted thet the chosen set oe criterin wes not independent or completg.

CHABER ITI

THE POUR-YEAR PROGRAM FOR SECONDARY SCHOOL MATHEMATICS TEACHERS IN MISSOURT

Introduetion

In order to apply effectively the criterion of selection of methemetical topics of eppropriate difiloulty anc because of the sequential neture of methemetles. it becomes necessary to discuss the four-yes plen whereby one mey choose topics for the eifth-yene. While meny prospsetive students may onroll for the fifth-year with lese than the minimum requiremants on mefor in mothemetics the collace on interest in this study, it is essantinl thet ell stadents meke up any desictincias borore antaring the firth-yoar program. Content topies will be chosen with the sssumption that the assumed four-yen progrem minimum requirements in methemetics be a prerequisite for courss in the firth-yor progrem.

Requiremant re Major Mothemetios Edueation

College Algebre. A chree gemester hour course in college algebre will be studied in the freshman or sophomore yex. The topies studied are:

The theory of quedentic equetions, complex
numbres, progregstons, doterminents, pretisi.
mactions, ate.
Trigonometry. Students will offer elthar a two or three somester hour course in trigononetry. The present course is Ewo smest hours end is deseribed as inciuding topies in: sragonometric punctions end the solution of plate triengles. "2

Anglytic geometry and colculus. A three end four-tenths samostr houx course in anelytic gecmetry plus six senester hours of ocloviva or totol or six senestar hours on analytio genotry with celculus plus six semester hours of caleulus will sonstitute the requiremon in alementary anelysis. This sequeno of courges is gquivelent to the course described in the recommadetions on the compttee on the Undergreduate Progrem in Nethametics of the Mothomethes Associetion of

Anrlvtic geomery sad celculus (3 course gtatence). Approximetely one-thmrd of the sequence should be devoted to enulytio geanetry, teught ather in oo-ordinetion with ealeulus on eter the endeulus sequence. Whis should include the coorentete plen, vations, poles oooroinetes, the elebreto description o. subs ts os the plene-reletae to soluttons of equations-end premetrically so the rence on function, chenes of goordinetes and briat twatmont of conie sections.

The senuence shovid siso give thorough treetment of the celenlus for functions of one verinbl, with strass on the basic ideas, but with edequats fotontion to menipuletive skills. The eourse should introduce differentietion, integretion, the retionel, trigomenetric, and exponantlel puctions, es well os a brief

IBulletin of Northoest Missouri Stat Meachers College, Fol. LX, p. 17.
${ }^{2}$ Inic. p. 170.
treotment of asmes wh gom very alemantary difarenty $\Rightarrow 1$ quations. 3

Collse geometry The two sno one-half semestsr hour courss in aollys geomotry 13 eptiv desenibed ns traditiond. Woserve's emmats in rotaras to tha college geonetry are spopos:

Tha traditionel and, frok meny pointis of view, misnamed counge in college geometry pxtonds slejlis in constructions and felationshaps Emong treditional geomotric Pigures. ${ }^{4}$

Electives. In addition to the required courses describad, an prditionel seven and one-hale semoster hours of course work (sa indiceted on pege eight) in mathematics must be completed. These electives axe to be selacted Whth the haly of an acvisor. Studies Dy Kohlanore indicate thet e mesority of the students heve completed their methewetics gueation men by aleting spithmetic ror teschers ond tataning on mithmetic as five somoter hours of this coquaremont. 5

Eummery

The minfmum propequiste courses for beginning the Aeth-year would be:

1. College nlgebre and trigononetry (rive smestar hours).

[^8]2. Anelytic geomstry and colculus (tan semestar hours). 3. Collsge geonetry (two end one-hale semester hourg). 4. Electues (seven and onehelf aemester hours). It is to be noted thet the above sat of methematics courses re not to be token as thosa courses comprising an Ided four-yagr progrem. They are, however, the courses thet form the methomotics educetion of tha teechers thet will be entering the proposed program.

chaptan IV

 WTPM-YLAR coveces

Introavetion
This chapter is concerned with selection of subject matter content for courses in algebre, probebility and statisties, and geometry for the fifth-year of preparation of secondary school mathematies teachers in Missouri. The instial selection of topieal content for proposed ourses hos been based on the selected set of criteria as listed on pages thirty-four and thirty-fuve. Gognizance hea been taken of suggested content moteriel from the mathemetical Association of America, Amertes Assoesation for the Advancement of Solence, National Science Foundation Institute courses, enc individuals In the feld of methemetics eduation in the gelection of boples. Although the Commission on mathematieg of the Qollage Entrance Examinetion Beard hes not apeodfically recommended topieal content meteriel for educetion of modern secondary school mathematios teasherg, it is expected that the topics suggested by Lorch, Mesarve, and walter will reflect the Commis3ion's recommencations. ${ }^{1}$

[^9]```
Hopleal content for a (alx memastem nowx)
 Courses in Algebra
```

Immodiately aftex the 1sting of indtrally selected topias the number (as llated on vagea thirty-four and thirtyPIva) of tha eritarion that tho ferticular aeleatad tople does not getlary will be $113 t e d$ in parenthoses. If a merticular topte satiseles all ericerin the symbol $\varnothing$ will be noted in the paronthogen. Sources suggestine the partivula contont tople whil bo notod next as follows Loron, ${ }^{2}$ xt ingelle, Ki: MoCoy, 4 , Kelly, 5 Ke: Amarican Association for the favancement of Bolonee, 6 Ass; methemation hscociation or Amerlea, 7 NAA: National Science poundation Institutes, 0


[^10]Content topios initisily salected are as follows:

1. Some propartios of the field of retional numbers. ( $\phi$ ): L;

N: M; KO; AAAS; MAA; MSF.
2. Definition ond some properties of groups. ( $\varnothing$ ) : L; Ki: M;

K: AAAS: MAA: NAF.
3. Algebrele operetions on matrices. ( $\varnothing$ ); Ket AAAS; M: NSF.
4. Determinants . $(\varnothing)$; $\mathrm{E}_{*}$ M: AAAS: Ke: MSF.
5. Linear trensformetions. ( 0 ); MAA; L; M; AAAS; Ke; NSF.
6. Inverse of motrix. ( $\varnothing$ ) ; MAA; $L ;$ M: AAAS; Ke; NSF.
7. Sets anó sentences. ( $\varnothing$ ) ; L; Ki; M; Ke; NSF.
8. Equivalence relations end equivalence classes. ( $\varnothing$ ) M ;

Ke: NSF.
9. Isomorphisras. ( $\varnothing$ ): MAA; M Ke: MSF.
10. Deanition and some propartiss of field. ( $\varnothing$ ): MAA; L; Ki: M: Ke: NSF.
11. Construtiton of the retionel numbers from the integers.
$(\phi)$ : L; Ki: M; Ke: NSE
12. Construction of the complex numbers. ( $\varnothing$ ) : M: NBF.

1. Moduler number systans. $(\phi)$ : L; M: Ke: NSF.
2. Fundenentel theorem of Erithmetic and epplications. ( $\varnothing$ ): M: MSF。
3. Pemmbation groups. ( $\phi$ ) : MAA; L: M; Ki; AAAS: NSF.
4. Special metrices, zero, identity, nilpotent, idempotant.
$(\phi):$ HAA: L; M; AAAS; K; NSF.
5. Definition and some properties of an integral domain.
( $\varnothing$ ) ; M; NSF.

## 18. Mathemetical induction. ( $\varnothing$ ); M; Ke; ISP.

19. Divisors and the division flgorithm for integers.
(D): M; HSF.
20. Diffarent basea for the numbor system. ( $\varnothing$ ); I; \#;

R W WSF.
21. Linear dependance of yactons. ( DI) : MAA; M; AAAS; Ke; $^{2}$ NSF.
22. Solutions of systams of lineor equations. ( $\phi$ ) : MAA;

M; AAAS; Ke; NSF.
23. Kapplings. ( $\varnothing$ ); N; Ke; NSF.
24. Definition and some properties of a ping. ( $(\boldsymbol{y})$; WAA; L ;

U; AAAS; Ke; WSE.
25. Geometrie repreaentation and trigonometric form of complex numbers. ( $\varnothing$ ); h: Ke; wsp.
26. The n nith roota of a complex number. ( $\phi$ ); M; स; NSF.
27. Suberoups. ( $\varnothing$ ); MAA; L; M; AAAS; Ko; NSF.
28. Ordered integral domains. ( $\varnothing$ ) ; M, NE.
29. Construction of the integers from the naturel numbers.
( $\varnothing$ ) : M; Ke: MSF ( $\mathrm{M} . \mathrm{R}$. Scott, Whiversity of Kansas).
30. Boolean algebra as a model of propositional logic. ( $\varnothing$ );

L: Ke.
31. Polynomisl rings. ( $\varnothing$ ) ; MAA; L; M; AAS; NSF.
32. Divisors and the division algortthm for polynomials.
( $\varnothing$ ): M; NSF.
33. Vectors and enelytic geometry of spece. ( $\varnothing$ ); MAA; M;

AAAS; Ke; NSP.
34. Some properties of real numbers. ( $\varnothing$ ); Ki; M; NST.
 of Illinols).
6. Coordinota systoms in speee. ( $\varnothing$ ): AAAS: Ke: MSF.
7. Beses and dimenston on vector speces. ( $\varnothing$ ) MAA: M;

AAAS: Ke: NSF,
38. Subspeces of vector apeces. ( $\varnothing$ ): M; AAAS: Kes NSF.
9. Arithmetic of onrdinels. ( $\varnothing$ ) ; L. Ki.
40. Pertial fractions. ( $\varnothing$ ); M: NSF.
41. Cyelic groups. ( $\phi$ ): M.
42. Cosets and Legrange's thoorem. ( $($ ): M.
43. Well-ordering principle. ( $\varnothing$ ) $M$; Ke.
44. Quotient field of en integrel domain. ( $\varnothing$ ); M; NSF.
45. Homomorphisms of a group. ( $\varnothing$ ): M.
46. Peano postulstes. ( $(\not)$ : M: NSF.
47. Cevehy sequences. ( $\varnothing$ ) : NSF(W, R. Scott, University
or Kenses).
48. Quotiant groups. ( $\phi$ ) : NSt.
49. Construction of the rerl numbrs using Coveny sequences.
( $\varnothing$ ) $\operatorname{Hsf}($ W. R. Scott, Univergity or Kensas).
50. Quertemions. $(\not)$ : Ke.

The spinions, of the penclists, regarding the selected content topics amepresented in Tebla IIT. Column one, marked CTH, Indicetes the contsnt topic number as listed boove. Other column designteions are identicel with those given in Tobla 1.

TABLE III
PANELISTS RESPONSES TO CONTENT TOEICS IN ALGEBRA

| CTH | 0 A | d | n | $\mathrm{x}^{2}$ | m | $P$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 | 0 | 16 | 18.37 | 1.2 | 99 |
| 2 | 1.000 | 0 | 16 | 18.37 | 1.2 | 99 |
| 3 | 1.000 | 0 | 15 | 17.40 | 1.2 | 99 |
| 4 | 1.000 | 0 | 15 | 17.40 | 1.2 | 99 |
| 5 | 1.000 | 0 | 15 | 17.40 | 1.2 | 99 |
| 6 | 1.000 | 0 | 15 | 17.10 | 1.2 | 99 |
| 7 | 0.750 | 1 | 16 | 14.08 | 1.2 | 99 |
| 8 | 0.750 | 1 | 16 | 14.08 | 1.2 | 99 |
| 9 | 0.750 | 3 | 16 | 14.08 | 1.2 | 99 |
| 10 | 0.750 | 1 | 36 | 14.08 | 1.2 | 99 |
| 11 | 0.750 | 1 | 16 | 14.08 | 1.2 | 99 |
| 12 | 0.750 | 1 | 16 | 14.08 | 1.2 | 99 |
| 13 | 0.533 | 2 | 16 | 10.97 | 1.2 | 99 |
| 14 | 0.516 | 1 | 15 | 13.09 | 1.2 | 99 |
| 15 | 0.516 | 1 | 15 | 13.09 | 1.3 | 99 |
| 16 | 0.516 | 1 | 15 | 13.09 | 3.2 | 99 |
| 17 | 0.350 | 3 | 16 | 7.22 | 1.2 | 95 |
| 18 | 0.350 | 3 | 16 | 7.22 | 1.2 | 95 |
| 19 | 0.327 | 2 | 15 | 9.40 | 1.2 | 98 |
| 20 | 0.317 | 2 | 15 | 9.40 | 1.2 | 98 |
| 21 | 0.317 | 2 | 15 | 9.40 | 1.2 | 98 |
| 22 | 0.317 | 2 | 15 | 9.40 | 1.2 | 98 |
| 23 | 0.314 | 3 | 15 | 6.32 | 1.2 | 95 |
| 24 | 0.314 | 3 | 15 | 6.32 | 1.2 | 95 |

TABLE ITI (continusd)

| CTN | $C_{A}$ | 0 | $n$ | $x^{2}$ | $n$ | $P$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 0.314 | 3 | 15 | 6.32 | 1.2 | 95 |
| 26 | 0.214 | 3 | 15 | 6.32 | 1.2 | 95 |
| 27 | 0.214 | 3 | 15 | 6.32 | 1.2 | 95 |
| 28 | 0.200 | 4 | 16 | 4.65 | 1.2 | 95 |
| 29 | 0.200 | 4 | 16 | 4.65 | 1.2 | 95 |
| 30 | 0.162 | 4 | 15 | 3.86 | 1.2 | 90 |
| 31 | 0.162 | 4 | 15 | 3.86 | 1.2 | 90 |
| 32 | 0.162 | 4 | 15 | 3.86 | 1.2 | 90 |
| 33 | 0.162 | 4 | 15 | 3.86 | 1.2 | 90 |
| 34 | 0.104 | 4 | 1 | 2.31 | 1.2 | 80 |
| 35 | 0.047 | 5 | 15 | 2.01 | 1.2 | 80 |
| 36 | 0.047 | 5 | 15 | 2.01 | 1.2 | 80 |
| 7 | 0.047 | 5 | 15 | 2.01 | 1.2 | 80 |
| 38 | 0.047 | 5 | 15 | 2.01 | 1.3 | 80 |
| 39 | -0.028 | 6 | 15 | 0.78 | 1.2 | 50 |
| 40 | -0.028 | 6 | 15 | 0.78 | 1.2 | 50 |
| 41 | -0.0 .8 | 6 | 15 | 0.78 | 1.2 | 50 |
| 42 | -0.028 | 6 | 15 | 0.78 | 1.2 | 50 |
| 43 | -0.050 | 7 | 16 | 0.37 | 1.2 | 40 |
| 44 | -0.050 | 7 | 16 | 0.37 | 1.2 | 40 |
| 45 | -0.183 | 7 | 15 | 0.17 | 1.2 | 30 |
| 46 | -0.183 | 8 | 15 | 0.17 | 1.2 | 90 |
| 47 | 0.000 | 6 | 16 | 1.22 | 1.2 | 70 |
| 48 | 0.047 | 5 | 15 | 2.01 | 1.2 | 80 |
| 49 | 0.083 | 5 | 16 | 2.65 | 1.2 | 85 |
| 50 | 0.314 | 3 | 15 | 6.32 | 1.2 | 95 |
| 3 |  |  |  |  |  |  |

Teble III shows thet, in the opinion of the panelists, the Pixst twenty-nine sugested content iopics should be congidered ta nueleus for a course in algebre. The Istirg of the topios will be noted in the next chepter.

Topical Content for a (three semester hour)
Course in Geometry

Content topios ore listod as described ror a course In alsmbre. Additional source suggestions are mede by Heserve, 9 and Sherk, ${ }^{10}$ denotod respactiviy by me end $S$.

The preliminery solsotions of content topies for a oourss in gometry cre es follows:

1. Structure of on oxiometic system. $(\varnothing)$ ) Me; $3: \mathrm{Ki}$ NSF.
2. A sot of postuletes for geometry. ( $\neq$ ) : Me; S: NSP (c. B. Allendoarfer, Univargty ef Weshington).
B. Mothods of proof in en axiometic systom. (ø): Ma; S; NiF. 4. Historieel discussion of "The Elements" stressing the logical shortoomings and the attempts to make the syatom more rigorolis. $(3,5,6)$ : Me: $3 ;$ Ri; NSF.
3. Analysis of sacondary school gametry. (2, 4, 5, 6); MAA; NSF.
4. Nor-Euelidean geometries diseussed in relationship to the pestulates given in number two. $(\varnothing)$ ) NSF.

9Moserve. pp. 909-911.
107. A. Sherk, An Integrsted Introduction to Gametey (St11Iwrtr, 1959), wo. $1-90$.
7. Axions of anelytho gematry and ther relationshtp to the potulates given in number two. (2); Me: MAA: NSP. 8. Introduction to presective ecometry. ( $\phi$ ) ) Me; s. 9. Hastery of atteapta to prove Euclid's parallel pestulate. $(5,6): W 5 F$.
10. Hyperbolic geonetry. Fatneare madel for hyperbalic

11. Introciustion to affine geometry. ( $\varnothing$ ); Me; B; AAAS; NAF.
12. Introduction to topology. ( $D$ ): He: S: Kis AAAS; NP.
13. Analytic opproten to trenaformation grouns. ( $\varnothing$ ); We; 3; 左:

15. Some clessicsi problems of astiquity comected with ruler and compass corstruetions. (3, 呈): S. 16. Differential geometry. ( $\phi$ ): wa; 3 ; Ri; RAAB.

The opintons, of the panelists, regeroing the sexectad eontent topies, are presented in Table IV. The notations are identicel with those of Table III.

An analysts of Teble IV indicates that only the first six toples ary basic to comese in geometry. It should be noted thet there is not a clear general outline for this cotrse.

Toploal content ror a (six semestar hour)
course in Probebility ond Statiatics

The proliminary selection of content topies for probabillty and stetiatics will be noted in the same fashion

## RABLE IV

PANELISTS RRSOOHES TG CONTENT TOELES IH GEOMETRY

| CTM | $C^{\text {A }}$ | 0 | $n$ | $x^{2}$ | m | $P$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 | 0 | 19 | 21.30 | 1.2 | 99 |
| 2 | 0.778 | 1 | 18 | 16.07 | 1.8 | 99 |
| 3 | 0.608 | 2 | 19 | 13.30 | 1.2 | 99 |
| $\frac{8}{3}$ | 0.602 | 2 | 19 | 18.30 | 1.2 | 99 |
| 5 | 0.602 | 2 | 19 | 1.00 | 1.2 | 99 |
| 6 | 0.298 | 4 | 19 | 7.18 | 1.2 | 99 |
| 7 | 0.088 | 6 | 19 | 2.96 | 1.2 | 90 |
| 8 | 0.059 | 6 | 18 | 2.2 | 1.2 | 80 |
| 9 | 0.018 | 7 | 19 | 1.54 | 1.2 | 75 |
| 10 | 0.006 | 7 | 18 | 1.07 | 1.2 | 65 |
| 11 | 0.006 | 7 | 18 | 1.07 | 1.2 | 65 |
| 12 | 0.006 | 7 | 18 | 1.07 | 1.2 | 65 |
| 13 | $-0.046$ | 8 | 18 | 0. 2 | 1.2 | 40 |
| 24 | -0.046 | 8 | 18 | 0.32 | 1.2 | 40 |
| 15 | -0.059 | 8 | 17 | 0.14 | 1.2 | 30 |
| 16 | 0.088 | 15 | 19 | 2.96 | 1.2 | 90 |

Es the content topies for elgebre ond geometry. Additionel gource meteriei wes obteing exn Welts, ${ }^{11}$ Golaberg, 12 and Mosteller, Rourike, eno Thomes, ${ }^{13}$ Those whil be noted by W, $G$ and mRT , respetively.

Initiel selections of contant topies for probebility and statistics are fa follows:

1. Jolnt probobility punctions. ( $\varnothing$ ) ; $G$; MRTP; NSF.
2. Binomial distribution. $(\not)$ ) W: Ki; Gi Mix: NEP.
3. Events and sets. $(\phi)$ : w: $G$; MRT; MAA; NSF.
4. Permutations and combinetions. ( $\phi$ ) ; $G$ : MRT; NSF.
5. Sample spaces. ( $\varnothing$ ): W; G; Mat; NSF.
6. Central limit theoram for binomial distribution. ( $\varnothing$ ),

G: MRT: NSF.
7. Poison distribution. ( $\phi$ ): WF.
8. Normal epproximotion to the binomial distribution. ( $\varnothing$ );

G: MRT; WSF.
9 Meen and stenderd davition of binomicl distribution.
$(\phi): G$ MRT: NSP.
10. Markov cheins. ( $\varnothing$ ):W.

12. Consdence intarvels. $(\phi)$ MRT: Minf
${ }^{11}$ R. M. Welter, "The Educhtion of Methemetics Teechers: Probebility and Stetistics," Amaricen Matheratical Monthly, LXVI (1959). 911-92:
${ }^{12_{S}}$. Goldberg, Probabllity: An Introduction (Englawood Clifes, 1960). pp. 1-315.
${ }^{1 / \mathrm{F}}$. Mostaller, R. E. K. Rourke, and G. B. Thomes, Jr, Probability and Statistics (Reading, 1961). po. 1-364.
13. Tasting null and eltemative hypotheses. ( $\varnothing$ ); 角: Ki:

14. Bayes formula. (3); G: MrT: NST.
15. Tree measure. ( $\varnothing$ ); W; $\sigma$; MRT; NSTP.
16. Mean and standard devietion of binomial distribution.
$(\phi)$; G; MRT; MSF.
17. Covariance and correlation. ( $\varnothing$ ); Q; HSF.
18. Rondom variables and discrete probability functions.
( $\varnothing$ ) : W; $G$; VRT ; NSP.
19. Completely and finitely additive set functions. ( $\varnothing$ ) : W.
20. Binomial theorem. (2); a; MRT.
21. Conditsonal probability: ( $\varnothing$ ) $\mathrm{G}_{2}$ MPT; MSF.
22. Chebyshev's inequality. (3); G.
23. Generalized binomial coefficients. ( $\varnothing$ ); $G$.
24. Chi-square distribution. ( $\varnothing$ ) ; NSP.
25. "Student's" t-distribution. (ф); MSF.

The responses, of the panelists, regarding the selected content topies are presented in Table $V$. The notations are icentical with those of Table IV.

The opinions of the panelists, as indicated by Table $V$, are that the first nineteen, as listed, content toples are suitable for the desired course in probability and statistics.

## Summary

This chapter was concerned with the selection of topical content for the certain courses. The initial
selection was made by the writer. This initial selection was evaluated from the reactions of mathematies edueators responding to a mell questionnaire. A particular content topie was considered to be acceptable if the coefficient of agrement wes positive toward agreement and the chi-square yalues indicated that the standard ninety-five percent sceeptance level was obtained.

TABLE V
PANELISTS RESPONSES TO CONTENT TOPICS IN
PROBABILITY AND STATISTIGS

| CTH | $C_{A}$ | $d$ | $n$ | $x^{2}$ | $m$ | $p$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.000 | 0 | 19 | 21.30 | 1.2 | 99 |
| 2 | 1.000 | 0 | 19 | 21.30 | 1.2 | 99 |
| 3 | 0.787 | 1 | 19 | 17.06 | 1.2 | 99 |
| 4 | 0.787 | 1 | 19 | 17.06 | 1.2 | 99 |
| 5 | 0.787 | 1 | 19 | 17.06 | 1.2 | 99 |
| 6 | 0.787 | 1 | 19 | 17.06 | 1.2 | 99 |
| 7 | 0.787 | 1 | 19 | 17.06 | 1.2 | 99 |
| 8 | 0.787 | 1 | 19 | 17.06 | 1.2 | 99 |
| 9 | 0.787 | 1 | 19 | 17.06 | 1.2 | 99 |
| 10 | 0.602 | 2 | 19 | 13.30 | 1.2 | 99 |
| 11 | 0.602 | 2 | 19 | 13.30 | 1.2 | 99 |
| 12 | 0.602 | 2 | 19 | 13.30 | 1.2 | 99 |
| 13 | 0.602 | 2 | 19 | 13.30 | 1.2 | 99 |

TABLE V (continued)

| 09 | $C_{A}$ | $d$ | $n$ | $x^{2}$ | $m$ | $p$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | 0.438 | 3 | 19 | 10.00 | 1.2 | 99 |
| 15 | 0.298 | 4 | 19 | 7.18 | 1.2 | 99 |
| 16 | 0.298 | 4 | 19 | 7.18 | 1.2 | 99 |
| 17 | 0.298 | 4 | 19 | 7.18 | 1.2 | 99 |
| 18 | 0.181 | 5 | 19 | 4.83 | 1.2 | 95 |
| 19 | 0.083 | 6 | 19 | 2.96 | 1.2 | 90 |
| 20 | 0.088 | 6 | 19 | 2.96 | 1.2 | 90 |
| 21 | 0.088 | 6 | 19 | 2.96 | 1.2 | 90 |
| 22 | 0.088 | 6 | 19 | 2.96 | 1.2 | 90 |
| 23 | 0.017 | 7 | 19 | 1.54 | 1.2 | 75 |
| 24 | 0.006 | 7 | 18 | 1.07 | 1.2 | 65 |
| 25 | -0.046 | 8 | 18 | 0.32 | 1.2 | 40 |

## CHAPTER V

SUMMARY AND CONCLUSIONS


#### Abstract

In this study thre has been asteolished a set of critaria to salect the topicel contont of fifth-year courses in methemotios for scoondery school teachers of Missourl. A methemetical topic selectsd should be in the union of the cless of topics thet:


1. Contribute to an understanding of secondary school mathematies charecteristie of the present and future.
2. Contribute to depth and breadth of preparation beyond the mathematies of the secondary school and four year college. 3. Contribute to the development of the ability to further the epprestation of the broad interrelationship of the secondary school mathemeties with the general scheme of the unity of thought.
3. Contribute to relating methematics to other fialds of knowledge.
4. Contribute to the development of the ability to learn now methametics by salf-instruction.
5. Contribute to the development of the ability to apply high stenderds of proo to e veristy of mathematical problems. 7. Contribute to anderstanding of methematicel topics teught on the elementery or college level.
6. Contribute to the development of material of appropriate difficulty.
7. Contribute to the corralation with the preparation of the four-yaer methematics oduction progrem.

The critarie were initiolly salectad by the writer. These selections were velideted from a stetistical anelysis of responses to a questionnaire sent to a penel of cerefully solected mathemetics educetion apecialists.

The second phese of this study concernod itself with the selastion of copicel content for courses in eleabra, probebility and stetisties, and geometry. The preliminary selection of content meterial was made by the writer. This selection was evaluated, using a officient of agreement, from the ractions of methematical aducators who are concerned with the education of seconcary school mathematics taachers.

Topics that were validated for inclusion in the certain courses were:

Algabe (six semestar hours). Some properties of the field of retional numbers, definition and some properties of groups, elgebreis operetions on metrices, determinants, linere trensformations, inverse of metrix, sets and sentences, equivalenes retions end equivelence classes, isomorphisms, definition and some properties of afield, construction of the retionel numbers from the integers, construction of the complex numbers, modular number systems,
fundemontel theorem of arithmetic and applications, permutetion groups, spociel metrices, definition and some properties of en integrel domein, methmeticel indution, divisors and the division algorithm for intecers, different beses for the number system, 1 ineer dependence of vectors, solutions of systems of linear equetions, meppings, definition and some properties of ring. geometric represtntetion and trigonometric Corm of complex numbers, the $x$ ath roots of a complex number, subgroups, ordered integral domeins, construction of the integers from the netural numbers.

Probability and statistics (six semester hours). Joint probability functions, binomial distribution, events and sets, permutations and combinations, sample apeses, central limit theorem for binomial distribution, Poisson distribution, normal approximation to the binomial distribution, mean and standard deviation of binonial distribution, Markov chains, normal distribution, concidence intervels, testing null and elternotive hypotheses, Beyes' formula, tree moasure, maen end stenderd devietion of binomal distribution, covariance and correletion, rendon veriebles and discrete probability functions, completely na finitely edditive set functions. Geometry (three semester hours). Structure of an axiomatic system, a set of postulates for geometry, methods of proof in an axiomatio system, historical discussion of "The Elements" stressing the logical shorteomings and the attempts to make the system more rigorous, analysis of secondary school geometry, non-Euclidean geometries discussed in
relationshly to the raven sat of postulates for Euclidean geometry.

Content topics for any progran of teacher adueation should not be developed once and then remain aonstant. They should be flud, "partiy restricted by the over-all pettern in use at the moment, and always veried by the teacher handIng the job at the moment. "14 These topleal contents susgestea are not to be taken as the ultimote but as a moneer progren based upon the present preperation of the student. Several individuala and professional groupa who have reoommanded topics for teacher preparation have noted that geveral or the selected topses should be studted in the undergradute progrem: therefore; it is logical to recommend that the entire secondary school methemeties teacher education poerra at the gollege of interest be $3 t u d$ ad with raspect to these recommendetions.

It was noted in report of a conference on the Wathemeties Cumpleule in NBF Institutes for High School Teachers thet the "general outline of geometry courses is not as clear as in the case of elgebra."15 Thas statament is verLeted in this study. Therefore, the topical content for a oourge in geometry deserves considereble further study.

[^11]
## A SELEGTED ETBLIOGRAPHY

＂A Conference on Methematics Curricula in Institutes．＂ American 胙解的atical Monthly，LXVIII（January，1961）， 33－38．

Breslich，Ernst R．The Administration of Mathematies in Secondary Schools．Chicago：University of Chicago Press， 1933.

Brown，Kenneth E．＂Ingervice Re－Education of Mathematios Teachers．＂American Mathematical Monthly，LXVII （November，1960），918－920．

Bulletin of Mortheast Missouri State Teachers College， Kirksille，Missouri（1958－1960）．
．（1960－1962）．
Busemann，Herbert．＂The Role of Geonetry for the Mathe－ matics Student．＂American Mathematical Monthly， LXVII（March，1960），281－285．

College Entrance Examination Board，Commission on Nathe－ maties．Oblectives of the Commiaston on fathematics of the college Entrance Examination Board．New York： College Entranee Exeminetion Board，1957，revised．
－The Education of Secondery School Methematics Teschers．New York：College Entrance Examination Borrd，1957．

Douglas，H．F．＂Groduete Instruction in Institutions of Higher Ecucation．＂North Centrel Association Querterly， KVII（Jenuery，1943），257－285．

Goldborg：Somuel．Probability：An Introduction．Engle－ wood Clifes：Prentice－Hell，Ine．， 1960.

Goode，W．J．，and P．K．Hatt．Methods of Soclal Research． Hew York：MoGrow－H111， 1952.

Alered B. Gorrett, Chaiman, "Recomarnctions por the Preparetion of High School Teechers of Selence and Methematics - 1959, "A Report of the Sub-Committee on Teacher Certification - The Cooperative Committee on the Teaching of Seianee ond Hathemettes of the American Association for the Advancement of Soience, Sohool Betence and Methemetics, ITX (1959), 281-289.

Nodgmon, Chates D., ed. Stencard Methongtical Tables, Twaleth Edjtion. Clevelend: Chemical Rubber Publinhing Compeny, 1959.

Jones, Phillips. "Pronising Possibilities for Improving contant in the Teeching of Mathematies." Virginie Journe 1 of Educetion, (Mey, 1960), 15-21.

- "Recent Reaseroh in Methemetics: Implicetions

Pon Teacher Education:" American Fathematical Monthly, LXVI (June-fulys 1960), 535-590.

Kelley, John L. Introduction to Mocem algebre. Princeton:
D. Ven Nostrend Compeny, Inc., 1960.

Kendell, Heurice 6 . The Advenced Theory of atatistics. Fondon: Cherles Gripir end Comprys $194 \%$.

Fins lla, John J. Preparation in Methematics or Mathemotics Reachers." Mathematics Teacher, LIII (Jenuary, 1960). 27-2.

Girloville Dejly Express. Deroh 21, 1958, p. 6.
Kune, Mormis. "The Ancients ya. the Moderos. Methematics Teacher, EI (October, 1958), 418-427.

Kohlamerg, Mery J. "A Study of the Qualifications of Secondary School Mathematics Teachers of Mortheast Missouri. ${ }^{\text {M }}$ mpublished study, Northeast Missouri State Teachers collees, 1954 .

Krestin, Audry, Zore Klain and Helene feche. "Quo Vadimus?" School enc Soclety, (August, 1947), 122-124.

Lorch, E. F. "The Education or Methenatics Feachers: Algebre." Americar Mathemetical Monthly, IXVI (Hoveraber, 1959), 806-808.

MecDurfee, C. C. "Dathematics Curriculum in Perspective." Metheratios peecher, LTI (Apmil, 1959), 265-267.

Nanheimer, Wallace. "Some Heretical Thoughts from an Orthodox Teacher." Mathematics Teacher, LIII (January, 1960), 22-26.

Methemeticel Associetion of America, Committee on the Ondepgredutte Program. A Summary of Reconmendations for the Training of Tenchers of Mathematios. Buffalo: Mathematical Asscifation of Americe, 1961.

MoCoy, Nell H. Introduction to Modem Algebre. Boston: Allyn and Bacon. Inc., 1960.

MoGrath, G. B. "Some Results from a Teacher-Education Questicnnaime." Educational Research Bulletin, XXIX (January, 1950), 14-17.

Meder, A. E., Jr. "Sets, Sinners and Salvation." Mathematios Teacher, LII (October, 1959), 434-438.

- The Education of Mothematics Teachers: Introduction." American Mathematical Monthly, LXXI (November, 1959), 805-806.

Merrill. D. M. "Second Thoughts on Modemizing the Currictum. " American Mathematical Monthly, LXVI (Janvary, 1960), 76-78.

Meserve, B. E. "The Education of Nethematice Teachers: Geometry. * American Mathemgtical Monthly, LXVI (Decmber, 1959), 909-911.

Minncte, T. H. Teaching of Mathematios in Che Secondary Schools. Wew York: Prentice-hall, Ine. 1931.

Nimutes of the Faculty Council, Northeast Missouri Btate Teachers College, December $6,1959$.

Minuter of the Regioned Conferences of Directors and Leeturers for NFF 1960 Summer Institwtes for Teachers of Hagh School Mathematics, Chicage, April 9-10; Washingtion, Anril 8-9: San Franciaco, April 8-9; St. Loula, May 6-7; and New York, Apri1 29-30, 1960.

Mosteller, Fiederick, Robert E. K, Rourke, and George G. Thmes, Jr. Probability and Statistics. Reading: Addiscn-Wesley Publishtne Conmany, Inc., 1961.

Nelson, Milton $G$. The mensition from Four to a FiveYoer Procrom in Now Yoer." Educational Outlook. (march, 1942) : 107-115.
 12. 3960.
"Recommenctions of the Mathematical Assoctation of Americe for the Trainsing of Mathematics Teachers." Amgetean Matherietlect Mothly, LXVIL (Deoember: 1960), 902-902.
 for Mathematics Teachers." Mathematles Teacher, XITY (Arati, 1952), 225-229.

Rouris, Robert E . स, "Roport of the Comission on hathemetios: " Amerje 1958) : 77-77
 Trands." Hethemetsi 2ebeher, HIL (Evoruery 2960), $85-89$

Smith, Devid Eugone. The Teaching of Mathematies in the Scoondery Sehoola of the United States." School Scaence end Methemetles, IX (Mergh, igoo), 203-219.

 Monthiy, UXVIIT (Mereh. 1961), 283-285.

Ven Encen, Henry. Plant Por Keorganization of College Peparctory Wothemstice." Sehoel Stionce and Hethematios, rvTIT (19bruary, 1958), 277-285.

Walter, R. M. "Rhe Education of Hathematios Teachers: Probabil. $t y$ and statistics." Amertean Mothematicat Monthly, fXyt (Deepmov. 1950):91-91).

Weil, Andre. "rha Future of Hathematica. Amorican Mothemeties MonthII, LTII (Aprit. 1950), 295-306.
 Ecucation, XI (January, 1940), 12-16.

Weyl, Hemmann "A Helf-Gentury of Mathematics." American Mathometlaal Monthly, LVIII (Soptember, 2951), 523-553.

## TSTPER TO PANELISTS TO VALIDATE THE

## SELECTED SET OF CRITERTA

Derer Prof. $\qquad$ :

Whe esteblishmont of the firth-yese of eduction for secondery school teechers of methemettes has beaome concern of many of our ingtitutions of higher learming, stete depertments of adueetion, snd professional organizations. At present I mavine olens for the establishmont of Etech-yeer progrem for secondery 3chool methemetics tanehers of Missouni.

To detemine the wethemetient topses to be included in efifth-year for e ive year program of preparation of secondery school mathomaties tedehers of Missouri I have selected criteria based upon the objectives of the State Teacharg Collage, discussion with gextain educators, and published materials. I heve selected you as an educetor whose experiences pleces you in a position to render valid opinions on these selected criteris.

For your opinion I om enclosing the selected eriteria with appropriate avaluetion remariss to minimize the use of your time. It will be spprecisted if you will give me your outhorative opinion regarding these selected criteria and return your remerte in the self-eddressed and stamped envelope.

Thenking you in suvence for your hely I ma,
Sincerely yours,

Dele Woods
$\mathrm{dw} / \mathrm{er} \mathrm{d}$

# CRITERIA FOR THE SELECTION OF MATHEMATICAL TOPICS TO BE 

INCLUDED IN A FIFTH-YEAR FOR A FIVE YEAR PROGRAM OF
PREPARATION OF SECONDARY SCHOOL MATHENATICS
TEACHERS OF MLSSOURI

Please indicete your egreament or disagreament with ach item in the following menner:

1. Complete or almost complete egreement. I egree with fen or no reservations.
2. Tend toward agrement. I agree more than I disagree. 3. Tend towerd disegreement. I disegree more then I agree. 4. Complete or almost complete disagrement. I disegree with few or no reservetions.

Plece e errels around the number which represents your opinion on axch stetament.

A methematical topie thet is ineluded in the fifth-year of - five year progrem of preperation of secondery school mothemeties tsachers should:

1234 I. Contribute to understanding of seondary school mathameties characteristic or the present and future.

1234 II. Contribute to depth and breadth of preparetion beyond the mathematics of the aecondary school and four year college.

1234 III. Contribute to the development of the ability to further the appreciation of the broad intarrelationship of the aecondary achool mathematics with a general scheme of the unity of thought.

1234 IV. Contribute to relating methematies to other fields of knowledge.

123 V . Contribute to the applleation of mathemetics to other thalds of knowledge.

1234 VI . Contribute to the development of the obility to learn new methemetics by sele-instmecion.

1234 VII. Contribute to the development of the ability to epply hifh stendinds of proof to a verlety of methemetical problems.

1234 VIII, Contribute to the develoment of the abllity to ereste mor methemetical researeh end problemsolving.

123 IX. Contribute to on understanding of mathometical topics teught on the elementary or college level.

1234 X . Contribute to the development of meterial of approprizte diffieulty.

1234 XI. Contribute to tha fifth-year if the program is a basis for an important mathematical topic.

1234 XII. Contribute to the correiation with the prepereticn of tho cour-yesr methemetics progren.

## APPENDIX B

## LETTER TO PANELISTS TO VALIDATE THE

## SELECTED CORTENT TORICS

Dear Prot. $\qquad$ :

I heve been studying the problem of selecting toptcal content materisl for o course in algabre (geometry, probebility and statistics) to be offered in the fifth-year of a flve yeer progren of preparetion of Misaouri zecondery school toachars. Since you are a director of a summar ingtitute undar the hif program, I would like to have your opinions regerding the topical content of such a course.

It will be opprecioted 1 you 111 assist in this study by responding to the enclosed questionnaire, and retumang the questionnaire in the self-addressed and stemped envelope.

Sincerely yours,

Dole woode
dw/erd

## DIRECTION SHEET FOR COMPLETING THE CUESTIONNAIRE

I would like to thenk you for your time in completing this questionnaire. I realize your time is valuable so I have tried to make the questionnaire as short and time saving as possible.

So that you mey heve the proper perspective regarding the proposed progrem there are the following details that should be basic for decisions.
I. The minimum prerequisite courses are:

1. College $31 g e b r e$ and trigonometry ( 5 semester hours).
2. Analytic geometry and calculus ( 10 semester hours).
3. College geometry ( 2.5 semester hours).
4. Blectives ( 7.5 semester hours). Selected from (2.5 semester hour courses) Business Mathematics; Arithmetic for Teachers; Teaching of Arithmetic; Mathematics of Finance; Teaching of Secondary School Mathematics; Introduction to Mathematics; Elementary Statistics; and Surveying.
II. Many of the prospective students have not attended college recently.
III. A topic selected for this program should be in the union of the class of mathematical topics that:
5. Contribute to understanding of secondary school
methematics characteristic of the present and future.
6. Contribute to depth and breadth of preparation beyond the mathematics of the secondary school and four year college.
7. Contribute to the development of the ability to further the appreciation of the broad interrelationship
of the secondery school mathematics with a general scheme
of the unity of thought.
8. Contribute to relsting mathematics to other fields of knowledge.
9. Contribute to the development of the ability to learn new mathematics by self-instruction.
10. Contribute to the development of the ability to apply high stendards of proof to a veriety of mathematical problems.
11. Contribute to an understanding of mathematical topics taught on the elementary or college level.
12. Contribute to the development of material of appropriate difficulty.
13. Contribute to the correlation with the preparation of the four-year mathematics progrem.
IV. The textbook reference noted after each topic is for your reference regarding a typical discussion of the topic to be presented. This is NOT to be taken as a recommendation of this text.
V. The topics are NOT ordered as they are to be presented.
VI. Indicate your agreement or disagreement with the selection of each content topic in the following manner:
14. Complete on amost complete mgrowent. I agree with fov or no rowervations thet this tople adtapied the set of endtara listed in III and thet this topic should be included in a course designed for secondary school mathemntlea besenara.
15. Tend whard egremant. I agree more than i disfgree thet this topic sethetise the set of criterta listed in III and that this topic should be included in a course designed for secondery sehool mathemeties teachera.
16. Tend tomerd disegreoment. I dismeree more than I egres thet that topte sectituea the set of ertterit
listed in III end that this topic should be included in a comss designod ron segondry sehool methemethes tobehers.
17. Complate or almost complate disegreement. I disagree with few or no reservations that this topic satisfies the sot or emberia listed in III and thet this topic should be included in a courae designod for aeoondary school mothemetios teachers.
VII. You may agree that certain foptos setiscy the set of critemis IIsted in IIT and is important in the ken of the secondary school methematios teacher but should be In the undergreduade program. In this instance you should mark conplete or almozt complete agreement.

TOPTCAL COMTENI FOR A (SIX SEMESTER HOUR) PIFTH-YEAR COURSE TR ALGEBRA FOR TEACHERS OF SECONDARY SCHOOL EATHEMATICS IR MISSOUPI

Plece a check $(V)$ in the perenthesis which represents your fudgmont on epeh se"xeted topic.

1. Complate or almome complete agreement. 2. Tend towara agreement. 3. Tend tovard disagreenent. 4. Complete or olmost complete disegreement.
$12{ }^{2} 4$
()()()() I. Sets and sentances.

Introduction to Modern Mathematies" R. W. Sloan
( ) ( ) ( ) ( ) 2. Booleam algebra as a model of propositional logic.
"Applied Boolean Algebra" F. E. Hohn.
( ) ( ) ( ) ( ) Mappings.
"Linear Algebra" L. J. Paige and J. D. Swift
( ) ( ) ( ) 4. Equivalene relations and equivalonce glasses.
"Linear Algebre" L. J. Paige anc J. D. Swift
()()()()5. Arithmetic of cardinals.
"Theory of Sets" J. Breuer
( )( )( ) ( ) 6. Definition and some properties of a ring. "Modern Algebra" N. H. McCoy
( ) ( ) ( ) ( ) 7. Nodular number systems. The Skeleton Key of Mathematics" D. E. Littlewood
( ) ( ) ( ) 8. Is omorohisms.
"A Conerete Approach to Abstract Algebra"
W. W. Sawyer
()()()()9. Definition and some properties of an integral domaln.
"Survey of Modern Algebra" G. Birkhoff and S. MecLane
( ) ( ) ( ) ( ) io. Ordered integral domeins.
"Survey of Modem Algebra" G. Birihoff and
S. MacLene
( ) () () () il. Well-orderine principle.
"Theory of Sets" J. Breuer
( ) () ( ) (12. Mathematical induction.
"Mathematical Induction a film by $L$. Henkin
( ) ( ) ( ) ( ) 13. Peano postulates.
"Foundations of Analysis" E. Landau
()()()()14. Divisors and the division algorithn for integers.
"Higher Algebre for the Undergraduate" M. Weiss
( ) ( ) ( ) ( ) 15. nifferent bases for the number system. Applied Boolean Algebra" F. E. Hohn
()()()()16. Fundamental theorem of arithrietic and applications.
"Modern Algabra" N. H. MeCoy
( ) ( ) ( ) ( ) 17. Definition and some properties of a field. "Modern Algebre" W. H. Mocoy
( ) ( ) ( ) ( ) 18. Some properties of the field of rational numbers.
"Elements of Algebre" H. Levi
( ) ( ) ( ) ( ) 19. Construction of the integers from the natural numbers.
"Elements of Algebre" H. Levi
( ) ( ) ( ) ( ) 20. Quotient field of an integral domain. "Higher Algebre for the Undergraduate" M. Weiss
( ) ( ) ( ) ( ) 2l. Construction of the rational numbers from the integers.
"The Number System" H. A. Thurston
( ) ( ) ( ) 22. Cauchy sequences. "Foundations of Mathematics" Fi. L. Wilder
( )( )( ) ( ) 2\%. Construction or the real numbers using Cauchy sequences.
"Elements of Algebra" H. Levi
( ) () () ( ) 24. Some properties of real numbers.
"Elements of Algebra" H. Levi
( )( ) ( ) ( 25 . Construction of the complex numbers.
( ) ( ) ( ) ( 26. Geometric representation and trigonometric form of complex numbers. "Higher Algebra for the Undergraduate" M. Weiss
( ) ( ) ( ) ) 27. The $n$ nth roots of a complex number. "Higher Algebra for the Undergraduate" M. Weiss
( ) ( ) ( ) ( ) 28. Polynomial rings.
"Fundamental Concepts of Algebra" B. E. Neserve
()()()()29. Divisors and the division algorithm for polynomials.
"Fundamental Concepts on Algebra" B. E. Reserve

"Fundamental Concepts of Algebra" B. E. Deserve
( ) ( ) ( ) ( 31. Partial fractions.
"Modern Algebra" N. H. Mccoy
( ) ( ) ( ) ) 32. Definition and some properties of groups.
"Fundamental Concepts of Mathematics" H. Eves and C. V. News om
()()()() 33. Permutation groups.

Insights in Modern Mathematics"
( ) ( ) ( ) ( ) 34. Cyc lie groups.
"The Skeleton Key of Mathematics" D. E. Littlewood
()()()()35. Subgroups.
"Modern Algebra" N. H. McCoy
( ) ( ) ( ) 36. Coset and Lagrange's theorem. "Modern Algebra" N. H. McCoy
( ) ( ) ( ) ( ) 37. Homomorphisms of a group. "Higher Algebra for the Undergraduate" M. Weiss
( ) ( ) ( ) ( ) 38. Quotient groups.
"Modern Algebra and Matrix Theory" R. W. Ball and K . A. Beaumont
( ) ( ) ( ) ( 39. coordinate systems in space. Introduction to Modern Algebra" J. L. Kelley
( )( )( )( )40. Vectors and analytic geometry of space. "Introduction to Modern Algebra" J. L. Kelley
( )( )( )( )41. Bases and dimension of vector spaces. "Modern Algebra and Matrix Theory" R. W. Ball and R. A. Beaumont
()()()()42. Linear dependence of vectors.
"A Concrete Approach to Abstract Algebra" W. W. Sawyer
( )()()()43. Subspaces of vector spaces. "Linear Algebra" L. J. Pale and J. D. Swift
()()()$)^{4}$. Quaternions. "Introduction to Modern Algebra" J. L. Kelley
( )( )()( )45. Algebraic operations on matrices. "Linear Algebra for the Undergraduate" D. C. Murdoch
( ) ( ) ( ) ( 46. Determinants.
"Higher Algebra for the Undergraduate" M. Weiss
( ) ( ) ( ) ( ) 47. Linear transformations. "Linear Algebra for the Undergraduate" D. C. Murdoch
( ) ( ) ( ) ( ) 48. Solutions of systems of linear equations. "Modern Algebre and Matrix Theory" R. W. Ball and R. A. Beaumont
()()()() 49 . Inverse or a matrix. "Introduction to Modern Algebra" J. L. Kelley
( ) ( ) ( ) ( ) 50. Special matrices, zero, identity, nilpotent, idempotent. "Modern Algebra and Matrix Theory" R. A. Ball and R. A. Beaumont

TOPICAL CONTENT GOR A (THREE SEHASTER HOUR) FIFTH-YEAR COURSE IN ALGEBRA FOR TEACHERS OF SECONDARY SGHOOL MATH-

## EMATICS IN MISBOURI

Place a check ( $\sqrt{ }$ ) in the parenthesis which represents your judgment on each selected topic.

1. Complete or almost complete agreement. 2. Tend toward agreement. 3. Tend toward disagreement. 4. Complete or almost complete disagreament.
$\left.\left.1^{1}\right)^{2}\right)\left(^{3}\right.$
$\left.\left({ }^{1}\right)\left({ }^{2}\right)()^{( }\right)$Poundations of an axiomatic system.
()()()() 2. Methods of proof in an axiomatic system. "Foundations of Mathematics" k . E. Wilder
() () () () 3. Historical Giscussion of "The Elemenes" stressing the logical shortcomings and the attempts to make the system more rigorous. "History of Mathenaties" H . Eves
()()()() . Anelysis of secondary school geometry. Including a discussion of some traditional and "modern" taxts.
( ) ( ) ( ) ( ) 5. History of attempts to prove Euclid's parcilel postulote. Fundamertal Concepts of Geometry" B. E. Meserve
( ) ( ) ( ) ( ) 6. A set of postulates for geometry.
(22 postulates given in an OUFLINE OF A SUMMER INSTITUTE COURSE IN GEOMETRY by C. B. Allendoerfer).
()()()() ( Axioms of analytic geometry and their relationship to the axioms given in number six. "Coorginate Geometry" L. F. Eisenhart
( ) ( ) ( ) ( 8. Non-Euclidean geometrles discussed in relationship to the axioms given in number six.
( )( ) ( ) ( ) 9. Analytic approach to transformation groups.
"An Integrated Introduction to Geometry" F. A. Sherk
( ) ( ) ( ) ( ) 10. Hyperbolic geometry. Poincare model for hyperbolic geometry.
"Fundemental Concepts of Gemetry" B. I. Meserve
( ) ( ) ( ) 11. Elluptic gaometry.
"Tron-Euciidean Geonetry" H. E. Wolpe
( ) ( ) ( ) 12. Differential geometry.
"Geometry and the Imegination" D. Hillbert and 3. Cohn-Vossen
( )( ) ( ) ) Is. Introduction to arpine geometry.
"Mobern Algabre" Q. Birmhore and S. MacLane
( ) ( ) ( ) ( )14. Introduction to projective geonetry. "Modern Algebra" $G$. Birthofe and S. MacLane
( ) () () ()15. Introctuction to topology.
"Fundemental Concepts of Ceometry" B. E. Meserve
( ) ( ) ( ) ( ) 16. Some olassical moblems of antiquity conected with ruler and compass constructions. "An Integrated Introduction to Geometry" P. A. Sherk

TOPICAL CONTENT TOR A (SIX SEMESTER HOUR) BIMTH-VEAR COURSE
IN PROBABILITY AND STATISTICS POR TEACHERS OF SECONDARY SCH SOHOOL MATHEMATLCS IH MLSBOURI

Place a check ( $V$ ) in the parenthesis which pepresents your judgment on each selpoted topic.

1. Complete or almost complete agreement. 2. Tend toward agreement. 3. Tend toward disagreement. 4. Complete or almost complete disagresment.
$\left(^{1}\right)\left(^{2}\right)\left(^{3}\right)\left({ }^{4}\right) \frac{1}{4}$. Eventa and sets.
"Probability and Statistics" Mostellax, R. E. K. Rourles and G. B. Thomas, Jr.
( ) ( ) ( ) ( ) 2 completely anc pinftely aditive get functions.
"Tngights in Modern Mathematios"
( )( )( ) ( ) 3. Permutations and combinations. Nhoory of Robebility" M. E. Monroe
() () () () H. Binomial theorem.
"Probabllity and Statisttos" F. Mosteller, R. E. K. Rourke and G. B. Thomes, Jr.
( ) ( ) ( ) ) 5. Generchized binomal coericients.
"Finite Mathematics" J. G. Kemany, L. J. Snell and $G$. L. Thomoson
( ) ( ) ( ) ( 6. Mexkov ahains.
"Pinite Mathematics" J. G. Kemeny, L. J. Snell and $G$. L. Thompson
()()()() (is smple spaces.
"Probabillty" S. Goldbers
( ) ( ) ( ) ) 8. Conditional probability.
"Probebility and Statlsties" F. Mosteller,
R. E. K. Rourke and G. B. Thomas, Jr.

"Finite Mathematles" J. G. Kemeny, L. J. Snell and G. I. Thompson

"Probability" S. Goloberg
( ) ( ) ( ) ( ) Il. Random variebles anc discrete probability functions.
"Modern Mathemathcal Methods and Models" Vol. II
( ) ( ) ( ) ( ) 12. Chebysher's inequality.
( ) ( ) ( ) 13. Joint probability functions.
"Theory of Probabllity" M. E. WBMros
( ) ( ) ( ) ( ) 34. Binomial distribution.
"Probability" S. Coldbere
( ) ( ) ( ) ( ) 15. Menr and standard deviation of binomial distribution.
"Modem Mathematical Methods and Models" Vol. II.
( ) ( ) ( ) ( ) 16. Central limit theorem for binomial distribution. "Theory on Probability" M. E. Phunce
( )( )( ) ) 17. Poisson distribution.
"Theory of Probabillty" M. E. Munoe
( ) ( ) ( ) ( ) 18. Momal approximation to the binomial distribution.
Hodem Mathometical Nathods and Models" Vol. II
() () () 19. Nomel distribution. "Statistics D. A. B. Fraser
( ) ( ) ( ) 20. Conficence intervals.
"Erobebility and Stotistios" F. Mostaller, R. E. K. Rourite and G. 3. Thomas, Jr.
( ) ( ) ( ) ( ) 2. Mean and standard deviation of normal distribution.
"Rrobobility end Statistios" F. Mosteller, R. L. K. Rourke and G. B. Thomes, Ir.
( ) ( ) ( ) 22. Testine null and alternative hypotheses.
"Elementery statistios" 3. F. Hack

( ) ( ) ( ) ( ) 2t. cht-square distribution.
"Elementary Statisties" 3 . F. hack
( ) ( ) ( ) ( ) 25. "Stucent's" t-cistribution. Introduction to Statistics" P. G. Hoel

Dele Woods
Gandidate for the hagree of
Doctor of Euveation
 COURSES FOR MISSOURI SECONDARY SOHOOL MATHEMATICS Fenchers

Major Field: Hzeher Eucation, Mathematies
Biogrephical:
Tergonel Data: Bom in Stone County, Musourt, Foveraber 1, 1922, the son of Palding Juatiee end Ellzabeth Holt Wooda.
sodueation: Attended Realey oreek Elenentary schooi, Stone county, Mssouris grecuated fron Abesvilla High Sohool, Galana, Misaours in 1957; attended Horthwest Missourl Stata Qollege, Naryville, Hismouris and regeived the degree of Bachelor of Selence in Edueation from Southwest Masourd State college, Springfield, Mis3ouri, in 1944; attended washington University, St. Louis, MLssouri; North Deltota state Univeraity, Pergo, North Dakota; Draie Universtty, Dea hoines, Lowa; Univergity of califomia, Bericeley, Celiforma; received the Mester of science degree in mathematies fron OLlahoma state University, 3tillwaten, Oklahoma in 1950; attended the University of chlorefo, and completed the requirobents for che Dotor of Equeation degree in Higher Education, Wathematios, in Aucust, 1961.

Professional Experisnee: Tought mathematios in secondery sehools; U. S. Navy, inatrisetor of hothemeties at North Detota State University: Texan Westem College; Musissippt. Southern College; Assistant Proressor of Mathamaties at Memphis state Univeraty; Idaho State College; Associate Professor of Mathematics at Northeast Missouri state Teachers college; and part-time teaching assiatant at Oiflehoma State University.

Trofessional Orgenizations: Kappa Mu Epsilon: Pe Gemma Mu; Mathematical Asmoatation of America; Mational Connell of Teachers of Mathematics; Masouri State Teachers Aasociation.


[^0]:    ${ }^{4}$ Kirksville Daily Express, March 21, 1958, p. 6.
    5 Alfred B. Garrett, Chairman, "Recommendations for the Preparation of High School Teachers of Science and Mathematics - 1959," A Report of the Sub-Committee on Teacher Certification - The Cooperative Committee on the Teaching of Science and Mathematics of the American Association for the Advancement of Science, School Science and Mathematics, LIX (1959), 281-289.
    $6^{\text {College Entrance Examination Board, Commission on }}$ Mathematics, The Education of Secondary School Mathematics Teachers (New York, 1957), $\overline{\mathrm{pp}} .1$ 1-16.

    7 "Recommendations of the Mathematical Association of America for the Training of Mathematics Teachers, "American Mathematical Monthly, LXVII (1960), 982-991.

[^1]:    $12_{\text {A. E. Meader, Jr., "Sets, Sinners and Salvation," }}$ Mathematics Teacher, LII (1959), 434-436.
    ${ }^{13}$ Morris Kline, "The Ancients vs. the Moderns," Mathematics Teacher, LI (1958), 418-427.
    ${ }^{14}$ P. S. Jones, "Promising Possibilities for Improving Content in the Teaching of Mathematics," Virginia Journal of Education, May, 1960, pp. 15-21.
    ${ }^{15}$ Henry Van Engen, "Plans for Reorganization of College Preparatory Mathematics, " School Science and Mathematics, LVIII (1958), 277-285.

[^2]:    ${ }^{17}$ Bulletin of Northeast Missouri State Teachers College, Kirksville, Missouri (1958-1960), p. 156.

    18
    John K. Norton and M. A. Norton, Foundations of Curriculum Building (Boston, 1936), pp. 60-91.

[^3]:    2 Charles D. Hodgman, ed., "A Table of 24,000 Randoa Units," Standard Mathematical Tables, (12th ed. Cleveland, 1959), pp. 237-243.

[^4]:    ${ }^{24}$ Meurice G. Kendel1, The Advanced Theory of Stetistles (London, 1947), pp. 427-4.5.

[^5]:    ${ }^{4}$ Mathemetical Associstion of America, Comittee on the Undergraduat. Progrem, pp. 3-6.
    ${ }^{5}$ Bulletin of North ast M1ssouri Stato Teachers College, Kirksvil1, Missouri (1960-1962), p. 6.
    ${ }^{6}$ Ibid.
    ${ }^{7}$ Ibia.

[^6]:    18H. R. Douglas, "Graduate Instruction in Institutions of HLghar Education, North Centrel Associetion Quartarly, XVII (1943), 257-285.

[^7]:    ${ }^{19}$ College Entrance Examination Board, commission on Mathemetles, The Education of Secondary School Mathematics Teacherg, po. 12-1.

    20p. 3. Jones, HRecent Research in Kathemetics: Impl1estions for Tacher Education," American Mathematical Monthly, LXVII (1960), 289.

[^8]:    ${ }^{3}$ Recommendetions of the Methemetioel hasocietion of
    
    ${ }^{4}$ Moserve, $p .909$.
    

[^9]:    ${ }^{1}$ A. E. Meder, Jr., "The Equcation of Hathemetles Teachem: Introduction," Ameriean Mathematical Monthiy, LXVI (1959), 805.

[^10]:    2m. R. Lomeh, The Education of Mechematics Teachers: Agebre, " Gacricar Mathenatical Honthly, LKVL (1959), 806-803.

    3timselle, p. 31. 4. W. W. WCoy. Introduetzon to Modem 1960 ), po. 1-299.

    5J. L. Kelley, Introduction to Mocem Alcobre (Mrineeton, 19601, pp. 1-332.

    Gerrett, p. 288.
    7 methemeticat Baociation of Brevice, uomittee on the Undergracuate Progrom, 9.90 .
    ${ }^{8}$ ninutss of the Regional confarenea of Disectors and Loetureve fow MSF 1960 sumare Instltutes fer Teachers of nigh sehool pothematics. Chicego, horil 9-10; Weshineton, fprit 8-9; San Frenciseo, April 8-9; St. Lous, Day 6-7; and Nev York, Apro11 29-30, 1960.

[^11]:    ${ }^{14}$ Harold spaars, The Teacher and Currionlum Planning (New York, 1951), D. 87.

    15"A Conference on Mathematics Curricula in Institutes," Americen Mathematical Monthly, LXVIIT (1961), 33.

